University of Nebraska - Lincoln

Digital Commons@University of Nebraska - Lincoln

Faculty Publications, Department of Mathematics Mathematics, Department of

2009

Connections Between Computation Trees and

Graph Covers

Deanna Dreher
University of Nebraska - Lincoln

Judy L. Walker
University of Nebraska - Lincoln, judy.walker@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/mathfacpub
b Part of the Applied Mathematics Commons, and the Mathematics Commons

Dreher, Deanna and Walker, Judy L., "Connections Between Computation Trees and Graph Covers" (2009). Faculty Publications,
Department of Mathematics. 170.
https://digitalcommons.unl.edu/mathfacpub/170

This Article is brought to you for free and open access by the Mathematics, Department of at Digital Commons@ University of Nebraska - Lincoln. It
has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of Digital Commons@ University
of Nebraska - Lincoln.

https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathematics?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub/170?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages

Connections Between Computation Trees and Grapt
Covers

Deanna Dreher and Judy L. Walker
Department of Mathematics
University of Nebraska—Lincoln
Lincoln, NE 68588, USA.

Email: {s-dturkl, jwalke}@math.unl.edu

Abstract—Connections between graph cover pseudocodewordsbeen used to cleanly characterize pseudocodewords of cycle
and computation tree pseudocodewords are investigated with codes, and the fundamental cone gives a compact description
the aim of bridging the gap between the theoretically attractive ¢ hseydocodewords for general codes. Additionally, there
analysis of graph covers and the more intractable analysis of has been significant progress in characterizing problemati
iterative message-passing algorithms that are intuitively linked . -
to graph covers. Both theoretical results and numerous exampge Pseudocodewords for certain families of codes, such asscode
are presented. constructed using finite geometries [7].

On the other hand, one thing we know for sure about both
the min-sum and sum-product algorithms is that their bedravi

Low density parity-check codes, along with their iterativen Tanner graphs is precisely modeled by their behavior on
message-passing decoders such as min-sum and sum-prodochputation trees. More precisely, Wiberg [11] showed that
have been shown to achieve good bit error rates and perfatme output of the min-sum algorithm aftet iterations is the
close to capacity on channels of practical interest. Whileector whose! entry is the value assigned to the root node by
these iterative message-passing decoders are optimat@s) tra minimal cost configuration on a computation tree of depth
iterative message-passing decoders are, in general, tampih rooted at the™ variable node.
tionally efficient sub-optimal decoders for low density ipar The downside of Wiberg's characterization of these iteeati
check codes, and their efficiency makes them ideal for imiessage-passing algorithms is that computation treesxare e
plementation. On the other hand, there is still little thetimal tremely difficult to study. Their size grows exponentiallyttw
understanding of the effectiveness of these codes. Onélaotaach iteration, and the number of configurations on a tree is
contribution in this direction is that of density evolutjontypically exponential with the size of the tree.
which examines ensembles of codes [8], [9]. However, dgnsit Thus, we seek a way to connect the well-developed theory
evolution does not explain the non-codeword errors thaeariof graph covers and graph cover pseudocodewords to the much
in iterative message-passing decoding of a particular.code less well-developed, but more precisely related to degpdin

The iterative message-passing decoders work, roughiheory of computation trees. One approach to this problem
speaking, as follows: initially, probabilities are as®dnto is via theuniversal coverof the Tanner graph. The universal
each variable node based on the received word. The variabbwer is simultaneously the infinite computation tree of the
nodes send their information to their neighboring checkasod Tanner graph (for any root node) and a cover of the Tanner
which make calculations based on the information they veceigraph that also covers every finite connected cover of the
and send some information back to their neighboring vagiablTanner graph. Thus, if one can fully understand configunatio
nodes. The variable nodes make some calculations with e the universal cover and devise a decoder on the universal
information coming in from their neighboring check nodesover that simultaneously extends both graph cover degodin
and their original information, and send another message[i®] and min-sum decoding, then one can possibly use the
their neighboring check nodes; this process continues antitheory of graph covers and graph cover pseudocodewords
stopping criteria is reached. to better understand computation trees and computatien tre

In particular, the decoders work locally: at each step of thEseudocodewords, and, ultimately, the behavior of min-sum
algorithm, all that is needed for a particular vertex to mike decoding. This is precisely what is attempted by the authors
calculation is data stored at that vertex and at its immediaind their collaborators in [2][4].

I. INTRODUCTION

neighbors. Intuitively, this leads one to consiflaite coverof In this paper, we take a different approach. Rather than
the Tanner graph, which look locally identical to the orggin lift computation trees and graph covers up to the universal
Tanner graph but may be significantly larger. cover and then come back down, we aim to relate computation

Based on this intuition, many authors (see, e.g., [5], [6fiees and graph covers more directly. The remainder of this
[10]) have studiedgraph cover pseudocodeworddeveloping section introduces some definitions and relevant backgkoun
both a rich general theory and examining several specifit Section Il we give theoretical results on the relatiopshi
examples in great detail. For example, zeta functions havetween the set of graph cover configurations and the set

Published in 2009 Information Theory and Applications Workshop (2009)
DOI: 10.1109/ITA.2009.5044971

proyster2
Typewritten Text
Published in 2009 Information Theory and Applications Workshop (2009)
 DOI: 10.1109/ITA.2009.5044971

proyster2
Typewritten Text

of computation tree configurations, and we present examples'he authors and their collaborators have shown [1] that with
illustrating these results in Section Il a very basic restriction on our Tanner graph, every norredliz
We now formalize some of the above discussion with thgraph cover pseudocodeword has a connected realizatien. Th
following definitions. restriction on the Tanner graph is given by
Definition 1.1: An unramified coveror simply acover, of 1
a finite graphG is a graphG along with a surjective graph Qc (1 -) > 2,
homomorphismr : G — G, called acovering mapsuch that o
for each vertex of 7" and eachy € 7~ (v), the neighborhood Where a. and a,, are the average check node degree and
of & is mapped bijectively to the neighborhood of For a average variable node degree, respectively. Thus, for the
positive integerM, an M-cover of G is covern : G — G Majority of practical codes and a significant portion of eycl
such that for each vertex of G, 7—*(v) contains exactlyl/ codes, every normalized graph cover pseudocodeword has a
vertices ofG. If G is anM-cover of G, we say thedegreeof ~connected realization, and so every normalized graph cover

G is M. pseudocodeword induces computation tree configuratidms. T
We say that a grapty is connectedf, for any two vertices inverse question of which computation tree configuratiares a
u,v of G, there is a pathy = vy, vy, ..., v, = v fromu to v induced by graph cover configurations is investigated in the

in G. In the remainder of this paper, we will assume that tHREXt section.
Tanne_r _g_raphs for our codes are connected._ _ Il. REALIZATIONS OF COMPUTATION TREE
Definition 1.2: Let G = (X U F, E) be a bipartite graph. PSEUDOCODEWORDS

';\ ngof’zgtzr?r:g?/g:tifelssi;irs;caﬁ ?;]%r:rp;rg;:écé)?,)(a:fes j n A different way to ask how computation tree configurations
number of the neighbors of are assigned a 1 and the res?‘.nd graph cover'pseudocode'wordg relate IS to ask whether,
are assigned a 0. given a computation tree cpnflguratl_on, there_ is a_gra_phrgove

Given a Tanner grapi’ with variable nodest:, ..., z, configuration that induces it. As a f|rst_ step |n_th|s (_j|rerm1|_o_
and anM-coverr : T — T of T, we label the elements of Ve show that every computation tree is contained in a finite
7V (21) @S, -y Tint. cover of the Tanner graph.

Definition 1.3: Let T' be a Tanner graph for a binary linear Proposition 2.'1: Let T be a Tanner grap_h and I(aR, R)
~ ;) be a computation tree fdf. Then there exists a finite cover
codeC and lete = (c11,...,c1,m : e Cndy---sCnM)

be a configuration on somé/-cover T' of 7. Two kinds (7, m) that contains a subgraph isomorphid 6, «x). More

. y)
of graph cover pseudocodewordse associated t@: The precisely, letT” be any spanning tree Gf a/nq let M be

o the number of connected componentstef' (17) in R. Then
unscaledgraph cover pseudocodeword corresponding ie -~

there is an)M-cover (T, mz) of T' that contains a subgraph

the vector ~ such that there is a graph isomorphigm S — R satisfying

p(c)_(pla-”apn) o

TRO G = Tg7|s.
of nonnegative integers, where, for< i < n, Proof: Note that the final condition of the proposition
) says thatl’ contains a subgraph that is isomorphic taR in

pi = #{jleig =1} a way that respects the labels on the nodes, i.e.isfa node
The normalizedgraph cover pseudocodeword correspondirif 12 that is a copy of the vertex of 7', then the corresponding
to ¢ is the vector node inS is also a copy ob in 7.

w(@) = %p(a. Let 7' be a spanning tree of and let)M be the number

of connected components of,' (") in R. Since there are at
Definition 1.4 (Wiberg [11]): Let T be a Tanner graph, andmost M copies of each vertex of T in R, we may first form

assume an iterative message-passing algorithm has been rua forestkR* by taking the disjoint union of? with sufficiently

T for a total ofm iterations, where a single iteration consistsnany appropriately labeled isolated vertices so that theee

of message-passing from the variable nodes to the checlsnoeeactly M copies of each vertex of 7" in R*. We now add

and then back to the variable nodes. Tepthm computation edges toR* as follows: For each edge = xu of T, there

tree for 7" with root nodev is the treeR obtained by tracing are M copies ofx in R*, M copies ofu in R*, andm, :=

the computation of the final cost function of the algorithm dtrj;' (¢)| copies ofe in R*. Thus there are exactly/ — m.

the variable node of T' recursively back through time, alongcopies ofz in R* that are not adjacent to any copy ofin

with a surjective graph homomorphism: R — T, such that R*, and there are exactly/ — m. copies ofu in R* that are

for each vertexv of 7' and eachv € 7—1(v) that is not on not adjacent to any copy ofin R*. This means that there is a

level m, the neighborhood ot is mapped bijectively to the matching between these copiesmoénd ofu, and we form an

neighborhood ofy. edge between each matched pair. Repeating this procedure fo
Since computation trees are necessarily connected, @ach edge of T creates anV/-coverT of T that containsR?

computation tree configuration that is induced by a gra@s a subgraph so that the respective vertex labels (prajecti

cover configuration is induced by a connected graph covwmaps) agree.]

configuration. Thus, it is important to determine which drap Proposition 2.1 shows that every computation tree is con-

cover pseudocodewords have connected realizations. tained in a graph cover, but what we really want to know is

whether every computation tree configuration is induced byodT" and a configuratiofe on T such that

graph cover configuration. In other words, given a compomati @ f) induces the configuratiofe, R)

tree configuration, is there a graph cover configurationithat | (&,T) contains a configured subgraph that is isomorphic
in this sense, compatible with it? To answer this questiom, w (¢/, R'), where(c’, R') is the configured computation

need 'a'd'efinition. o tree subgraph ofe, R) of depthd — 1, and
Definition 2.2: Let S = (X U F, E) be a bipartite graph , the normalized graph cover pseudocodeword correspond-
and let(c, S) be a configuration o15. A configured subgraph ing to (¢,7) is (% 1
A . h .) 270 270
of (¢, S) is a configuration(c’, S’), whereS’ is a subgraph of -
S, andc’ is the restriction ofe to S’ Although the4M-cover T ensured by Theorem 2.4 need
Let T be a Tanner graph. Far= 1,2, let (S;,,) be a not be connected, the configured subgraph of it isomorphic
bipartite graph along with a bijective graph homomorphisﬁ? (C/’R/), is contained In some connected comport?htof
mo: S = (XiUFLE) — T, and let (¢, 5;) be a T. '[peNflrst two Bul_lets in the_ theo_rem clearly still apply
to (¢,T"), wherec is the configuration orf” ensured by
the theorem. However, if” # T, then the third bullet will
almost certainly not be valid fo#'; see Example 3.3. Thus,
although the theorem implies that every computation tree

The following results show that the connection betWeegnfiguration is related to the graph cover pseudocodeword

1 1 i izatigi@ i
computation tree configurations and graph cover configure’ =’ 2): tge cc:jrrespgndlng drealltzaglc(m, T) of ;[hljs gl\r/laph
tions is extremely strong: given a computation tieefor a cover pseudocodeword need not be connected. Moreover,

Tanner grapHl” and a configuratiore on R, there is a graph it is the graph cover pseut;iocod.exvo[vd corresponding to the
cover configuration(¢, 7T that not only inducegc, R), but connec.ted graph cover conflgurau@ﬁ,T’.) that has any .hope
also contains a configured subgraph isomorphi¢daR). In of sharing properties under an appropriate cost functi@j, [1

the case of cycle codes, the result is very clean: [11] with (e, R). . :
Theorem 2.3:Let T' be the Tanner graph of a cycle codel_hAS a corollfary rtlo Theorelm 2.4, we obtain a version of
with minimum degree at least two, I& be a computation tree eorem 2.3 for the genera case. o .
for T', and letc be a configuration oi. Then there is a finite Corollary 2'_5: Let H be a parity-check matnx_ with mini-
coverT of T and a configuratiof on T such that(c, R) is UM row weight at least two, Ie' = T'(H) be its Tanner
isomorphic to a configured subgraph @f, 7). Furthermore, graph, and lete, B) be a computation tree conﬁggraﬂon for
T can be taken to be a cover of degree eithkor 21/, where T. Then there exists a finite covér of 7' and a configuration

M is as in Proposition 2.1. Eorlf~such thatc, R) is isomorphic to a configured subgraph
The proof of this theorem goes, roughly speaking, & €T). Y .)

follows: Let T’ be an)M-cover of T' that contains a subgraph 1oof: Let R be the computation tree fdf obtained
isomorphic toR, as guaranteed by Proposition 2.1, and thefy €Xtending iz for an additional iteration. Then there is
copy the configuratior onto that subgraph. One then proved configuratione” on R” that restricts to(c,). Applying
thatc can be extended to a configuration on all of eitiieor | N€Orem 2.4 tdc”, k") gives the result. u
7', whereT” is a2M-cover of T’ formed by twisting together ~AS We Will see in Section IIl below, there are often graph
two copies ofT" in a manner determined hy. cover configurations(¢,T") that satisfy the conclusions of

In the general case, the result is not as clean. In particullP€0rem 2.4 but with the degree &f significantly smaller

the degree of the cover is not so simply described. Theorem $1an 4M/. By taking into account the specific computation

below gives an upper bound on the necessary degree ofee _configuration under consideration, a tighter boundlEan
cover that has a configuration that induces the computatien toPtained: _ o
configuration we started with, but that cover need not cantai 1heorem 2.6:Let /7 be a parity-check matrix with mini-
the computation tree as a configured subgraph. Corollary %M row weight at least two, |&f = T(H) = (X U F, E)
asserts that there is a cover that contains the computatien £€ its Tanner graph, and lgt,) be a computation tree
as a configured subgraph, but does not give us informatigfnfiguration forl” of some finite deptil. For eachf < I, let
on the degree of that cover. As a curious side-result, I{s(c) be the number of copies gfon R such that at least one
follows from the proof of Theorem 2.4 that the rational poingdiacent vertex (which is necessarily a copy of same X)

configuration orS;. Then(ey, S1) and(ez, S2) areisomorphic
if there is a graph isomorphism : S; — S such that
mp0¢ = m; ande, assigns a value of 1 to € X if and only
if ¢, assigns a value of 1 td(z) € Xo.

(1,...,3) is a normalized graph cover pseudocodeword fé3 assigned a “1” by, and letVy(c) be the number of copiei)
any parity-check matrix with minimum row degree at leatf / On 12 such that every adjacent vertex is assigned a “0
two. by c. SetM(c) = maxy My(c) and N(c) = max; Ny(c).

Theorem 2.4:Let H be a parity-check matrix with mini- ~ Then there is a(3M(c) + N(c))-cover T of T' and a
mum row weight at least two, l6F = T(H) = (X U F, E) configurationc on T" such that
be its Tanner graph, and I€t be a computation tree fdf of « (¢,T) induces the configuratiote, R),
some finite depthl. For eachf € F, let M be the number . (¢ T) contains a configured subgraph that is isomorphic
of copies off on R. SetM = maxy Mjy. B to (¢, R’), where(c, R’) is the configured computation
Then, for any configuratioe on R, there is a4 M-coverT tree subgraph ofc, R) of depthd — 1, and

« the normalized graph cover pseudocodeword correspor@, 5 2, 2) Thus (¢, N) satisfies all of the conclusions of
ing to (¢,7) is (- 2lc) 2M(e) .

IM(@+NE 2 TN Theorem 2.4, except that we needed only a 2-cover rather than

Theorem 2.6 again has this curious side-result about tAé-cover to do so. Of course, two disjoint copieg@fl) is a
fundamental polytope containing a certain constant veator 4-cover ofT" that satisfies the theorem as well, thus showing

rational numbers. One might ask how far that result can #eat the4)-cover guaranteed by Theorem 2.4 need not be
pushed_ The next proposition gives the answer. connected. On the other hand, Figure 3 giveS an example of

Proposition 2.7:Let H be a parity-check matrix with min- & connected 4-cover &f that contains the entire configured

imum row weight at least two, eI’ = (X U F, E) be the computation tre€c, R) of Figure 1. O
corresponding Tanner graph and lebe a nonnegative real
number. If at least on¢g € F' has odd degree, sét= %
where M is the smallest odd integer such that sofhe F
has degreeM. Otherwise, se¥ = 1. Then (c,...,c) is a

normalized graph cover pseudocodeword if and onky 4f 4.

I11. EXAMPLES

In this section, we present a series of examples that itltestr
the results of Section II.

Our first example shows that, with/ as in Theorem 2.4,
the minimal degree of a graph cover configuration satisfying
the conditions in Theorem 2.4 may be smaller tHad.

Example 3.1:Figure 1 shows a Tanner graph and a
computation tree configuratiofe, R) for T

Fig. 3. A configurationc on a 4-coverT of the Tanner graphl’ of

Example 3.1.
fi T _ .
a The next example illustrates that sometimes only the smalle
- 24 computation tree configuratiof’, R’) can be obtained.
Example 3.2:Consider the Tanner graghin Figure 4 and
H the computation treé for 1" shown in Figure 5.
fa 2 XT3 Ty T2 T3 T4

Fig. 1. The Tanner grapi’ and a computation tree configuratiée, R) for
the Tanner grapf” of Example 3.1. Vertices are assigned a value of lcby
if they are circled and O otherwise.

Since every check node df’ appears inR once, we
have M = 1 in Theorem 2.4. Further, the computation tree Fig. 4. The Tanner grapli for Example 3.2.
configuration (¢’, R') of that theorem is simply the single x1
vertex r;, assigned a value of 1. Therefore, we know by
Theorem 2.4 that there is a 4-covErof 7" and a configuration
¢ on T such that(z, T) induces(c, R), assigns a value of 1 fio™ fau” s fa ofs Tofe
to some copy ofr;, in T, and has corresponding normalized

graph cover pseudocodewofd, 1,1, 1).

T2 T2 T2 T2 T2 T2

Fig. 5. A computation treg? for the Tanner grapf” of Example 3.2.

In this example, we again havk/ = 1 in Theorem 2.4.
Thus Theorem 2.4 asserts the existence of a 4-cévef T'
with certain properties. However, since there are six pie
of z» in R, no computation tree configuratigfe,) could
be isomorphic to a configured subgraph (@, 7) for any

configuratione on T. a
As mentioned previously, ifc, R) is a computation tree
Fig. 2. A configurationé on a 2-cover? of the Tanner graphl’ of configuration, then the reallzatm{t T) of (L 2) that
Example 3.1. induces(c, R) in Theorem 2.4 need not be connected. How-

B ever, there is a connected componentfbthat also induces
Figure 2 shows a 2-covel of T' and a configuratiore (c, R), since R is connected; call this connected component
on T. The bold edges show a configured subgrapticof’) (E’,Jj’), where¢’ is the configuratiof” inherits fromT". Then
that inducegc, R) and contains a subgraph that is isomorphitz’, 7") is connected and induceg, R), but its normalized
to the depth one truncatiofr’, R') of (c, R), and such that graph cover pseudocodeword may no longer(be...,).
the graph cover pseudocodeword correspondingctd’) is Example 3.3 shows an occurrence of this.

Example 3.3:Figure 6 shows a Tanner grapgh and a
computation tree configuratiofr, R) for T'.

f1
X1 @J)g
f2

Fig. 6. The Tanner grapi’ and a computation tree configuratiéa, R) for
the Tanner grapf” of Example 3.3.

T fi T3z fi
[t 1
h fa O‘
z1 3
2 3 f2 T1 X3 T4 X3 X{ T3 X2 T4 T3 X1 T3 T1 T2 T3
X1 T2 T3 Fig. 9. A computation tree configuratiofe, R) for the Tanner graph of
Example 3.4.
fi
Fig. 7. A disconnected 4-covél and a configuratio on 7' that induces since M(c) = 1 and N(c) = 2, Theorem 2.6 tells us that
the configuration in Figure 6. there is a graph cover configuration ois-gover that does the
trick. O

The configurationé on the 4-coverI’ of T in Figure 7
satisfies all of the requirements of Theorem 2.4. However, ACKNOWLEDGEMENTS
the configuration on the component on the left, which is This work was supported in part by National Science
isomorphic to the original grapif’, induces(c, R) and has Foundation grant #DMS-0602332.
normalized graph cover pseudocodewddd1, 1). O

Our final example concerns the relationship between The-
orem 2.4 and Theorem 2.6. It was asserted in Section [1] N. Axvig, D. Dreher, K. Morrison, E. Psota, L. C.éRez, and J. L.

H i ; ; P Walker, Analysis of connections between pseudocodew@dbmitted
that, given a specific computation tree configuratien) to IEEE Trar?sactions on Information TheQFr)March 2008.

for the Tanner grapil’, Theorem 2.6 gives a better upper] N. Axvig, K. Morrison, E. Psota, D. Dreher, L.C&Rez, and J. L. Walker,

REFERENCES

bound on the degree of the covér of T needed to admit Towards a universal theory of decoding and pseudocodew@GER

; A ; ; Technical Report 0801, University of Nebraska-Lincoln,rta2008.
a cqnflguratlonc that. mduces.(c’) a,md that cqntam; a [3] N. Axvig, K. Morrison, E. Psota, D. Turk, L. C.&ez, and J .L. Walker,
configured subgraph isomorphic te’, '), the configuration Universal cover decodingn preparation, 2008.

obtained by restricting: to the computation tre@®’ of depth [4] N. Axvig, E. Price, E. Psota, D. Turk, L.C.&ez, and J.L. Walker,

one less than the depth @. To see this, recall that Theo- A universal theory of pseudocodeward®oceedings of the 45th An-
; ! nual Allerton Conference on Communication, Control, and Caimguy

rem 2.4 guarantees the existence of/d-cover that admits September 2007.
the desiret, where M is the maximum number of copies of [5] C. Kelley and D. SridharaPseudocodewords of Tanner graphEEE

; Transactions on Information Theo 2007), 4013-4038.
any f € I in R. On the other hand, Theorem 2.6 guaramee&] R Koetter, W.-C. W. Li, P. O. Vo%?o(bel eznd J. L. WalkePseudo-

the existence of @31 (c) + N(c))-cover that does the trick, codewords of cycle codes via zeta functidPoc. IEEE Inform. Theory
whereM (c) = maxyep Mf(c), N(c) = maxfep Nf(c) and, Workshop (San Antonio, TX, USA), 2004, pp. 7-12.

; [7] P. O. Vontobel R. SmarandachBseudo-codeword analysis of Tanner
foranyf € I, we have thaMf(c)+Nf(c) is the total number graphs from projective and euclidean plandEEE Transactions on

of copies of f in R. ThusM(c) < M and N(c) < M, and Information TheoryIT-53 (2007), no. 7, 2376—2393.
so3M(c) + N(e) < 4M. In fact, the bound in Theorem 2.6 [8] T. Richardson, A. Shokrollahi, and R. Urbank@esign of capacity-

; [Py ; approaching irregular low-density parity check coddEEE Transac-
can yield a significant improvement over that of Theorem 2.4. tions on Information Theoryt7 (2001). no. 2. 619637,

Our final example illustrates this. _ o [9] T. Richardson and R. Urbankelhe capacity of low-density parity
Example 3.4:Let T be the Tanner graph given in Figure 8, check codes under message-passing decodEEE Transactions on

; ; ; Information Theory47 (2001), no. 2, 599-618.
and let (c, R) be the computation tree configuration fr [10] P. Vontobel and R. KoetteiGraph-cover decoding and finite-length

given in Figure 9. analysis of message-passing iterative decoding of LDPCegotio
Since there are three copies ffin the computation treé appear inlEEE Transactions on Information Theory

of Figure 9, Theorem 2.4 asserts the existence of a 12-cotid# N- Wiberg, Codes and decoding on general grapt®h.D. thesis,
h ! . . . Linkoping University, Linkping, Sweden, 1996.
that induces the configuratigie, R) of Figure 9. However,

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2009

	Connections Between Computation Trees and Graph Covers
	Deanna Dreher
	Judy L. Walker

	ITA.dvi

