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Recommender systems help users to find products they may like when lacking per-

sonal experience or facing an overwhelmingly large set of items. However, assessing

the quality and stability of recommender systems can present challenges for develop-

ers. First, traditional accuracy metrics, such as precision and recall, for validating

the quality of recommendations, offer only a coarse, one-dimensional view of the sys-

tem performance. Second, assessing the stability of a recommender systems requires

generating new data and retraining a system, which is expensive.

In this work, we present two new approaches for assessing the quality and stabil-

ity of recommender systems to address these challenges. We first present a general

and extensible approach for assessing the quality of the behavior of a recommender

system using logical property templates. The approach is general in that it defines

recommendation systems in terms of sets of rankings, ratings, users, and items on

which property templates are defined. It is extensible in that these property tem-

plates define a space of properties that can be instantiated and parameterized to

characterize a recommendation system. We study the application of the approach

to several recommendation systems. Our findings demonstrate the potential of these

properties, illustrating the insights they can provide about the different algorithms

and evolving datasets.

We also present an approach for influence-guided fuzz testing of recommender

system stability. We infer influence models for aspects of a dataset, such as users



or items, from the recommendations produced by a recommender system and its

training data. We define dataset fuzzing heuristics that use these influence models

for generating modifications to an original dataset and we present a test oracle based

on a threshold of acceptable instability. We implement our approach and evaluate

it on several recommender algorithms using the MovieLens dataset and we find that

influence-guided fuzzing can effectively find small sets of modifications that cause

significantly more instability than random approaches.
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Chapter 1

Introduction

Recommender systems filter information to help users make decisions when lacking

personal experience or knowledge [47] or when the set of choices is overwhelmingly

large [28]. In general, they take in data about users’ past preferences for items and

aggregate it to predict a user’s preference for unknown items, often presenting a list of

the items most likely to be preferred. We see them everywhere, from e-commerce sites

such as Amazon, to news article recommendation at the New York Times, and movie

recommendations by Netflix. Assessing these systems, for which recommendations

can affect revenue streams worth billions of dollars, is challenging. Developers must

assess multiple aspects, including two that are key: the quality of recommendations,

and the stability of a recommender system as its rating set changes.

The quality of a recommender system depends on many properties of the recom-

mendations it produces, which are typically assessed using performance metrics that

capture a narrow view of system behavior. Most commonly, developers assess the ac-

curacy of recommendations with metrics that measure the ability of a recommender

system to faithfully represent a set of known preferences. Accuracy is measured by

reserving a portion of a ratings dataset as a set of known preferences, and using the

rest of the ratings to train a recommender system and make recommendations. The

known preferences can then be used by some metric, such as precision or recall, to
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compute a score representing the accuracy of the recommender algorithm on that

dataset.

However, accuracy metrics only provide a coarse, one-dimensional view of the

performance of a recommender system. In particular, precision and recall are limited

in several ways. First, they provide little information or intuition about the behavior

of items with unknown preferences. For instance, if the set of known liked movies for

a user is Toy Story and Cast Away, then the two Top-3 ranked lists of Toy Story,

The Incredibles, A Bug’s Life, and Cast Away, Forest Gump, Saving Private Ryan,

would receive the same precision and recall. However, these two ranked lists represent

very different behavior, which is not characterized by common accuracy metrics, but

may be useful for a developer in deciding which recommender to choose. Second,

when the set of known liked items is small relative to the number of available items,

top-k precision and recall values are typically low, due to the small likelihood of

recommended items being included in the set of known preferences. This can make it

difficult to determine whether low values of precision and recall should be satisfying

or deeply troubling. Finally, because precision and recall do not convey any intuition

about the behavior of items which are not in the set of known preferences, conclusions

about the relative superiority of one system over another can be misleading.

Due to the limited intuitions provided by accuracy metrics, researchers have ex-

plored other properties of recommender systems that can be useful to developers

beyond recommendation accuracy, as well as metrics to capture them. Several such

properties, often with corresponding metrics, have been identified in the recommender

systems literature, such as coverage [22, 27], diversity [61, 62], novelty [43, 57], and

adaptivity [53]. For instance, recommendations that are diverse—in which items are

different from each other—may provide more value to a user. If a user is known to

like Sci-Fi movies, recommending all of the Star Wars movies may be accurate, but
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it is not diverse and may be unsatisfying to a user. Prior work studying properties of

recommender systems does not formally define a broad space of properties, typically

defining properties narrowly with a formal metric, or describing them informally.

The second challenge we focus on is assessing stability. The stability of a recom-

mender system measures the consistency of the recommendations after changes are

made to the dataset [5]. For example, consider a recommender system that suggests

the movie Interstellar as the top ranked item to 1% of users. If some user adds a new

rating for Interstellar and as a result it is no longer recommended to any user, then

the recommender system could be considered unstable and negatively impact user

confidence. The stability of a recommender system can be an expensive property to

measure without extensive knowledge of the recommender algorithm, as it requires

generating dataset modifications, training a recommender with the modified data,

and measuring the distance between the new and the original recommendations. Fur-

thermore, the space of potential dataset modifications is enormous and is infeasible

to exhaustively explore.

In this work we address the problems of assessing the quality and stability of rec-

ommender systems. Because assessing the stability of a recommender system requires

the generation of new datasets, we break our approach into two pieces, as shown in

Figure 1.1. To assess recommender system quality we present an approach for charac-

terizing recommender system behavior through the instantiation of logical property

templates. We define a general model of recommender systems which we then use

to formally define and systematically explore a space of properties of recommender

systems in terms of the relations between users, items, ratings and rankings. To as-

sess the stability of a recommender system we present influence-guided fuzzing. We

infer influence models from a dataset and recommendations, and use these influence

models to fuzz modified datasets. We then train a new recommender system using
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the modified dataset and check stability with a differentiating oracle.

Data, D’
Algorithm, A

Recommender System

Fuzzing

Data, D
Algorithm, A

Recommender System

Influence
Modelling

Recommendations, R

Recommendations, R’

Differentiating 
Oracle

Stable  
Unstable

Models

Instantiation
Instantiated
Properties

Templates

Influence-Guided Fuzzing

Characterization

Figure 1.1: Our approach to assessing the quality and stability of a recommender
system. We present two approaches (in gray). The first assesses the quality of a
recommender system by instantiating logical property templates. The second assesses
the stability of a recommender system by using influence-guided fuzzing to generate
modified datasets, which are used to train a new recommender system. Stability is
assessed by comparing the original recommendations to the new recommendations
with a differentiating oracle.

1.1 Contributions

The overall contributions of our work are:

• We present an approach to assessing the quality of recommender systems that

provides a more nuanced yet rigorous view of their comparative strengths and
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weaknesses while also revealing anomalous behavior that is at odds with their

coarse-grained summary statistics such as precision and recall.

• We evaluate our quality assessment approach using several recommender al-

gorithms and datasets and find that our approach provides insights into the

behavior of recommender systems that are complementary to precision and re-

call. For instance, we show that a known hybrid recommendation algorithm,

trained on the MovieLens dataset, has superior precision and recall to a known

model-based algorithm trained on the same dataset. However, the model-based

system is able to recommend 3.5 times more unique items and is able to provide

a unique set of recommendations for almost every user.

• We present an influence-guided fuzzing approach for the validation of recom-

mender system stability. We define several models that infer influence from a

dataset and recommendations, as well as several dataset fuzzing heuristics. We

implement our approach in a tool for generating modification sets that are more

likely to cause instability.

• We evaluate influence-guided fuzzing on several recommender algorithms with

the MovieLens dataset, using several metrics for measuring the change in rec-

ommendations. We find that our influence-guided fuzzing heuristics are more

effective than randomly generating modifications. For instance, for one rec-

ommender system tested, 100 modifications generated with an influence-guided

heuristic caused 93% of users to have their top-ranked item removed from their

recommendations after retraining, on average. In contrast, on average, 100

modifications generated at random caused the top-ranked item to stop being

recommended to only 5% of users.
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1.2 Overview

The chapters of this thesis are adapted from two conference papers by the author and

colleagues. Chapter 2 provides background on recommender systems. Chapter 3 is

adapted from Characteristic Properties of Recommendation Systems [54] (currently

under submission), and presents our approach to characterizing the behavior of rec-

ommender systems with property templates. Chapter 4 is adapted from Influence-

Guided Fuzzing for Testing the Stability of Recommender Systems [55] (under review

at the time of this writing), and presents our influence-guided fuzzing approach for

assessing the stability of recommender systems. Finally, we present future work in

Chapter 5.
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Chapter 2

Background and Related Work

In this chapter, we present a brief background on recommender systems, which are

the target application for this work. We then present prior work in the area of recom-

mender system evaluation. We especially look at properties proposed in the literature

that extend beyond accuracy metrics to evaluate the usefulness of recommendations,

and we discuss how our approach is novel in its broad and formal study of recom-

mender properties. We then present related work on evaluating the robustness and

stability of recommender systems. Finally, we discuss background and related work

on testing the robustness of software, especially fuzz testing.

2.1 Recommender Systems

Recommender systems are generally distinguished by the method they use to calculate

recommendations [3, 7, 42]. The two main distinctions are collaborative filtering

recommendation systems and content-based recommendation. Collaborative filtering

is based on analyses of user preferences and behavior, generally recommending items

that similar users have preferred in the past. Content-based recommendation uses

information about items to recommend items that are similar to those a user has

previously liked. Recommender systems that combine these approaches are known as
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hybrid recommender systems.

Recommender systems can also be broken down into memory-based and model-

based systems [10]. Memory-based recommender systems compute recommendations

directly from the rating data, while model-based recommender systems compute a

representative model that can be used to predict user preferences and produce rec-

ommendations.

One of the earliest recommender systems was the collaborative filtering system,

Tapestry, for mailing lists [20]. Since then, many automated collaborative filtering

algorithms have been introduced. Some of the most common collaborative filtering

algorithms use a k nearest neighbors (kNN) approach, in which the nearest neighbors

to a user or item are used to predict preferences [51]. For example, Herlocker et

al. [27] present a user-based collaborative filtering method in which similar users are

computed based on users’ ratings on common items, and the most similar users are

used to compute recommendations for a target user. Sarwar et al. [50] present a

model-based collaborative filtering algorithm which computes a model of the similar-

ity between items based on their rating vectors and that item similarity model for

predicting user preferences.

Another common approach to collaborative filtering algorithms is matrix factor-

ization, which attempts to reduce the set of ratings to a low dimensional set of latent

factors [31]. One of the earliest approaches to matrix factorization in recommender

systems used Singular Value Decomposition to reduce the dimensionality of the rat-

ings [49]. Luo et al. [37] present a matrix factorization approach for an incremental

recommender system that can be trained on new data as it is received, without re-

training the entire model.

Content-based systems recommend items similar to those for which a user has

expressed a positive preference [8, 42]. Unfortunately pure content-based recommen-
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dation suffers from several drawbacks [7], namely: the tendency to recommend the

same types of items to a user; and the limited data from which to infer preferences

due to the system only using the ratings of the active user. Because of these draw-

backs, pure content-based recommender systems are rare, and are more commonly

combined with collaborative filtering based approaches in hybrid recommender sys-

tems. For instance, Kula [32] combines content-based and collaborative filtering in

the LightFM algorithm. Soboroff and Nicholas [56] use Latent Semantic Indexing to

create user profiles based on document content, which can then be used for collabo-

rative recommendation.

Bobadilla et al. [8] provide a more comprehensive survey of the space of recom-

mender systems. In addition to the characterizations defined above, they discuss

context-aware recommender systems, which can take into consideration contextual

information such as time or location [4]. They also survey the use social information—

information about the network of social relationships—in recommender systems. For

instance Woerndl and Groh [58] use social network friendships to build neighborhoods

of users for collaborative filtering.

2.2 Evaluating Recommender Systems

Precision and recall, popular metrics from the information retrieval community, are

commonly used in the evaluation of recommender systems [11, 48, 62]. Precision

represents the probability that a recommended item is relevant, while recall represents

the proportion of relevant items that are recommended. More specialized metrics,

such as the Normalized Discounted Cumulative Gain (NDCG), adjust the weight

of items in the ranked list as their position increases [29]. Other metrics, like the

Normalized Distance-based Performance Measure (NDPM) [60] and rank correlation
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measures such as Spearmans ρ or Kendalls τ [28], assess the accuracy by comparing

the ordering of ranked items to a known ordering.

Herlocker et. al [28] contend that, in addition to accuracy, recommender systems

must provide usefulness, and discuss other measures related to coverage, confidence,

learning rate, and novelty. McNee et al. [38] also call for new metrics to better measure

the quality of recommendations from the perspective of a user, as well as techniques to

understand the differences between recommender algorithms. Researchers have also

highlighted the limitations of summary statistics like precision and recall and have

called for better and alternative characterizations [25]. Our work directly addresses

these calls.

Shani and Gunawardana [53] identify 14 such metrics. Among those, we focus

on five that can be automatically computed with standard training data and ratings:

prediction accuracy, coverage, novelty, diversity, and adaptivity.

As discussed, accuracy can be captured by a variety of metrics, but the most

common approach is to compute precision and recall relative to a set of ideal results.

Coverage can be captured by a range of measures, a common metric being the number

or proportion of items that a recommender system can recommend [17, 22, 27, 53].

However, coverage can also be measured as “the proportion of users . . . for which the

system can recommend items” [53].

Novelty is “the extent to which users receive new and interesting recommenda-

tions” [43]. This property also admits various approaches for measurement, such as

item popularity-based measures [53, 57] or those based on the distance between an

item and a “context of experience” [57].

Diversity captures the dissimilarity of recommendations across the dataset, such

as metrics “based on . . . distance between item pairs” [53]. In addition to intra-list

similarity, which measures the similarity of items in a recommendation list by using



11

item characteristics, such as genre [62], diversity may also refer to the personaliza-

tion, or uniqueness, of users’ recommendation lists [61]. Adomavicius and Kwon [2]

consider the total number of distinct items to be a form of aggregate diversity of a

recommender system.

Adaptivity captures the notion that recommendations change with the dataset,

for instance “when users rate an item, they expect the set of recommendations to

change” [53].

In prior work, researchers either take a broad view (e.g., [53]) and present informal

descriptions of recommender properties or they take a narrow view, formalizing a

metric to capture a specific interpretation of a property. In our work, we undertake

a broad and formal study of characteristic properties of recommender systems. More

specifically, we define and systematically explore a space of properties defined by

instantiating a set of logical property templates that build on a general model of a

recommender system. The property templates formally describe a space of properties

for a given recommender system that includes many of the metrics described in the

related work.

2.3 Robustness of Recommender Systems

O’Mahony et al. [41] describe two aspects of robustness: accuracy and stability. Ac-

curacy, in regard to robustness, is a measure of the recommendation quality after

changes are made to the dataset, while stability is a measure of how different the

recommendations are after a change is made. Gunawardana and Shani [23] consider

robustness to be “the stability of the recommendation in the presence of fake infor-

mation”.

Adomavicius and Zhang [5, 6] take a slightly different view of robustness and
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stability, defining stability as the consistency of recommendations over some period

of time under the assumption that any new ratings added to the dataset completely

agree with the prior recommendations. Using this definition of stability, they con-

clude that model-based algorithms are generally more consistent than memory-based

collaborative filtering algorithms. They also find that the stability of a recommender

system does not necessarily correlate with the accuracy of the system.

In prior work, recommender system robustness is commonly evaluated in the

context of attacking recommender systems. Shilling attacks, or profile-injection at-

tacks, add user profiles to a recommender system with crafted sets of item ratings

in order to increase or decrease the position of some item in the recommendations

of all users [34, 41]. O’Mahony et al. [41] analyze the accuracy and stability of

collaborative filtering based recommender systems against profile injection attacks.

Lam and Riedl [34] evaluate the robustness of two collaborative filtering algorithms

against shilling attacks and conclude that item-based algorithms are more robust

than those that are user-based. However, Mobasher et al. [40] show that item-based

algorithms are vulnerable to different types of profile injection attacks and argue that

hybrid recommender systems offer a higher degree of robustness. Gunes et al. [24]

provide a comprehensive survey on shilling attacks against recommender systems.

Whereas shilling attacks add new user profiles to promote or demote targeted

items, the approach we introduce in Chapter 4 is different in that it generates rat-

ings for existing users and items to provide a general assessment of the stability of

a recommender system. Additionally, because shilling attacks add new users to a

system, they require adding many ratings for each of those new users. For example

Lam and Riedl [34] introduce between 25 and 100 users with 3404 ratings each to a

dataset of almost 1,000,000 ratings (a percent change of between 8% and 34%). In

contrast, our goal is to identify small sets of modifications (under 1% change) that
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cause significant change to the recommendations produced by the system.

2.4 Software Robustness and Fuzz Testing

The robustness of a software system generally relates to the dependability or trustwor-

thiness of a system and characterizes the ability of a system to exhibit “acceptable”

behavior in the presence of exceptional input [52]. The IEEE standard of software

engineering vocabulary defines robustness as “the degree to which a system or compo-

nent can function correctly in the presence of invalid inputs or stressful environmental

conditions” [1].

Duran and Ntafos [13] showed that random testing can be a cost-effective testing

approach for many programs. The term fuzz testing—fuzzing—was introduced by

Miller et al. [39] to describe the generation of random tests for Unix programs, however

the term has expanded to include random testing of software systems in general.

Fuzz testing is a common approach to testing the robustness of a software system,

where random inputs are cheaply generated to attempt to cause the system to crash

or enter an unacceptable state [30]. There are three main levels of fuzz testing:

blackbox, whitebox, and greybox. Blackbox fuzz testing requires only an executable

program and works by randomly mutating inputs and using those generated inputs

to test the program [15]. Whitebox techniques use program analysis to guide input

generation [19]. Greybox fuzzing uses information from program instrumentation,

such as code coverage, to guide input mutations [9]. Fuzz testing can also leverage

additional information for input generation, such as input grammars. For instance,

Godefroid et al. [18] perform whitebox fuzzing in combination with a grammar to

ensure that generated inputs are valid.

Ours is the first work that we know of that applies fuzzing to the dataset used to
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train a recommender system for stability assessment purposes. Because the space of

dataset modifications is so large, we use influence models inferred from the original

dataset and recommendations to effectively guide the generation of modifications to

the dataset.
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Chapter 3

Characterizing the Quality of Recommender Systems

The standard metrics for evaluating and comparing the quality of recommender sys-

tems on the Top-K recommendation task are precision, recall, and derivative metrics

such as F-values [48]. In general, if a system S1 has higher precision and recall than

a system S2, then S1 is generally considered to be “better” than S2. Yet, precision

and recall are limited in several ways.

First, because they are coarse-grained summary statistics, precision and recall

provide little information or intuition to the developer or provider of a recommender

system about the quality and usefulness of the recommendations the system provides.

For instance, in this work, we show that a known hybrid recommendation algorithm

has precision and recall superior to a known model-based collaborative filtering algo-

rithm when evaluated on the MovieLens dataset, yet, the hybrid algorithm achieves

those gains by providing excessively conservative recommendations. The model-based

collaborative filtering algorithm recommends 3.5 times more unique items and is able

to produce a unique ranked list for almost every user. Such insights are lost with

coarse summary statistics like precision and recall.

Second, when the number of known relevant items is very small relative to the

number of items available to be recommended, recommender systems are likely to

exhibit extremely low precision and recall values. This is a common occurrence for
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modern recommendation systems that must provide tens of recommendations from a

set of hundreds of thousands or even millions of items, and which have sparse ratings.

Users may have as few as one rating in some datasets. In this environment, a system

developer will have little intuition as to whether a precision of 0.001% should be

considered supremely satisfying or deeply troubling.

Third, not only do precision and recall values for an individual system convey

little intrinsic intuition about the system, conclusions about the relative superiority

of one system over other systems based on precision and recall values can be highly

misleading if the recommendations provided by the putatively superior system are

anomalous or counterintuitive.

We are not the first to discuss these statistics’ limitations. Researchers increasingly

have been highlighting the limitations of summary statistics like precision and recall

and have called for better and alternative characterizations [25]. Furthermore, the

need for better characterizations can be seen as an instance of the broader problems

of explainability and human interpretability of AI systems (e.g., see Letham et al. [36]

and Kulesza et al. [33]). However, while the limitations of such summary statistics

are well known [28], there has been little success in defining general properties that

overcome these limitations.

Our contributions in this work are:

• We delineate an approach for defining properties of recommender systems that

can provide more intuitive characterizations of the nature and quality of the

recommendations produced by a recommender system. More specifically, we

develop logical templates that define a space of properties for characterizing

the quality of a recommendation algorithm with respect to a given dataset in

terms of the relations between the algorithm’s inputs (user, items, ratings) and
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its outputs (rankings). We also discuss how these properties relate to existing

properties in the literature, namely, coverage, diversity, novelty, and adaptivity.

• We study how property instantiations vary across five algorithms that we ap-

plied to the MovieLens and Jester datasets, by formally defining the space of

such properties through a series of templates, and instantiating a subset of them.

We demonstrate that the instantiated templates are able to reveal a variety of

inconsistencies in recommendation behavior that are at odds with the relative

performance of the algorithms as indicated by their precision and recall.

• We also investigate how properties defined using our approach are affected as

the dataset evolves, providing insights into what algorithms and properties are

more robust in the presence of an evolving dataset.

3.1 Defining Recommender Systems

Data, D
Algorithm, A

Recommender System

RecommendationsUser

Figure 3.1: Model of a recommender system.

We begin by defining a model for recommender systems. A recommender system

consists of an algorithm, A and a dataset, D, as shown in Figure 3.1. The recom-

mender algorithm uses the dataset to compute a model of user preferences. This

model can then be used to compute recommendations for users of the system.

A class diagram of our recommender system model is shown in Figure 3.2. This

model is composed of users, items, and attributes, and two types of relationship
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Figure 3.2: Class diagram of a recommender system.

between users and items: ranks, which are relationships between items and users

produced by the recommender system; and ratings, which are relationships between

users and items defined by the dataset.

Let U be a finite set of users, I a finite set of Items, and R a possibly infinite,

ordered set of rating values. Without loss of generality, we assume that R ⊂ Z>0

(typically within some interval [l, h]).

A dataset D defines the partial function rating : U × I → R that captures how

users rate items, with rating(u, i) = ⊥ if u has not rated i. In addition to defin-

ing rating , D characterizes each u ∈ U by attributes drawn from the set AU , and

each i ∈ I by attributes drawn from the set AI through functions attr : U → 2AU

and attr : I → 2AI , respectively. A user or item may be characterized by multiple
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attributes.

Given D and a parameter k for computing top-k rankings, a recommendation

algorithm Q computes a partial function rankk,Q : I × U → [1, k] for k ≤ |I|.

rankk,Q(i, u) = ⊥ if item i is not ranked for user u.

For every u ∈ U there are a number of ranked items, ku ≤ k, and the projection of

rank onto users, rankk,Q(u) : Iku → [1, ku], is a bijection, where Iku ⊆ I, #Iku = ku,

and the function # counts the number of elements in the set.

In what follows, we drop the subscript Q from rankk,Q since Q is typically apparent

from the context, and we drop the subscript k since k is typically a parameter to Q.

3.2 Recommender System Properties

We seek to provide characterizations of Q for a given D reflecting desirable properties

of recommenders that have been identified by the research community.

Metrics for these properties can come in many different forms, and we cannot

possibly consider the space of all properties exhaustively. We do, however, want to

be able to explore that space systematically and efficiently. In this work, we selec-

tively sample the space by identifying metrics that capture each of the four property

categories highlighted in related work: coverage, diversity, novelty, and adaptivity,

and then generalize those metrics to property templates that consider a broader set

of related metrics. Our approach enables the specification of relatively simple log-

ical property templates, based on users, items, ratings, and rankings, that can be

instantiated to capture a broader set of usefulness properties about a recommender

system.

A property template consists of a logical formula defined over variables that capture

features of computed recommendations (e.g, the rank of an item in a recommenda-
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tion list), and operators that compute derived measures of recommendations (e.g., the

maximum or minimum rating of a recommended item). If one instantiates a template

by defining each of these parameters, then one can evaluate the truth of the resulting

formula over D and rank . In the study in Chapter 3.4, we compile partially instan-

tiated templates into computations that, when evaluated over D and rank , compute

the remaining template parameters.

Tables 3.1, 3.2, and 3.3 contain 12 template formulae organized according to the

foregoing property categories. Table 3.1 contains three property template formula

that relate to the category of coverage metrics. Table 3.2 contains five property

template formulae related to diversity. Table 3.3 contains four template formulae, one

of which relates to both coverage and diversity, one that relates to both novelty and

adaptivity, one that relates to only novelty, and one that relates to only adaptivity.

For each template, the table provides the name, the parameters to be computed, the

template definition, and a sample instantiation presented in natural language. For

templates that require the parameter f or the parameter ∼, f and ∼ are functions,

where f ∈ {min,median,max,#, avg} and ∼ ∈ {≤,=,≥}.

Table 3.1: Property Templates Related to Coverage

Name Parameters Property Template Example Instantiated
Property

Coverage
Number of items per
Ranked list (NRANKS)

k, n : Z>0 f{#{i | i ∈ I ∧
rank(i, u) 6= ⊥} | u ∈ U} ∼ n

The minimum (f) number of
items ranked in the top 10 (k)
for any user is greater than or
equal (∼) to 10 (n).

Number of Recom-
mended Items (NRI)

k, n : Z>0 #{i | i ∈ I ∧
∃u ∈ U : rank(i, u) 6= ⊥} ≥ n

There are at least 2791 (n)
items in at least one top 10
(k) ranking.

Number of Top Ranked
Items (NTRI)

n : Z>0 #{i | i ∈ I ∧
∃u ∈ U : rank(i, u) = 1} ≥ n

There are 628 (n) items with
a rank of 1 in at least one
ranked list.

For example, in the last row of Table 3.3, the template property “Number of

Ratings of items in the Top-k (NRTK)” characterizes the top recommendations in
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Table 3.2: Property Templates Related to Diversity

Name Parameters Property Template Example Instantiated
Property

Diversity
Number of Ranked
Lists with Multiple
Users (NRLMU)

k, n : Z>0 #{{(i, rank(i, u)) | i ∈ I ∧
rank(i, u) 6= ⊥} | u ∈ U ∧
∃u′ ∈ U : ∀i ∈ I : u′ 6= u ∧
rank(i, u) = rank(i, u′)} ≤ n

No more than 0 (n) top 10
(k) ranked lists are common
to more than 1 user.

Number of Ranked
Lists (NRL)

k, n : Z>0 #{{(i, rank(i, u)) | i ∈ I ∧
rank(i, u) 6= k} | u ∈ U} ≥ n

There are at least 138493 (n)
unique lists of 10 (k) ranked
items.

Number of Ranked Sets
(NRS)

k, n : Z>0 #{{i | i ∈ I ∧
rank(i, u) ≤ k} | u ∈ U} ≥ n

There are at least 138417 (n)
unique ranked sets of 10 (k)
items.

Number of Users Per
Ranked List (NUPRL)

k, n : Z>0 f{#{u′ | u′ ∈ U ∧
∀i ∈ I : rank(i, u′) = rank(i, u)}
| u ∈ U} ∼ n

The maximum (f) number of
users to which a top 10 (k)
ranked list is recommended is
less than or equal (∼) to 1
(n).

Number of Users to
which an Item is Rec-
ommended (NUIR)

k, n : Z>0 f{#{u | u ∈ U ∧
rank(i, u) ≤ k} | i ∈ I} ∼ n

The maximum (f) number of
times an item is ranked in the
top 10 (k) is greater than or
equal (∼) to 48857 (n).

Table 3.3: Property Templates Related to Novelty, Adaptivity, and Coverage and
Diversity

Name Parameters Property Template Example Instantiated
Property

Novelty
Item Attribute Or-
der by Number of
Recommendations
(IANRLCMP)

k ∈ Z>0

a1, a2 ∈ AI

#{i | i ∈ I ∧ a1 ∈ attr(i) ∧
∃u ∈ U : rank(i, u) 6= ⊥} >

#{i | i ∈ I ∧ a2 ∈ attr(i) ∧
∃u ∈ U : rank(i, u) 6= ⊥}

Drama (a1) movies are rec-
ommended in the top 10 (k)
more often than IMAX (a2)
movies.

Adaptivity
Average Rating of
items in the Top-k
(ARTK)

k, r : Z>0 f{avg{rating(u, i) | u ∈ U} | i ∈ I ∧
∃u ∈ U : rank(i, u) 6= ⊥} ∼ r

The minimum (f) average
rating for an item in the top
10 (k) is less than or equal
(∼) to 1.75 (r).

Coverage and Diversity
Item-Attributes Never
Recommended (IANR)

k ∈ Z>0

a ∈ AI

∀i ∈ I : a ∈ attr(i)
=⇒ ∀u ∈ U : rank(i, u) = ⊥

IMAX (a) movies are never
recommended in any top 10
(k) ranked list.

Novelty and Adaptivity
Number of Ratings of
items in the Top-k
(NRTK)

k, n : Z>0 f{#{rating(u, i) | u ∈ U} | i ∈ I ∧
∃u ∈ U : rank(i, u) 6= ⊥} ∼ n

The minimum (f) number of
ratings for an item in the top
10 (k) is less than or equal
(∼) to 2 (n).

terms of the number of ratings they have. This template is parameterized by k, the

number of items considered in the ranking; n, the number of ratings per item; f , the

operator used to aggregate rating counts across D; and ∼, a relational comparison

used in conjunction with f . The sample instantiation of this property sets k to 10, f
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to minimum, ∼ to ≤ and n to 2. In our study, we partially instantiate the property

with k, f , and ∼ and then compute the greatest value of n satisfying the resulting

formula.

Each of these template maps onto at least one of the recommender property cate-

gories of Shani and Gunawardana [53]. Coverage is captured by NRI, NTRI (coverage

of items), NRANKS (coverage of users), and IANR (coverage of item attributes). Di-

versity is captured by IANR, NRLMU, NRL, NRS, NUPRL, and NUIR (inter-user

diversity). Novelty is captured by NRTK (unpopular items may be novel) and IAN-

RLCMP (rarely recommended attributes may be novel). Adaptivity is captured in

ARTK (adaptivity to ratings) and NRTK (adaptivity to popularity). As we shall see,

the satisfaction of these template formulae, and the recommender properties they

capture, vary across recommender algorithms.

Properties versus Metrics. It is worth highlighting that our approach is novel

in the treatment of usefulness properties of recommenders as logical properties, rather

than as metrics. While metric values are singular and coarse in their attempt to cap-

ture a specific property of interest, our approach computes property instantiations

that represent a space of possible values for the property. For instance, if the com-

puted instantiation of ARTK (min,≤) is n = 1.75, when k = 10, then the property

also holds for all values of n less than 1.75, as well as for values of k less than 10. The

properties we have identified in this work can be used to capture common definitions

of usefulness properties, such as those identified above. Additionally, our approach

provides a general model for defining property templates that can capture novel di-

mensions of these usefulness properties, such as ARTK and NRTK, which provide

novel characterizations of a recommender system that are not captured by currently

defined metrics. Our IANR property captures the ability of the recommender sys-

tem to recommend all item attributes, and isn’t captured by current metrics. This
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un ive r s e
. ranks ( )
. f i l t e r (lambda rank : rank . va lue <= k )
. i tems ( )
. f o r a l l (lambda item :

item . r a t i n g s ( ) . apply ( ’ average ’ ) >= r )

Figure 3.3: Sample Implementation of the ARTK Property Computation in Python.

n = un ive r s e
. ranks ( )
. f i l t e r (lambda rank : rank . va lue <= k )
. i tems ( )
. apply ( ’ count ’ )

Figure 3.4: Sample Implementation of the NRI Property Computation in Python.

property relates to both coverage — it characterizes the ability of the recommender

system to cover all item attributes — as well as diversity — how diverse are the item

attributes that are recommended.

3.3 Property Instantiation Implementation

We implemented a system that, for a given Q and D, computes the parameter values

for a subset of the properties defined by the templates. The system, implemented

in Python, consumes items, users, ratings, and rankings, inserting them into sets.

It makes use of predefined lambda functions for filtering, aggregating, and iterating

on the sets, computing the parameters for which a target property would hold. Ex-

amples for five properties are shown in Figures 3.3, 3.4, 3.5, 3.6, and 3.7. In the

implemented system, universe represents all knowledge of the recommender system

being evaluated.

Figure 3.3 presents the computation for the ARTK property with f parameterized
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un ive r s e
. u s e r s ( )
. f o r a l l (lambda user : ( user . ranks ( )

. f i l t e r (lambda rank : rank . va lue <= k )

. apply ( ’ count ’ ) ) >= n)

Figure 3.5: Sample Implementation of the NRANKS Property Computation in
Python.

n = un ive r s e
. ranks ( )
. f i l t e r (lambda rank : rank . va lue <= k )
. apply ( ’ max count ’ , key=lambda rank : rank . item )

Figure 3.6: Sample Implementation of the NUIR Property Computation in Python.

n = un ive r s e
. u s e r s ( )
. apply ( ’ count unique ’ , key=lambda user : use r . ranks ( )

. f i l t e r (lambda rank : rank . va lue <= k )

. apply ( ’ s e l e c t ’ ,
key=lambda rank : ( rank . item , rank . va lue ) ) )

Figure 3.7: Sample Implementation of the NRL Property Computation in Python.

as min and ∼ parameterized as ≥. Starting from the top, this code will find a rating

threshold r such that the average rating for all items ranked in the top k is at least

equal to to r.

Similar to ARTK, the implementation for the NRI property, presented in Fig-

ure 3.4, begins by applying a filter to ranks to select items in the top k, then collecting

the items within those ranks, and aggregating them with the function count. This has

the effect of counting the number of unique items that appear in some top-k ranking.

In contrast to ARTK and NRI, the implementation of the NRANKS property

iterates over the set of users and checks whether the number of ranked items for

all users is greater than n, as shown in Figure 3.5. This implementation partially
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instantiates the property with f parameterized as min and ∼ parameterized as ≥.

Starting from a value of k, this code will find a value for n such that the number of

ranked items for each user is at least n.

The implementation for the NUIR property also iterates over the rankings, as

shown in Figure 3.6. However, this property uses a specially defined max count

function that counts the number of times each item appears and returns the highest

count value. This has the effect of computing a value of n for the NUIR property

parameterized with f as max and ∼ as =.

Similar to NRANKS, the implementation of the NRL property iterates over the

users in a dataset, as shown in Figure 3.7. We then apply the unique count function

that counts the number of unique objects in the set. We check whether two objects

are unique by comparing their top-k ranked lists, which we build by selecting the

item and value from the ranks. This code computes a value, n, equal to the number

of unique ranked lists produced by the recommender system.

3.4 Study

We carried out a study to explore the value of our properties in differentiating existing

algorithms and revealing unexpected behaviors that were not apparent with standard

prediction accuracy metrics, and we also investigate how these properties are affected

by changes in the dataset. More specifically, we attempt to answer the following

questions:

RQ1: Can the properties offer insights about Q that go beyond what precision

and recall already offer?

RQ2: How robust are the properties instantiated for Q in the presence of an

evolving training set D?
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3.4.1 Study Design

3.4.1.1 Recommendation Algorithms

For this study we selected five different recommendation algorithms. The algorithms

were chosen to represent a variety of recommender techniques ranging from memory-

based to model-based, and from content-based to collaborative filtering based. An

additional criterion that guided our algorithm selection was that a candidate algo-

rithm had to work with the MovieLens dataset [26], either because it was a part of the

Lenskit framework or because its adaptation to that framework required only minor

data wrangling. We describe each of the five chosen algorithms below.

User-User. The User-User algorithm is a memory-based collaborative filtering

algorithm introduced by the GroupLens project [46]. The algorithm computes user

similarity scores based on user rating vectors. In this work, we use the implementation

of User-User provided by the Lenskit framework [14], which computes user similarity

using vector cosine similarity [10].

Item-Item. The Item-Item algorithm is a model-based collaborative filtering

algorithm. In this algorithm, similarity scores are precomputed for all pairs of item

rating vectors. The predicted value of an item is estimated by aggregating the ratings

of the most similar items [12, 50]. We use the Item-Item implementation provided by

the Lenskit framework [14].

FunkSVD. FunkSVD is a model-based collaborative filtering algorithm that uses

stochastic gradient descent to learn a matrix factorization [16]. In this work, we

use the implementation of FunkSVD provided by the Lenskit framework [14], which

learns 25 latent features.

Slope One. The Slope One algorithm is a model-based collaborative filtering

algorithm that uses the average deviation of the ratings between items a user has
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rated and the item being scored [35]. We use the implementation of Slope One

provided by the Lenskit framework [14].

LightFM. LightFM is a model-based hybrid recommender algorithm that com-

bines content-based and collaborative filtering based recommendation. It uses both

ratings and item attributes to build a recommender model [32]. In our study, we

use the Python implementation of the algorithm provided by the algorithm’s au-

thor1. This is the only algorithm that explicitly uses item attributes when building

a recommender model. Using the MovieLens dataset, we provide the genres as item

attributes.

3.4.1.2 Datasets

MovieLens 20M Dataset. We use the dataset released in 2016 from the MovieLens

recommendation system. The dataset is available as a group of comma separated files,

containing over 20 million ratings collected from over 130,000 users over a period of

20 years on 27,000 movies. Ratings can have ten discrete values, from 0.5 to 5.0 with

a step size of 0.5. More details about the data collection process and the dataset itself

are available at https://grouplens.org/datasets/movielens/20m/ [26].

Jester Dataset. We also use the Jester Dataset collected between November

2006 and May 2009 [21]. The dataset is available as a group of tab separated files,

containing over 1.7 million ratings from 59,132 users on 150 jokes. Ratings in this

dataset are on a continuous scale from −10.0 to 10.0. More details about this dataset

are available at http://eigentaste.berkeley.edu/dataset/.

https://grouplens.org/datasets/movielens/20m/
http://eigentaste.berkeley.edu/dataset/


28

Figure 3.8: Design of the Study.

3.4.1.3 Design

The overall design of our study is shown in Figure 3.8. We build two recommender

systems per algorithm and dataset. One recommender system splits the data into

training and test sets and performs a traditional precision and recall evaluation by

training the recommender on the training set, and using the test set to evaluate

the metric. We perform a five-fold cross-validation, partitioned on the users, and

using an 80-20 split on users’ rated items. We consider items in the test set that

are rated by some user to be relevant for that user. We calculate precision and

recall for each user as #(TopK∩RelevantItems)
#TopK

and #(TopK∩RelevantItems)
#RelevantItems

, respectively. We

report the average precision and recall across all users. The second recommender uses

the full dataset and is used to instantiate the properties according to the templates.

We use all algorithm and data combinations except for the LightFM recommender

algorithm with the Jester dataset because it does not provide item attributes, which

were required by LightFM.

To answer the second research question, we used the MovieLens dataset. We chose

1https://github.com/lyst/lightfm

https://github.com/lyst/lightfm
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this dataset because it has timestamps associated with each rating, while the Jester

dataset does not. To simulate dataset evolution, we sorted all of the ratings by their

timestamps, and selected the earliest 50%, 60%, 70%, 80%, 90%, and 100% of the

dataset to mimic its evolution while following the same instantiation process as for

the first research question. To have consistent datasets, for each subseries, the item

set was restricted to contain only movies that were released in or before the year in

the latest rating timestamp. Using this method, each subseries is a subset of the next

largest subseries and simulates the evolution of the dataset over time.

3.5 Study Results

3.5.1 RQ1: Properties across Algorithms

We start by computing the precision and recall and the instantiated property values

using the full dataset. The results for the MovieLens dataset are shown in Table 3.4,

and the results for the Jester dataset are shown in Table 3.5. To facilitate the presen-

tation of the results, cells in a row with similar values are similarly colored to indicate

comparable algorithm performance according to the row’s property. For each prop-

erty, values are grouped into three groups, based on their similarity. Groups are

formed to maximize the distance between the values in each group. For properties

with only two distinct values, such as ARTK(max,≥), we only form two groups.

Overall, we observe that the properties are able to reveal many differences across

algorithms with similar precision and recall. We illustrate some of those differences

by property type.

Similar precision and recall, but different coverage. Using the MovieLens

dataset, User-User and Slope One have similar values for precision and recall, but

Slope One has higher coverage of the item set, recommending 1580 unique items
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Table 3.4: Precision, Recall, and Instantiated Property Values for Each Recommender
System using the MovieLens dataset

Category Property User-User Item-Item FunkSVD Slope One LightFM

Accuracy Precision 1.45E-06 1.79E-03 1.40E-03 1.44E-06 5.20E-03
Recall 6.68E-08 3.41E-04 3.36E-04 3.99E-08 2.13E-03

Coverage NRANKS (min,≥) 0 10 10 10 10
NRI 465 2791 1798 1580 786
NTRI 89 628 579 474 163

Diversity NRLMU 3442 0 10740 5465 233
NRL 132390 138493 47065 126970 138250
NRS 125588 138417 13180 87842 85784
NUPRL (max,≤) 90 1 782 42 3
NUIR (max,≥) 78575 48857 135909 104763 99833

Novelty IANRLCMP

Drama,
Comedy,
Horror,

...

Drama,
Comedy,
Romance,

...

Drama,
Documentary,

(no genres listed),
...

Drama,
Documentary,
Comedy,

...

Adventure,
Comedy,
Action,

...

Adaptivity ARTK (min,≤) 0.5 1.75 1.79 0.5 0.5
ARTK (med,=) 1.50 3.80 3.65 3.75 3.24
ARTK (max,≥) 5.0 4.83 5.0 5.0 5.0

Coverage &
Diversity

IANR {IMAX} ∅ ∅ ∅ {(no genres

listed)}
Novelty NRTK (min,≤) 1 2 1 1 0
& NRTK (med,=) 2 6 1756.5 1 71
Adaptivity NRTK (max,≥) 47 67310 67310 70 66172

while User-User recommends only 465 unique items. User-User also has a lower item-

attribute coverage for the MovieLens dataset, never ranking an item with the “IMAX”

attribute in any top 10 list, while Slope One recommends every item attribute at least

once. Similarly, although LightFM has slightly higher precision and recall values than

FunkSVD, the NRI property indicates that it has a lower coverage of the item set and

it never ranks an item with the “(no genres listed)” attribute in the top-10 list of any

user (as shown by the IANR property), while FunkSVD recommends every attribute

at least once.

When using the Jester dataset, User-User and Slope One have similar values for

precision and recall, as they did with the MovieLens dataset. However, unlike with

MovieLens, User-User has a higher coverage of the item set, recommending 139 unique

items while Slope One recommends only 123 unique items. Additionally, User-User

recommends 130 unique items as the top item of some ranked list, while Slope One



31

Table 3.5: Precision, Recall, and Instantiated Property Values for Each Recommender
System using the Jester dataset

Category Property User-User Item-Item FunkSVD Slope One

Accuracy Precision 0.167 0.166 0.117 0.178
Recall 0.195 0.177 0.112 0.186

Coverage NRANKS (min,≥) 0 0 0 0
NRI 139 132 136 123
NTRI 130 109 134 30

Diversity NRLMU 588 1221 369 4405
NRL 55093 53766 56543 15698
NRS 51805 31476 48880 10908
NUPRL (max,≤) 1585 1451 775 7499
NUIR (max,≥) 38522 34363 14991 39623

Adaptivity ARTK (min,≤) −2.75 −2.75 −2.75 −0.70
ARTK (med,=) 1.94 1.97 1.95 2.11
ARTK (max,≥) 3.71 3.71 3.71 3.71

Novelty NRTK (min,≤) 166 166 166 166
& Adaptivity NRTK (med,=) 9620 9322 9382 9669

NRTK (max,≥) 57720 25996 54150 25996

has only 30 distinct top-ranked items.

Using either dataset, we see that information about the coverage behavior of a

recommender system is complementary to precision and recall. Two recommender

systems having similar values of precision and recall does not preclude them from

having discrepancies in their coverage of the set of items.

Additionally, we see that instantiated property templates provide insights into

recommender system behavior that result from the structure of the dataset. For

instance, although User-User and Slope One have similar precision and recall for

both the MovieLens and Jester datasets, Slope One has higher coverage than User-

User on the MovieLens dataset, but a lower coverage when using the Jester dataset.

We conjecture that this disparity in behavior may arise due to the lower number of

items in the Jester dataset, as well as the higher density of ratings in the dataset. In

Jester, ratings exist for over 20% of user-item pairs, while for MovieLens, only about

0.5% of user-item pairs are rated.
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Similar precision and recall, but different diversity. When using the Movie-

Lens dataset, FunkSVD and Item-Item recommenders have similar precision and re-

call values, but the Item-Item recommender has a higher diversity as seen in the

NRLMU and NRL properties. Item-Item provides a unique ranked list for every user,

while the FunkSVD recommender only produces 47,065 ranked lists. Additionally,

LightFM has slightly higher precision and recall than Item-Item. However, the NRS

property indicates that it has a lower inter-user diversity, recommending only 85,784

unique ranked sets, while Item-Item recommends 138,417 ranked sets.

When using the Jester dataset, User-User and Slope One have similar values

for precision and recall, but the User-User recommender has a higher diversity, as

evidenced by the NRS property. User-User produces 51,805 unique sets of recom-

mendations, while the Slope One recommender recommends only 10,908 unique sets

of items.

For both the MovieLens and Jester datasets, at least one property template that

captures the diversity of recommendations can differentiate recommender systems

with similar precision and recall. In fact, using the similarity groups identified in

Tables 3.4 and 3.5, the NRS property is enough to differentiate recommenders with

similar precision and recall. This is likely due to our selection of algorithms that

represent a variety of recommendation techniques, however it shows that the diversity

of recommendations can vary greatly for given values of precision and recall.

Similar precision and recall, but different novelty. FunkSVD makes up for

diversity with novelty as it can recommend items with fewer ratings than Item-Item,

for the MovieLens dataset. FunkSVD recommends at least one item with a single

rating, while Item-Item never recommends an item with fewer than two ratings. The

slightly higher precision and recall of LightFM, when compared to FunkSVD and

Item-Item, is in part due to its ability to recommend items without any ratings data,
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which is captured by the property NRTK(min,≤). Also, because FunkSVD and Item-

Item account only for ratings data, they tend to recommend items with higher average

ratings. The ARTK(min,≤) property shows that FunkSVD never recommends items

with an average rating less than 1.79 and Item-Item never recommends items with

an average rating less than 1.75. In contrast, LightFM recommends at least one item

with an average rating of 0.5, the lower rating bound for the MovieLens dataset.

In addition to different coverage and diversity, the User-User and Slope One rec-

ommenders also have different novelty when using the Jester dataset. Slope One never

recommends items with more than 25,996 ratings, while User-User recommends at

least one item with 57,720 ratings, as shown by NRTK(max,≥). The User-User and

Item-Item recommender systems also achieve similar precision and recall on the Jester

dataset, however Item-Item produces more novel recommendations, as shown by the

NRTK(med,=) and NRTK(max,≥) properties.

Using either dataset, we see that properties that capture the novelty of recom-

mendations offer complementary insights into precision and recall. For instance,

the NRTK(min,≤) instantiation for LightFM on MovieLens provides insight into its

slightly higher precision and recall. Additionally, for both datasets, the NRTK(med,=)

property provided the most discrimination among recommenders with similar preci-

sion and recall values.

Similar precision and recall, but different adaptivity. Although they have

similar precision and recall on the MovieLens dataset, FunkSVD is more sensitive

to the value of an item’s ratings than the Item-Item recommender system, as the

Item-Item recommender never recommends an item with an average rating greater

than 4.83. Additionally, although Item-Item and LightFM have similar precision and

recall, they differ in their instantiations for all three ARTK properties ((min,≤),

(med,=), (max,≥)).
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While User-User and Slope One have similar precision and recall on the Jester

dataset, Slope One is more sensitive to rating values. The ARTK(min,≤) property

shows that the Slope One recommender never recommends an item with an average

rating below -0.70, while User-User recommends at least one item with an average

rating value of -2.75, the lowest average rating value in the Jester dataset.

With both the MovieLens and Jester datasets, instantiated property templates

that capture the adaptivity of a recommender system can often differentiate rec-

ommender systems with similar precision and recall. While the ARTK properties

are often able to differentiate recommenders using the MovieLens data, they provide

less discriminating power for the Jester dataset, where User-User, Item-Item, and

FunkSVD all have similar values. We conjecture that this lack of differentiation is

due to the limited number of items that can be recommended in the Jester dataset,

with 2982 users rating more than 90% of the available items. Because these users have

rated so many items, the items available for recommendation are limited, resulting in

restricted adaptivity.

Instantiated property templates provide insights into recommender system behav-

ior that results from the underlying algorithm. While the precision and recall values

are similar for User-User and Slope One on both datasets, for both MovieLens and

Jester, Slope One was more sensitive to rating values. For the MovieLens dataset, the

ARTK(med,=) property for Slope One is more than double that of User-User, indi-

cating it tends to recommend items with much higher average ratings. Using Jester,

both ARTK(min,≤) and ARTK(med,=) are higher for Slope One than User-User.

This difference in behavior is likely due to how the recommender scores items. Be-

cause Slope One uses an item’s average rating deviation from other items to predict

the preference of a user for an item, items with high average ratings are more likely

to be recommended. User-User on the other hand uses the correlation between users
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ratings to generate recommendations. Because of this, User-User can recommend

items with low ratings if two users rating sets have a negative correlation.

Different precision and recall, but similar instantiated property. While

the FunkSVD and Slope One recommenders are not similar in terms of precision

and recall, when using the MovieLens dataset, they recommend similar numbers of

items in the top 10 (NRI). They also have a strong correlation (Kendall’s τ = 0.66)

between their ordering of item attributes for the IANRLCMP property. In addition,

the Slope One and LightFM recommenders are not similar when comparing precision

and recall; however, they recommend similar numbers of ranked sets, and they have

similar values for the NUIR property.

With the Jester dataset, the FunkSVD and User-User recommenders are not sim-

ilar in terms of precision and recall, but they provide similar item coverage, shown by

the NRI property. FunkSVD recommends 136 unique items, while User-User recom-

mends 139. They also provide similar levels of diversity, with FunkSVD producing

56,543 unique ranked lists and User-User producing 55,093 unique ranked lists, as

shown by NRL.

While precision and recall are sensitive to a small subset of recommendations,

instantiated property templates provide a characterization of the overall behavior of

a recommender system. For both the MovieLens and Jester datasets, we see that

when two recommender systems have different values of precision and recall, they

are still often similar for at least one property. In some cases, recommender systems

have different precision and recall, but they still have many similar property template

instantiations.

Anomalies. Contrary to expectations, we found that, when using the MovieLens

dataset, one of the popular algorithm implementations, User-User, does not have

full coverage of the set of users as evidenced by the NRANKS property. Under this
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implementation, users who have 0 variance in their ratings will not receive a ranked

list under User-User.

We also found, for the Jester dataset, that none of the algorithms provided full

coverage of the set of users (again shown by the NRANKS property). This is because,

in this dataset, some users have rated all of the available items, and the recommender

algorithms used in this work do not recommend items that have been previously

rated.

3.5.2 RQ2: Properties across Evolving Datasets

As mentioned earlier, to evaluate the stability of our properties on an evolving dataset,

we created six datasets from the MovieLens dataset consisting of 50%, 60%, 70%,

80%, 90%, and 100% of the original dataset. Using each of the six subsets, we

computed precision and recall, and normalized the values for our properties under

each algorithm. We then computed the absolute value of the percentage change for

each property between pairs of consecutive datasets to quickly assess the degree of

adjustment in a property as a function of the evolving dataset.

Table 3.6 shows the maximum of the absolute values of percentage change for each

property for a given algorithm, with values under 5% highlighted. Such highlighted

values represent what we deem to be robust properties per recommendation system

as the dataset evolves, and in the cases with 0% we say those properties are invariants

under varying datasets.

As can be seen in Table 3.6, precision and recall are not robust to changes in

the dataset and extremely large changes are observed between consecutive subseries.

Only for LightFM does the change in precision and recall remain under 50% between

all consecutive datasets. For the rest of the recommender systems the percentage of

variation is at least in the hundreds. On the other extreme, a property like NRANKS
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Table 3.6: Maximum Absolute Value of Percent Change Between Instantiations of a
Property as the MovieLens Dataset Evolves

Category Property User-User Item-Item FunkSVD Slope One LightFM

Accuracy Precision 4121.02% 297.16% 963.42% 110269.67% 25.15%
Recall 4389.77% 456.89% 1494.53% 446349.93% 48.40%

Coverage NRANKS (min,≤) 0.00% 0.00% 0.00% 0.00% 0.00%
NRI 129.38% 28.34% 56.89% 48.39% 20.15%
NTRI 102.80% 54.88% 12.24% 47.63% 23.43%

Diversity NRLMU 6541.91% 0.00% 212.43% 532.07% 86.10%
NRL 2.21% 0.00% 494.22% 7.15% 0.27%
NRS 18.02% 2.65% 765.80% 25.82% 12.83%
NUPRL (max,≥) 18.14% 12.27% 1691.55% 191.90% 48.24%
NUIR (max,≥) 80.16% 80.06% 0.51% 30.66% 6.67%

Adaptivity ARTK (min,≤) 0.00% 25.00% 24.92% 0.00% 100.00%
ARTK (med,=) 75.96% 2.06% 1.45% 7.69% 1.63%
ARTK (max,≥) 0.00% 1.96% 0.00% 0.00% 16.04%

Novelty NRTK (min,≤) 13.05% 13.05% 13.05% 13.05% 0.00%
& NRTK (med,=) 2035.15% 953.27% 33.87% 761.55% 100.00%
Adaptivity NRTK (max,≥) 135166.76% 0.00% 0.00% 20585.97% 25.38%

seems to be a true invariant, independent of the algorithm and dataset, as it remains

constant for all algorithms, despite changing data. More commonly, properties are

robust for a certain category of algorithms. For instance, the ARTK (max,≥) is

robust only for algorithms that exclusively use ratings data. Such algorithms tend to

recommend items with higher ratings due to their limited knowledge, while systems

that use other information to generate recommendations can cause the property to

become unstable. Other properties seem to be too easily falsified. For example,

NRTK (med,=) and NUPRL do not seem robust enough for any algorithm. This

may indicate that these properties are too closely coupled to the dataset.

From an algorithmic perspective, some algorithms appear much more sensitive

than others to the evolving dataset. For instance, the Item-Item algorithm has seven

(7) properties that are robust as the dataset evolves, while the Slope One only has

three (3) robust properties. For some algorithms, none of the properties in a given

category remain robust in the presence of change. For example, none of the diversity

properties are invariant for the Slope One algorithm. Such a finding tells us that the

amount of diversity in recommendations from Slope One is highly variable, and that
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a measured value of diversity may change by a large margin as the dataset evolves.
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Chapter 4

Testing the Stability of Recommender Systems

For companies that rely on recommender systems, such as Amazon and Netflix, the

ability of their system to make good recommendations in the presence of noise, the sys-

tem robustness, can have large impacts on both user experience and profits [41]. In this

work we focus on stability robustness, which measures how recommendations could

change when the system is trained on modified data, regardless of the recommenda-

tion quality. Intuitively, a system lacks stability when there exist a set of changes

to the dataset that can have a disproportionate effect on the recommendations. The

lack of stability is problematic in that it causes recommendation inconsistencies that

can lead to loss of user trust [6].

Determining the stability of a system, however, is extremely challenging due in

part to the size of the input space that needs to be explored. As an example, the

MovieLens dataset we use in this thesis has 943 users, 1682 items, and 100,000 ratings

on a scale from one to five. A naive approach that simply adds a single random

rating to that dataset would likely overestimate the system stability since finding

one addition among the eight million (943 users x 1682 items x five ratings) possible

ratings that can cause instability is very unlikely. Similarly, an exhaustive search

for instability-inducing modifications seems infeasible, especially when considering

multiple modifications (i.e., adding k new ratings to our dataset means exploring a
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space of at least 10(6∗k) potential modifications) or when considering datasets that

can contain hundreds of millions of data points. Furthermore, even if generating

the modifications becomes feasible, the system must be retrained under the modified

dataset, which is often a more expensive process.

Our approach to this problem is based on the insight that the recommender algo-

rithms underlying these systems tend to rely on relationships between aspects of the

dataset. These algorithms try to identify influential users, items, or attributes that

can be exploited to compute recommendations for other users or items in the system.

For instance, a user-based recommender algorithm assumes that influence between

users is important and uses similarity measures between users to determine influence.

These influences are encoded by the training process in complex data structures that

vary from system to system, are not typically exposed, and even when exposed are

hard to interpret as their meaning is not explicit (e.g., a series of large covariance

matrices, a neural network). However, since these influence relationships are used

to generate recommendations, we can approximate the influence of aspects of the

dataset using the recommendations produced by the system and the ratings it was

trained on. For instance, we can approximate the influence of a user based on the

number of items rated by that user which are recommended to other users.

Based on this insight, we present an approach that leverages inferred models of

influence to fuzz datasets used to train recommender systems to assess their stability.

As we shall see, this fuzzing approach provides a significantly better quantification of

stability to raise developers’ awareness about potential robustness concerns. The ex-

amples of changes and types of changes to the dataset that cause instability provided

by the approach can guide developers in adjusting the parameters of the recommender

algorithm or even to swap the algorithm to better align it with the stability require-

ment criteria for a given dataset. Last, stability results can shape post-deployment
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data training policies, such as determining when to trigger a retraining cycle or defin-

ing procedures to preprocess the data to limit the influence of some aspects or records.

Our overall contributions are:

• We approximate influence relationships learned by recommender systems from

the recommendations and training data. These influence models can then be

used to guide a search for sets of modifications that cause disproportionate

differences in computed recommendations.

• We develop an approach for influence-guided fuzzing of recommender system

stability. We define several influence models that infer influence from a dataset

and recommendations, as well as several dataset fuzzing heuristics. We imple-

ment our approach in a tool for generating modifications sets that are more

likely to cause instability.

• We evaluate our approach on several recommender algorithms with the Movie-

Lens dataset, using several metrics for measuring the change in recommenda-

tions. We find that our influence-guided fuzzing heuristics are more effective

than randomly generating modifications. For instance, for one recommender

system tested, 100 modifications generated with an influence-guided heuristic

caused 93% of users to have their top-ranked item removed from their recom-

mendations after retraining, on average. In contrast, on average, 100 modifi-

cations generated at random caused the top-ranked item to stop being recom-

mended to only 5% of users.
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4.1 Approach

In this section we present our approach to assessing the stability of recommender

systems by fuzzing the dataset used to train the recommender. A diagram of our

approach is shown in Figure 4.1. Our approach infers an influence model from a

dataset D and a set of recommendations R. The inferred influence model is then

used for fuzzing D to produce a new dataset D′. Using the modified dataset we train

a new recommender system and generate recommendations R′. The recommendations

R and R′ are then compared using a differential oracle to assess the instability of the

original recommender system.

To present our approach, we use the recommender system model defined in Sec-

tion 3.1. We begin by describing how we approximate recommender systems with

inferred models of influence. Next, we describe how we can use these models for

influence-guided fuzzing of modifications to a dataset. Finally, we define differential

oracles for recommender stability, and discuss the assumptions and practical consid-

erations of our approach.

4.1.1 Inferring Influence

Our work makes use of inferred models of influence to guide generation of instability-

inducing modifications. The influence of users and items on recommendations has

been studied in prior work. Rashid et al. [45] introduce a Hide-One-User approach

to computing user influence scores. They introduce the metric NUPDui
to be the

number of users whose recommendations change if user ui is left out of the dataset.

Rashid [44] also examines item influence using a Leave-One-Out approach. Our in-

ferred influence models approximate the influence of aspects in a recommender system

based on the dataset and recommendations, without retraining the recommender sys-
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Figure 4.1: Diagram of our approach for generating modified datasets based on in-
ferred influence models.
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tem on modified datasets.

Ratings in a dataset implicitly represent a graph structure connecting users based

on similarly rated items. Finding influential nodes in this graph can then draw from

the field of sociology and the task of identifying important nodes in social networks.

One such measure of importance is “centrality”, which can be measured based on

the degree of a node, where high degree nodes are considered to be important [59].

“Centrality” can also be based on distances between nodes, where nodes with shorter

paths to other nodes are important [59]. Social graph influence measures are similar

to our inferred influence models, however they rely strictly on the dataset.

In our approach we define approximations for the influence learned by a rec-

ommender system by using functions defined over the dataset used to train a rec-

ommender system and the recommendations it produces. We define four influence

functions for four types of aspects in a dataset: users, items, ratings, and item at-

tributes.

Recommender systems generate recommendations based on some notion of influ-

ence between aspects of the dataset, such as users (U), items (I), or attributes (AI

or AU). For instance, a user-based algorithm computes users that are influential to

a given user, based on the similarity of ratings between pairs of users. Users with

high similarity in their ratings are considered more influential to each other than

users with low similarity in their ratings. In an item-based recommender algorithm,

influence occurs between items, and is computed based on the similarity of ratings

between items.

Because influence is used to produce recommendations, we conjecture that we can

approximate the influence of various aspects (users, items, ratings, or attributes) of a

dataset for a recommender system, based on the data used to train the recommender

and the recommendations produced by the system. By observing the relationship
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Table 4.1: Influence Model Functions

Name Definition Example

User IU (u) = #{u′ | rank(i, u′) 6= ⊥∧rating(u, i)} For the User-User recommender al-
gorithm on the MovieLens 100k
dataset, user 13 is the most influen-
tial user, with an influence score of
858.

Item II(i) = #{u | rank(i′, u) 6= ⊥ ∧ rating(u, i)} For the Item-Item recommender al-
gorithm on the MovieLens 100k
dataset, item 288 is the most influ-
ential user, with an influence score
of 538.

Rating IR(r) = #{i | rank(i, u) 6= ⊥ ∧
|r − avg{rating(u′, i)}| ≤ ε}

For the FunkSVD recommender al-
gorithm on the MovieLens 100k
dataset, rating value 5.0 is the most
influential, with an influence score of
12.

Attribute IAI (a) = #{(u, i) | rank(i, u) ∧ a ∈ attr(i)} For the LightFM recommender al-
gorithm on the MovieLens 100k
dataset, genre “Action” is the most
influential, with an influence score of
7029.

between some aspect in the dataset and some aspect in the recommendations, such

as whether user u rated an item that is recommended to user u′, we can build an

approximate model of the overall influence. In general, we approximate influence

scores with a function:

IA : An → R, where A ∈ {U , I,R,AI ,AU} (4.1)

This function maps aspects of the dataset to a real value representation of the

influence of that aspect. In this work, we focus on influence functions over single

types of aspects (n = 1), however richer forms of influence are possible. Using the

computed influence scores, we can approximate the internal influence model of a

recommender system as a list of aspects and their associated inferred influence score.

In this work we present four models of influence, which are shown in Table 4.1.
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These models of influence capture the four major aspects of a recommender system:

users, items, ratings, and attributes. The first column of Table 4.1 gives a short

descriptive name to the influence model. The second column provides a definition

in terms of the recommender system elements defined earlier. The superscript of

the influence function signifies the type of aspect over which this influence applies.

The influence function computes a score for an aspect based on the dataset and the

rankings produced by the recommender system of interest. We describe each of these

models in more detail below. The third column provides a concrete example of the

influence evaluated for a single aspect of a recommender system.

User influence measures the impact of a user u on all other users. A user, u, is

considered to have impacted another user u′ if u has provided a rating for an item

appearing in the top-k ranked list of u′. This model of influence captures the intuition

that if a user affects the recommendations of many users, then that user is likely

influential to the recommender system. For example, for the User-User recommender

algorithm and the MovieLens 100k dataset described later, the most influential user

is user 13, who has rated items that are recommended to 858 other users.

Item influence measures the impact that an item i has on recommendations,

by counting the number of users that have rated item i (and are recommended at

least one item). This model of influence captures the intuition that items rated

by many users are likely to be more influential. For example, using the Item-Item

recommender algorithm and the MovieLens 100k dataset, the most influential item

is item 288, which is rated by 538 users.

Attribute influence measures the impact of an item attribute on the recommen-

dation of items with that attribute. An attribute, a, is considered to be impactful if

many recommended items have attribute a. This influence model captures the intu-

ition that if many recommended items have a similar attribute, then that attribute
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must be significant. For example, for the LightFM recommender, the most influential

movie genre is “Action” because items with this genre are recommended 7029 times,

more than any other genre.

Rating influence measures the impact of rating values on recommendation. A

rating value r is considered to be more impactful if more recommended items have

an average rating within some value ε of r. This model captures the intuition that

if many recommended items have similar average rating values, then that rating

value is more influential. In other words, items with average ratings near r are more

likely to be recommended if r has high influence. For example, for the FunkSVD

recommender, the most influential rating value is 5.0 because 12 recommended items

(out of 31 distinct recommended items) have a mean rating value of 5.0. The notion of

influence for users, items, and attributes is intuitive, but the notion of rating influence

is less intuitive. However, we see in Section 4.2 that it can be unusually effective.

4.1.2 Influence-Guided Fuzzing

Using influence models such as those defined above, we can define fuzzing heuristics

that produce a set of modifications to the original dataset, and that are likely to cause

a recommender system to exhibit unstable behavior.

We allow three basic types of modifications to the dataset: add, remove, and

change. Add inserts a new rating into the dataset for a user u, item i, and value r if

no rating value existed for u and i in the original dataset. Remove deletes an existing

rating for a user u and item i from the data set. Change deletes an existing rating

for a user u and item i and inserts a new rating with value r for u and i.

We can define a modification fuzzing heuristic as a function:

M : I ×D × Z→ 2M (4.2)
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M ∈ {A,R,C}, where A is a set of additions, R a set of removals, and C is a set of

changes. As per Equation 4.2, this function takes an influence function, a dataset,

and a number of modifications to be made, and outputs a set of additions, a set of

removals, and a set of changes, or some subset of these. In this work we consider only

heuristics that create modification sets of a single type.

We define a small sample of possible fuzzing heuristics, shown in Table 4.2. These

heuristics were chosen by keeping the modification type constant (as the Add mod-

ification type) and varying the influence type, and by keeping the influence type

constant (as user influence) and varying the type of modification, as shown in Ta-

ble 4.3. This is not a complete listing of possible heuristics but is designed to cover

a variety of influence models and modification types. We discuss the intuition for

each of these heuristics below. Each row of Table 4.2 is a fuzzing heuristic. The first

column of each row provides a short name which we use as an identifier. The second

column provides a description of the heuristic with the first word of the description

being the modification type, and the third column lists the influence model that is

used.

Table 4.3 shows the treatments evaluated in our study, where rows group the

modification fuzzing heuristics by the type of influence used, and columns group the

heuristics by the type of modifications they produce. This selection of treatments lets

us explore random fuzzing vs influence-guided fuzzing by comparing the effectiveness

of the heuristics at generating instability-inducing Add modifications. It also allows

us to explore how the type of modification (Add, Change, Remove) affects the ability

of an influence-guided fuzzing heuristic to generate instability-inducing modifications.

The influence-guided fuzzing heuristics defined here are given three letter names

based on how they operate. The first letter is based on the type of modification they

produce, where A is for add, C is for change, and R is for remove modifications.
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Table 4.2: Fuzzing Heuristics

Name Description Influence

AMU Add a rating with random value to a random item
for the most influential user.

User

RMU Remove a rating from a random item for the
most influential user.

User

CMU Change the rating of a random item to the low
value for the most influential user.

User

ALI Add a rating with a random value to the least
influential item.

Item

AMR Add a random rating value to an item with an
average rating near the most influential average
rating.

Rating

AMA Add a rating with the low value to a random user
for an item with the most attribute influence.

Attribute

Table 4.3: Treatments Studied

Modification Type
Influence Add Change Remove

Random ARAND CBRAND RRAND

CTRAND

User AMU CMU RMU

Item ALI

Rating AMR

Attribute AMA

The second letter is the area of the influence model they select aspects from. An M

means that the heuristic chooses the most influential aspect and an L means that

it chooses the least influential. The third letter specifies the type of influence used

by the heuristic. User influence is specified by a U, item influence by an I, attribute

influence by an A, and rating influence by an R.

AMU. The AMU fuzzing heuristic adds random ratings to the user with the highest
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influence score and is defined as:

AMU : IU ×D × Z→ 2A (4.3)

Items are selected from the set of items not yet rated by that user and both items and

rating values are selected uniformly at random. The intuition behind this heuristic is

that by adding ratings to the highest influence user, we may be able to cause a new

item to be recommended to many other users, or cause a previously recommended

item to stop being recommended for many users.

RMU. The RMU fuzzing heuristic removes random ratings from the user with the

highest influence score and is defined as:

RMU : IU ×D × Z→ 2R (4.4)

Items are selected from the set of items rated by that user and both items and rating

values are selected uniformly at random. The intuition behind this heuristic is that

by removing ratings from the highest influence user, we can cause the user to become

non-influential, which may cause the recommendations of other users to change.

CMU. The CMU fuzzing heuristic changes random ratings by the user with the highest

influence score to have the lowest possible rating value. This heuristic is defined as:

CMU : IU ×D × Z→ 2C (4.5)

Items are selected uniformly at random from the set of items rated by that user. The

intuition behind this heuristic is that by changing ratings of the highest influence

user, we may cause a previously recommended item to no longer be recommended.

ALI. The ALI fuzzing heuristic adds random ratings to the item with the lowest
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influence score. We define the function for this heuristic as:

ALI : II ×D × Z→ 2A (4.6)

Users for which to add ratings are selected from the set of users that have not yet

rated the least influential item. Both users and rating values are selected uniformly

at random. The intuition behind this heuristic is that by adding ratings to the least

influential item, we may cause it to become influential, causing recommendations to

change.

AMR. The AMR fuzzing heuristic adds new random ratings to items with average

rating values near the most influential rating value. We define the function for this

heuristic as:

AMR : IR ×D × Z→ 2A (4.7)

Items are selected uniformly at random from the set of items with an average rating

within 0.05 of the most influential rating. This selects items very close to the influen-

tial rating. We experimented with several values of ε, and we chose 0.05 as the value

that generally produced the most instability. Users are selected uniformly at random

from the set of users that have not rated the selected item. The rating value to add is

selected uniformly at random. The intuition behind this heuristic is that by adding

random ratings to items with an influential average rating, we can move the average

away from the influential rating value to reduce the likelihood that the item will be

recommended.

AMA. The AMA fuzzing heuristic adds low valued ratings to items with the highest

aggregate attribute influence and is defined as:

AMA : IAI ×D × Z→ 2A (4.8)
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Because items can have multiple attributes, this heuristic aggregates the influence

scores of all attributes of an item by summing all of their influence scores. We use

a slightly modified attribute influence function in order to negatively weight low

influence attributes:

IAI
2 (a) = 2 ∗#{a′ | IAI(a) ≥ IAI(a′)} −#AI (4.9)

The item with the highest aggregate attribute influence is selected for modification.

Users are selected uniformly at random from the set of users who have not yet rated

the selected item. The intuition behind this modification fuzzing heuristic is that by

adding low ratings to items with many highly influential attributes, we can decrease

the influence of those attributes and cause items with those attributes to not be

recommended.

4.1.3 Differential Stability Oracles

To test the stability of recommender systems, we must define appropriate oracles. We

define an oracle as a Boolean predicate:

f{d(rank(u), rank′(u)) | u ∈ U} < δ (4.10)

This predicate ensures that a function f applied to the set of distances between users’

rankings using the original and modified datasets is below a specified threshold δ. In

this work, we consider f to be a function that computes the average distance. We

can compute the distance between rankings using a variety of metrics, depending on

which types of change we wish to be sensitive to.

We present three possible metrics that may be used for computing the distance



53

between rankings that cover a range of possibly important aspects of change, including

the order of the Top-K rankings, the inclusion of items in the Top-K recommendations,

and the exclusion of important items in a user’s Top-K.

Many metrics can be used to compute the amount of change between recommen-

dations. For this work, we quantify the amount of change between recommendations

from modified and unmodified datasets using the following three metrics: AOD ,

Jaccard , and TopOut . The distance is measured between each user’s top-k recom-

mendations when using the original dataset and that user’s top-k recommendations

when using the modified dataset. The reported values are the average values across

all users.

AOD is the average overlap distance, and is defined as:

AOD(ranku, rank
′
u) = (4.11)

1− 1

k

k∑
d=1

#({i | ranku(i) ≤ d} ∩ {i | rank′u(i) ≤ d})
d

For the AOD metric ranku is the projection of the rank function onto user u when

using the original dataset. rank′u is the projection of the rank function onto user u

when using the modified dataset. This metric is sensitive to both the items in the

rankings, as well as their position. It also weights items lower in the rankings less

than items at the top of the list, so swapping items in the top half of the ranking

causes a larger change than a new item appearing at rank k.

Jaccard is the jaccard distance, and is defined as:

Jaccard(Ru, R
′
u) = 1− #(Ru ∪R′u)−#(Ru ∩R′u)

#(Ru ∪R′u)
(4.12)

For this metric, Ru is the set of items recommended to user u using the recommender
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trained on the original dataset and R′u is the set of items recommended to u after

modifications are made to the dataset. This metric is sensitive to changing items,

capturing the difference in the set of items that are recommended.

We also introduce the TopOut measure. This measure checks whether the top

item in the unmodified ranked list has dropped out of the top-k rankings when using

the modified dataset. We assume that the top ranked item is likely to be the most

difficult to change. Therefore, if this item is not in the ranked list after modifications

are added to the dataset, then the recommendations should be considered to have

significantly changed. We define this measure as:

TopOut(Ru, R
′
u) =


0 r1 ∈ R′u

1 otherwise

(4.13)

Ru is the set of items recommended to user u using the recommender trained on the

original dataset and R′u is the set of items recommended to user u after modifications

are made to the dataset. Item r1 is the top-ranked item (rank(r1, u) = 1) in the

ranked list of u. This metric is sensitive only to the top ranked item for a user, which

generally has the highest likelihood of being preferred by the user. To change the

value of this metric, the top item in the original ranking must not be included in the

new top-k ranked list.

4.1.4 Practical Considerations

For this approach to be applicable, certain preconditions must be met. First, the

developer must have read and write access to the full dataset that was used to train

the recommender system under test. This is a reasonable assumption, as testing

will generally be performed by a developer or a dedicated tester of the system, and
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will thus have access to this data. Second, we assume that additions, removals, or

changes are realistic modifications that can occur to a dataset which is the case for

most recommendation systems that evolve over time. Third, in defining differential

oracles for recommender stability, we assume that identifying a threshold of acceptable

instability δ is possible either by using standard or historical measures.

When those preconditions are met, the approach can provide not only better

stability estimates than existing approaches but also concrete dataset changes that

may cause significant instability. Historical stability estimates can then be used by

developers to assess the evolution of their recommender from a robustness perspective

and to pinpoint departures from established trends. Developers can also use the

concrete dataset changes to determine how best to adjust the existing algorithm

underlying the recommendation system to make it more robust to variations in the

dataset. Last, the stability estimates and the dataset changes can guide data cleansing

procedures (for example, by increasing or decreasing the impact of certain records or

aspects) and assist in the definition of data retraining policies after deployment.

4.2 Study

We carried out a study to explore the cost-effectiveness of our fuzzing heuristics, and

we also explore how the type of influence and type of modifications used by a fuzzing

heuristic affect its ability to find instability-inducing modifications. More specifically,

we attempt to answer the following questions:

RQ1: How effective are the different influence models in guiding the generation

of instability-inducing modifications?

RQ2: How can we fuzz a recommender system if the algorithm is a black box

and the type of underlying influence is unknown?
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4.2.1 Study Design

We evaluated our approach to fuzzing recommender systems by applying the selected

influence-guided fuzzing heuristics defined in Section 4.1.2 to several recommender

systems using a variety of recommender algorithms and a movie ratings dataset. We

discuss each of these choices in more detail below.

We evaluated the fuzzing heuristics for three sizes of modification set: 1, 10, and

100. These sizes correspond to changes of 0.001, 0.01, and 0.1 percent of the dataset

respectively and were chosen to be much smaller than the size of the dataset. With

fewer than 0.1% of the ratings being modified, we would expect the recommendations

to exhibit proportionally small amounts of change. For each heuristic, size, and

recommender system (to be described next), we generated 100 modification sets. We

then trained each recommendation algorithm on the modified dataset and generated

Top-10 recommendations for every user. We report the average value of the TopOut

metric over the 100 generated modifications sets in Tables 4.6, 4.7, and 4.8.

4.2.1.1 Recommender Algorithms

For this study we selected four different recommendation algorithms: User-User, Item-

Item, FunkSVD, and LightFM. The algorithms were chosen to represent a variety

of recommender techniques ranging from memory-based to model-based, and from

content-based to collaborative filtering. We also required that they work with the

MovieLens dataset. We describe each of these algorithms in detail in Section 3.4.1.1.

4.2.1.2 MovieLens 100k Dataset

We use the dataset released in 1998 from the MovieLens recommendation system. The

dataset is available as a group of tab separated files, containing 100 thousand integer
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ratings (from one to five) collected from 943 users over a period of eight months on

1682 movies. Each user has rated at least 20 items. More details about the data

collection process and the dataset itself are available at https://grouplens.org/

datasets/movielens/100k/ [26].

4.2.1.3 Treatments

To study the effectiveness of influence-guided fuzzing, we compare the defined heuris-

tics against five baseline heuristics: ZERO, ARAND, RRAND, CBRAND, and CTRAND. These

baseline heuristics are shown in Table 4.4. The heuristic ZERO performs no modi-

fications to the dataset and is equivalent to retraining the recommender algorithm

on the original dataset. The other four heuristics perform random changes to the

dataset in which selections of user, item, or rating value are made uniformly at ran-

dom. These baselines were chosen to control for the effect of the influence model on

the user or item choice. By comparing the influence-based heuristics to these random

baselines, we can evaluate the effectiveness of using influence models to guide fuzzing

of recommender systems.

4.2.1.4 Differential Oracle

Our evaluation reports the results from using the TopOut distance metric. Our oracle

computes the average distance over all users (f = avg). We choose to use TopOut for

our evaluation because it takes the most energy to change. For example, the FunkSVD

recommender has some small instability when re-trained on the same dataset, with-

out modifications. Because TopOut is sensitive only to major change, it reports an

average distance of 0.00000. However, both AOD and Jaccard report higher values

of instability, at 0.004230 and 0.000137 respectively.

https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/movielens/100k/
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Table 4.4: The Modification Heuristics Used In Our Evaluation.

Short Name Description
B

a
se

li
n

e
s ZERO Perform no modifications.

ARAND Add ratings to random users and items.
RRAND Remove random ratings.
CBRAND Change random ratings to the low value.
CTRAND Change random ratings to the top value.

In
fl

u
e
n
ce

G
u

id
e
d

H
e
u
ri

st
ic

s AMU Add a rating with random value to a random item for the
most influential user.

RMU Remove a rating from a random item for the most influen-
tial user.

CMU Change the rating of a random item to the low value for
the most influential user.

ALI Add a rating with a random value to the least influential
item.

AMR Add a random rating value to an item with an average
rating near the most influential average rating.

AMA Add a rating with the low value to a random user for an
item with the most attribute influence.

In this study, we chose instability thresholds that were proportional to the size of

the modification set being tested. We used thresholds of δ = 0.001, δ = 0.01, and

δ = 0.1 for sets of 1, 10, and 100 modifications, respectively. We chose these values to

be 100 times the ratio of the sizes of the modification set and dataset. For instance,

100 modifications is 0.1% of the dataset, so we assert that no more than 10% of users

should have their top ranked item fall out of their new recommendations.

4.2.1.5 Methodology

To evaluate efficiency, we measure how long it takes each heuristic to generate a

modification. We generate 100 modification sets of size 1, 10, and 100 for each

heuristic and report the average time required to generate a modification set of each

size.
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To compare the effectiveness of influence-guided fuzzing heuristics to random

fuzzing, we compute the average TopOut instability across 100 generated modification

sets for each configuration of recommender and modification set size. We explored

modification sets of size 1, 10, and 100, which are small compared to the original

dataset. Changing 100 ratings would change only 0.1% of the dataset used in this

study. We arbitrarily chose to stop with a maximum modification set size of 100.

4.2.1.6 Threats to Validity

The recommendations produced by recommender systems are dependent on both the

recommender algorithm as well as the dataset used to train the system. Because we

evaluate our approach with only a single dataset, our results may not generalize to

other datasets. That said, this dataset is commonly used and includes user and item

attributes for content-based recommendation.

In this work we look at only a small subset of the possible influence functions and

modification fuzzing heuristics. There are many other heuristics that can generate

instability-inducing modifications or better approximation functions for computing

influence. We do show that heuristics can be used to generate instability-inducing

modifications more effectively than random methods.

There are many possible metrics for evaluating the distance between recommen-

dations. In this work, we show only the results of one metric, TopOut . The results

when using Jaccard and AOD were similar, so we do not report them here.

4.2.2 RQ1: Effectiveness of Influence-Guided Fuzzing

The average TopOut instability for each configuration is shown in Tables 4.6, 4.7, and 4.8.

We perform a pairwise comparison of the instability induced by each influence-guided

fuzzing heuristic to the instability induced by the corresponding random approach
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Table 4.5: Time Required to Generate Modification Set.

Time (seconds) to Make M Modifications
1 10 100

Heuristic Mean Variance Mean Variance Mean Variance

ARAND 0.539 0.010 0.608 0.003 2.020 0.097
AMU 0.600 0.119 0.673 0.059 1.692 0.067
ALI 0.607 0.158 0.801 0.191 1.809 0.210
AMR 0.458 0.009 0.580 0.015 1.582 0.024
AMA 3.126 0.501 3.053 0.135 3.753 0.134

Table 4.6: Mean TopOut Instability for Each Recommender System Using Sets of 1,
10, and 100 Add Modifications. Bolded Values Outperform the Random Baseline.
Italicized Values are Worse than the Baseline. Values Marked by an Asterisk Exceed
the Instability Threshold.

Configuration ZERO ARAND AMU ALI AMR AMA

Recommender,M

User-User,1 0.000000 0.000064 *0.003139 *0.003796 *0.008208 0.000064
User-User,10 0.000000 0.002969 0.007063 *0.036554 *0.066925 0.000615
User-User,100 0.000000 0.031294 0.050244 *0.309364 *0.438537 0.013966

Item-Item,1 0.000000 0.000021 0.000021 0.000000 0.000106 0.000032
Item-Item,10 0.000000 0.002375 0.001803 0.000042 0.000870 0.000085
Item-Item,100 0.000000 0.026681 0.038929 0.000583 0.006363 0.000456

FunkSVD,1 0.000000 *0.006840 0.000000 *0.001389 *0.035323 0.000000
FunkSVD,10 0.000000 0.000011 *0.014369 *0.032131 *0.441304 0.000021
FunkSVD,100 0.000000 0.053446 0.040668 *0.273213 *0.934740 0.000000

LightFM,1 *0.007031 *0.011771 *0.011304 *0.011198 *0.011166 *0.012428
LightFM,10 0.007031 *0.011474 *0.012015 *0.011220 *0.011601 *0.014836
LightFM,100 0.007031 0.010933 0.010042 0.010923 0.010233 0.035355

using Welch’s t-test. Values in these tables are bold if their expected instability is

greater (with p < 0.05) than the random baseline of the same type and are italicized

if the expected instability is lower than the random baseline. Values marked with an

asterisk (*) exceed the instability threshold for that size of modification set.

4.2.2.1 Efficiency of Heuristics

In exploring the overall effectiveness of using inferred influence models as heuristics

for generating instability-inducing modifications, we evaluate the efficiency of our in-
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Table 4.7: Mean TopOut Instability for Remove Modification Fuzzing Heuristics.

Configuration RRAND RMU

Recommender,M

User-User,1 0.000032 0.000021
User-User,10 0.000392 0.000509
User-User,100 0.003796 0.008144

Item-Item,1 0.000011 0.000011
Item-Item,10 0.000000 0.000074
Item-Item,100 0.001601 0.010138

FunkSVD,1 0.000000 0.000000
FunkSVD,10 0.000000 0.000000
FunkSVD,100 0.000000 0.062704

LightFM,1 *0.009544 *0.009873
LightFM,10 *0.010806 *0.010742
LightFM,100 0.010753 0.011389

Table 4.8: Mean TopOut Instability for Change Modification Fuzzing Heuristics.

Configuration CBRAND CTRAND CMU

Recommender,M

User-User,1 0.000064 0.000032 0.000095
User-User,10 0.001082 0.000520 0.000774
User-User,100 0.011113 0.007041 0.006914

Item-Item,1 0.000053 0.000000 0.000191
Item-Item,10 0.000297 0.000032 0.004242
Item-Item,100 0.004952 0.000329 0.066341

FunkSVD,1 0.000000 0.000000 0.000000
FunkSVD,10 0.000000 0.000000 *0.020901
FunkSVD,100 0.000000 0.000000 *0.243849

LightFM,1 *0.006946 *0.006840 *0.007285
LightFM,10 0.007116 0.007126 0.007010
LightFM,100 0.006925 0.006978 0.007497
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fluence based heuristics based on how long it takes each heuristic to generate a set of

modifications. We report results for the heuristics that generate Add modifications.

The cost of fuzzing heuristics for Change and Remove modifications were similar.

The mean and variance over the course of 100 trials for each heuristic are reported

in Table 4.5. We see that the time to generate modification sets for random and

influence based fuzzing heuristics are within a factor of six in the worst case, but are

practically the same on average considering that the time it takes to train the recom-

mender system on the new data is generally much greater. For example, depending on

the recommender algorithm, training on the MovieLens 100k dataset and producing

recommendations for all users takes two minutes on average. We see that AMA takes

considerably longer than other heuristics. This is due to the overhead incurred by

aggregating the influence of multiple attributes for every item (see Equation 4.9).

In terms of modification set sizes, influence-guided fuzzing is efficient at gen-

erating small sets of modifications that induce higher amounts of instability in the

recommendations. For instance, generating sets of 100 modifications with ARAND for

the User-User recommender averages a TopOut instability of 0.031. So, we can expect

that 3.1% of users will have their top ranked item fall out of their Top-10 list and

not be recommended after 100 random ratings are added to the dataset. In contrast,

the ALI heuristic averages a TopOut value of 0.037 with only 10 modifications for the

same recommender system. Similarly, for the LightFM recommender, the expected

value of TopOut for ARAND with 100 modifications is 0.011, while the AMA heuristic

achieves a higher TopOut value with a modification set of size 10.

4.2.2.2 Effectiveness of Heuristics

Overall, using influence-guided fuzzing is more effective at generating modification

sets that cause instability than randomly generating modifications, causing distances
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between recommendations up to 20 times greater than random fuzzing. We see that,

for every recommender system, at least one modification heuristic performs signifi-

cantly better than the random baseline for modification sets with a size of at least

10. For two recommenders, User-User and FunkSVD, the AMR heuristic performs sig-

nificantly better than the random baseline for all modification sets with at least one

modification.

Influence-guided fuzzing is also more effective at detecting unstable recommender

systems than random fuzzing. Using the instability thresholds defined in Section 4.2.1.5,

we see that, for User-User and FunkSVD, many influence-guided fuzzing heuristics

were able to induce instability even when random fuzzing could not. For the User-

User recommender, we also see that random fuzzing never exceeds the acceptable

threshold. However, two influence-guided fuzzing heuristics, ALI and AMR, generate

sets of modifications that exceed the acceptable level of change for all three sizes of

modification set, and a third (AMU) is able to show instability for modification sets

with a single modification. For all of the recommender systems studied here, if ran-

dom fuzzing detected instability, then at least one influence-guided fuzzing heuristic

also detected the instability.

4.2.2.3 Effectiveness by Influence Model

The effectiveness of a given influence-guided fuzzing heuristic depends on how closely

the inferred influence model used by the heuristic approximates the actual influences

used by the recommender algorithm. For instance, in Table 4.6 we see that the AMA

heuristic is not effective at generating instability-inducing inputs for the User-User,

Item-Item, and FunkSVD recommenders. This is likely because AMA uses an inferred

attribute influence model, while the three algorithms for which it does not perform

well do not rely on any item attribute data. However, for a recommender that does
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rely on item attribute information, such as LightFM, the AMA heuristic is effective at

generating instability-inducing modifications.

The rating influence based AMR heuristic is unusually effective at causing signif-

icant changes to recommendations for the User-User and FunkSVD recommenders.

We believe this is because influential rating values for these recommenders are on the

extreme ends of the rating scale. The most influential rating value for the User-User

recommender is 1.0, while the influential rating value for the FunkSVD recommender

is 5.0. For the other two recommenders, for which AMR performed poorly, the most

influential rating value was closer to the middle of the scale. The Item-Item recom-

mender had a most influential rating value of 4.0, while the LightFM recommender

had an influential rating value of 2.0.

4.2.2.4 Effectiveness by Modification Type

For three of the recommender systems explored in this work, Addition-type modifica-

tions were the most effective at influencing change. For each of these recommenders,

at least one heuristic performed significantly better than random for modification sets

of size 10 and 100. For example, the AMA heuristic is effective at fuzzing instability-

inducing modification sets for the LightFM recommender. For both the User-User

and FunkSVD algorithm, the AMR heuristic is also effective at generating single modi-

fications that induce significant change in the recommendations. However, Addition-

type modifications were not effective at inducing instability for the Item-Item recom-

mender.

Influence-guided heuristics that performed remove modifications were more ef-

fective than random for sets of 100 modifications for User-User, Item-Item, and

FunkSVD. This modification type was also effective for the Item-Item recommender

when fuzzing sets of 10 modifications.
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Overall, influence-guided heuristics that generate rating change modifications af-

fected the fewest recommender systems, but when they were effective, they caused

large amounts of change. Change modifications were effective only on two algorithms,

Item-Item and FunkSVD, and only for sets of 100 modifications, however, they were

able to produce higher levels of instability in the Item-Item recommender than any

other type of modification. We conjecture that this is because the value of ratings in

these systems is more influential than the relationships between users or items.

4.2.3 RQ2: How Effective is Fuzzing in the Absence of Algorithm Influ-

ence Information?

We explore whether influence-guided fuzzing is an effective technique for testing sta-

bility when the recommender algorithm under test is a black box, and the sorts of

influence used by the system are unknown. We introduce using a portfolio approach

to generating modifications. We assume a budget of n modifications and a user

specified portfolio of m influence-guided fuzzing heuristics. For each modification in

the modification set, we use a round robin approach to select one of the m fuzzing

heuristics to generate the modification.

We evaluate the effectiveness of this approach with a portfolio of the four influence-

guided fuzzing heuristics that generate Addition modifications defined in Section 4.1.2.

We call this hybrid heuristic APORTFOLIO. Using budgets of n = 10 and n = 100,

we compare the effectiveness of APORTFOLIO to ARAND using each of the four rec-

ommenders studied above. We do not use n = 1 for this approach because it is

equivalent to selecting a single heuristic, whose values are reported in Table 4.6. We

also compare APORTFOLIO to the heuristic that produces the most instability for each

configuration. The average TopOut instability is presented in Table 4.9.

Using a portfolio of influence-guided fuzzing heuristics is effective at generating
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Table 4.9: Mean TopOut Instability for APORTFOLIO

Configuration ARAND Best Heuristic APORTFOLIO

Recommender,M

User-User,10 0.002969 *0.066925 *0.035599
User-User,100 0.031294 *0.438537 *0.257794

Item-Item,10 0.002375 0.001803 0.000244
Item-Item,100 0.026681 0.038929 0.008653

FunkSVD,10 0.000011 *0.441304 *0.130721
FunkSVD,100 0.053446 *0.934740 *0.768982

LightFM,10 *0.011474 *0.014836 *0.012450
LightFM,100 0.010933 0.035355 0.017678

modification sets that cause significant changes in recommendations. As seen in

Table 4.9, for two of the recommenders (User-User and FunkSVD), the portfolio

approach is able to find modification sets that cause more instability than ARAND for

both sizes of modification set tested. Additionally, APORTFOLIO is able to find sets of

modifications that cause more instability than ARAND for the LightFM recommender

when the budget is 100 modifications. APORTFOLIO was not effective for the Item-Item

recommender system. This is likely because none of the Add heuristics performed

well on the Item-Item recommender.
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Chapter 5

Conclusions and Future Work

In this thesis we presented a general approach for the characterization of recommender

systems (Chapter 3) which offers a richer view of system behavior than precision or

recall. We showed how simple properties defined using our approach relate to prop-

erties identified in prior work as being useful for evaluating recommender behavior.

We evaluated our approach on five recommender algorithms applied to the Movie-

Lens and Jester datasets and found that our property instantiations can offer insights

into the differing behaviors of recommender systems, beyond those of precision and

recall. We also show that, when compared across an evolving dataset, our properties

offer insights into the robustness of behaviors of a given recommender system as the

underlying data evolves.

The property templates and instantiations that we presented in this work represent

only a sample of the defined space. In future work, we will perform a more exhaustive

exploration of this space as it may reveal additional useful properties for recommender

systems, as well as an investigation of the effect of different dataset distributions on

the properties. Longer term, we want to use the properties to assist in the explanation

of certain recommendations that do not meet a developer’s expectations.

In Chapter 4, we presented an approach that uses influence-guided fuzzing to

test the stability of recommender systems. We build on the insight that influence
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models can be inferred from the recommendations produced by a recommender system

and the dataset used to train that system. We define fuzzing heuristics that use

these inferred influence models to generate modifications to the original dataset that

induce instability in the recommendations. To test instability we define a test oracle

based on a threshold of acceptable instability, based on measures of distance between

users’ recommendations. Our study shows that influence-guided fuzzing is effective

at finding small sets of modifications that cause significantly more instability than

random approaches.

The influence models, heuristics, and instability metrics presented in this work

are only a sample of those possible, and were chosen to illustrate the general effec-

tiveness of influence-guided fuzzing of recommender systems. In future work, we will

perform a more exhaustive search of this space to identify what features of heuristics

and influence models are most effective. For example, we will explore hybrid forms

of influence between multiple types of aspects in the dataset, and explore fuzzing

heuristics that take advantage of multiple types of influence.

Longer term, we want to use the inferred influence models to explain anomalous

behavior of recommender systems, such as the accuracy of a recommender system

dropping significantly after retraining or a previously popular item not being rec-

ommended to any user. We conjecture that inferred influence models can help a

developer understand the decisions underlying a recommenders’ behavior.
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