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The underlying mechanisms of three different flow-control strategies on drag 

reduction in a turbulent channel flow are investigated by direct numerical simulations. 

These strategies include the addition of a small concentration of long-chain polymers into 

a fluid, the incorporation of slip surfaces, and the application of an external body force. 

While it has been believed that such methods lead to a skin-friction reduction by 

controlling near-wall flow structures, the underlying mechanisms at play are still not as 

clear. In this study, a temporal analysis is employed to elucidate underlying  

drag-reduction mechanisms among these methods. The analysis is based on the lifetime 

of turbulent phases represented by the active and hibernating phases of a minimal 

turbulent channel flow. At a similar amount of drag reduction, the polymer and slip 

methods show a similar mechanism, while the body force method is different. The 

polymers and slip surfaces cause hibernating phases to happen more frequently, while the 

duration of active phases is decreased. However, the body forces cause hibernating 

phases to happen less frequently but prolong its duration to achieve a comparable amount 

of drag reduction. A possible mechanism behind the body force method is associated with 

its unique roller-like vortical structures formed near the wall. These structures appear to 

prevent interactions between inner and outer regions by which individual hibernating 



phases are prolonged. It should motivate adaptive flow-control strategies to fully exploit 

the distinct underlying mechanisms for optimal and robust control of turbulent drag. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

The ability to reduce the amount of drag for industries that rely on turbulent flow 

such as cargo ships, commercial airliners, and oil pipelines is very beneficial in order to 

reduce cost and save energy. Turbulent flow is fluid that has irregular or chaotic 

fluctuations in direction and velocity. This flow is commonly found throughout nature, 

such as wind blowing through the trees or the water flowing in streams and rivers. 

Turbulent flow is produced by streamwise vortices within the fluid and these vortices are 

the leading cause of drag within the fluid. Turbulence is caused by a variety of factors 

such as changes in the boundary’s surface, an increase in volumetric flow rate, and 

external disturbances such as an object obstructing the flow’s path.  

Coherent structures play an important role in turbulent dynamics when present in  

wall-bounded turbulent flows [1]. The near-wall coherent structures are closely related to 

the self-sustaining process of turbulence, which are similar to the staggered, 

counter-rotating quasi-streamwise vortices that form low- and high-speed streaks [2]. 

These near-wall structures are responsible for the production of turbulent kinetic energy 

as they are observed to burst intermittently [3]. The bursting process accounts for over 

80% of the total energy in turbulent fluctuations, these near-wall coherent structures are 

believed to be the dominant structures associated with turbulence production, leading to 

skin-friction drag [4]. As a result, multiple control strategies have been developed to 

manipulate the near-wall coherent structures in order to achieve a significant drag 

reduction [5].   

 



2 
 

1.2 Literature Review on Flow-Control Strategies 

1.2.1 Polymer Additives 

The Finitely Extensible Nonlinear Elastic model (FENE-P) was founded by Anton 

Peterlin and created from the polymer kinetic theory and models the polymer as a finitely 

extensible nonlinear elastic dumbbell. The dumbbell shape is formed by two beads 

connected by a spring as in Figure 1, the dumbbell is constantly stretching and 

contracting as it travels through the fluid and is able to affect the amount of drag present. 

The Weissenberg number (𝑊𝑖) is important when discussing polymers, as it is defined by 

the multiplication of the maximum extensibility and the relaxation time of the polymer 

[6]. It is believed that polymers are stretched outside of the near-wall turbulence in the 

viscous sublayer. This stretching creates an effective viscosity and as it moves closer to 

the viscous sublayer, the turbulent fluctuations increase the thickness of the buffer layer 

and evidently reduce the amount of friction on the channel walls [7]. Polymer chains 

unravel at low 𝑊𝑖 and expand at high 𝑊𝑖 due to the strong biaxial flows that are related 

to the quasi-streamwise vortices. As the rotational component of the shear flow rotates 

the polymers, the kinetic energy is transferred to the molecules, and the polymers begin 

to stretch. As this happens, the quasi-streamwise vortices assist with bringing faster 

moving fluid toward the wall and the slower moving fluid away [8]. The primary 

characteristic of solutions with lower Weissenberg numbers is the lifting of the mean 

velocity profile into the buffer layers and during higher Weissenberg numbers this lift up 

reaches into the log-law layer [9]. According to Min et al., the polymers store elastic 

energy and releases it back into the flow as it travels to the buffer and log-law layers [10].  
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Figure 1: Diagram of polymers within channel flow. 

 

This viscoelasticity weakens the streamwise vortices and can completely suppress 

coherent structures for larger Weissenberg values. The length of streamwise vortices and 

the distance between pairs of vortices increases as the drag reduction is increased. These 

larger coherent structures are much weaker and less numerous in the flow. With the use 

of polymers, it is possible to achieve approximately 65% drag reduction [6]. 

For high drag reduction regimes, the vortex structure regeneration becomes 

suppressed and the vortices tend to remain closer to the wall but become elongated in the 

direction of the flow. During low drag reduction states, the streak instabilities assist with 

the regeneration and sustain weak vortices in the flow. As the vortices are lifted, they  

break apart and cause turbulent fluctuations to appear leading to more instabilities in the 

fluid. The lift up of vortices is important for transferring the turbulent momentum 

between the viscous sublayer and log-law layers [9]. 

 

1.2.2 Slip Surfaces 

Superhydrophobic surfaces are a combination of surface roughness and surface 

chemistry at the micro and nano scales, recently they have been utilized to produce an  
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Figure 2: Slip method diagram at solid-fluid interface where b corresponds to the  

slip length [11]. 

 

 

 

effective slip length on the wall [12]. When water is placed on superhydrophobic 

surfaces, the water droplet has a contact angle greater than 150 degrees, in return this 

reduces the amount of free energy at the air-water interface. The superhydrophobic 

surface can be created by increasing the surface roughness in the micro and nano scales 

through various processes. On a rough surface, air can be trapped within the valleys to 

create air pockets that can produce an effective slip length when the surface is completely 

immersed in water [13]. For direct numerical simulations, instead of simulating the 

microtextured surface the effective slip length can be predetermined as a system 

parameter. The diagram in Figure 2 reveals graphically what the induced slip flow is 

through velocity profiles. 

Superhydrophobic surfaces can be implemented experimentally in various ways 

through equally spaced ridges, posts, microgrates, and also through randomized surface 

textures [14]. Superhydrophobic surfaces can be used in a variety of different 

applications such as reducing skin-friction drag, ability to self-clean and reduce the 
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amount of residue accumulated on a surface, microfluidic devices, and much more. The 

application we will focus on is the skin-friction drag reduction, which has the potential to 

increase the amount of energy savings and reduction of greenhouse gas emissions [13]. 

Drag reduction is achieved differently between laminar and turbulent flows 

utilizing superhydrophobic surfaces. For laminar flow, drag reduction is a direct result 

from the effective slip on the surface and its geometry and does not depend on the 

Reynolds number and other flow conditions. For turbulent flows, the amount of drag 

reduction was considerably larger than laminar flow when analyzed during experiments. 

It is viewed that the effective slip length must be on the same order as the viscous 

sublayer where it is able to alter the streamwise velocity and the wall shear stress 

fluctuations that occur [13]. 

When using microgrates as the superhydrophobic surface, the maximum drag 

reduction was found to be approximately 50% depending on the parameters used. The 

amount of skin-friction drag also depends on the orientation of the microgrates. In the 

streamwise direction there is drag reduction, however the spanwise direction led to strong 

vortices which increased the skin-friction drag [13]. According to Min and Kim from 

DNS studies, a spanwise slip triggers the transition from laminar to turbulent flow faster 

and incorporating a streamwise slip delays this transition point [15]. 

A streamwise slip reduces the shear of the base flow at the wall and causes the 

velocity profile to flatten, unlike spanwise slip. A reduction in shear stress results in the 

streamwise vortices and streaks to become weaker. This weakening of vortical structures 

subdues the streamwise momentum to move them away from the wall, this is known as 

the lift-up mechanism. If the slip is equal in both the streamwise and spanwise direction, 
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this is defined as isotropic slip, which can be seen in the use of posts and some 

microgrates. Since the lift-up mechanism is reduced by the weakening of the wall shear, 

the transient growth of perturbations is also reduced. Spanwise slip results in long tilted 

streamwise structures during transient growth and isotropic slip greatly reduces the 

amount of linear instability within the flow [16]. 

 

1.2.3 Body Force 

One method of active control for the turbulent flow includes the use of fluids with 

increased electrical conductance, which can be applied to both gases and fluids [11]. An 

electromagnetic wave is then applied in order to induce a motion within the fluid to 

reduce the amount of drag, demonstrated physically in Figure 3. Others have reported 

that upwards of 30% skin-friction drag reduction is obtainable when applying the Lorentz 

force in the transverse direction along the lower wall [17]. Varying the wavelength gives 

a monotonic trend for drag reduction, where longer wavelengths greatly increase the 

amount of drag reduction [18]. However, achieving the highest drag reduction might not 

be the most cost-effective choice since there is not a linear relationship between the 

amount of net energy savings and the drag reduction achieved [19]. 

The Lorentz force manipulates the low speed streaks and vortex structures in the 

longitudinal direction in order to reduce the amount of drag. Turbulent drag is primarily 

caused by bursting events where streaks lift the low momentum fluid away from the wall. 

This causes the streaks to become unstable and break apart, known as the burst and is 

followed by a sweeping event where higher momentum fluid then moves towards the 

walls. An increase of bursting events can create an increase in the amount of drag at the  
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Figure 3: Diagram of experimental body force method setup [20]. 

 

wall. The transverse Lorentz force increases the frequency of these bursts, however the 

bursts are much weaker. Weakening or stabilizing the low speed streaks and vortices 

assists with the weakening of the bursting events in order to increase the amount of drag 

reduction [17]. 

 

1.2.4 Riblets 

Another passive technique involves the use of riblets or microgrooves that have 

anisotropic properties where the drag reduction varies depending on the height and  

alignment of the riblets. The riblets force the streamwise vortices away from the wall 

therefore reducing the amount of shear stress in the near-wall region [21]. In order to 

maximize the net drag reduction, the shape of the riblets and the distance between them 

needs to be optimized, otherwise there will be an increase of drag. The different shapes 

that riblets can take include rectangular, sinusoidal, triangular, and a few more complex 

shapes as seen in Figure 4. There are multiple causes for drag reduction when using  



8 
 

 

 

Figure 4: Examples of different riblet formations [22]. 

 

riblets such as the lateral spacing of the riblets [23] and the protrusion height [24]. When 

aligned in the longitudinal direction, it appears that the optimal spacing is approximately 

18 wall units with a drag reduction close to 10% [25, 26, 27].  

 

1.2.5 Opposition Control 

A form of active control defined as opposition control involves wall-normal 

blowing and suction in order to control the flow and reduce the amount of drag as 

demonstrated in Figure 5. When used separately, uniform blowing reduces the  

skin-friction drag in the system and increases the amount of turbulence where the  

near-wall vortices are lifted away from the wall, becoming weaker. The opposite effects 

occur for uniform suction where the drag increases and suppresses the turbulence where  

the near-wall vortices weaken as they moved towards the wall [28, 29]. Opposition 

control involves the use of a detection plane in order to determine whether blowing or 

suction occurs. The blowing and suction at the wall create ejection and sweep events that 

aim to achieve a net velocity of zero at the detection plane. Opposition control reduces 

the spinning of the streamwise vortices in order to stabilize them in space [30]. When 

blowing and suction are combined at the wall, a drag reduction of 10% can be  
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Figure 5: Opposition control method applied at the wall of channel flow [30]. 

 

achieved [31]. With certain levels of control input a higher drag reduction of 

approximately 17% was observed [32].  

 

1.2.6 Wall Movement 

 Another form of active control is wall movement, for this method the channel 

walls oscillate in the spanwise direction. The drag reduction rate is primarily determined 

by the amplitude and frequency of the wall’s movement. During this movement,  

high-speed fluid travels below the low-speed fluid and surrounds the streamwise vortices. 

Through direct numerical simulations, drag reductions up to 40% can be achieved when 

the amplitude and frequency are full optimized. Others have found that the friction factor  

can be reduced by approximately 25% when using circumferential wall oscillation [33]. 

Wall movement in the streamwise direction has been found to be less effective in 

reducing the amount of drag, therefore the spanwise direction is preferred. Depending on 

the setup of the walls and their speed, a travelling wave can be obtained from their  
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Figure 6: Experimental setup of cylindrical wall movement to create a  

travelling wave [34]. 

 

 

 

motion similar in the Lorentz Force as seen in the body force control method. An 

experimental example of this process can be seen in Figure 6 [35]. 

 

1.3 Contributions of This Thesis 

The gross effects and structural understanding of drag reduction mechanisms of 

the flow-control strategies have been well-documented.  Recently, Xi and Graham [36] 

employed the use of temporal analysis in order to investigate the viscoelastic control 

method. By adapting this temporal analysis, we can elucidate the underlying  

drag-reduction mechanisms of the viscoelastic, slip, and body force control strategies that 

have yet to be explored until now. 
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CHAPTER 2: PROBLEM FORMULATION 

For direct numerical simulations, we consider an incompressible fluid in a 

turbulent channel flow (plane Poiseuille) geometry as shown in Figure 7, the flow is 

driven by a constant volumetric flux Q. The 𝑥, 𝑦, and 𝑧 coordinates are aligned with the 

streamwise, wall-normal, and spanwise directions, respectively. Periodic boundary 

conditions are imposed in the 𝑥 and 𝑧 directions with fundamental periods 𝐿𝑥 and 𝐿𝑧, and  

solid walls are placed at 𝑦 = ±ℎ, where ℎ is the half-channel height. The laminar 

centerline velocity for a given volumetric flux is given as 𝑈𝑐 = (3/4)𝑄/ℎ. Where ℎ is 

the half-height of the channel and the 𝑈𝑐 is the laminar centerline velocities, these are 

used as the characteristic length and velocity scales respectively. The nondimensionalized 

Navier-Stokes equations are then presented as: 

∇ ⋅  𝒖 = 0, 
𝜕𝒖

𝜕𝑡
 + 𝒖 ⋅ ∇ 𝒖 = −∇𝑝 +

𝛽

𝑅𝑒𝑐
 ∇2𝒖 + 𝒇𝑒𝑥𝑡.  (2.1) 

Here, the Reynolds number for the given laminar centerline velocity is defined as  

𝑅𝑒𝑐 = 𝑈𝑐ℎ/𝜈, where 𝑣 is the kinematic viscosity of the fluid, 𝛽 is the ratio of the solvent 

viscosity and the total viscosity (for a Newtonian fluid, 𝛽 = 1), and 𝒇𝑒𝑥𝑡 is the external 

force that can result from a body force or polymer stress in the present study. For 

viscoelastic flows, the momentum equation in equation (2.1) includes  

𝒇𝑒𝑥𝑡  = (1 − 𝛽) 𝛻 · 𝝉𝑝, where the polymer stress tensor 𝝉𝑝 is related to the polymer 

conformation tensor 𝜶. This tensor is then expressed through the FENE-P constitutive 

relation based on bead-spring dumbbells. These polymer conformation and stress tensors 

are obtained by solving the following equations: 

𝜕𝜶

𝜕𝑡
+ 𝒖 ∙ ∇𝜶 − 𝜶 ∙ ∇𝒖 − (𝜶 ∙ ∇𝒖)𝑇 = −

1

𝑊𝑖
𝝉𝑝, 𝝉𝑝 =

𝜶

1−𝑡𝑟(𝜶)/𝑏
− 𝑰.  (2.2) 
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Figure 7: Geometry of the channel flow where the highlighted section is the simulation 

box and the other sections are its periodic images. 

 

 

 

Here, the Weissenberg number is defined as 𝑊𝑖 =  𝜆𝑈𝑐/ℎ, where 𝜆 is the polymer 

relaxation time, and b is the maximum extensibility of the polymers. For the current 

study, we fix 𝛽 = 0.97 and 𝑏 = 10, 000. Since 1 − 𝛽 is proportional to polymer 

concentration and 𝑏 to the number of monomer units, this parameter set corresponds to a 

dilute solution of a high molecular-weight polymer. For slip surfaces, the streamwise 

Navier slip conditions 𝑢𝑠 = 𝐿𝑠𝛾̇𝑤 are applied at both top and bottom walls, where 𝐿𝑠 is an 

effective homogeneous slip length and 𝛾̇𝑤 is the shear rate at the wall. For an external 

body force, the following spanwise body force is used for the external force term in 

equation (2.1): 

𝑓𝑧 = 𝐼𝑒−𝑦/Δ sin (
2𝜋

𝜆𝑧
𝑧 −

2𝜋

𝑇
𝑡),   (2.3) 

where 𝐼 is the amplitude of excitation, ∆ is the penetration depth, 𝜆𝑧 is the wavelength, 

and 𝑇 is the period of oscillation. For inner units, the characteristic inner scales are the 

friction velocity 𝑢𝜏 = (
𝜏̅𝑤

𝜌
)

1/2

 and the near-wall length scale or wall unit 𝛿𝜈 = 𝜈/𝑢𝜏, 
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where 𝜌 is the fluid density and 𝜏𝑤̅ is the time- and area-averaged wall shear stress. The 

quantities nondimensionalized by these inner scales are denoted with a superscript “+”. 

The friction Reynolds number is then defined as 𝑅𝑒𝜏 = 𝑢𝜏ℎ/𝜈 = ℎ/𝛿𝜈. Simulations are 

performed using the open-source code ChannelFlow written and maintained by  

Gibson [37]. In this study, we focus on the domains of 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 2𝜋 × 2 × 𝜋. A 

numerical grid system is generated on 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 (in 𝑥, 𝑦, and 𝑧) meshes, where a  

Fourier-Chebyshev-Fourier spectral spatial discretization is applied to all variables. A 

typical resolution used is (𝑁𝑥, 𝑁𝑦, 𝑁𝑧) = (48, 81, 48). The numerical grid spacing in the 

streamwise and spanwise direction are ∆𝑥𝑚𝑖𝑛
+ ≈ 11.0, ∆𝑧𝑚𝑖𝑛

+ ≈ 5.5. The nonuniform 

Chebyshev spacing used in the wall-normal direction results in ∆𝑦𝑚𝑖𝑛
+ ≈ 0.05 at the wall 

and ∆𝑦𝑚𝑎𝑥
+ ≈ 2.5 at the channel centre. For simulations, 𝑅𝑒𝑐 = 1800 or 𝑅𝑒𝜏 = 85 is 

being considered. 

 

CHAPTER 3: RESULTS AND DISCUSSION 

3.1 Drag Reduction by Control Strategies 

From the skin-friction coefficients calculated from each control method as shown 

in Figures 8(a) and (b), the drag reduction percentage can be defined as  

DR% = (𝐶𝑓,𝑢𝑛 − 𝐶𝑓)/𝐶𝑓,𝑢𝑛 × 100%, where 𝐶𝑓 = 2𝜏𝑤̅/(𝜌𝑈𝑏
2) is the skin-friction 

coefficient for the controlled case and 𝐶𝑓,𝑢𝑛 is the friction factor for the uncontrolled case. 

Here, 𝜏𝑤̅ is the time-area averaged wall shear stress, 𝑈𝑏 is the bulk fluid velocity, and 𝜌 is 

the density, which are all kept constant within the simulations. The error bars on the plots  
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Figure 8: Skin-friction coefficient versus time for (a) DR% = 7% and (b) DR% = 25% 

states for the no-control method (black), viscoelastic (green), body force (blue), and slip 

(red). The horizontal dashed line (black) is the mean value of the coefficient of friction 

for the no-control method. 

 

 

 

are the standard errors of the time-averaged quantity with the block-averaging method 

[38].  

Figure 9 shows the drag reduction percentage for viscoelastic turbulence as a 

function of the Weissenberg number 𝑊𝑖. The results are in good agreement with the 

previous studies with regard to drag reduction amounts and onset 𝑊𝑖 for drag reduction 

[36, 39].  

Figure 10 shows the drag reduction percentages for slip surfaces as a function of 

𝐿𝑠. At a fixed Reynolds number, the slip length and drag reduction percentage are almost  

linearly correlated, which is also observed in Min & Kim [15]. It is worth noting that the 

largest is 𝐿𝑠
+ ≈ 5 for the current study, which ensures that the homogeneous slip surface  

employed in the present study would produce essentially the same outcomes with a 

heterogeneous microtextured slip surface or superhydrophobic surface [40, 41].  

(a) (b) 
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Figure 9: Drag reduction percentages (DR%) versus the Weissenberg number (Wi) using 

the viscoelastic simulation data at 𝛽 = 0.97 and 𝑅𝑒𝑐 = 1800 (𝑅𝑒𝜏  =  85). The error 

bars represent the standard error. 

 

 

 

 

Figure 10: Drag reduction percentages (DR%) versus the effective slip lengths (𝐿𝑆). The 

error bars represent the standard error. 
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Figure 11: Drag reduction percentages for the body force case by varying the parameters 

amplitude of excitation (𝐼) and time period of oscillation (𝑇). Where the penetration 

depth (Δ = 0.03) and the wavelength for the traveling wave (𝜆𝑧  =
𝜋

2
) are held constant. 

 

 

 

Figure 11 shows the drag reduction percentages for body forces for various values 

of the amplitude of excitation (𝐼) and the time-period of oscillation (𝑇), where we fix the 

penetration depth ∆ = 0.03(∆+ = 2.6) and wavelength 𝜆𝑧 = 𝐿𝑧/2 = 𝜋/2. Within 

parameters studied, the maximum drag reduction percentage is approximately 25% at 

𝐼 = 0.55 and 𝑇 = 10. At certain parameters there appears to be an increase of drag 

within the system, as seen in the top right of Figure 11 where the drag increases to over 

100%, where it is doubled.  
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Figure 12: Mean velocity profiles for the no-control (black), viscoelastic (green), slip 

(red), and body force (blue) methods versus the distance away from the wall in outer 

units for the different control cases at (a) LDR and (b) HDR. Viscous sublayer, U+ = y+, 

is represented by the dotted black line and the log-law layer, U+ = 2.5ln(y+) + 5.5, by the 

black dashed line. 

 

 

 

3.2 Drag Reduction Regimes 

The mean velocity profiles seen in Figures 12(a) and (b), both uncontrolled and 

controlled, in inner units are shown at the drag reduction percentages of DR% = 7% and 

25%, respectively. For comparison, the profiles for the viscous sublayer 𝑈+(𝑦+) = 𝑦+ 

and the log-law layer U+ = 2.5ln(y+) + 5.5 are also presented. For DR% = 7%, the 

polymer and body force methods follow the viscous sublayer profile well (𝑦+ ≤ 5), 

while the slip case starts off with a greater velocity than the other two methods due to the 

slip velocity at the wall. The control profiles begin to slightly deviate from the no-control 

profile in the buffer layer at 𝑦+ ≈ 20. The no-control profile lies closer to the log-law 

profile, but it is placed just above the log-law profile because of the effects of low 

Reynolds number [42]. The velocity profiles of the three control methods are elevated 

beyond the no-control and are very close to one another, suggesting almost the same  

(a) (b) 
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lower drag. For DR% = 25%, the mean velocity profiles of the polymer and body force 

methods clearly diverge from the log-law slope with a steeper incline. The slip profile 

shows similar values with the other two cases in the log-law layer but with a less steep 

incline. However, there is a much-increased velocity at the wall due to higher 𝐿𝑠. In 

Figure 12, the transition from the LDR to the HDR range involves the mean velocity 

profiles deviating from the log-law slope into a steeper incline which was one of the 

observable changes noted by Xi and Graham [36]. 

Regarding the drag reduction percentages, an additional distinction can be applied 

to separate a low degree of drag reduction (LDR) and a high degree of drag reduction 

(HDR). Through experimental research, Warholic et al. [43] analyzed the different effects  

of polymers at high and low drag reduction regimes. They used a Reynolds number of 

approximately 20,000 and defined their drag reduction as a ratio of 𝜏𝑤 for polymer 

solution to 𝜏𝑤 of water. At lower drag reduction percentages, the mean velocity profiles 

follow a logarithmic profile close to 𝑈+ = 2.41 ln(𝑦+) +  5.5. At higher drag reduction 

percentages, the mean velocity profile does not retain this same behavior. They found 

that at a drag reduction of 33%, there was a weak correlation to this log behavior and as 

the drag reduction percentage increased the mean velocity profile became closer to the 

Maximum Drag Reduction asymptote, 𝑈+ = 11.7 ln(𝑦+) − 17. Warholic et al. also 

observed the differences in Reynolds shear stress behaviors from both the low and high 

drag reduction regimes [43]. From this research, many papers used 0-30% drag reduction 

as LDR, 30-40% as a more transitional region, and drag reduction greater than 40% as 

HDR for their definitions for LDR and HDR. 
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The paper by Zhu and Xi [9] further discussed the topic of low- and high-extent 

drag reduction regimes through analyzing numerous simulations. They found the 

transition from LDR to HDR occurred around approximately DR = 20% and Wi = 24 at 

𝑅𝑒𝜏 = 172.31, here the mean velocity profile breaks away from the logarithmic behavior 

and the Reynolds shear stress begins to decrease significantly. They noted that the 

transition point of 20% drag reduction varies with the Reynolds number used, as the 𝑅𝑒 

value increases so will this transitional point from LDR to HDR which can describe the 

higher percentage values that Warholic et al. had observed [9]. In another paper by Zhu 

and Xi, their onset of drag reduction for 𝑅𝑒𝜏 = 86.15 started before 𝑊𝑖 = 10 and the 

transition from LDR to HDR began at 𝑊𝑖 = 24 which corresponds to our data at  

𝑅𝑒𝜏 = 85 [44].  

The paper by Xi and Graham [36] discusses various ranges for low and high drag 

reduction regimes, where LDR is below 13% and HDR is above 15% drag reduction. Our 

drag reduction data can be divided into similar sections where the LDR cases are 

approximately 7% and HDR is at 25% drag reduction. According to Xi and Graham 

during the transition from the LDR to the HDR range, there are three observable changes 

that occur. The two changes that are currently observed in our data include the 

divergence of the mean velocity profile from the log-law slope into a steeper incline and 

the suppression of the Reynolds shear stress profile [45]. Thus, the 7% and 25% drag 

reduction cases belong indeed to the LDR and HDR regimes, respectively, where the 

steeper mean velocity profile slope distinguishes the HDR regime from the LDR regime. 
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Figure 13: Normalized area averaged wall shear stress from the bottom channel wall for 

the no-control case vs. nondimensionalized units for time. The dashed line (red) 

represents the mean wall shear stress and the dotted line (magenta) is 90% of the mean 

wall shear stress. 

 

 

 

3.3 Temporal Analysis to Underlying Drag-Reduction Mechanisms 

3.3.1 Hibernating and Active Turbulence 

We now aim to describe the underlying drag-reduction mechanisms based on a 

temporal characterization of temporal events with varying amounts of drag relative to the 

mean. It has been seen that a turbulent flow is observed to intermittently fluctuate 

between low and high friction drag, which can be seen in Figure 13. During a low-drag 

period, vortical motions are suppressed with less wavy low-speed streaks, causing low 

Reynolds shear stress [8]. These low drag intervals are termed hibernating turbulence 

[45]. The periods between the hibernating intervals are called active turbulence and 

display high-drag features. The criteria for hibernating turbulence involve the wall shear 

stress remaining below 90% of its mean value for at least three eddy turnover times  

𝜏𝑤
𝜏𝑤̅

⁄  

0.9 (
𝜏𝑤

𝜏𝑤̅
⁄ ) 
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(> ∆𝑡𝑢𝜏/ℎ = 3) [46, 47]. We already addressed the issue of sensitivity to the chosen 

values and showed almost identical results (Kushwaha et al. 2017; Park et al. 2018). To  

quantify the effects of the flow-control methods on the temporal intermittency of 

turbulence, the duration and frequency of hibernating and active turbulence are computed 

from simulation runs for 𝑇 = 150000 ℎ/𝑈𝑐 (> 80𝑅𝑒𝑐) for all cases. The average 

duration of hibernating and active turbulence and the fraction of time spent in hibernation 

(𝑇𝐻, 𝑇𝐴, 𝐹𝐻, respectively) are calculated as:  

 𝑇𝐻 =
∑ 𝑡𝐻,𝑖

𝑁𝐻
𝑖=1

𝑁𝐻
,  𝑇𝐴 =

T−∑ 𝑡𝐻,𝑖
𝑁𝐻
𝑖=1

𝑁𝐴
, 𝐹𝐻 =

∑ 𝑡𝐻,𝑖
𝑁𝐻
𝑖=1

T
,   (3.1)  

where 𝑡𝐻,𝑖 is the duration of the 𝑖th hibernating interval, and 𝑁𝐻 and 𝑁𝐴 are the total 

number of hibernating and active intervals over the total duration of the simulation 𝑇, 

respectively. Specifically, 𝐹𝐻 can be referred to as a temporal intermittency factor for low 

friction drag [46]. For temporal investigations, these three quantities 𝑇𝐻, 𝑇𝐴, and 𝐹𝐻 are  

considered along with the average number of hibernations 𝑛𝐻 over 30,000 ℎ/𝑈𝑐 for the 

LDR and HDR regimes in comparison to no-control case. 

Figure 14(a) was produced by calculating the average duration of hibernating and 

active turbulence along with the fraction of hibernation for the viscoelastic case at 

various Weissenberg numbers at 𝛽 =  0.97 and  𝑅𝑒𝑐 = 1800 (𝑅𝑒𝜏  =  85). Similar to 

the data represented in the paper by Xi & Graham, the hibernating turbulence remained 

relatively constant, while active turbulence decreased, as the Weissenberg number 

increases. As a result, the fraction of hibernation greatly increases after the critical 

Weissenberg number of approximately 17 [36]. From Figure 14, there is a correlation 

between the fraction of hibernation and drag reduction since they are very similar to each  
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Figure 14: (a) Viscoelastic simulation data at 𝛽 = 0.97 and 𝑅𝑒𝑐 = 1800 (𝑅𝑒𝜏  =  85). 

Duration of hibernating and active intervals 𝑇𝐻 and 𝑇𝐴 respectively (left axis), and 

fraction of hibernation FH (right axis), are plotted against the Weissenberg number.  

(b) From the paper by Xi & Graham [48]. 

 

 

 

other. The increase of the viscoelasticity in the fluid only effects the duration of active 

intervals, while having no effect on the hibernating intervals. Since our data follows a  

similar trend as Xi and Graham [48] from Figure 14(b), we are able to continue with the 

analysis of hibernating and active turbulence to analyze the mechanisms of different 

control methods [45]. 

 

3.3.2 Low Drag Reduction Regime 

Figure 15 shows the temporal quantities for a drag reduction of 7% at the LDR 

regime. It appears that the polymer and slip methods share similar characteristics. They 

show almost the same duration of hibernating intervals as the no-control case but a 

decrease in the duration of active intervals. These changes lead to an increase in the 

fraction of hibernation and the number of hibernations compared to the no-control case. 

These trends are in good agreement with the previous studies on viscoelastic turbulence  

(a) (b) 
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Figure 15. Temporal data at DR% = 7% (LDR): (a, b) the average duration of hibernating 

and active turbulence, respectively, (c) the fraction of hibernation, and (d) the average 

number of hibernations over 30000 ℎ/𝑈𝑐. The results are from viscoelastic (𝑊𝑖 = 20), 

slip (𝐿𝑠 = 0.015), and body force (𝐼 = 0.15, 𝑇 = 15) cases. The dashed (red) line 

represents the no-control case’s values for better visualization of changes that occur. The 

error bars represent the standard error. 

 

 

 

at low 𝑊𝑖 [36, 39]. However, the body force method shows different behaviors, where 

the duration of both hibernating and active intervals increases, while the fraction of  

hibernation and the average number of hibernations decrease compared to the no-control 

values. These trends might indicate that the body force method could cause a drag 

increase rather than a drag reduction of 7% even though 𝑇𝐻 is larger than the no-control 

value. Thus, it is strongly suggested that the body force method is likely to have a 

different drag-reduction mechanism compared to the polymer and slip methods at the 

LDR regime. 

(a) (b) 

(c) (d) 
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3.3.3 High Drag Reduction Regime 

Figure 16 shows the different control cases for a drag reduction of 25% at the 

HDR regime. As in the LDR regime, the polymer and slip control methods display 

similar behaviors. While the trends of 𝑇𝐴, 𝐹𝐻, and 𝑛𝐻 with respect to the no-control case 

are similar to the LDR cases, the average duration of hibernating turbulence does increase 

and is now larger than the no-control value. With this increase in 𝑇𝐻 and the resulting 

increase in 𝐹𝐻, a much higher drag reduction (∼25%) is achieved. For the body force 

method, the trend is still similar to its LDR case but shows more noticeable changes in 

the quantities. In comparison to the LDR case, 𝑇𝐻 and 𝑇𝐴 become almost doubled, while 

𝐹𝐻 remains almost the same, and 𝑛𝐻 decreases slightly. These trends still might indicate 

that the body force method could cause a drag increase rather than a drag reduction of 

25%. Thus, a different drag reduction mechanism could be suggested for the body force 

method compared to the polymer and slip methods even at the HDR regime.  

 With the temporal quantities at the LDR and HDR regimes, the underlying drag 

reduction mechanisms can be made for the control methods being investigated. As seen 

above, it appears that the mechanism is almost the same for polymer and slip methods. 

For LDR, they achieve a drag reduction by decreasing the duration of active intervals, 

while the duration of hibernating turbulence remains almost constant. These trends lead 

to more frequent hibernation and an increase in the temporal intermittency factor. For 

HDR, while they still show a decrease in the duration of active turbulence, a more drag 

reduction is achieved by increasing the duration of hibernating turbulence, which results 

in a more increase in 𝐹𝐻 compared to the LDR case. Interestingly, the body force method 

displays a distinctly different mechanism at both LDR and HDR regimes. Although it  
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Figure 16: Temporal data at DR% = 25% (HDR): (a, b) the average duration of 

hibernating and active turbulence, respectively, (c) the fraction of hibernation, and (d) the 

average number of hibernations over 30000 ℎ/𝑈𝑐. The results are from viscoelastic 

(𝑊𝑖 = 31), slip (𝐿𝑠 = 0.06), and body force (𝐼 = 0.55, 𝑇 = 10) cases. The dashed (red) 

line represents the no-control case’s values for better visualization of changes that occur. 

The error bars represent the standard error. 

 

 

 

causes less frequent hibernation and even a smaller 𝐹𝐻 value than the no-control case, the 

highly prolonged hibernation intervals are likely to produce comparable amounts of drag 

reduction to the polymer and slip methods.  

 

3.4 Mechanisms Behind Flow-Control Strategies 

3.4.1 Reynolds Shear Stress 

Lastly, we attempt to illuminate the mechanisms behind the different temporal 

characteristics for drag reduction between the polymers/slip methods and body force 

(a) (b) 

(c) (d) 
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method. It has been shown that the effects of flow-control methods on the Reynolds shear 

stress and vortical structures may provide a mechanistic basis for drag reduction in 

turbulent flows [4, 5]. Figures 17(a) and (b) depict the time averaged Reynolds shear 

stress profiles of the different control methods along with no-control case for the LDR 

and HDR regimes, respectively. For LDR, the three control profiles are slightly lower 

than the no-control case. It is observed that the body force profile is slightly higher than 

the polymers/slip and no-control profiles in 𝑦+ < 15. For HDR, the three control profiles 

are fairly reduced compared with the magnitudes of the no-control profile. The slip 

profile is still relatively close to the no-control case compared to the other two cases. 

More interestingly, a change in the shape of the body force profile is noticeable, which is 

non-monotonic. Mostly, the profile is rather higher than the no-control case in 𝑦+ < 10, 

with the peak being close to 𝑦+ ≈ 7, and its magnitude falls below the other cases from  

𝑦+ > 18, with another peak at almost the same locations as the other profiles. Note that 

this non-monotonic shape is kept even for hibernation and active intervals (not shown), 

while the magnitudes are different. 

  

Figure 17: Reynolds shear stress versus the distance from the wall in outer units for the 

different control methods at (a) LDR and (b) HDR regime.  

(a) (b) 
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3.4.2 Vortex Structures 

In Figure 18, the vortex structures in the body force control method decrease as 

the drag reduction increases. There are roller-like vortical structures forming along the 

bottom due to the body force that is being applied at the bottom wall of the channel. The 

structures geometry is related to the various parameters in the body force equations. In 

Figure 19, the slip control method vortex structures have been lifted away from the wall 

due to the slip condition induced at the channel wall's surface. In Figure 20, the 

viscoelastic control method shows the vortex structures elongating and becoming more 

streamline. 

To elucidate the seemingly distinct characteristics of the body force method for a  

drag-reduction mechanism, we plot its vortical structures for which the swirling strength 

𝜆𝑐𝑖, the imaginary part of the complex conjugate eigenvalues of the velocity gradient 

tensor [49], are calculated. Figures 18(a) and (c) show contours of the swirling strength 

for half of the channel for the LDR and HDR regimes, respectively. The contours 

represent isosurfaces of 50% of the maximum 𝜆𝑐𝑖 for each case. Similar to Mamori & 

Fukagata [50], the streamwise roller-like structures are clearly observed very close to the 

wall. As the wavelength of the body force is set to 𝐿𝑧/2, four roller-like vortices are 

formed and separated by 𝐿𝑧/4, a pair of vortices per wavelength. It is observed that the 

heights of these vortices are independent of the choice of the other control parameters 

such as penetration depth (∆), force magnitude (𝐼), and period (𝑇). The center of the 

rollers is located at 𝑦+ ≈ 7. Given these streamwise-spanned roller-like vortices, it can be 

speculated that the body force is likely to prevent interactions between the inner region 
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and outer region by which the hibernation intervals tend to be substantially prolonged. In 

other words, these streamwise roller-like structures tend to stay near the wall and block 

structures from the outer region, which helps increase the hibernation intervals for the 

reduction of friction drag. The differences in Reynolds shear stress and vortical structures 

between the polymer/slip methods and the body force method may provide clear and 

plausible mechanisms responsible for distinct underlying drag-reduction mechanisms, for 

which further investigation is yet needed.  

The streaks observed in Figure 18 are defined by the wavelength of the body 

force, in this case 𝜆𝑧  =
𝜋

2
. From the wavelength, there are two periods displayed in the 

domain which corresponds to the four streaks seen in the figure, two streaks per period. 

The streaks alternate height, for example the streak on the far left will be centered at 0.08 

outer units from the bottom wall and the next one will be at 0.12 outer units. The streaks 

primarily appear during low drag events, but do appear during high drag events at HDR. 

One possible mechanism behind this behavior is that the body force is trying to prolong 

the low drag event, which will increase the drag reduction. These streak structures try to 

prevent the outer structures from penetrating into the near-wall area. In other words, the 

streaks stay there and block other vortex structures from the outer log layer or wake layer, 

and this helps increase the hibernation intervals and produce more drag reduction. 

For a parametric study, the penetration depth (Δ) was increased from 0.03 to 0.06 

and 0.09. As the depth was increased the size of the streaks change, where every other 

streak is decreased in size. The position however does not appear to be altered. As the 

penetration depth is varied, the drag reduction percentages do not remain monotonic, the 
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drag reduction fluctuates. For the body force case, there are multiple sets of parameters 

that can give the same drag reduction percentage, for example three points  

(𝐼 = 0.15, 𝑇 = 20), (𝐼 = 0.20, 𝑇 = 10), and (𝐼 = 0.40, 𝑇 = 5) all have a drag reduction 

of 7%. A question arises is if these different parameters have the same 𝑇𝐻, 𝑇𝐴, 𝐹𝐻, and 

number of hibernations. It appears that there is not a strong correlation between the drag 

reduction percentage and the 𝑇𝐻, 𝑇𝐴, and 𝐹𝐻 values. When comparing simulations with 

the same parameters, the values obtained can vary from each other. 
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(a) I = 0.15, T = 15, low wall shear stress (b) I = 0.15, T = 15, high wall shear stress 

𝜆𝑐𝑖 = 0.6963     𝜆𝑐𝑖 = 1.1600 

 

 

 
(c) I = 0.55, T = 10, low wall shear stress (d) I = 0.55, T = 10, high wall shear stress 

𝜆𝑐𝑖 = 0.7716    𝜆𝑐𝑖 = 2.4589 

 

Figure 18: Vortex structures of the fluid simulations at a single point in time for the body 

force method at (a-b) LDR and (c-d) HDR. 
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(a) 𝐿𝑠 = 0.015, low wall shear stress  (b) 𝐿𝑠 = 0.015, high wall shear stress 

𝜆𝑐𝑖 = 0.4736    𝜆𝑐𝑖 = 1.4775 

 

 

 
 

(c) 𝐿𝑠 = 0.06, low wall shear stress  (d) 𝐿𝑠 = 0.06, high wall shear stress 

𝜆𝑐𝑖 = 0.3765    𝜆𝑐𝑖 = 0.9747 

 

Figure 19: Vortex structures of the fluid simulations at a single point in time for the slip 

method at (a-b) LDR and (c-d) HDR. 
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(a) 𝑊𝑖 = 20, low wall shear stress  (b) 𝑊𝑖 = 20, high wall shear stress 

𝜆𝑐𝑖 = 0.6131    𝜆𝑐𝑖 = 1.1623 

 

 

 
 

(c) 𝑊𝑖 = 31, low wall shear stress  (d) 𝑊𝑖 = 31, high wall shear stress 

𝜆𝑐𝑖 = 0.3013    𝜆𝑐𝑖 = 0.3909 

 

Figure 20: Vortex structures of the fluid simulations at a single point in time for the 

viscoelastic method at (a-b) LDR and (c-d) HDR. 
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CHAPTER 4: CONCLUSION AND FUTURE WORK 

Through direct numerical simulations in a channel flow (plane Poiseuille) 

geometry, the underlying drag-reduction mechanisms of three flow-control strategies, 

namely polymer additives, slip surfaces, and external body forces, are investigated by 

utilizing two temporal turbulent phases – hibernating and active turbulence [38]. Given 

similar drag-reduction percentages, the polymers/slip methods demonstrate a similar 

mechanism to one another by causing the hibernation phases to occur more frequently 

with a decrease in the duration of active phases. The body force method shows a different 

mechanism, where the hibernation phases happen less frequently, however the duration 

of these hibernations is prolonged due to roller-like vortical structures formed near the 

wall. These vortical structures appear to prevent interactions between the inner and outer 

regions to make hibernating phases longer. At higher drag-reduction regimes, each 

control method seems to involve different mechanisms to manipulate the Reynolds shear 

stress for which follow-up work is under investigation. These distinct underlying  

drag-reduction mechanisms between the polymers/slip methods and body force method 

could suggest that different adaptive and optimal flow-control techniques could be used 

to promote more drag reduction, which will be a subject of interesting future work. 

Future work for this type of research could involve investigating these drag reducing 

mechanisms at higher Reynolds numbers. Control methods mentioned in the literature 

review such as opposition control, riblets, and wall movement can be incorporated into 

the analysis. 
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