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Seedling disease is one the most economically important diseases of soybean in the 

United States. It is commonly caused by Fusarium spp., Rhizoctonia solani, Pythium 

spp., and Phytophthora sojae, alone, or together as a disease complex. Fungicide seed 

treatments continue to provide the most consistent management of seedling diseases. 

Soil-applied protoporphyrinogen oxidase (PPO) inhibitor herbicides are used 

preemergence in soybean production to manage several broadleaf weeds. Applications of 

PPO-inhibitors can result in phytotoxic injury to soybean when environmental conditions 

are not favorable for soybean growth. These environmental conditions can favor seedling 

disease development as well. In this thesis, two studies were conducted to determine the 

effect of soil-applied PPO-inhibitors on soybean seedling disease development in 

Nebraska under field and controlled conditions.  

The first study assessed the effect of two PPO-inhibitors and a fungicide seed 

treatment on seedling disease and yield in 9 soybean fields in Nebraska. PPO-inhibitor 

injury occurred at 7 of 9 locations with inconsistent effects on seedling disease, where 



 
 

 

increases in root rot severity of 6.6–28.1% were observed at 5 of 9 locations, decreases of 

4.7–10.9% at two locations, and no effect at three locations. None of these effects 

impacted yield at any of the locations. Fungicide seed treatment did not reduce root rot 

severity at any location; however, it increased yield at two locations.  

The second study investigated the effect of PPO-inhibitors on seedling disease caused 

by Fusarium solani under controlled conditions. Disease pressure was consistent 

throughout this study, with root rot severities ranging 32.1–38.9%. PPO-inhibitor injury 

occurred in all experiments with severities ranging 7.0–33.0%. Sulfentrazone alone 

increased root rot severity 9–12%.  

There was an effect of PPO-inhibitors on seedling disease development, although 

results were inconsistent, indicating a need for further research. PPO-inhibitors should 

continue to be used in part of an integrated weed management program and fungicide 

seed treatments should be used in fields that have a history of seedling disease.  
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Chapter One 

Literature Review  

 

 

 

1.1  Soybean 

Soybean [Glycine max (L.) Merr.] is a leguminous species originating from East Asia 

that was first domesticated as a crop during the eleventh century B.C. (Hymowitz, 1990). 

Soybean was first introduced to the United States in 1765 as a forage crop and it was not 

until the 1920’s that cultivation as a grain crop gained popularity (Hymowitz & Shurtleff, 

2005). At the beginning of the 1940’s, the total harvested soybean hectares for grain first 

exceeded the total hectares grown for forage (Hymowitz, 1990). Soybean is one of the 

most important crops worldwide, covering an estimated 6% of the world’s arable land 

and is primarily processed into soybean meal and oil (Hartman et al., 2011). Nearly 98% 

of soybean meal produced is used in livestock feeds, while 95% of the oil is consumed as 

edible oil (Hartman et al., 2011). In 2017, the United States harvested a record 36.2 

million hectares of soybean (USDA-National Agricultural Statistics Service, 2018). The 

United States is the second largest soybean producer in the world, encompassing nearly 

30% of the total harvested soybean hectares, preceded only by Brazil and followed by 

Argentina, India, and China respectively (USDA-Foreign Agricultural Service, 2018). 

Soybean production is an important part of Nebraska’s economy, as it is the fourth largest 
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soybean producing state in the United States, with over 2.2 million hectares were 

harvested in 2017, behind Illinois, Iowa, and Minnesota (USDA-National Agricultural 

Statistics Service, 2018)  

1.2 Soybean Seedling Diseases 

Soybean production is limited by many biotic stressors, including a number of 

diseases that impact overall plant health and subsequent yield. Seedling diseases have the 

second highest impact of all diseases affecting soybean, causing an average annual loss of 

over 1.3 million metric tons over a four-year time span (Koenning & Wrather, 2010). 

There are four common soilborne pathogens that can cause disease alone or as a complex 

that contribute to seedling disease in soybean; Fusarium spp., Rhizoctonia solani, 

Pythium spp., and Phytophthora sojae (Datnoff & Sinclair, 1988). Seedling diseases 

contribute to yield losses through reduced stand establishment, lower seedling vigor, and 

plant death.  

1.2.1 Fusarium spp.  

Fusarium spp. are true fungi in the phylum Ascomycota (Geiser et al., 2013). Several 

fungal species in this genus are important plant pathogens, which have large host ranges 

and are found throughout the world. There are multiple Fusarium species that are known 

to contribute to soybean seedling root rot, with F. oxysporum and F. solani being the 

most common (Killebrew et al., 1993; Diaz-Arias et al., 2013). Fusarium survives in soil 

as long term survival spores called chlamydospores (Nelson, 2015). Chlamydospores, 

along with macroconidia and microconidia, are capable of infecting plants and causing 

disease (Nelson, 2015). Fusarium infection in soybean is often favored by soil 
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temperatures below the optimum temperature for soybean germination (15 °C), water 

stress, and no-till cropping systems (Nelson, 2015). Symptoms of Fusarium root rot 

include seed decay and brown discoloration of the cortical and vascular portions of the 

root. When root rot is severe, the seedling may develop foliar symptoms such as wilting, 

stunting, yellowing, and defoliation (Nelson, 2015). There is currently no known 

resistance in soybean germplasm to the Fusarium spp. that contribute to seedling disease.  

1.2.2 Rhizoctonia solani 

Rhizoctonia solani is a true fungus in the phylum Basidiomycota (Sneh et al., 1996). 

R. solani is a common pathogen with a large host range and found throughout the world. 

Rhizoctonia solani isolates are grouped based on anastomosis reactions between hyphal 

cells and the number of nuclei per hyphal cell (Nelson et al., 1996; Arakawa & Inagaki, 

2014). There are 14 anastomosis groups (AGs), which differ in both their ecology and 

host range (Arakawa & Inagaki, 2014). Several AGs have been noted to cause two 

different diseases in soybean, aerial web blight and seedling root rot (Rupe & Spurlock, 

2015; Yang, 2015). Aerial web blight is caused by AG 1-IA and AG 1-IB while seedling 

root rot can be caused by AG-4, AG-5, AG-1-IB and AG-2-2-IIIB (Ploetz, et al., 1985; 

Liu & Sinclair, 1992; Nelson et al., 1996; Dorrance et al., 2003; Rupe & Spurlock, 2015). 

R. solani survives in the soil as long term survival structures called sclerotia (Yang, 

2015). Hyphae emerging from sclerotia directly infect seedlings (Yang, 2015).  Seedling 

disease is favored by sandy soils with damp but not oversaturated soil conditions, pH 

levels greater than 6.6, and warmer soil temperatures (>20 °C; Dorrance et al., 2003; 

Yang, 2015). Symptoms of postemergence damping-off are visible typically before the 

V1 growth stage and include reddish-brown lesions on the hypocotyl at the soil line 
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(Yang, 2015). When infected plants survive, lesions can grow and result in cortical rot, 

which can cause plants to yellow and be stunted (Yang, 2015). There is currently no 

known resistance to Rhizoctonia solani in soybean germplasm. 

1.2.3 Pythium spp. 

Pythium spp. are in the phylum Heterokonta and are water molds which are not true 

fungi (Dick et al., 1999). Pythium spp. are one of the most common and important causal 

agents of seed rot, root rot, and seedling damping off for many plant species around the 

world (Rothrock et al., 2015). Pythium is a diverse genus with nearly 100 species capable 

of causing plant disease, 13 of which are known to be associated with soybean disease 

(Dorrance et al., 2004; Broders et al., 2007). Many of the 13 species associated with 

soybean are capable of infecting corn (Zea mays) and cereal grain crops which are 

commonly used in rotation with soybeans in the Midwest (Broders et al., 2007). Pythium 

spp. primarily survive in the soil as long-term survival structures called oospores that act 

as infectious spores when soybean seedlings are present (Hendrix & Campbell, 1973; 

Rothrock et al., 2015). Structures called sporangia that are produced by mycelia of 

Pythium spp. contain infectious zoospores, which are capable of swimming through 

saturated soils to soybean roots (Rothrock, et al., 2015). In general, saturated soils and 

cool soil temperatures (10–20 oC) favor infection by Pythium spp., however, it has been 

documented that some species are favored by warmer soil temperatures (Bainbridge, 

1970; Martin, 1996). In addition to seed rot, symptoms on affected seedlings include 

yellow to tannish-brown lesions on the roots and rotting of the hypocotyl, as well as 

reduced root development and stunted roots (Rothrock, et al., 2015). The hypocotyl may 

swell and the cortex of the roots can slough off when removing plants from the soil 
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(Rothrock, et al., 2015). There is currently no known resistance in soybean germplasm to 

the Pythium spp. that contribute to seedling disease.  

1.2.4 Phytophthora sojae 

Phytophthora sojae is also a water mold in the phylum Heterokonta (Dick et al., 

1999). Phytophthora sojae consists of 55 described races that differ in phenotype based 

on their reactions with specific resistance (R) genes (Schmitthenner, 2015). Subspecies 

grouping is based on virulence which in turn is based on 15 Rps genes found in soybean 

differentials (Dorrance & McClure, 2001).  Phytophthora. sojae primarily survives in the 

soil as long-term survival structures called oospores that act as infectious spores when 

soybean seedlings are present (Schmitthenner, 2015). Structures called sporangia that are 

produced by mycelia of P. sojae contain infectious zoospores which are capable of 

traveling through saturated soils to soybean roots (Schmitthenner, 2015). Saturated soils 

with warm soil temperatures (>20 oC) favor germination of spores and infection by P. 

sojae (Schmitthenner, 2015). Phytophthora sojae infection in the early soybean growth 

stages has similar root rotting symptoms as the other seedling disease causing pathogens 

(Schmitthenner, 2015).  Unlike Fusarium spp., Pythium spp., and Rhizoctonia solani, 

infection by Phytophthora sojae can result in symptoms that include stunting, root rot, 

and stem rot at any stage of development (Dorrance et al., 2009). Symptoms of stem rot 

include browning of the exterior surface of the lower stem with brown discoloration of 

the vascular tissue and leaves wilting while still remaining attached (Schmitthenner, 

2015). There is resistance to P. sojae currently available in commercial soybean cultivars 

with both resistance genes (Rps) identified as well as ratings on the relative level of 

partial resistance (tolerance).  
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1.3 Seedling Disease Management  

1.3.1 Early History of Seed Treatments for Plant Protection 

Seed treatment fungicide use can be traced back to 60 AD when cereal growers used 

wine as a protective seed coating against disease (Russel, 2005). Compounds and 

mixtures commonly used for seed treatments were first developed throughout the 

sixteenth to early nineteenth century and included brine, arsenic, copper sulphate, 

phenylmercury acetate, and copper oxide (Russel, 2005). It was not until the 1940’s that 

chemical seed treatments gained widespread popularity as the chemical protectant 

industry grew, due to the rise of the petroleum industry and chemistries originally 

developed for World War II (Russel, 2005). This led to new chemistries, such as 

dithiocarbamates and aromatic hydrocarbons, being introduced as seed protectants 

(Russel, 2005). An increase in research and development of fungicide products in the 

1960’s and 1970’s led to the introduction of several of the seed treatment fungicide 

chemistries currently used today, such as phenylamides and dicarboximides (Russel, 

2005). Fungicides with systemic properties were also first developed during this period, 

allowing for management of post infection disease (Russel, 2005). Due to an increase in 

regulatory procedures in response to environmental concerns and public perception, the 

production and release of new chemistries slowed over the next few decades (Russel, 

2005). 

Consolidation of companies in the crop protection chemical industry in the 1990’s 

resulted in only a few companies currently dominating the seed treatment market 

(Munkvold, 2009). Due to pressures to meet the growing population and food needs, seed 
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treatment use has rapidly increased. This resulted in the annual value of the global seed 

treatment market doubling from $1 to $2 billion from 2002 to 2008 (Munkvold, 2009).  

1.3.2 Fungicide Seed Treatment in Soybean 

Fungicide seed treatment use in soybean has increased rapidly in recent years, as only 

8% of soybean seed in the United States was treated in 1996 compared to 30% in 2008 

(Munkvold, 2009). By 2015, this amount had more than doubled, with 75% of soybean 

seed treated (Gaspar et al., 2016). There are several factors that contribute to the 

increased use of seed treatments. One factor is that producers are planting earlier into 

cool (<15 oC) and often wet soils in an attempt to increase yield potential (Conley & 

Santini, 2007). Planting into cool and wet soils slows soybean emergence and increases 

the potential for infection by seedling disease causing pathogens (Dorrance et al., 2009). 

Another factor is an increase in seed costs to close to $50 per unit (140,000 seeds) which 

represents nearly 36% of a producer’s total annual variable operating expenses (USDA-

Economic Research Service, 2016). A third factor is soybean commodity prices 

dramatically increasing between 2007 and 2013, which allowed for the economic 

justification of investing into additional inputs, such as seed treatments (USDA-National 

Agricultural Statistics Service, 2018).  

1.3.3 Fungicide Seed Treatment Efficacy and Specificity to Pathogens 

Fungicide seed treatments have been shown to have success in managing seedling 

diseases, although this success has not been consistent, due to variable disease pressure 

and environmental conditions not favorable for disease development across locations 

(Bradley et al., 2001; Dorrance & McClure, 2001; Dorrance et al., 2003). Active 
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ingredients of fungicide seed treatments differ in their relative efficacy on seedling 

disease causing pathogens (Munkvold, 2009). This has resulted in packaging multiple 

active ingredients with different modes of action together, which are sold as combination 

products (Gaspar et al., 2016).  

Fungicides are grouped based on their mode of action which refers to the specific 

fungal cellular process affected by the active ingredients. The Fungicide Resistance 

Action Committee (FRAC) designates groups based on modes of action (MOA) and there 

are multiple MOAs commercially labeled for seed treatments of soybean. The most 

common MOAs include methyl benzimidazole carbamates (MBC, FRAC Group 1), 

demethylation inhibitors (DMI, Group 3), phenylamide acylanilides (Group 4), succinate 

dehydrogenase inhibitors (SDHI, Group 7), quinone outside inhibitors (QoI, Group 11), 

phynlpyrroles (Group 12), aromatic hydrocarbons (Group 14), thiazole carboxamides 

(Group 22), and Multi Site Action (Groups M3 and M4). For the purpose of this review, 

as it is the basis for the scope of the research to follow, only Groups 4, 7, and 12 will be 

discussed in detail.  

Phenylamide acylanilides (Group 4) are divided into four subclasses including: 

acylalanines, butyrolactones, thiobutyrolactones, and oxazolidinones (Cohen & Coffey, 

1986). Metalaxyl and mefenoxam (metalaxyl-m) are the most common fungicides in the 

acylalanine subclass and have been commonly used as soybean seed treatments. These 

fungicides have been rated ‘excellent’ for management of Pythium spp. and Phytophthora 

sojae and are ‘not recommended’ for management of Fusarium spp. and Rhizoctonia spp. 

in Nebraska (Jackson-Ziems et al., 2017). These fungicides were first introduced in 1977 
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for use as seed treatments, with the discovery of metalaxyl, and were used as an effective 

management tool of diseases caused by Phytophthora spp., Pythium spp., and 

Pseudoperonospora spp. (Gisi & Cohen, 1996). These fungicides disrupt nucleic acid 

synthesis through inhibition of the activity of the RNA polymerase I system (Yang et al., 

2011). In particular, metalaxyl inhibits uridine incorporation into the RNA chain thus 

blocking rRNA synthesis at the level of uridine transcription (Yang et al., 2011).  

SDHI (Group 7) fungicides were first introduced for use in agriculture in the 1960’s 

with their main activity being against basidiomycete fungi such as Rhizoctonia spp. and 

rust pathogens (Avenot & Michailides, 2010). More recently developed SDHI fungicides 

are known to have a broader spectrum of control with activity against a diverse group of 

fungal pathogens (Stammler, et al., 2007). There are SDHI compounds labeled for use in 

soybean for both seed treatment of seedling diseases and foliar application for stem and 

foliar diseases. Some common SDHI active ingredients used as soybean seed treatments 

include carboxin, fluopyram, fluxapyroxad, penflufen, and sedaxane. These fungicides 

have been rated ‘not specified on label’ for management of Pythium spp. and 

Phytophthora sojae, ‘not recommended’ for management of Fusarium spp., and 

‘excellent’ for management of Rhizoctonia spp. in Nebraska (Jackson-Ziems et al., 2017). 

SDHIs bind specifically to the ubiquinone-binding site (Q-site) of the mitochondrial 

complex II (succinate dehydrogenase complex) which inhibits fungal respiration (Avenot 

& Michailides, 2010).  

Phenylpyrrole (Group 12) fungicides were first introduced for use in agriculture in the 

1960s and have a broad spectrum of activity against fungal species among ascomycetes, 
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basidiomycetes, and deuteromycetes (Koch & Leadbeater, 1992). Fludioxonil is the only 

phenylpyrrole fungicide seed treatment used as a soybean seed treatment. These 

fungicides have been rated ‘not recommended’ for management of Pythium spp. and 

Phytophthora sojae, ‘fair to very good’ for management of Fusarium spp., and ‘good’ for 

management of Rhizoctonia spp. in Nebraska (Jackson-Ziems et al., 2017). Phenylpyrrole 

fungicides target the osmotic signal transduction pathway which controls the osmotic 

pressure of the mitochondrial membrane (Jespers et al., 1994).  

1.3.4 Cultural Practices for Management of Seedling Diseases 

There are cultural practices that can be used as tools in addition to fungicide seed 

treatments, to help manage seedling diseases. The adoption of no-till practices in soybean 

production has led to increased crop debris on the soil surface, which limits the drying 

and warming of the soil in the spring (Broders, et al., 2007). When soils remain cool and 

wet, germination and growth of soybean seedlings is prolonged (Broders, et al., 2007). 

Cool and wet soil conditions also favor infection by Pythium spp. and Fusarium spp. 

which increases pathogen inoculum in the soil (Pankhurst et al., 1995; Nelson, 2015; 

Rothrock et al., 2015). In fields with a history of seedling disease, tillage can be useful in 

producing an environment that favors soybean growth and is less conducive to infection 

and disease development (Thomson et al., 1971; Schlub & Lockwood, 1981). For 

diseases favored by saturated soils, such as Pythium spp. and Phytophthora sojae, 

increasing soil drainage is a helpful tool for disease management as it reduces the 

movement of zoospores (Rothrock et al., 2015; Schmitthenner, 2015). Finally, since 

infection by Fusarium spp. and Pythium spp. is favored by cool and wet soils, delaying 



11 
 

 
 

 

planting until when soils warm, can reduce infection and disease development (Rothrock 

et al., 2015; Nelson, 2015). None of these tools are entirely effective in disease 

management and an integrated approach on a field-by-field basis is required with targeted 

options related to site-specific disease issues.  

1.4 Weed Management in Soybean Cropping Systems 

1.4.1 Integrated Weed Management  

No tool is expected to provide total control thus, weed management requires an 

integrated approach (Swanton & Weise, 1991). Historically, tillage has been a helpful 

tool in weed management, as it disrupts weed seed beds and mechanically eliminates 

established weeds; however, the shift to no-till production systems has become 

increasingly common for potential benefits of reducing soil erosion and increasing 

moisture retention (Buhler & Oplinger, 1990; Johnson, 1994; Papendick et al., 1986). 

Crop rotation can be advantageous, as each crop has different emergence patterns, which 

allows them to compete with different weed species (Liebman & Dyck, 1993). 

Alternating crops consecutively, such as a corn-soybean rotation, allows for the use of 

diverse herbicide sites of action, different spray timings, and alleviates selection pressure 

of each of the management tools used (Liebman & Dyck, 1993). Recently use of cover 

crops, which are established in the fall and grown during the periods of the year that cash 

crops are absent, has increased in popularity in corn and soybean production systems 

throughout the United States (Sustainable Agriculture Research & 

Education/Conservation Technology Information Center, 2016; Werle, et al., 2017). In 

addition to several environmental benefits, such as prevention of erosion, increasing soil 
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carbon, and reducing nitrogen leaching, certain cover crops have shown potential in 

reducing winter annual weed densities (Werle et al., 2017). Utilizing a diverse herbicide 

program with multiple sites of action is necessary for effective weed management. 

Through the advent of herbicide resistant transgenic technologies, soybean producers 

have selective and non-selective herbicides to utilize (Young, 2006). Herbicides are the 

most commonly used tool for weed management in soybean production, with 95% of 

hectares in the United States treated with an herbicide in 2017 (USDA-National 

Agricultural Statistics Service, 2018). The overreliance on herbicides and specific sites of 

action has led to an increase in herbicide resistant weeds in soybean production systems 

(Norsworthy et al., 2012).  

1.4.2 Herbicide-Resistant Soybean 

The introduction of herbicide resistance traits in soybean began in 1996 with the 

commercialization of glyphosate-resistant (enzyme 5-enolypyruvyl-shikimate-3-

phosphate synthase, EPSPS; Group 9) soybean, which dramatically changed weed 

management in soybean production systems worldwide (Young, 2006). Before 

glyphosate-resistant soybean, producers relied on scouting and identifying weeds and 

carrying out specific weed management strategies, comprised of cultural practices and 

selective herbicides (Green, 2014). After adopting glyphosate-resistant soybean, 

producers began to rely heavily on glyphosate for weed management, due to its 

performance and non-selective nature (Green, 2014). Reliance on glyphosate for weed 

management resulted in heavy selection pressure on weeds to evolve resistance (Dill et 

al., 2008). Due to a lack of new herbicide chemistries being developed, there is a need for 
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further development of tolerance traits to other herbicides. The development of soybean 

cultivars with resistance to several other herbicides, including glufosinate and dicamba, 

have been developed and introduced alongside glyphosate resistance in soybean in recent 

years (Green, 2014). These developments provide producers increased diversity in sites 

of action available for chemical weed management (Green, 2014).  

1.4.3 Herbicide Resistant Weeds  

The first documented incidence of herbicide resistance was reported in wild carrot 

(Daucus carota L.) in the 1950’s, well before the introduction of herbicide resistant crops 

(Switzer, 1957). The first documented report of a herbicide resistant weed in Nebraska 

was in 1990 when a population of tall waterhemp (Amaranthus rudis) was determined to 

have resistance to photosystem II inhibitors (PSII; Group 5) (Anderson et al., 1996). 

Resistance to several other herbicide sites of action in multiple weed species have been 

documented in Nebraska, including acetolactate synthase inhibitors (ALS; Group 2), 

synthetic auxins (Group 4), EPSP synthase inhibitors (Group 9), protoporphyrinogen 

oxidase (PPO) inhibitors (Group 14), and 4-hydroxyphenylpyruvate dioxygenase 

inhibitors (HPPD; Group 27) (Heap, 2018). Eight weed species in Nebraska have been 

documented to have evolved herbicide resistance to at least one site of action (Heap, 

2018). These include tall waterhemp (Amaranthus rudis; Groups 2, 4, 5, 9, 14, and 27), 

palmer amaranth (A. palmeri; Groups 5, 9, and 27), giant ragweed (Ambrosia trifida; 

Group 9), common ragweed (A. artemisiifolia; Group 9), horseweed (Conyza canadensis; 

Group 9), kochia (Kochia scoparia; Groups 4, 5, and 9), shattercane (Sorghum bicolor; 

Group 2), and johnsongrass (Sorghum halepense; Group 2); (Heap, 2018).  
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With the increase of herbicide-resistant weeds, soybean producers are utilizing 

preemergent herbicides with residual activity, followed by postemergent herbicides 

(Sarangi et al., 2017). Relying on soil-applied preemergent herbicides with residual 

control is not a new concept as it was used commonly in weed management before the 

introduction of herbicide resistant soybean (Young, 2006). One particular group of 

herbicides, the PPO-inhibitors (Group 14) have been used effectively as a preemergent 

herbicide on several broadleaf weed species and is the focus of the herbicide component 

of the research in this thesis (Hager et al., 2002; Legleiter et al., 2009).  

1.4.4 Protoporphyrinogen Oxidase Inhibitors  

Protoporphyrinogen oxidase (PPO) inhibitors (Group 14) are cell membrane 

disrupting herbicides commonly used for broadleaf weed control in soybean production 

(Duke et al., 1991; Dayan et al., 1996). PPO-inhibitors were first commercialized in the 

1960s for both preemergent and postemergent applications in soybean production 

(Matsunaka, 1976). These herbicides increased in popularity over time as they are less 

environmentally hazardous due to their rapid soil dissipation and low use rates (Taylor-

Lovell et al., 2001). Preemergent PPO-inhibitors have been reported to be effective in 

control of tall waterhemp, with >85% control when used in a preemergent followed by 

postemergent herbicide program (Hager et al., 2002; Legleiter et al., 2009).  

PPO-inhibitor herbicides consist of four chemical families: diphenylethers, N-

phenylphthalimides, aryl triazinones, and trifluoromethyl uracils (Duke et al., 1991; Hao 

et al., 2011). The most common preemergent PPO-inhibitors used in soybean production 

include flumioxazin, sulfentrazone, and saflufenacil (Knezevic, et al., 2017). Flumoxazin 

is a member of the N-phenylphthalimide family and its commercial products include: 
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Valor SX®, Valor XLT®, Gangster®, Enlite®, Envive®, and Fierce® (Knezevic, et al., 

2017). Sulfentrazone is a member of the triazinone family and commercial products 

include Spartan®, Authority First®, Authority Assist®, Authority MTZ®, Authority 

XL®, Authority Elite®, and Sonic® (Knezevic, et al., 2017). Saflufenacil is a member of 

the trifluoromethyl uracil family and commercial products include: Sharpen®, Optill®, 

Optill PRO®, and Verdict® (Knezevic, et al., 2017). Soil-applied PPO-inhibitors have 

residual properties in which the active ingredients are present and effective in the soil for 

several weeks after application (Taylor-Lovell et al., 2001). 

PPO-inhibitors target the inhibition of protoporphyrinogen oxidase, an enzyme in the 

biosynthetic pathway leading to chlorophyll and heme production (Hao et al., 2011). 

Inhibition of the PPO enzyme leads to an accumulation of protoporphyrinogen-IX, which 

is oxidized to produce the photosensitive protoporphyrin IX (Jacobs & Jacobs, 1982). As 

protoporphyrin IX reacts with light, singlet oxygen molecules are released, which cause 

lipid peroxidation and cell death. (Jacobs & Jacobs, 1982).  

PPO-inhibitors are selective herbicides which means that soybeans can metabolize the 

active ingredients and do not typically cause crop injury; however, when environmental 

conditions are unfavorable for soybean germination and emergence phytotoxicity and 

stand reduction can occur as a result of PPO-inhibitor injury (Taylor-Lovell et al., 2001). 

Soil temperature, organic matter composition, soil pH, and moisture events can have an 

affect on crop injury (Taylor-Lovell et al., 2001). Soils below the optimum temperature 

for soybean germination and emergence (15 °C) favor PPO-inhibitor injury, as it slows 

seedling growth, which results in extended exposure to the herbicides (Taylor-Lovell et 
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al., 2001). Adsorption of PPO-inhibitors to the soil is affected by soil organic matter and 

soil pH (Grey et al., 1997). Soils with higher organic matter have increased opportunities 

for adsorption of herbicides and often require higher application rates to deliver the 

intended dose necessary for adequate weed control (Grey et al., 1997). Alternatively, 

soils with low organic matter have increased herbicide concentration available (Grey et 

al., 1997). Additionally, adsorption of PPO-inhibitors to soil is greater when pH values 

are low (Grey et al., 1997). Injury can also occur when there is a precipitation or 

irrigation event at the time of emergence, which can result in splashing the herbicides 

from the soil onto the hypocotyl and cotyledons (Wise et al., 2015). 

Common symptoms of PPO-inhibitor injury include callused tissue on the hypocotyl 

and the stem at the soil surface, shortened internodal length, phytotoxic chlorosis and 

necrosis of leaf and cotyledon tissues (Figure 1), and a slowed growth rate resulting in 

stunted plants (Li et al., 1999; Hulting et al., 2001). Several studies suggest differences in 

soybean varietal response to sulfentrazone (Swantek & Oliver 1996; Dayan et al., 1997; 

Li et al., 1999; Hulting et al., 2001; Reilling et al., 2006). Tolerance to sulfentrazone in 

soybean has been shown to be controlled by a single gene with tolerance dominant to 

sensitivity (Swantek, et al., 1998). There has been limited research on varietal sensitivity 

differences for flumioxazin (Taylor-Lovell et al., 2001; Mahoney et al., 2014). Currently, 

few seed companies rate their commercial varieties for sensitivity to PPO-inhibitors.  

1.5 Interactions Between PPO-inhibitor Herbicides and Disease 

Environmental conditions that can favor PPO-inhibitor injury, such as cool soil 

temperatures (<15 °C) and wet weather conditions through emergence can also favor 
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infection by Fusarium spp. and Pythium spp. as well as seedling disease development 

(Bainbridge, 1970; Taylor-Lovell et al., 2001; Nelson, 2015). Multiple studies have 

investigated interactions between PPO-inhibitor herbicides and Fusarium spp., 

Rhizoctonia solani, and Pythium spp.; however, only Fusarium virguliforme (causal 

pathogen of sudden death syndrome) and R. solani (causal pathogen of seedling root rot 

and damping off) have been studied in soybean. There are no known studies investigating 

PPO-inhibitor herbicide interactions with soybean seedling disease caused by 

Phytophthora sojae. Recently, studies have been conducted to investigate interactions of 

preemergent herbicides, including sulfentrazone and flumioxazin, with several fungicide 

seed treatments. This research resulted in no observed effects on yield, however, and no 

disease parameters were evaluated (Barlow et al., 2018). 

There are no known studies on PPO-inhibitor herbicide effects on diseases caused by 

other Fusarium spp. associated with soybean seedling disease in any crop. Studies 

investigating the effects of several PPO-inhibitor herbicides on sudden death syndrome 

(SDS) and its causal pathogen, F. virguliforme have had variable results. Lactofen, a 

postemergent PPO-inhibitor, was observed to significantly reduce conidial germination, 

myecelial growth, and sporulation of F. virguliforme in vitro compared to the non-treated 

control (Sanogo et al., 2000). In additional experiments under controlled conditions in the 

greenhouse, lactofen was observed to significantly reduce SDS disease severity and 

isolation frequency of F. virguliforme isolation compared to the non-treated control 

(Sanogo et al., 2000). In similar field experiments, lactofen had no significant affect 

while acifluorfen, a postemergent PPO-inhibitor, significantly increased SDS severity 
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compared to the non-treated control (Sanogo et al., 2001). More recent research 

investigated two preemergent PPO-inhibitors, sulfentrazone and flumioxazin, and their 

effects on SDS severity and yield. There were no significant affects of either PPO-

inhibitor herbicide on SDS severity or yield (Kandel et al., 2018).  

Studies investigating the effects of several PPO-inhibitor herbicides on soybean 

seedling disease caused by R. solani have had variable results. Acifluorfen was observed 

to reduce the colony radius of AG-IA and AG-IB isolates in vitro compared to the non-

treated control (Black et al., 1996). In studies conducted under controlled conditions in 

the greenhouse, acifluorfen (1Χ and 2Χ of its labeled rate) was observed to significantly 

increase disease severity compared to the non-treated control (Bradley et al., 2002). 

Acifluorfen was observed to significantly increase disease severity compared to the non-

treated control at 2 of 6 non-inoculated field locations (Bradley et al., 2002). Lactofen 

was observed to have no significant affect on disease severity in R. solani inoculated field 

experiments with low levels of disease severity (Harikrishnan & Yang, 2002).  

There has been no research investigating the effects of PPO-inhibitor herbicides on 

soybean seedling disease caused by Pythium spp.; however, limited research has 

investigated the effects of PPO-inhibitors on root rot caused by Pythium spp. in 

sugarcane. Three PPO-inhibitor herbicides (azafendin, flumioxazin, and sulfentrazone) 

were observed to significantly reduce mycelial growth of several Pythium spp. in vitro 

compared to the non-treated control (Daugrois et al., 2005). In studies conducted under 

controlled conditions in the greenhouse, full rates of soil-applied flumioxazin and 

sulfentrazone were observed to significantly decrease sugarcane root colonization by P. 
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arrhenomanes compared to the non-treated control (Daugrois et al., 2005). In the same 

greenhouse studies the 0.1Χ rate of flumioxazin applied to the foliage was observed to 

significantly decrease sugarcane root colonization by several Pythium spp. compared to 

the non-treated control (Daugrois et al., 2005). The 0.1x rate of sulfentrazone applied to 

the foliage was observed to significantly decrease sugarcane root colonization by P. 

arrhenomanes compared to the non-treated control (Daugrois et al., 2005). Alternatively, 

the 0.1Χ rate of soil-applied sulfentrazone significantly increased sugarcane root 

colonization by Pythium spp. compared to the non-treated control (Daugrois et al., 2005). 

Full rates of all three PPO-inhibitors had no affect on sugarcane root rot severity while 

the 0.1Χ rate of flumioxazin applied to the foliage significantly decreased root rot 

severity compared to the non-treated control (Daugrois et al., 2005).  

From the literature available, PPO-inhibitor herbicides have been observed to have an 

interaction with root rot seedling diseases caused by F. virguliforme, R. solani, and 

Pythium spp. in either soybean or sugarcane. Across published studies, a total of five 

PPO-inhibitors have been evaluated (acifluorfen, azafendin, flumioxazin, lactofen, and 

sulfentrazone), four of which are labeled for use in soybean production. Further, there is a 

need to investigate preemergent PPO-inhibitors as 4 of 5 published studies on soybean 

have been on postemergent PPO-inhibitors (lactofen and acifluorfen). Only one of the 

studies investigated flumioxazin and sulfentrazone and their effects on soybean seedling 

diseases. These studies produced variable results, which presents a clear need for 

additional studies investigating PPO-inhibitor interactions with the predominant soybean 

seedling disease causing pathogens. 
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1.6. Research Objectives  

The objectives of this research were to (1) determine the effects of two soil-applied 

PPO-inhibitor herbicides (flumioxazin and sulfentrazone) on soybean seedling root rot 

severity, plant population, and yield; and (2) determine the effect of fungicide seed 

treatment on soybean root rot severity, plant population, and yield in the presence of 

PPO-inhibitor induced injury.  
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1.8 Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Symptoms of PPO-inhibitor injury include chlorosis 

and necrosis on soybean cotyledon and hypocotyl.  

Symptomatic seedlings indicated by arrows. Healthy seedling 

indicated by star.  
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Chapter Two 

Effect of preemergent protoporphyrinogen oxidase inhibitor 

herbicides and fungicide seed treatment on soybean seedling 

disease and yield in Nebraska 

 

 

2.1 Introduction 

Seedling diseases of soybean [Glycine max (L.) Merr.] are caused by several 

pathogens including Fusarium spp., Rhizoctonia solani, Pythium spp. and Phytophthora 

sojae and can result in significant annual yield losses in the North Central Region of the 

United States. Disease can be caused by one pathogen or a disease complex (Datnoff & 

Sinclair, 1988). Seedling disease is considered the second most important soybean 

disease in the United States causing an average annual loss of over 1.3 million metric 

tons over a four year span (Koenning & Wrather, 2010). The end result can be reduced 

plant vigor and a decrease in stand establishment when infections are severe and 

environmental conditions are favorable for disease development.  

Management of seedling disease is difficult, as these pathogens are capable of 

persisting for many years in soil absent of a host (Nelson, 2015; Rothrock, et al., 2015; 

Schmitthenner, 2015; Yang, 2015). Effective management requires knowledge of the 

disease history of the field to select management strategies. However, there are limited 
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cultural practices to manage seedling disease, depending on the causal pathogen. 

Fungicide seed treatment has become the primary tool used for seedling disease 

management and the use of fungicide seed treatments in soybean in the United States has 

increased from 8% of total seed treated in 1996 to 75% in 2015 (Munkvold, 2009; Gaspar 

et al., 2016).  

Fungicide seed treatments can have broad spectrum fungicidal activity while others 

are specific for management of one pathogen. Often, several fungicides with specific 

fungicidal activity are packaged together as combination products targeting several 

pathogens (Munkvold, 2009; Gaspar et al., 2016). Previous research showed varying 

responses of fungicide seed treatments on stands and yield, depending on disease 

pressure, soil characteristics, and environmental conditions (Dorrance et al., 2003; Poag 

et al., 2005; Gaspar et al., 2015; Gaspar et al., 2016). 

In addition to managing seedling diseases, another challenge for soybean producers is 

the effective management of weeds. The introduction and rapid adoption of glyphosate 

resistant crops, including corn (Zea mays L.) and soybean since 1996 has led to an 

increase in glyphosate resistant weeds in soybean production areas (Norsworthy et al., 

2012). Currently, there are 16 weed species that have evolved resistance to glyphosate in 

the United States, six of which have been reported in Nebraska (Heap, 2018). With the 

increase of herbicide resistant weeds, soybean producers are relying heavily on 

preemergent herbicides that have residual properties, followed by application of 

postemergent herbicides (Sarangi et al., 2017). Protoporphyrinogen oxidase-inhibitors are 

commonly used in preemergent herbicide programs in soybean due to their ability to 
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effectively control several broadleaf weeds; however, these herbicides have the potential 

to injure soybean, especially in cool and wet conditions (Taylor-Lovell et al., 2001; 

Hager et al., 2002; Reiling et al., 2006; Legleiter et al., 2009; Belfry et al., 2016). 

Additionally, injury can occur when there is precipitation or irrigation at or near the time 

of emergence, which splashes droplets of the herbicide onto the hypocotyl and cotyledons 

(Wise et al., 2015; Figure 1). Examples of preemergent PPO-inhibitors used in soybean 

include flumioxazin, saflufenacil, and sulfentrazone.  

Cool soil temperatures (<15 °C) and wet soil conditions that favor PPO-inhibitor 

injury are also conducive for development of seedling disease caused by Fusarium spp. 

and Pythium spp. (Bainbridge, 1970; Taylor-Lovell et al., 2001; Nelson, 2015). Multiple 

studies have investigated interactions between PPO-inhibitors and Fusarium spp., R. 

solani, and Pythium spp.; however, only F. virguliforme O’Donnell & T. Aoki [causal 

pathogen of sudden death syndrome (SDS)] and R. solani have been studied in soybean 

(Black et al., 1996; Sanogo et al., 2000; Sanogo et al., 2001; Bradley et al., 2002; 

Harikrishnan & Yang, 2002; Kandel et al., 2018). There is no known published research 

on PPO-inhibitor effects on soybean seedling disease caused by Pythium spp. and 

Phytophthora sojae; however, Daugrois et al. (2005) studied this effect of disease caused 

by Pythium spp. in sugarcane (Saccharum officinarum). These studies have produced 

inconsistent results, where several PPO-inhibitors were observed to both increase and 

decrease disease severity. Recently, studies have been conducted to investigate 

interactions of preemergent herbicides including sulfentrazone and flumioxazin, with 

several fungicide seed treatments in soybean. This research resulted in no observed 
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effects on yield, however, no disease parameters were evaluated (Barlow et al., 2018). 

There is a need for evaluation of the effects of preemergent PPO-inhibitors on seedling 

diseases of soybean.  

Therefore, the objectives of this research were to: (1) determine the effects of soil-

applied PPO-inhibitor herbicides on soybean seedling disease severity and yield; (2) 

determine the effect of fungicide seed treatment on soybean seedling disease severity and 

yield when PPO-inhibitor injury occurs.  

2.2  Materials and Methods 

2.2.1 Experimental locations 

Field experiments were established at nine locations in Nebraska, including four in 

2016 and five in 2017 (Table 1). The Lincoln and Mead experiments in 2017 were 

conducted on University of Nebraska research sites and all other experiments were 

conducted in producer fields. Location-specific information, including planting and 

harvest dates, tillage practices, irrigation information, and soil characteristics (soil type, 

organic matter content, and soil pH) are included in Table 1. Plots were planted with a 4-

row cone planter at a depth of 3.8 cm with a seeding rate of 308,881 seeds/ha. Plots were 

four rows wide (76 cm row spacing) and 5.2–10.0 m long, depending on location.  

2.2.2 Experimental design 

Experiments were arranged as a randomized complete block design with four 

replications at each location. Treatments consisted of a factorial arrangement of 

preemergence herbicide program by seed treatment by cultivar. There were three 

herbicide programs, which consisted of sulfentrazone (Spartan® 4F, FMC Corporation, 
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Philadelphia, PA, 0.56 L/ha), flumioxazin (Valor® SX, Valent U.S.A LLC, Walnut 

Creek, CA, 175 g/ha), and a no herbicide treatment control. All locations, except 

Tekamah, received a glyphosate (Roundup® PowerMax, Monsanto Company, St. Louis, 

MO, 2.25 L/ha) with ammonium sulfate (NRich, American Plant Food Corporation, 

Galena Park, TX, 20.4 g/L) application at the time of planting for control of weeds. 

Herbicides were applied using a CO2 pressurized back-pack sprayer with a 3 m wide 

hand-held boom with six XR8002-VS nozzles (TeeJet Technologies Illinois LLC, 

Urbandale, IL) on 50.8-cm spacing delivering 140 L/ha at 275 kPa. All applications were 

made 2–5 days after planting (DAP) (Table 2). Seeds received either no seed treatment or 

a fungicide seed treatment (ST) of mefenoxam (Apron® XL, Syngenta Crop Protection 

LLC, Basel, Switzerland, 0.64 mg a.i./seed) + fludioxonil (Maxim® 4FS, Syngenta Crop 

Protection LLC, 0.0076 mg a.i./seed) + sedaxane (Vibrance®, Syngenta Crop Protection 

LLC, 0.0076 mg a.i./seed). Seed treatments were applied as a slurry before planting, 

using an IMER Minuteman II portable cement mixer (IMER U.S.A. Inc., Hayward, CA) 

at a total volume of combined product rate of 3.26 mL/kg seed including water. Two 

cultivars, P22T41R2 and P28T08R (DuPont Pioneer®, Johnston, IA) were planted at all 

locations. Cultivars were selected based on ratings of sensitivity to saflufenacil and 

sulfentrazone from screenings performed by DuPont Pioneer® (DuPont Pioneer, 2017). 

P22T41R2 (sensitive) is listed as a cultivar that has a high potential for crop injury from 

sulfentrazone and saflufenacil, while P28T08R (tolerant) is listed as a cultivar with 

tolerance. 

2.2.3 Data collection 
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Phytotoxicity (PPO-inhibitor Injury). Phytotoxicity was rated in all experimental 

units at one time between the cotyledon (VE) and first trifoliate (V1) growth stages (Fehr 

et al., 1971). Phytotoxicity was rated visually for total plot incidence on a continuous 0–

100% scale.  

Plant Population. Plant population was assessed at three times, the VE-V1, V2-V4, 

and at R8 (full maturity) growth stages. Plant population was calculated by counting the 

total number of live plants in 3.1 m of each of the two center rows of each plot. Counts 

from each row were combined to result in one value per plot. Data were converted to 

plants/ha for analysis.  

Vigor. Plots were visually assessed for vigor at the V2-V4 growth stages. Vigor was 

assessed per plot on 0-100% continuous scale for relative greenness and plot uniformity. 

Root Rot, Plant Biomass, and Plant Height Evaluation. At the V1-V4 growth stages, 

six plants were selected haphazardly from each plot and dug with a shovel from the outer 

two rows. Root systems from each plot were washed free of soil and evaluated on site for 

root rot severity. For this evaluation, root rot severity is described as the total percent area 

of the root system that is discolored with the typical browning symptoms of root rot. The 

six root systems were rated collectively on a 0-100% continuous scale for a single root 

rot severity value per plot. The roots from each plot were cut from the aboveground 

portion at the cotyledon scar and their collective fresh root biomass (g) was measured. 

The collective fresh aboveground biomass (g) of the six plants was also measured. In 

2017, the height of six additional haphazardly chosen plants from the center two rows 

were measured. Heights were measured from soil surface to the node of the uppermost 
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developed trifoliate. An average height (cm) was calculated giving one height value per 

plot.  

Pathogen Isolation. To determine the most common seedling disease causing 

pathogen for each field, roots were transported to the laboratory for pathogen isolation. 

For the isolation process, roots were selected only from the plots that did not receive a 

seed treatment. Two of the four replications at each site were then randomly selected and 

roots were pooled within each replication. Once pooled, symptomatic roots with lesions 

were cut into 2.5-cm segments and placed under running tap water for 20 minutes to 

remove debris. Five washed root segments were placed on six plates of water agar 

(Bacto™ Agar, Becton, Dickinson, and Company, Franklin Lakes, NJ) media as well as 

six plates each of two selective media: water agar + streptomycin sulfate (200 mg a.i./L) 

and corn meal agar (BBL™ Corn Meal Agar, Becton, Dickinson, and Company)  + 

pentachloronitrobenzene (50 mg a.i./L) + benomyl (10 mg a.i./L) + pimaricin (5 mg 

a.i./L) + ampicillin (250 mg a.i./L) + rifampicin (10 mg a.i./L). Fungal growth was 

monitored and characterized into three categories: Fusarium spp., Rhizoctonia spp., 

Pythium spp., using morphological identification characteristics outlined by Watanabe 

(1937).  

Non-Seedling Disease Monitoring. Visual assessment of SDS was made at Chapman, 

a second was performed 7 days later (R6). Disease Incidence (DI), Disease Severity (DS) 

and a calculated Disease Index (DX) were recorded for each plot. Disease incidence was 

assessed as the % of plants with leaf symptoms, in increments of 5. Disease Severity was 

recorded on a 1-9 scale, in increments of 0.5 (Gibson et al., 1994). Disease Index (DX) 
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was calculated using the DI and DS scores with the following equation: DX = DI * DS/9 

(Gibson et al., 1994). Disease index has a range of 0 (no disease) to 100 (all plants 

prematurely dead at or before R6). Disease incidence of stem canker (Diaporthe 

phaseolorum var. caulivora) was rated at Auburn using a continuous percentage scale of 

0-100% of total plants affected in the two center harvest rows at the R6 growth stage.  

Grain Yield. All plots were trimmed to uniform length within each experiment for 

harvest. All locations were trimmed to 9.1 m plot lengths except for Lincoln and Mead 

which were trimmed to 4.6 m lengths due to smaller plot lengths planted at these 

locations. The center two rows of each plot were mechanically harvested at maturity 

using an ALMACO small-plot combine (Almaco, Nevada, IA) equipped with a 

HarvestMaster (Juniper Systems Inc, Logan, UT) grain gauge. Yield data were calculated 

and adjusted to 13% moisture for comparison.  

Environmental Data. Soil temperature (°C) was collected at 10-cm depth using a 

bimetal thermometer (Taylor Precision Products, Oak Brook, IL) from the experimental 

area at planting at each location (Table 2). Rainfall amounts were collected from Stratus 

RG202 rain gauges (Stratus, Seattle, WA) at each location established at planting (Table 

2).  

2.2.4 Data analysis   

Analysis of variance was performed using PROC GLIMMIX in SAS version 9.4 

(SAS Institute Inc., Cary, NC) to determine the effect of herbicide program (Herbicide), 

seed treatment (ST), cultivar (Cultivar), and their interactions on response variables. 

Cultivar, seed treatment, herbicide program, and location were treated as fixed effects 



38 
 

 
 

 

and replication was treated as a random effect. Mean separation was performed using 

Fisher’s protected LSD at α = 0.05. Whenever necessary, data for the response variable 

was log transformed prior to analyses in order to satisfy Gaussian assumptions of 

normality and homogeneity of variance. Contingency table analyses were conducted on 

fungal characterization data from each experiment location using the GGPLOT2 package 

(Wickham, 2016) in R version 3.5.1 (2018-07-02).  

2.3  Results 

There were significant Location X Herbicide, Location X ST, and Location X 

Cultivar interactions for the response variables (α = 0.05) and therefore data is presented 

by location. 

Phytotoxicity (PPO-inhibitor Injury). Applications of sulfentrazone and flumioxazin 

resulted in symptoms of phytotoxic injury at all locations except Cordova where no 

phytotoxicity was observed (Figure 1). Sulfentrazone and flumioxazin applications 

resulted in phytotoxicity 3.6–28.1% higher than the no herbicide control (P < 0.05) at 5 

of 9 locations (Auburn, Chapman, Clearwater, Lincoln, and Tekamah; Tables 3 and 4). 

At Schuyler, sulfentrazone and flumioxazin applications resulted in phytotoxicity 

incidences 13.1–20.4% higher than the no herbicide control across non-seed treated plots 

while sulfentrazone resulted in 11.9% more phytotoxicity across fungicide seed treated 

plots (P = 0.05; Figure 2A). The tolerant cultivar resulted in 4.8–11.5% higher 

phytotoxicity than the sensitive cultivar (P < 0.05) at 3 of 9 locations (Auburn, Chapman, 

and Tekamah; Tables 3 and 4). At Ord, sulfentrazone and flumioxazin applications 

resulted in 5.7–16.1% more phytotoxicity than the no herbicide control within both 
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cultivars (P < 0.01; Table 3, Figure 2B). Fungicide seed treatment resulted in 4.6% higher 

phytotoxicity than no seed treatment within the tolerant cultivar (P = 0.03) at Ord as well 

(Table 3, data not shown). There were no significant effects on phytotoxicity at Mead 

(Table 3).  

Plant Populations at VE - V1 Growth Stages. Sulfentrazone and flumioxazin 

applications resulted in 17,700–19,100 plants/ha less than the no herbicide control (P = 

0.04) at Clearwater (Tables 5 and 6). The fungicide seed treatment resulted in 19,100–

43,100 plants/ha more than no seed treatment (P < 0.05) at only two locations, Auburn 

and Ord (Tables 5 and 6). The sensitive cultivar resulted in 20,900–30,200 plants/ha more 

than the tolerant cultivar (P < 0.01) at 4 of 9 locations (Chapman, Clearwater, Cordova, 

and Schuyler; Tables 5 and 6). When sulfentrazone was applied at Tekamah, the tolerant 

cultivar resulted in 41,400 plants/ha more than the sensitive cultivar (P = 0.02; Table 5, 

data not shown). Across fungicide seed treated plots at Mead, the sensitive cultivar 

resulted in 47,500 plants/ha more than the tolerant cultivar (P = 0.03; Table 5, data not 

shown). There were no significant effects at Lincoln for plant population at VE - V1 

growth stages (Table 5). 

 Plant Populations at V2 - V4 Growth Stages. At Chapman, sulfentrazone and 

flumioxazin applications resulted in 18,000–20,600 plants/ha less than the no herbicide 

control at V2 - V4 growth stages (P < 0.05; Tables 7 and 8). At Schuyler, sulfentrazone 

applications resulted in 15,300 plants/ha more than flumioxazin (P < 0.05; Tables 7 and 

8). The fungicide seed treatment again resulted in 20,500–35,300 plants/ha more than no 

seed treatment (P < 0.01) at Auburn and Ord (Tables 7 and 8). At Chapman, the sensitive 
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cultivar resulted in 21,300 plants/ha more than the tolerant cultivar (P < 0.01; Tables 7 

and 8). There was a significant Cultivar Χ ST interaction (P < 0.05) at 4 of 9 locations 

(Clearwater, Cordova, Lincoln, and Mead) where the sensitive cultivar resulted in 23,300 

plants/ha more than the tolerant cultivar across non-seed treated plots at Cordova and 

27,800–46,600 plants/ha more across fungicide seed treated plots at Lincoln and Mead 

(Table 7, data not shown). At Clearwater, no seed treatment resulted in 17,600 plants/ha 

more than the fungicide seed treatment within the sensitive cultivar (data not shown).  

Plant Populations at R8 Growth Stage. Only at Ord did the fungicide seed treatment 

significantly increase populations at the R8 growth stage where it resulted in 55,200 

plants/ha more than no seed treatment (P < 0.001; Tables 9 and 10). The sensitive cultivar 

resulted in 12,700–40,900 plants/ha more than the tolerant cultivar (P < 0.01) at 5 of 9 

locations (Chapman, Cordova, Lincoln, Schuyler, and Tekamah; Tables 9 and 10). 

Across fungicide seed treated plots at Mead, the sensitive cultivar resulted in 40,700 

plants/ha more than the tolerant cultivar (P = 0.03; Table 9, data not shown). At Auburn 

within the sensitive cultivar, the fungicide seed treatment resulted in 60,900 plants/ha 

more than the no seed treatment when flumioxazin was applied (P < 0.01; Table 9, data 

not shown).  

Plant Vigor. Sulfentrazone and flumioxazin applications resulted in significantly 

lower vigor than the no herbicide control at Schuyler and Tekamah with reductions of 

8.9–27% (P < 0.01; Tables 11 and 12). Additionally, at Schuyler sulfentrazone 

applications resulted in 18.1% higher vigor than flumioxazin (Table 12). The fungicide 

seed treatment resulted in 7.1 - 17% higher vigor than no seed treatment (P ≤ 0.05) at Ord 
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and Tekamah (Tables 11 and 12). Across non seed treated plots at Chapman, 

sulfentrazone and flumioxazin applications resulted in 23–24% lower vigor than the no 

herbicide control (P = 0.05; Table 11, data not shown). There was a significant Herbicide 

Χ Cultivar interaction (P < 0.01) at Auburn and Clearwater where the tolerant cultivar 

resulted in 9% higher vigor than the sensitive cultivar when no herbicide was applied and 

22% higher vigor when sulfentrazone was applied at Auburn (Table 11, data not shown). 

At Clearwater the no herbicide control resulted in 20% higher vigor than when 

sulfentrazone was applied within the sensitive cultivar and 17% higher vigor than when 

both sulfentrazone and flumioxazin were applied within the tolerant cultivar (P < 0.01; 

Table 11, data not shown). Additionally, at Clearwater the tolerant cultivar resulted in 7% 

higher vigor than the sensitive cultivar when no herbicide was applied (P < 0.01; Table 

11, data not shown). At Auburn, the tolerant cultivar resulted in 7–16% higher vigor than 

the sensitive cultivar across both non seed treated plots and fungicide seed treated plots 

(P = 0.03; Table 11, data not shown). Additionally at Auburn, the fungicide seed 

treatment resulted in 12% higher vigor than no seed treatment within the sensitive 

cultivar (P = 0.03; Table 11, data not shown). 

Root Rot, Plant Biomass, and Plant Height Evaluation. Sulfentrazone and 

flumioxazin applications resulted in 6.6%–10% higher root rot severity than the no 

herbicide control (P < 0.01) at Chapman (Tables 13 and 14). Across non-seed treated 

plots, sulfentrazone and flumioxazin applications resulted in 21.2–28.1% higher root rot 

severity than the no herbicide control at Cordova (Figure 3A) while sulfentrazone 

application resulted in 10.9% lower root rot severity at Mead (P < 0.05; Figure 3B). 
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Additionally, across fungicide seed treated plots, flumioxazin application resulted in 

12.9% higher root rot severity than the no herbicide control (P < 0.05) at Cordova (Figure 

3a). The sensitive cultivar resulted in 5.9%–7.9% higher root rot severity than the tolerant 

cultivar (P < 0.05) at Auburn and Tekamah (Tables 13 and 14). Within the sensitive 

cultivar, flumioxazin application resulted in 25.4% higher root rot than the no herbicide 

control at Cordova (Figure 4A) while sulfentrazone application resulted in 4.7% lower 

root rot severity than the no herbicide control at Lincoln (P < 0.05; Figure 4B). 

Alternatively, within the tolerant cultivar, sulfentrazone application resulted in 15.2% 

higher root rot severity than the no herbicide control at Cordova (Figure 4A) while 

flumioxazin application resulted in 6.4% higher root rot severity than the no herbicide 

control at Lincoln (P < 0.05; Figure 4B). There was a significant Herbicide Χ ST Χ 

Cultivar interaction (P = 0.03) at Schuyler where within the sensitive cultivar, 

flumioxazin applications resulted in 13% higher root rot than the no herbicide control 

across fungicide seed treated plots (Figure 5). There were no significant effects at 

Clearwater and Ord for root rot severity (Table 13).  

At Lincoln, sulfentrazone applications resulted in 0.8 g more root biomass than when 

flumioxazin was applied (P = 0.04; Tables 15 and 16). The fungicide seed treatment 

resulted in 0.5–0.8 g less root biomass than no seed treatment (P ≤ 0.01) at Cordova and 

Lincoln (Tables 15 and 16). Within the sensitive cultivar, the no herbicide control 

resulted in 1.2 g more root biomass than flumioxazin at Chapman and 2.8 g more root 

biomass than sulfentrazone at Clearwater (P ≤ 0.05; Table 15, data not shown). At 

Chapman, when no herbicide was used, the sensitive cultivar resulted in 1.0 g more root 
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biomass than the tolerant (P ≤ 0.05; data not shown). Within the tolerant cultivar, the 

fungicide seed treatment resulted in 2.3–2.4 g more root biomass than no seed treatment 

when flumioxazin was used at Schuyler and when no herbicide was used at Tekamah (P 

= 0.05; Table 15, data not shown). Additionally, within the tolerant cultivar the no 

herbicide control resulted in 2.1–2.3 g more root biomass than when flumioxazin was 

applied across non-seed treated plots at Schuyler and fungicide seed treated plots at 

Tekamah (P = 0.05; Table 15, data not shown). 

Sulfentrazone application resulted in 1.1–1.3 g less aboveground biomass than the no 

herbicide control at Auburn and Tekamah and 1.3–2.9 g less aboveground biomass than 

flumioxazin application (P < 0.05) at 3 of 9 locations (Auburn, Chapman, and Tekamah) 

(Tables 17 and 18). The fungicide seed treatment resulted in 1.5 g more aboveground 

biomass at Auburn and 2.8 g less biomass at Cordova compared to no seed treatment (P  

0.01; Tables 17 and 18). The fungicide seed treatment resulted in 2.3–8.3 g more 

aboveground biomass than no seed treatment when sulfentrazone applications were made 

at Clearwater and when no herbicide was used at Mead (P = 0.05; Table 17, data not 

shown). Additionally across non-seed treated plots, sulfentrazone application resulted in 

8.4–9.1 g less aboveground biomass than flumioxazin and the no herbicide control at 

Clearwater while resulting in 2.3 g more aboveground biomass than the no herbicide 

control (P = 0.05) at Mead (Table 17, data not shown).  

The tolerant cultivar resulted in 1.6–3.6 g more aboveground biomass than the 

sensitive cultivar (P < 0.05) at 6 of 9 locations (Auburn, Chapman, Cordova, Mead, Ord, 

and Tekamah; Tables 17 and 18). At Clearwater, the tolerant cultivar resulted in 22 g 
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more aboveground biomass than the sensitive cultivar when sulfentrazone was applied (P 

< 0.01; Table 17, data not shown). Within the sensitive cultivar at Clearwater, 

sulfentrazone application resulted in 10.6–11.2 g less aboveground biomass than 

flumioxazin and the no herbicide control (P < 0.01; Table 17, data not shown). At 

Lincoln, the tolerant cultivar resulted in 1.8–4.8 g more aboveground biomass than the 

sensitive cultivar across both non seed treated and fungicide seed treated plots (P = 0.02; 

Table 17, data not shown). At Schuyler, the tolerant cultivar resulted in 17.4–22.9 g more 

aboveground biomass than the sensitive cultivar across fungicide seed treated plots when 

either sulfentrazone or flumioxazin applications were made (P = 0.02; Table 17, data not 

shown). Additionally, at Schuyler, within the tolerant cultivar the no herbicide control 

resulted in 22 g more aboveground biomass than when flumioxazin applications were 

made across non-seed treated plots (P = 0.02; data not shown). At all 5 locations in 2017, 

the tolerant cultivar resulted in 1.0–16.0 cm more than the sensitive cultivar (P < 0.05; 

Tables 19 and 20).  

Pathogen Isolation. A total of 309 fungal isolates with morphological characteristics 

of Fusarium spp., Pythium spp., and Rhizoctonia spp. were isolated from symptomatic 

roots from all experiment locations (Table 21). Fusarium spp. were the most commonly 

isolated organism (n = 186), Pythium spp. were the second most commonly isolated 

organism (n = 111), and very few Rhizoctonia spp. isolates were recovered from the 

experiment locations (n = 12; Table 21). Of the three pathogen groups, Fusarium spp. 

were the most commonly isolated at 6 of the 9 locations (Auburn, Chapman, Clearwater, 

Lincoln, Mead, and Ord), Pythium spp. were the most common at 2 locations (Cordova 
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and Tekamah) while Rhizoctonia spp. were most common at Schuyler (Table 21). Mead 

had the highest number of isolates recovered (n = 70) while Schuyler had the least 

number of isolates recovered (n = 18; Table 21). Figure 6 displays the relative fungal 

isolate characterization of each of the 9 locations. A Pearson chi-square value of 136.82 

was calculated from the contingency table analysis and the relationship between location 

and isolation frequency was determined to be significant (P < 0.0001). Figure 7 displays 

the relative fungal isolate characterization of each root rot severity class. Classes include 

“High” (Cordova), “Moderate” (Auburn, Chapman, Mead, Ord, and Tekamah), and 

“Low” (Clearwater, Lincoln, and Schuyler). Root rot severity classes were established by 

separating locations that were significantly different (P < 0.001) from each other in root 

rot severity means of the non-seed treated plots at each location (data not shown). A 

Pearson chi-square value of 47.35 was calculated from the contingency table analysis and 

the relationship between root rot severity classes and isolation frequency was determined 

to be significant (P < 0.0001). The locations in the “Low” class had the least amount of 

isolation recovery (16–23 isolates) and had no one pathogen isolated far more than the 

others (Figure 7). The locations in the “Moderate” class had intermediate to high amount 

of isolation recovery (30–70 isolates) and all locations had Fusarium spp. as the 

dominant pathogen isolated except for Tekamah which had Pythium spp. as the dominant 

pathogen (Figure 7). The “High” class consisted of only the Cordova location and had an 

intermediate amount of isolation recovery (45 isolates) with Pythium spp. being the 

dominant pathogen isolated (Figure 7).  
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Non-Seedling Disease Monitoring. The sensitive cultivar resulted in significantly 

higher SDS scores than the tolerant cultivar at both SDS evaluation timings. Within the 

sensitive cultivar, mean incidence (DI) was 7.0% with mean severity (DS) of 44.0 

resulting in a mean index (DX) of 34.9 compared to within the tolerant cultivar where DI 

was 5.5%, DS was 7.5, which resulted in a DX of 4.6 (P < 0.05). At Auburn, the sensitive 

cultivar resulted in significantly higher stem canker incidence than the tolerant cultivar 

with 5.6% compared to 2.8% (P < 0.01). 

Grain Yield. Sulfentrazone and flumioxazin applications resulted in 455 kg/ha and 

406 kg/ha less than the no herbicide control (P < 0.01) at Tekamah (Tables 22 and 23). 

The fungicide seed treatment resulted in 167 kg/ha and 223 kg/ha more than the no seed 

treatment control (P < 0.05) at Auburn and Ord (Tables 22 and 23). The tolerant cultivar 

yielded 384–463 kg/ha more than the sensitive cultivar at Auburn and Chapman yet 

yielded 148–368 kg/ha less than the sensitive cultivar at Ord and Schuyler (P ≤ 0.01; 

Tables 22 and 23). Within the sensitive cultivar at Mead, the fungicide seed treatment 

resulted in 163 kg/ha more than no seed treatment (P = 0.03; Table 22, data not shown). 

There were no significant effects at Clearwater, Cordova, and Lincoln for yield (Table 

22). 

2.4 Discussion 

In this study, preemergence PPO-inhibitor herbicides resulted in greater phytotoxicity 

at the VE-V1 growth stages compared to the non-treated control at 7 of 9 locations. As 

was observed by the significant location effect (P < 0.0001), environment of each 

location was one factor determining the level of phytotoxicity resulting from PPO-
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inhibitor applications. Another factor that influenced the level of phytotoxicity observed 

at locations was herbicide rate. Specific rates for sulfentrazone and flumioxazin used in 

this study were selected based on soil characteristics of the 2016 locations and were 

chosen for consistency throughout experiments. Location specific rates were later 

determined using soil characteristic information such as soil type, organic matter, and pH. 

Based on this information, 7 of 9 locations received lower than the recommended label 

rate of sulfentrazone which resulted in less herbicide concentration available in the soil 

solution. Clearwater was the only location that received the recommended rate of 

sulfentrazone, while Chapman received a higher rate than recommended. The rate of 

flumioxazin used throughout the study was appropriate for all locations based on the 

label recommendations. The elevated rate of sulfentrazone delivered, in combination with 

precipitation events up to 7 days post-emergence, could help explain why phytotoxicity 

was observed at higher levels at Chapman than at any other location (Tables 2 and 4). 

Although precipitation events occurred after emergence at 4 of 9 locations, three of these 

locations (Auburn, Clearwater, and Cordova) received either the recommended rate or 

lower of sulfentrazone which reduced the risk of crop injury.  

PPO-inhibitor phytotoxicity was observed at 8 of 9 locations, yet sulfentrazone and 

flumioxazin applications had significant effects on plant population at only three 

locations (Table 5). At Chapman, where phytotoxicity was highest, PPO-inhibitors 

resulted in lower early season plant populations; however, there was no corresponding 

effect on yield. At Clearwater and Schuyler, where phytotoxicity was generally lower, 

PPO-inhibitor effects on plant populations were inconsistent and also had no effect on 
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yield. In contrast, sulfentrazone and flumioxazin applications resulted in phytotoxicity 

and lower yields at Tekamah without any significant effect on plant populations. This 

lack of effect on yield from changes in planting populations may be due to soybean plants 

being able to compensate for reduced populations and adjust to the growing space 

available (Carpenter & Board, 1997). In general, applications of PPO-inhibitors impacted 

plant growth through lower vigor, root biomass, and aboveground biomass at several of 

the locations that phytotoxicity was observed.  

PPO-inhibitors had either a significant effect or interactions with seed treatments and 

cultivars on root rot severity at 5 of 9 locations. Phytotoxicity due to PPO-inhibitors was 

not consistently associated with significant PPO-inhibitor effects on root rot severity. 

Root rot severity was greater with herbicide applications at Cordova and Chapman, yet 

these locations had either no observed phytotoxicity (Cordova) or highest phytotoxicity 

(25% ave. at Chapman). In general, phytotoxicity was observed at lower incidences at the 

three other locations where applications of either sulfentrazone or flumioxazin resulted in 

a significant effect on root rot severity.  

Rainfall events close to emergence was a useful factor in determining the effect of 

sulfentrazone and flumioxazin applications on root rot severity. Only at Lincoln and 

Mead, locations that had no rainfall through emergence, did sulfentrazone result in lower 

root rot severity. Conversely at Chapman and Cordova, locations with high amounts of 

rainfall through emergence, sulfentrazone and flumioxazin resulted in higher root rot 

severity with either sulfentrazone or flumioxazin applications (Tables 2 and 13). Higher 

root rot severities with herbicide applications were observed at locations that had 
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moderate to high levels of root rot (Chapman, Cordova, and Mead) as well as low levels 

(Lincoln and Schuyler). At Schuyler, isolation recovery was also low (16 isolates) and 

half of these were Rhizoctonia spp. This is similar to results observed in previous field 

studies performed by Bradley et al. (2002), which reported significant increases in 

Rhizoctonia root rot at low frequency across several locations when applications of non-

PPO-inhibitor preemergent herbicides were made. None of the locations that had 

significant herbicide effects on root rot severity resulted in corresponding effects on 

yield. Even at Chapman, where the PPO-inhibitor applications resulted in higher root rot 

severity and lower plant populations than the no herbicide control, there was no impact 

on yield. It is possible that the differences in root rot observed at Chapman were 

reflective of early season symptoms of SDS infection. This supports findings recently 

reported by Kandel et al. (2018), which did not result in any effect of preemergent PPO-

inhibitor herbicides on SDS severity or yield; and this research did not evaluate root rot 

levels in the experiments. 

Pathogen isolation in isolates from nearly 40% of the total plated root segments. 

Fusarium spp. were the most abundant isolated organisms throughout the entire 

experiment and were the most abundant at 6 of 9 locations. The large percentage of 

Fusarium spp isolates at locations with lower disease severity could mean that some of 

the Fusarium spp. present in the roots were non-pathogenic saprophytes. There did not 

appear to be any relationship between frequency of isolation and herbicide affect on root 

rot severity. In the “Low” root rot class (Clearwater, Lincoln, and Schuyler), where no 

one dominant pathogen was isolated consistently, both higher and lower root rot 
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severities were observed when herbicide applications were made, yet there were no 

affects on yield. In the “Moderate” root rot class (Auburn, Chapman, Mead, Ord, and 

Tekamah) where Fusarium spp. were the dominant pathogen isolated at 4 of the 5 

locations, sulfentrazone applications resulted in lower root rot severity at Mead while 

both PPO-inhibitors resulted in higher root rot at Chapman. Neither effects were reflected 

on yield. At 3 of 5 locations (Auburn, Mead, and Ord) where root rot levels were 

moderately high, the fungicide seed treatment did result in higher yield. At Cordova, the 

only location within the “High” root rot class, where Pythium spp. were the dominant 

pathogen isolated, PPO-inhibitors resulted in higher root rot severity yet showed no 

impact on yield.  

Fungicide seed treatment did not have a consistent effect on phytotoxicity as there 

were significant seed treatment interactions at only two locations. Results from these two 

locations differed, however, as fungicide seed treatment showed higher phytotoxicity at 

Ord yet lower at Schuyler, compared to no seed treatment. In general, the inconsistency 

and overall lack of fungicide seed treatment effects on phytotoxicity were expected as the 

fungicide active ingredients used in this study do not typically result in any phytotoxicity 

in soybean. Fungicide seed treatment showed increased plant populations and yield at 2 

of 9 locations (Auburn and Ord) (Figure 8) and differences in root rot severity due to 

fungicide were nearly significant (P = 0.06) at Auburn yet not significant at Ord (P = 

0.29; Table 14). Pathogenic inoculum can vary spatially within a plot and the selection of 

six plants from the outer two rows may not have been able to fully represent the disease 

levels throughout the entire plot at these locations. SDS was present at Chapman in 2016 
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and the fungicide seed treatment did not show a significant effect on plant population, 

root rot severity, or yield. The fungicides used as the seed treatment in this study are not 

recommended for control of F. virguliforme and would not be expected to affect infection 

and disease development (Jackson-Ziems et al., 2017).  

Cultivars showed differences in phytotoxicity at 4 of 9 locations and unexpectedly, 

the tolerant cultivar had higher levels of phytotoxicity than the sensitive at these 

locations. The tolerant cultivar had a higher field emergence score than the sensitive, 

which would have resulted in earlier emergence and increased risk of injury at locations 

with precipitation events near emergence (Dupont-Pioneer, 2018). Previous research has 

shown that when environmental conditions are adverse to crop growth, it is possible to 

observe phytotoxicity in cultivars with tolerance to PPO-inhibitors (Taylor-Lovell et al., 

2001; Li et al., 1999; Hulting et al., 2001). The observations of PPO-inhibitor injury 

occurring in both the sensitive and tolerant cultivars indicate the importance of screening 

cultivars for sensitivity to PPO-inhibitors. Cultivars resulted in inconsistent differences in 

plant populations as the sensitive cultivar was observed to have higher populations than 

the tolerant at 5 of 9 locations and only resulted in increased yield at Schuyler. The 

sensitive cultivar yielded more than the tolerant at Ord and there was a trend of higher 

populations for the sensitive cultivar at R8 growth stage, though non-significant (P = 

0.10). The tolerant cultivar yielded more than the sensitive at 2 of 9 locations (Auburn 

and Chapman) and were likely due to genetic differences between cultivars to late season 

non-seedling disease development. Stem canker was observed at low incidences at 

Auburn and the sensitive cultivar had significantly higher incidences. As was noted 
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earlier, SDS was observed throughout plots at Chapman and the sensitive cultivar had 

significantly higher incidence and severity of SDS which appeared to impact yield.  

Some of the results observed in this study suggest the potential for PPO-inhibitor 

applications to increase root rot severity. There is a need for additional research on the 

interactions of PPO-inhibitors, fungicide seed treatments, and cultivar sensitivity and 

their effects on soybean seedling diseases and yield. Further research should be located in 

fields with history of high levels of disease pressure, as we observed a response in root 

rot severity from PPO-inhibitor injury more often at locations with moderate to high 

amounts of root rot. Research should be conducted with high disease pressure under 

controlled conditions as well to produce varying levels of PPO-inhibitor injury, which 

will serve to better understand the effect of these herbicides in absence of injury. For 

future studies aiming to determine the effect of cultivar sensitivity to PPO-inhibitors on 

seedling disease, it would be beneficial to compare many sensitive and tolerant cultivars 

as a comparison of just two cultivars is inadequate. It is also critical for studies to isolate 

and identify the species and groups of pathogens present, as pathogen populations may 

vary significantly by location, which was demonstrated by this study.  
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2.6 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Symptoms of PPO-inhibitor injury include chlorosis 

and necrosis on soybean cotyledon and hypocotyl.  

Symptomatic seedlings indicated by arrows. Healthy seedling 

indicated by star.  
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Figure 2. (A) Phytotoxicity for herbicide treatments within seed treatments (P = 0.05) at Schuyler in 2016. (B) Phytotoxicity 

for herbicide treatments within cultivars (P < 0.01) at Ord in 2017. Vertical bars represent the mean for each parameter and 

lines extending from each bar represent the standard error of mean. Some chlorosis was observed in few control plots resulting 

in a non-zero standard error. Fungicide seed treatment (ST) consisted of mefenoxam (Apron XL®, Syngenta Crop Protection 

LLC, 0.64 mg a.i./seed) + fludioxonil (Maxim 4FS®, Syngenta Crop Protection LLC, 0.0076 mg a.i./seed) + sedaxane 

(Vibrance®, Syngenta Crop Protection LLC, 0.0076 mg a.i./seed). Phytotoxicity was rated visually for total plot incidence on a 

linear 0-100% scale from VE-V1 growth stages. *indicates significant difference at α = 0.05 level. 
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Figure 3. (A) Root rot severity for herbicide treatments within seed treatments (P < 0.01) at Cordova in 2016. (B) Root rot severity for 

herbicide treatments within seed treatments (P < 0.05) at Mead in 2017. Vertical bars represent the mean for each parameter and lines 

extending from each bar represent the standard error of mean. Fungicide seed treatment (ST) consisted of mefenoxam (Apron XL®, 

Syngenta Crop Protection LLC, 0.64 mg a.i./seed) + fludioxonil (Maxim 4FS®, Syngenta Crop Protection LLC, 0.0076 mg a.i./seed) + 

sedaxane (Vibrance®, Syngenta Crop Protection LLC, 0.0076 mg a.i./seed). Root Rot Severity was rated visually for total percent 

discolored area of six root systems of plants dug from each plot from V1-V4 growth stages. *indicates significant difference at α = 

0.05 level. 
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Figure 4. (A) Root rot severity for herbicide treatments within cultivars (P < 0.05) at Cordova in 2016. (B) Root rot severity for 

herbicide treatments within cultivars (P < 0.01) at Lincoln in 2017. Vertical bars represent the mean for each parameter and lines 

extending from each bar represent the standard error of mean. Root Rot Severity was rated visually for total percent discolored area of 

six root systems of plants dug from each plot from V1-V4 growth stages. *indicates significant difference at α = 0.05 level. 
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Figure 5. Root rot severity for herbicide treatments within seed treatments within the sensitive cultivar (P 

< 0.05) at Schuyler in 2016. Vertical bars represent the mean for each parameter and lines extending from 

each bar represent the standard error of mean. Root Rot Severity was rated visually for total percent 

discolored area of six root systems of plants dug from each plot from V1-V4 growth stages. *indicates 

significant difference at α = 0.05 level. 
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Figure 6. Proportions of fungal isolates at each Nebraska location in 2016 and 2017. The 

width of each bar corresponds to the relative number of isolates recovered at each location. 

The wider the bar, the more isolates recovered. A Pearson chi-square value of 136.82 was 

calculated from the contingency table analysis and the relationship between location and 

isolation frequency was determined to be significant (P < 0.0001). 
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Figure 7. Proportions of fungal isolates for the root rot severity classes: High (Cordova), Moderate (Auburn, Chapman, Mead, Ord, and 

Tekamah), and Low (Clearwater, Lincoln, and Schuyler). The width of each bar corresponds to the relative number of isolates recovered at 

each location. The wider the bar, the more isolates recovered. A Pearson chi-square value of 47.35 was calculated from the contingency 

table analysis and the relationship between root rot severity classes and isolation frequency was determined to be significant (P < 0.0001). 
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Figure 8. ST effect for plant population (1000 plants/ha) at VC-V2 growth stage and yield for Auburn (P = 0.04) and Ord (P < 0.0001 and 

P < 0.01, respectively) in 2017. Vertical bars represent the mean for each parameter and lines extending from each bar represent the 

standard error of mean. Populations were determined by counting the total live plants in 3.1 m of each of the two center rows of each plot. 

Counts from each row were combined to result in one value per plot. The center two rows of each plot were mechanically harvested at 

maturity. Yield data were calculated and adjusted for 13% moisture for comparison. Data*indicates significant difference at α = 0.05 level. 
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2.7 Tables 

 

 

 

 

 

 
               

Table 1. Descriptive information regarding soil type, organic matter, pH, planting date, tillage, irrigation, and harvest date for Nebraska research 

locations in 2016 and 2017. 

Year Locationa  Soil Type Organic Matter (%) pHc Planting Date Tillaged Irrigatione Harvest Date 

2016 

Chapman Loamy sand 1.2 7.1 5-May Yes Yes 5-Oct 

Clearwater Silt loam 1.3 6.9 13-May Yes Yes 18-Oct 

Cordova Silt loam 3.2 6.2 6-May No Yes 10-Oct 

Schuyler Loam 2.6 6.7 19-May No Yes 21-Oct 

2017 

Auburnb Silty clay loam 3.9 6.8 9-May No Yes 18-Oct 

Lincoln Silty clay loam 3.0 6.9 31-May No No 1-Nov 

Mead Silty clay loam 2.4 5.9 1-Jun No Yes 6-Nov 

Ord Clay loam 1.5 5.8 15-May Yes Yes 20-Oct 

Tekamah Silty clay loam 3.7 6.7 8-May No Yes 19-Oct 
a Previous crop was corn for all locations. 
b Auburn location had a cereal rye cover crop over winter that was terminated on 21-Apr. 
c pH was determined by adding 10 g of soil to 10 mL water. 
d Locations that received tillage were disked in the spring before planting. 
eAll Locations with irrigation were center pivot systems other than Mead which was furrow flood irrigation. Irrigation was not applied until after 

flowering at all locations except Ord which received 1.25 cm on 30-May. 
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Table 2. Soil temperature at planting, rainfall from planting to emergence, growing season rainfall, date of herbicide application, date of 

emergence, and record of precipitation events at Nebraska research locations in 2016 and 2017. 

Location 

(Year) 

Soil 

Temp.a 

(°C) 

Rainfall to 

Emergence  

(cm) 

Total 

Rainfall 

(cm) 

Herbicide 

Application 

Date 

DAPb Emergence Precipitation Events (DAE)c 

Chapman 

(2016) 
17.8 18.7 42.9 7-May 2 20-May -12 -10 -9 -4 +3 +5 +7 

Clearwater 

(2016) 
12.9 8.7 35.0 17-May 5 27-May -4 -2 +1 +3 . . . 

Cordova 

(2016) 
18.6 12.6 46.2 10-May 4 20-May -10 -9 -4 +3 +5 +6 +7 

Schuyler 

(2016) 
16.2 4.1 51.9 24-May 5 3-Jun -9 -8 -7 -6 -3   

Auburn 

(2017) 
21.9 8.3 51.8 11-May 2 22-May -6 -5 -4 -3 -2 0 +5 

Lincoln 

(2017) 
22.4 0.0 73.2 3-Jun 3 8-Jun . . . . . . . 

Mead  

(2017) 
21.6 0.0 69.2 3-Jun 2 8-Jun . . . . . . . 

Ord  

(2017) 
18.6 8.9 53.2 18-May 3 7-Jun -20 -19 -18 -9d -1 . . 

Tekamah 

(2017) 
19.9 11.7 56.6 12-May 4 22-May -6 -5 -4 -3 -2 . . 

aSoil Temp. = soil temperature recorded at 10 cm depth at planting.  
bNumber of days after planting (DAP) herbicide application was made at each location 
cRainfall events from planting to emergence at each location. Reported as days after emergence (DAE). Negative values indicate days before 

emergence after planting, positive values indicate days after emergence. Precipitation events greater than 1 cm are in bold.  
dOrd received 1.25 cm irrigation on 30-May. 
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Table 3. Phytotoxicity at VE-V1 growth stages recorded in Nebraska field experiments performed in 2016 and 2017 and the probability of rejecting null 

hypothesis (P > F) observed based on analysis of variance (ANOVA) tests for the effects of preemergence herbicides (Herbicide), seed treatment (ST), 

cultivar (Cultivar) and their interaction. 

   2016 2017 

 Factor   dfa Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 2 < 0.0001b < 0.0001 .c < 0.0001 < 0.0001 0.03 0.73 < 0.0001 < 0.01 

  

ST 1 0.95 0.10 . 0.03 0.31 0.22 0.53 0.37 0.21 

  

Herbicide X ST 2 0.98 0.40 . 0.05 0.45 0.49 0.19 0.18 0.64 

  

Cultivar 1 < 0.01 0.07 . 0.56 < 0.001 0.37 0.10 0.08 0.03 

  

Herbicide X Cultivar 2 0.09 0.33 . 0.32 0.12 0.67 0.72 < 0.01 0.32 

  

Cultivar X ST 1 0.23 0.83 . 0.73 0.61 0.97 0.45 0.03 0.91 

  

Herbicide X ST  

X Cultivar 2 0.40 0.98 . 0.08 0.14 0.08 0.89 0.08 0.85 
aDegrees of freedom (df) for each of the main effects and interactions. 
bsignificant effects and interactions in bold (α = 0.05). 
c "." denotes data were not recorded. No Phytotoxicity was observed at Cordova. 
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Table 4. Phytotoxicity (%) at VE-V1 growth stages in Nebraska field experiments in 2016 and 2017 and the effect of preemergence herbicide 

treatments (Herbicide), seed treatment (ST) and cultivar (Cultivar). 

    2016 2017 

Factor Treatment Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 

Control 
0.0 ba 0.1 c .b 0.0 1.7 c 3.1 b 5.2 2.5 3.9 b 

Sulfentrazone 
28.1 a 8.9 a . 12.5 15.3 a 6.7 a 6.3 13.4 15.2 a 

Flumioxazin 
24.7 a 4.8 b . 13.7 10.8 b 7.0 a 6.0 8.6 16.2 a 

ST 

Control 
17.7 5.8 . 11.2 9.9 6.4 6.2 7.5 13.5 

Fungicide 
17.5 3.5 . 6.1 8.6 4.8 5.5 8.8 10.0 

Cultivar Sensitive 
11.9 b 3.3 . 9.3 6.8 b 5.0 4.8 6.8 8.6 b 

  Tolerant 
23.3 a 5.9 . 8.0 11.7 a 6.2 6.8 9.5 14.9 a 

aValues followed by the same letter indicate no significant difference (P < 0.05) determined using Fisher's protected LSD. When interactions 

are significant (P < 0.05), significant main effects are not displayed (Table 3).  
b "." denotes data were not recorded. No phytotoxicity observed at Cordova. 
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Table 5. Plant populations recorded at VE-V1 growth stages in Nebraska field experiments performed in 2016 and 2017 and the probability of rejecting 

null hypothesis (P > F) observed based on analysis of variance (ANOVA) tests for the effects of preemergence herbicides (Herbicide), seed treatment 

(ST), cultivar (Cultivar) and their interaction. 

   2016 2017 

 Factor   dfa Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 2 0.07 0.04 0.23 0.50 0.17 0.88 0.74 0.14 0.54 

ST 1 0.77 0.70 0.63 0.92 0.04 0.33 0.87 < 0.0001 0.09 

Herbicide X ST 2 0.29 0.91 0.66 0.50 0.57 0.55 0.32 0.45 0.76 

  

Cultivar 1 < 0.001b < 0.0001 < 0.01 < 0.001 0.34 0.38 < 0.001 0.84 0.45 

  

Herbicide X Cultivar 2 0.25 0.67 0.64 0.72 0.61 0.24 0.86 0.61 0.02 

  

Cultivar X ST 1 0.10 0.45 0.35 0.92 0.45 0.06 0.03 0.81 0.47 

  

Herbicide X ST  

X Cultivar 2 0.67 0.27 0.61 0.58 0.78 0.58 0.52 0.88 0.47 
aDegrees of freedom (df) for each of the main effects and interactions. 
bsignificant effects and interactions in bold (α = 0.05). 

 

 

 

 

 

 

 

 



 
 

 
 

7
0 

           

Table 6. Plant populations (1000 plants/ha) at VE-V1 growth stages recorded in Nebraska field experiments performed in 2016 and 2017 and the effect of 

preemergence herbicide treatments (Herbicide), seed treatment (ST) and cultivar (Cultivar).  

    2016 2017 

Factor Treatment Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 

Control 160.0 229.2 a 220.1 179.8 205.1 278.4 290.9 156.7 226.2 

Sulfentrazone 143.7 210.0 b 220.2 177.1 184.3 278.0 285.1 151.8 225.8 

Flumioxazin 143.0 211.5 b 232.6 171.8 199.5 273.7 291.4 135.5 216.1 

ST 
Control 149.9 218.2 222.6 176.5 186.8 b 272.6 289.7 126.5 b 215.4 

Fungicide 148.0 215.6 226.0 175.9 205.7 a 280.8 288.6 169.5 a 230.0 

Cultivar 

 
Sensitive 162.3 aa 231.9 a 236.7 a 186.7 a 200.6 273.0 304.8 148.9 219.5 

Tolerant 135.5 b 201.7 b 211.9 b 165.8 b 192.0 280.3 273.5 147.1 225.9 
eValues followed by the same letter indicate no significant difference (P < 0.05). When interactions are significant (P < 0.05), significant main effects are 

not displayed (Table 5). 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

7
1 

                       
Table 7. Plant populations recorded at V2-V4 growth stages in Nebraska field experiments performed in 2016 and 2017 and the probability of rejecting 

null hypothesis (P > F) observed based on analysis of variance (ANOVA) tests for the effects of preemergence herbicides (Herbicide), seed treatment 

(ST), cultivar (Cultivar) and their interaction. 

   2016 2017 

 Factor   dfa Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 2 0.02b 0.50 0.91 0.03 0.18 0.25 0.14 0.66 0.90 

ST 1 0.74 0.66 0.61 0.28 < 0.01 0.50 0.31 < 0.001 0.91 

Herbicide X ST 2 0.38 0.91 0.95 0.47 0.67 0.22 0.42 0.64 0.27 

  

Cultivar 1 < 0.01 < 0.001 0.11 0.44 0.19 0.08 < 0.0001 0.80 0.73 

  

Herbicide X Cultivar 2 0.06 0.92 0.92 0.10 0.08 0.44 0.31 0.90 0.12 

  

Cultivar X ST 1 0.30 0.01 0.04 0.96 0.48 0.04 < 0.01 0.71 0.75 

  

Herbicide X ST  

X Cultivar 2 0.47 0.32 0.77 0.34 0.76 0.84 0.62 0.49 0.71 
aDegrees of freedom (df) for each of the main effects and interactions. 
bsignificant effects and interactions in bold (α = 0.05). 
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Table 8. Plant populations (1000 plants/ha) at V2-V4 growth stages recorded in Nebraska field experiments performed in 2016 and 2017 and the effect of 

preemergence herbicide treatments (Herbicide), seed treatment (ST) and cultivar (Cultivar). 

    2016 2017 

Factor Treatment Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 

Control 177.6 aa 195.4 205.3 188.3 ab 204.0 262.6 287.5 137.8 210.7 

Sulfentrazone 159.6 b 192.1 206.4 196.2 a 190.7 275.8 280.5 145.2 209.4 

Flumioxazin 157.0 b 187.3 203.3 180.8 b 205.7 263.4 293.6 135.6 205.7 

ST 
Control 165.8 192.9 203.4 186.0 189.9 b 264.9 284.5 121.9 b 208.1 

Fungicide 163.7 190.3 206.6 190.8 210.3 a 269.7 289.9 157.2 a 209.1 

Cultivar 

 
Sensitive 175.4 204.0 200.0 186.7 204.8 273.8 301.7 140.6 210.2 

Tolerant 154.1 179.2 210.0 190.2 195.5 260.8 272.7 138.4 207.0 
aValues followed by the same letter indicate no significant difference (P < 0.05). When interactions are significant (P < 0.05), significant main effects are 

not displayed (Table 7). 
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Table 9. Plant populations recorded at R8 growth stage in Nebraska field experiments performed in 2016 and 2017 and the probability of rejecting null 

hypothesis (P > F) observed based on analysis of variance (ANOVA) tests for the effects of preemergence herbicides (Herbicide), seed treatment (ST), 

cultivar (Cultivar) and their interaction. 

   2016 2017 

 Factor   dfa Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 2 0.39 0.91 0.38 0.37 0.87 0.61 0.31 0.56 0.23 

ST 1 0.82 0.62 0.70 0.48 0.02 0.06 0.28 < 0.001 0.42 

Herbicide X ST 2 0.78 0.88 0.81 0.60 0.26 0.30 0.46 0.34 0.25 

  

Cultivar 1 < 0.001b 0.13 < 0.01 < 0.0001 0.06 < 0.01 < 0.01 0.10 < 0.01 

  

Herbicide X Cultivar 2 0.06 0.13 0.95 0.41 0.49 0.12 0.76 0.89 0.08 

  

Cultivar X ST 1 0.35 0.35 0.29 0.14 0.56 0.21 0.03 0.87 0.09 

  

Herbicide X ST  

X Cultivar 2 0.98 0.12 0.79 0.99 < 0.01 0.95 0.74 0.44 0.74 
aDegrees of freedom (df) for each of the main effects and interactions. 
bsignificant effects and interactions in bold (α = 0.05). 
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Table 10. Plant populations (1000 plants/ha) at R8 growth stage recorded in Nebraska field experiments performed in 2016 and 2017 and the effect of 

preemergence herbicide treatments (Herbicide), seed treatment (ST) and cultivar (Cultivar). 

    2016 2017 

Factor Treatment Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 

Control 160.8 205.3 194.0 170.7 185.3 226.0 240.9 132.1 204.6 

Sulfentrazone 151.1 205.1 194.6 169.7 181.4 231.3 236.4 125.8 191.2 

Flumioxazin 153.3 202.6 204.1 162.9 184.9 228.9 249.5 124.9 198.7 

ST 
Control 154.4 205.8 198.9 169.5 176.1 224.6 246.1 116.4 b 195.6 

Fungicide 155.7 202.9 196.3 166.0 191.6 232.9 238.4 138.8 a 200.7 

Cultivar 

 
Sensitive 166.1 aa 208.8 209.2 a 188.2 a 190.2 235.1 a 254.6 132.7 208.2 a 

Tolerant 144.0 b 199.9 186.0 b 147.3 b 177.5 222.4 b 229.9 122.5 188.2 b 
aValues followed by the same letter indicate no significant difference (P < 0.05). When interactions are significant (P < 0.05), significant main effects are 

not displayed (Table 9). 
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Table 11. Vigor at V2 - V4 growth stages recorded in Nebraska field experiments performed in 2016 and 2017 and the probability of rejecting null 

hypothesis (P > F) observed based on analysis of variance (ANOVA) tests for the effects of preemergence herbicides (Herbicide), seed treatment (ST), 

cultivar (Cultivar) and their interaction. 

   2016 2017 

 Factor   dfa Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 2 < 0.001b < 0.0001 0.46 < 0.0001 < 0.001 0.89 0.86 0.23 < 0.01 

ST 1 0.58 0.35 0.57 0.76 < 0.001 0.49 0.48 < 0.0001 0.05 

Herbicide X ST 2 0.05 0.35 0.30 0.70 0.12 0.31 0.43 0.98 0.34 

  

Cultivar 1 0.78 0.05 0.21 0.44 < 0.0001 0.42 0.08 0.06 0.34 

  

Herbicide X Cultivar 2 0.10 < 0.01 0.06 0.59 < 0.01 0.21 0.19 0.35 0.62 

  

Cultivar X ST 1 0.27 0.61 0.18 0.44 0.03 0.91 0.90 0.80 0.34 

  

Herbicide X ST  

X Cultivar 2 0.87 0.10 0.30 0.70 0.95 0.89 0.50 0.42 0.09 
aDegrees of freedom (df) for each of the main effects and interactions. 
bsignificant effects and interactions in bold (α = 0.05). 
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Table 12. Vigor (%) at V2-V4 growth stages recorded in Nebraska field experiments performed in 2016 and 2017 and the effect of preemergence 

herbicide treatments (Herbicide), seed treatment (ST) and cultivar (Cultivar). 

    2016 2017 

Factor Treatment Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 

Control 78.1 84.7 75.4 85.8 aa 68.8 68.2 68.8 53.8 67.5 a 

Sulfentrazone 61.3 66.3 70.6 76.9 b 58.6 69.1 66.9 53.1 54.1 b 

Flumioxazin 64.4 73.8 73.8 58.8 c 60.6 67.4 66.8 47.5 56.6 b 

ST 
Control 67.1 74.0 74.2 74.2 59.0 67.3 68.7 43.1 b 55.8 b 

Fungicide 68.8 75.8 72.4 73.5 66.4 69.3 66.3 59.8 a 62.9 a 

Cultivar 

 
Sensitive 68.3 72.9 75.3 74.7 57.0 67.1 64.4 48.3 57.7 

Tolerant 67.5 76.9 71.3 72.9 68.4 69.4 70.5 54.6 61.0 
aValues followed by the same letter indicate no significant difference (P < 0.05). When interactions are significant (P < 0.05), significant main effects are 

not displayed (Table 11). 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

7
7 

                       
Table 13. Root rot severity recorded in Nebraska field experiments performed in 2016 and 2017 and the probability of rejecting null hypothesis (P > F) 

observed based on analysis of variance (ANOVA) tests for the effects of preemergence herbicides (Herbicide), seed treatment (ST), cultivar (Cultivar) 

and their interaction. 

   2016 2017 

 Factor   dfa Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 2 < 0.01b 0.18 < 0.001 0.03 0.68 0.37 0.41 0.69 0.17 

ST 1 0.74 0.17 < 0.001 0.16 0.06 0.82 0.85 0.29 0.50 

Herbicide X ST 2 0.24 0.69 < 0.01 0.25 0.67 0.73 0.02 0.50 0.74 

  

Cultivar 1 0.25 0.17 0.02 0.07 0.03 0.10 0.39 0.26 < 0.01 

  

Herbicide X Cultivar 2 0.36 0.65 0.03 0.67 0.60 < 0.01 0.77 0.22 0.35 

  

Cultivar X ST 1 0.74 0.82 0.85 0.60 0.51 0.45 0.40 0.23 0.87 

  

Herbicide X ST  

X Cultivar 2 0.32 0.08 0.93 0.03 0.15 0.75 0.33 0.77 0.53 
aDegrees of freedom (df) for each of the main effects and interactions. 
bsignificant effects and interactions in bold (α = 0.05). 
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Table 14. Root rot severity (%) at V1-V4 growth stages recorded in Nebraska field experiments performed in 2016 and 2017 and the effect of 

preemergence herbicide treatments (Herbicide), seed treatment (ST) and cultivar (Cultivar). 

    2016 2017 

Factor Treatment Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 

Control 14.7 ba 7.8 19.5 7.6 16.9 10.3 18.1 14.3 14.1 

Sulfentrazone 24.7 a 10.6 32.6 9.5 19.7 10.1 17.5 12.5 13.4 

Flumioxazin 21.3 a 9.8 36.6 12.4 18.4 12.1 21.8 14.4 18.8 

ST 
Control 19.8 10.4 35.8 8.8 20.8 11.0 18.9 14.8 16.3 

Fungicide 20.6 8.4 23.3 10.8 15.8 10.7 19.4 12.7 14.6 

Cultivar 

 
Sensitive 18.8 8.5 33.6 8.5 21.3 a 9.8 17.9 12.6 19.4 a 

Tolerant 21.7 10.3 25.5 11.1 15.4 b 11.9 20.4 14.9 11.5 b 
aValues followed by the same letter indicate no significant difference (P < 0.05). When interactions are significant (P < 0.05), significant main effects are 

not displayed (Table 13). 
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Table 15. Root biomass at V1-V4 growth stages recorded in Nebraska field experiments performed in 2016 and 2017 and the probability of rejecting null 

hypothesis (P > F) observed based on analysis of variance (ANOVA) tests for the effects of preemergence herbicides (Herbicide), seed treatment (ST), 

cultivar (Cultivar) and their interaction. 

   2016 2017 

 Factor   dfa Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 2 0.27 0.12 0.10 0.43 0.28 0.04 0.68 0.87 0.40 

ST 1 0.60 0.26 0.01 0.53 0.07 < 0.01 0.16 0.37 0.43 

Herbicide X ST 2 0.58 0.06 0.87 0.47 0.29 0.81 0.17 0.97 0.10 

  

Cultivar 1 0.32 0.06 0.75 0.29 0.66 0.23 0.78 0.28 0.27 

  

Herbicide X Cultivar 2 0.05b 0.03 0.77 0.57 0.45 0.09 0.87 0.50 0.54 

  

Cultivar X ST 1 0.49 0.70 0.65 0.12 0.31 0.76 1.0 0.37 0.64 

  

Herbicide X ST  

X Cultivar 2 0.86 0.80 0.55 0.05 0.46 0.64 0.94 0.79 0.05 
aDegrees of freedom (df) for each of the main effects and interactions. 
bsignificant effects and interactions in bold (α = 0.05). 
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Table 16. Root biomass (g) at V1-V4 growth stages recorded in Nebraska field experiments performed in 2016 and 2017 and the effect of preemergence 

herbicide treatments (Herbicide), seed treatment (ST) and cultivar (Cultivar). 

    2016 2017 

Factor Treatment Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 

Control 7.8 11.9 5.9 12.2 4.0 3.0 ab 4.2 5.8 3.6 

Sulfentrazone 7.3 10.7 5.6 12.1 3.4 3.4 a 4.0 5.5 3.4 

Flumioxazin 7.4 11.2 5.4 11.5 3.6 2.6 b 4.3 5.5 3.2 

ST 
Control 7.6 11.0 5.9 aa 11.8 3.4 3.4 a 4.0 5.8 3.3 

Fungicide 7.4 11.5 5.4 b 12.1 4.0 2.6 b 4.4 5.4 3.5 

Cultivar 

 
Sensitive 7.6 10.8 5.6 11.7 3.8 2.8 4.2 5.3 3.3 

Tolerant 7.4 11.7 5.7 12.2 3.6 3.2 4.1 5.8 3.5 
aValues followed by the same letter indicate no significant difference (P < 0.05). When interactions are significant (P < 0.05), significant main effects are 

not displayed (Table 15). 
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Table 17. Aboveground biomass recorded at V1-V4 growth stages in Nebraska field experiments performed in 2016 and 2017 and the probability of 

rejecting null hypothesis (P > F) observed based on analysis of variance (ANOVA) tests for the effects of preemergence herbicides (Herbicide), seed 

treatment (ST), cultivar (Cultivar) and their interaction. 

   2016 2017 

 Factor   dfa Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 2 0.04b 0.72 0.11 0.46 0.04 0.60 0.60 0.36 0.02 

ST 1 0.76 0.75 0.01 0.96 < 0.001 0.19 0.33 1.0 0.43 

Herbicide X ST 2 0.12 0.04 0.41 0.49 0.53 0.64 0.05 0.22 0.07 

  

Cultivar 1 < 0.01 < 0.001 0.04 0.02 < 0.001 < 0.0001 < 0.0001 < 0.001 < 0.0001 

  

Herbicide X Cultivar 2 0.12 < 0.01 0.80 0.95 0.69 0.58 0.60 0.37 0.99 

  

Cultivar X ST 1 0.20 0.60 0.27 0.20 0.16 0.02 0.87 0.81 0.27 

  

Herbicide X ST  

X Cultivar 2 0.78 0.19 0.09 0.02 0.45 0.22 0.27 0.77 0.48 
aDegrees of freedom (df) for each of the main effects and interactions. 
bsignificant effects and interactions in bold (α = 0.05).  
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Table 18. Aboveground biomass (g) at V1-V4 growth stages recorded in Nebraska field experiments performed in 2016 and 2017 and the effect of 

preemergence herbicide treatments (Herbicide), seed treatment (ST) and cultivar (Cultivar). 

    2016 2017 

Factor Treatment Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 

Control 18.0 aba 43.5 24.2 66.1 6.4 a 12.2 14.6 11.0 8.7 

Sulfentrazone 15.8 b 42.1 23.1 62.8 5.3 b 11.6 15.3 12.3 7.4 

Flumioxazin 18.7 a 44.4 21.5 60.9 6.6 a 11.5 14.9 11.6 8.9 

ST 
Control 17.4 43.7 24.4 a 63.2 5.3 b 12.2 14.7 11.6 8.2 

Fungicide 17.6 43.0 21.6 b 63.3 6.8 a 11.4 15.2 11.6 8.5 

Cultivar 

 
Sensitive 15.9 b 38.3 21.8 b 58.9 5.3 b 10.1 13.1 b 10.1 b 7.2 b 

Tolerant 19.1 a 48.3 24.2 a 67.6 6.9 a 13.4 16.7 a 13.2 a 9.5 a 
aValues followed by the same letter indicate no significant difference (P < 0.05). When interactions are significant (P < 0.05), significant main effects are 

not displayed (Table 17). 
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Table 19. Plant height at V1-V4 growth stages recorded in Nebraska field experiments performed in 2017 and the 

probability of rejecting null hypothesis (P > F) observed based on analysis of variance (ANOVA) tests for the effects of 

preemergence herbicides (Herbicide), seed treatment (ST), cultivar (Cultivar) and their interaction. 

 Factor   dfa Auburn Lincoln Mead Ord Tekamah 

Herbicide 2 0.71 0.75 0.67 0.06 0.55 

ST 1 0.65 0.38 0.34 0.18 0.46 

Herbicide X ST 2 0.43 0.85 0.13 0.62 0.29 

  

Cultivar 1 < 0.0001b < 0.0001 < 0.0001 0.03 < 0.0001 

  

Herbicide X Cultivar 2 0.27 0.72 0.62 0.27 0.89 

  

Cultivar X ST 1 0.64 0.40 0.29 0.12 0.58 

  

Herbicide X ST  

X Cultivar 2 0.31 0.63 0.18 0.27 1.0 
aDegrees of freedom (df) for each of the main effects and interactions. 
bsignificant effects and interactions in bold (α = 0.05). 
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Table 20.  Plant height (cm) at V1-V4 growth stages recorded in Nebraska field experiments performed in 2017 

and the effect of preemergence herbicide treatments (Herbicide) seed treatment (ST) and cultivar (Cultivar). 

Factor Treatment Auburn Lincoln Mead Ord Tekamah 

Herbicide 

Control 35.4 53.1 58.5 15.1 48.4 

Sulfentrazone 34.8 51.7 58.7 14.2 46.8 

Flumioxazin 34.7 52.6 59.6 13.7 48.3 

ST 
Control 34.8 53.2 58.4 14.0 48.3 

Fungicide 35.2 51.8 59.4 14.7 47.3 

Cultivar 

 
Sensitive 31.4 ba 45.4 b 50.9 b 13.8 b 41.6 b 

Tolerant 38.6 a 59.6 a 67.0 a 14.9 a 54.0 a 
aValues followed by the same letter indicate no significant difference (P < 0.05). When interactions are 

significant (P < 0.05), significant main effects are not displayed (Table 19). 
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Table 21. Total number of isolates recovered from symptomatic roots from V1-V4 growth stages at each Nebraska filed experiment location in 2016 

and 2017.  

  2016 2017  

 Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah All 

Fusarium 

spp. 28 14 15 4 25 12 56 23 9 186 

Pythium 

spp. 7 9 30 6 8 7 13 10 21 111 

Rhizoctonia 

spp. 1 0 0 8 1 1 1 0 0 12 

Total (n): 36 23 45 16 34 20 70 33 30 309 
aFungal growth characterized into three categories: Fusarium spp., Rhizoctonia spp., Pythium spp., using morphological identification characteristics 

outlined by Watanabe (1937). 
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Table 22. Yield recorded in Nebraska field experiments performed in 2016 and 2017 and the probability of rejecting null hypothesis (P > F) observed 

based on analysis of variance (ANOVA) tests for the effects of preemergence herbicides (Herbicide), seed treatment (ST), cultivar (Cultivar) and their 

interaction. 

   2016 2017 

 Factor   dfa Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 2 0.54 0.06 0.07 0.94 0.22 0.11 0.78 0.81 < 0.01 

ST 1 0.68 0.63 0.99 0.54 0.04 0.67 0.49 < 0.01 0.35 

Herbicide X ST 2 0.88 0.77 0.79 0.11 0.20 0.49 0.60 0.93 0.68 

  

Cultivar 1 < 0.01b 0.83 0.25 0.01 < 0.0001 0.38 < 0.01 < 0.0001 0.47 

  

Herbicide X Cultivar 2 0.51 0.77 0.57 0.45 0.18 0.49 0.32 0.61 0.51 

  

Cultivar X ST 1 0.55 0.52 0.83 0.32 0.52 0.31 0.03 0.71 0.37 

  

Herbicide X ST  

X Cultivar 2 0.98 0.17 0.85 0.64 0.49 0.69 0.31 0.65 0.23 
aDegrees of freedom (df) for each of the main effects and interactions. 
bsignificant effects and interactions in bold (α = 0.05). 
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Table 23. Yield (kg/ha) recorded in Nebraska field experiments performed in 2016 and 2017 and the effect of preemergence herbicide treatments 

(Herbicide), seed treatment (ST) and cultivar (Cultivar).  

    2016 2017 

Factor Treatment Chapman Clearwater Cordova Schuyler Auburn Lincoln Mead Ord Tekamah 

Herbicide 

Control 3,739 4,670 4,007 4,850 4,678 3,617 4,061 4,014 5,039 a 

Sulfentrazone 3,876 4,540 4,285 4,826 4,570 3,522 4,024 3,985 4,584 b 

Flumioxazin 3,747 4,666 4,208 4,838 4,513 3,476 4,070 3,951 4,633 b 

ST 
Control 3,764 4,637 4,167 4,821 4,504 b 3,526 4,032 3,872 b 4,703 

Fungicide 3,810 4,614 4,166 4,856 4,671 a 3,550 4,071 4,095 a 4,801 

Cultivar 

 
Sensitive 3,595 ba 4,620 4,109 4,912 a 4,356 b 3,562 3,968 4,167 a 4,790 

Tolerant 3,979 4,631 4,224 4,764 b 4,819 a 3,514 4,136 3,799 b 4,714 
aValues followed by the same letter indicate no significant difference (P < 0.05). When interactions are significant (P < 0.05), significant main effects are 

not displayed (Table 22). 
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Chapter Three 

Effect of preemergent protoporphyrinogen oxidase inhibitor 

herbicides on seedling disease caused by Fusarium solani 

under controlled conditions 

 

 

3.1  Introduction 

Seedling diseases of soybean [Glycine max (L.) Merr.] are caused by several 

pathogens including Fusarium spp., Rhizoctonia solani, Pythium spp. and Phytophthora 

sojae and can result in significant annual yield losses in the North Central Region of the 

United States. Seedling diseases are considered the second most important soybean 

disease in the United States, causing over a four year span an average annual loss of over 

1.3 million metric tons (Koenning & Wrather, 2010). Disease can be caused by one 

pathogen alone or in combination as a multiple pathogen disease complex (Datnoff & 

Sinclair, 1988). Of the 22 Fusarium spp. that have been isolated from soybean plants, F. 

acuminatum, F. graminearum, F. oxysporum, and F. solani are the most common isolated 

species from soybean roots in North America (Nelson, 2015). Symptoms of seedling 

disease caused by Fusarium spp. include seed decay, brown discoloration of cortical and 

vascular root tissues, stunting of plants, wilting of foliage, and plant death. 
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Protoporphyrinogen oxidase-inhibitors (PPO-inhibitors) are commonly used 

preemergent herbicides in soybeans due to their effective control of several broadleaf 

weeds. These herbicides have the potential to injure soybean, especially in cool and wet 

conditions (Taylor-Lovell et al., 2001; Hager et al., 2002; Reiling et al., 2006; Legleiter et 

al., 2009). Symptoms of PPO-inhibitor injury include callused tissue on the hypocotyl 

and the stem near the soil surface, phytotoxic chlorosis and necrosis of cotyledon and leaf 

tissues (Figure 1), and shortened internodal length resulting in stunted plants (Li et al., 

1999; Hulting et al., 2001). Examples of common preemergent PPO-inhibitors used in 

soybean include flumioxazin, saflufenacil, and sulfentrazone.  

Cool soil temperatures (< 15 °C) and wet soil conditions that favor PPO-inhibitor 

injury are also conducive for development of seedling disease caused by Fusarium spp. 

(Bainbridge, 1970; Taylor-Lovell et al., 2001; Nelson, 2015). Multiple studies have 

investigated interactions between PPO-inhibitors and Fusarium spp., R. solani, and 

Pythium spp.; however, only Fusarium virguliforme O’Donnell & T. Aoki [causal 

pathogen of sudden death syndrome (SDS)] and R. solani have been studied in soybean 

under controlled conditions. Sonogo et al. (2000) observed applications of lactofen, a 

postemergent PPO-inhibitor, decrease SDS severity compared to the no herbicide control 

in greenhouse experiments. Alternatively, Bradley et al. (2002) observed that multiple 

rates of acifluorfen, a postemergent PPO-inhibitor, increased seedling disease severity of 

R. solani on soybean plants in greenhouse experiments. Due to the limited research 

investigating disease responses to PPO-inhibitors, there is a gap in understanding the 

effect of these herbicides on soybean seedling disease incidence and severity. Thus, there 

is a need for critical evaluation of the effects of preemergent PPO-inhibitors on seedling 
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disease caused by Fusarium spp. other than F. virguliforme under controlled conditions. 

F. solani was selected as the pathogen for this experiment due to the relatively large 

representation of Fusarium spp. among the isolates recovered from the field study portion 

of this research (Chapter Two). 

Therefore, the objective of this research was to determine the effects of soil-applied 

PPO-inhibitor herbicides on soybean seedling disease caused by Fusarium solani under 

controlled conditions. 

3.2  Materials and Methods 

3.2.1 Experiment design and background 

Three experimental runs were conducted consecutively under controlled conditions in 

a University of Nebraska greenhouse in Lincoln, Nebraska from December 10, 2018 - 

January 25, 2019.  

Experiments were arranged as a randomized complete block design with six 

replications of each treatment. Treatments consisted of a 2-way factorial arrangement of 

preemergence herbicide program by fungal inoculation. The experiment was replicated 

three times with Experiment 1 planted on 12-10-18, Experiment 2 planted on 1-4-19, and 

Experiment 3 planted on 1-8-19. There were three herbicide programs which consisted of 

6X the labeled rate of sulfentrazone (Spartan® 4F, FMC Corporation, Philadelphia, PA, 

3.36 L/ha; 0.016 mg a.i.), 6X the labeled rate of flumioxazin (Valor® SX, Valent U.S.A 

LLC, Walnut Creek, CA, 1050 g/ha; 0.54 mg a.i.), and a no herbicide treatment control. 

The elevated herbicide rates were selected in order to achieve plant injury symptoms 

typical of those observed in field experiments conducted in Nebraska in previous years 
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(Chapter Two). Herbicide treatments were applied 3 days after planting (DAP) to the soil 

surface of each experimental unit within a spray chamber (Research Track Sprayer; 

DeVries, Hollandale, MN) in 140 L/ha carrier volume using a TP8001E flat-fan nozzle 

tip (TeeJet Technologies, Spraying Systems Co., Wheaton, IL) at a pressure of 241 kPa. 

There were two inoculum treatments including a no inoculum control (None) and 

inoculum of F. solani.  

Non-seed treated seeds of a PPO-inhibitor sensitive soybean cultivar (‘Pioneer 

P22T41R2’; Dupont-Pioneer, 2018) were planted into square plastic pots (10-cm width 

and 9-cm height). Pots were first filled with 500 mL of coarse vermiculite to 4-cm height 

(PALMETTO VERMICULITE Co. Inc., Woodruff, SC) and then if inoculated, 5.5 g/pot 

of inoculum was spread as an even layer on top of the vermiculite. Inoculum consisted of 

sterilized sorghum seed colonized by a Nebraska isolate of F. solani and was prepared 

using previously established methods (de Farias Neto, et al., 2006). Then, 100 mL (4-cm) 

of sterilized silty clay (16% sand, 43% silt, and 41% clay) soil with 2.7% organic matter 

and pH of 7.0 was added. Four seeds were sown into the soil at a depth of 3-cm resulting 

in the inoculum layer 1-cm below the seeds. The greenhouse was maintained at 22° C 

and daily temperatures were ± 2° C throughout the experiments based on air temperature 

recording at the top of pot level using a WatchDog data logger Model 450 (Spectrum 

Technologies, Inc., Plainfield, IL). Natural day length was approximately 9-10-h, and 

supplemental lighting was applied to establish 12-h daylength using 650 watt Lumigrow 

LED light fixtures (Lumigrow, Inc. Emeryville, CA). 25 mL of non-fertilized tap water 

was applied to the soil surface of each pot daily using a squeeze bottle.  

3.2.2 Data collection 
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At 10 days after planting (DAP) two plants were selected randomly from each 

experimental unit for data collection (phytotoxicity severity, plant height, root rot 

severity, and root biomass), as not every experimental unit had successful germination of 

all four seeds. At the time of root evaluations all plants were gently removed from the 

vermiculite-soil mix and washed free of debris. The two randomly selected plants were 

retained and means of each response variable were averaged for evaluations while 

additional plants from each pot were discarded.  

Phytotoxicity (PPO-inhibitor Injury). Shoot phytotoxicity severity was rated on a 

continuous 0-100% scale in all experimental units at 10 DAP when plants were between 

the cotyledon (VE) and unifoliate (VC) growth stages (Fehr et al., 1971). Typical 

phytotoxicity symptoms associated with PPO-inhibitor injury include chlorosis and 

necrosis on the hypocotyl and cotyledons (Figure 1).  

Plant Height. Plant height (cm) was measured in all experimental units at 10 DAP 

between the VE - VC growth stages. Heights were measured from the soil surface to the 

uppermost node (cotyledon or unifoliate).  

Root Rot Severity. Root rot severity was rated in all experimental units at the 

termination of each experiment, 14 DAP, between the VE - V1 growth stages. The root 

systems were gently removed from the vermiculite-soil mix and washed free of debris. 

Each root system was visually evaluated for total root rot severity which is the total 

percent area (0-100% continuous scale) of the root system that is discolored with the 

typical browning symptoms of root rot.  
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Root Biomass. The roots of two representative plants from each experimental unit 

were cut from the aboveground portion at the cotyledon scar at 14 DAP and a collective 

fresh root biomass (g) was recorded for each experimental unit. 

3.2.3 Data analysis 

Analysis of variance was performed using PROC GLIMMIX in SAS version 9.4 

(SAS Institute Inc., Cary, NC) to determine the effect of herbicide program (Herbicide), 

Inoculation, and their interactions on response variables. Herbicide program and 

Inoculation were treated as fixed effects while replication was nested within experiment 

and treated as a random factor. Mean separation was performed using Fisher’s protected 

LSD at α = 0.05. 

3.3  Results 

Phytotoxicity (PPO-inhibitor Injury). Phytotoxic symptoms occurred at variable 

levels in all three experiments with the highest levels observed in Experiment 1. 

Although seldom observed, mild chlorosis not associated with herbicide injury was 

observed in some of the no herbicide control pots. Sulfentrazone and flumioxazin 

applications resulted in phytotoxicity 15.8–17.6% higher than the no herbicide control (P 

< 0.0001) (Tables 1 and 2).  

Plant Height. Plant heights were not recorded for Experiment 1. Applications of 

sulfentrazone and flumioxazin slowed the growth of the soybeans and significantly 

affected plant height in Experiments 2 and 3. Applications of sulfentrazone resulted in 

64–66% reduced plant heights compared to the no herbicide control within both 

inoculation treatments (P < 0.02; Figure 2). Applications of flumioxazin resulted in 23–



94 
 

 
 

37% reduced plant heights compared to the no herbicide control within both inoculation 

treatments (P < 0.02; Figure 2).  

Root Rot Severity. Root rot severity was fairly uniform across the three experiments 

with mean root rot severity ratings ranging from 32.1–38.9% in the F. solani inoculated 

pots (data not shown). Necrosis appearing similar to root rot symptoms, were observed at 

low levels (2.4–3.3%) on roots in the non-inoculated pots in all experiments (data not 

shown). Applications of sulfentrazone resulted in 9.2 and 12.0% more root rot severity 

compared the no herbicide control and flumioxazin respectively, across F. solani 

inoculated pots (P < 0.05) while there were no differences across non-inoculated pots 

(Figure 3). The F. solani inoculated pots resulted in 32.6% more root rot severity 

compared to the non-inoculated pots (P < 0.0001) (Tables 1 and 2).  

Root Biomass. Applications of flumioxazin and sulfentrazone resulted in 29 and 41% 

less root biomass respectively, compared to the no-herbicide control across non-

inoculated pots (P < 0.01; Figure 4). Across inoculated pots, applications of sulfentrazone 

resulted in 25% less root biomass compared to the no herbicide control (P < 0.01; Figure 

4).  

3.4  Discussion 

Overall, sulfentrazone and flumioxazin resulted in significant plant injury on 

hypocotyls and cotyledons as well as significant reductions in plant heights throughout 

these experiments. This was expected as 6X the labeled rates of both sulfentrazone and 

flumioxazin were used to ensure consistent herbicide injury. Although soybeans under 

typical production practices would not receive such a high dose of these herbicides, the 
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symptoms observed throughout the experiments were similar to levels of PPO-inhibitor 

injury witnessed in soybean under adverse environmental conditions in Nebraska.  

In general, higher amounts of injury and larger reductions in plant heights were 

observed when sulfentrazone was applied compared to flumioxazin applications. This 

could be related to the measure of sensitivity of the cultivar used in this study, which was 

rated to sulfentrazone specifically. Although flumioxazin is also a preemergent PPO-

inhibitor used in soybean, these ratings have no indication of the relative sensitivity to 

this herbicide. Reductions in plant heights appeared to be related to slower plant growth. 

At the time of plant height evaluations, flumioxazin treatments were beginning to unfurl 

the unifoliate leaves (VC), sulfentrazone treatments were only at the cotyledon stage 

(VE), and the no herbicide control were at full VC. Sulfentrazone and flumioxazin 

applications reduced root biomass in all three experiments demonstrating that these 

herbicides at elevated rates can negatively impact root growth.  

Although flumioxazin and sulfentrazone applications both resulted in injury and plant 

height reductions, only sulfentrazone resulted in higher root rot severity compared to the 

no herbicide control. This indicates a negative effect on seedling disease development 

caused by this particular F. solani isolate, when PPO-inhibitor injury occurs under 

controlled conditions.  

The method for inoculation used in this study proved to be effective at producing 

consistent levels of disease throughout the three experiments and could be adopted for 

future greenhouse research. Infection by F. solani can result in reduced plant heights due 

to slowing growth and emergence. Root biomasses varied by experiment yet there was a 
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general trend of reduced root biomass in the inoculated pots compared to the non-

inoculated pots.  

Overall, PPO-inhibitors and seedling disease caused by F. solani had negative 

impacts on soybean seedling health and vigor under controlled conditions. There is some 

indication that injury induced by sulfentrazone can increase root rot in soybean; however, 

the evidence presented in this research is not conclusive that field applied rates of 

sulfentrazone and flumioxazin will influence seedling disease development.  

Additional research on PPO-inhibitor herbicide effects on soybean seedling diseases 

would benefit soybean producers as they continue to face challenges associated with 

managing weeds and seedling diseases. Further research should utilize variable rates of 

herbicides to obtain different levels of injury under controlled conditions. This would 

help researchers understand if there is a threshold level of injury necessary for an increase 

in root rot. There is also a need to determine if PPO-inhibitors can increase root rot 

without visible injury occurring. In the field component of this research (Chapter Two), 

increases to root rot severity were observed at various incidences of PPO-inhibitor injury 

even when no injury occurred.  

Seedling disease tends to be variable throughout soybean fields due to disease 

pressure not being uniformly distributed. Further research on the effects of high amounts 

of PPO-inhibitor injury on several levels of disease pressure under controlled conditions 

should be conducted to better understand this interaction.  

Additional research conducted in high disease pressure environments at the field level 

would benefit the understanding of how the observed interactions can impact yield. 

Although this research investigated impacts on seedling disease caused by F. solani 
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alone, it is often the case that producers have several seedling disease causing pathogens 

in their fields. Therefore, it would be of benefit to conduct this type of research both 

under controlled conditions and in naturally infested fields with more than one of the 

seedling disease causing pathogens to mimic a scenario representative of what producers’ 

face in Nebraska.  
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3.6  Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Symptoms of PPO-inhibitor injury include chlorosis 

and necrosis on soybean cotyledon and hypocotyl.  

Symptomatic seedlings indicated by arrows. Healthy seedling 

indicated by star.  
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Figure 2.  Herbicide X Inoculation interaction (P < 0.02) for plant height for 

Experiments 2 and 3. Vertical bars represent the mean for each parameter and lines 

extending from each bar represent the standard error of mean. Plant height (cm) was 

rated in all experimental units at one timing (10 DAP) between the VC - V1 growth 

stages. Heights were measured for two plants in each experimental unit from the soil 

surface to the uppermost node (cotyledon or unifoliate). *indicates significant 

difference from the no herbicide control within each inoculation type at α = 0.05 level 

determined using Fisher's protected LSD.  
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Figure 3. Herbicide X Inoculation interaction (P < 0.05) for root rot severity for all 

experiments. Vertical bars represent the mean for each parameter and lines extending 

from each bar represent the standard error of mean. Each root system was evaluated for 

total root rot severity which is the total percent area (0-100% linear scale) of the root 

system that is discolored with the typical browning symptoms of root rot between the 

VC-V2 growth stages. *indicates significant difference from the no herbicide control 

within each inoculation type at α = 0.05 level determined using Fisher's protected LSD. 
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P < 0.05 



103 
 

 
 

 

 

 

 

 

0.0

0.5

1.0

1.5

2.0

None F. solani

R
o

o
t 

B
io

m
a

ss
 (

g
)

Inoculation

Figure 4.  Herbicide X Inoculation interaction for root biomass (P < 0.01) for all 

experiments. Vertical bars represent the mean for each parameter and lines extending 

from each bar represent the standard error of mean. The roots of two plants from each 

experimental unit were cut from the aboveground portion at the cotyledon scar and a 

collective fresh root biomass (g) was measured between the VC-V2 growth stages. 

*indicates significant difference from the no herbicide control within each inoculation 

type at α = 0.05 level determined using Fisher's protected LSD.  
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3.7  Tables 

 

             
Table 1. Phytotoxicity, plant height, root rot severity, and root biomass under controlled conditions and the -

probability of rejecting null hypothesis (P > F) observed based on analysis of variance (ANOVA) tests for 

the effects of preemergence herbicides (Herbicide), Inoculation, Experiment, and their interactions. 

 Factor   dfa Phytotoxicity Plant Height Root Rot Severity Root Biomass 

Herbicide 2 < 0.0001b < 0.0001 0.02 < 0.0001 

  

Inoculation 
1 0.50 0.10 < 0.0001 < 0.0001 

  

Herbicide X Inoculation 
2 0.74 0.02 0.02 < 0.01 

aDegrees of freedom (df) for each of the main effects and interactions. 
bSignificant effects and interactions in bold (α = 0.05) 
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Table 2. Phytotoxicity (%), plant height (cm), root rot severity (%), and root biomass (g) under 

controlled conditions and the effect of preemergence herbicides (Herbicide) and Inoculation. 

Factor Treatment Phytotoxicity Plant Height Root Rot Severity Root Biomass 

Herbicide 

Control 0.21 b 4.98 16.4 1.37 

Sulfentrazone 17.8 a 1.74 22.5 0.89 

Flumioxazin 16.0 a 3.50 18.2 1.03 

Inoculation 

None 10.8 3.54 2.7 1.32 

F. solani 11.8 3.28 35.3 0.87 

aValues followed by the same letter indicate no significant difference (P < 0.05) determined using 

Fisher's protected LSD. When interactions are significant (P < 0.05), significant main effects are not 

displayed (Table 1).  
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Chapter Four 

Thesis Conclusions 

 

 

Seedling disease is one of the most economically important diseases affecting 

soybean in the United States and can be caused by several pathogens alone or in 

combination as a disease complex. Fungicide seed treatments continue to provide the 

most consistent management of soybean seedling diseases; however, effects on yield are 

variable depending on disease pressure and environmental conditions. With the 

prevalence of resistant weeds to glyphosate and other herbicide sites of action, soybean 

producers are utilizing soil-applied preemergent herbicides for effective management of 

several broadleaf weeds. Some preemergent herbicides, such as PPO-inhibitors, can 

result in injury to soybean when conditions are unfavorable for crop growth. These 

conditions also favor infection by some of the seedling disease causing pathogens and 

contribute to further disease development.  

Since both seedling disease and the use of these herbicides are common in 

soybean production, there has been some research on the interactions between PPO-

inhibitor injury and fungicide seed treatments and their effects on soybean seedling 

disease and yield. These experiments have been limited to seedling diseases caused by 

Fusarium virguliforme and Rhizoctonia solani and inconsistent results have provided a 
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need for further research to understand this relationship. As PPO-inhibitor injury and 

seedling disease often occur under similar environmental conditions, it is important to 

understand their relationship so that soybean producers can make sound management 

decisions as needed.   

The greenhouse component of this thesis (Chapter Three) serves as the first 

known study on soil-applied PPO-inhibitor herbicides’ effect on soybean seedling disease 

caused by Fusarium solani. Additionally, the large representation of Fusarium and 

Pythium spp. among the isolates recovered in the field component of this thesis (Chapter 

Two) suggests the seedling disease present at many of the locations were caused by these 

pathogens. It is also unique in that much of the research on herbicide and soybean 

seedling disease interactions has neglected to characterize the fungal and oomycete 

composition associated with infected roots from each field. With this descriptive 

information, researchers would be able to group locations consisting of similar seedling 

disease causing pathogen complexes and potentially identify which pathogens are more 

commonly associated with responses in disease development related to herbicide injury 

interactions.  

Although not entirely comprehensive, experiments conducted for this research 

were located within fields consisting of soils representative of soybean fields in 

Nebraska. This is particularly helpful to Nebraska soybean producers as they now have a 

resource providing some understanding of the potential impact of this herbicide-disease 

relationship in fields similar to their own. The observed inconsistency in the herbicides’ 

effects on root rot severity was likely related to the relative pathogen load of each field as 
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well as the diversity in location specific environmental conditions during critical periods 

of early season soybean emergence and growth and late season grain filling stages.  

Sulfentrazone and flumioxazin applications resulted in soybean injury at 8 of 9 

locations in this study, yet they reduced yield at only one location. This suggests 

producers should not be overly concerned of the impact of PPO-inhibitor injury on yield. 

To minimize stand loss producers should attempt to lessen the risk of PPO-inhibitor 

injury through ensuring uniform planting depth, adequate seeding row closure with good 

seed to soil contact, and as needed deploying tolerant cultivars in coarse textured fields 

with low organic matter. Fungicide seed treatment did not impact root rot severity at any 

location and increased yield at only 3 of 9 locations. The effect of fungicide seed 

treatments on yield remains heavily dependent on early season disease development and 

late season environmental stress.  

There is still a need for further research to fully understand the impacts of PPO-

inhibitor injury on seedling disease in soybean. Replication of this research throughout 

soybean growing regions of the United States would produce a robust dataset with 

varying soil characteristics and climatic factors which in turn could help identify 

situations where these herbicide effects could impact yield. There may also be value in 

conducting experiments similar to this with additional herbicide sites of action commonly 

used in preemergent programs in soybean as several are capable of causing injury when 

environmental conditions are unfavorable for soybean growth.  

The goal of this research was to attempt to understand the relationship between 

PPO-inhibitor injury and seedling disease severity under both field and controlled 

conditions in Nebraska through three objectives: (1) determine the effects of soil-applied 
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PPO-inhibitor  herbicides on soybean seedling disease and yield in the field; (2) 

determine the effects of soil-applied PPO-inhibitor herbicides on seedling disease caused 

by Fusarium solani under controlled conditions; and (3) determine the effect of fungicide 

seed treatment on soybean seedling disease and yield when PPO-inhibitor injury occurs. 

In conclusion, though soil-applied PPO-inhibitors increased root rot severity in 

several fields and under controlled conditions, producers should continue to utilize these 

herbicides as one of several tools in an effective integrated weed management program. 

Furthermore, fungicide seed treatments should continue to be used in fields with history 

of seedling disease as environmental conditions play an important role in disease 

development and vary from year to year. As additional research provides further insight 

on the relationship between PPO-inhibitor injury and soybean seedling disease, producers 

in Nebraska and the United States will have a better understanding of when to use a 

fungicide seed treatment and in which fields they should take extra care in ensuring 

practices that will minimize PPO-inhibitor injury. 
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