
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Department of Agronomy and Horticulture: 
Dissertations, Theses, and Student Research Agronomy and Horticulture, Department of 

5-2019 

DNA BARCODING OF PRATYLENCHUS FROM AGROECOSYSTEMS DNA BARCODING OF PRATYLENCHUS FROM AGROECOSYSTEMS 

IN THE NORTHERN GREAT PLAINS OF NORTH AMERICA IN THE NORTHERN GREAT PLAINS OF NORTH AMERICA 

Mehmet Ozbayrak 
University of Nebraska-Lincoln 

Follow this and additional works at: https://digitalcommons.unl.edu/agronhortdiss 

 Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences 

Commons, Botany Commons, Horticulture Commons, Other Plant Sciences Commons, Plant Biology 

Commons, and the Plant Pathology Commons 

Ozbayrak, Mehmet, "DNA BARCODING OF PRATYLENCHUS FROM AGROECOSYSTEMS IN THE 
NORTHERN GREAT PLAINS OF NORTH AMERICA" (2019). Department of Agronomy and Horticulture: 
Dissertations, Theses, and Student Research. 163. 
https://digitalcommons.unl.edu/agronhortdiss/163 

This Thesis is brought to you for free and open access by the Agronomy and Horticulture, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Department of Agronomy 
and Horticulture: Dissertations, Theses, and Student Research by an authorized administrator of 
DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/agronhortdiss
https://digitalcommons.unl.edu/agronhortdiss
https://digitalcommons.unl.edu/ag_agron
https://digitalcommons.unl.edu/agronhortdiss?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1063?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1076?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/103?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/103?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/104?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/105?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/109?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/106?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/106?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/107?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/agronhortdiss/163?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages


 
 

  

DNA BARCODING OF PRATYLENCHUS FROM AGROECOSYSTEMS  

IN THE NORTHERN GREAT PLAINS OF NORTH AMERICA 

 

by 

 

Mehmet Ozbayrak 

 

 

A THESIS 

 

 

Presented to Faculty of 

The Graduate College at the University of Nebraska 

In Partial Fulfillment of Requirements 

For Degree of Master of Science  

 

Major: Agronomy 

 

Under the Supervision of Professor Thomas O. Powers 

 

Lincoln, Nebraska 

 

May, 2019 



 
 

  

DNA BARCODING OF PRATYLENCHUS FROM AGROECOSYSTEMS  

IN THE NORTHERN GREAT PLAINS OF NORTH AMERICA  

 

Mehmet Ozbayrak, M.S. 

University of Nebraska, 2019 

Advisor: Thomas O. Powers 

Pratylenchus species are among the most common plant parasitic nematodes in 

the Great Plains Region. The objectives of this study were to barcode Pratylenchus 

specimens for species identification in the Great Plains region using mitochondrial CO1 

DNA barcode. In order to (1) determine species boundaries, (2) assess the host 

associations of barcoded Pratylenchus, (3) to determine the distribution patterns across 

the Great Plains Region and, (4) to evaluate the species status of P. scribneri and P. 

hexincisus by a multivariate morphological analysis of haplotype groups identified by 

DNA barcoding. Soil samples, primarily associated with eight major crops, were 

collected from Colorado, Kansas, Montana, Nebraska, North Dakota, and Wyoming. A 

total of 439 infested field samples from 122 counties representing 11 states were selected 

for CO1 DNA barcoding. The CO1 region of each individual nematode was amplified by 

PCR resulting in a 727-739 CO1 nucleotide sequence. Maximum likelihood, neighbor-

joining, and Bayesian phylogenetic trees each displayed 19 distinct haplotype groups that 

were well supported by bootstrap, genetic distances, and posterior probabilities, ages of 

lineages. Species delimitation analysis (ABGD-GMYC-TCS) revealed variation in 

detecting putative species number. Most of the tentatively labeled haplotype groups were 

not easily associated with a named species of Pratylenchus and ambiguous results were 



 
 

  

especially evident for P. scribneri and P. hexincisus. The most common haplotype group 

was P. neglectus detected from 178 fields from 100 counties associated with potatoes, 

wheat, corn, barley, alfalfa, dry beans, vineyard, and sugar beet soils. The second most 

prevalent haplotype group was P. scribneri recovered from 104 fields from 45 counties. 

Mixed field populations were encountered of approximately 20% of infested fields, 

suggesting most often P. neglectus and P. scribneri together. Morphological assessment 

of Great Plains specimens of P. hexincisus and P. scribneri revealed difficulties in the 

morphological discrimination of this pair species, as evident by overlapping on plot of 

canonical discriminant analysis. Identification of Pratylenchus species by DNA 

barcoding should lead to specific, focused, and effective management strategies for lesion 

nematodes. 
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Chapter One 

 General Introduction 

1.1 Pratylenchus Root Lesion Nematode 

The family Pratylenchidae Thorne, 1949 consists of 11 genera including Achlysiella, 

Apratylenchoides, Apratylenchus, Hoplotylus, Hirschmanniella, Pratylenchus, 

Pratylenchoides, Radopholus, and Nacobbus, Zygotylenchus, Zygradus. These nematodes 

characteristically penetrate and feed on internal root tissues and are capable of migrating 

within root tissues and between root and soil, with exception of Nacobbus. Four of these 

genera, Pratylenchus (root lesion nematodes), Hirschmanniella (rice root nematodes), 

Radopholus (burrowing nematodes), and Nacobbus (false root-knot nematodes), are of 

major economic importance in agricultural production (Mendoza and Lopez, 2012). The 

family is morphologically characterized by a small body size (under 1mm), low labial 

region, sclerotized cephalic framework, stout stylet (under 25 μm), overlapping 

pharyngeal glands ventrally or dorsally, moderate size of tails and position of vulva 

(Mendoza and Lopez, 2012; Siddiqi, 2000; Nickle, 1991). The genus Pratylenchus 

Filipjev, 1936 is distinguished from other genera in the family by pharyngeal glands 

extending over the intestine ventrally, one functional ovary, and a posterior position of 

vulva (Siddiqi, 2000). The species of genus Pratylenchus are characterized by a 

vermiform robust body, short stylet with rounded knobs (average size 16 μm), 4-6 lateral 

fields, pharyngeal glands overlapping intestine ventrally, a single anteriorly directed 

reproductive system, relatively short post-vulval uterine branch , vulva at 75%-85%, and 

a rounded tail (Castillo and Vovlas, 2007; Loof, 1978; Thorne and Malek, 1968). 

1.2 Biology 
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Pratylenchus species are migratory endoparasites, but ectoparasitic behavior is 

characteristic of juvenile stages feeding on root hairs without entering the root tissue 

(Richard W Smiley, 2015). The life cycle of Pratylenchus consists of the basic egg stage 

followed by four molts leaded to the adult stage (Davis and MacGuidwin, 2005; Castillo 

and Vovlas, 2007). The species may complete multiple generations in a growing season 

(Mendoza and Lopez, 2012). Many Pratylenchus species reproduce by parthenogenesis 

although sexual reproduction occurs in species such as P. penetrans and P. alleni 

(Castillo and Vovlas, 2007). After eggs are laid in the root, corms, tubers, or adjacent 

soil, the first stage juveniles develop within the eggs and molt to the second stage 

juvenile that hatches from the egg. A gradual increase in size accompanies the third and 

fourth stages before reaching sexually mature adult stage. The life cycle duration may 

vary under field conditions and has been estimated in laboratory experiments (Castillo 

and Vovlas, 2007). Estimated life cycles may last three to nine weeks depending on the 

environmental conditions such as temperature, moisture, host plant, and species (Jones et 

al., 2013). For example, P. neglectus and P. thornei complete their life cycle six to eight 

weeks and the reproductive rate is highest between 20-25 °C (Richard W Smiley, 2015). 

All stages from the second juvenile stage to adult are vermiform and may enter and infect 

the host roots (Jones and Fosu-Nyarko, 2014), migrating either intra- and intercellularly 

(Siddiqi, 2000) and can leave the root and enter other host roots (Nickle, 1991). 

Pratylenchus species can survive under adverse conditions for several years at the egg 

stage and through cryptobiosis or anhydrobiosis until host plants are available and 

favorable environmental conditions occur (Castillo and Vovlas, 2007). The complete 

genome sequences of Pratylenchus have been reported for two species Pratylenchus 
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coffeae and Pratylenchus vulnus.(Burke et al., 2015; Sultana et al., 2013). Burke et al. 

(2015) reported the genome size of P. coffeae as 19.67 Mb with 6712 protein-encoding 

genes, which is the smallest gene number in any metazoan. However, Kikuchi et al 

(2017) suggested that researchers should be cautious in interpreting these results due to 

the lack of publicly available information regarding the assembly of the genome. Sultana 

et al. (2013) reported the complete mitochondrial genome size of P. vulnus as 21,656 bp. 

with 12 protein-coding genes, among the largest mitochondrial genomes in the class 

Chromadorea.  

1.3 Distribution 

As a genus Pratylenchus species have a global distribution. They occur in northern 

and southern temperate ecosystems as well as tropical equatorial ecosystems. Castillo and 

Vovlas (2007) reported P. neglectus, P. penetrans, P. thornei, P. vulnus, and P. scribneri 

from every continent, except Antarctica where a single species, P. andinus, is found. 

There are currently over 100 described species of Pratylenchus (Janssen et al., 2017 and 

Singh et al., 2018). Twenty-seven of this species were reported in North America by 

Castillo and Vovlas (2007). Following that report, P. floridensis and P. parafloridensis 

were described and the number of species from North America increased to twenty-nine 

(De Luca et al., 2010). Several studies suggest more new species await description (Yan 

et al, 2017a; Yan et al., 2017).  

Of the 29 species, nine different Pratylenchus species reported from Great Plains 

region. (Huang and Yan, 2017; May et al., 2016; Norton, 1983; Orr and Dickerson., 

1967; Smolik and Lewis, 1982; Thorne and Malek, 1968; Todd et al., 2014).  

1.4 Host Range 
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Pratylenchus species are predominantly recognized as polyphagous and they can 

parasite a broad variety of plant species including cereals, vegetables, forage crops, 

industrial crops, cotton, coffee, and potatoes, and ornamental plant, as well as weed 

species (Bélair et al., 2007; Castillo and Vovlas, 2007; Pinochet et al., 1992; Zirakparvar, 

1980). Host preferences, however, can differ significantly among species. For example, 

P. penetrans are able to parasite approximately 400 plant species and the species are 

significant parasites of horticultural plants. They  are most commonly associated with 

fruit trees such as apple (Malus sp.) (Wallace and MacDonald, 1979), cherry (Prunus 

avium) and peach (Prunus persica) (Askar et al., 2012) but also recorded associated with 

potatoes (Morgan et al., 2002; Thorne, 1961) and corn (Dickerson et al., 1964). 

Pratylenchus vulnus Allen and Jensen, 1951 is also a common parasite of fruit trees 

associated with almond (Prunus dulcis) apple, grapevine (Vitis sp.), plum (Prunus subg. 

prunus), and walnut (Junglans dulcis) but seldomly associated with agronomic crops 

(Askary et al., 2012; Hammas et al., 2018; Pinochet et al., 1992). In contrast, 

Pratylenchus scribneri is commonly associated with agronomic crops: potatoes (Brown 

et al., 1980; Macguidwin and Stanger, 1991; Yan et al., 2015), corn ( Smolik and 

Evenson) and soybean (Niblack, 1992; Reboish and Golden, 1985). Pratylenchus thornei 

is also reported on major agricultural crops such as wheat (Smiley et al., 2005), corn 

(Urek et al., 2003), and potatoes (Brown et al., 1980), but also on occasion recorded on 

pome and stone fruits (Sogut and Devran, 2011; Urek et al., 2003). Though Pratylenchus 

zeae is recorded on as pathogenic to sorghum, soybean, sugarcane, and corn the species 

has a relatively narrow host range among monocots (Castillo and Vovlas, 2007).  

1.5 Economic Importance 
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 Pratylenchus species are considered the third most important groups of plant 

parasitic nematodes following root-knot and cyst nematodes (Castillo and Vovlas, 2007; 

Jones et al., 2013). At the regional scale yield losses can approach 70%  as in the Pacific 

Northwest where high abundances of Pratylenchus neglectus exist in fields cropped to 

wheat (Smiley et al., 2005). Vanstone et al (2008) reported P. neglectus can casuse a 

yield reduction up to 30% and Thompson et al. (2008) reported yield losses caused by P. 

thornei can be as high 70% for intolerant wheat cultivars in Australia. Estimated yield 

losses in wheat fields by P. thornei reaches up to 85% in Australia, 70% in Isreal, 37% in 

Mexico ( May et al., 2015). In 2017, Kansas wheat disease loss due to Pratylenchus 

species was estimated to be 0.6% or 1.95 million bushels (Hollandbeck et al., 2017). 

Based on a regional survey, Todd and Powers (2018) estimated that yield losses caused 

by Pratylenchus species were 3-4% for corn and 1.5-2% for wheat in the Central Great 

Plains Region. Bird and Warner (2018) reported P. penetrans can decrease marketable 

carrrot yields by 50% in West Central Michigan. MacGuidwin and Bender (2016) 

estimated a yield reduction of 3.79% by P. penetrans in corn in Wisconsin. The severity 

of losses depends on a multitude of factors such as soil type, environmental and climatic 

conditions (Nicol et al., 2011), not the least of which is species identity and host 

association. For example, corn yield losses caused by P. hexincisus and P. scribneri  are 

related to field conditions, suggesting P. hexincisus more damaging to dry land maize and 

P. scribneri to irrigated mazie (Smolik and Evenson, 1987). These yield loss estimates 

can be underestimates due to the complex nature of root diseases and the biotic 

interactions that underlie symptomatic nutrient deficiency (May et al., 2015).  

1.6 Identification of Pratylenchus species 
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Traditionally, morphological characteristics has been used to identify and 

distinguish Pratylenchus species. Several of these characters are number of lip annuli, 

shape of labial region, stylet length, length of overlapping gland lobe, structure and 

number of lateral fields, position of vulva, presence and shape of spermatheca, length of 

the post-vulval uterine sac, shape of female tail and terminus, and presence or absence of 

males (Loof, 1978; Ryss, 2002; Nickle, 1991). Diagnostic keys and compendium have 

been prepared using these characters (Frederick and Tarjan, 1989; Handoo and Golden, 

1989; Loof, 1978; Ryss, 2002a, 2002b; Castillo and Vovlas, 2007). However, 

identification of these species based on these characters is complicated due to the large 

number of described species within the genus, their morphological similarities, and 

overlapping morphological characteristics among species (Castillo and Vovlas, 2007). 

Notably, when rapid and accurate diagnosis of any species required, morphology may not 

deliver the required level of certainty, particularly in the availability of mixed populations 

( Ryss, 2002; Castillo and Vovlas, 2007; Mekete et al., 2011; Powers, 2004). 

Additionally, the issue of mixed populations further complicates morphology-based 

identification.  

DNA-barcoding, using a small piece of 400-800bp DNA sequence, is a powerful 

tool for fast and precise identification of known species and an initial step in species 

discovery (Bhadury et al., 2006; Hebert et al., 2003; Kress and Erickson, 2008; Powers, 

2004). A global standard of DNA barcoding was proposed by ( Hebert et al., 2003a, 

2003b) suggesting an approximately 600-650bp sequence of cytochrome c oxidase 

subunit 1 (COI) gene of mitochondrial DNA could be used as a suitable genetic marker 

for identification of all animal species. The COI gene has essential advantages for DNA 
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based identification. First, conserved primers for COI can amplify a wide range of taxa. 

Second, this gene appears to have an appropriate phylogenetic signal that provides 

nucleotide substitution data applicable for species and population level genetic 

discrimination. (Hebert et al., 2003; Mandal et al., 2014; Rach et al., 2017; Rodrigues et 

al., 2017).  

Several molecular diagnostic tools have been applied to identify Pratylenchus 

species. The D3 expansion segment of 28S rRNA was employed in a phylogenetic 

analysis of 10 Pratylenchus species (Al-Banna et al., 1997). Subsequent analysis included 

the D2-D3 fragment of 28 (Araya et al., 2016; Subbotin et al., 2008; Troccoli et al., 

2016), internal transcribed spacer (ITS) of rRNA (De Luca et al., 2011; Janssen et al., 

2017) and 18S rDNA (Rius et al., 2014; Singh et al., 2018; Subbotin et al., 2008)was 

used for identifying Pratylenchus species. The COI gene region of mitochondrial DNA 

has been successfully used as a barcoding marker in many Pratylenchus studies and 

sequence results of those studies exist in the GENBANK database (Hammas et al., 2018; 

Janssen et al., 2017; Liu et al., 2017; Palomares-Rius et al., 2014; Qing et al., 2018; Singh 

et al., 2018; Sultana et al., 2013; Troccoli et al., 2016). Following the discovery of DNA 

sequence polymorphism in phylogenetic studies, species-specific primers targeting a 

specific gene have been developed to detect and quantify the to aid management decision 

(Baidoo et al., 2017; Huang and Yan, 2017). 

1.7 Pratylenchus studies in the Great Plains Region  

The Great Plains Region encompasses a broad area in central North America, 

extending from Canada to the Texas-Mexican border and from the Rocky Mountains to 

western Indiana (Samson and Knopf, 1994). This region blankets the states of Kansas, 
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Nebraska, North and South Dakota and comprises parts of the states of Texas, New 

Mexico, Oklahoma, Iowa, Illinois, Colorado, Minnesota, Montana, and Wyoming in 

North America (Hartman et al., 2011). The native vegetation of the Great Plains region 

was extensively covered by diverse grasslands up to approximately 200 years ago 

(Dornbush, 2004). By the time European settlers populated the region in the 19th century, 

most of the grassland was converted into agricultural fields due to high soil fertility 

(Dornbush, 2004; Fierer et al., 2013). This conversion resulted in the loss of both dry and 

wet grasslands throughout the region (Samson et al., 2004). The most substantial 

conversion occurred in tallgrass prairie biome, with less than one percent of the historical 

extent remaining (Samson and Knopf, 1994; Todd et al., 2006). Agricultural practices 

demonstrate considerable variation across the region due to the variation in rainfall and 

precipitation patterns. The growing season shrinks from Texas to Canada (Samson and 

Knopf, 1994) and the annual rainfall decreases by over 50% moving east to west.  

Pratylenchus species are known to be one of the most common and important 

plant parasitic nematodes across the Great Plains Region. An early study of nematode 

community composition of the tallgrass prairie in Kansas recorded that the prairie soils 

contained 228 species from 80 genera, including 23 genera of plant parasitic nematodes 

and two Pratylenchus species, P. coffee (Zimmermann, 1898) Filipjev and Stehoven, 

1941 and P.  penetrans (Orr and Dickerson, 1967). Thorne and Malek (1968) reported 

four Pratylenchus species in the Northern Great Plains. These included P. scribneri and 

Pratylenchus agilis  (later synonymized with P. scribneri by Subbotin et al., (2008)) with 

both species reportedly associated with prairie and cultivated potato fıelds in Nebraska. 

Two other species were collected in cultivated fields, P. tenuis Thorne and Malek, 1968 
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and P. hexincisus were associated with corn in South Dakota. Smolik and Lewis (1982) 

recorded P. tenuis and P. scribneri from the mixed shortgrass prairie ecosystems of 

western South Dakota. Pratylenchus scribneri, P. hexincisus, and P. tenuis were reported 

from corn fields in South Dakota (Smolik, 1977; Smolik and Evenson, 1987). 

Pratylenchus alleni was described from soybean fields in southeast Illinois (Ferris, 1961).  

Norton (1983) reported the occurrence of P. agilis, P. alleni Ferris, 1961, P. flakensis 

Seinhorst, 1968, P. hexincisus, P. neglectus, and P.  scribneri in Iowa corn fields. 

Johnson (2007) and May et al. (2016)  recorded the presence of P. neglectus in multiple 

counties of Montana cropped to wheat. Todd et al. (2014) reported P. neglectus and P. 

thornei in wheat fields of Kansas and Colorado as well as P. penetrans from eastern 

Kansas. Siddiqi (2000) reported P. scribneri and P. alleni as a common parasite of 

soybean in midwestern USA. Also, several molecular studies have reported presence of 

Pratylenchus species using molecular markers across the region. P. penetrans was 

reported from potatoes in Minnesota (Baidoo et al., 2017) and North Dakota (Yan et al., 

2015). P. neglectus occurs in Montana wheat fields (Yan et al., 2013), and recently P. 

scribneri was found in soybean, barley, and corn fields in North Dakota (Huang and Yan, 

2017). Moreover, the first report of the Pratylenchus neglectus on wheat, Pratylenchus 

scribneri on potato, and two unnamed Pratylenchus spp. on soybean reported from North 

Dakota using molecular markers from different gene regions, except COI (Yan et al., 

2015; 2016; 2017a; 2017b). This accounting of Pratylenchus species reported from the 

Great Plains region totals nine different species and two awaiting description, not 

including P. agilis.
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Chapter 2 

A CO1 DNA Barcoding survey of Pratylenchus species in the Great Plains Region of 

North America 

Introduction 

Global estimates indicate that there are approximately 100 described species in 

the genus Pratylenchus Filipjev, 1936 (Janssen et al., 2017; Singh et al., 2018). Twenty-

seven of these species have been reported from North America by Castillo and Vovlas, 

(2007). Following that report, the number recorded from North America increased to 29  

with the descriptions of  P. floridensis De Luca, Troccoli, Duncan, Subbotin, 

Waeyenberge, Moens and Inserra, 2010  and P. parafloridensis De Luca, Troccoli, 

Duncan, Subbotin, Waeyenberge, Moens and Inserra, 2010  (De Luca et al., 2010). 

Several studies suggest more species await description (Yan et al., 2017a; Yan et al., 

2017b).  Although most Pratylenchus species descriptions were originally based solely 

on morphological features, many species have now been placed within a phylogenetic 

context using molecular characters (Araya et al., 2016; Hammas et al.,2018; Fanelli et al., 

2018; Flis et al., 2018; Inserra et al., 2007; Palomares-Rius et al., 2014; Singh et al., 

2018; Subbotin et al., 2008). These phylogenetic trees provide a framework for species 

delimitation and establish testable species hypotheses for species discovery (De Luca et 

al., 2012, De Luca et al., 2010; Janssen et al., 2017; Qing et al., 2018). 

Root lesion nematodes in the genus Pratylenchus are migratory, intercellular 

endoparasites that penetrate the root of the host plants, feed and reproduce within the root 

epidermis and cortex. This feeding behavior results in root lesions that enhance fungi and 

bacteria infection, secondarily contributing to yield and economic losses in agricultural 
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production (Jones et al., 2013; Smiley, 2015). Based on their pathogenic capability as 

reflected by estimates of global yield loss, they are ranked third after cyst (Heterodera 

spp.) and root-knot (Meloidogyne spp.) nematodes (Castillo & Vovlas, 2007; Jones et al., 

2013). At the regional scale yield losses can approach 70%  as in the Pacific Northwest 

where high abundances of Pratylenchus neglectus (Rensch, 1924) Filipjev and 

Schuurmans Stekhoven, 1941 exist in fields cropped to wheat (Smiley et al., 2005). 

These yield loss estimates can be underestimates due to the complex nature of root 

diseases and the biotic interactions that underlie symptomatic nutrient deficiency (May et 

al., 2015). The severity of losses depends on a multitude of factors, not only the least of 

which is species identity and host association.  

Pratylenchus species, in general, are polyphagous parasitizing a broad variety of 

plants including cereals, fruits, vegetables, forage crops, industrial crops, cotton, coffee, 

and potatoes, and ornamentals plant, as well as weed species (Bélair et al.,2007; Castillo 

and Vovlas, 2007). Host preferences, however, can differ significantly among species. 

For example, although Pratylencus penetrans (Cobb, 1917) Filipjev and Schuurmans 

Stekhoven, 1941 has recorded   associations with 400 different plant species, the species 

is most commonly associated with fruit trees such as apple (Malus sp.) (Wallace and 

MacDonald, 1979), cherry (Prunus avium), and peach (Prunus persica) (Askary et al., 

2012) and regionally found on potatoes (Morgan et al., 2002) and corn. Pratylenchus 

vulnus Allen and Jensen, 1951  is also a parasite of fruit trees commonly associated with 

almond (Prunus dulcis), apple, grapevine (Vitis sp.), plum (Prunus subg. prunus), and 

walnut (Junglans nigra), and seldom associated with agronomic crops (Askary et al., 

2012; Hammas et al., 2018; Pinochet et al., 1992). In contrast, Pratylenchus scribneri 
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Sherbakoff and Stanley, 1943 is primarily associated with agronomic crops such as 

potatoes   (Brown et al., 1980; Yan et al., 2015), corn and soybeans (Reboish and Golden, 

1985). Pratylenchus thornei Shen and Allen, 1953 is also recorded on major agronomic 

crops; wheat (Smiley et al., 2005), corn (Urek et al., 2003), and potatoes (Brown et al., 

1980), but also rarely recorded on pome and stone fruits (Sogut and Devran, 2011; Urek 

et al., 2003). 

The geographical distribution of Pratylenchus extends from cold temperate and 

sub-alpine ecosystems to tropical, equatorial ecosystems around the world. The 

distribution and abundance of individual species may be influenced by temperature 

optima (Acosta and Malek, 1979; Dickerson, 1979) and soil properties (Thompson et al., 

2010). Many Pratylenchus species exhibit a preference for sandy soils with a relatively 

high level of oxygen (Castillo and Vovlas, 2007; Olabiyi et al., 2009). Norton (1983) 

observed that increased percentage of silt or sand level in soil led to an increase in the 

population density of Pratylenchus species. Thompson et al. (2010) however, reported a 

positive correlation between population density of P. thornei and clay soil in contrast to 

P. neglectus preferring mostly sandy soils. Similarly, populations of P. hexincisus Taylor 

and Jenkins, 1957 were found to increase in clay soil cropped to dryland corn (Smolik 

and Evenson, 1987). 

Postglacial history is a legacy effect that may have shaped Pratylenchus 

distribution in North America prior to the intensive cultivation brought by European 

settlers. Presently it is not clear which species were introduced to the region, and which 

might have existed on native grasses prior to European settlement. An early study of 

nematode community composition of the tallgrass prairie in Kansas recorded that the 
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prairie soils contained 228 species from 80 genera, including 23 genera of plant parasitic 

nematodes and two Pratylenchus species, P. coffeae (Zimmermann, 1898) Filipjev and 

Stehoven, 1941 and P.  penetrans (Orr and Dickerson, 1967). Thorne and Malek (1968) 

reported four Pratylenchus species in the Northern Great Plains. These included P. 

scribneri and Pratylenchus agilis  (later synonymized with P. scribneri by Subbotin et 

al., (2008)) with both species reportedly associated with prairie and cultivated potato 

fıelds in Nebraska. The other two species collected in cultivated fields were, P. tenuis 

Thorne and Malek, 1968 with host unspecified, and P. hexincisus associated with corn in 

South Dakota. Pratylenchus alleni Ferris, 1961 was described from soybean fields in 

southeast Illinois (Ferris, 1961). Smolik and Lewis (1982) recorded P. tenuis and P. 

scribneri from the mixed shortgrass prairie ecosystems of western South Dakota. 

Pratylenchus scribneri, P. hexincisus, and P. tenuis were reported from corn fields in 

South Dakota (Smolik, 1977; Smolik and Evenson, 1987). Norton (1983) reported the 

occurrence of P. agilis, P. alleni, P. flakensis Seinhorst, 1968, P. hexincisus, P. neglectus, 

and P.  scribneri in Iowa corn fields. Johnson (2007), May et al. (2016) and (Yan et al., 

2013)  recorded the presence of P. neglectus in counties in Montana cropped to wheat. 

Todd et al. (2014) reported P. neglectus and P. thornei in wheat fields of Kansas and 

Colorado as well as P. penetrans from eastern Kansas. P. penetrans was also reported 

from potatoes in Minnesota (Baidoo et al., 2017) and North Dakota (Yan et al., 2015). 

Recently P. scribneri was reported in soybean, barley, and corn fields in North Dakota 

(Huang and Yan, 2017). This accounting of Pratylenchus species reported from the Great 

Plains region totals nine different species, not including P. agilis.  
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The objectives of this study are to (i) barcode Pratylenchus specimens for species 

identification across the Great Plains region using a cytochrome oxidase subunit 1 (CO1) 

DNA gene barcode (ii) determine the species boundaries of CO1 barcoded specimens (iii) 

assess the host associations of CO1 barcoded Pratylenchus species (iv) determine 

Pratylenchus species distribution patterns across the Great Plains region.  

Materials and Methods 

Sample Collection 

Soil and root samples analyzed in this study were obtained from USDA 

Cooperative Agricultural Pest Survey Program (CAPS), Wheat and Corn Disease 

Surveys in Kansas and Nebraska, and field samples submitted to University of Nebraska-

Lincoln Disease Diagnostic Clinic, representing different crops and geographic region 

primarily within the Northern Great Plains of North America. Five statewide surveys 

associated with the CAPS program were conducted by Departments of Agriculture in 

Kansas, Montana, Nebraska, North Dakota, and Wyoming. A minimal number of 

samples were acquired from the Great plains state of South Dakota and no samples from 

Iowa were included due to lack of available collaborators. Sample collection sites 

(locations), nematode identification (NID) numbers and host information on each 

analyzed specimen are presented in supplementary table 1 and all collection sites mapped 

in figure 1. 

Nematode Extraction 

Nematodes were extracted from 100 cm3 field soil using a modified flotation-

sieving and sugar centrifugation method (Jenkins, 1964) and from the host-root material 
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using root incubation (Russell, 1987; Todd and Oakley, 1996). A majority of the samples 

recovered from Kansas were obtained from root extracts. 

Morphological Analysis and Vouchers  

Nematodes extracted from soil and roots were first evaluated under a stereo 

dissecting microscope and select specimens belonging to the genus Pratylenchus were 

handpicked for light microscopy examination and DNA extraction. Following 

immobilization of live specimens by heating, a subset of specimens were mounted on the 

temporary glass slides, measured with a Leica DMLB light microscope with Differential 

Interference Contrast and photographed with a Leica DC300 video camera. Images were 

stored in the database system of the Nematology laboratory at the University of 

Nebraska-Lincoln. For PCR amplification, image vouchered specimens were removed 

from temporary slides and smashed in an 18 µl drop of sterile deionized distilled water 

utilizing the tip of a sterile transparent micropipette.  Smashed specimens were 

transferred to PCR reaction microfuge tubes and stored at -20 °C until PCR 

amplification. At least five specimens from each sample were smashed for DNA analysis 

to assess the possibility of Pratylenchus species mixtures within fields. 

PCR Primers and Amplification Conditions 

The cytochrome c oxidase subunit 1(CO1) gene region of mitochondrial DNA 

was amplified by PCR using primer sets of CO1- F7bP (5ʹ-

GGDTGRACWTTHTAYCCNCC-3ʹ), and CO1-JB5 (5ʹ-

AGCACCTAAACTTAAAACATAATGAAAATG-3ʹ) Derycke et al. (2005) that 

resulted in 727-739bp of sequence for genetic analysis after trimming the primers from 

the amplified product. On occasion, forward primer JB3 (5ʹ-
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TTTTTTGGGCATCCTGAGGTTTAT-3ʹ)  of Derycke et al. (2005) was used in a 

combination with the JB5 primer.  The D2-D3 region of 28S rDNA was amplified using 

the primer sets of De Ley et al. (1999) D2A (5ʹ-ACAAGTACCGTGAGGGAAAGTTG-

3ʹ) and D3B (5ʹ-TCGGAAGGAACCAGCTACTA-3ʹ). PCR was conducted in a total 

volume of 30 µl reaction mix consisting of 1.2 µl molecular biology grade water, 2.4 µl 

of each primer and 15 µl of 2x JumpStart REDTaq ReadyMix Reaction Mix (Sigma-

Aldrich). Amplification conditions were: a hot-start at 104°C, initial denaturation 

treatment at 94°C for 5min followed by 45 cycles of denaturation for 30sec, annealing at 

50°C for 30sec, extension at 72°C for 90sec and a final extension at 72°C for 5min. 

Annealing temperature was at 48°C for D2-D3 amplification. A check gel of 1% agarose 

using 0.5XTBE and ethidium bromide was used to visualize and evaluate the 

amplification products under UV light.  

DNA cleaning and sequencing 

High-quality PCR products in a 0.7% agarose TAE gel were extracted by the x-

tracta agarose gel extraction tool (USA Scientific) and cleaned using Gel/PCR DNA 

Fragments Extraction Kit (IBI Scientific). All cleaned DNA templates were shipped to 

the University of California-Davis DNA Sequencing Facility for sequencing in both 

directions. 

Phylogenetic analysis 

Upon obtaining sequence results, the sequences were edited, and primers trimmed 

off using CodonCode Aligner version 8.0.1 (www.codoncode.com) and subjected to a 

BLAST search to assess quality and identity on GenBank. Sequences were submitted to 

repositories, GenBank and Barcode of Life Database system (BOLD). GenBank 

http://www.codoncode.com/
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accession number of each sequence for CO1 and 28S were represented in table1.  

Multiple sequence alignment was conducted using Muscle (Edgar, 2004), at a gap 

opening penalty -400 and a gap extension penalty -200, in MEGA version 7 (Kumar et 

al., 2016). The best DNA Model tool in MEGA 7 was used to determine a best-fit 

substitution model, general time reversible (GTR) with a gamma distribution (G) and 

proportion of invariable sites (I). The substitution model (GTR+GI) was used for 

maximum-likelihood analysis with 200 bootstrap replications using software MEGA 7 

and for Bayesian inference analysis (BI) using the software MrBayes 3.1.2 (Huelsenbeck 

and Ronquist, 2001). Bayesian analysis were conducted with four Markov chains of 5M 

generations with sampling at every 1000 generations. After discarding burn-in samples 

(25%), the remaining samples were used to generate a 50% majority rule tree. Posterior 

probabilities are given on appropriate clades. Bayesian trees were visualized by software 

Figtree version 1.4 (tree.bio.ed.ac.uk). A Neighbor-joining analysis was also conducted 

using the Kimura-2 Model with gamma distribution and 2000 bootstrap value under 

MEGA 7. Between and within group genetic distance matrices were computed by 

Kimura-2 Method with gamma-distributed rate, 2000 bootstrap selections, and data 

treatment of pairwise deletion. CO1 haplotypes were reduced by removal of redundant 

sequences using software Jalview.2.10 (Waterhouse et al,, 2009). 

Species Delimitation/Delineation 

Molecular species delimitation was assessed using Automatic Barcoding Gap 

Discovery (ABGD) (Puillandre et al., 2012), the Generalized Mixed Yule Coalescent 

(GMYC) method (Pons et al., 2006) and by statistical parsimony networks (TCS) 

(Clement et al., 2002), all applied to a non-redundant, 143 specimen CO1 data set.  

http://tree.bio.ed.ac.uk/
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ABGD method calculates all pairwise distances of any set of sequences and uses 

several prior thresholds a “barcode gap” in the pairwise distribution of pairwise 

differences, corresponding to the upper limit of intraspecific distance and lower limit of 

interspecific distances. ABGD splits sequences into putative groups based on the 

barcoding gap (initial partitioning) then this procedure recursively applied to each 

previously obtained groups of sequences to detect a second gap for recursive partition 

(Modica et al., 2014; Puillandre et al., 2012; Roy et al., 2013). A prior species boundary 

is not required for this method (Puillandre et al., 2012). ABGD analyses were performed 

at the online webserver (https://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html) using 

Kimura (K80) distance model with defaults parameters.  

GMYC is a model-based Maximum likelihood approach that uses an ultrametric 

tree to delimit species and determine diversification and coalescence events based on 

branching patterns. It calculates a single or multiple threshold for species delimitation 

and all nodes crossing the threshold value are considered species (Beatty et al., 2017; 

Fujisawa 2013; Pons et al., 2006). An ultrametric tree was constructed using Beast 2.5.2 

(Bouckaert et al., 2014) with GTR model with Gamma distribution (G) and four gamma 

categories for nucleotide evolution. The tree was estimated with a strict clock model or a 

lognormal relaxed clock model assigned to a yule or a coalescence branching model. All 

other parameters were set as defaults and tree was not dated for GMYC analysis. Markov 

Chain Monte Carlo (MCMC) chain was run at 30-250M million generation at sampling 

every 3000th -5000th generation based on model selection. Tracer V1.7 (Rambaut et al., 

2018) was used to visualize the convergences and evaluate effective sample size (ESS 

>200) of traces. A maximum clade credibility tree was produced by TreeAnnotator 

https://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html
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V2.5.2 (Rambaut et al., 2018) with common ancestor node heights, after discarding 25% 

of the trees as burn-in. It was visualized using FigTree V.1.4 (tree.bio.ed.ac.uk). Beast 

analyses were run on the XSEDE server of the CIPRES Science Gateway (Miller et al., 

2011). The GMYC analysis was conducted using the single threshold option (T. Fujisawa 

and Barraclough, 2013) using the SPLITS package (Ezard et al., 2014) and ape package 

(Paradis et al., 2004) available for R v3.5.2 (R Development core Team, 2018). After 

analysis all outputs (Estimated threshold time and the list of ML clusters and entities) was 

exported from R.  

TCS is a clustering method that calculates a distance matrix for pairwise 

comparison of haplotypes to recognize species boundaries, while calculating mutational 

differences at an assigned cut-off probability. Parsimony criterion applies before the 

mutational differences reach the cut-off percentage (Templeton et al., 1992). In this 

study, we assigned two connection limits (90% and 95%) to delimit species.  

Haplotype Network Analysis 

 A haplotype network analysis was conducted to visualize the relationships among 

CO1 haplotypes of Pratylenchus species based on their geographic and host information. 

Haplotype networks were calculated using TCS plug-in (Clement et al., 2002; Templeton 

et al., 1992) in the software PopART 1.7 (Leigh and Bryant, 2015) using 95% connection 

limit to delimit species.  

Divergence Time Estimation Analysis 

Molecular divergence time was estimated with a molecular clock analysis using 

the non-redundant  CO1 dataset in BEAST v2.5.2 (Bouckaert et al., 2014). Because no 

fossil or geological calibration point are available for dating the Pratylenchus, we used 
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two mutation/clock rates from the literature, first a widely used 

substitutions/site/my/lineage clock rate of  0.0115 corresponding to a common 

invertebrate CO1 mitochondrial pairwise sequence divergence rate of 2.3% per site per 

million years (Brower, 1994) and second the mitochondrial substitution genome rate of 

7.2 x 10⁻⁸ per site per generation calculated for the nematode Caenorhabditis briggsae 

(Howe et al., 2010). For Pratylenchus an assumption two generations per year was 

applied to the analyses. The BEAST analysis was carried out under a fixed strict clock 

model with a yule speciation model as tree prior. All other parameters were set as 

defaults. Markov Chain Monte Carlo (MCMC) chain was run at 30M million generation 

at sampling every 3000th generation. Tracer V1.7 (Rambaut et al., 2018) was used to 

visualize the convergences and evaluate effective sample size (ESS >200) of traces. A 

maximum clade credibility tree was produced by TreeAnnotator V2.5.2 (Rambaut et al., 

2018) with common ancestor node heights, after discarding 25% of the trees as burn-in. 

MCC tree and node ages was visualized using FigTree V.1.4 (tree.bio.ed.ac.uk). Beast 

analysis were conducted on the XSEDE server of the CIPRES Science Gateway (Miller 

et al., 2011). 

Results 

Survey Results  

A total of 860 soil samples were assayed during the growing season of 2017 and 

2018. These samples represented statewide surveys of eight major agronomic crops in 

Colorado, Kansas, Montana, Nebraska, North Dakota, and Wyoming, as well as five 

other crops opportunistically sampled across the Great Plains Region (Figure 1). In total, 

Pratylenchus species were recovered from approximately 71% of all samples. Recovery 



27 
 

  

rates for cornfields in Kansas, Nebraska, and Montana were 94.9%, 86.4%, and 63.6%, 

respectively (Table 2). Pratylenchus was recovered in 80.3% of Kansas wheat fields, but 

only 37% of wheat fields in North Dakota (Table 1). 

Phylogenetic analysis and nematode identification 

There was a total of 439 infested field samples representing 122 counties from 11 

states of Great Plains region, in the Pratylenchus dataset. From that dataset, 270 infested 

fields were selected for DNA barcoding that maximized geographic and host coverage 

across the region (Figure 2). An additional 24 cultures and 18 field samples from outside 

the Great Plains region (mostly from Arkansas) were included in the analyses. Topotype 

specimens of P. alleni were isolated from a soybean field five miles north of Eldorado 

city, in Saline County in Illinois. A total of 915 specimens of Pratylenchus were 

sequenced for a 727-739-bp of CO1 gene. The sequence length was 730-bp for most of 

the specimens, except P. neglectus specimens (727-bp) and Pratylenchus sp. 9 and 

Pratylenchus sp. 10 specimens (739-bp). A total of 915 Pratylenchus CO1 haplotypes 

were reduced to a 143 sequences dataset by the removal of redundant sequences. 

Maximum likelihood, neighbor-joining and Bayesian phylogenetic trees each identified 

19 distinct CO1 haplotype groups that were well-supported by bootstrap values (BS: 96-

100% based on tree construction method), intra vs. interspecific genetic distance and 

posterior probabilities (PP:100 for all groups) (Figure 3). These haplotype groups were 

tentatively labeled as P. neglectus, P. scribneri, P. thornei, P. hexincisus, P. alleni, P. 

penetrans, P. zeae, P. crenatus, P. vulnus, Pratylenchuıs sp. 1-10, plus one unnamed 

singleton. Binomial names were applied based on a combination of factors including 

distinctive morphological features, agreement with GenBank vouchers, congruence 
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between independent markers, and in the case of P. alleni, topotype specimens. Four 

haplotype groups in figure 3 consisted exclusively of specimens collected outside the 

Great Plains. These were P. crenatus, P. vulnus, and species 9 and 10, both exclusively 

represented by specimens from Arkansas. Among this larger 19 haplotype group dataset, 

males were recorded in 7 haplotype groups, P.penetrans, P.alleni, P. crenatus and 

unnamed haplotype groups species 1, 2, 9, and 10 ( figure 3). In total 14 haplotype groups 

and one singleton were associated with agroecosystems of the Great Plains Region.  

Sequences of the D2-D3 region were evaluated in a phylogenetic tree using 24 

specimens previously sequenced by CO1 together with 70 GenBank accessions 

(Supplementary Figure 1). Ten of the 24 sequences were placed within well-supported 

clades designating named species of Pratylenchus. These include P. alleni (NIDs 10848, 

10850,3717), P. crenatus (NID 8539), P. thornei (NIDs 7566, 7567), P. neglectus (NID 

10756), and P. penetrans (NID 7091, 6260, 6261).  Sequences of the D2-D3 region for 

the unknown Pratylenchus species 1, 2, 5, 8, and 9 were not situated together with named 

species within well-supported clades in NJ, ML, or Bayesian trees. A BLAST search of 

GenBank with Pratylenchus CO1 sequences generated in this study helped to determine 

species identity through near identical matches (99-100%) for seven of the CO1 

haplotype groups (Table 2). These well-supported haplotype groups corresponded to P. 

neglectus, P. penetrans, P. thornei, P.alleni. P. zeae, P. crenatus, and P. vulnus.  

Pratylenchus scribneri, the second most abundant Pratylenchus species in this survey, 

provided conflicting results in GenBank BLAST searches. With NID 7839 as the query, 

the top 9 matches ranged from 98.05% match (P. scribneri KY424091) to 99.50% (P. 

scribneri MH016378) which bracket two closes matches of 98.75% (P. hexincisus 
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KY828320) and 98.71% (P. hexincisus KY828322). Similarly, for the D2D3 marker, the 

top 25 matches ranged from 99.73% to 98.12% for P. scribneri matches that included 

three P. hexincisus entries of 99.58%. Specimens hypothesized to be P. hexincisus had no 

close CO1 match identified as P. hexincisus (Table 2; Ozbayrak et al. in prep). For the 

D2-D3 marker, those specimens exhibited a relatively close match to accessions labeled 

as P. hexincisus (DQ498832-98% similarity) and P. scribneri (KX842632-99% 

similarity). Ten haplotype groups with no clear taxonomic affinities based on DNA 

sequence were labeled as “sp.” These specimens generally had low identity values with 

CO1 BLAST scores and moderate or ambiguous similarity scores with D2-D3. 

Intragroup and intergroup genetic distance matrices are presented in Tables 3 and 

4. Estimated mean genetic Kimura-2 distances (K80) for all haplotype pairs was 0.35 (SE 

0.03). Pairwise genetic distances within most haplotype groups ranged from 0 to 0.088. 

Haplotypes groups Pratylenchus sp. 2 and Pratylenchus sp. 9 exhibited the highest 

intraspecific diversity with K80 distance values of 0.088 and 0.053 respectively. Also, P. 

hexincisus, P. penetrans, and Pratylenchus sp. 10 had relatively high level of genetic 

variability with K80 distance values of 0.026, 0.048 and 0.036, respectively. Interspecific 

variability among haplotype groups was exceptionally high, ranging from a low of 0.092 

(between haplotypes Pratylenchus sp. 5 and Pratylenchus sp. 6) to 0.90 (between 

haplotypes Pratylenchus penetrans and Pratylenchus hexincisus).  

Species Delimitation 

Molecular species delimitation using ABGD suggested 19-61 haplotype groups in 

the recursive partitioning based on differing prior intraspecific divergences (Ps) (Figure 

4). The last three partitions settled on 19 groups, assuming P values of 0.0359, 0.0599 
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and 0.100, respectively. ABGD results were congruent with the haplotype numbers on 

phylogenetic trees at the last three partitions. The number of haplotype groups was 21 

among P values (0.008-0.022), subdividing P. hexincisus and P. penetrans into two 

separate group. 

GMYC result did not differ substantially based on the tree prior or clock model 

selected. The single threshold GMYC analysis revealed 22 ML cluster (CI 22-23) and 39 

ML entities (CI 39-42) based on using a strict molecular clock and yule tree prior (Figure 

4). The likelihood of null model was 972.166 and maximum likelihood of the GMYC 

model was 998.4352. The likelihood ratio (52.5385) test rejected the null hypothesis for 

the models tested, the assumption that all sequences belonged to the same species (LR 

test: P < 0.001). The threshold time was found to be -0.00914, indicating at that point a 

steep upturn in branching rates continuing to the present. 

TCS analysis resulted in 36 and 32 haplotype networks at connection limits of 

95% and 90%, respectively for the complete data set (Figure 4). Four distinct haplotype 

networks labeled A, B, C, D, were recognized for P. neglectus at both 95% and 90% 

connection limit. These four P. neglectus subgroups were also detected in GMYC 

delimitation methods. Network A consisted of eight unique haplotypes, occurring in 10 

states of North America and Canada (Figure 5). The most abundant haplotypes were 

neg1, neg2, neg3 within network A. Haplotype neg 1 were found in six states and were 

most often associated with corn, but also associated with dry bean, wheat, alfalfa, 

potatoes, and cereal rye. Neg 2 and neg 3 were found respectively in ten and nine states 

plus Canada and were most frequently recovered from wheat, but also associated with 

other crops (see Figure 5-host). A total six haplotypes from networks B, C, D were 
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located in western and northwestern states of Colorado, Wyoming, Idaho, Montana, and 

North Dakota with only a few specimens from Nebraska and Kansas included in these 

networks. Specimens in networks B C, and D were associated with barley, potatoes, 

alfalfa, beans, corn, wheat, and sugar beet.  

Pratylenchus scribneri appeared as a single TCS network comprised of 17 closely 

related haplotypes (Figure 6). Pratylenchus thornei was comprised of a single haplotype 

distributed across six different states (Figure 7). Pratylenchus hexincisus specimens were 

split into two separate groups in TCS networks and GMYC methods (Figure 7), but 

ABGD only recognized a second network at P values between 0.008-0.022. Four 

haplotype groups with male specimens, P. penetrans, Pratylenchus species 2, 9, and 10, 

displayed diverse TCS networks and multiple haplotype subgroups in GMYC methods. 

The final partition in ABGD however, recognized these four sexual groups as four 

distinct entities. For Pratylenchus penetrans ABGD revealed two distinct group at P 

values of 0.0359, 0.0599 and 0.100. Six haplotypes were detected, suggesting 3 distinct 

networks in TCS analyses at both 90 and 95% cutoff values and three entities were 

revealed in GMYC analysis. Eleven Pratylenchus sp. 2 haplotypes comprised six 

networks at 95% and 90% connection limits, respectively and GMYC methods exhibited 

nine entities. Pratylenchus sp. 9 and sp. 10 had four networks at 95% cutoff and two at 

90% cutoff, respectively. GMYC analysis revealed four entities for both groups. Species 

delimitation results for other groups exhibited one network/haplotype/entity due to the 

existence of few specimens tin these groups. 

Estimated divergence time was calculated using two different molecular clock 

rates, first a commonly used CO1 mitochondrial DNA substation rate of 0.0115 per site 
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per million years and second the mitochondrial substitution genome rate of 7.2 x 10^-8 

per site per generation calculated for nematode Caenorhabditis briggsae. The nematode 

molecular clock rate with an assumption of two Pratylenchus generations per year, 

exhibited approximately ten-fold younger node ages than the insect substitution rate. 

Divergence time estimation based on the clock rate of the nematode revealed early 

diversification events of Pratylenchus clades occurred at estimated time 6.28 Mya (CI: 

5.12 -7.59 Mya) in the late Miocene epoch, splitting haplotype groups in this study into 

two main clades. Other Pratylenchus species lineages were splitting in the Pliocene, prior 

to the onset of the ice ages approximately 2.7 Mya.  Pratylenchus neglectus may have 

diverged from P. penetrans as early as 4.73 Mya (CI:  3.56-5.61 Mya) and P. thornei 

split from P. zeae an estimated 5.39 Mya (CI: 3.38-5.47 Mya). The most recent common 

ancestor (MRCA) of P. hexincisus and P. scribneri emerged early in the Pleistocene 

approximately1.46 Mya (CI: 1.24-1.69 Mya). The MRCA of P. scribneri, youngest clade, 

emerged in the late Pleistocene epoch at 0.65 Mya (0.48-0.73 Mya). Three lineages of 

sexually reproducing species, Pratylenchus sp. 9 Pratylenchus sp. 10, and Pratylenchus 

alleni, all diversified during early to mid-stages of the ice ages between 2 million and 

500,000 years ago (Figure 8). 

CO1 haplotype group host associations and distribution 

Pratylenchus neglectus was the most frequently sampled haplotype group in the 

Great Plains, comprising 53% of all specimens on the 915 specimen phylogenetic trees. It 

was detected in 178 fields from 100 counties and was associated with potatoes, wheat, 

corn, barley, alfalfa, dry beans, vineyard, and sugar beet soils. Pratylenchus neglectus 

was identified from 96%, 90%, and 83% of all wheat, potatoes, and dry beans fields, 
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respectively. Pratylenchus neglectus was encountered in corn fields less frequently at 

42% of corn fields across the Great Plains (Figure 9 and 10). 

The second most abundant haplotype group in the Great Plains, comprising 30% 

of all specimens, was P. scribneri. It was recovered from 104 fields from 45 counties and 

was associated most often with corn fields in 4 states; 78 in Nebraska, 14 in Kansas, two 

in South Dakota, and one in Montana. Also, it was recorded from four potato fields in 

Nebraska, one wheat field from Nebraska and Texas, and one sugar beet field in 

Colorado (Figure 9 and 10). 

Pratylenchus thornei was primarily associated with wheat in Kansas but was also 

collected from corn and alfalfa in Montana, corn in Oklahoma, a single plot in a cover 

crop (cereal rye) experiment in Nebraska, in a vineyard in California, and a sugar beet 

field rotated with barley in Colorado.  

Pratylenchus penetrans was not common in the agronomic crops sampled in this 

Great Plains dataset. It was recovered from one south central cornfield in Nebraska and 

an apple orchard in eastern Nebraska, two cornfields in Montana. Infrequently 

encountered species in this Great Plains survey included P. zeae and P. alleni, both 

collected from single corn fields in Nebraska. P. hexincisus was primarily associated with 

corn fields in eastern Kansas, Nebraska, and South Dakota, as well as from dry beans in 

Wyoming and wheat in North Dakota (Figure 9 and 11). 

Nearly all of the unnamed haplotypes were associated with corn, with the 

exception of one wheat, one soybean, and one cotton field. Barcoding also revealed that 

44 of the 439 Pratylenchus infested fields had a mixed population of at least two 

Pratylenchus species. Mixtures were recorded in 19.5%, 10.6%. and 27.8% of the corn, 
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wheat, and dry beans fields, respectively. Five corn fields in Kansas and 23 corn field in 

Nebraska had a mixture of different haplotype groups. The most common combination of 

species was P.neglectus and P. scribneri, which were recovered together from 

approximately 55% of all mixed fields. Distribution maps and host associations table of 

haplotype groups are displayed in Figure 9,10, and 11. 

Discussion 

This study is the first comprehensive Pratylenchus species survey using CO1 

DNA barcode to determine Pratylenchus haplotypes associated with agroecosystems of 

the Great Plains region of North America. This study also provides details on 

phylogenetic membership in haplotype groups, relationships among Pratylenchus 

haplotype groups, their geographic distribution and host associations with agronomically 

important crops from 11 states across the region. Earlier studies reported the presence of 

nine described Pratylenchus species associated with prairie and agricultural fields (Al-

Khafaji, 2018; Orr and Dickerson, 1967; Smolik and Evenson, 1987; Thorne and Malek, 

1968; Yan et al., 2016). This DNA barcoding survey demonstrated the presence of 7 

distinct haplotype groups that coincide with binominal species P. neglectus, P. scribneri, 

P. thornei, P. hexincisus, P. alleni, P. penetrans, P. zeae, and eight unnamed haplotype 

groups and 1 unnamed singleton, all associated with agroecosystems of Great Plains. 

Posterior probability, bootstrap values, genetic distances, and calculations of lineage age 

strongly supported the genetic distinction of the haplotype groups. Group membership 

remained constant with different tree-building methods, although relationships at deeper 

nodes in the tree varied slightly. The amount of intraspecific genetic divergence was 

found to be low for most of the haplotype groups, although genetic substructure with the 
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haplotype groups was recognized by GMYC and TCS delineation approaches. Four 

haplotype groups with males (P. penetrans, Pratylenchus sp. 2, 10, and 11) had relatively 

high within group genetic variability. The overall mean intergroup divergence was high, 

suggesting a relatively long period since the Pratylenchus lineages diverged. Divergence 

time of Pratylenchus species in this study were estimated using a higher evolutionary rate 

than is commonly used in CO1 mitochondrial DNA studies (Brower, 1994; Howe et al., 

2010). The higher substitution rate was derived from studies with Caenorhabitis briggsae 

and resulted in a rate approximately ten-fold higher than the standard rate derived from 

insect. Still the calculated rate of evolution supported divergence of the major species 

lineages present in the Great Plains at approximately 1-5 million years ago. Older 

divergence times in these analyzes, not surprisingly, are associated with lineages that are 

more readily differentiated using morphological characteristics.  

Species delimitation analysis displayed variation in determining the number of 

putative species. GMYC and TCS methods generally yielded similar results and 

supported the recognition of subgroups as species within the haplotype groups in figure 1. 

The ABGD method generally mirrored the tree topologies at P value of 0.0359, 0.0599 

and 0.100. GMYC and TCS retained P. scribneri, P. thornei, P. alleni, P. cerenatus, and 

most of the unknown groups as an independent lineages or evolutionary entities but split 

P. neglectus, P. penetrans, Pratylenchus sp. 2, Pratylenchus sp. 9, and Pratylenchus sp. 

10 into two or more putative species.  

Some Pratylenchus species reportedly found in the Great Plains were not 

observed in this study. Early reports of P.tenuis from cultivated fields and prairie 

ecosystems were derived from two publications. Following Thorne and Malek’s (1968) 
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original description, Hando and Golden (1989) re-described the species, based on two 

female type specimens. The distinctive characters of this species were high, narrow tulip-

shaped stylet knobs and an unusually elongate esophageal lobe three times the body 

width. Presently it is not possible to assign any of the haplotype groups to this species 

based on those characters. 

There are several key conclusions that can be made from this DNA barcode-based 

survey of Pratylenchus specimens in the Great Plains. First, Pratylenchus neglectus is the 

most wide-spread and abundant lesion nematode across the region. It was recorded from 

field soils currently producing alfalfa, barley, corn, dry beans, potato, wheat, and sugar 

beet. Although presence in field soil is not direct evidence of parasitism on the current 

crop, and most agronomic crops in the region are grown in rotation with other plants, it is 

a safe assumption that active Pratylenchus populations found around the roots during a 

growing season are feeding on those roots. This observation complements the findings of 

Al-Khafaji (2018)and May et al. (2016) concerning the widespread presence P. neglectus 

on wheat in Montana, as well as the studies of Todd et al., (2014) and Todd and Oakley, 

(1996) that documented the high incidence of P. neglectus in Kansas wheat and corn 

fields, respectively. Pratylenchus neglectus was also observed as a frequent member of 

mixed species populations, most commonly associated with P. scribneri. It is not known 

to what extend a mixed species Pratylenchus population will complicate management 

strategies, but it accentuates the need to understand the host relationships and damage 

potential of both species for the implementation of predictive models of pest 

management.  
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 Pratylenchus scribneri is the second most abundant nematode in the region, and 

the lesion species most likely to be recovered in the corn-soybean cropping rotations of 

Nebraska and Kansas. In contrast, it was not recovered frequently from wheat, suggesting 

a reduced reproductive capacity or an inability to successfully compete with P. neglectus 

on wheat. Another species known to reproduce on wheat, but not frequently encountered 

in the Great Plains Region is P. thornei. This species was infrequently encountered in 

Kansas wheat samples, collected from cereal rye in a single experimental plot in central 

Nebraska, in Colorado in a mixed planting of oats and alfalfa, and was not recovered at 

all in North Dakota wheat fields in spite of widespread sampling in the state. Smiley et al 

(2006) found P. thornei exclusively in 6% of wheat fields in the Pacific Northwest, and 

in combination with P. neglectus in 30% of the soils. In the Great Plains P.  thornei may 

be limited by soil factors as suggested by Thompson et al. (2010) or there has been 

insufficient time for the species to spread across the region since its introduction. 

Pratylenchus penetrans is another species that is surprisingly limited in its distribution 

within the Great Plains. Among Great Plains agronomic crops, P. penetrans was only 

recovered from a single field of corn in Nebraska. Two other species with highly 

localized distributions were P. zeae and P. alleni. Pratylenchus zeae was collected from a 

single corn field in Keith County, Nebraska and outside the Great Plains region it 

occurred in Arkansas corn fields. Pratylenchus alleni was collected from a soybean field 

in Illinois on its type host at its type locality in Saline County. In spite of extensive 

production of corn and soybeans grown in rotation throughout the region, outside of the 

type locality P. alleni was only found in a single corn field in Madison County, Nebraska. 
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It is possible that a focused survey on soybeans and potato will increase the documented 

distribution of both P. alleni and P. penetrans within the Great Plains.  

Some of the CO1 haplotype groups revealed by the phylogenetic analysis were 

not easily associated with a named species of Pratylenchus. For example, the species we 

tentatively identified as P. hexincisus, had no close match for CO1 in GenBank, and D2-

D3 sequences provide moderately close matches to both P. scribneri and P. hexincisus. 

This haplotype group was collected from six states in the Great Plains associated with 

beans, corn, and wheat. A more extensive taxonomic analysis of this species is underway 

(Ozbayrak et al. in prep). At least eight other unnamed haplotypes groups and singletons 

were represented in this dataset, most with too few specimens for a taxonomic analysis. 

One haplotype group represented by 14 specimens collected from corn in Sumner and 

Shawnee Counties in Kansas and Buffalo County in Nebraska, was characterized by the 

relatively frequent presence of males. These specimens superficially resemble P. 

penetrans and may be the species recognized (Orr and Dickerson 1967; Todd et al., 2014) 

This mosaic of Pratylenchus species distributed across the Great Plains raises the 

question about the necessity of identifying the species composition of agricultural fields. 

Management options of Pratylenchus species generally fall into four main categories: 

fallow, crop rotation, genetic resistance, and genetic tolerance (Smiley, 2015). If all these 

haplotype groups responded in a similar fashion to environmental and physiological 

conditions, then a common management strategy could be applied for lesion nematodes. 

Evidence, however, suggests these haplotype groups may differ in their host preferences, 

environmental tolerances, and possibly their competitive interactions. The frequency of 

P. scribneri in corn or the relative lack of that species in wheat indirectly suggests the 
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existence of host preferences (Smiley et al., 2005; Smiley, 2015; Todd and Powers, 

2018). A necessary next step in the characterization of these haplotype groups is the 

establishment of pure cultures and an analysis of reproductive capabilities on hosts grown 

in the Great Plains Region.
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Appendix 1 - Terminology 

DNA Barcoding: Use of specific DNA sequence to identify species  

Haplotypes:  A haplotype is a sequence differing from other sequences by the difference 

of at least one base pair. 

Haplotype groups: A name for a group of similar haplotypes that have closely related 

sequences 

Haplotype Networks: Represents the genealogical relationships among individual 

genotypes at intraspecific level and make inference about biogeography and history of 

population.  

Lineages: A metapopulation extended through time (Equal to species in this study) 

Clade: A clade is a group that includes a common ancestor and all the descendants 

(living and extinct) of that ancestor. (Clade is a branch (at any level) of 

a phylogenetic tree) 

Singleton: A haplotype group with one specimen 

Cryptic species: Species are phenotypically identical, but genetically distinct 

Parthenogenetic: A type of asexual form of reproduction without fertilization 
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Table 1. Percentage and Prevalence of Pratylenchus Haplotypes in the Great Plains Region 

Pratylenchus Prevalence (%) 

States       Potatoes         Corn        Alfalfa Barley Wheat Dry Beans Sugar beet Soybean 

NE 

13/43 

(56.50) 

190/220 

(86.40)   

13/13  

(100) 

8/8  

(100)       

MT   

7/11  

(63.60) 

8/9  

(88.90 

17/25 

(68.00) 

5/25  

(20.00)       

ND 

5/21 

(23.80)       

40/108 

(37.00) 0/1 

3/25 

(12.00) 

3/15 

(20.00)  

WY 

15/16 

(93.75)   0/1 3/5 (60.00) 4/5 (80.00) 

24/30 

(80.00) 4/5 (80.00)   

KS   

167/176 

(94.90)     

61/76  

(80.30)       

CO   

7/8               

(87.50) 

2/2 

 (100) 

1/2 

 (50.00)   

2/2 

(100.00) 

5/6 

 (83.3) 

2/2 

(100.00) 

Total 

33/80 

(41.25) 

371/415 

(89.30) 

10/12 

(83.3) 

34/45 

(75.60) 

118/222 

(53.15) 

26/33 

(78.80) 

12/36 

(33.30) 

5/17 

(29.5) 
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Table 2. GenBank Best Matches and Accession numbers of Pratylenchus haplotype groups of Great Plains Region. 

Haplotype Group  

(This study) 

Blasted NID#        

(This study) 

CO1  

Best Match 

Accession# 

Corresponding 

GenBank Name 

Identity

% 

D2-D3  

Best Match 

Accession# 

Corresponding 

GenBank Name 

Identity

% 

P. neglectus N10756 KY424103 P. neglectus 100% MG906766 P. neglectus 100% 

P. penetrans N6260 KY816936 P. penetrans 100% JX046986 P. penetrans 99% 

P. thornei N7566 KY828316 P. thornei 100% KYT213559 P. thornei 100% 

P. alleni N3717 MK045330 P. alleni 99% MK037385 P. alleni 100% 

P. zeae N8934 KY424056 P. zeae 100%       

P. crenatus N8539 KY816943 P. crenatus 100% KY468865 P. crenatus 98% 

P. vulnus N7113 GQ332425 P. vulnus 99%       

P. scribneri N7839 
MH016378 

KY828320 

P. scribneri      

P. hexincisus 

99%       

98% 

MK209593 

KY828290 

EU130841 

KT175531 

P. scribneri         

P. hexincisus       

P. agilis    

P.pseudocoffeae 

99.73%     

99.72%      

99.73%     

97.98% 

P. hexincisus N7726 No Match -- -- 

KX842632   

EU130841 

KT175531 

KY828291  

P. scribneri         

P. agilis                     

P. pseudocoffeae                  

P. hexincisus      

100%        

98.78%  

97.57%  

98.87% 

Pratylenchus sp. 1 N6350 KU198944 Pratylenchus sp. 83% KX889989 Pratylenchus sp. 100% 

Pratylenchus sp. 2 N8139 No match -- -- 
KX842632 

KT175531 

P. scribneri      

P.pseudocoffeae 

97%     

97% 

Pratylenchus sp. 3 N3908 MH394241 P.gutierrezi 76%       

Pratylenchus sp. 4 N6402 KY424092 P. scribneri 89%       

Pratylenchus sp. 5 N10767 KY424092 P. scribneri 87% MH730449 P. scribneri 97% 

Pratylenchus sp. 6 N6245 KY424092 P. scribneri 89%       

Pratylenchus sp. 7 N10770 KY424099 P. hippeastri 79%       

Pratylenchus sp. 8 N10685 KY424092 P. scribneri 89% MK209593 P. scribneri 96% 

Pratylenchus sp. 9 (1) * N10841 No match -- -- KT175531 P. pseudocoffeae 96% 

Pratylenchus sp. 9 (2) * N8930 KU522440 P. zeae  81% KT175531 P. pseudocoffeae 96% 

Pratylenchus sp. 10 (1) * N10856 No Match -- --       

Pratylenchus sp. 10 (2) * N10853 KY424087 P. speijeri 75%       
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Table 3.  Estimates of Average Kimura 2 Evolutionary Divergence (Distance) across Sequence Pairs within Groups 

Species Distances 

P.alleni 0 

P.crenatus 0.000686813 

P.hexincisus 0.02613078 

P.neglectus 0.008998339 

P.penetrans 0.047844971 

P.scribneri 0.002883778 

sp. 1 0.00386802 

sp. 2 0.088149168 

sp. 3 0.003693444 

sp. 4 0 

sp. 5 0 

sp. 6 0 

sp. 7 0 

sp. 8 0 

sp. 9 0.05367786 

sp. 10 0.036133133 

P.thornei 0 

P.vulnus 0.011204833 

P.zeae 0.001582905 
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Table 4.  Estimates of Evolutionary Kimura-2 mean Divergence (Distance) across Sequence Pairs between Groups.  
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P. alleni                   

P. crenatus 0.560                  

P. hexincisus 0.313 0.721                 

P. neglectus 0.468 0.611 0.734                

P. penetrans 0.567 0.669 0.895 0.514               

P. scribneri 0.225 0.610 0.283 0.567 0.655              

sp.1 0.294 0.521 0.468 0.520 0.596 0.339             

sp.2 0.342 0.732 0.337 0.790 0.856 0.354 0.509            

sp.3 0.246 0.706 0.351 0.591 0.678 0.261 0.324 0.307           

sp.4 0.229 0.579 0.298 0.565 0.600 0.145 0.314 0.357 0.255          

sp.5 0.271 0.628 0.247 0.633 0.671 0.154 0.393 0.299 0.280 0.165         

sp.6 0.252 0.630 0.277 0.562 0.673 0.129 0.349 0.339 0.265 0.134 0.092        

sp.7 0.224 0.530 0.305 0.521 0.600 0.196 0.274 0.363 0.250 0.208 0.214 0.205       

sp.8 0.213 0.543 0.330 0.510 0.640 0.148 0.283 0.414 0.273 0.158 0.207 0.163 0.169      

sp.9 0.301 0.610 0.385 0.636 0.674 0.301 0.358 0.390 0.335 0.282 0.289 0.289 0.308 0.310     

sp.10 0.286 0.665 0.327 0.677 0.671 0.316 0.392 0.316 0.352 0.300 0.306 0.311 0.334 0.339 0.208    

P. thornei 0.639 0.706 0.890 0.482 0.548 0.725 0.596 0.848 0.716 0.684 0.731 0.710 0.614 0.603 0.660 0.686   

P. vulnus 0.352 0.602 0.590 0.561 0.572 0.483 0.416 0.656 0.480 0.437 0.531 0.496 0.400 0.453 0.436 0.439 0.581  

P. zeae 0.625 0.773 0.884 0.621 0.683 0.744 0.584 0.919 0.655 0.689 0.727 0.730 0.656 0.709 0.688 0.727 0.585 

0.6

57 
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Figure 1. All sample collection sites by county. 

 

 

Figure 2. Number of Fields Used in DNA Barcoding Study. The number in the circle 

represents the number of fields by state and host. 
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Figure 3. Phylogenetic relationship of Pratylenchus haplotypes in Great Plains Region as 

inferred from Bayesian Analysis of CO1 gene sequences. Posterior probabilities and 

bootstrap values are represented by different color based on tree construction methods. 
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Figure 4. Species Delimitation Tree of Pratylenchus haplotypes of Great Plains Region. 

Tree was constructed after dropping tips and keeping one specimen for each subgroup. 

The results of each delimitation methods are visualized by different colored bars on an 

ultrametric tree of CO1 gene. * represent the number of haplotypes at TCS 90% cut off.  
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Figure 5. CO1 Haplotype networks of P. neglectus in the Great Plains region. Different 

networks are delimited by a dashed circle and labeled by a letter. Circle size are equal to 

the number of specimens that have identical sequences. Dashes on branch length 

represents the number of mutations between haplotypes. Geographic origin and host of 

each haplotypes is displayed by different colors. 
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Figure 6. CO1 Haplotype network of P. scribneri in the Great Plains Region. Circle size 

are equal to the number of specimens that have identical sequences. Dashes on branch 

length represents the number of mutations between haplotypes. Geographic origin and 

host of each haplotypes is displayed by different colors. 
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Figure 7. CO1 haplotype networks of P. thornei and P. hexincisus in the Great Plains 

region. Different networks for P. hexincisus are delimited by a dashed circle. Circle size 

are equal to the number of specimens that have identical sequences. Dashes on branch 

length represents the number of mutations between haplotypes. Geographic origin of 

haplotype groups is displayed by different colors 
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Figure 8A) Lineage time through plot (LTT) yielded by GMYC analysis represents the 

threshold time. B) Molecular divergence time estimation tree of Great Plains 

Pratylenchus haplotypes based on CO1 gene. The time interval on the nodes represents 

confidence interval of node ages. A timescale in million years (Mya) is provided below 

the tree.  
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Figure 9. Host Association and Infested Field Number of Pratylenchus haplotypes of 

Great Plains. 
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Figure 10. Distribution map of P. neglectus, P. scribneri, and mixed fields of both 

haplotypes. 
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Figure 11. Distribution map of other haplotype groups of Great Plains Region. 
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Chapter 3 

Morphological Assessment of Pratylenchus species in the Great Plains Region 

Introduction 

The Great Plains Region of North America is dominated by several Pratylenchus 

species associated with economically important crops (Chapter 2). Nine Pratylenchus 

species have been reported from previous studies across the region (May et al., 2016; 

Norton, 1983; Smolik and Evenson, 1987; Thorne and Malek, 1968; Todd et al., 2014). 

These species are Pratylenchus coffeae, P. scribneri, P. neglectus, P. thornei, P. 

hexincisus, P. alleni, P. penetrans, P. flakensis, and P. tenuis. In a DNA-based survey of 

Pratylenchus species from the Great Plains Region of North America, 15 distinct 

haplotype groups were identified using the COI mitochondrial gene in phylogenetic and 

species delimitation analyses (Chapter 2). Four of these haplotype groups identified as P. 

neglectus, P. thornei, P. hexincisus, and P. scribneri, are most often encountred within 

the region and have broad host associations that include wheat, corn, drybean, sugar beet, 

potato, and alfalfa across the region. Five of the haplotype groups corresponded to 

distinct, described species in molecular analyses. However, two haplotype groups, 

tentatively identified and P. scribneri and P. hexincisus, provided conflicted results when 

DNA sequence of molecular markers were submitted to a BLAST analysis in GenBank. 

For CO1, the results of the BLAST analysis for putative P. scribneri identified strong 

matches for both P scribneri and P. hexincisus. For putative P. hexincisus there was no 

strong match in the database. For the D2-D3 fragment of 28S rDNA both species 

provided strong matches to each other as well as species labeled as P. pseudocoffeae. The 

potential for mislabeling these two species is high when considering their morphology. 
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Inserra et al. (2007) have discussed their morphological similarity and overlapping 

morphometrics. They suggest that two characters, a longer stylet length in P. hexincisus 

(14.7 vs 15.5 μm) and a higher “a” ratio in P. scribneri  ( 25.6 vs. 23.8 μm) may aid in 

their discrimination. Furthermore, they mentioned that P. scribneri typically had a 

hemispherical or subhemispherical tail with a smooth terminus whereas P. hexincisus 

tended to possess a truncate tails or subdigitate termini althought they commented that 

the same tail types were observed in P. hexincisus. In the Great Plains region, these two 

species have been the subjects of numerous studies in native prairies and agricultural 

ecosystems (Huang and Yan, 2017; Norton, 1983; Siddiqi, 2000; Smolik, 1977; Smolik 

and Evenson, 1987; Smolik and Lewis, 1982; Thorne, 1961; Thorne and Malek, 1968; 

Hando and Golden, 1989). The objective of this study is to reexamine morphological 

traits of P. scribneri and P. hexincisus and perform a multivariate morphological analysis 

of four primary species of Pratylenchus previously identifield by DNA barcoding.  

Material and Methods 

Morphological Analysis and Vouchers 

Nematodes extracted from soil and roots were first evaluated under a stereo 

dissecting microscope and select specimens belonging to the genus Pratylenchus were 

handpicked for light microscopy examination and DNA extraction. Following 

immobilization of live specimens by heating, a portion of the specimens was mounted on 

the temporary glass slides, measured with a Leica DMLB light microscope with 

Differential Interference Contrast and photographed with a Leica DC300 video camera. 

Images are stored in the database system of the Nematology laboratory at the University 

of Nebraska-Lincoln. Measurements taken from adult females included the following 
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morphometric parameters: body length (L), length of esophagus (pharynx), position of 

median bulb from anterior end, distance of excretory pore (Ex. Pore) from anterior end, 

stylet length, number of lip annuli, number of lateral fields, position of vulva from 

anterior end and from tail, % distance of vulva from anterior (V%), position of intestinal 

valve (junction) from anterior end, tail length, post vulval-uterine sac (PUS), mid-body 

width (MBW), vulval body width (VBW), anal body width (ABW), and distance between 

vulva and anus plus the ratios a (body length/maximum body diameter) ,b (body length/ 

distance from anterior to phyrangeal intestinal junction), b’ (body length/distance from 

anterior to base of phyrangeal gland lobe) ,c (bodt length/ tail length) , c’ (tail length / 

anal vulva width (ABW), and MB (% distance from anterior to median bulb/length of 

esophagus). 

Statistical Analysis 

A total of 96 female specimens were included for multivariate analysis. We 

utilized from a reduced morphological dataset of 15 morphological characters: body 

length (L), length of esophagus (pharynx), position of median bulb from anterior end, 

distance of excretory pore from anterior end, stylet length, position of vulva from anterior 

end and from tail, % distance of vulva from anterior, position of intestinal valve 

(Junction) from anterior end, tail length, post vulval-uterine sac, mid-body width, vulval 

body width, anal body width, and distance between vulva and anus. Missing values were 

placed with mean values from their corresponded haplotype groups. Morphometric 

characters (variables) with correlation coefficients under 0.80 were selected from within 

the 15 characters. A stepwise variable selection was applied to determine the best 

combination of the characters that separate four haplotype groups, reducing the number 
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of variables to ten. Following that, linear (LDA) discriminant analysis was employed to 

determine the most accurate model, including assesment of the effect of equal prior 

probabilities. Disciriminant analysis is a statistical method that seeks a set of prediction 

function based on the independent variables and categorizes specimens or individuals 

into their respective groups (Hardle and Simar, 2007; Tatsuoka and Tiedeman, 2008). 

Multivariate statistical analysis was conducted using the packages, MASS (Venables and 

Ripley, 2010), and candisc in software R version 3.5.2 (R Core Team 2019) 

Results 

Measurements of  Pratylenchus species of Great Plains Region are presented in 

Table 1. Morphometrics of P. neglectus conform to the values in the tabular key in 

Castillo and Vovlas (2007), except for a more posterior position of the vulva ( 77.0-85.0 

vs 75.0-79.9 μm) and a longer posterior uterine sac (mean 17 vs  < 16 μm ). The Great 

Plains specimen morphometrics also agree with the original description of  the species 

provided by Rensch (1924) (as provided Castillo and Volvas, 2007), except for a higher 

range of body length (380-657.5 vs 0.31-0.58 μm), and a sligthly lower range of “a” ( 

18.8-29.2 vs 16.5-32.2 μm) and a higher mean of “c” ( 22.5 vs 20.0 μm) ratios. All 

morphometric values of P. thornei agree with the original description given by Sher and 

Allen (1953) (as provided by Castillo and Volvas, 2007). Great Plains P. thornei differed 

from their morphometrics by a slightly larger range of stylet length (15.0-18.0 vs 17-19 

μm), a slightly higher c ratio (16.8-26.8 vs 18.0-22.0 μm) and a slightly more posterior 

vulva position (74.8-81.0 vs 73-80 μm). The mean value of P. thornei morphometrics 

were within the ranges of the tabular key provided by (Castillo and Vovlas, 2007). 
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Morphometrics of P. scribneri in this study of Great Plains specimens conform to 

the previous descriptions (Roman and Hirschmann, 1969; Inserra et al., 2007; Sherbakoff 

and Stanley, 1943; Thorne and Malek, 1968) and is characterized by the following traits 

(Table 1): body length 526.5 ± 52.9 (385-610 μm), vulva position 78.1 ± 1.5 ( 74.9-82.2 

μm), stylet length 15.6 ± 0.8 (14.0-17.0 μm), tail length 27.5 ± 3.1( 20.0-35.0 μm) and  

PUS length 21.6 ±  6.0 (12.0-40.0 μm). Comparison of P. scribneri with previous 

descriptive studies are presented in table 2. Compared with the first description of P. 

scribneri (Sherbakoff and Stanley, 1943), P. scribneri in this study have slightly longer 

body length (385-610 vs 280-590 μm), a higher a ratio (19.8-30.9 vs 17-23 μm), a higher 

c ratio (13.7-26.8 vs 16.9-22.7 μm), slightly more posterior position of vulva (74.9-82.2 

vs 75.7-80.5 μm) and slightly smaller b ratio (4.6-6.7 vs 5.6-8.0 ). P. scribneri in this 

study differ from the report given by Thorne and Malek (1968) by a slightly smaller body 

length ( vs 500-700 μm), a slightly longer a ratio ( vs 17-26 μm), c ratio ( vs 16-18 ), and 

slightly anterior position of the vulva ( vs 79% ). They differed from Inserra et al. (2007) 

by a slightly longer body length ( vs 450-530 μm), position of vulva ( vs 77-79%), stylet 

length ( vs 14.0-15.5 μm) and a smaller a ratio ( vs 22.1-29.8 μm). Great Plains 

morphometrics of P. scribneri were quite similar to those of Inserra et al. (2007), except 

for a relatively longer stylet length, relatively smaller pharyngeal overlap, and slightly 

smaller PUS (Table 2). The mean value of morphometrics and qualitative morphology 

matched with the tabular key of Castillo and Vovlas (2007) but differed from Roman and 

Hirschmann (1969) with a slightly larger range of length ( 385.0-610 vs 436.8-553.2), a 

relatively higher range of c ratio ( 13.7-26.8 vs 16.9-20.6), and a higher PUS value ( 12.0-

40.0 vs 13.8-31.2). Compared with a recent P. scribneri description study (Yan et al., 
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2015), our P. scribneri had relatively higher mean morphometrics, except for a slightly 

smaller b, MBW, and PUS value (Table 2).  

As in shown in Table 1, P. hexincisus from the Great Plains are characterized by 

body length 513.4 ± 43.5 (457-575 μm), posterior position of the vulva 79.0% ± 1.5 

(77.4-81.8), stylet length 14. 9 ± 0.3 (14.0-15.0 μm), tail length 24.8 ± 5.0 (18.0-30.0 

μm), and PUS length 17.1 ± 4.1 (11.0-25.0 μm). They differ from the original description 

of  Taylor and Jenkins (1957) by a greater range of body length ( vs 340-540 μm), a 

smaller mean a ratio ( 24.9 vs 26 μm) but within ranges, a slightly more posterior position 

of the vulva (79.0 vs 78.0 μm), smaller mean b ratio (5.3 vs 7.2 μm) but within ranges 

and a larger mean c ratio (21.3 vs 19.0 μm) and ranges (15.7-25.4 vs 16.0-22.7 μm). 

Range values of stylet length (vs 13.0-15.9 μm), position of vulva ( vs 75.0-79.9 μm), 

PUS ( vs 16.19.9 μm), and  pharyngeal overlap ( vs < 30) were higher than the tabular 

key of Castillo and Vovlas (2007) but all mean values are within the ranges, except for a 

higher pharyngeal overlap value. P. hexincisus in this study had a relatively higher mean 

body length (513 vs 500 μm), stylet length (14.9 vs 14.0 μm), a ratio (24.9 vs 18.0 μm) ,  

c ratio (21.3 vs 20.0 μm) and slightly more anterior position of the vulva (79 vs 80%) 

than the report of Thorne and Malek (1968). Compared with the report of Inserra et al. 

(2007) the Great Plains P.hexincisus had higher ranges and mean values for 

morphometrics, except for a slightly smaller stylet length ( vs 14.5-15.5 μm) (Table 2).  

Qualitative morphological characters of P. scribneri in this study are similar to 

those of P. scribneri as described by Castillo and Vovlas (2007), Sherbakoff and Stanley 

(1943), and Thorne and Malek (1968). Great Plains specimens of P. scribneri had slightly 

higher or offset lip region, with 2 lip annuli. The stylet was short with mostly rounded 
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knobs, with anterior indentions (cup-shaped anteriorly) observed in some specimens. The 

median bulb was massive and generally rounded. The valve of the median bulb most 

often situated centrally but an anterior position was observed in some specimens (Figure 

1). The lateral field most often consisted of four lines although a fifth, and sixth lines 

were observed in some specimens, particularly in the vulval region (Figure 2). The 

posterior uterine sac length was approximately equal to mid-body width (Figure 3). Tail 

shapes varied from slightly tapering (subhemispherical) to broad (hemispherical) with a 

smooth terminus (Figure 4).  

There was no differentiation in the qualitative morphology of P. hexincisus when 

compared to the conspecific description of (Castillo and Vovlas, 2007; Taylor and 

Jenkins, 1957; Thorne and Malek, 1968). Lip region of P. hexincisus was slightly low 

with rounded or spherical knobs, bearing two lip annuli. The median bulb was rounded or 

oval shape, with a valve most often anterior to center (Figure 5). The lateral field was 

usually composed of six lateral lines, often reducing in number towards the tail. Some 

specimens occasionally displayed five lines (Figure 6) The post uterine sac was short, 

less than the vulva body width (figure 7). The tail tapered near to end with a smoothly 

rounded terminus (Figure 8). In the overall comparison between the Great Plains 

specimens of P. scribneri and P. hexincisus, morphometric values generally overlapped 

and morphological characters such as stylet knobs and tail shapes displayed strong 

similarity, indicating an insufficiently distinct morphological signal necessary to 

distinguish these two species.  

The stepwise variable selection targeted ten morphological variables as the best 

subset that explains haplotype group membership among the four Great Plains species. 
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These variables are stylet length, the position of the median bulb from anterior, length of 

the esophagus, length of pharyngeal overlap, the position of the pharyngeal intestinal 

junction, mid-body width (MBW), anal body width (ABW), length of the posterior 

uterine sac, vulva-anus distance, and tail length (Figure 9). Linear discriminant analysis 

(LDA) correctly classified 91.6% of the specimens with equal prior probabilities into 

their correct genetic groups. P. neglectus and P. thornei specimens were classified with 

97% and 91% accuracy by LDA with equal prior probabilities, respectively. P. scribneri 

specimens and P. hexincisus specimens were classified with 85% and 89% accuracy by 

LDA equal prior probabilities into their correct haplotype groups, respectively. The 

classification plot of the specimens is illustrated in Figure 10 based on the canonical 

scores. Of the three generated canonical variables, Canonical 1 explained 79.7% of the 

variation and Canonical 2 accounts for 15.2% of the variation, together explaining 94.9 of 

the total variation in haplotype group classification. Separation of P. neglectus and P. 

thornei was nearly complete, but P. scribneri and P. hexincisus overlapped and grouped 

closely together. The largest negative standardized canonical coefficients for the 

morphological characters that separate haplotype groups in canonical 1 were vulva-anus 

distance (-0.82), position of anterior intestinal junctional (-0.81), and mid-body width 

(0.52) and in canonical 2 were stylet length (0.70) and length of pharyngeal gland overlap 

(0.59).  

Discussion 

The first description of P. scribneri was published by Sherbakoff and Stanley 

(1943) based on Steiner’s original description. Taylor and Jenkins (1957) reported that P. 

hexincisus closely resembles P. scribneri and P. neglectus and can be differentiated from 
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P. scribneri by its smaller size and longer lateral field and from P. neglectus by a the 

more anterior position of vulva. Most of the P. hexincisus specimens in this study were 

indistinguishable from P. scribneri and P. neglectus based on the above three characters. 

(Loof, 1960) reported P. scribneri differed from P. hexincisus by its larger body size, 

longer tail length, and four incisures in the lateral field, but also noted that the body 

length of P. hexincisus matched with Steiner’s P. scribneri. Also, Loof (1964) indicated 

the existence of third lip annulus and 5-6 lateral grooves for P.hexincisus whereas four, 

five, and six lines were reported by Loof (1985) for P. scribneri as reported by Inserra et 

al., 2007). The Great Plains P. scribneri had a longer tail length than P. hexincisus as 

described by (Loof, 1960) and we observed 4-6 lateral field for both haplotype groups as 

described in Loof (1964,1978). Thorne and Malek, (1968) reported additional data for P. 

scribneri from cultivated and native prairie within the Great Plains, mentioning four 

incisures, a massive basal bulb, a longer posterior uterine sac and a preferences for lighter 

soils. For P. hexincisus collected from corn fields, they mentioned six incisures, 

somewhat rounded stylet knobs, the valve of median bulb anterior to center, PUS as long 

as body diameter and a preference for heavier soils. Handoo and Golden, (1989) reported 

P. hexincisus had 4-6 lateral incisures on most of the body (usually six), rounded stylet 

knobs and the valve of median bulb anterior to center. In their account,  P. scribneri and 

P. hexincisus displayed the diagnostic characters of the Thorne and Malek (1968) report, 

but some characteristics were observed in both haplotype groups such as the number of 

lateral fields and anterior position of the valve of the median bulb. Based on the tabular 

key prepared by Castillo and Vovlas (2007), only four morphological characters 

differentiate these two species. These characters are the shape of spermatheca, length of 
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posterior uterine sac, the length of the pharyngeal overlap, and number of lateral fields. 

Applying these characters to P. scribneri and P. hexincisus to the Great Plains specimens, 

P. hexincisus had a shorter PUS length than P. scribneri as was suggested in the tabular 

key. The spermatheca, however, was not sufficiently clear in the Great Plains specimens 

for characterization. The P. hexincisus specimens had a slightly longer pharyngeal 

overlap than P. scribneri, but the range of pharyngeal overlap length in P. scribneri was 

larger than P. hexincisus. Also, four to six lateral lines were observed in both species..  

In our multivariate analysis, a stepwise variable selection indicated the best ten 

morphological characters for the discrimination of the four major Pratylenchus species in 

the Great Plains Region. Linear discriminant analysis with these ten characters showed 

that P. neglectus and P. thornei specimens can be correctly classified into their haplotype 

groups. Classification accuracy of P. scribneri and P. hexincisus, however, was low, 

classifying some of P. scribneri specimens as P. hexincisus and vice versa. Canonical 

plots further indicated that two of Pratylenchus haplotype groups (P. neglectus and P. 

thornei) were distinguishable, but P.hexincisus and P. scribneri specimens largely 

overlapped, in spite of the genetic distance between two these haplotype groups. The 

morphological characters that contributed most to canonical 1 were vulva-anus distance 

and position of anterior intestinal junction (valve) and for canonical 2 it was stylet length 

and length of the pharyngeal overlap. 

Based on the existance of the other unknown groups in our DNA barcoding 

analysis in chapter 2, the question could be raised,  “Is it possible that a different 

haplotype group could be P. hexincisus?” Historically in the Great Plains region, both P. 

hexincisus and P. scribneri were considered to be broadly distributed and observed most 
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frequently in corn fields (Norton, 1983; Smolik, 1977; Thorne and Malek, 1968). We 

chose as P. hexincisus, a haplotype group that was, in phylogenentic studies, relatively 

closely related to Pratylenchus scribneri  and like P. scribneri it was geographically 

spread across multiple states in the region and most frequently associated with corn.  

Five smaller haplotype groups, labeled Pratylenchus sp 4-8, were also closely related to 

P. scribneri, but  they were geographically limited to a single county or single state. Also, 

like Thorne and Malek (1968),  Smolik and Evenson (1987) reported a soil preference for 

P. hexincisus, suggesting the species was more often associated with silty clay loams, 

compared to sandy loams reportedly prefered by P. scribneri.  Although a soil type 

association was not explicitly tested in this study, this observation matches the situation 

in Kansas (Todd, pers. obs.).  

One factor that may have complicated historical records, is the recovery of P. 

hexicisus and P. scribneri, and often P. neglectus all in the same field. From our survey 

data, mixed species populations are common in Great Plains fields. Mixed species 

populations may have contributed to a blurring of species boundaries in earlier 

morphological studies. Other haplotypes groups in the Great Plains Region were 

characterized by the presence of males. Populations of  Pratylenchus alleni and 

Pratylenchus species 1 and 2 had males and females often had sperm in the spermatheca. 

Therefore, by the process of elimination, plus assumptions about the geographic 

distribution, host and soil-type prefences, and a morphological similarity to P. scribneri, 

we hypothesize  that P. hexincisus is an extant species, widespread in the Great Plains, 

frequently associated with corn grown in the heaveir soils of the region. This hypothesis 

can be tested by greenhouse and field studies.  
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 Globally the genus Pratylenchus contains over 100 described species. DNA 

barcoding with COI has revealed the existence of probable new species. Historically, 

Pratylenchus species descriptions were based on morphological characters with special 

attention paid to characters such as number of lip annuli, body length, stylet length, form 

of stylet knobs and posterior position of vulva (Castillo and Vovlas, 2007; Loof, 1978; 

Ryss, 2002a, 2002b; Thorne, 1961; Thorne & Malek, 1968). Several diagnostic keys and 

compendium have been published based on these morphological characters (Frederick 

and Tarjan, 1989; Handoo and Golden, 1989; Loof, 1978; Ryss, 2002a). It is undeniable 

that species discovery will increase and human activities will continue to introduce 

species into new areas. Given the morphological similarity of these species, Pratylenchus 

diagnosis will become increasingly reliant on molecular characterization. It is critical that 

the DNA databases are accurate and populated with validated sequences. This also 

includes the need for a reexamination of sequences that currently exist in repositories like 

GenBank. Other investigators have recently made the same points in comparitive studies 

with Pratylenchus goodeyi, Pratylenchus pratensis, and Pratylenchus flakkensis (Janssen 

et al., 2017). Here we have highlighted problematic issues in the identification of P. 

scribneri and P. hexincisus.
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Figure 1. Anterior region of Great Plains P. scribneri. 
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Figure 12. Lateral fields of Great Plains P. scribneri. 
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Figure 13. Vulva region of Great Plains P. scribneri.
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Figure 14. Tail shapes and tips of Great Plains P. scribneri. 
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Figure 15. Anterior region of Great Plains P. hexincisus. 
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Figure 16. Lateral fields of Great Plains P. hexincisus. 

 



80 
 

  

Figure 17. Vulva region of Great Plains P. hexincisus. 
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Figure 18. Tail shapes and tips of Great Plains P. hexincisus. 
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Figure 19. Best subset of morphological characters for classification derived from 

stepwise variable selection. 
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Figure 20. Discriminant Function Analysis canonical plot including ten variables. Vectors 

display the independent variables. Inner ellipse represents 95% confidence interval and 

outer ellipse represents the region that contains 50% of the specimens for each haplotype 

groups. 
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Table 1.  Measurements of all Pratylenchus named haplotypes groups. 

Character P. neglectus P. scribneri P. hexincisus P. thornei P. penetrans P. crenatus P. zeae P. alleni 

n 39 26 9 22 3 3 5 2 

L 
527.5 ± 56.1 

(380-657.5)  

526.5 ± 52.9 

(385-610) 

513.4 ± 43.5 

(457-575) 

613.7 ± 79.9 

(447.5-725) 

609.8 ± 34.8 

(582.5-649)  

454 ±73.7 

(373-517) 

476.4 ±72.9 

(426-602) 

426.3 ±79.5    

(370-482) 

a 
23.0 ± 2.4     

(18.8-29.2) 

25.6 ±2.9 

(19.8-30.9) 

24.9 ± 2.08 

(21.6-27.3) 

30.2 ± 2.5 

(24.2-34.9) 

28.9 ± 4.2 

(24.3-32.5) 

26.6 ± 1.96 

(24.9-28.7) 

26.1 ± 2.25 

(24.9-30.1) 

21.8 ± 1.7 

(20.6-23.0) 

b 
6.2 ± 0.62    

(4.6-7.7) 

5.7 ± 0.5      

(4.6-6.7) 

5.3 ± 0.5      

(4.6-6.4) 

6.3 ± 1       

(4.2-7.9) 

5.8 ± 0.9     

(4.94-6.7) 

5 ± 0.77 

(4.24-5.81) 

5.2 ± 0.9 

(4.1-6.6) 

5.1 ± 0.5    

(4.7-5.5) 

b' 
4.1 ± 0.5       

(3.2-5.6) 

4.1 ± 0.4      

(3.4-4.9) 

3.8 ± 0.3     

(3.3-4.3)  

4.4 ± 0.5     

(3.3-5.1) 

4.2 ± 0.4     

(3.7-4.5) 

4.16 ± 1.19 

(2.85-5.17) 

4.2 ± 0.8 

(3.2-5.1) 

3.7 ± 0.2   

(3.6-3.9) 

c  
22.5 ± 2.9      

(18.1-31.3) 

19.4 ± 2.7 

(13.7-26.8) 

21.3 ± 3.5 

(15.7-25.4) 

20.6 ± 2.1 

(16.8-26.8) 

17 ±0.5      

(16.6-17.6) 

21.2 ± 0.5 

(20.7-21.5) 

15 ± 0.4 

(14.5-15.4) 
19.3 

c' 
1.8 ±  0.3       

(1.3-2.2) 

2.3 ±  0.4      

(1.7-3.5) 

1.9 ± 0.3     

(1.5-2.3) 

2.3 ± 0.4      

(1.4-3.0) 

2.5 ±  0.4 (2.3-

3.0) 

1.9 ± 0.1 

(1.8-2.0) 

2.8 ± 0.3 

(2.5-3.3) 
2.08 

V 
81.3 ± 1.7       

(77.0-85.0) 

78.1 ± 1.5 

(74.9-82.2) 

79.0 ± 1.5 

(77.4-81.8)   

76.9 ± 1.7 

(74.8-81.0) 

81.7 ± 3.1 

(79.4-85.2) 

82.6 ± 0.8 

(81.8-83.4) 

71.5 ± 1.1      

(70.2-72.8) 

79.4 ± 0.5 

(79.0-79.7) 

MB% 
41.4 ± 5.5       

(16.7-49.8) 

43.5 ± 3.6 

(36.9-50.0) 

41.3 ± 2.4 

(38.0-45.0) 

40.3 ± 3.2 

(31.8-45.6) 

43.2 ± 1.3 

(42.0-44.4) 

42.1 ± 8.7 

(32.1-47.2) 

41.6 ± 4.8 

(33.3-45.0) 

43.4 ± 4.8 

(40.0-46.8) 

Stylet L. 
17.2 ±1.0       

(14.0-19.0) 

15.6 ± 0.8 

(14.0-17.0) 

14.9 ± 0.3 

(14.0-15.0) 

16.1 ± 0.9 

(15.0-18.0) 

16.3 ± 1.5 

(15.0-18.0) 

16.3 ± 1.2 

(15.0-17.0) 

15.8 ± 0.8 

(15.0-17.0) 

14.5 ± 0.7 

(14.0-15.0) 

Ex. Pore 
88.1 ± 5.8 

(75.0-100.0) 

87.0 ± 7.2 

(71.0-100.0) 

82.1 ± 5.4 

(76.0-90.0) 

89.1 ± 7.6 

(75.0-102.5) 

92.0 ± 5.29 

(88.0-98.0) 

74.7 ± 9.29 

(64.0-81.0) 

80.0 ± 11.1 

(65.0-95.0) 

72.5 ± 14.1 

(62.5-82.5) 

Position of 

Median Bulb 

52.8 ± 6.2 

(23.0-62.0) 

54.8 ± 3.8 

(46.0-61.0) 

55.2 ± 2.3 

(52.0-59.0) 

57.7 ± 5.6 

(48.0-73.0) 

63.0 ± 6.1 

(59.0-70.0) 

46.3 ± 4.0 

(42.0-50.0) 

47.2 ± 4.6 

(40.0-52.0) 

49.0 ± 1.4 

(48.0-50.0) 

MBW 
23.1 ± 2.8 

(18.0-30.0) 

20.8 ± 2.7 

(14.0-25.0) 

20.7 ± 1.4 

(18.0-23.0)  

20.3 ± 2.8 

(15.0-25.0) 

21.3 ± 2.3 

(20.0-24.0) 

17.0 ± 1.8 

(15.0-18.0) 

18.2 ± 1.3 

(17.0-20.0) 

19.5 ± 2.1     

(18.0-21.0) 

VBW 
20.9 ± 2.6 

(16.0-28.0) 

20.4 ± 2.2 

(16.0-25.0) 

19.6 ± 1.2 

(18.0-21.0) 

20.5 ± 2.7 

(16.0-27.0) 

19.7 ± 0.6 

(19.0-20.0) 

17.0 ± 1.7 

(15.0-18.0) 

17.4 ± 1.5 

(16.0-19.0) 

16.5 ± 0.7 

(16.0-17.0) 

ABW 

13.6 ± 1.3 

(12.0-16.0) 

12.0 ± 1.6 

(10.0-15.0) 

12.9 ± 0.9 

(11.0-14.0) 

13.5 ± 2.4 

(10.0-18.0) 

14.3 ± 1.2 

(13.0-15.0) 

11.3 ± 1.2 

(10.0-12.0) 

11.4 ± 1.1 

(10.0-13.0) 

11.5 ± 0.7 

(11.0-12.0) 
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Vulva-Anus 

Distance 

74.0 ± 9.9 

(53.0-95.5) 

86.6 ± 14.7 

(61.0-115.0) 

83.3 ± 12.6 

(66.0-103.0) 

111.5 ± 20.0 

(73.0-145.0) 

75.0 ± 19.1 

(53.0-87.0) 
64.0 

104.2 ± 20.7 

(90.0-140.0) 
76.0 

Tail Length 
23.8 ± 3.4 

(16.0-30.0) 

27.5 ± 3.1 

(20.0-35.0) 

24.8 ± 5.0 

(18.0-30.0) 

29.8 ± 4.1 

(21.0-37.0) 

36 ± 2.7        

(34.0-39.0) 

21.3 ± 3.1 

(18.0-24.0) 

31.8 ± 4.3 

(28.0-39.0) 
25.0 

PUS 
17.0 ± 2.7 

(10.0-25.0) 

21.6 ± 6.0 

(12.0-40.0) 

17.1 ± 4.1 

(11.0-25.0) 

19.7± 5.8 

(9.0-28.0) 

18.0 ± 4.2 

(15.0-21.0) 

16.7 ± 6.4 

(12.0-24.0) 

21.0 ± 9.5 

(12.0-37.0) 

11.8 ± 2.6 

(10.0-13.6) 

Pharyngeal 

Overlap 

29.7 ± 5.3 

(19.0-40.0) 

30.5 ± 7.5 

(20.0-48.0) 

31.6 ± 4.1 

(24.0-37.0) 

43.2 ± 12.5 

(16.0-59.0) 

41.0 ± 5.6 

(35.0-46.0) 

21.3 ± 18.8 

(10.0-43.0) 

23.0 ± 8.6 

(10.0-34.0) 
43.0 

Pharyngeal 

gland lobe 

127.4 ± 11.6 

(100.0-

155.0) 

127.2 ± 15.6 

(100.0-

162.5) 

134.0 ± 6.9 

(127.5-150.0) 

141.1 ± 17.6 

(100.0-170.0) 

145.8 ± 10.5 

(137.0-157.5) 

112.3 ± 

16.4   

(100.0-

131.0) 

115.0 ± 18.4 

(89.0-141.0) 

113.8 ± 15.9 

(102.5-

125.0) 

Pharyngeal 

Intestinal 

Junction 

85.4 ± 6.0 

(75.0-106.0) 

91.4 ± 8.0 

(75.0-108.0) 

97.7 ± 3.8 

(90.0-103.0) 

100.9 ± 9.7 

(85.0-113.0) 

105.7 ± 11.0 

(97.0-118.0) 

90.7 ± 3.8 

(88.0-95.0) 

91.8 ± 10.8 

(78.0-108.0) 

83 ± 7.1     

(78.0-88.0) 
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Table 1.  Measurements of all Pratylenchus haplotypes groups without names (Continue) 

Character 
Pratylenchus 

sp. 1 

Pratylenchus 

sp. 2 

Pratylenchus 

sp. 4 

Pratylenchus 

sp. 5 

Pratylenchus 

sp. 6 

Pratylenchus 

sp. 7 

Pratylenchus 

sp. 9 

Pratylenchus 

sp. 10 

n 2 5 1 2 1 2 10 5 

L 598 ±97.2        

(530-667.5) 

581.8 ± 57.6       

(520-656) 

550 475.0 ±35.4       

(450-500) 

512.5 572.5 ±3.54        

(570-575) 

466.9 ± 48.2         

(402-570) 

493.0 ±57.8        

(432.5-575) 

a 23.9 ± 1.19              

(23-24.7) 

23.9 ± 3.46       

(20.5-28.9) 

21.2 22.6 ±1.68         

(21.4-23.8) 

22.3 26.7 ± 1.0         

(25.9-27.4) 

24.8 ±1.7           

(22.5-28.5) 

23.6 ±2.8          

(21.0-27.6) 

b 6.7 ± 1.2            

(5.9-7.6) 

5.7 ± 0.42          

(5.24-6.22) 

6.9 5.3 ± 0.05             

(5.3-5.4) 

5.8 6.7 ±0.12            

(6.6-6.8) 

5.6 ± 1                         

(4.4-6.6) 

6.0 ±0.4               

(5.8-6.8) 

b' 4.3 ± 1.1             

(3.5-5.1) 

4.4 ± 0.46        

(3.94-5.09) 

4 3.5 ±0.3             

(3.3-3.8) 

4.1 4.2 ±0.08              

(4.2-4.3) 

4.0 ± 0.5                  

(3.2-4.9) 

4.3 ±0.5                 

(3.6-4.9) 

c 20 ± 3.24         

(17.7-22.3) 

20.5 ± 0.4          

(19.9-20.8) 

27.5 20.9 ±4.11                 

(19-23.9) 

NA 25.1 ± 3.0          

(23.0-27.1) 

19.8 ± 2 .1         

(17.0-22.5) 

22.8 ±5.5          

(18.8-32.2) 

c' 1.9 ± 0.1             

(1.9-2.0) 

1.9 ± 0.2                 

( 1.7-2.2) 

1.3 1.7 ±0.3                   

(1.5-1.9) 

NA 1.9 ±0.3                      

(1.8-2.1) 

2.1 ± 0.3              

(1.8-2.6) 

1.9 ±0.3                 

(1.5-2.2) 

V 76 ± 2.6           

(74.2-77.8) 

78.9 ± 0.6          

(78.2-79.6) 

77.2 79.5 ±0.8           

(78.9-80.0) 

79.5 80.8 ±0.5          

(80.4-81.1) 

79.7 ± 1.0         

(78.6-81.1) 

76.9 ±1.02            

(75.7-78.2) 

MB% 41.9 ± 2.7          

(40.0-43.9) 

41.0 ± 2.9        

(38.3-45.1) 

45.1 37.1 ±53           

(33.3-408) 

41.2 40.0 44.4 ± 23         

(416-50.0) 

48.8 ±7.7          

(40.0-59.0) 

Stylet L. 18.5 ± 0.7          

(18.0-19.0) 

14.4 ± 3.2        

(14.0-15.0) 

16.0 15.0 16.0 14.5 ±0.7                

(14.0-15.0) 

15.5 ± 0.5          

(15.0-16.0) 

16.2 ± 0.5          

(16.0-17.0) 

Ex. Pore 88.8 ± 1.8         

(87.5-90.0) 

83.80 ± 3.56 

(81.0-89.0) 

85.0 82.5 ±3.5          

(80.0-85.0) 

90.00 87.5 79.3 ± 6.6       

(71.0-90.0) 

86.0 ±9.6           

(72.5-97.5) 

Position of Median 

Bulb 

58.5 ± 2.12         

(57.0-60.0) 

53.6 ± 1.7         

(51.0-55.0) 

62.0 49.5 ±0.7           

(49.0-50.0) 

58.0 54.0 ±1.4           

(53.0-55.0) 

51.8 ± 2.8       

(45.0-56.0) 

56.0 ±4.6          

(50.0-62.0) 

MBW 25.0 ± 2.8          

(23.0-27.0) 

24.8 ± 4.8           

(20.0-32.0) 

26.0 21.0 23.0 21.5 ±0.7         

(21.0-22.0) 

18.8 ± 1.1         

(17.0-20.0) 

21.0 

VBW 24.0 ± 1.4          

(23.0-25.0) 

21.8 ± 2.4           

(19.0-25.0) 

22.0 21.5± 0.7         

(21.0-22.0) 

NA 20.5±0.7           

(20.0-21.0) 

17.2± 1.7         

(15.0-20.0) 

20.5±2.5               

(16.0-22.0) 
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ABW 15.5 ± 0.7          

(15.0-16.0) 

14.8 ± 2.0        

(13.0-18.0) 

       15.0 13.5±0.7          

(13.0-14.0) 

NA 12.0 11.4 ± 1.0         

(10.0-13.0) 

11.4±1.1           

(10.0-13.0) 

Vulva-Anus 

Distance 

115.0 ± 38.9       

(87.5-142.5) 

94.2 ± 11.9       

(80.0-110.0) 

105.0 74.5±6.4           

(70.0-79.0) 

NA 87.0±0.7          

(86.5-87.5) 

77.4 ± 10.9        

(62.5-90.0) 

91.6±14.7          

(74.5-105.0) 

Tail Length 30.0 28.4 ± 3.2          

(25.0-33.0) 

20.0 23.0±2.8          

(21.0-25.0) 

NA 23.0±2.8           

(21.0-25.0) 

23.8 ± 3.4         

(18.0-29.0) 

22.4±4.9             

(15.0-28.0) 

PUS 21.5 ± 2.12          

(20.0-23.0) 

19.2 ± 4.8         

(14.0-26.0) 

NA 14.0±1.4          

(13.0-15.0) 

NA 13.5±0.7          

(13.0-14.0) 

14.8 ± 2.8          

(12.0-21.0) 

18.5±8.0             

(12.0-30.0) 

Pharyngeal 

Overlap 

45.0 ± 7.1         

(40.0-50.0) 

28.8 ± 12.3           

(13.0-44.0) 

30.0 26.0 37.0 33.5±5.0             

(30.0-37.0) 

33.3± 4.8               

(27.0-40.0) 

26.3±4.5           

(20.0-30.0) 

Pharyngeal gland 

lobe 

140.0 ± 14.1 

(130.0-

150.0) 

131.2 ± 6.8 

(122.0-

141.0) 

137.5 135.0±21.2         

(120.0-

150.0) 

125.00 135.0±3.54         

(132.5-

137.5) 

117.0 ± 8.6        

(100.0-

125.0) 

116.0±11.0         

(105.0-

130.0) 

Pharyngeal 

Intestinal Junction 

89.0 ± 1.4         

(88.0-90.0) 

102.6 ± 7.7        

(97.0-116.0) 

80.0 89.0±5.7           

(85.0-93.0) 

88.0 85.5±2.1           

(84.0-87.0) 

82.9± 6.7        

(71.0-92.0) 

81.4±4.7             

(75.0-86.0) 
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Table 2.  Morphometrics of P. scribneri and P. hexincisus measurements in this study and previous studies. 
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n 26   50 28 10 9 96  20 

L 

526.5 ± 52.9 

(385-610) 

(280-592) (500-700) 
504.4 

(436.8-

553.2) 

525 ± 36.7 

(432-582) 
476.5        

(407.0-

532.0) 

513.4 ± 

43.5 (457-

575) 

436 ± 

44 (342-

540) 

500 517 ± 

40.6 

(429-

574) 

a 

25.6 ±2.9 

(19.8-30.9) 

(17-23) (17-26) 

26.3 (21.4-

29.0) 

25.6 ± 2.0 

(20.8-29.0) 20.4            

(17.7-24.6) 

24.9 ± 2.08 

(21.6-27.3) 

22.6 ± 

2.5 

(18.2-

28.8) 

18 23.8 ± 

1.8 (20.1-

26.8) 

b 

5.7 ± 0.5    

(4.6-6.7) 

(5.6-8.0) (5.4-6.6) 
6.32 (5.7-

7.0) 

5.7 ± 0.4          

(5.0-6.4) 
4.6                  

(4.0-5.2) 

5.3 ± 0.5      

(4.6-6.4) 

7.2 ± 

0.6         

(5.9-8.4) 

5.4 5.6 ± 0.3         

(5.1-6.0) 

b' 
4.1 ± 0.4    

(3.4-4.9) 

  
 

3.8 ± 0.2           

(1.9-2.6) 
  

3.8 ± 0.3     

(3.3-4.3) 

  3.7 ± 0.2         

(3.2-4.1) 

c 

19.4 ± 2.7 

(13.7-26.8) 

(16.9-

22.7) 

(16-18) 

18.4 (16.9-

20.6) 

19.6 ± 1.3 

(17.5-22.3) 18.5             

(16.2-22.4) 

21.3 ± 3.5 

(15.7-25.4) 

18.6 

±1.3 

(16.1-

22.7) 

20 17.9 ± 

1.3 (15.1-

20.5) 

c' 
2.3 ± 0.4      

(1.7-3.5) 

  
  

2.2 ± 0.2          

(1.9-2.6) 
  

1.9 ± 0.3     

(1.5-2.3) 

  2.3 ± 0.2         

(2.0-2.7) 

V% 

78.1 ± 1.5 

(74.9-82.2) 

(75.7-

80.5) 

79 

77.4 (75.0-

82.0) 

78.2 ± 1.0 

(76.2-79.9) 77.2           

(75.5-78.7) 

79.0 ± 1.5 

(77.4-81.8) 

78.0 ± 

1.9 

(75.3-

82.2) 

80 77.8 ± 

0.8 (76.3-

79.3) 

MB% 
43.5 ± 3.6 

(36.9-50.0) 

  15.3 (14.4-

16.8)   

 
  

41.3 ± 2.4 

(38.0-45.0) 
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Stylet L. 

15.6 ± 0.8 

(14.0-17.0) 

(14-15) (15-17) 

15.03 (14.4-

16.8 ) 

14.7 ± 0.1          

(14.2-14.9) 15.0               

(15.0-15.5) 

14.9 ± 0.3 

(14.0-15.0) 

15.0 ± 

0.0 

(14.5-

15.5) 

14 15.5 ± 

0.3 (14.5-

15.5) 

Ex. Pore 

87.0 ± 7.2 

(71.0-100.0) 

  
80.9 (74.0-

86.0) 

89.4 ± 5.6 

(78.4-99.9)   

82.1 ± 5.4 

(76.0-90.0) 

  89.4 ± 

5.8 (73.5-

98) 

Position of 

Median 

Bulb 

54.8 ± 3.8 

(46.0-61.0) 

  

  

 

  

55.2 ± 2.3 

(52.0-59.0) 

   

MBW 

20.8 ± 2.7 

(14.0-25.0) 

  
19.3 (16.8-

23.4) 

20.5 ± 2.3 

(15.6-26.4) 
23.5                   

(21.1-28.8) 

20.7 ± 1.4 

(18.0-23.0) 

  21.8 ±2.0 

(18.6-

26.4) 

VBW 

20.4 ± 2.2 

(16.0-25.0) 

  

  

19.7 ± 2.2 

(15.6-24.9)   

19.6 ± 1.2 

(18.0-21.0) 

  20.2 ± 

2.0 (15.1-

24.5) 

ABW 

12.0 ± 1.6 

(10.0-15.0) 

  

  

11.9 ± 1.1 

(9.8-14.2)   

12.9 ± 0.9 

(11.0-14.0) 

  12.6 ± 

0.7 (11.2-

14.7) 

Vulva-

Anus 

Distance 

86.6 ± 14.7 

(61.0-115.0) 

  
84.2 (57.6-

100.4) 

87.9 ±5.8 

(77.4-98)   

83.3 ± 12.6 

(66.0-

103.0) 

  85.0 ± 

7.6 (70.5-

99.0) 

Tail 

Length 

27.5 ± 3.1 

(20.0-35.0) 

  
27.3 (24.0-

30.6) 

26.7 ± 2.1 

(21.5-29.6) 
25.6                

(25-28.0) 

24.8 ± 5.0 

(18.0-30.0) 

  28.9 ±1.7 

(24.5-

32.3) 

PUS 

21.6 ± 6.0 

(12.0-40.0) 

  

(13.8-31.2) 

25.5 ±3.0 

(19.6-30.3) 23 

17.1 ± 4.1 

(11.0-25.0) 

  26.8 ± 

3.5 (23.5-

31.3) 

Pharyngeal 

Overlap 

30.5 ± 7.5 

(20.0-48.0) 

  

  

45.4 ± 5.9 

(33.3-53.9)   

31.6 ± 4.1 

(24.0-37.0) 

  43.8 ± 

4.9 (34.3-

53.9) 
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Pharyngeal 

gland lobe 

127.2 ± 15.6 

(100.0-

162.5) 

  

  

 101.4          

(98.0-

107.0) 

134.0 ± 6.9 

(127.5-

150.0) 

   

Pharyngeal 

Intestinal 

Junction 

91.4 ± 8.0 

(75.0-108.0) 

  

 

 

 

97.7 ± 3.8 

(90.0-

103.0) 
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