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confounding” by Dupont, Wood, and Augustin
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1Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA

2Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

1 | INTRODUCTION

Congratulations to the authors for this thoughtful and timely contribution to the spatial 

confounding literature. The intuitive nature of the method and simplicity of the estimation 

procedure will surely make Spatial+ popular with practitioners, and the theoretical 

developments are a major advance for researchers in this area. There is much to discuss! 

We have formatted our discussion in two sections: in Section 2 we consider the assumptions 

and statistical properties of Spatial+, and in Section 3 we examine how Spatial+ fits in 

the wider literature on spatial causal inference.

2 | ASSUMPTIONS AND STATISTICAL PROPERTIES OF Spatial+

Identification

Spatial+ uses partial linear regression (PLR) to adjust for spatial confounding. It assumed 

in Equation (4) that xi, the covariate at spatial location ti, can be written as xi = fx ti + ϵi
x

and ϵi
x ∼

iid
N 0, σx

2  for some smooth process fx. The estimation procedure utilizes a two-stage 

smoothing spline regression, where the first stage obtains the residual of the covariate xi that 

is uncorrelated with spatial confounding and the second stage replaces xi by its residual. 

This trick is well established in the econometrics literature; see, for example, Robinson 

(1988) and Speckman (1988), where both the covariate xi and its support ti can be vectors. 

Identification of model parameters is important in the PLR framework. Robinson (1988) 

shows that Φ = E {x − E(x ∣ t)}{x − E(x ∣ t)}T  being positive definite is a necessary and 

sufficient condition for β to be identified and β̂ to be root-n consistent. It will be critical to 

establish identification conditions in the Spatial+ framework.

Model assumptions

One of the strengths of the paper is to lay bare the assumptions needed for consistency in the 

spatial setting. One assumption is that the covariate is Gaussian and can be decomposed into 
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smooth and independent components as in Equation (4). It seems the methods would still 

perform well if the errors were slightly non-Gaussian, but we would be curious to learn what 

the authors recommend for more extreme cases such as binary xi. In a recent review (Reich 

et al., 2021), we found that (a slight variation of) the method of Davis et al. (2019) that fits 

a spatial logistic regression model logit Prob xi = 1 = fx ti  and adjusts for the estimate of 

fx ti  in the response model effectively reduced confounding bias. As discussed further in 

Section 3, this has connections with the propensity-score (PS) adjustment that is common in 

causal inference. Perhaps a similar approach can be taken for Spatial+?

A more challenging scenario is when x is a continuous spatial surface, that is, σx = 0. While 

this may appear to be a pathological case, it is in fact quite common in the epidemiological 

literature. For example, Schnell and Papadogeorgou (2020) studied the health effect of 

supermarket access, and one could envision a study where the exposure of interest is 

the distance from a subject’s residence to the nearest supermarket, which is a continuous 

spatial surface. Another common setting that gives spatially smooth exposure is the study of 

neighborhood effects, for example, Giffin et al. (2020) regressed air pollution concentration 

onto kernel-smoothed measures of wildland fire indicators. There are many other examples 

such as extreme temperature, some forms of air pollution, distance to a point source, and so 

forth. To extend Spatial+ to this case would be seem to require fundamentally different 

assumptions to avoid the residuals being zero, that is, ri
x = 0, and thus the exposure effect 

being unidentifiable. For example, Guan et al. (2020) allow for a continuous exposure 

variable with assumptions about the local correlation between the exposure and confounding 

variables. Can a similar approach be applied to Spatial+?

We examine the performance of Spatial+ for spatiallysmooth covariates by extending 

the simulation study to include smoother covariate processes. The data generation and 

implementation of Spatial+ are identical to the simulation in Section 4 of the main paper 

except that we consider a range of σx. Coverage of 95% intervals for β is computed using 

the standard error provided by the mgcv package (although the authors do not use these 

standard errors). Figure 1 shows low bias and nominal coverage for all but the smallest value 

of σx. Modifying the approach to accommodate smooth covariates and/or providing a rule of 

thumb to caution against this source of bias would be useful in practice.

Another assumption is that the unmeasured spatial confounder fx(t) in the covariate and the 

spatial dependence f(t) can be fit with spline regression. To understand the performance 

of Spatial+ under model misspecification, we repeat the simulation study in Section 4 

with a slightly different data-generation scheme. We simulate fx(t) from a Gaussian process 

with the same parameter setting, but instead of taking the fitted value from a thin plate 

spline (as is done in Section 4) we use the Gaussian process realization as the covariate, 

and we simulate f(t) similarly. We considered this data-generation scheme as it is the most 

problematic case for the standard spatial linear model (Paciorek, 2010) and it is often more 

realistic in data applications. Figure 2 shows an example of the unmeasured confounder fx(t)
used to form the covariate from the different simulation schemes, and the bias and coverage 

from Spatial+ when the model is misspecified. While the difference in the unmeasured 
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confounders is small, the remaining residuals from fitting the smoothing spline may cause 

collinearity-induced bias in estimating β. The magnitude of the bias is large and coverage 

is low for small σx. Therefore, while splines are generally a robust semiparametric method 

for function estimation, in this case users should check for sensitivity to their modeling 

assumptions.

Spline and kernel smoothing

Spline smoothing requires choosing a basis and knot locations. An alternative is kernel 

smoothing, that is, the mean functions are assumed to be locally well approximated by 

polynomial functions. For PLR, Robinson (1988) proposed a two-stage kernel smoothing 

estimator, a counterpart of the proposed estimator in Spatial+. Speckman (1988) 

conducted a theoretical comparison of the asymptotic behaviors of the two types of 

estimators. It would be interesting to compare the two parallel frameworks in Spatial+.

Smoothing selection

As with most semiparametric estimators, tuning parameter selection is a key step. Following 

Chen and Shiau (1994), the authors suggest minimizing the mean squared error of the 

estimated spatial effects to select the smoothing parameters; however, in implementation, 

the authors use generalized cross-validation which in fact targets minimizing the prediction 

error. Thus, there is a gap between the authors’ target and implementation. We are curious if 

there is an objective function for smoothing selection that directly targets estimating β, and if 

not, whether the authors could provide intuition for why minimizing these indirect objective 

functions leads to a good performance of β+.

Inference

We are disappointed that the paper does not mention how to conduct inference in 

Spatial+. Given the asymptotic results, β+ is root-n consistent. Will resampling 

approaches such as the bootstrap work to estimate its variance and conduct inference on 

β? Also, the authors comment on the equivalence between modeling spatial random effects 

through the use of a smoothing penalty and Bayesian modeling. When inference under the 

frequentist framework is a daunting task, will Bayesian modeling offer a remedy?

3 | CONNECTIONS WITH SPATIAL CAUSAL INFERENCE

We would like to take this opportunity to place Spatial+ in the broader context of 

spatial casual inference. Causal inference provides a rigorous mathematical foundation to 

define the causal effect/estimand of interest and clarify the assumptions required to achieve 

identifiability. Causal effects are typically defined via potential outcomes under different 

treatments, but defining a potential outcomes framework for spatial problems is nontrivial 

due to correlation between observations and possible interference between the treatment 

at one location and the response at another. Reich et al. (2021) reviewed several casual 

estimands and procedures to estimate the casual effect in spatial problems. Spatial+ is 

categorized as a “neighborhood adjustment” method (a discussion of other methods placed 
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in this category is below), and this is contrasted with other approaches such as matching 

methods, PS adjustments, and instrumental variables.

In practice of course, one should consider all of these options when conducting a given 

analysis. For example, if the tuning and inference issues with Spatial+ discussed above 

are concerns, matching nearby observations with different treatments and analyzing the 

difference in their responses is a simple way to adjust for unmeasured spatial confounders, 

perhaps at the expense of statistical efficiency under a correctly specified model. Also, for 

binary exposure variables, a PS adjustment might be more appropriate as discussed below. 

In the remainder of this section, we discuss various connections with Spatial+ and casual 

inference methods.

PS methods

To establish a causal effect, the authors require that f ti  captures all confounding effects 

of treatment xi  and outcome yi . Under the PLR assumption that yi = βxi + f ti + ϵi, β
can be interpreted causally. One strategy of obtaining an unbiased estimator of β with 

spatial confounding is using (generalized) PS adjustments, where the propensity score is 

the conditional (density or) probability of xi given the confounders, e ti = Prob xi ∣ ti . 

Reich et al. (2021) studied a PS-adjusted PLR (Zhou et al., 2019) defined as 

E yi ∣ xi, ti = βxi + f1 ti + f2 e ti , where f2( ⋅ ) is a flexible nonparametric model such as 

splines. Zhou et al. (2019) showed that their PS-adjusted PLR estimator is doubly robust in 

that it is consistent if either f1( ⋅ ) or the PS model is correctly specified, but not necessarily 

both. We would like to solicit opinions from the authors on such PS adjustments in the 

context of spatial confounding and causal inference.

Comparison with other confounder adjustment methods

Different assumptions on the structure of the missing confounder have led to different 

adjustment methods. In a very similar approach to Spatial+, Keller and Szpiro (2019) 

partition the covariate into a smooth component and its complement. The smooth component 

is then removed from the covariate, and the association between the adjusted covariate and 

response is estimated as a function of the degree of smoothness. Thaden and Kneib (2018) 

assumes geographic confounding and removes the spatial patterns from both covariate and 

response, then the causal effect is estimated by regressing the local variation in the covariate 

and response. Spatial+ assumes a spatially smooth unmeasured confounder, which is 

equivalent to confounding only at large spatial scales, while Guan et al. (2020) allows 

for different degrees of confounding at different spatial resolutions with the assumption 

that confounding dissipates for smaller scales. Guan et al. (2020) proposed an estimation 

procedure in the spectral domain, but intuitively it decomposes both the covariate and 

response into new variables at different spatial scales and estimates their association at each 

level. The effect is estimated as a function of spatial scale and causal interpretation is drawn 

at local levels. Schnell and Papadogeorgou (2020) mitigates unmeasured spatial confounding 

for county-level data by proposing a joint model for the covariate and missing confounder, 

and put forth assumptions required for identifiability.
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In summary, there are now several approaches to reducing the effect of spatial confounding 

and Spatial+ will clearly play a central role moving forward. We reiterate our 

congratulations to the authors for their important contribution to this emerging field and 

look forward to further developments in this area.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Bias and coverage of Spatial+ (the dashed lines 95% intervals) as a function of σx for the 

simulation study. This figure appears in color in the electronic version of this article, and any 

mention of color refers to that version
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FIGURE 2. 
Unmeasured spatial confounder simulated from a Gaussian process (top left), from the 

fitted thin plate spline (top middle), and their difference (top right). Bias and coverage 

of Spatial+ (the dashed lines 95% intervals) as a function of σx under misspecified 

model. The covariates are generated as xi = zi/2 + ϵi, where zi is a spatial process and 

ϵi ∼
iid

Normal 0, σx
2  and the plots in the top row are the spatial component, zi. This figure 

appears in color in the electronic version of this article, and any mention of color refers to 

that version
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