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Soybean seedling diseases and Phytophthora stem and root rot (PSRR; caused by 

Phytophthora sojae) are two of the most economically important diseases in North Central 

U.S. Remarkable differences in disease incidence occur each year, which demonstrate that 

abiotic and biotic factors must interact for disease onset and development. During 2017 

and 2018, field studies were conducted to (i) address the efficacy of seed treatment and 

genetic resistance for PSRR management on soybean population, canopy coverage (CC), 

and yield, and (ii) investigate potential interactions between pre-emergence (PRE) 

herbicides and the incidence of seedling diseases in alluvial soils in Nebraska. 

Despite field history, PSRR developed in only four of six environments studied. 

Commercial seed treatment had a positive effect on plant population density, CC, and yield 

in at least three environments. Compared to non-treated control, seed treatment increased 

emergence between 11,600 to 53,700 plants ha–1 and early-season CC between 0.7 to 

1.2%. Under high disease pressure, management programs using moderately resistant 

cultivars improved yields when compared to moderately susceptible cultivars. By contrast, 

minimum yield differences were detected between Rps1k and Rps1c genotypes, except in 

one environment. While a weak to moderate correlation was observed between CC and 



 
 

 
 

incidence of P. sojae symptomatic plants, a moderate to strong association was found 

between CC and yield. 

Across multiple environments, PRE herbicides chlorimuron-ethyl, metribuzin, 

saflufenacil, sulfentrazone, and flumioxazin had no impact on seedling root rot (disease 

severity index; DSI) when compared to the non-treated control. Similarly, no significant 

differences between PRE herbicides were detected on plant population, plant height, and 

yield. Community composition depicting primary pathogenic genera Fusarium, 

Phytophthora, Pythium, and Rhizoctonia did not occur at random but rather varied across 

environments and DSI classes. In two of the three environments, Phytophthora structured 

approximately 22% of primary pathogenic genera, whereas, Rhizoctonia recovery was low 

(<5.5%). These results suggest compatibility of PRE herbicides programs in late-planted 

soybeans with a history of seedling diseases. 

Collectively, the research presented in this thesis furthers our knowledge on the 

management of soilborne pathogens in soybeans and offers insights into new avenues of 

research.  
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CHAPTER 1. Literature review 

General introduction 

 

This thesis is divided into four chapters. The first chapter contains the literature 

review that supports the research hypothesis. The second chapter reports the agronomic 

performance of seed treatment in combination with genetic resistance to Phytophthora 

sojae on soybean population, canopy coverage, and yield in Nebraska and Iowa. The third 

chapter describes a two-year field study conducted to address the effect of soil-applied pre-

emergence herbicides on the incidence of seedling diseases caused by Pythium, 

Phytophthora, Rhizoctonia, and Fusarium species. The last chapter presents the general 

conclusions for this thesis, suggestions on management practices based on results gathered 

by the present investigation, and a discussion on possible future research topics. 

 

1.1. Soybean: an overview 

Soybean (Glycine max L. Merr.) (Fabaceae: Phaseoleae) is a leguminous plant 

cultivated as a major source of protein and oil. In 2016, production was estimated at 334 

MMT worldwide (FAO 2016). About 50 countries grow soybeans in the world but 

production is geographically concentrated within the U.S., Brazil, Argentina, and China, 

which together account for almost 90% of the world’s production (Wilcox 2004). The U.S. 

has been the world’s leading producer with a cultivated area of 33.7 million hectares and 

production estimated at 117.2 MMT in 2016. Soybean production in the North Central 

region has increased due to changes in management systems, improved genetics, and 
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expanded soybean acreage. Annual yield increases in the order of 35.1 and 24.9 kg ha–1 for 

irrigated and rainfed agrosystems have positioned Nebraska among the top yielding states 

nationwide with estimated 4102.3 and 3866.9 kg ha–1 in 2016 and 2017, respectively 

(Specht et al. 1999; USDA-NASS 2018). Soybean exports are important for Nebraska’s 

economic growth; roughly 50% of production is exported to other countries 

(http://nebraskasoybeans.org/topics/international-marketing).  

1.1.1. Seedling diseases in the U.S. and Nebraska 

The rapid expansion of cultivated area has also been accompanied by an increase in 

the incidence of soybean diseases which have a direct impact on grain production and 

quality (Hartman et al. 2015). From 1996 through 2007, yield losses to soybean diseases 

were estimated at 13.5% of attainable production in the U.S. (Koenning and Wrather 

2010). Among the most yield-limiting maladies are seedling diseases that cause poor crop 

establishment and reduced plant stand. In 2009, seedling diseases exclusively were 

responsible for an estimated loss of 1.51 MMT in soybean production in the U.S. 

(Koenning and Wrather 2010). In Nebraska, the economic impact related to soybean 

diseases are estimated at $21.67 per-acre basis (Allen et al. 2017), which a significant 

portion is attributed to the occurrence of seedling diseases caused by a complex of 

pathogens, including Pythium spp., Phytophthora sojae, Fusarium spp., and Rhizoctonia 

solani (Giesler 2017; Parikh et al. 2018; Rojas-Flechas et al. 2017).  

Symptoms of seedling diseases include seed decay, pre- and post-emergence 

damping-off, blight, and root rot. Water soaking and systemic vascular discoloration can 

also be observed in seedlings infected by oomycetes such as Pythium and Phytophthora. 

Emerged seedlings may also show soft brown to reddish-colored rot of lateral, taproot and 
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hypocotyl, which culminate in stunted plant development and stand failure (Schmitthenner 

and Dorrance 2015). 

Risk factors for increased seedling disease include prolonged periods of saturated 

conditions associated with cooler soil temperatures (Han et al. 2017; Martin and Loper 

1999), reduced tillage (Workneh et al. 1998), and compaction. Shifts on pathogen 

aggressiveness (Jackson et al. 2004; Stewart et al. 2014) and reduced crop genetic diversity 

upon the introduction of biotech traits available only in genetically interrelated parents 

(Mueller et al. 2018; Sneller 2003) can also magnify disease epidemics. In addition, abiotic 

stresses caused by pre-emergence herbicide (Bradley et al. 2002; Carson et al. 1991; 

Duncan and Paxton 1981) and physical injury can increase soybean susceptibility to 

pathogen infection. 

1.1.1.1. Fusarium spp. 

Fusarium belongs to the Eukarya domain, kingdom Fungi, phylum Ascomycota, 

class Sordariomycetes, order Hypocreales, family Nectriaceae, and genus Fusarium. 

Fusarium species incite several diseases of soybean including Fusarium wilt, sudden death 

syndrome caused by F. virguliforme O’Donnell & T. (Aoki et al. 2003), and seedling 

blight and root rot caused by a number of species, including F. solani (Mart.) Sacc., and F. 

oxysporum Scheldt. (Killebrew et al. 1993; Leslie et al. 1990; Rizvi and Yang 1996). Other 

species associated with soybeans in the U.S. include Fusarium graminearum, F. 

acuminatum, F. commune, F. equiseti, F. armeniacum, F. proliferatum, F. redolens, and F. 

cerealis (Abdelmagid et al. 2018; Bienapfl et al. 2010; Días Arias et al. 2013; Ellis et al. 

2012). Infected tissue displays external lesions on taproot and adventitious roots, cortical 

decay, and vascular reddening (Hartman et al. 1999).  
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Besides being a cosmopolitan soil inhabitant, Fusarium species are also considered 

a common member of fungal communities associated with plant rhizosphere. Fusarium 

species produce three types of spores: chlamydospores, macroconidia, and microconidia 

(Nelson et al. 1994). Chlamydospores are ovoid, thick-walled overwintering structures 

filled with lipid-like material that allow for pathogen survival during starvation and 

adverse conditions. Plant infection occurs by direct penetration through mycelial contact or 

haustoria invagination from germinated spores, and indirectly through wounding resulted 

from secondary root development, injury from nematodes, insects, and farming equipment 

(Garret 1970; Summerell et al. 2003). Cool temperatures (10-15 °C) and saturated soils 

conditions are conducive to infection, although some species and strains are capable of 

causing disease under a range of soil temperature and moisture (Ellis et al. 2011). 

Management of Fusarium root rot can be challenging but research suggests soybean 

cultivars differ in susceptibility to the disease (Zhang et al. 2010). Seed treatments reduce 

infection at the seedling stage (Broders et al. 2007b; Ellis et al. 2011) and cultivation 

practices that reduce soil compaction and promote drainage reduce disease severity, as can 

also the maintenance of optimum pH levels and macro and micronutrient levels. 

1.1.1.2. Rhizoctonia solani 

Rhizoctonia species belong to Eukarya domain, kingdom Fungi, phylum 

Basidiomycota, class Agaricomycetes, order Ceratobasidiaceae, family Cantharellales, and 

genus Rhizoctonia. The pathogen Rhizoctonia solani Kühn (syn. Thanatephorus cucumeris 

(A. B. Frank) Donk) is recognizably a major causal agent of damping-off in soybeans in 

the U.S. (Doupnik 1993). Symptoms include seed decay, root rot, hypocotyl rot, crown rot, 
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stem canker, post-emergence damping-off, and foliar web blight (Yang and Hartman 

2015). 

Isolates of R. solani are classified based on culture hyphae compatibility reaction 

into 14 different anastomosis groups (AGs) (AG 1 to 13 and AG-BI) (Carling et al. 1999; 

Ogoshi 1987). Individual AGs have different host preferences and geographic distributions 

but multiple AGs have been reported to infect soybeans. Ajayi-Oyetunde and Bradley 

(2017) reported AG-2-2IIIB was the most aggressive on soybean roots, whereas, AG-4 

displayed greater aggressiveness on the hypocotyl. Other AGs including AG-2-1, AG-2-2, 

AG-7, and AG-11 have been isolated from soybean seedlings in Iowa and Arkansas (Rizvi 

and Yang 1996; Rothrock et al. 1993). Morphologically, young vegetative hyphae are 

multinucleate and hyaline but turn brown with age. Septate hyphae branch at right angles 

with constricted insertion points. Isolates produce thick-walled, brown sclerotia that 

accumulate dark pigments during incubation (Yang and Hartman 2015). In nature, R. 

solani reproduces asexually and exists primarily as vegetative mycelium colonizing debris 

or as sclerotia that function as hardened long-term surviving structure. Unlike other 

pathogens, R. solani can infect soybeans in a wide temperature range (20-32℃) (Boosalis 

1950; Dorrance et al. 2003b; Lewis and Papavizas 1977). 

Management of Rhizoctonia seedling diseases relies on an integrated approach that 

combines fungicide seed treatments (Dorrance et al. 2003b; Xue et al. 2007) and 

agronomic practices that encourage seedling development. Minimizing soil compaction 

can reduce disease incidence in dry beans (Harveson et al. 2005). Despite of the benefits 

on soil health and activity of antagonistic organisms, crop rotation may have minimal 

effect for management of Rhizoctonia diseases because of the wide range in susceptible 
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hosts, including corn (Zea mays L.), crucifers, sugar beet (Beta vulgaris L.), potato 

(Solanum tuberosum L.), cotton (Gossypium spp.), cucumber (Cucumis sativus L.), 

chickpeas (Cicer arietinum L.), canola (Brassica napus L.), rice (Oryza sativa L.), and 

weeds (Anderson 1982; Harveson 2011). In terms of genetic resistance, no complete 

resistance has been found in the soybean germplasm, but cultivars exhibit different 

tolerance levels to the disease (Bradley et al. 2001; Zhao et al. 2005). 

1.1.1.3. Pythium spp. 

Pythium species belong to the Eukarya domain, kingdom Straminipila, phylum 

Oomycota, class Peronosporomycetes, order Peronosporales, family Pythiaceae, and genus 

Pythium (Beakes et al. 2014). The genus Pythium consists of many important plant 

pathogens. Several species have been isolated from disease soybean seedlings around the 

world, but common species found in the North Central U.S. include Pythium irregulare, P. 

torulosum, P. sylvaticum, P. oopapillum, P. heterothallicum, P. ultimum var. ultimum, and 

P. aphanidermatum (Broders et al. 2009; Radmer et al. 2017; Zitnick-Anderson and 

Nelson Jr. 2015). Infected seedlings display a soft mushy rooting tissue on the cotyledon, 

radicle, and hypocotyl, as well as root rot and early-season post-emergence damping-off. 

Lesions may vary from yellow to tan to brown in color and infected tissue are usually 

water soaked (Rothrock et al. 2015).  

The cell wall of many oomycetes is composed of cellulose and β-1, 3 glucan with 

minimal amounts of chitin, which is a distinctive characteristic that separate Oomycota (ex. 

Pythium, Phytophthora, Aphanomyces, Bremia, Peronospora, Plasmopara, etc.) from 

Fungi (ex. Fusarium, Rhizoctonia, Paecimolyces, Sclerotinia, etc.) (Fry and Grünwald 

2010). Pythium species reproduce asexually by means of either hyphae or hyphal swellings 
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and sexually via antheridia and oogonia. Sporangia can be globular to ovoid, with or 

without internal proliferation; some may have apical papilla but lack the apical thickening 

characteristic of those species of Phytophthora (Ho 2018). Plant infection may occur 

shortly after planting when dormant, overwintering pathogen propagules germinate in 

response to chemical signaling exudates released by roots (Donaldson and Deacon 1993). 

Differences in temperature determine the aggressiveness of Pythium species in soybeans. 

For example, some species are favored by cool soil temperatures (5 to 10°), such as 

Pythium ultimum var. ultimum and P. irregulare, P. macrosporum, while others thrive in 

warmer conditions (25 to 30°), such as P. aphanidermatum (Thomson et al. 1971; Wei et 

al. 2010).  

Management of Pythium seed and seedling rot and damping-off can be difficult 

depending on environmental conditions prevailing at emergence. No definite genetic 

resistance is commercially available for disease management, however, differences in 

disease tolerance have been reported in the soybean germplasm (Bates et al. 2008; Ellis et 

al. 2013; Rod et al. 2018). Seed treatments provide protection during initial developmental 

stages, but certain species and isolates exhibit different sensitivity to fungicides (Radmer et 

al. 2017). In high-risk areas, increasing oomycide (metalaxyl, mefenoxam, and ethaboxam) 

rates during seed treatment may be necessary to prolong seedling protection (Jackson-

Ziems et al. 2017). Choice of proper planting time can be utilized for the management of 

Pythium root rot and damping-off in soybeans. Chilling or freezing temperatures during 

imbibition and emergence predispose seedlings to Pythium sylvaticum infection (Serrano 

and Robertson 2018), but a tradeoff on plant productive components (e.g. number of 

productive nodes and pods) and yield exists as planting is delayed. 
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1.1.1.4. Phytophthora spp. 

Phytophthora species belong to the Eukarya domain, kingdom Straminipila, 

phylum Oomycota, class Peronosporomycetes, order Peronosporales, family 

Peronosporaceae, and genus Phytophthora (Beakes et al. 2014). Phytophthora sojae (syn. 

P. megasperma var. sojae A. A. Hildebr., P. megasperma f. sp. glycinea Kuan & Erwin, P. 

sojae f. sp. glycines Faris et al.) is a soilborne pathogen and principal causal agent of 

Phytophthora stem and root rot (PSRR) in soybeans. The disease was first observed 

affecting soybeans in Indiana in 1948 and Ohio in 1951 (Bernard et al. 1957) and was 

initially thought be to caused by Phytophthora cactorum (Skotland 1955), but later 

renamed to P. sojae in a comprehensive report by Kaufmann and Gerdemann (1958). Since 

its emergence, substantial economic losses due to PSRR have been reported in North 

America. In 1994, yield losses to PSRR were estimated at 5.7 MMT and increased to 9.4 

MMT in 2014 (Allen et al. 2017; Wrather et al. 1997). Worldwide, P. sojae has been 

detected in Canada (Hildebrand 1959), Japan (Tsuchiya et al. 1978), Australia (Pegg et al. 

1980), Hungary (Kövics 1981), Argentina (Barreto et al. 1991), China (Shen and Su 1991), 

and Brazil (Costamilan et al. 1996), Korea Republic (HyeongJin et al. 1998), Italy, and 

other countries (Schmitthenner 1999). 

Recently, a second Phytophthora species, P. sansomeana E.M. Hansen & Reeser, 

has also been described as a seedling pathogen in soybeans (Hansen and Hamm 1983; 

Hansen et al. 2009). Phytophthora sansomeana has been recovered from symptomatic 

soybean seedlings in Arkansas, Illinois, Indiana, Iowa, Kansas, Michigan, Nebraska, Ohio, 

and Wisconsin and abroad in Canada and China (Phibbs et al. 2014; Rojas-Flechas et al. 

2017; Tang et al. 2010; Zelaya-Molina et al. 2010). The pathogen has also been detected in 
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soil or isolated from hosts other than soybeans in New York, North Carolina, 

Pennsylvania, Oregon, and abroad in Japan (Coffua et al. 2016; Pettersson et al. 2017; 

Rahman et al. 2014; Rojas-Flechas et al. 2017). 

At the seedling stage, both Phytophthora species cause root rot and damping-off 

but after the development of trifoliate leaves, PSRR occurs primarily as a root and stem rot 

associated with P. sojae (Schmitthenner and Dorrance 2015). Infected plants display light-

chocolate to brown lesion that progresses upwards within the cortex and vascular tissue, 

followed by wilting and plant collapse (Figure 1.1). PSRR develops rapidly in fine-

textured soils when warmer temperatures (25-30°C) and saturated soil conditions prevail.  

The disease cycle starts when growing mycelium develops sporangia, after repeated 

soil saturation. In vitro, light, culture age, temperature, quality and quantity of washing 

Figure 1. 1. Symptoms of Phytophthora stem and root rot (PSRR) of soybeans. A, 
Chocolate-colored lesion progressing upwards in the stem; B, Vascular discoloration in 
infected plant; C, Severe PSRR outbreak in breeding nursery in Lincoln-NE, August 
2017. Detail on drip-irrigation providing continuous moisture for propagule development 
and dispersal. 
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solutions have been shown to interact with sporangial development and zoospore 

production (Eye et al. 1978; Schmitthenner and Bhat 1994). Single-celled, motile, 

biflagellate zoospores are chemotactically attracted to soybean roots by root exudates 

(genistein, daidzein, and other isoflavones). Upon zoospore encystment and germination, 

appressoria are formed at the point of penetration into host tissue, initiating infection 

process that will result in production in oospores in root tissue (Schmitthenner 1999; Tyler 

et al. 1996). Phytophthora species persist as well-adapted resting-structures called 

oospores in either crop residue or freely in the soil (Figure 1.2). The cycle is completed 

Figure 1. 2. Disease cycle of Phytophthora stem and root rot (PSRR) in soybean.  
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when oospores germinate to form mycelia that produce sporangia (Dorrance et al. 2007). 

In media, P. sojae is homothallic (self-fertile) with globose oogonium varying from 29.4 to 

45.7, averaging 36.6 µm. Antheridia can be both paragynous and amphigynous (Figure 

1.2). Sporangia are non-papillate and ovoid, ellipsoid, and sometimes obpyriform and vary 

from 23 to 88 µm long and 16 to 51 µm wide (Hildebrand 1959; Kaufmann and 

Gerdemann 1958). Both Phytophthora spp. mycelia are coenocytic, branching mostly at 

right angles and with a slight constriction at the base of each branch. Hyphae range from 3 

to 9 µm wide and are slightly curled. As opposite to P. sansomeana, mycelial development 

of P. sojae is limited in full-strength potato dextrose agar (Schmitthenner and Dorrance 

2015).  

In relation to host specificity, P. sansomeana infects Douglas-fir, alfalfa (Medicago 

sativa L.), corn (Zea mays L.), soybeans and weed species (Hansen et al. 2009; Zelaya-

Molina et al. 2010). More recently, P. sansomeana was also reported causing root rot in 

field pea (Pisum sativum L.) in Canada (Chang et al. 2017), which potentially could 

discourage adoption of this crop in rotational programs for soybean producers in Nebraska. 

By contrast, P. sojae has a more limited host range which includes soybeans, Lima bean 

(Phaseolus lunatus L.), string bean (Phaseolus vulgaris L.), Cranesbill (Geranium 

carolinianum L.), and Lupinus spp. (Erwin and Ribeiro 1996).  

PSRR is best managed by planting resistant cultivars, promoting soil drainage, and 

applying effective oomycides as seed treatment or in-furrow. Most seed companies 

operating in the North Central U.S. provide information about resistance genes (Rps) and 

levels of disease susceptibility of soybean cultivars (Giesler and Broderick 2016). 

Knowledge of predominant pathotypes within a field may help on the selection of which 
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resistance genes (Rps) to use but the high within-field pathotype diversity makes disease 

management based entirely on Rps resistance difficult. Selecting highly tolerant cultivars 

with stacked Rps genes has also been suggested as a control strategy in areas PSRR is 

endemic. In addition to genetic resistance, early-season seedling protection can be 

achieved with seed treatments that contain oomycides (e.g. metalaxyl, mefenoxam, 

ethaboxam, and oxathiapiprolin) in their formulation. Practices that promote soil drainage 

and minimize inoculum accumulation on soil surface (Anderson and Buzzell 1982; 

Workneh et al. 1998) should be integrated with genetic resistance and seed treatment for 

durable PSRR management. 

1.1.2. Inherited host resistance and pathotype diversity of Phytophthora sojae in 

Nebraska 

The use of resistant cultivars is the most effective tool for PSRR management 

(Schmitthenner 1999). Host resistance is expressed in two major ways: race-specific 

through Rps mediated resistance and non-race specific through quantitative trait loci 

(QTLs) (a.k.a. tolerance, field tolerance, partial resistance). Both are screened separately 

but occur simultaneously at varying levels of tolerance in combination to the 

presence/absence of Rps gene(s) for a given soybean line. 

Since its discovery, numerous resistance genes have been identified in the soybean 

germplasm: Rps1a, 1b, 1c, 1d, 1k, 2, 3a, 3b, 3c, 4, 5, 6, 7, 8, 9, 10, 11, 12, UN1, UN2, 

Yu25, YD25, YD29, YB30, ZS18, SN10, HN, HC18, JS, Q, and an unnamed Rps gene 

(Waseshiroge) (Bernard et al. 1957; Dorrance 2018; Li et al. 2017; Niu et al. 2017; Sahoo 

et al. 2017; Zhong et al. 2018). Among these, Rps1a, 1b, 1c, 1k and to some extent Rps3a 

and Rps6 are the primary resistance genes incorporated into commercial lines in the U.S. 
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(Robertson et al. 2009; Slaminko et al. 2010). Slaminko et al. (2010) reported that the most 

common resistance in the lines evaluated by the Variety Testing Program in Illinois 

between 2004 and 2008 were Rps1c, 1k, and Rps1a and to a much smaller degree Rps3a,1b 

and Rps7.  

In Nebraska, soybean cultivars belonging to maturity groups II and III are 

recommended for cultivation. Among these maturity groups, the resistance genes Rps1k 

and Rps1c are the most widely available resistance available in commercial germplasm 

(Table 1.1). Currently, 8 to 39% of cultivars contain Rps1k resistance whereas that 41 to 

53% carry the Rps1c resistance gene. A smaller percentage of Rps3a and Rps3a/1k 

cultivars is also available, particularly for maturity groups 2-2.9. However, the continuous 

deployment of the same Rps genes in elite, commercial soybean cultivars have increased 

the selection pressure and led to a shift on virulence of P. sojae populations across some 

producing regions. To date, more than 200 unique virulence pathotypes have been 

identified across soybean regions of the U.S. (Dorrance et al. 2016).  

In Nebraska, the earliest comprehensive study documenting the virulence diversity 

of P. sojae was conducted in the early 1980s (White et al. 1983). At the time, P. sojae was 

Maturity 
Group 

Proportion (%) of Rps genesz  Total 
number 1a 1c 1k 3a 3a/1c 3a/1k 6 7 None  

2-2.4 2 53 25 2 1 5 0 0 14  110 

2.5-2.9 1 41 39 2 1 1 0 0 13  135 
3-3.4 0 63 17 1 2 1 0 0 17  129 

3.5-3.9 2 59 8 1 1 1 0 0 28  116 

Table 1. 1. Genetic composition of soybean cultivars with Phytophthora sojae resistance 
genes (Rps) across maturity groups recommended for production in Nebraska. 

z Based on a survey conducted in July 2018 of AgriGold®, Asgrow®, Channel®, Credenz®, Golden Harvest®, Hefty®, Hoegemeyer®, 
Latham®, LG Seeds®, Mycogen®, NK®, Phillips®, Pioneer®, Seitec®, and Stine® seed catalogs. 
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geographically confined; only 12 isolates were baited across 468 fields sampled from 39 

eastern counties of the state. Despite the limited number of isolates collected in that 

survey, pathotype 1 was the predominant virulence form followed by 3, 9, 4, 18 and 23 

(White et al. 1983). Together, these isolates were able to defeat Rps1a, 1b, 1c, 6, and 7, but 

none of them were virulent on differentials ‘PI 171.442’, ‘PI 103.091’, indicating superior 

efficacy of Rps3a and Rps1d against P. sojae in Nebraska at the time (Table 1.2). 

The pathotype diversity and geographical range of the pathogen increased rapidly 

as soybean acreage expanded in Nebraska. Between 2000 and 2004, a second state-wide 

was conducted to determine the virulence profile in Nebraska (Schimelfenig et al. 2005). 

Across 181 fields sampled, 52 located in north-central, western, south-central, south-

eastern were positive for the pathogen, including in areas where the first survey was 

performed. In this second survey, pathotypes 3, 25, 28 and 33 were the dominant 

physiological races found across soybean regions in the state followed by 1, 4, 5, 8, 13, 43, 

and 44 (Schimelfenig et al. 2005). The same work indicated that Rps1a, 1b, 1c, 1k, and 3a 

  Number 
of isolates 

 

Pathotypey Racez Isolate (%) 

7 1 3 27.2 
1a, 7 3 1 9.1 
1a, 6, 7 9 1 9.1 
1c, 7 14 1 9.1 
1c 18 1 9.1 
1a, 1b, 6, 7 23 4 36.3 

Table 1. 2. Proportion (%) of Phytophthora sojae isolates collected in a surveyx between 
1980 and 1981 in Nebraska by White et al. (1983) with virulence towards a particular Rps 
gene. 

x Isolates were obtained from diseased seedlings in a soil bioassay using Harosoy (Rps7) as baiting cultivar.  
y Pathotype identified by susceptible reaction using hypocotyl technique and P. sojae differentials: ‘Harosoy’ (Rps7), ‘Harosoy63’ 

(Rps1a+7), ‘Sanga’ (Rps1b), ‘Mack’ (Rps1c), ‘Altona’ (Rps6), ‘PI171.442’ (Rps3a), and ‘PI103.091’ (Rps1d), according to Laviolette 

and Athow (1983). Genetic information about soybean differentials was compiled from Dorrance et al. (2009) and Anderson and 

Buzzell (1992).  
z According to Sugimoto et al. (2012).  
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provided disease immunity to approximately 73, 36, 33, 29 and 9%, respectively, of the 

pathogen population collected in the state at the time (Schimelfenig et al. 2005). Compared 

to the first survey conducted in the early 1980s, no major virulence alterations were 

observed for Rps1b, Rps6, and Rps7 resistance, but slight shifts in the pathogenic 

frequency were observed for Rps1a and Rps1c. Overall, virulence to Rps7 was still 

widespread with more than 90% of isolates recovered in both studies being able to defeat 

this resistance gene, whereas, virulence to Rps1b and Rps6 remained relatively constant at 

35 and 18% of isolates, respectively (Table 1.2 and 1.3). For Rps1c, efficacy dropped 

slightly from 72 to 67% and Rps1a virulence frequency increased moderately from 54 to 

73%, despite the limited number of isolates recovered. A similar trend was observed for 

Rps1d, which had superior efficacy against P. sojae in previous assessments (Table 1.2 and 

1.3). Rps1k and Rps8 were not screened during a survey conducted by White et al. (1983). 

More recently between 2012 and 2013, a third survey was conducted in Nebraska and  

  Number 
of isolates 

 

Pathotypey Racez Isolate (%) 

7 1 1 5 
1a, 7 3 6 27 

1a, 1c, 6, 7 5 1 5 

1a, 1d, 6, 7 8 1 5 

6, 7 13 1 5 

1a, 1b, 1c, 1k, 7 25 3 14 

1a, 1b, 1c, 1d, 1k, 7 33 4 18 

1a, 1c, 1d, 7 43 2 9 

1a, 1d, 7 44 2 9 

1a, 1b, 1d, 1k, 3a  Undefined 1 5 

x Isolates were obtained from diseased seedlings in a soil bioassay using ‘Sloan’ (rps) as baiting cultivar.  
y Pathotype identified by susceptible reaction using hypocotyl technique and P. sojae differentials: ‘Harosoy 13xx’ (Rps1b), ‘L75-3735’ 

(Rps1c), ‘HARO16’ (Rps1d), ‘Willians82’ (Rps1k), ‘PI 171.442’ (Rps3a), ‘L89-1581’ (Rps6), and ‘Harosoy’ (Rps7) according to 

Schmitthenner et al. (1994). 
z According to Sugimoto et al. (2012). 

Table 1. 3. Proportion (%) of Phytophthora sojae isolates collected in a surveyx between 

2001 and 2002 in Nebraska by Schimelfenig et al. (2005) with virulent towards a particular 

Rps gene.  
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other states in the North Central region of U.S. (Dorrance et al. 2016). Among the 870 

isolates of P. sojae recovered, more than 50% of them were virulent on Rps1k or Rps7, 

while more than 40% of isolates were virulent on Rps1a, Rps1b, or Rps1c. The same study 

demonstrated that in Nebraska, P. sojae populations maintained high virulence (>95%) to 

Rps1a, moderate to Rps1b, Rps1c, and Rps1k, and low (<25%) virulence towards Rps3a, 

Rps6, and Rps8 (Dorrance et al. 2016). Interestingly, roughly 30% of isolates were virulent 

to Rps6, a less commonly deployed resistance gene in soybean cultivars utilized in the state 

(Table 1.1). Based on all three surveys, Rps3a and its pyramided forms (Rps3a+1c and 

Rps3a+1k) should be considered for management of PSRR in problematic areas of the 

state. 

Populations of P. sojae are not only macro- and micro-regionally structured, 

within-field variation has also been shown to exist (Robertson et al. 2009; Stewart et al. 

2016). Robertson et al. (2009) found nine distinct in addition to nine undescribed P. sojae 

pathotypes in a commercial field in Iowa. Collectively, these isolates were able to defeat 

Rps1a, 1b, 1c, 1d, 1k, 3a, 3c, 4, 5, 6, and Rps7 genes through hypocotyl inoculation 

technique. 

The high level of pathogenic diversity in the pathogen population makes PSRR 

management complex, requiring more than one type of resistance approach for proper 

disease control. Quantitative trait loci (QTLs) resistance (a.k.a. field tolerance, partial 

resistance) manifests as incomplete resistance with lower levels of root rot and the absence 

of stem rot in highly resistant cultivars (Schmitthenner 1985). QTL is controlled by several 

genes, with moderate to high genetic heritability, and interacts with pathotypes non-

specifically by delaying infection, colonization and reducing oospores production in host 
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tissue (Glover and Scott 1998; Mideros Mora et al. 2007). The usefulness of cultivar 

tolerance for PSRR control and associated yield benefit has been demonstrated in field 

trials. Dorrance et al. (2003a) reported that high levels of tolerance combined with the 

presence of Rps genes provided greater yield stability compared to cultivars having either 

moderate or low levels tolerance and Rps genes. PSRR-tolerance evaluated from 

recombinant inbred lines (RILs) derived from the cross ‘Conrad’ and ‘Sloan’ demonstrated 

that resistant RILs outperformed susceptible RILs by 800.7 and 1062.5 kg ha–1, depending 

on disease pressure (Wang et al. 2012). In the U.S., most soybean seed companies supply 

information about Rps genes and PSRR tolerance scores in seed catalogs, but subjectivity 

on scale systems offers practical challenges for producers wanting to analytically compare 

soybean cultivars within each brand or across seed companies. 

1.1.3. Soil-applied residual pre-emergence herbicides and seedling diseases 

The overreliance on single herbicide active ingredients and simplified weed 

management plan has put unprecedented selection pressure on the weed community and 

led to an exponential increase of herbicide-resistant weed cases worldwide (Green 2016). 

For example, glyphosate-resistance has been confirmed in 42 weed species worldwide, 

including 17 in the United States, many of which are commonly found in the soybean-corn 

cropping systems of North Central U.S. (Heap 2018). Effective weed management 

practices include the rotation of disparate herbicide sites of action, adoption of crop 

rotation, tillage, cover crops, and preventing weed establishment. In soybeans, some of 

these practices can be achieved through the use of pre-emergence (PRE) herbicides 

(Oliveira et al. 2017; Sarangi et al. 2017; Soltani et al. 2009).  
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In recent years, the use of PRE herbicides belonging to protoporphyrinogen oxidase 

inhibitors (PPO, WSSA group 14) and photosynthetic system II (PSII, WSSA group 5) 

inhibitors have increased in the U.S. (USDA 2018). However, some PRE herbicides can 

cause severe injury to sensitive seedlings, particularly when wet and cool soil conditions 

prevail after herbicide application (Hager 2014; Miller et al. 2012). Under these conditions, 

seedlings increase herbicide uptake and decreased plant metabolism, resulting in greater 

injury (Grey et al. 1997; Niekamp and Johnson 2001; Wise et al. 2015). Jhala (2017) stated 

that herbicide phytotoxicity risk can be reduced if (i) application is performed within three 

days of soybean planting; (ii) applications are not made to poorly drained soils under cool, 

wet conditions; (iii) seeds are completely covered by soil prior to herbicide applications; 

and, (iv) flumioxazin-based herbicides are applied before soybeans begun to crack through 

the soil. 

Evidence of synergistic interaction between PRE herbicides and seedling diseases 

have been well documented in the literature. Carson et al. (1991) observed greater soybean 

root rot caused by Fusarium oxysporum resulting from trifluralin at PRE, with disease 

levels augmented under cool soil temperatures (10-15°C). Hypocotyl and root rot caused 

by Rhizoctonia solani can also be affected by pre-emergence herbicides. Chandler and 

Santelmann (1968) reported that in the presence of R. solani, trifluralin enhanced injury to 

cotton in controlled and field conditions. Findings by Pinckard and Standifer (1966) and 

Neubauer and Avizohar-Hershenson (1973) also support that trifluralin can increase cotton 

seedling blight caused by R. solani, but contradicts findings by Heydari and Misaghi 

(1998). In another study, Harikrishnan and Yang (2002) observed that pendimethalin at 

PRE resulted in higher soybean root rot incidence in soil infested with R. solani than non-
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infested, non-treated control. In this context, Bradley et al. (2002) reported synergism 

between pendimethalin, acifluorfen, and imazethapyr at PRE and Rhizoctonia root and 

hypocotyl rot in soybeans. Similarly, Bowman and Sinclair (1989) reported reduced 

seedling vigor in R. solani infested-soil treated with alachlor, choramben, dinoseb, 

fluchloralin, or naptalam in greenhouse settings. Duncan and Paxton (1981) observed an 

additive effect of trifluralin incorporated in the soil on stand reduction caused by 

Phytophthora sojae.  

While many studies have documented synergistic interactions between seedling 

diseases and PRE herbicides, particularly those belonging to WSSA group 3, one a few 

have evaluated how newer herbicide molecules may influence disease occurrence in 

soybeans (Barlow et al. 2018; Kandel et al. 2018). Results by Barlow et al. (2018) indicate 

a larger interaction between PRE herbicides and varieties than between PRE herbicides and 

seed treatments for soybean stand and yield. In other pathosystems, Daugrois et al. (2005) 

studied the effect of sulfentrazone and flumioxazin at PRE on Pythium root rot of 

sugarcane and observed no consistent effect on disease parameters, although some 

herbicide treatments affected the relative isolation frequency of Pythium spp. from roots 

and altered colonization by the pathogenic species P. arrhenomanes. It has also been 

shown that lactofen, a PPO-inhibiting herbicide, applied at post-emergence but prior to 

reproductive stages can suppress white mold incidence in soybeans caused by Sclerotinia 

sclerotiorum (Dann et al. 1999). 

1.1.4. Seed treatments in soybean production 

As result of immediate commodity price decline from international trade 

disruptions, change in soybean production practices towards earlier planting dates 
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(Bastidas et al. 2008), reduced seeding rates given the compensatory ability of modern 

cultivars (Suhre et al. 2014), and increased seed price (Schnitkey 2018); soybean seed 

treatments use has increased sharply in the U.S. Between 1996 and 2008, seed treatment 

adoption increased from 8 to 30%, and is currently estimated at >75% of total seed volume 

marketed (Gaspar et al. 2017; Munkvold 2009). 

Seed treatments are important because of their efficacy against multiple seed and 

soilborne pathogens, insects, and nematodes. Seed treatments containing oomycides are 

effective towards Pythium and Phytophthora species (Radmer et al. 2017; Vargas et al. 

2017), while seed treatment containing fungicides are generally more effective against 

pathogens such as Macrophomina phaseolina, Rhizoctonia solani, and Fusarium spp. 

(Bradley 2008; Kandel et al. 2016; Xue et al. 2007). In soybean production, seed 

treatments are available in a variety of formulations (slurry- and mist-type applied on-farm 

or industrially) and combinations of actives (Giesler and Miller 2017). These actives are 

generally classified based on their mode of action (FRAC codes), which refers to the 

specific enzyme in the cellular process being targeted in the organism. In soybeans, 

commonly adopted fungicides with systemic activity include ipconazole, prothioconazole 

(DMI - FRAC code 3), fludioxonil (FRAC code 12), thiabendazole (FRAC code 1), 

trifloxystrobin, pyraclostrobin, azoxystrobin (QoI - FRAC code 11), and fluopyram, 

carboxin, sedaxane, penflufen (SDHI - FRAC code 7) (FRAC 2018).  

Metalaxyl and its isomer mefenoxam are phenylamides oomycides that inhibit 

RNA synthesis (FRAC code 4) (FRAC 2018). In soybeans, these compounds have been 

utilized as seed treatments because of their systemic activity, chemical stability over a 

range of pH and temperatures, and more importantly, superior efficacy towards Pythium 
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and Phytophthora (Dorrance et al. 2009; Sukul and Spiteller 2000). Despite differences in 

nomenclature and application rate, metalaxyl and mefenoxam only vary by the proportion 

of the biologically active R-isomer (Nuninger et al. 1996), which upon continuous use, can 

lead to the selection of metalaxyl-insensitive populations. In vitro assays have detected 

variation in metalaxyl (and mefenoxam) sensitivity amongst isolates of multiple pathogens, 

including Pseudoperonospora cubensis, Phytophthora infestans, P. erythroseptica, and 

some oomycete soybean seedling pathogens (Broders et al. 2007a; Dorrance et al. 2004; 

Matson et al. 2015; Olson et al. 2013; Taylor et al. 2006). Nevertheless, metalaxyl and 

mefenoxam have still demonstrated satisfactory efficacy in field trials, especially when 

complemented with fungicides belonging to FRAC code 3 and 11 groups (Bradley 2008; 

Dorrance et al. 2009; Gaspar et al. 2015; Grau and Gaska 2000; Poag et al. 2005). For 

PSRR management, higher rates of metalaxyl (>15.5 g a.i. 100 kg–1 seed) and mefenoxam 

(>7.5 g a.i. 100 kg–1 seed) have been recommended in disease conducive environments 

(Dorrance 2013). In Nebraska, metalaxyl and mefenoxam can be purchased singly at rates 

varying from 1.9 to 30 g a.i. 100 kg–1 seed or in commercial formulations containing other 

partner mixes at rates varying from 3.75 to 15 g a.i. 100 kg–1 seed (Jackson-Ziems et al. 

2017).  

More recently, ethaboxam (FRAC code 22) was also registered as oomycide seed 

treatment in soybeans. Ethaboxam is an aminothiazole carboxamide compound discovered 

in Korea and registered initially for horticultural crops (Kim et al. 1999; Ra et al. 1995). In 

vitro assays, ethaboxam inhibited mycelial growth of Pythium ultimum, P. irregulare, P. 

sylvaticum (Radmer et al. 2017) but showed poor efficacy against Rhizoctonia solani and 

Glomerella glycines (Kim et al. 2004). In controlled conditions, ethaboxam persisted 
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systemically for 14 days in tomato seedlings (Kim et al. 2004). In Nebraska, ethaboxam is 

currently available as a commercial seed treatment formulation at a rate of 7.5 g a.i. 100 

kg–1 seed (Intego Suite, Valent U.S.A. Corporation, Walnut Creek, CA). 

1.1.5. Field efficacy of seed treatments 

Each year, public and private initiatives conduct several field trials across the 

Midwest U.S. to determine the efficacy of seed treatments for seedling disease control in 

soybeans. In a multi-location study in North Dakota, Bradley (2008) reported no yield 

differences between seed treatments and untreated check in 6 of 14 locations studied. 

However, yield increases as high as 78% were observed from seed treatment use, 

depending on environmental conditions and the profile of pathogens active in a particular 

location (Bradley 2008). Gaspar et al. (2015) evaluated the benefit of broad-spectrum 

fungicide seed treatment and observed an increase of 8,000 plants ha–1 in plant stand and 

21 kg ha–1 in yield across multiple locations in 2013 but not in 2011–2012.  

In Nebraska, small-plot research trials have been inconsistent to the benefit of seed 

treatments in soybeans (Dorrance et al. 2009; Giesler and Gustafon 2009). Despite 

increases in plant population, mefenoxam had no effect on yield in fields with PSRR 

history (Giesler and Ziems 2007). Across two growing seasons, Dorrance et al. (2009) 

found no yield benefit with the use of mefenoxam + fludioxonil when compared to 

untreated check. 

Discerning confounding factors that interact with fungicide seed treatment response 

is key to determine whether these inputs should be used in soybean production. 

Specifically, the knowledge of the (i) profile of seedling pathogens active in a particular 
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location (a.k.a. field history); (ii) genetic resistance of a desired cultivar; (iii) soil type and 

permeability; (iv) biological selectivity of seed treatment utilized; and (v) cost and 

expected economic return from seed treatment adoption is fundamental to determine the 

necessity these components in soybean production.  

1.2. Research objectives 

The two major objectives of this research were: 

1. To determine the efficacy of seed treatment in combination to genetic resistance 

to Phytophthora sojae on soybean population density, canopy coverage, and 

yield in fields with disease history;  

2. To investigate possible synergism between pre-emergence herbicides and 

seedling diseases in late-planted soybeans. 
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Abstract 

Integrating disease control strategies has been the foundation for effective management of 

Phytophthora stem and root rot (PSRR; caused by Phytophthora sojae) in soybean 

(Glycine max) in the North Central U.S. In order to determine the efficacy of seed 

treatment formulation (clothianidin + ethaboxam + ipconazole + metalaxyl) and host 

resistance (Rps1k or Rps1c and moderately resistant [MR] or moderately susceptible [MS]) 

in commercial cultivars, 6 environments were evaluated in Nebraska and Iowa in 2017 and 

2018. Symptoms of P. sojae stem lesions were detected in 4 out of 6 environments. 

Compared to untreated control, seed treatment increased soybean emergence by 11,600 to 

53,700 plants ha–1 and early-season canopy coverage (CC) by 0.7 to 1.2%. The efficacy of 

seed treatment ranged from 230.9 to 331.6 kg ha–1, depending on the environment. While 

management programs with MR cultivars had greater yields (538.9 to 747.5 kg ha–1) than 

MS cultivars, there were negligible yield differences between Rps1k and Rps1c genotypes, 

except in one environment. A weak to moderate (ρ = -0.32 to -0.45; P≤0.001) correlation 

was observed between CC and the number of plants with P. sojae stem lesions. Moderate 

to strong association between CC and yield was found (ρ = 0.32 to 0.82; P<0.001). 
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Outcomes from this study demonstrate the benefits of combining genetic resistance and 

seed treatment to manage PSRR in disease conducive environments. 

 

2.1. Introduction 

Phytophthora stem and root rot (PSRR) is a yield-limiting disease in soybeans 

(Glycine max L. Merr.) caused by the soilborne oomycete Phytophthora sojae Kauffm. & 

Gerd. Yearly, soybean losses due to the disease are estimated at 9.4 MMT in North 

America (Allen et al. 2017). Disease symptoms include early-season damping-off and 

premature death of plants (Hartman et al. 2015). The stunting resulting from infection 

compromises yield and creates additional management problems, such as reduced crop 

competitiveness for weed control (Bussan et al. 1997).  

Even though infection can occur at any stage of plant development, most of the 

damage is believed to occur at emergence (Workneh et al. 1998), which may justify the use 

of oomycides (e.g. fungicides) at planting for seedling protection. Historically, two active 

ingredients, metalaxyl and mefenoxam, have been applied to seeds, banded in granular 

form, or sprayed in-furrow for P. sojae root rot and damping-off management (Anderson 

and Buzzell 1982; Ryley et al. 1989). More recently, another seed treatment with a novel 

mode of action was registered in the U.S. Ethaboxam is classified as an inhibitor of ß-

tubulin assembly during mitosis (FRAC group 22) and showed excellent control of foliar 

diseases in horticultural crops (Kim et al. 1999) and in vitro efficacy against common 

soybean oomycete pathogens (Matthiesen et al. 2016; Radmer et al. 2017). Information 

about the field efficacy of seed treatments containing ethaboxam for PSRR control and 

soybean yield effect is limited. 
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In addition to oomycides, PSRR has also been managed with host resistance 

(McBlain et al. 1991; Schmitthenner 1985). Host resistance occurs in two primary ways, 

race-specific through Rps resistance genes and non-race specific through polygenic 

resistance, commonly referred as cultivar tolerance or partial resistance (Anderson and 

Buzzell 1992; McBlain et al. 1991). In North Central U.S., common resistance genes 

deployed in commercial soybean lines are Rps1a, 1b, 1c, 1k and to a less extent, Rps3a and 

Rps6 (Robertson et al. 2009; Slaminko et al. 2010). However, the continuous use of a few, 

single Rps genes has led to increased selection pressure on pathogen populations (Dorrance 

et al. 2016; Schmitthenner et al. 1994) which combined with the natural in-field pathogen 

variability makes PSRR management complex (Stewart et al. 2016). On the other hand, 

cultivar tolerance is effective against multiple pathotypes by limiting the infection rate and 

lesion expansion (Thomas et al. 2007) and preventing yield losses in conducive 

environments (Rehm and Stienstra 1993; Tooley and Grau 1984). Information about the 

presence or absence of Rps genes and PSRR tolerance levels is available in soybean seed 

catalogs of companies operating in the U.S., which may assist growers to establish a 

disease management plan. 

Many factors including pathogen inoculum, tillage, drainage, compaction, soil 

texture, and environmental conditions influence PSRR development (Duniway 1983; Gray 

and Pope 1986). Fine-textured soils cultivated in minimum or no-tillage tend to favor 

disease incidence, as propagules accumulate on the soil surface (Workneh et al. 1998, 

1999), whereas, warm and saturated soil conditions following a brief drop in temperature 

increase PSRR occurrence by providing optimum conditions for propagule development 

and dispersal (Schmitthenner and Bhat 1994).  
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In field trials, PSRR severity is assessed on the basis of early-season damping-off, 

incidence of plants with characteristic stem lesions, plant height, root lesion length, and 

yield reduction of susceptible cultivars compared to resistant lines (Dorrance et al. 2003; 

Gray and Pope 1986; Guy et al. 1989; Rehm and Stienstra 1993). However, because highly 

tolerant cultivars do not always develop stem lesions but may still exhibit permanent 

aboveground stunting (Meyer and Sinclair 1972; Schmitthenner 1985), additional 

screening approaches are needed to support severity assessments in field trials. Proximal 

remote sensing is an alternative method to non-destructively configure plant health status 

(Bock et al. 2010; Mahlein 2016). User-friendly, rapid data collection has been originated 

using handheld, open-source, phenotyping/phytopathometric mobile platforms (Patrignani 

and Ochsner 2015; Pethybridge and Nelson 2015, 2018), which may be used to quantify 

plant architectural changes associated with PSRR occurrence and aid in future 

management decisions. 

Despite the increasing PSRR occurrence in production areas of Nebraska and Iowa 

(Tachibana et al. 1975; White et al. 1983), previous studies were inconclusive in 

determining the effects of seed treatments and genetic resistance as part of an integrated 

disease management program in these states (Cerra 2007; Dorrance et al. 2009; Giesler and 

Gustafon 2009). Herein, we synthesize the field efficacy of a seed treatment formulation 

and quantitatively estimate the benefit of cultivar selection using soybean commercial 

lines, simulating a producer’s approach for disease management. More specifically, we 

quantified differences in soybean population density, canopy coverage, and yield resulting 

from (i) the use of a seed treatment formulation with clothianidin + ethaboxam + 

ipconazole + metalaxyl vs. untreated control; (ii) the selection of PSRR moderately 
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resistant vs. moderately susceptible cultivars; (iii) the selection of cultivars carrying Rps1k 

and Rps1c; and, (iv) a combination of the above strategies. 

2.2. Material and methods 

A total of 6 experiments were conducted in Nebraska and Iowa during 2017 and 

2018 (Table 2.1). All experiments were established in fields with PSRR history and corn 

(Zea mays L.) as the previous crop. In Nebraska, field trials were located near Tekamah 

(41.7079089, -96.1081753) in 2017, and at four locations near Tekamah (41.755558, -

96.176062), Arizona (41.792885, -96.139346), Mead (41.182523, -96.459948), and Bruno 

(41.293432, -96.916723) in 2018 in collaboration with local producers. In Iowa, a single 

field trial was established near Boone (42.012612, -93.784207) in 2018 at the Iowa State 

University Field Extension and Education Laboratory. Site-specific information such as 

planting date, soil type and texture, and the chronological program of activities is provided 

in Table 2.1. 

The experimental design consisted of a split-plot arranged in a randomized 

complete block design with four replications. In Nebraska, experimental units were four-

row plots, 5.18-m long by 3.04-m wide, planted at 0.76-m row spacing and sown at a 

density of 308.881 seeds ha–1, whereas, in Iowa, plots were 10.6-m long by 3.04-m wide 

and sown at a density of 296,526 seeds ha–1. All locations were sown at 4-cm depth. 

Cultivars were randomly assigned to whole-plot units, and thereafter, seed treatments were 

randomly assigned to the subplot units (Mead 1990). Soybean cultivars of maturity groups 

II and III with commonly deployed Rps genes were obtained from private soybean seed 

companies (Table 2.2). Although genotypes varied across some locations, at least two with 

the same Rps resistance but distinct PSRR tolerance scores were selected from each 
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company to represent moderately resistant [MR] or moderately susceptible [MS] classes, 

based on company-supplied PSRR susceptibility information. At the subplot level, 

treatments consisted of (i) untreated control and (ii) clothianidin + ethaboxam + ipconazole 

+ metalaxyl (Intego Suite Soybeans, Valent U.S.A., Walnut Creek, CA) applied at 50 g + 

7.5 g + 2.4 g + 1.9 g a.i. 100 kg–1 seed. For seed treatment procedure, 1.76 ml of fungicide 

was added to water for a total mix volume of 2.6 ml, poured into a plastic bag with 800 g 

of seeds, and mixed until seeds were treated uniformly. Seeds were then allowed to air-dry 

and stored until planting. Soybean production practices related to nutrient management, 

pre- and post-emergence herbicide applications followed the university extension service 

recommendations in each state.  

Disease development. Plots were examined periodically to determine the number of plants 

with symptoms of Phytophthora sojae stem lesions. All four rows of each plot were 

inspected and the total number of symptomatic plants (nPSR) was recorded throughout the 

season. Symptomatic plants were isolated and P. sojae was confirmed based on 

morphological characteristics and culture growth pattern in PDA (Dorrance et al. 2008). 

Plant population. Plant population densities were collected at emergence (VE-VC) (Fehr 

et al. 1971), first to second trifoliate stage (V1-V2), sixth trifoliate to full bloom (V6-R2), 

and prior to harvest (R8). Plant population assessments were performed by counting the 

number of emerged plants in the center two rows of each experimental unit. Row segments 

were 3.05-m and 10.6-m in length in Nebraska and Iowa, respectively.  

Canopy coverage. Early- (V1-V2) and mid-season (V6-R2) canopy coverage (CC) was 

estimated using the smartphone application Canopeo (Oklahoma State University, 

Stillwater, OK). For scale reference, a PVC tube frame with dimensions of 1.05-m long by 
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0.76-m wide was arbitrarily placed within each row in order to consistently delineate the 

section of 0.798 m2 during data collection. Each harvestable row section was 

systematically photographed using an iPhone 7 with a screen size 4.7” and 12MP 

embedded camera with f/1.8 aperture positioned horizontally above the canopy and 

approximately 1.2-m from the soil line. No camera flash was used, and a minimal 

reflective dark velvet cloth was fixed below the canopy prior to imaging. CC assessments 

were performed on sunny, clear days between 8:00 am and 3:00 pm and usually lasted 90 s 

per experimental unit. The procedure specified above was repeated for all environments in 

Nebraska, with exception of Tekamah in 2017, where no frame and a single CC 

assessment depicting two rows at a time was performed. No CC assessments were 

collected in Iowa. 

Yield. Prior to harvest, the experimental units were trimmed to 4.5-m and 5.3-m in length 

in Nebraska and Iowa, respectively, and the center two rows from experimental unit were 

harvested with a small plot combine (Almaco SPC20, Almaco, Nevada, IA) equipped with 

HarvestMaster grain gauge and handheld computer Allegro MX (Juniper Systems, Logan, 

UT) for data collection. Total seed weight and seed moisture content were measured per 

experimental unit. The seed weight was then adjusted to 13% moisture and yield expressed 

as kilograms per hectare. 

Data analysis. Data analysis were performed in R (version 3.5.2, R Foundation for 

Statistical Computing, Vienna, Austria) using the R Studio (version 1.1.463, RStudio Inc.). 

A mixed linear model was fitted using lme4 package (version 1.1.17) with soybean 

cultivars and seed treatments as fixed effects and blocks, whole-, subplot, and subsampling 

errors as random effects. Analysis of variance was conducted using lmerTest package 
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(version 3.0.1) for each environment. Degrees of freedom for the denominator were 

estimated with Kenward-Roger’s method and variance components were obtained with 

restricted maximum likelihood (REML) method. Because CC was initially expressed in 

percentage, data were arcsine square root transformed (arcCC) prior to analysis to improve 

variance homogeneity.  

A model to describe analysis of response variables at each environment is 

following,  

y
ijkl = µ + bj+ αi + (αb)

ij
+ β

k
+ αβ

ik
+ β(αb)

ijk
 + εijkl                               (1) 

where yijkl = observed response variable; µ  = overall experimental mean; bj = random effect 

of jth block, which is assumed to be distributed N~(0,σ2
b); αi = effect of ith cultivar; (αb)ij = 

random whole plot error which is assumed to be distributed N~(0,σ2
αb); βk = the kth seed 

treatment effect; αβik = interaction effect of the ith cultivar and kth seed treatment; β(αb)ijk = 

random subplot error that it is assumed to be distributed N~(0,σ2
β(αb)); and εijkl = random 

subsampling error, assumed to be distributed N~(0,σ2
ε). Grain yield data were evaluated 

with a similar model with the exception of subsampling error term (εijkl). Least-squares 

means were obtained using emmeans package (version 1.3.1) and single-degree-of-

freedom contrast statements were used to make treatment comparisons. Probability values 

were adjusted with Benjamini-Hochberg procedure to control for false discovery rate due 

to the lack of orthogonality between cultivar contrasts. In Mead and Bruno, some 

experimental units (totaling 6 and 12, respectively) were severely damaged by flooding, 

and therefore, were removed from the analysis. arcCC means were back-transformed to 0-

100% scale to improve variable meaningfulness. Covariation between the PSRR disease 
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parameters and yield was determined using Spearman’s rank correlation in a two-sided 

hypothesis test (Madden et al. 2007). 

Weather data. Soil temperature at planting and cumulative seasonal precipitation were 

obtained from weather stations operated by public weather service websites 

(https://www.ncdc.noaa.gov/cdo-web/) located within a 10-km radius from trials. In 

addition to natural precipitation, irrigation was supplemented through overhead irrigation 

delivered by a center-pivot at some locations. 

2.3. Results 

Disease development. Phytophthora sojae was isolated from symptomatic plants in 4 out 

of 6 environments. The number of PSRR-positive plots was roughly 12, 8, 17 and 14% of 

total experimental units in Tekamah, Arizona, Mead, and Bruno in 2018, respectively. In 

addition to stem lesions, symptoms of seedling damping-off caused by oomycetes were 

observed in Tekamah in 2018. Poor crop establishment occurred in Arizona and contrasted 

trial conditions at Mead, where seedling damping-off incidence was low, despite later 

development of P. sojae stem lesions. Sentinel-border plots planted with PSRR-susceptible 

cultivar ‘Sloan’ also developed disease symptoms in all Nebraska locations, except at 

Tekamah in 2017. PSRR stem lesions did not develop in Boone, IA. 

Plant population. Seed treatment had a significant effect on soybean emergence in 4 of the 

6 locations with increases as low as 11,500 plants and as high as 53,000 plants ha–1, 

depending on the environment (Table 2.4). Although seed treatment showed superior 

efficacy on early-season plant populations, negligible differences between MR and MS, 

less than 10,500 plants ha–1, were quantified in Arizona and Boone. MR cultivars had 
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greater (P≤0.10) emergence than MS by 10.9 and 18.2% at Tekamah and Bruno in 2018, 

respectively (Table 2.4). While soybean cultivars significantly differed in emergence in 5 

of the 6 environments, no differences were associated with the selection of Rps1c or Rps1k 

genes. In Tekamah, V1-V2 plant population assessment indicated that among cultivars 

carrying Rps1c, MS had fewer plants than MR but an opposite effect was observed for 

Rps1k cultivars (Table 2.5). For the integration of seed treatment and PSRR cultivar 

tolerance, effects were variable across environments. MR cultivars experienced an 

increment varying from 10.3 to 21.5% in population densities, whereas, MS cultivars had 

23.4 to 46.1% increase upon seed treatment use at Tekamah and Arizona in 2018, 

respectively. However, at Boone, seed treatment significantly increased stand of MR 

cultivars (15,607 plants ha–1 on average; P<0.10) but not for MS cultivars (Table 2.5).  

In agreement with early-season assessments, seed treatment effects were also 

identified during mid-season and final plant population evaluations with an average 

increase of 32,500 plants ha–1 observed across all Nebraska locations in 2018. However, 

even though cultivars differed substantially on the number of plants per hectare, effects 

were not clearly associated with the selection Rps1k or Rps1c genes (Table 2.6 and 2.7). 

Conversely, MS cultivars had lower (P≤0.10) final population densities than MR at Bruno 

and Tekamah in 2018. Exclusively among cultivars with Rps1c gene, MS cultivars had 

lower population densities than MR, but the opposite was observed for Rps1k at Tekamah 

in 2017 (Table 2.7). No interaction between cultivar, seed treatment, and environment was 

statistically significant in Nebraska in 2018 (Table 2.3). Relatively, Boone had the lowest 

final population density mean with 109,869 plants ha–1 and no differences were associated 
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to PSRR genetic resistance (Rps and tolerance), despite of significant cultivar effect during 

ANOVA (Table 2.3). 

Canopy coverage. In total, 992 unique sampling measurements were recorded at two 

distinct phenological stages. At subplot unit, early- and mid-season CC ranged from 0.4 to 

10.1% and 3.9 to 63.4 %, respectively (Figure 2.1). Seed treatment consistently increased 

CC (arcsine square root transformed) in 3 environments, but not at Tekamah in 2017 and 

Mead in 2018. Back-transformed mean CC increases as low as 0.7% and as high as 1.2% 

were quantified resulting from seed treatment use during early-season and developed to 

greater CC discrepancies (5.2-8.3%) during later assessments (Figure 2.2-A, D). MR 

cultivars had significantly greater CC compared to MS cultivars at Bruno and Tekamah in 

2018, but differences were stage-dependent (Figure 2.2-B, E). In this study, planting MS 

cultivars did not result in increased CC mean values in any environment. Cultivars with 

Rps1c had lower early-CC than Rps1k by 1.8% on average at Mead, despite the lack of 

significant effect with seed treatment adoption. Rps resistance had negligible effects on CC 

during the mid-season assessment (Figure 2.2-C, F).  

Yield. Yield ranged from 1,384.4 to 5,767.6 kg ha–1 and averaged 3,642 kg ha–1 in this 

study. Lower quantile and upper quantile at 0.25 and 0.75 of the values were 2,930.2 and 

4,436.9 kg ha–1, respectively. Grain yield varied greatly across environments and the 

efficacy of seed treatment averaged 259.9 kg ha–1 (CIL: 151.3 and CIU: 368.5 kg ha–1) 

relative to the untreated control in environments which PSRR symptomatic plants were 

detected. For analysis performed individually at each environment, seed treatment had a 

significant effect (P≤0.05) on yield in nearly half of the trials, with increments ranging 

from 230.9 kg ha–1 (CIL: 105.4 and CIU: 356.4 kg ha–1) to 331.6 kg ha–1 (CIL: 121.1 and 
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CIU: 542.2 kg ha–1) depending on the environment (Table 2.8). For PSRR genetic 

resistance, monogenic Rps resistance and PSRR tolerance effects were only detected in 

environments where seed treatment effect co-existed. MR cultivars yielded in average 

more, between 538.9 kg ha–1 (CIL: 262.7 and CIU: 815.3 kg ha–1) to 747.5 kg ha–1 (CIL: 

361.7 and CIU: 1,133.2 kg ha–1), than MS cultivars in Bruno and Tekamah in 2018, 

respectively. In relative terms, cultivar resistance in the form of tolerance had a greater 

absolute yield size effect than seed treatment alone. In relation to Rps genes, an average 

yield increase of 12.5% was detected for cultivars carrying Rps1c when contrasted to 

Rps1k at Tekamah in 2018 but no significant differences were observed at other 

environments. Exceptionally at Boone, although a significant cultivar effect was detected, 

it was not attributed to any of the two forms of genetic resistance to PSRR (Table 2.3 and 

Table 2.8). Seed treatment increased average yields by 231 kg ha–1 in Boone. No 

significant cultivar-seed treatment interaction was detected in this study. Accounting for 

interaction factors, seed treatment effectiveness seemed to be more dependent on the 

environment than with the examined PSRR genetic resistance from commercial soybean 

lines. 

Correlations between disease components. The association between PSRR disease 

components varied across environments. Moderate Spearman’s rank correlation 

coefficients (ρ) were observed between nPSR and yield (ρ = -0.50, n = 60) at Tekamah in 

2018, but not at all in Mead (ρ = -0.01, n = 52) or Bruno (ρ = -0.02, n = 58) (Table 2.9). 

While early-season CC had a weak relationship (data not shown), mid-season CC was 

moderately associated with nPSR in Tekamah (ρ = -0.45, n = 56) and Arizona (ρ = -0.32, n 

= 64) in 2018. Correlation between CC and grain yield was always positive and significant 
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(P≤0.005) and ranged from 0.32 to 0.82. In most instances, CC seemed to be equally or 

more closely associated to yield than population density estimated at maturity (Table 2.9). 

Correlation between yield and final plant population densities ranged from 0.10 to 0.79 

across environments (Table 2.9). The number of observations (n) to correlate yield to plant 

population were 71 and 59 at Tekamah in 2017 and 2018, respectively, 52 at Mead, 58 at 

Bruno, and 55 at Boone. 

2.4. Discussion 

The present investigation examined the integration of genetic resistance and seed 

treatment in an effort to improve PSRR management in poorly drained, Phytophthora 

sojae infested areas in Nebraska and Iowa. The benefit of commercial seed treatment 

formulation with ethaboxam and metalaxyl was variable across locations, despite PSRR 

field history. Genetic resistance (Rps and tolerance) was most valuable in environments 

where the seed treatment effect co-existed. However, the combination of these 

management strategies was non-additive, indicating that in high disease pressure scenarios, 

all cultivars benefited from seed treatment adoption. 

Precipitation pattern varied greatly across locations but in general, soil 

temperatures were relatively warm (>20°C) at planting during mid-May and early-June. In 

2017, only 38.1 mm of precipitation was recorded during soybean emergence, which did 

not favor disease development (Table 2.10). In contrast, more precipitation ranging from 

57.4 to 223.3 mm during the 15 days after planting were favorable for disease epidemics 

across locations in 2018. Under such conducive conditions, seed treatment increased yields 

by 231 to 331.6 kg ha–1 on average. Based on quantitative synthesis of data from integrated 

disease management trials, similar to those established in this study, Dorrance et al. (2009) 
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observed yield increases in the order of 215.0 to 416.6 kg ha–1 in Ohio and an average 

increase of 289.0 kg ha–1 in South Dakota from the addition of mefenoxam and metalaxyl 

as seed treatment in Phytophthora-infested soils. Overall, our results corroborate with 

findings by Dorrance et al. (2012) and Scott (2018) for the use of ethaboxam and 

metalaxyl to manage seedling diseases in PSRR endemic areas. 

These results also support that in addition to chemical control, cultivar selection is 

an effective management tool for PSRR control (Anderson and Buzzell 1982; Dorrance et 

al. 2003; Guy et al. 1989; Tooley and Grau 1984). Notably, company-supplied PSRR 

tolerance scores were coherent with the level of disease suppression observed in the field, 

with MR cultivars having superior plant populations than MS cultivars from emergence to 

final stand assessments. In scenarios predisposed to damping-off and PSRR development, 

MR cultivars averaged around 538.9 to 747.5 kg ha–1 more than MS cultivars and no yield 

penalty was associated with the selection of moderately higher resistance in environments 

with lower disease pressure. These findings substantiate Dorrance et al. (2003) that showed 

an additive yield effect of 669 kg–1 through the use of MR compared to MS cultivars, both 

with Rps1k resistance, under severe PSRR outbreaks in Ohio. Alternatively, results are not 

supportive of the hypothesis that Rps genes differ substantially in terms of field efficacy, 

particularly when a comprehensive characterization of in-field Phytophthora sojae 

virulence composition is lacking, as is the case here. It is worthy to note though that at 

Tekamah in 2018, namely where early-season damping-off caused by oomycetes was the 

highest, comparable yield differences existed for Rps1c over Rps1k genotypes, even 

though such advantage was not accompanied by significant differences in stand or 

aboveground plant development. For Rps resistance examined in this study, little 
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disagreement between company-supplied and publicly evaluated resistance has been 

reported (Slaminko et al. 2010), suggesting that other factors, perhaps agronomic 

adaptability of genotypes, may have influenced this response. It also could be speculated 

that P. sansomeana, which is considered race non-specific (Reeser et al. 1991) and occurs 

in Nebraska and Iowa (Rojas-Flechas et al. 2017), was active in that particular field and 

affected Rps1k and Rps1c cultivars equally. This may be a reasonable assumption given 

that MR cultivars outperformed MS cultivars for nearly all parameters evaluated in that 

environment. Considering that quantitative disease resistance is polygenic (Glover and 

Scott 1998; Schneider et al. 2016) and coordinates the expression of physical barriers in 

the plant (Thomas et al. 2007), it may be worth examining the effects of PSRR tolerance 

on P. sansomeana infection and colonization rate, as to date, little is known about the host 

resistance mechanisms to this pathogen (Phibbs et al. 2014). 

Acknowledging the numerous sources of variation that occur under natural 

conditions, including inoculum density (Miller et al. 1997), diversity (Robertson et al. 

2009; Stewart et al. 2016), and environmental conditions (Dorrance et al. 2009), results 

from this study were unconvincing for the efficacy of seed treatment at reducing the 

incidence of P. sojae stem lesions solely. The relatively low frequency of disease-positive 

plots and low incidence of mature plants with stem lesions generated poor estimates for 

hypothesis testing, despite attempts to fit the count data with zero-inflated generalized 

linear mixed models using Poisson or negative binomial distributions (Madden et al. 2017; 

Stroup 2015), and thus, results are not presented here. It is possible that the number of 

PSRR stem lesions was low in part due to the superior levels of tolerance, even for 

moderately susceptible lines, found in commercial soybean cultivars. By contrast, studies 
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evaluating treatment efficacy on the basis of the number of PSRR symptomatic plants 

employed partially to highly susceptible materials (Dorrance et al. 2003). Other limitations 

encountered during the course of the study were an off-target growth regulator herbicide 

movement shortly prior to reproductive stages in Tekamah in 2017 and hail damage during 

a vegetative stage in Boone, IA in 2018. In Bruno, in addition to soil crusting that limited 

uniform emergence, stem blight caused by Diaporthe spp. was observed causing premature 

plant death for some genotypes, but disease incidence at the subplot level was low (<5%) 

and likely had minimum influence on averaged cultivar responses. The activity of bean leaf 

beetle (Cerotoma spp.) and other secondary pests including soybean orange gall midge 

(Resseliella spp.), which damage may resemble PSRR wilting/stem discoloration 

symptoms, were not observed in the study. 

Yield losses resulting from PSRR damage are not exclusively related to damping-

off and premature plant death (Wilcox and St. Martin 1998). Results from this study 

indicate that canopy coverage is a valid criterion to determine plant health status and 

constitute an important yield component for late-planted soybeans. Greater canopy 

development influences the plant’s ability to intercept light and produce biomass (Board 

and Harville 1996; Purcell 2000), adequate transpiration rates (Monteith 1977), suppress 

weed emergence (Bussan et al. 1997), and counterbalance for plant production under 

suboptimal population densities (Gaspar and Conley 2015). This study confirms enhanced 

soybean canopy development upon oomycide use in Phytophthora spp. infested soils 

(Rehm and Stienstra 1993; Ryley et al. 1989) and present an innovative, standardized 

protocol to estimate seedling development using an open-source smartphone application, 

which potentially could replace traditional vigor ratings performed in field trials. Overall, 
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the association between canopy coverage and yield seemed to be slightly more robust in 

environments PSRR occurred than the opposite. There was also a noticeable improvement 

in the strength of the relationship between the number of P. sojae stem lesions and canopy 

coverage at assessments performed during more advanced growth stages (V6-R2) than 

earlier in the season (VC-V1), likely because PSRR onset (wilting/stem lesions) usually 

manifests after the development of trifoliate leaves (V5 and through reproductive stages), 

as noted by Dorrance et al. (2003). Variations of the remote sensing techniques have 

shown applicability in the study of root stress associated with biotic disorders in several 

crops (Reynolds et al. 2012; Steddom et al. 2003), including those caused by Phytophthora 

in cranberry (Pozdnyakova et al. 2002) and avocado root rot (Salgadoe et al. 2018), as well 

as other soybean diseases (Wang et al. 2004; Yang et al. 2016). Here, proximal remote 

sensing was well-fitted for quantifying architectural changes in soybean canopy coverage 

associated with PSRR occurrence most likely because moderately resistant cultivars do not 

always develop stem lesions but may still exhibit permanent aboveground stunting as a 

result of P. sojae infection (Meyer and Sinclair 1972; Schmitthenner 1985). In addition, 

despite the confounding lack of seed treatment effect, a significant increase in canopy 

coverage were observed for Rps1k compared to Rps1c cultivars at Mead. Considering that 

plant architecture is highly influenced by environmental and cultivar-specific factors 

(Tucker et al. 1978; Wells et al. 1982), we hypothesize that factors other than disease 

occurrence may have influenced that response. 

This study documents the usefulness of cultivar selection using commercial 

soybean lines and emphasizes the importance of adopting effective seed treatments as part 

of an integrated PSRR management program in Nebraska and Iowa. Such information may 
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be valuable for producers and crop consultants wanting to develop an effective PSRR 

management program in the U.S. North Central region. Genetic resistance provided an 

overall better yield advantage than using seed treatment alone; however, seed treatment 

was more consistent across environments, possibly because of the broad-spectrum activity 

of active ingredients in the seed treatment commercial formulation. At this point in time, 

seed treatment combining metalaxyl + ethaboxam + clothianidin + ipconazole is highly 

effective against soilborne seedling diseases of soybeans. The selection of MR soybean 

cultivars carrying either Rps1k or Rps1c should be considered in PSRR endemic areas. 

Although not evaluated in this study, producers may also find beneficial to employ 

cultivars with Rps3a resistance and its pyramided forms (e.g. Rps3a+1c, Rps3a+1k), given 

its superior efficacy against P. sojae in Nebraska and Iowa (Dorrance et al. 2016; 

Schimelfenig et al. 2005; Yang et al. 1996). Cultural practices that encourage soil drainage 

are also recommended to reduce disease severity (Gray and Pope 1986) and increase the 

durability of genetic resistance genes and oomycide seed treatments. 
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Table 2. 1. Description of experimental sites and activities performedx in Nebraska and Iowa in 2017 and 2018. 

 

  Soil parameters   Execution date 

   Sand Silt Clay  O.M.    CCz  Plant population  Harvest 

Year Environment Typey (%)  g kg-1 pH Tillage Planting V1-V2 V6-R2   VE-VC  V1-V2  V6-R2 R8    

2017 Tekamah, NE Onawa silty clay 17 41 42  1.3 7.9 No-till 2 Jun - 5 Jul  13 Jun 21 Jun 5 Jul 28 Oct  6 Nov 

2018 Tekamah, NE Luton silty clay 17 16 67  5.4 6.2 Disked 18 May 5 Jun 6 Jul  31 May 5 Jun 6 Jul 12 Oct  1 Nov 

 Arizona, NE Haynie silt loam 19 36 46  3.4 7.6 No-till 18 May 5 Jun 9 Jul  31 May 5 Jun 9 Jul -  - 

 Mead, NE Filbert silt loam 17 48 35  4.7 6.8 No-till 6 Jun 29 Jun 16 Jul  13 Jun 29 Jun 16 Jul 19 Oct  29 Oct 

 Bruno, NE Zook silty clay loam 14 53 33  3.2 6.8 No-till 6 Jun 29 Jun 16 Jul  - 29 Jun 16 Jul 22 Oct  29 Oct 

 Boone, IA Clarion Loam 45 34 21  3.5 6.2 Disked 5 Jun - -  12 Jun 22 Jun 6 Jul 22 Oct  31 Oct 

 
x “-” indicates assessments were not performed. VE-VC (emergence to unifoliate), V1-V2 (first to second trifoliate), V6-R2 (sixth trifoliate to full bloom), and R8 (full maturity) growth stages according 

to Fehr et al. (1971). 
y Soil data was obtained from Web Soil Survey of USDA Natural Resources Conservation Service (https://websoilsurvey.sc.egov.usda.gov). 
z CC: canopy coverage. 
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Table 2. 2. Description of soybean cultivars evaluated in Nebraska and Iowa in 2017 and 2018. 

 

Year Environment Soybean cultivarsz 

2017 Tekamah, NE 
AG3432 (Rps1c, 7), AG3034 (Rps1c, 5), H3230NR (Rps1k, 5), H2913NR (Rps1k, 3), C3070R2 (Rps1k, 9), C3171R2 (Rps1k, 7), 
C3010RX (rps, 8), C2890R2 (Rps1c, 9), C3026RX (Rps1c, 8). 

2018 

Tekamah, NE 
Arizona, NE 
Bruno, NE 
Mead, NE 

AG28x7 (Rps1c, 6), AG27x8 (Rps1c, 5), H2862NX (Rps1k, 5), H2512NX (Rps1k, 4), NK3195X (Rps1c, 3), NK2788X (Rps1c, 4), 
C2888RX (Rps1c, 8), C3140RX (Rps1c, 7). 

Boone, IA 
AG28x7 (Rps1c, 6), H2862NX (Rps1k, 5), H2512NX (Rps1k, 4), NK3195X (Rps1c, 3), NK2788X (Rps1c, 4), C2888RX (Rps1c, 8), 
C3140RX (Rps1c, 7). 

 
z Cultivars and Phytophthora stem and root rot resistance. Resistance gene and tolerance (in parentheses) were provided by the respective companies: Asgrow (AG) and Golden Harvest (NK) on a 1-to-9 

scale, where 1 = most resistant and 9= most susceptible; and Hoegemeyer (H) and LG seeds (C) on a 1-to-9 scale, where 9= most resistant and 1= most susceptible. 
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Table 2. 3. Probability valuesx from analysis of variance using combined data by year for plant population, arcsine square root canopy 
coverage (arcCC), and yield in Nebraska and Iowa. 

 

    Plant populationy  arcCCy  
Yield 

State Year Sourcesz  VE-VC  V1-V2  V6-R2  R8  V1-V2   V6-R2  

Nebraska 2017 Cultivars (C)  0.0861  0.0072  0.0044  0.0002  -  0.0166  0.0656 

  Seed treatment (ST)  0.6613  0.5065  0.0132  0.3846  -  0.7682  0.5817 

  C x ST  0.0928  0.1321  0.0716  0.6641  -  0.1839  0.7060 

                 

Nebraska 2018 Cultivars (C)  <0.0001  <0.0001  <0.0001  <0.0001  <0.0001  <0.0001  <0.0001 

  Seed treatment (ST)  <0.0001  <0.0001  <0.0001  <0.0001  <0.0001  <0.0001  <0.0001 

  Environment (E)  0.0130  <0.0001  <0.0001  <0.0001  0.0004  0.0020  0.0043 

  C x ST  0.0130  <0.0001  0.0216  0.4848  0.3520  0.7577  0.1208 

  C x E  0.0005  0.0153  0.0009  0.0032  <0.0001  0.0022  <0.0001 

  ST x E  <0.0001  <0.0001  <0.0001  <0.0001  0.5650  0.1468  0.3733 

  C x E x ST  0.0084  0.0012  0.1200  0.8240  0.6707  0.7001  0.5790 

                 

Iowa 2018 Cultivars (C)  0.5720  0.4253  0.3016  0.5719  -  -  0.0067 

  Seed treatment (ST)  0.0099  0.0257  0.0050  0.0026  -  -  0.0010 

  C x ST  0.6059  0.7327  0.4581  0.7505  -  -  0.2352 

 
x Bold indicates statistical significance (P≤0.05) and “-” indicates assessment was not performed. 
y VE-VC (emergence to unifoliate), V1-V2 (first to second trifoliate), V6-R2 (sixth trifoliate to full bloom), and R8 (full maturity) growth stages to Fehr et al. (1971).  
z Cultivars: AG3432, AG3034, H3230NR, H2913NR, C3070R2, C3171R2, C3010RX, C2890R2, C3026RX in Nebraska in 2017, and AG28x7, AG27x8, H2862NX, H2512NX, NK3195X, NK2788X, 

C2888RX, C3140RX in Nebraska in 2018. In Iowa, soybean cultivars were the same as in Nebraska in 2018, with the exception of AG27x8 that was not planted. Seed treatment: clothianidin, 
ethaboxam, ipconazole, and metalaxyl was applied at rate of 50 + 7.5 + 2.5 + 2 g a.i. 100 kg–1 seed. Environments: Tekamah, Arizona, Mead, and Bruno in Nebraska in 2018. 
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Table 2. 4. Least-square means and probabilities valuesx of seed treatment and cultivar 
resistance to Phytophthora sojae on soybean population density estimated at VE-VC 
growth stages at environments in Nebraska and Iowa. 

 VE-VC population (plants ha–1) 

 2017  2018 

 Tekamah-NE  Tekamah-NE Arizona-NE Mead-NE Bruno-NE Boone-IA 

Seed treatmenty (ST)        

Treated 217,311  244,851 183,255 172,294 - 114,481 

Untreated control 214,739  191,109 152,510 181,639 - 102,795 

Diff. (%) 1.2  28.1 20.2 -5.1  11.4 

P>F 0.6613  <0.0001 <0.0001 0.1620  0.0099 

        

Cultivarsz (C)        

Tolerance        

MR 214,504  228,823 170,675 171,481 - 111,495 

MS 208,886  206,138 165,091 182,452 - 101,050 

Diff. (%) 2.7  11.0 3.4 -6.0  10.3 

P>F 0.7375  0.0506 0.4295 0.1436  0.2930 

Rps resistance        

Rps1c 217,565  214,445 169,979 173,753 - 110,868 

Rps1k 212,519  226,557 161,592 186,607 - 103,064 

Diff. (%) 2.4  -5.3 5.2 6.9  7.6 

P>F 0.7375  0.2033 0.4087 0.1436  0.2930 

Tolerance - Rps        

MR - Rps1c 217,565  225,998 176,617 163,968 - 116,250 

MS - Rps1c 217,565  202,912 163,342 183,538 - 104,006 

Diff. (%) 0  11.4 8.1 -10.7  11.8 

P>F >0.9999  0.0556 0.4087 0.0765  0.2930 

MR - Rps1k 204,783  237,298 152,847 194,019 - 102,795 

MS - Rps1k 220,256  215,816 170,338 179,195 - 113,828 

Diff. (%) -7.0  10.0 -10.3 8.3  -9.7 

P>F 0.7375  0.2033 0.4087 0.2491  0.2930 

        

C x ST        

MR x Treated 213,232  249,130 182,717 170,719 - 118,223 

MR x Untreated 214,201  208,515 158,632 172,243 - 104,768 

Diff. (%) -0.5  19.5 15.2 -0.9  12.8 

P>F 0.9019  0.0025 0.0037 0.8699  0.0593 

MS x Treated 177,927  240,573 183,793 173,869 - 113,329 

MS x Untreated 172,329  171,703 146,388 191,035 - 97,772 

Diff. (%) 3.2  40.1 25.6 -9.0  15.9 

P>F 0.8574  <0.0001 <0.0001 0.1431  0.0593 

Mean 216,025  217,198 167,883 177,461 - 108,638 

 
x Bold indicates statistical significance (P≤0.05) and “-” indicates assessment was not performed. 
y Seed treatment: clothianidin + ethaboxam + ipconazole + metalaxyl applied at 50 + 7.5 + 2.4 + 1.9 g a.i. 100 kg–1 seed. 
z Rps genes and tolerance information listed in Table 2.2. MS= moderately susceptible and MR= moderately resistant cultivars to 

Phytophthora stem and root rot. 
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Table 2. 5. Least-square means and probabilities valuesx of seed treatment and cultivar 
resistance to Phytophthora sojae on soybean population density estimated at V1-V2 
growth stages at environments in Nebraska and Iowa. 

 V1-V2 population (plants ha–1) 

 2017  2018 

 Tekamah-NE  Tekamah-NE Arizona-NE Mead-NE Bruno-NE Boone-IA 

Seed treatmenty (ST)        

Treated 246,792  257,035 178,075 157,398 115,173 117,864 

Untreated control 243,443  193,999 152,174 158,603 98,853 107,331 

Diff. (%) 1.4  32.5 17.0 -0.8 16.5 9.8 

P>F 0.5065  <0.0001 <0.0001 0.8253 0.0478 0.0257 

        

Cultivarsz (C)        

Tolerance        

MR 241,548  237,181 166,974 155,837 115,964 116,877 

MS 238,258  213,853 163,274 160,164 98,062 106,293 

Diff. (%) 1.4  10.9 2.3 -2.7 18.3 10.0 

P>F 0.8481  0.0185 0.5428 0.7194 0.0735 0.1582 

Rps resistance        

Rps1c 249,991  223,074 168,230 153,933 107,020 114,581 

Rps1k 236,671  232,846 155,807 170,204 106,993 107,638 

Diff. (%) 5.6  -4.2 8.0 -9.6 0.0 6.4 

P>F 0.2903  0.3754 0.1317 0.3277 0.9976 0.2490 

Tolerance - Rps        

MR - Rps1c 248,780  236,537 174,195 145,621 116,958  120,824 

MS - Rps1c 251,202  209,611 162,265 162,244 97,082 106,293 

Diff. (%) -1.0  12.8 7.4 -10.2 20.5 13.7 

P>F 0.8481  0.0185 0.1317 0.3277 0.0735 0.1582 

MR - Rps1k 222,677  239,112 145,312 186,484 112,983 105,486 

MS - Rps1k 250,664  226,579 166,302 153,923 101,002 118,671 

Diff. (%) -11.2  5.5 -12.6 21.2 11.9 -11.1 

P>F 0.1393  0.4116 0.1317 0.3277 0.6060 0.2490 

        

C x ST        

MR x Treated 243,479  260,178 175,182 157,374 127,013 124,681 

MR x Untreated 237,451  214,184 158,767 154,300 104,915 109,074 

Diff. (%) 2.5  21.5 10.3 2.0 21.1 14.3 

P>F 0.7487  0.0006 0.0203 0.6983 0.1129 0.0600 

MS x Treated 200,746  253,893 180,967 157,422 103,333 109,971 

MS x Untreated 200,746  173,814 145,581 162,906 92,792 102,615 

Diff. (%) 0  46.1 24.3 -3.4 11.4 7.2 

P>F >0.9999  <0.0001 <0.0001 0.6983 0.3443 0.2851 

Mean 245,117  224,477 165,124 158,176 107,211 112,598 

 
x Bold indicates statistical significance (P≤0.05). 
y Seed treatment: clothianidin + ethaboxam + ipconazole + metalaxyl applied at 50 + 7.5 + 2.4 + 1.9 g a.i. 100 kg–1 seed. 
z Rps genes and tolerance information listed in Table 2.2. MS= moderately susceptible and MR= moderately resistant cultivars to 

Phytophthora stem and root rot. 
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Table 2. 6. Least-square means and probabilities valuesx of seed treatment and cultivar 
resistance to Phytophthora sojae on soybean population density estimated at V6-R2 
growth stages at environments in Nebraska and Iowa. 

 V6-R2 population (plants ha–1) 

 2017  2018 

 Tekamah-NE  Tekamah-NE Arizona-NE Mead-NE Bruno-NE Boone-IA 

Seed treatmenty (ST)        

Treated 252,473  212,773 182,313 146,504 116,250 120,940 

Untreated control 240,034  163,536 155,403 145,606 90,820 108,100 

Diff. (%) 5.2  30.1 17.3 0.6 28.0 11.9 

P>F 0.0133  <0.0001 0.0001 0.8408 0.0001 0.0050 

        

Cultivarsz (C)        

Tolerance        

MR 246,694  197,132 176,796 141,366 115,173 119,120 

MS 239,093  179,177 160,920 150,743 91,896 108,446 

Diff. (%) 3.3  10.0 9.9 -6.2 25.3 9.8 

P>F 0.2593  0.0530 0.2438 0.1443 0.0007 0.1441 

Rps resistance        

Rps1c 250,260  186,145 172,850 143,163 104,738 117,487 

Rps1k 240,573  194,183 156,883 154,732 99,924 107,100 

Diff. (%) 4.0  -4.1 10.2 -7.5 4.8 9.7 

P>F 0.2593  0.4612 0.2438 0.1443 0.4469 0.1441 

Tolerance - Rps        

MR - Rps1c 255,507  196,894 182,717 135,028 117,924 125,264 

MS - Rps1c 245,013  175,396 162,983 151,297 91,552 108,984 

Diff. (%) 4.3  12.3 12.1 -10.8 28.8 14.9 

P>F 0.2593  0.0530 0.2438 0.0881 0.0007 0.1441 

MR - Rps1k 230,212  197,847 159,036 160,381 106,921 107,908 

MS - Rps1k 250,933  190,520 154,730 149,082 92,928 118,941 

Diff. (%) -8.3  3.8 2.8 7.6 15.1 -9.3 

P>F 0.1269  0.6086 0.8322 0.3095 0.2795 0.3021 

        

C x ST        

MR x Treated 251,014  217,804 187,830 142,313 127,552 128,269 

MR x Untreated 238,743  176,460 165,763 140,420 102,795 109,971 

Diff. (%) 5.1  23.4 13.3 1.3 24.1 16.6 

P>F 0.0836  0.0009 0.0131 0.9876 0.0035 0.0163 

MS x Treated 203,437  207,742 176,796 150,695 104,947 112,662 

MS x Untreated 193,319  150,612 145,043 150,792 78,845 104,230 

Diff. (%) 5.2  37.9 21.9 -0.1 33.1 8.1 

P>F 0.0836  <0.0001 0.0015 0.9876 0.0035 0.1926 

Mean 246,253  187,750 168,858 146,348 103,253 114,520 

 
x Bold indicates statistical significance (P≤0.05). 
y Seed treatment: clothianidin + ethaboxam + ipconazole + metalaxyl applied at 50 + 7.5 + 2.4 + 1.9 g a.i. 100 kg–1 seed. 
z Rps genes and tolerance information listed in Table 2.2. MS= moderately susceptible and MR= moderately resistant cultivars to 

Phytophthora stem and root rot. 
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Table 2. 7. Least-square means and probabilities valuesx of seed treatment and cultivar 
resistance to Phytophthora sojae on soybean population density estimated at R8 growth 
stage at environments in Nebraska and Iowa. 

 R8 population (plants ha–1) 

 2017  2018 

 Tekamah-NE  Tekamah-NE Arizona-NE Mead-NE Bruno-NE Boone-IA 

Seed treatmenty (ST)        

Treated 214,380  215,991 - 148,210 125,601 116,788 

Untreated control 210,493  162,023 - 143,554 95,238 102,948 

Diff. (%) 1.8  33.3  3.2 31.9 13.4 

P>F 0.3846  <0.0001  0.5092 0.0002 0.0026 

        

Cultivarsz (C)        

Tolerance        

MR 216,892  202,035 - 140,987 117,505 112,482 

MS 199,771  175,979 - 150,777 103,333 105,575 

Diff. (%) 8.6  14.8  -6.5 13.7 6.5 

P>F 0.0158  0.0648  0.4263 0.1928 0.3497 

Rps resistance        

Rps1c 207,877  192,673 - 144,599 110,509 112,536 

Rps1k 212,048  178,007 - 149,733 110,150 103,198 

Diff. (%) -2.0  8.2  -3.4 0.3 9.0 

P>F 0.4740  0.2117  0.6389 0.9641 0.2883 

Tolerance - Rps        

MR - Rps1c 223,216  205,065 - 133,087 116,549 117,595 

MS - Rps1c 192,539  180,281 - 156,110 104,469 106,293 

Diff. (%) 15.9  13.7  -14.7 11.6 10.6 

P>F 0.0036  0.0878  0.2180 0.2010 0.2883 

MR - Rps1k 202,630  192,942 - 164,687 120,376 106,562 

MS - Rps1k 221,467  163,072 - 134,779 99,924 114,904 

Diff. (%) -8.5  18.3  22.2 20.5 7.3 

P>F 0.0387  0.1903  0.2526 0.2010 0.4302 

Mean 212,437  188,883 - 145,568 110,134 109.869 

 
x Bold indicates statistical significance (P≤0.05) and “-” indicates assessment was not performed. 
y Seed treatment: clothianidin + ethaboxam + ipconazole + metalaxyl applied at 50 + 7.5 + 2.4 + 1.9 g a.i. 100 kg–1 seed. 
z Rps genes and tolerance information listed in Table 2.2. MS= moderately susceptible and MR= moderately resistant cultivars to 

Phytophthora stem and root rot. 
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Table 2. 8. Least-square means and probabilities valuesx of seed treatment and cultivar 
resistance to Phytophthora sojae on soybean yield at environments in Nebraska and Iowa. 

 Yield (kg ha–1) 

 2017  2018 

 Tekamah-NE  Tekamah-NE Arizona-NE Mead-NE Bruno-NE Boone-IA 

Seed treatmenty (ST)        

Treated 5,051.2  3,475.7 - 3,581.3 2,925.9 3,191.0 

Untreated control 5,011.9  3,217.8 - 3,418.9 2,594.2 2,960.0 

Difference 39.3  257.9  162.4 331.6 230.9 

P>F 0.5818  0.0010  0.1674 0.0035 0.0010 

        

Cultivarsz (C)        

Tolerance        

MR 5,030.3  3,720.5 - 3,484.1 3,029.5 3,009.2 

MS 5,028.8  2,973.0 - 3,516.2 2,490.6 3,027.0 

Diff.  1.5  747.5  -32.1 538.9 -17.7 

P>F 0.9845  0.0001  0.8411 0.0001 0.8674 

Rps resistance        

Rps1c 5,104.8  3,443.5 - 3,391.1 2,752.3 3,124.8 

Rps1k 4,971.2  3,056.5 - 3,827.2 2,783.4 2,962.2 

Diff. 133.6  387.0  -436.1 -31.0 172.6 

P>F 0.3494  0.0263  0.1042 0.7940 0.2492 

Tolerance - Rps        

MR - Rps1c 5,107.2  3,819.9 - 3,321.1 3,014.2 3,028.9 

MS - Rps1c 5,102.5  3,067.1 - 3,461.2 2,490.3 3.073,2 

Diff. 4.7  752.8  -140.1 523.9 -44.2 

P>F 0.9845  0.0003  0.6100 0.0004 0.8674 

MR - Rps1k 4,951.6  3,422.4 - 3,973.0 3,075.4 3,079.2 

MS - Rps1k 4,990.7  2,690.6 - 3,681.3 2,491.3 3.419.9 

Diff. -39.1  731.8  291.7 584.0 -340.7 

P>F 0.9845  0.0214  0.6100 0.0131 0.2492 

Mean 5,031.6  3,346.8 - 3,500.1 2,760.1 3,075.5 

 
x Bold indicates statistical significance (P≤0.05) and “-” indicates assessment was not performed. 
y Seed treatment: clothianidin + ethaboxam + ipconazole + metalaxyl applied at 50 + 7.5 + 2.4 + 1.9 g a.i. 100 kg–1 seed. 
z Rps genes and tolerance information listed in Table 2.2. MS= moderately susceptible and MR= moderately resistant cultivars to 

Phytophthora stem and root rot. 
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Table 2. 9. Spearman’s rank correlationx coefficient (ρ) for the relationship between the number of plants with Phytophthora sojae 
stem lesions (nPSR), mid-season canopy coverage (CC), plant population, and yield across environments in Nebraska and Iowa. 

 

 2017  2018 

Association Tekamah, NE  Tekamah, NE Arizona, NE Mead, NE Bruno, NE Boone, IA 

nPSR - Yield *y  
-0.50 

(<0.0001) 
-z 

-0.01 
(0.9269) 

-0.02 
(0.8388) 

* 

nPSR - CC *  
-0.45 

(0.0003) 
-0.32 

(0.0089) 
0.08 

(0.5691) 
-0.03 

(0.7900) 
* 

Pop. (V6-R2) - CC 
0.24 

(0.0376) 
 

0.34 
(0.0096) 

0.41 
(0.0006) 

0.50 
(0.0001) 

0.69 
(<0.0001) 

- 

Yield - CC 
0.32 

(0.0054) 
 

0.82 
(<0.0001) 

- 
0.69 

(<0.0001) 
0.63 

(<0.0001) 
- 

Yield - Pop. (R8) 
0.23 

(0.0514) 
 

0.43 
(0.0005) 

- 
0.24 

(0.0856) 
0.79 

(<0.0001) 
0.10 

(0.4243) 

 
x P-values in parenthesis. Bold indicates statistical significance (P≤0.01). 
y Phytophthora stem and root rot not detected. 
z At least one of the assessments was not performed. 
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Table 2. 10. Soil temperature at planting and accumulated precipitation at the experimental sites in Nebraska and Iowa. 

 

    DAP precip.z (mm)  Monthly precip. (mm)  15-year average monthly precip. (mm) 

Year City, State Tmx Irrig.y 0-15 16-30 31-45 46-60 61-75  May June July Aug Sept Oct  May June July Aug Sept Oct 

2017 Tekamah, NE 23.7 Yes 38.1 19.3 36.8 52.3 103.4  125.9 54.8 91.7 146.5 82.3 81.0  94.6 112.3 66.8 96.6 78.9 46.4 
2018 Tekamah, NE 20.3 Yes 57.4 23.3 97.0 32.2 37.3  137.9 114.8 100.8 154.1 149.1 55.6  96.3 113.3 70.3 94.8 83.5 47.1 
 Arizona, NE 20.3 Yes 73.4 41.6 202.7 57.6 33.7  223.0 221.5 114.7 159.7 168.4 94.4  134.5 152.6 103.0 127.3 116.1 70.3 
 Mead, NE 26.1 Yes 67.0 109.2 19.5 61.7 90.4  76.4 158.7 91.4 141.4 194.5 61.4  132.1 128.8 70.2 109.0 85.6 59.5 
 Bruno, NE 26.1 No 74.9 123.4 13.9 20.8 91.7  45.7 176.0 76.7 113.8 115.5 67.3  122.6 125.2 66.1 117.4 82.7 62.8 
 Boone, IA 24.7 No 223.3 132.1 4.3 43.1 78.7  101.1 281.9 106.9 213.6 171.4 123.2  127.9 122.9 104.9 134.4 93.1 67.3 

 
x Tm: soil temperature (°C) during planting at a depth of 10-cm.  
y Irrig.: irrigation system. 
z Accumulated precipitation based on days after planting (DAP), including irrigation.  
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Figure 2. 1. Representative soybean canopy coverage values (%) estimated with 
Canopeo smartphone application at A, V1-V2 and B, V6-R2 growth stages in 
Nebraska in 2018. 
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Figure 2. 2. Mean differences between seed treatment and cultivar resistance to 
Phytophthora sojae on early- and mid-season soybean canopy coverage (CC) in 
Nebraska. Positive significant differences (P≤0.05, black circles) indicate increasing CC 
associated with A, and D, seed treatment vs. untreated control; B, and E, moderately 
resistant vs. moderately susceptible cultivars; and C, and F, Rps1k vs. Rps1c cultivars. 
Contrasts were performed on arcsine square root transformed data and mean differences 
were calculated on back-transformed data. 
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Figure S. 2. 1. Histograms for the distribution of responses collected in the study. A 

and B, soybean population densities at V1-V2 and R8 growth stages; C and D, 
arcsine square root transformed canopy coverage (arcCC) at V1-V2 and V6-R2 
growth stages; E, incidence of plants with Phytophthora sojae stem lesions; and F, 
soybean yield. 
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Abstract 

Six field studies were conducted during 2017 and 2018 in Nebraska to investigate potential 

interactions between pre-emergence (PRE) herbicides on soybean (Glycine max (L.) Merr.) 

root rot severity, herbicide injury, plant height and population, and yield in fields with 

history of stand establishment problems. Chlorimuron-ethyl, metribuzin, saflufenacil, 

sulfentrazone, and flumioxazin did not impact root rot disease severity index (DSI) 

compared to non-treated control (P≤0.05). At one of the environments, the application of 

PPO-inhibiting herbicides seemed to have a detrimental effect on root health status when 

contrasted to non-PPO-inhibiting herbicides. Herbicide injury was minimum during the 

study and no significant differences between PRE herbicides were detected on plant height, 

population, or yield; however, significant differences existed across environments. 

Systematic isolations from symptomatic root material indicated a rich diversity of 

filamentous organisms from fine-textured, poorly drained agroecosystems. Among 

isolates, the soilborne genera Fusarium, Pythium, Phytophthora, Rhizoctonia, 

Trichoderma, Alternaria, Mortierella were recovered. Community composition depicting 
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primary pathogenic genera Fusarium, Phytophthora, Pythium, and Rhizoctonia did not 

occur at random but rather varied across environments (P<0.0001) and DSI classes 

(P=0.002). In two of the three habitats, Phytophthora species structured approximately 

22% of primary pathogenic genera, whereas, Rhizoctonia species recovery was low 

(<5.5%) and sporadic. Results from this study demonstrate the compatibility of single PRE 

herbicides programs in mid-to-late planted soybeans in fields with seedling disease history. 

 

3.1. Introduction 

Soybean seedling diseases are an important yield-limiting factor in soybean 

(Glycine max (L.) Merr.) production (Hartman et al. 2015; Koenning and Wrather 2010). 

Annual losses due to this malady are estimated at 1.3 MMT in North America (Allen et al. 

2017). Symptoms include seed decay, pre- and post-emergence damping-off, and root rot 

leading to stunted plant development and stand variability. Surveys conducted throughout 

major soybean-producing regions of U.S indicate a rich composition of filamentous 

organisms associated with symptomatic seedlings, including Fusarium spp., Pythium spp., 

Phytophthora sojae, and Rhizoctonia solani (Ajayi-Oyetunde and Bradley 2017; Radmer et 

al. 2017; Rizvi and Yang 1996; Zitnick-Anderson and Nelson Jr. 2015). Edaphic and 

climatic factors also play a role in disease incidence, with moist soil conditions being 

favorable to epidemics (Martin and Loper 1999; Schmitthenner 1999). Understanding the 

combined effects of abiotic and biotic stresses are prerequisite towards effective 

management of seedling diseases. 

Severe weed infestation also results in loss of soybean yield and quality (Hager et 

al. 2002). Effective weed management practices include the rotation of disparate herbicide 
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sites of action, crop rotation, tillage, adoption of cover crops, and preventing weed 

establishment (Norsworthy et al. 2012). Pre-emergence (PRE) and/or post-emergence 

(POST) herbicides are primary tools for weed management in soybean (Riar et al. 2013). 

However, with the introduction of glyphosate-tolerant soybean in 1996, management 

programs combining the application of PRE herbicide with one-or-two POST passes of 

distinct sites of action herbicides were substituted by burndown and multiple in-season 

glyphosate applications (Shaner 2014). While the benefits of glyphosate-resistant crops 

have been extensively reviewed (Dill 2005; Gianessi 2005), intensification on glyphosate 

use across vast areas has resulted in an increased selection of glyphosate-resistant (GR) 

weed biotypes (Beres et al. 2018). In Nebraska, GR weeds from Amaranthaceae and 

Asteraceae families have been reported as a result of continuous use of glyphosate for 

weed management in GR crops (Chahal et al. 2017; Vieira et al. 2018). The adoption of 

residual PRE herbicides provide early-season weed control and allow rotation of herbicide 

sites of action, which may mitigate selection pressure towards GR biotypes while 

improving the efficacy of POST treatments (Jhala et al. 2017).  

Soil-applied PRE herbicides belonging to protoporphyrinogen oxidase inhibitors 

(PPO, WSSA group 14) and photosynthetic system II (PSII, WSSA group 5) inhibitors 

have increased across soybean-producing regions of the U.S. in recent years (Owen 2017). 

For example, while consumption of herbicide trifluralin (WSSA group 3) was stagnated at 

approximately 0.57 million kg between 2012 and 2017, sulfentrazone, a PPO-inhibiting 

soybean PRE herbicide, consumption increased from 0.49 million kg to 1.5 million kg 

(USDA 2012, 2018). Similarly, during the same period, saflufenacil, a PPO inhibitor, and 

metribuzin, a PS II inhibitor, had their use increased by 130% and 452%, respectively 
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(USDA 2012, 2018). The increased adoption of these herbicide programs may be related to 

their superior effectiveness on key GR weeds (Krausz and Young 2003; Sarangi et al. 

2017). Sarangi et al. (2017) observed reduced density of GR common waterhemp 

(Amaranthus rudis) from 107 to 13 plants m–2 upon application of flumioxazin + 

chlorimuron at PRE followed by fomesafen + glyphosate at POST when compared to 

glyphosate at POST alone. Occasionally, however, soil-applied PRE herbicides cause 

adverse side-effects to sensitive soybean seedlings, including height reduction, leaf burn, 

desiccation, chlorosis, stand reduction, and yield losses (Miller et al. 2012; Vidrine et al. 

1996; Zhaohu et al. 1999). PRE herbicide injury risk increases under cool and prolonged 

moist conditions (Hager 2014; Poston et al. 2008), which also characterize favorable 

conditions for some soilborne seedling diseases to thrive (Kirkpatrick et al. 2006; Martin 

and Loper 1999). 

Herbicides exert profound physiological and developmental changes in plants, 

which may alter plant susceptibility to soilborne pathogens (Altman and Campbell 1977b; 

Grinstein et al. 1976; Hale et al. 1981). Herbicide phytotoxicity can adversely affect 

disease-resistance mechanisms and predispose plants to root infection (Keen et al. 1982; 

Levésque and Rahe 1992). Herbicide-stressed plants liberate more root exudates that 

change the chemical nature of leaked components and stimulate or inhibit pathogen 

propagule germination (Brown and Curl 1987; Lai and Semeniuk 1970; Lee and 

Lockwood 1977). There are studies showing no synergism between PRE herbicides and 

seedling diseases, particularly in cotton and soybean (Agamalian 1964; Bauske and Kirby 

1992; Heydari et al. 2007), but controversial evidence has also been documented in a 

handful of pathosystems tested under field and controlled conditions (Bowman and 
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Sinclair 1989; Bradley et al. 2002; Carson et al. 1991; Chandler and Santelmann 1968; El-

Khadem et al. 1979; Espinoza et al. 1968; Harikrishnan and Yang 2002; Heydari and 

Misaghi 1998; Montazeri and Hamdollah-Zadeh 2005; Neubauer and Avizohar-

Hershenson 1973; Pankey et al. 2005; Pinckard and Standifer 1966; Wiley and Ross 1974). 

Particularly with PPO-inhibiting herbicides, it has been shown that flumioxazin and 

sulfentrazone can alter the recovery of Pythium arrhenomanes from sugarcane roots 

(Daugrois et al. 2005). 

Inquiries from soybean growers and crop consultants regarding the potential 

interactions between seedling diseases and PRE herbicides, primarily commercial 

formulations containing PPO inhibitors herbicides, have increased over the last years 

(Adesemoye et al. 2016; Dorrance and Loux 2017; Giesler 2017; Jhala 2017). However, 

studies providing updated information about the topic are few and lack a comprehensive 

assessment of the microbial community associated with symptomatic plant root tissue and 

its influence on herbicide-induced disease susceptibility (Barlow et al. 2018; Kandel et al. 

2018). Therefore, the objectives of this research were to (i) evaluate the effect of single 

active PRE herbicide application on early-season soybean disease development, and (ii) 

determine the frequency of primary root pathogenic genera (Fusarium, Phytophthora, 

Pythium, and Rhizoctonia) associated to symptomatic soybean roots at each environment 

for the understanding of potential herbicide interactions.  

3.2. Material and methods 

Field trials were conducted at two locations near Mead and Lincoln (East Central 

Nebraska) in 2017 and at four locations near Tekamah and Arizona (Northeast Nebraska), 

and Mead and Bruno (East Central Nebraska) in 2018. All six locations were previously 
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planted with corn and were chosen based on the history of oomycete-related soybean 

seedling diseases. Information regarding the soil characteristics, site GPS coordinates, 

tillage, data collection, and harvest dates are presented in Table 3.1. Weather data were 

obtained from public weather service websites (https://hprcc.unl.edu/) and 

(https://www.ncdc.noaa.gov/cdo-web/), using the nearest automated weather station 

located within a 10-km radius from trials. Soil temperature at 10-cm depth was obtained 

from the nearest weather station which provided soil temperature readings. 

The experimental units were 5.18-m long by 3.04-m wide plots consisting of four 

rows planted 0.76-m apart and at a density of 308.881 seeds ha–1 and at a depth of 4-cm. In 

both years, the experimental design was a randomized complete block design with four 

replications, but the treatment design differed across growing seasons. In 2017, a two-way 

factorial between two soybean cultivars P28T08R (Rps1k) and P22T41R2 (Rps1k) and five 

PRE herbicide treatments was used. In 2018, the same five PRE herbicide treatments were 

evaluated but only one cultivar AG27x8 (Rps1c) was planted at all four locations. 

Herbicide treatments were applied at the labelled rate and consisted of (i) chlorimuron-

ethyl (Classic 25DF, DuPont, Wilmington, DE) at 44 g a.i. ha–1; (ii) metribuzin (Sencor 75 

DF, Bayer CropScience, Research Triangle Park, NC) at 560 g a.i. ha–1; (iii) saflufenacil 

(Sharpen, BASF, Research Triangle Park, NC) at 22 g a.i. ha–1; (iv) sulfentrazone (Spartan 

4F, FMC, Philadelphia, PA) at 290 g a.i. ha–1; and (v) flumioxazin (Valor SX, Valent 

U.S.A., Walnut Creek, CA) at 90 g a.i. ha–1. A non-treated herbicide control was included 

for comparison. No seed treatment was applied to seeds prior to planting. Soybeans were 

planted between mid-May to early-June and all herbicide treatments were applied between 

one to two days after planting (DAP) but prior to soybean emergence.  
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Herbicide treatments were applied using a handheld CO2–pressurized backpack 

sprayer equipped with a five-nozzle boom fitted with XR8002VS flat-fan nozzles (TeeJet 

Technologies, Spraying Systems Co., Wheaton, IL) and spaced 50 cm apart. The system 

was calibrated to deliver herbicide treatments at a rate of 140.3 L ha–1 at 275 kPa at a 

constant speed of 6.4 km h–1. Approximately, 1 L of water was rinsed through the sprayer 

system between herbicide treatment applications. Plots were maintained weed-free with 

either one or two POST applications of glyphosate (Roundup Power Max, Monsanto, St. 

Louis, MI) at 1140 g a.i. ha–1 + ammonium sulfate (N-Rich, American Plant Food Co., 

Galena Park, TX) at 2% by weight shortly after planting and between the fourth to sixth-

trifoliate stages (V4-V6) (Fehr et al. 1971) over the entire experimental area and by hand-

hoeing as needed throughout the season. 

Root rot severity index (DSI). Seedling root rot was assessed at the first to second trifoliate 

(V1-V2; approx. 18 to 21 DAP) stages on six plants randomly collected from the outer 

non-harvested rows of each experimental unit. Root systems and adhered soil were dug 

with a shovel, then soaked in water for approximately 20 min and gently washed until soil 

particles were removed. Water in the bucket was frequently replaced as samples were 

processed. For evaluation, the individual entire root systems were rated for root rot using a 

graded rating board on a 0-to-10 scale adapted from Bates et al. (2008), where 0= 

symptomless; 1= few small reddish to brown lesions, 0.1–0.2 cm in length, at base of 

hypocotyl or root tips; 2= progressing lesions, discoloration evident but many healthy roots 

present; 3= taproot intact but increasing color intensity, minor reduction in root mass; 

4=10-20% root mass reduction and discoloration and coalescing of localized root lesions; 

5= root system discolored with increasingly lesions with 20-40% root mass reduction and 
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hypocotyl lesions; 6= intensely reddish-brown discoloration and compromised mass 

reduction affecting roughly ½ of root volume; 7= mass reduction affecting roughly ¾ of 

root volume, taproot compromised; 8= further damage; and 9= remaining entire root 

blackened; and 10=dead seedling (Figure 3.1). For statistical analysis, a disease severity 

index (DSI) was calculated for each experimental unit with the following formula DSI= 

∑(severity rating x plants per rating)/(total plants x 10), similar to Harveson et al. (2005). 

Additionally, the total fresh root and shoot biomass for the six plants were also recorded by 

cutting previously rated plants at the cotyledonal node and weighing plant parts. The ratio 

between root and shoot was calculated by dividing fresh root by shoot weight. 

Composition of root-associated organisms. To determine the composition of filamentous 

organisms associated with symptomatic root tissue, rated soybean roots were brought to 

the laboratory in coolers and washed with liquid detergent (Dawn, Procter and Gamble) 

until soil particles were removed, then rinsed thoroughly with tap water. Roots were 

surface disinfested in a 0.5% sodium hypochlorite solution for approximately 1.5 min, left 

under tap water at constant flow for approximately 10 min, and air dried in a sterile 

laminar flow cabinet for 20-30 min. For isolations, one-to-two lateral and taproot 

fragments of 2-cm long per plant displaying tan to brown, dark to reddish discoloration 

were excised with a sterile scalpel and placed onto 10-cm diameter Petri dishes containing 

the following isolating media: (i) water agar at 20 g L–1; (ii) water agar at 20 g L–1 + 

streptomycin (Sigma-Aldrich, St. Louis, MO) at 0.03 g L–1; (iii) corn meal agar (Difco, 

Sparks, MD) at 20 g L–1 + pentachloronitrobenzene (Sigma-Aldrich, St. Louis, MO) at 

0.054 g L–1 + benomyl (Sigma-Aldrich, St. Louis, MO) at 0.01 g L–1 + spiramycin (Fisher 

Scientific, Pittsburgh, PA) at 0.005 g L–1; and (iv) PBNIC V8 agar with rifampicin (Fisher 



83 
 

 

 

Scientific, Pittsburgh, PA) added at 0.01 g L–1 (Dorrance et al. 2008). Rifampicin, 

spiramycin, and hymexazole were added after autoclaving. All roots fragments were 

processed and plated the same day of collection. For each environment, twelve Petri plates 

of each media and four pieces of symptomatic root tissue per plate were used, resulting in 

192 total possible isolates. Culture plates were incubated for 3 to 12 days at 20ºC, and 

checked daily for hyphal growth. Single pure isolates were obtained by sub-culturing 

marginal hyphal growth onto a fresh Petri dish with the same media. Isolates were then 

transferred to potato dextrose agar (PDA, Difco, Sparks, MD) at 39 g L–1 for storage until 

identification.  

Each sub-cultured isolate was examined microscopically and identified to the genus 

level following Watanabe (2010) soil fungi key. Briefly, isolates of Fusarium species were 

tentatively identified based on cultural appearances, mycelial growth with pale- to dark-

violet color on PDA, as well as microscopic characteristics such as the presence of 

fusiform hyaline, septate, curved macroconidia and microconidia. Phytophthora species 

were identified by the slow growth of dense white mycelium in PBNIC, exhibiting 

coenocytic, right-branched hyphae, and presence of oospores around 40-50 µm in 

diameter. Pythium spp. were identified based on its reduced growth on media amended 

with hymexazole, by forming a mycelial rosette pattern growth on PDA with filamentous, 

coenocytic hyphae. Rhizoctonia species were examined for colony color, sclerotia 

formation, lack of asexual spores, and characteristic homogeneous septate hyphae 

branching at right angles with a slight constriction at the branch origin.  

Plant population. Population density was estimated at emergence to unifoliate (VE-VC; 7 

to 13 DAP), first to second trifoliate (V1-V2; 19 to 24 DAP) growth stages, and prior to 
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harvest (R8). Plant stand was estimated by counting the number of emerged plants in a 

3.05-m section of each two center rows, averaged, and converted to per hectare basis.  

Seedling vigor and plant height. Aboveground plant vigor was rated at VE-VC growth 

stages on a 0-to-10 scale, where 0= seedling death and 10= no visual injury. Vigor was 

estimated on the basis of combined symptomology including stunting, necrotic areas on 

cotyledon and hypocotyl, deformation of cotyledons, and yellowing of unifoliate leaves. In 

addition, plant heights were also collected during at V1-V2 and sixth trifoliate to full 

bloom (V6-R2; 31 to 55 DAP) growth stages on six random plants within each 

experimental unit. 

Yield. At maturity, experimental units were trimmed to 4.5-m in length and soybeans were 

harvested from the center two rows using a plot combine Almaco SPC20 (Almaco, 

Nevada, IA) equipped with grain gauge and handheld computer Allegro MX (Juniper 

Systems, Logan, UT) for data collection. Grain yield was adjusted to 13% moisture and 

expressed in kilograms per hectare.  

Data analysis. Data analysis was performed in R (version 3.5.1, R Foundation for 

Statistical Computing, Vienna, Austria) using the R Studio graphical user interface 

(version 1.1.463, RStudio Inc.). For treatment effects, analysis of variance (ANOVA) was 

performed separately for two years due to differences in treatment design using type III 

sum of squares with the car package (version 3.0.0). In the linear model, all factors being 

environment, block, cultivar, and PRE herbicide were considered fixed effects.  

The treatment means were estimated using least-squares procedure from emmeans 

package (version 1.2.3) and multiple pairwise comparisons were performed for statistically 
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significant factors (P≤0.05) using Bonferroni’s adjustment. Single-degree-of-freedom 

orthogonal contrasts statements were applied to test pre-planned comparisons between (i) 

PRE herbicides (chlorimuron-ethyl + metribuzin + saflufenacil + sulfentrazone + 

flumioxazin) vs. non-treated herbicide control, (ii) PPO-inhibiting herbicides (saflufenacil 

+ sulfentrazone + flumioxazin) vs. non-PPO herbicides (chlorimuron-ethyl + metribuzin), 

and (iii) PS II (metribuzin) vs. ALS (chlorimuron-ethyl) at each environment. At Tekamah 

in 2018, 5 out of 24 experimental units were removed from analysis due to varietal 

misplacement at planting. 

To evaluate the relative abundance of filamentous organisms recovered from 

symptomatic root tissue in relation to categorical factors studied, a log-linear model was fit 

to the isolate collection 6 x 5 contingency table depicting the environments and four 

primary soybean root pathogenic genera (Fusarium, Pythium, Phytophthora, Rhizoctonia) 

plus the category Others. The category Others represented here is composed of all 

secondary pathogenic, non-pathogenic and/or contaminants recovered in the study. In the 

composition analysis, if the numbers of isolates in the cells of the contingency table occur 

at random, then no statistical linkage between the two categorical factors is determined, 

and thus H0, the null hypothesis of independence fails to reject. However, if the null is 

rejected at pre-specified likelihood (P≤0.05), an indication of dependency between 

categorical factors may exist (Everitt 1992). The log-linear model was fitted with the loglm 

function from the package MASS (version 7.3.50) and both Pearson’s and Likelihood Ratio 

(RL) chi-square χ2 coefficients were calculated for the global contingency table and 

subsequently for orthogonal, structured sub-tables depicting the partitioning of degrees-of-

freedom and previously calculated chi-square coefficients. 
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3.3. Results 

Weather data. In 2017, no considerable rain events were observed within 12 days of 

planting in either environment, and soil temperatures increased from 21.6 to 25.4°C and 

from 23.3 to 28.5°C at Mead and Lincoln, respectively. In 2017, weather conditions varied 

considerably with accumulated precipitation of 31.2, 42.9, 7.4, and 19.1 mm at Tekamah, 

Arizona, Mead, and Bruno, respectively. Meanwhile, soil temperatures averaged 21.6°C at 

Tekamah and Arizona, and 26.4°C at Mead and Bruno. Shortly after planting, a brief drop 

in soil temperature was recorded in Tekamah and Arizona (Figure 3.2). 

Root rot severity index (DSI). Seedling root rot epidemics developed naturally in the 

environments. Discoloration on lateral root systems was more common but lesions 

extending externally on the epidermis and internally in cortical tissue of taproots were also 

present. In 2017, DSI ranged from 21.6 to 46.6% across experimental units but PRE 

herbicides did not significantly affect DSI (F5, 68=0.850, P=0.5186). Similarly, cultivars 

had no effect on DSI (F1, 68=0.834, P=0.3640), regardless of the environment that they 

were grown (Table 3.2). No statistical differences were observed between environments 

and DSI averaged 34 to 35.6% Lincoln and Mead, respectively. In 2018, significant DSI 

differences were detected between environments (F3, 63=21.357, P<0.0001) with the 

highest DSI mean at Tekamah (41.7%), followed by intermediate values at Bruno and 

Arizona (34.6% and 32.9%, respectively), and the lowest mean at Mead (27.7%). In 

addition to significant DSI differences across environments, the herbicide-environment 

interaction was found significant (F15, 63=2.355, P=0.009; Table 3.2), therefore analysis 

was performed separately for each environment in 2018. At Tekamah, DSI varied from 

26.6 to 61.6% across experimental units but no effect of PRE herbicides was statistically 
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significant (F5, 10=2.305, P=0.1223). However, when PRE herbicides groups were 

contrasted, the application of PPO-inhibiting herbicides suggested (t-value10=2.695, 

P=0.0225) slightly increased DSI when compared to non-PPO herbicides (Figure 3.3C; 

Table 3.3). Alternatively, a comparison between PRE herbicides and non-treated control 

was not significant (t-value10=-0.063, P=0.9509) in that environment. In Arizona, DSI 

varied from 26.6 to 45% but no consistent effect of PRE herbicide application on DSI was 

detected. At Mead and Bruno, DSI values ranged from 18.3 to 43.3%, and 26.6 to 48.3%, 

respectively, but the application of PRE herbicides had no significant effect on DSI (Table 

3.3). 

Composition of root-associated organisms. In conjunction, 417 isolates representing 

groups of pathogenic, non-pathogenic and antagonistic organisms were isolated from 

symptomatic soybean root tissues. In 2017, 61 isolates (38%) represented primary root 

pathogenic genera (Fusarium, Phytophthora, Pythium, and Rhizoctonia), whereas, in 2018, 

170 isolates (66%) composed that group (Table 3.4). 

Pearson’s and LR chi-square (χ2 ) analysis of factors depicting Fusarium, 

Phytophthora, Pythium, Rhizoctonia, and Others indicated community composition was 

highly different across environments (Pearson’s χ2
20= 110.14, P<0.0001; LR=124.01, 

P<0.0001). The community composition corresponding exclusively to primary pathogenic 

genera also differed across sampled environments (Pearson’s χ2
15= 60.95, P<0.0001; 

LR=73.41, P<0.0001, Figure 3.4A), with Fusarium as the dominant genus representing 

91.2 and 70.4% of relative estimated frequency at Lincoln and Mead in 2017, respectively. 

Fusarium spp. structured 54.4% of isolates obtained from Tekamah 2018, whereas the 

remaining composition was represented by Phytophthora and Pythium species with 27.8 
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and 17.7% of primary pathogenic isolates, respectively. There was also strong evidence 

that the abundance of primary pathogenic genera and Others was influenced by 

environment (Pearson’s χ2
15= 48.830, P<0.0001; LR=50.601, P<0.0001) (Figure 3.4E), but 

no comprehensive identification and quantification of members of the group Others was 

performed. 

To further evaluate the composition of pathogenic genera collection, all six 

environments were grouped into low (<30%), intermediate (≥30 to <40%) and high 

(≥40%) DSI classes based on pairwise mean separations. Both Pearson’s and LR chi-

square χ2 tests showed that the variation of primary pathogenic groups and DSI incidence 

did not occur at random (Pearson’s χ2
4= 18, P=0.001; LR=16.88, P=0.002), but it was 

rather highly associated, using the field-specific data. Within high DSI habitats, oomycete 

isolates represented 45.5%, as opposite of 54.5% of Fusarium isolates (Figure 3.4B). 

Conversely, at intermediate DSI environments, oomycetes structured 25.2%, while the 

majority of remaining isolates, more precisely 72.3% of the total pathogenic genera, 

corresponded to Fusarium species. Relatively, the lowest number of primary pathogenic 

isolates was recovered from the lowest DSI habitat (Figure 3.4B). Across intermediate and 

low DSI classes, it was not evident that the corresponding frequencies between oomycete 

and Fusarium groups were considerably different (25.2 and 72.3% versus 24.1 and 65.5%, 

for oomycete and Fusarium at intermediate and low DSI, respectively). 

The decomposition of oomycete group between DSI classes demonstrated 

(Pearson’s χ2
2= 0.28, P=0.8683; LR=0.29, P=0.8638) that frequencies of Phytophthora 

spp. and Pythium spp. were at least its core not associated with discrepancies in seedling 

root rot (Figure 3.4C). Also, the relative frequency contemplating Pythium spp. seemed to 
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be low (<4%) across environments, except in Mead 2017 and Tekamah 2018, where it 

structured 7.3 and 13.7% of the recovered collection. Accounting exclusively for primary 

pathogenic genera, Pythium spp. represented 8.8, 22.2, 17.7, 5.2, 6.8, and 4.6% of isolates 

collected at Lincoln, Mead, Tekamah, Arizona, Mead, and Bruno, respectively. 

Contrastingly, Phytophthora was more geographically confined with presence detected in 

only half of the environments. However, when Phytophthora spp. were present, they 

constituted a relatively larger portion of isolated with 17.2, 27.8, and 44.1% with the 

primary pathogenic genera at Mead, Tekamah, and Bruno in 2018, respectively. 

Despite similarities on DSI mean values, the variation on recovery within 

intermediate environments (Lincoln and Mead in 2017, and Arizona and Bruno in 2018) 

was significantly different for Fusarium, Phytophthora and Pythium (Pearson’s χ2
6= 45.95, 

P<0.0001; LR=50.12, P<0.0001). The partitioning of calculated Likelihood ratio 

coefficient suggested that community composition was unique at Bruno amongst other 

intermediate DSI environments for the variation of Fusarium and oomycete frequencies 

(Pearson’s χ2
1= 18.50, P<0.0001, LR=18.06, P<0.0001), and among the primary 

pathogenic oomycete group (Pearson’s χ2
1= 23.37, P<0.0001; LR=28.17, P<0.0001). 

Exclusively for Lincoln and Mead in 2017 and Arizona in 2018, weak evidence of 

community richness was found amongst major root rot soybean pathogenic genera 

(Pearson’s χ2
2= 4.08, P=0.1297; LR=3.89, P=0.1427) (Figure 3.4D). Rhizoctonia was the 

least predominant pathogenic genus recovered from symptomatic roots in this multi-

environment study, comprising 1.5% of the total collection (Table 3.4). 

Plant population. Across all experimental units, plant population estimates taken at 

emergence varied between 101,180 to 299,236 plants ha–1 and 53,819 to 273,403 plants ha–
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1 in 2017 and 2018, respectively. No effect of the PRE herbicides was detected on any of 

the three developmental growth stages evaluated (Table 3.2). In 2017, P22T41R2 had 

consistently higher stands (F1, 69=48.878, P<0.0001) compared to P28T08R, which 

performed the poorest in Lincoln at emergence. Similarly, PRE herbicide had no 

significant effect on plant population assessed at V1-V2 growth stages. Significant 

differences were detected (F3, 63=66.851, P<0.0001) between environments where Arizona 

had the highest stands (214,134 plants ha–1), followed by Mead (184,511 plants ha–1), and 

Tekamah and Bruno with the lowest mean population (92,749 and 119,184 plants ha–1, 

respectively). Final plant population estimates varied from 146,389 to 290,625 plants ha–1, 

and 49,513 to 230,347 plants ha–1 in 2017 and 2018, respectively. In 2017, the cultivar 

P22T41R2 had statistically superior final stands than P28T08R (F1, 69=74.454, P<0.0001). 

No significant differences between PRE herbicides or modes of action contrasts were 

detected in the study (Table 3.2 and 3.7). Factors that accounted for the greatest 

manageable variability on population estimates were cultivars and environments in 2017, 

and environments in 2018. Due to unforeseen circumstances, R8 stand count was not 

collected in Arizona.  

Fresh root and shoot weight and ratio. No interactions were present (P≤0.05) between 

PRE herbicides, cultivars, and environments. With the exception of Mead and Bruno in 

2018, no significant differences were observed between PRE herbicides on soybean fresh 

root weight across environments (Table 3.8). At Mead in 2018, sulfentrazone reduced fresh 

root weight by 1.75g on average when compared to metribuzin sprayed treatment. At 

Bruno, PRE herbicide application reduced fresh shoot and root weight by 1.95 and 1.15 g 

on average, respectively, when compared to non-treated control (Table 3.8). No significant 
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differences between treatments were detected for the ratio between shoot and root fresh 

weight. 

Seedling vigor and plant height. Soybean injury was minimal in the study and there were 

no statistically significant differences between PRE herbicide treatments on seedling vigor 

(Table 3.9). In 2017, the cultivar P22T41R2 had superior seedling vigor scores than 

P28T08R (F1, 69=5.621, P=0.0205). In 2018, a significant effect of environment was 

detected (F3, 63=21.836, P<0.0001) with Mead and Arizona having the highest and 

Tekamah and Bruno the poorest aboveground seedling development.  

Plant heights collected at two distinct phenological stages (V1-V2 and V6-R2) 

indicated no significant differences between PRE herbicides in the study (Table 3.9). 

Alternatively, the cultivar P28T08R had significantly higher plant heights than P22T41R2 

in both early- and mid-season plant height assessments (Table 3.9). 

Yield. In 2017, grain yield ranged from 3,409.1 to 5,685.8 kg ha–1 but no differences were 

attributed to the effect of PRE herbicides (F5, 69=1.409, P=0.2317; Table 3.10). A positive 

yield difference of 678.5 kg ha–1 occurred for Mead in comparison to Lincoln (F1, 

69=133.360, P<0.0001). In 2018, grain yield varied between 1372.8 to 5,058.3 kg ha–1 

across experimental units but no yield penalty was detected as result of PRE herbicide 

application (Table 3.2 and 3.10). Soybeans planted in Mead had greater yields than in 

Tekamah and Bruno by 1,656.1 and 1465.1 kg ha–1 on average. At Bruno, PPO-inhibiting 

herbicides yielded more than non-PPO herbicides by 322.2 kg ha–1 (t-value15=2.240, 

P=0.0406). Unforeseen circumstances impeded yield data to be collected in Arizona.  
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3.4. Discussion 

The present multi-environment field study provides additional insights into the 

effect of PRE herbicides on early-season disease development in late-planted soybeans. 

For most of the components evaluated, results are not supportive of the hypothesis that 

PRE herbicides consistently interact with the occurrence of seedling diseases under field 

conditions. Noticeable differences in seedling root rot severity existed between 

environments and were related to field-specific elements including the biological profile of 

organisms associated with symptomatic roots. Despite variation on growing conditions 

across environments, PRE herbicides did not result in higher root rot when compared to the 

non-treated control. These results corroborate with findings by Bauske and Kirby (1992) 

and Barlow et al. (2018) but contradict Bradley et al. (2002), Harikrishnan and Yang 

(2002), and Carson et al. (1991) which showed enhanced seedling root rot severity as 

result of the application of PRE herbicides on soybean under field conditions.  

Minimal PRE herbicide injury was observed on newly emerging seedlings 

throughout the study. Differences in seedling vigor, height, and population density were 

rather attributed to cultivars and environments. There is sufficient evidence in the literature 

that herbicide injury can vary depending upon cultivar sensitivity and site characteristics 

including soil granulometry, organic matter, herbicide adsorptive behavior, and available 

moisture (Gannon et al. 2014; Miller et al. 2012; Stewart et al. 2012; Taylor-Lovell et al. 

2001). We assume that the deleterious effects often associated to PRE herbicide 

application may have been minimized with to the use of compatible herbicide rates and the 

prevalence of warmer temperatures that offered satisfactory conditions for seedling 

emergence and development during the study (Johnson et al. 1989; Poston et al. 2008). In 
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2017, limited moisture during emergence may have alleviated herbicide injury but 

empirical evidence of differing weed emergence among experimental plots suggested PRE 

herbicides were somewhat active in the soil in that year. Contrastingly, in 2018, 

environments experienced moderate to high levels of precipitation at emergence (Figure 

3.2) but the majority of PRE injury consisted of mild stunting rather than characteristic 

cotyledon and hypocotyl necrosis, occasionally associated with PPO-inhibiting herbicides 

(Hager 2014). The influence of prolonged cooler soil temperatures was not investigated 

due to unexpected warmer conditions following planting at all locations during this 2-year 

field study. Aside from these factors, we also observed substantial variability on plant 

population estimates taken at the Tekamah site due to widespread seed rot and damping-off 

related to seedling pathogens and at Bruno site due to soil crusting that limited uniform 

seedling emergence until 15 days after planting. 

Results from the present investigation provided evidence about the role of 

community composition on the development of early-season disease epidemics in 

soybeans and confirms the predominance of Fusarium, Pythium, and Phytophthora species 

as important regional contributors to seedling root rot in alluvial soils of eastern Nebraska. 

A range of organisms representing antagonistic (e.g. Trichoderma spp.), secondary 

pathogenic (e.g. Alternaria spp.), and other ecologic groups (e.g. Aspergillus, Mortierella) 

were isolated from soybean symptomatic roots. In this study, however, efforts were 

directed towards identification of Fusarium, Pythium, Phytophthora, and Rhizoctonia 

which have historically occupied a position of epidemiological concern among root-

rooting seedling pathogens in Nebraska (Giesler et al. 2012; Parikh et al. 2018). 

Qualitatively, surveys accessing species diversity associated with diseased soybean 
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seedlings throughout regions of North Central U.S. corroborate with results of genera 

composition in this study, although, major quantitative differences exist. Rizvi and Yang 

(1996) reported that species of Pythium and Phytophthora were cumulatively the 

predominant pathogens with 60 and 56% of the diseased seedlings in Iowa in 1993 and 

1994, respectively, while Fusarium spp. represented only 12 and 14% of the total number. 

In the present study, Fusarium spp. were the dominant genus among common pathogenic 

genera with frequency varying between 23 to 43% of isolates, whereas Pythium spp., 

although recovered from all surveyed environments, represented only 2.5 to 13.7% of the 

total isolates. Given the ubiquitous presence of Fusarium in soil and ability to survive as 

plant rhizosphere inhabitants and secondary invaders, some overrepresentation could be 

anticipated (Summerell et al. 2003). However, given the field history and despite regular 

occurrence, it is unknown why the incidence of Pythium spp. was relatively low in the 

study. It is possible that higher temperatures prevailing at soybean emergence might have 

reduced the fitness of some Pythium spp. and in contrast, favored the occurrence of 

Phytophthora spp. (Rojas-Flechas et al. 2017; Thomson et al. 1971). In this study 

Phytophthora spp. occurrence was geographically clustered with presence detected in only 

half of the environments. However, when present, Phytophthora spp. structured a large 

percentage (>20%) of total primary group isolates, with the exception of one location with 

the lowest mean root rot. Overall, results from the present investigation suggest increased 

problems during seedling establishment and development in alluvial fields with the 

predominance of Pythium and Phytophthora species as opposite of Fusarium and 

Rhizoctonia. As far as other common seedling pathogens, Rizvi and Yang (1996) showed 

that R. solani recovery reached nearly a quarter of isolates collected from diseased 
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seedlings in Iowa during 1993 and 1994. Conversely, in the present study, the isolation of 

Rhizoctonia was low relative to other common seedling pathogens, possibly because the 

targeted selection of environments for oomycete damping-off did not overlap with areas 

where Rhizoctonia root and hypocotyl rot was endemic.  

Attempts to determine the pathogenicity of isolates collected from this study were 

not performed, although evidence exists that not all isolates belonging to pathogenic 

genera necessarily cause disease (Coffua et al. 2016; Kirkpatrick et al. 2006). We also do 

not eliminate that selection of root material processed, isolation technique, isolate-media 

adaptability, and the presence of fast-growing species outcompeting others, amongst 

numerous other variants could have influenced overall community structure recorded this 

study. Future studies should take advantage of more robust detection techniques, such as 

molecular identification, as it easily allows for species identification, quantification, and 

detection of non-culturable organisms (McCartney et al. 2003) that may be related to 

herbicide-induced disease susceptibility. 

Results from this study suggest that chlorimuron-ethyl, metribuzin, saflufenacil, 

sulfentrazone, and flumioxazin applied pre-emergently do not consistently interact with 

seedling disease incidence in late-planted soybeans. These findings, albeit speculatively, 

suggest minimum to no significant interaction between PRE herbicide mixes and the 

occurrence soybean seedling diseases under field conditions. This observation is important 

because PRE herbicide mixes, particularly those containing ALS- and PPO-inhibiting 

herbicides, are common in weed management programs in Nebraska (Sarangi and Jhala 

2018). It is important to emphasize, however, that the majority of the isolates collected in 

this study were composed of species of Fusarium, Phytophthora, and to some extent 



96 
 

 

 

Pythium, as opposed to Rhizoctonia, which presumably limited the comprehension of the 

synergistic effects between PRE herbicides and this pathogen, despite conflicting literature 

(Bauske and Kirby 1992; Bradley et al. 2002; Espinoza et al. 1968; Harikrishnan and Yang 

2002; Montazeri and Hamdollah-Zadeh 2005; Wiley and Ross 1974). Moreover, there is 

evidence that synergism between soil-applied PRE herbicides and seedling diseases is 

inoculum-dependent (Altman and Campbell 1977a; Carson et al. 1991; Chandler and 

Santelmann 1968; Harikrishnan and Yang 2002), but in this study experiments were only 

carried out in naturally-infested soil and no attempts to quantify pathogen inoculum in soil 

were performed. Notably, the effect of PPO-inhibiting vs. non-PPO herbicides on DSI was 

only detected in the highest seedling disease incidence environment, but inherited 

difficulties related to the variability of environmental conditions in which field trials are 

conducted did not allow for further ratification. Nevertheless, PRE herbicides did not result 

in higher root rot or damping-off when compared to a non-treated control, despite the 

amplitude of edaphic, climatic, and biological conditions existing in environments studied.  

In Nebraska, significant soybean acreage occurs in the stream valleys formed in 

alluvium or a mixture of alluvium and colluvium. These soils, usually fertile, have dark 

surface horizons in which clay and silt compose a large percentage of soil granulometry. 

Under extended soil saturation, these fine-textured soils provide adequate conditions for 

the development of seedling diseases in soybeans (Broders et al. 2009; Duniway 1983; 

Workneh et al. 1999). The lack of a clear relationship between PRE herbicides and 

seedling diseases is favorable, given the widely adoption of PRE herbicides and limited 

curative treatment options for seedling disease control. These results are inconclusive 

about potential herbicide interactions under cool soil temperatures which also increase 
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PRE herbicide injury risk (Hager 2014; Jhala 2017). In the Midwest U.S., as early-

plantings become more common, the incidence of seedling diseases such as Pythium seed 

and root rot may increase (Rod et al. 2018), therefore, further studies would be necessary 

to characterize responses in these scenarios and finalize management recommendations. 

Overall, results from this study are support the use of PRE herbicides as part of the 

integrated weed management program in alluvial soils of eastern Nebraska and minimize 

concerns regarding potential herbicide interactions in late-planted soybeans. 
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Table 3. 1. Description of experimental sites and activities performedx in Nebraska in 2017 and 2018. 
 
 

   Soil parameters    Execution date 

    Sand Silt Clay  O.M.     Root rot  Stand counts  

Year Environment 
GPS  

coordinates 
Typey (%) g kg-1 pH NWSz Tillage Planting V1-V2 

 
VE-VC V1-V2 R8 Harvest 

2017 Lincoln 
40.861614, 
-96.595594 

Kennebec silt loam 
0-1% slope 

17 51 32  3 6.9 1-km No-till 31 May 20 Jun 
 

10 Jun 20 Jun 26 Sep 1 Nov 

 Mead 
41.155339, 
-96.422101 

Filbert silt loam 
0-1% slope 

15 47 38  2.4 5.9 9.4-km Disked 1 Jun 20 Jun 
 

10 Jun 20 Jun 21 Sep 6 Nov 

2018 Tekamah 
41.755558, 
-96.176062 

Luton silty clay 
0-1% slopes 

17 16 67  5.4 6.2 1-km No-till 18 May 5 Jun 
 
31 May 5 Jun 12 Oct 1 Nov 

 Arizona 
41.792885, 
-96.139346 

Haynie silt loam 
0-2% slopes 

19 36 46  3.4 7.6 7.8-km No-till 18 May 5 Jun 
 
31 May 5 Jun - - 

 Mead 
41.182523, 
-96.459948 

Filbert silt loam, 
0-1% slopes 

17 48 35  4.7 6.8 5.7-km No-till 6 Jun 22 Jun 
 

13 Jun 29 Jun 19 Oct Oct 29 

 Bruno 
41.293432, 
-96.916723 

Zook silty clay loam 
0-2% slopes 

14 53 33  3.2 6.8 10-km No-till 6 Jun 27 Jun 
 

- 29 Jun 22 Oct Oct 29 

 
x “-” indicates assessments were not performed. VE-VC (emergence to unifoliate), V1-V2 (first to second trifoliate), and R8 (full maturity) growth stages according to Fehr et al. (1971).  
y Soil data was obtained from Soil Survey of USDA Natural Resources Conservation Service (https://websoilsurvey.sc.egov.usda.gov). 
z NWS: nearest public weather station. 
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Table 3. 2. Probability valuesx from analysis of variance using combined data by year for disease severity index (DSI), population 
density, and grain yield in Nebraska. 
 
 

      Plant populationy     

  DSI  VE-VC  V1-V2  R8  Yield 

Year Sourcesz df F value P>F  df F value P>F  df F value P>F  df F value P>F  df F value P>F 

2017 Herbicides (H) 5 0.850 0.5186  5 0.445 0.8148  5 0.377 0.8626  5 1.559 0.1831  5 1.409 0.2317 

 Cultivars (C) 1 0.834 0.3640  1 48.878 <0.0001  1 63.336 <0.0001  1 74.454 <0.0001  1 2.715 0.1039 

 Environments (E) 1 2.039 0.1577  1 18.663 <0.0001  1 17.681 <0.0001  1 1.635 0.2053  1 133.360 <0.0001 

 H x C 5 0.827 0.5344  1 0.399 0.8477  1 0.484 0.7864  1 0.385 0.8570  1 0.532 0.7510 

 H x E 5 0.255 0.9357  5 0.387 0.8555  5 0.546 0.7403  5 0.619 0.6852  5 0.351 0.8795 

 C x E 1 0.011 0.9165  1 4.754 0.0326  1 5.606 0.0207  1 6.134 0.0157  1 0.749 0.3898 

 H x C x E 5 1.456 0.2156  5 1.318 0.2666  5 0.928 0.4677  5 0.633 0.6748  5 0.405 0.8437 

                     

2018 Herbicides 5 1.262 0.2910  5 1.089 0.3793  5 0.788 0.5617  5 0.803 0.5529  5 0.759 0.5836 

 Environments 3 21.357 <0.0001  2 43.271 <0.0001  3 66.851 <0.0001  2 73.973 <0.0001  2 121.079 <0.0001 

 H x E 15 2.355 0.009  10 1.669 0.1180  15 1.177 0.3127  10 1.949 0.0622  10 1.338 0.2392 

 
x Bold indicates statistical significance (P≤0.05).  
y VE-VC (emergence to unifoliate growth stage), V1-V2 (first to second trifoliate), and R8 (full maturity) growth stages according to Fehr et al. (1971). 
z Herbicides: Chlorimuron-ethyl at 44 g a.i. ha–1, metribuzin at 560 g a.i. ha–1, saflufenacil at 22 g a.i. ha–1, sulfentrazone at 290 g a.i. ha–1, and flumioxazin at 90 g a.i. ha–1. Cultivars: P28T08R and 

P22T41R2 in 2017, and AG27x8 in 2018. Environments: Lincoln and Mead in 2017 and Tekamah, Arizona, Mead, and Bruno in 2018. 
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Table 3. 3. Least-square means and probability valuesx of soil-applied pre-emergence herbicides on soybean disease severity index 
(DSI) estimated at V1-V2 growth stages at six environments in Nebraska. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x Bold indicates statistical significance (P≤0.05) and “-” indicates non-existing factors. 
y Chlorimuron-ethyl at 44 g a.i. ha–1, metribuzin at 560 g a.i. ha–1, saflufenacil at 22 g a.i. ha–1, sulfentrazone at 290 g a.i. ha–1, and flumioxazin at 90 g a.i. ha–1. Cultivars: P28T08R and P22T41R2 in 

2017, and AG27x8 in 2018. 
z A priori orthogonal contrasts: PRE vs. Control (difference between all pre-emergence herbicides and non-treated control), PPO vs. non-PPO (diff. between saflufenacil + sulfentrazone + flumioxazin 

and chlorimuron-ethyl + metribuzin), and PSII vs. ALS (diff. between metribuzin and chlorimuron-ethyl). 

 

 

 DSI (%) 

 2017  2018 

PRE herbicide programy Lincoln Mead  Tekamah Arizona Mead Bruno 

Non-treated control 31.8 35.0  41.3 31.6 27.9 30.4 

Chlorimuron-ethyl 34.7 36.6  38.0 31.6 30.0 35.8 

Metribuzin 34.8 36.6  31.2 37.0 27.9 33.7 

Saflufenacil 31.6 34.8  52.6 32.9 22.9 31.6 

Sulfentrazone 24.2 34.6  40.4 30.4 25.8 38.3 

Flumioxazin 36.7 36.1  42.9 33.9 32.0 37.9 

Herbicide P>F 0.5749 0.9268  0.1223 0.4475 0.3284 0.3549 

Cultivar P>F 0.4895 0.5342  - - - - 

H x C P>F 0.5250 0.2176  - - - - 

A priori contrastsz        

PRE vs. Control  2.6 0.8  -0.3 1.5 -0.1 5.0 

P>F 0.2794 0.6936  0.9509 0.5395 0.9579 0.1399 

PPO vs. non-PPO  -0.5 -1.4  10.6 -1.9 -2.0 1.1 

P>F 0.7764 0.3907  0.0225 0.3733 0.4487 0.6702 

PSII vs. ALS <0.1 <0.1  -6.7 5.4 -2.0 -2.0 

P>F 0.9891 0.999  0.2739 0.1094 0.6110 0.6279 
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Table 3. 4. Data summary of disease severity index (DSI) and the number of isolates obtained from symptomatic soybean roots at six 
environments in Nebraska. 

  

 2017  2018 

Disease (%), collection (n) Lincoln  Mead  Tekamah  Arizona  Mead  Bruno 

Parameter by environment            

DSIy 34 ±6.5  35.6 ±5.5  41.7 ±8.5  32.9 ±4.4  27.7 ±5.9  34.6 ±5.8 

Isolates/collectionz            

Fusarium spp. 31  19  43  17  19  22 

Phytophthora spp. 0  0  22  0  5  19 

Pythium spp. 3  6  14  1  2  2 

Rhizoctonia spp. 0  2  0  1  3  0 

Others 44  55  23  21  26  17 

 
y Least-square means ± standard deviation for disease severity index based on a 0-to-10 scale. DSI= ∑(severity rating x roots per rating) x 100/ (Total roots x 10). 
z Sum of the within-field collection of isolates obtained from symptomatic seedling root system plated onto four different media.  
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Table 3. 5. Least-square means and probability valuesx of soil-applied pre-emergence herbicides on soybean population density 
estimated at VE-VC growth stages at six environments in Nebraska. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x Bold indicates statistical significance (P≤0.05), “-” indicates non-existing factors elements, and “…” indicates data was not collected. Seeding rate: 308,881 plants ha–1. 
y Herbicide program: chlorimuron-ethyl at 44 g a.i. ha–1, metribuzin at 560 g a.i. ha–1, saflufenacil at 22 g a.i. ha–1, sulfentrazone at 290 g a.i. ha–1, and flumioxazin at 90 g a.i. ha–1. Cultivars: P28T08R 

and P22T41R2 in 2017, and AG27x8 in 2018. 
z A priori orthogonal contrasts: PRE vs. Control (difference between all pre-emergence herbicides and non-treated control), PPO vs. non-PPO (diff. between saflufenacil + sulfentrazone + flumioxazin 

and chlorimuron-ethyl + metribuzin), and PSII vs. ALS (diff. between metribuzin and chlorimuron-ethyl). 

 

 VE-VC population (plants ha–1) 

 2017  2018 

PRE herbicide programy Lincoln Mead  Tekamah Arizona Mead Bruno 

Non-treated control 207,474 223,620  143,302 211,511 208,281 … 

Chlorimuron-ethyl 210,434 229,809  106,704 186,754 222,812 … 

Metribuzin 191,328 223,081  147,465 190,521 212,587 … 

Saflufenacil 192,405 236,806  107,009 207,205 223,351 … 

Sulfentrazone 190,521 221,198  176,325 238,095 199,132 … 

Flumioxazin 199,670 227,925  110,868 222,238 223,889 … 

Herbicide P>F 0.8325 0.8451  0.1740 0.4329 0.7316 … 

Cultivar P>F <0.0001 <0.0001  - - - - 

H x C P>F 0.5193 0.5362  - - - - 

A priori contrastsz        

Control vs. PRE -10,602 4,144  -13,627 -2,548 8,073 … 

P>F 0.4757 0.6800  0.5560 0.8984 0.5951 … 

Non-PPO vs. PPO -6,682 2,197  4,316 33,875 -2,242 … 

P>F 0.5890 0.7928  0.8189 0.0609 0.8588 … 

ALS vs. PSII -19,105 -6,727  40,760 3,767 -10,225 … 

P>F 0.3212 0.6042  0.1628 0.8830 0.6020 … 
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Table 3. 6. Least-square means and probability valuesx of soil-applied pre-emergence herbicides on soybean population density 
estimated at V1-V2 growth stages at six environments in Nebraska. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x Bold indicates statistical significance (P≤0.05) and “-” indicates non-existing factors. Seeding rate: 308,881 plants ha-1. 
y Herbicide program: chlorimuron-ethyl at 44 g a.i. ha–1, metribuzin at 560 g a.i. ha–1, saflufenacil at 22 g a.i. ha–1, sulfentrazone at 290 g a.i. ha–1, and flumioxazin at 90 g a.i. ha–1. Cultivars: P28T08R 

and P22T41R2 in 2017, and AG27x8 in 2018. 
z A priori orthogonal contrasts: PRE vs. Control (difference between all pre-emergence herbicides and non-treated control), PPO vs. non-PPO (diff. between saflufenacil + sulfentrazone + flumioxazin 

and chlorimuron-ethyl + metribuzin), and PSII vs. ALS (diff. between metribuzin and chlorimuron-ethyl). 

 

 V1-V2 population (plants ha–1) 

 2017  2018 

PRE herbicide programy Lincoln Mead  Tekamah Arizona Mead Bruno 

Non-treated control 236,536 250,260  125,250 221,198 186,215 88,802 

Chlorimuron-ethyl 245,955 261,832  98,699 196,441 184,601 90,955 

Metribuzin 227,118 262,101  148,542 200,208 189,982 83,958 

Saflufenacil 230,078 256,719  84,131 202,361 185,139 100,642 

Sulfentrazone 225,773 262,101  152,573 223,180 183,524 75,885 

Flumioxazin 234,922 250,260  104,410 238,879 177,604 116,250 

Herbicide P>F 0.8369 0.7596  0.2867 0.8051 0.9910 0.2085 

Cultivar P>F <0.0001 <0.0001  - - - - 

H x C P>F 0.7092 0.5017  - - - - 

A priori contrastsz        

PRE vs. Control  -3,767 8,342  -7,579 -8,983 -2,045 4,736 

P>F 0.7692 0.3478  0.7667 0.7413 0.8869 0.6998 

PPO vs. non-PPO  -6,278 -5,606  -9,915 23,148 -5,202 10,136 

P>F 0.5581 0.4478  0.6373 0.3238 0.6652 0.3287 

PSII vs. ALS -18,836 269  49,842 3,767 5,381 -6,996 

P>F 0.2601 0.9812  0.1282 0.9139 0.7722 0.6593 



 

 

1
1
1

Table 3. 7. Least-square means and probability valuesx of soil-applied pre-emergence herbicides on soybean population density 
estimated at R8 growth stage at six environments in Nebraska. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x Bold indicates statistical significance (P≤0.05), “-” indicates non-existing factors elements, and “…” indicates data was not collected. Seeding rate: 308,881 plants ha–1. 
y Herbicide program: chlorimuron-ethyl at 44 g a.i. ha–1, metribuzin at 560 g a.i. ha–1, saflufenacil at 22 g a.i. ha–1, sulfentrazone at 290 g a.i. ha–1, and flumioxazin at 90 g a.i. ha–1. Cultivars: P28T08R 

and P22T41R2 in 2017, and AG27x8 in 2018. 
z A priori orthogonal contrasts: PRE vs. Control (difference between all pre-emergence herbicides and non-treated control), PPO vs. non-PPO (diff. between saflufenacil + sulfentrazone + flumioxazin 

and chlorimuron-ethyl + metribuzin), and PSII vs. ALS (diff. between metribuzin and chlorimuron-ethyl). 

 

 R8 population (plants ha–1) 

 2017  2018 

PRE herbicide programy Lincoln Mead  Tekamah Arizona Mead Bruno 

Non-treated control 211,241 232,231  135,825 … 208,281 94,184 

Chlorimuron-ethyl 229,271 241,918  106,403 … 222,812 104,948 

Metribuzin 219,314 223,351  139,931 … 212,587 111,944 

Saflufenacil 224,427 222,543  107,933 … 223,351 99,028 

Sulfentrazone 211,511 219,583  158,585 … 199,132 86,649 

Flumioxazin 216,623 211,241  95,798 … 223,889 123,785 

Herbicide P>F 0.3814 0.3877  0.2263 … 0.3575 0.4323 

Cultivar P>F <0.0001 <0.0001  - - - - 

H x C P>F 0.8529 0.7283  - - - - 

A priori contrastsz        

PRE vs. Control  8,987 -8,503  -14,094 … 12,486 11,087 

P>F 0.2391 0.4530  0.5296 … 0.3449 0.4484 

PPO vs. non-PPO  -6,772 -14,845  -2,394 … -269 -5,292 

P>F 0.2862 0.1211  0.8954 … 0.9802 0.6621 

PSII vs. ALS -9,956 -18,567  33,527 … 11,302 6,997 

P>F 0.3111 0.2079  0.2291 … 0.5045 0.7089 
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Table 3. 8. Least-square means and probability valuesu of soil-applied pre-emergence herbicides on soybean fresh root and shoot 
weight and ratio estimated from seedlings rated for root rot at six environments in Nebraska. 

 
 

 2017  2018 

 Lincoln  Mead  Tekamah  Arizona  Mead  Bruno 

PRE herbicide programv RWw SWx RAy  RW SW RA  RW SW RA  RW SW RA  RW SW RA  RW SW RA 

Non-treated control 2.75 11.87 .23  4 12.37 .32  1.79 4.16 .50  3 7 .44  5.75 ab … …  8.75 10.25 .85 

Chlorimuron 3.5 10.37 .33  4.37 13.12 .34  1.52 3.69 .41  3.25 7.5 .44  5.25 ab … …  8.25 8.25 1.02 

Metribuzin 3 11 .27  4 12.12 .33  2.75 4.5 .62  3.5 7.25 .48  6.75 a … …  7.5 8.75 .87 

Saflufenacil 3.25 10.62 .30  4 12.37 .34  2.21 4.32 .51  3.5 6 .59  6.25 ab … …  7.75 9.50 .82 

Sulfentrazone 2.62 10 .28  4 12.87 .32  2.34 4.05 .57  2.96 7.33 .40  5 b … …  7.25 7.75 .94 

Flumioxazin 2.62 11.25 .24  3.37 12 .28  1.75 4 .43  3.71 7.64 .52  5.25 ab … …  7.25 7.25 1.03 

Herbicides P>F 0.5399 0.7583 0.2805  0.1848 0.9130 0.5644  0.6556 0.9236 0.8748  0.7219 0.6471 0.4587  0.0115 … …  0.1514 0.0758 0.1023 

Cultivar P>F 0.7979 0.9563 0.4678  0.2372 0.6599 0.8750  - - -  - - -  - - -  - - - 

H x C P>F 0.9281 0.2957 0.3720  0.4527 0.9130 0.3391  - - -  - - -  - - -  - - - 

                        

A priori contrastsz                        

PRE vs. Control 0.25 -1.22 0.056  -0.05 0.12 <0.0001  0.32 -0.04 -0.008  0.38 0.14 0.040  -0.05 … …  -1.15 -1.95 0.008 

P>F 0.5676 0.2354 0.1341  0.8587 0.8881 0.9770  0.6333 0.9427 0.9611  0.3626 0.8555 0.5812  0.8898 … …  0.0287 0.0229 0.2427 

PPO vs. non-PPO -0.41 -0.06 -0.029  -0.39 -0.20 -0.025  -0.03 0.02 -0.012  0.01 -0.38 0.044  -0.50 … …  -0.45 -0.33 -0.017 

P>F 0.2565 0.9415 0.3380  0.0977 0.7784 0.3214  0.9497 0.9580 0.9291  0.9588 0.5756 0.4779  0.1114 … …  0.2652 0.6109 0.7505 

PSII vs. ALS -0.50 0.62 -0.056  -0.37 -1.00 -0.014  1.22 0.80 0.208  0.25 -0.25 0.042  1.50 … …  -0.75 0.50 -0.156 

P>F 0.3776 0.6361 0.2373  0.3048 0.3858 0.7244  0.1552 0.3184 0.3115  0.6421 0.8078 0.6551  0.0051 … …  0.2404 0.6222 0.0864 

 
u Bold indicates statistical significance (P≤0.05), “-” indicates non-existing factors elements, and “…” indicates data was not collected. Common letters in the same column were separated by pairwise 

comparisons using Bonferroni’s adjustment. 
v Herbicide program: chlorimuron-ethyl at 44 g a.i. ha–1, metribuzin at 560 g a.i. ha–1, saflufenacil at 22 g a.i. ha–1, sulfentrazone at 290 g a.i. ha–1, and flumioxazin at 90 g a.i. ha–1. Cultivars: P28T08R 

and P22T41R2 in 2017, and AG27x8 in 2018. 
w Root weight (g). 
x Shoot weight (g). 
y Ratio (Root/Shoot). 
z A priori orthogonal contrasts: PRE vs. Control (difference between all pre-emergence herbicides and non-treated control), PPO vs. non-PPO (diff. between saflufenacil + sulfentrazone + flumioxazin 

and chlorimuron-ethyl + metribuzin), and PSII vs. ALS (diff. between metribuzin and chlorimuron-ethyl). 
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Table 3. 9. Least-square meansx of soil-applied pre-emergence herbicides on seedling 
vigor and plant height at six environments in Nebraska in 2017 and 2018. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x Bold indicates statistical significance (P≤0.05). 
y Herbicide program: chlorimuron-ethyl at 44 g a.i. ha–1, metribuzin at 560 g a.i. ha–1, saflufenacil at 22 g a.i. ha–1, sulfentrazone at 290 g 

a.i. ha–1, and flumioxazin at 90 g a.i. ha–1. Cultivars: P28T08R and P22T41R2 in 2017, and AG27x8 in 2018. 
z Overall seedling vigor estimated on a 0-to-10 scale with 0 being the worst and 10 the best.  

   Seedling vigorz (0-10) 
 Plant height (cm) 

Year Environment PRE herbicide programy VE-VC  V1-V2 V6-R2 

2017 Lincoln Non-treated control 9.1  7.09 18.32 

  Chlorimuron 8.9  6.76 17.35 

  Metribuzin 8.9  7.36 19.57 

  Saflufenacil 9  7.39 19.09 

  Sulfentrazone 8.8  7.21 18.66 

  Flumioxazin 9.3  7.45 18.99 

  Herbicide P>F 0.8605  0.2845 0.2964 

  Cultivar P>F 0.0511  0.0917 <0.0001 

  H x C P>F 0.7250  0.4129 0.7551 

 Mead Non-treated control 9.4  6.8 20.60 

  Chlorimuron 9.3  6.8 20.70 

  Metribuzin 9.4  6.85 20 

  Saflufenacil 9.1  6.72 19.59 

  Sulfentrazone 9.2  6.58 20.21 

  Flumioxazin 9  6.49 19.83 

  Herbicide P>F 0.7440  0.3711 0.5017 

  Cultivar P>F 0.2416  <0.0001 <0.0001 

  H x C P>F 0.7608  0.0297 0.9277 

2018 Tekamah Non-treated control 7  5.64 17.55 

  Chlorimuron 7  5.33 16.37 

  Metribuzin 8  5.48 18.14 

  Saflufenacil 5.2  4.73 16.62 

  Sulfentrazone 7.8  5.52 18.48 

  Flumioxazin 6.2  5.18 17.90 

  Herbicide P>F 0.1918  0.3458 0.8406 

 Arizona Non-treated control 7.5  5.43 37.85 

  Chlorimuron 7.5  5.71 33.44 

  Metribuzin 8  5.69 39.36 

  Saflufenacil 7.7  5.65 38.38 

  Sulfentrazone 9  5.01 40.45 

  Flumioxazin 8.2  5.77 38.80 

  Herbicide P>F 0.6762  0.4016 0.3882 

 Mead Non-treated control 8.8  10.15 20.08 

  Chlorimuron 9.4  10.57 21.03 

  Metribuzin 8.7  10.44 20.41 

  Saflufenacil 8.3  11.64 19.72 

  Sulfentrazone 8.6  10.99 18.70 

  Flumioxazin 8.7  10.46 21.05 

  Herbicide P>F 0.3261  0.5946 0.6576 

 Bruno Non-treated control 6.8  7.93 15.52 

  Chlorimuron 5.7  8.75 14.64 

  Metribuzin 6.1  7.64 15.57 

  Saflufenacil 6.6  8.08 15.49 

  Sulfentrazone 6.3  8.26 14.22 

  Flumioxazin 7.3  8.66 15.30 

  Herbicide P>F 0.3086  0.4083 0.2572 
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Table 3. 10. Least-square means and probability valuesx of soil-applied pre-emergence herbicides on soybean yield at six 
environments in Nebraska. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x Bold indicates statistical significance (P≤0.05), “-” indicates non-existing factors elements, and “…” indicates data was not collected. 
y Herbicide program: chlorimuron-ethyl at 44 g a.i. ha–1, metribuzin at 560 g a.i. ha–1, saflufenacil at 22 g a.i. ha–1, sulfentrazone at 290 g a.i. ha–1, and flumioxazin at 90 g a.i. ha–1. Cultivars: P28T08R 

and P22T41R2 in 2017, and AG27x8 in 2018. 
z A priori orthogonal contrasts: PRE vs. Control (difference between all pre-emergence herbicides and non-treated control), PPO vs. non-PPO (diff. between saflufenacil + sulfentrazone + flumioxazin 

and chlorimuron-ethyl + metribuzin), and PSII vs. ALS (diff. between metribuzin and chlorimuron-ethyl).

 Yield (kg ha–1) 

 2017  2018 

PRE herbicide programy Lincoln Mead  Tekamah Arizona Mead Bruno 

Non-treated control 3,755.3 4,433.4  2,773.5 … 3,978.7 2,893.1 

Chlorimuron-ethyl 3,850.6 4,590.2  2,208.2 … 4,233.4 2,401.1 

Metribuzin 3,745.3 4,558.7  2,842.3 … 4,184.2 2,606.9 

Saflufenacil 3,735.5 4,330.6  2,413.3 … 4,393.4 2,923.8 

Sulfentrazone 3,960.9 4,558.6  2,826.3 … 4,302.7 2,598.0 

Flumioxazin 3,771.3 4,418.2  2,430.0 … 4,078.0 2,957.1 

Herbicide P>F 0.3640 0.6081  0.4071 … 0.7508 0.1270 

Cultivar P>F 0.4993 0.1430  - - - - 

H x C P>F 0.6234 0.8860  - - - - 

A priori contrastsz        

PRE vs. Control  57.4 57.8  -229.4 … 259.6 -195.6 

P>F 0.5289 0.6640  0.4384 … 0.2694 0.2748 

PPO vs. non-PPO  24,6 -138.6  31.3 … 49.2 322.2 

P>F 0.7457 0.2164  0.8959 … 0.7977 0.0406 

PSII vs. ALS -105.3 -31.4  634.0 … -49.2 205.8 

P>F 0.3728 0.8547  0.0949 … 0.8683 0.3704 
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Figure 3. 1. Root rot severity scale used to rate soybean seedlings in field trials. Ratings range between 0-to-10, where 0= 
symptomless, 1= few small reddish to brown lesions, 0.1–0.2 cm in length, at base of hypocotyl or root tips, 2= progressing lesions, 
discoloration evident but many healthy roots present, 3= taproot intact but increasing color intensity, minor reduction in root mass, 
4=10-20% root mass reduction and discoloration and coalescing of localized root lesions, 5= root system discolored with increasingly 
lesions with 20-40% root mass reduction and hypocotyl lesions, 6= intensely reddish-brown discoloration and compromised mass 
reduction affecting roughly ½ of root volume, 7= mass reduction affecting roughly ¾ of root volume, taproot compromised, 8= further 
damage (not illustrated), and 9= remaining entire root blackened, and 10=dead seedling (not illustrated). 
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Figure 3. 2. Average soil temperature (lines) at 10-cm depth and daily accumulated 
precipitation (bars) from 15 days prior to planting to 30 days after planting (DAP) at six 
environments in Nebraska in 2017 and 2018. 
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Figure 3. 3. Mean differences between soil-applied pre-emergence herbicides modes of action on disease severity index (DSI) in 
Nebraska. When statistically significant (P≤0.05), positive differences indicate increasing DSI associated with A, PS II vs. ALS; B, pre-
emergence herbicides vs. non-treated control; and C, PPO-inhibiting herbicides vs. non-PPO herbicides. Error bars represent ± standard 
error of the contrast difference. 
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Figure 3. 4. Mosaic plots of the relative frequencies of isolates obtained from symptomatic 
seedling roots in Nebraska in 2017 and 2018. Pearson’s and Likelihood Ratio (LR) χ2 
coefficients and P-values were obtained from loglinear model fit to the data and orthogonal 
contrasts. Categorical factors varied between A, primary pathogenic genera (Fusarium, 
Phytophthora, Pythium and Rhizoctonia) by environment; B, primary pathogenic groups 
and disease severity index (DSI) classes; C, primary pathogenic oomycetes and DSI 
classes; D, Fusarium and oomycetes across three intermediate DSI environments; and E, 
primary pathogenic genera and Others (secondary pathogens, antagonistic, and 
contaminants) by environments. In total, 417 isolates were obtained from the six 
environments combined. 
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Table S. 3. 1. The frequency of primary filamentous genera isolated from symptomatic 
soybean roots by semi-selective media. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v Water agar 20 g L–1. 
w Water agar 20 g L–1 + streptomycin at 0.03 g L–1. 
x Corn meal agar 20 g L–1 + pentachloronitrobenzene 0.054 g L–1 + benomy 0.01 g L–1 + piramicin 0.005 g L–1. 
y PBNIC V8 agar containing benomyl 0.01 g L–1 + pentachloronitrobenzene 0.054 g. L–1 + neomycin sulfate 0.10 g L–1 + 

chloramphenicol 0.01 g L–1 + iprodione at 0.04 g. L–1 + rifampicin 0.01 g L–1 + hymexazole 0.02 g L–1. 
z Secondary pathogenic and non-pathogenic genera or contaminants. 

 
 
 
 
 
 
 
 

 2017  2018 

Composite genera Lincoln Mead  Tekamah Arizona Mead Bruno 

Fusarium spp.        

WAv 12 11  17 8 13 9 

WA+Sw 9 6  19 7 6 13 

CMAx 0 0  1 0 0 0 

PBNICy 10 2  6 2 0 0 

Phytophthora spp.     

WA 0 0  7 0 1 0 

WA+S 0 0  0 0 0 1 

CMA 0 0  5 0 0 9 

PBNIC 0 0  10 0 4 9 

Pythium spp.        

WA 0 3  1 1 1 1 

WA+S 0 0  1 0 0 0 

CMA 3 2  3 0 1 0 

PBNIC 0 1  9 0 0 1 

Rhizoctonia spp.        

WA 0 2  0 1 0 0 

WA+S 0 0  0 0 0 0 

CMA 0 0  0 0 3 0 

PBNIC 0 0  0 0 0 0 

Others speciesz 44 55  23 21 26 17 

Total 78 82  102 40 55 60 
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CHAPTER 4. General conclusions 

In soybean production, uniform crop establishment and optimum plant densities are 

key for obtaining high yields. In this thesis, field trials were conducted to determine how 

production inputs may affect the occurrence of soybean pathogens and plant performance 

in seedling disease and Phytophthora stem and root rot (PSRR) conducive environments. 

Previous field research conducted in Nebraska and Iowa have been inconclusive 

regarding the efficacy of seed treatment on crop stand and yield. The work presented in 

this thesis demonstrates the benefit of seed treatments containing ethaboxam and metalaxyl 

to manage soybean seedling diseases in PSRR endemic areas. Similarly, management 

programs employing PSRR moderately resistant cultivars had a significant yield advantage 

over moderately susceptible lines under greater disease incidence. Following university 

management recommendations and results obtained in this study, soybean producers 

adopting seeding rates between 296.000 to 309.000 plants ha–1 (120.000 to 125.000 seeds 

a–1) are encouraged to apply oomycides and select resistant cultivars in fields with PSRR 

history. Note, however, that soybean seed companies may adopt different disease 

susceptibility scales, and that for one company, moderately resistant cultivars may have a 

score of 1, whereas for a second company, a score of 9. Results from the present 

investigation do not support the hypothesis that Rps1c and Rps1k cultivars differ 

substantially in terms of field efficacy, although, in one environment Rps1c had superior 

yield than Rps1k cultivars. Overall, tolerance provided a greater absolute yield advantage 

than seed treatment alone. Alternatively, seed treatment response was more consistent 

across environments. These results reinforce previous field research in the North Central 
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region of the U.S. indicating the importance of integrating genetic resistance and seed 

treatment to reduce yield impact due to the incidence of seedling disease and PSRR in 

soybeans.  

Canopy development is a relevant parameter associated with yield for soybeans 

planted in mid-May through early-June in Nebraska. As sunlight interception increases, 

yield potential also increases, particularly in late planting scenarios in which soybean 

plants are shorter and rely comparatively more on seed weight than the number of 

productive nodes and pods for yield component. However, enhanced plant aboveground 

development can also have its caveats. In fact, from a plant health perspective, denser 

canopies can increase the severity of foliar and stem diseases in soybeans, including 

Septoria brown spot (Septoria glycines), target spot (Corynespora cassiicola), and 

Sclerotinia white mold (Sclerotinia sclerotiorum). This is attributed to the extended period 

of leaf wetness and conducive microclimate resulting from limited air movement below 

soybean canopies. In contrast, for soilborne diseases, increased vegetative growth indicates 

less root colonization and more vigorous plants. It is also worthy to note that, although 

seed treatments can speed row closure in soybeans, minimum to no effect whatsoever is 

expected from this response on the incidence of foliar and stem diseases, mainly because 

vegetative increments are relatively small when compared to the total plant vegetative 

growth. This study contributes to the etiology of soilborne diseases in soybeans by 

providing a protocol to assess active vegetative land cover. Measurements collected with 

an open-source, user-friendly mobile application indicated significant and negative 

correlations between soybean aboveground development and the number of P. sojae 

symptomatic plants at 2 of the 4 locations where the disease was observed. Researchers are 
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encouraged to adopt and improve the protocol present in this thesis so more efficient 

canopy assessments can be performed while removing the background noise of bare soil, 

previous crop residue, and weeds. 

The study also evaluated the effect of pre-emergence herbicides on seedling disease 

development in late-planted soybeans. Stressed soybean seedlings are more susceptible to 

infection by pathogens and environmental factors are very important in influencing the 

development of seedling diseases. Seedling diseases occur more frequently under cool, wet 

conditions and are more prevalent on fine-textured soils with high organic matter content. 

Other factors such as planting depth, compaction, nematode damage, and misapplication of 

soil-applied pre-emergence herbicides have been shown to interact with disease incidence. 

Results gathered in this thesis, however, indicate minimum interaction between pre-

emergence herbicides and soybean seedling disease under uncontrolled field conditions, 

and suggests that other factors, such as the predominant pathogen group present in a field, 

play a more important role in disease severity. This study confirms the predominance of 

Pythium, Phytophthora, and Fusarium species as common organisms associated with 

soybean symptomatic seedlings in alluvial soils of eastern Nebraska. Comparatively, 

greater soybean seedling root rot and damping-off can be expected from oomycetes 

(Pythium, and Phytophthora) activity relative to other members in the primary pathogenic 

group commonly found in alluvial soils. Across multiple environments, Fusarium spp. 

were the dominant genus among common pathogenic genera and Rhizoctonia recovery was 

low compared to seedling pathogens. Overall, these results support the use of pre-

emergence herbicides as part of integrated weed management program in late-planted 
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soybeans but also indicate more research is needed, particularly under increased herbicide 

injury risk and seedling disease development, to finalize management recommendations. 

Throughout this thesis, it was clear that seedling diseases and Phytophthora stem 

and root rot (PSRR) are important yield-limiting diseases in soybeans in Nebraska and 

Iowa. Accounting for all effects evaluated, the conjunction of biological, edaphic, and 

climatic factors that compose an environment was the primary factor driving disease 

incidence and yield. As we gain more knowledge about how multifactorial abiotic and 

biotic effects can affect disease severity, producers in North Central U.S. will be able to 

better manage seedling diseases and PSRR and reduce the negative impact that these 

maladies have on soybean production. 
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APPENDIX A: Canopy coverage protocol in chapter 2 

Option I  

1. Hold the smartphone at waist-height and take a picture of the plot capturing two rows 
at a time for an area of approximately 19 ft square. Perform image collection 
systematically for other experimental units. 
 

 

 

 

 

 

 

 

Option II 

1. The frame was built with PVC tube, 1” diameter, and would be suited for iPhone 7 
with 4.7” screen size. Adjustments may be necessary if other devices are used. In 
addition to materials shown below, 4 curves joints (2 in long) are needed to connect 
PVC tubes. Frame concept by UNL Weed Science Team. 
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2x 50 in 

20 in 
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Click on the camera icon on the top right. Adjust brightness according to the situation 

in the field. With phone camera facing downwards and covering the entire frame, take the 

picture and define black-white contrast. This value represents the sensitivity of the 

greenness measurement (more or less inclusive). As shown below, a 0.95 value was 

defined to be standard. Hit the arrow on the bottom right and create a new file under the 

additional info tab. Enter the plot number under notes. Submit and it is saved.  

 

 

 

 

 

 

 

 

Reference 

 

Patrignani, A., and Ochsner, T. E. 2015. Canopeo: A powerful new tool for measuring 
fractional green canopy cover. Agronomy Journal, 107:2312-2320. doi: 
10.2134/agronj15.0150. 

Figure A. 1. Example of A, non-ideal (bare soil, 
residue and weeds included in the image) and B, 
ideal camera placement (detail on clips delineating 
frame area). 

A B 
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APPENDIX B: R codes for analysis in chapter 2 

Field trial analysis  
 
library(dplyr); library(lme4); library(lmerTest); library(MASS); library(emmeans); library(car); library(multcomp); 

library(pbkrtest) 

 

data17$BLOCK=as.factor(data17$BLOCK) 
data17$TRT=as.factor(data17$TRT) 

data17$STI=factor(data17$STI, levels = c("Y","N")) 

data17$CULT=factor(data17$CULT, levels = 

c("AG3432","AG3034","H3220NR","H2913NR","C3070R2","C3171R2","C3010RX","C2890R2","C3026RX")) 
data17$TRT=factor(data17$TRT) 

 

data18$BLOCK=as.factor(data18$BLOCK) 
data18$LOC=as.factor(data18$LOC) 

data18$STI=factor(data18$STI,levels = c("Y","N")) 

data18$TRT=factor(data18$TRT) 

data18$CULT=factor(data18$CULT,levels = c("C2888RX","C3140RX","AG27x8", "AG28x7","H2862NX","H2512NX", 
"NK3195X","NK2788X")) 

 

 

#Contrasts for 2017 
Rps1c.vs.Rps1k<-c(1,1,-1,-1,-1,-1,0,1,1)/4 

high.vs.low <-c(-1,1,1,-1,2,-3,2,2,-3)/8 

Rps1c_High.vs.low <-c(-1,1,0,0,0,0,0,1,-1)/2 
Rps1k_High.vs.low <-c(0,0,1,-1,1,-1,0,0,0)/2 

round(crossprod(cbind(Rps1c.vs.Rps1k,high.vs.low,Rps1c_High.vs.low,Rps1k_High.vs.low)),2) 

Contr<-cbind(Rps1c.vs.Rps1k,high.vs.low,Rps1c_High.vs.low,Rps1k_High.vs.low) 

high_sti.vs.control<-c(0,1,1,0,1,0,1,1,0,0,-1,-1,0,-1,0,-1,-1,0)/5 
low_sti.vs.control<-c(1,0,0,1,0,1,0,0,1,-1,0,0,-1,0,-1,0,0,-1)/5 

round(crossprod(cbind(high_sti.vs.control,low_sti.vs.control)),2) 

Contr1<-cbind(high_sti.vs.control,low_sti.vs.control) 

 
#Analysis by environment (Tekamah) in 2017 

lmer1=lmerTest::lmer(YIELD_kg_ha~CULT*STI+(1|BLOCK/CULT),REML=TRUE,data= data17,contrasts=list(CULT = 

contr.sum, STI=contr.sum)) 

plot(lmer1) 
anova(lmer1,ddf="Kenward-Roger") 

Yield.CULT=emmeans::emmeans(lmer1,~CULT,lmer.df = "Kenward-Roger") 

Yield.STI=emmeans::emmeans(lmer1,~STI,lmer.df = "Kenward-Roger") 
Yield.CULT.STI=emmeans::emmeans(lmer1,~CULT*STI,lmer.df = "Kenward-Roger") 

emmeans::contrast(Yield.CULT, list(Contr), adjust="fdr") 

emmeans::contrast(Yield.CULT.STI, list(Contr1), adjust="fdr") 

pairs(Yield.STI) 
 

#Contrats for 2018 (Nebraska) 

high.vs.low <-c(1,-1,1,-1,1,-1,1,-1)/4 

Rps1c.vs.Rps1k<-c(1,1,1,1,-3,-3,1,1)/6 
Rps1c_High.vs.low <-c(1,-1,1,-1,0,0,1,-1)/3 

Rps1k_High.vs.low <-c(0,0,0,0,1,-1,0,0) 

round(crossprod(cbind(high.vs.low,Rps1c.vs.Rps1k,Rps1c_High.vs.low,Rps1k_High.vs.low)),2) 
Contr<-cbind(high.vs.low,Rps1c.vs.Rps1k,Rps1c_High.vs.low,Rps1k_High.vs.low) 

high_sti.vs.control<-c(1,0,1,0,1,0,1,0,-1,0,-1,0,-1,0,-1,0)/4 

low_sti.vs.control<-c(0,1,0,1,0,1,0,1,0,-1,0,-1,0,-1,0,-1)/4 

round(crossprod(cbind(high_sti.vs.control,low_sti.vs.control)),2) 
Contr1<-cbind(high_sti.vs.control,low_sti.vs.control) 

 

#Contrats for 2018 (Boone-IA) 

high.vs.low.IA <-c(1,-1,0,1,-1,1,-1)/3 
Rps1c.vs.Rps1k.IA<-c(2,2,2,-5,-5,2,2)/10 

Rps1c_High.vs.low.IA <-c(1,-1,0,0,0,1,-1)/2  
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Rps1k_High.vs.low.IA <-c(0,1,-1,0,0,0,0)  

round(crossprod(cbind(high.vs.low.IA,Rps1c.vs.Rps1k.IA,Rps1c_High.vs.low.IA,Rps1k_High.vs.low.IA)),2) 
Contr.IA<-cbind(high.vs.low.IA,Rps1c.vs.Rps1k.IA,Rps1c_High.vs.low.IA,Rps1k_High.vs.low.IA) 

sum(Rps1k_High.vs.low.IA) 

high_sti.vs.control.IA<-c(1,0,0,1,0,1,0,-1,0,0,-1,0,-1,0)/3 

low_sti.vs.control.IA<-c(0,1,0,0,1,0,1,0,-1,0,0,-1,0,-1)/3 
round(crossprod(cbind(high_sti.vs.control.IA,low_sti.vs.control.IA)),2) 

Contr1.IA<-cbind(high_sti.vs.control.IA,low_sti.vs.control.IA) 

 

#Combined analysis in 2018 (except Boone-IA) 
lmer2=lmerTest::lmer(YIELD_kg_ha~CULT*STI*LOC+(1|BLOCK/LOC/CULT),REML=TRUE,data= data18 %>% 

filter(LOC!="boone"), contrasts=list(CULT = contr.sum, STI=contr.sum, LOC=contr.sum)) 

plot(lmer2) 
print(VarCorr(lmer2),comp=c("Variance","Std.Dev."),digits=6) 

anova(lmer2,ddf="Kenward-Roger") 

 

#Analysis by environment (Tekamah) in 2018 
lmer3=lmerTest::lmer(YIELD_kg_ha~CULT*STI+(1|BLOCK/CULT),REML=TRUE,data= data18 %>% 

filter(LOC=="tek1"),contrasts=list(CULT = contr.sum, STI=contr.sum)) 

plot(lmer3) 

print(VarCorr(lmer3),comp=c("Variance","Std.Dev."),digits=6) 
anova(lmer3,ddf="Kenward-Roger") 

yield.tek1.CULT=emmeans::emmeans(lmer3,~CULT,lmer.df = "Kenward-Roger");yield.tek1.CULT 

yield.tek1.STI=emmeans::emmeans(lmer3,~STI,lmer.df = "Kenward-Roger");yield.tek1.STI 
yield.tek1.CULT.STI=emmeans::emmeans(lmer3,~CULT*STI,lmer.df = "Kenward-Roger");yield.tek1.CULT.STI 

emmeans::contrast(yield.tek1.CULT, list(Contr), adjust="fdr") 

emmeans::contrast(yield.tek1.CULT.STI, list(Contr1), adjust="fdr") 

pairs(yield.tek1.STI) 
 

#Correlations by environment 

tek1cor=data18 %>% filter(LOC=="tek1") 

cor.test(tek1cor$PHYTOPHTHORA, tek1cor$YIELD_kg_ha, method = "spearman",use="complete.obs") 
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APPENDIX C: Isolation protocol in chapter 3 

1. Root rot evaluation (14 - 21 days after planting – VC-V1 growth stage) 
o Dig 6 plants per plot (3 from each non-harvestable rows) 
o Wash roots on site  

• Rate (0-10 severity scale) individual plants (6 plants, record root volume, total 
root area rotted, discolored) (Fig. C.1-A) 

• Cut each plant at cotyledon scar 
• Measure top fresh weight (total 6 plants) 
• Measure root fresh weight (total 6 plants) 

 
2. Combine root material from experimental units into blocks (1, 2, 3, 4) of experimental 

design and then combine blocks 1+2 and 3+4 into two pools (pool 1 and 2). Place 
plants in coolers for transportation. Same day processing is preferred 

 
3. In the lab 

o Wash pool 1 and 2 separately and thoroughly with detergent and tap water until soil 
is removed from root material (Fig. C.1-B) 

o Surface disinfest each pool in a beaker by keeping roots in 0.5% sodium 
hypochlorite solution for 1-1.5 min (Dorrance et al. 2008). Leave roots under tap 
water for 10 min with a cheesecloth cover to remove residual bleach  

o Aseptically cut taproot and root sections targeting symptomatic tissue (~2 cm long) 
(Fig. C.1-C, D). Avoid thinner roots because they desiccate over time 

o Leave pool in the laminar hood for 20-30 min to remove excessive moisture 
o Randomly select four root segments from processed pool to be plated on 6 Petri 

dishes of 4 types of media (24 total plates/pool) (Fig. C.1-E) 
• Suggested plate label: site, date, # pool, media type, and # plate (1-6) 

 
4. Check plates daily for growth and characterize types of growth for pathogen ID (Fig. 

C.1-F) 
o Record frequency (# of root pieces that produced mycelial growth/total # of root 

pieces per pool) 
o Subculture types of growth to fresh plates (Fig. C.1-G). Label isolates (e.g. A, B, C, 

D) as they are transferred to fresh plates to avoid doubles 
o Take notes on types of growth (color, speed of growth, segmentation, any change 

in visual appearance) 
o Subculture isolates to potato dextrose agar for storage and future ID. 

 

 

Reference 

Dorrance, A. E., Berry, S. A., Anderson, T. R., and Meharg, C. 2008. Isolation, storage, 
pathotype characterization, and evaluation of resistance for Phytophthora sojae in 
soybean. Online. Plant Health Progress. doi: 10.1094/PHP-2008-0118-01-DG. 
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Figure C. 1. Procedure utilized for root isolation. 
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APPENDIX D: R codes for analysis and visuals in chapter 3 

Field trial analysis  
 

library(dplyr); library(MASS); library(car); library(emmeans); library(multcomp) 

 

data17$BLOCK=as.factor(data17$BLOCK) 
data17$TREAT=as.factor(data17$TREAT) 

data17$HERB=factor(data17$HERB, levels = c("Control","Classic","Sencor","Sharpen","Spartan","Valor")) 

data17$CULT=factor(data17$CULT, levels = c("P22T41R2", "P28T08R")) 
 

data18$BLOCK=as.factor(data18$BLOCK) 

data18$TREAT=as.factor(data18$TREAT) 

data18$HERB=factor(data18$HERB, levels = c("Control","Classic","Sencor","Sharpen","Spartan","Valor")) 
 

#Constrats 

Non.treated.vs.treated<-c(-5,1,1,1,1,1)/5 

NonPPO.vs.PPO<-c(0,-3,-3,2,2,2)/6 
ALS.vs.PSII<-c(0,-1,1,0,0,0) 

round(crossprod(cbind(Non.treated.vs.treated,NonPPO.vs.PPO,ALS.vs.PSII)),2) 

Contr<-cbind(Non.treated.vs.treated,NonPPO.vs.PPO,ALS.vs.PSII) 

 
#Combined analysis 2017 

par(mfrow=c(1,2)) 

aov1=aov(DSI~BLOCK+HERB*CULT*LOC, data17,contrasts=list(HERB=contr.sum, CULT=contr.sum, LOC=contr.sum)) 
plot(aov1, which = c(2,3)) 

Anova(aov1, type="III", test="F") 

 

#Analysis by environment (Lincoln) in 2017 
par(mfrow=c(1,2)) 

aov2=aov(DSI~BLOCK+HERB*CULT, data17 %>% filter(LOC=="Lincoln"),contrasts=list(HERB=contr.sum, 

CULT=contr.sum)) 

plot(aov2, which = c(2,3)) 
Anova(aov2, type="III", test="F") 

rot.L.CULT=emmeans(aov2,~CULT) 

rot.L.HERB=emmeans(aov2,~HERB) 
rot.L.CULT.HERB=emmeans(aov2,~CULT*HERB) 

emmeans::contrast(rot.L.HERB, list(Contr)) 

 

#Combined analysis 2018 
par(mfrow=c(1,2)) 

aov1=aov(DSI~BLOCK+HERB*LOC, data18,contrasts=list(HERB=contr.sum, LOC=contr.sum)) 

plot(aov1, which = c(2,3)) 

Anova(aov1, type="III", test="F") 
 

#Analysis by environment (Tekamah) in 2018 

par(mfrow=c(1,2)) 
aov1=aov(DSI~BLOCK+HERB, data18 %>% filter(LOC=="tek1"),contrasts=list(HERB=contr.sum)) 

plot(aov1, which = c(2,3)) 

Anova(aov1, type="III", test="F") 

Root.tek1.HERB=emmeans(aov1,~HERB);Root.tek1.HERB 
emmeans::contrast(Root.tek1.HERB, list(Contr)) 

 

 

Genera frequency 
 

library(ggmosaic); library(ggplot2); library(grid); library(gridExtra); library(ggplotify); library(MASS) 
data=read.csv('C:/Users/Garnica/Box/Analysis Experiments/fungal frequency.csv',header=TRUE) 

data$Location <- factor(data$Location, levels=c("Lincoln 17", "Mead 17", "Tekamah 18","Arizona 18", "Mead 18","Bruno 

18")) 

 
#Contingency table and orthogonal contrasts 



131 

 

 

fungi<-xtabs(n~Location+Pathogen, data) 

ct1=fungi[,-2] 
ct2=as.table(matrix(c(margin.table(ct1,margin = 1),fungi[,2]), nrow = 2, byrow = T,  

                    dimnames = list(Genera = c('Primary', 'Secondary'), Location= c('Lincoln 17', 'Mead 17' ,'Tekamah 18', 

'Arizona 18', 'Mead 18', 'Bruno 18')))) 

c<- ct1[-3,] 
d=matrix(c(ct1[3,],margin.table(c[-4,],margin=2),ct1[5,]), nrow = 3,ncol = 4, byrow = T) 

ct3=as.table(matrix(c(d[,1],margin.table(d[,2:3], margin=1),d[,4]),nrow = 3,ncol = 3, byrow = F, 

                    dimnames = list(DSI = c('High', 'Intermediate', 'Low'), Genera= c('Fusarium','Oomycete','Rhizoctonia')))) 

e<-fungi[-3,3:4] 
ct4=as.table(matrix(c(fungi[3,3:4],margin.table(e[-4,], margin=2), fungi[5,3:4]),nrow = 3,ncol = 2, byrow = T, 

                    dimnames = list(DSI = c('High', 'Intermediate', 'Low'), Genera= c('Phytophthora','Pythium')))) 

ct5=c[-4,] 
ct6=as.table(matrix(c(margin.table(ct5[,-4], margin = 1), ct5[,4]),nrow = 4,ncol = 2, byrow = F, 

                    dimnames = list(Site = c('Lincoln 17', 'Mead 17', 'Arizona 18', 'Bruno 18'), Genera= 

c('Fusarium+Phytophthora+Pythium','Rhizoctonia')))) 

f<-ct5[,-4] 
g<-matrix(c(margin.table(f[-4,], margin=2),f[4,]),nrow = 2,ncol = 3, byrow = T) 

ct7=as.table(matrix(c(margin.table(g[,2:3], margin=1),g[,1]),nrow = 2,ncol = 2, byrow = F, 

                    dimnames = list(Site = c('Lincoln+Mead17+Arizona', 'Bruno 18'), Genera= c('Oomycete','Fusarium')))) 

ct8=as.table(matrix(g[,2:3],nrow = 2,ncol = 2, byrow = F,dimnames = list(Site = c('Lincoln+Mead17+Arizona', 'Bruno 18'), 
Genera= c('Phythophthora','Pythium')))) 

ct9=f[1:3,2:3] 

ct10=as.table(matrix(c(margin.table(ct9,margin = 1),f[1:3,1]),nrow = 3,ncol = 2, byrow = F, 
                     dimnames = list(Site = c('Lincoln','Mead17','Arizona'), Genera= c('Oomycete','Fusarium')))) 

 

#Loglinear models 

total<-loglm(~Location+Pathogen, fungi) 
pathogenic<-loglm(~Location+Pathogen, ct1) 

others<-loglm(~Location+Genera, ct2) 

round(pathogenic$lrt + others$lrt,12) == round(total$lrt,12) 

DSI<-loglm(~DSI+Genera, ct3) 
DSI1<-loglm(~DSI+Genera, ct4) 

interm<-loglm(~Location+Pathogen, ct5) 

round(DSI$lrt + DSI1$lrt + interm$lrt,12) == round(pathogenic$lrt,12) 

rhizocinter<-loglm(~Site+Genera, ct6) 
phypyfusinter<-loglm(~Location+Pathogen, f) 

round(rhizocinter$lrt + phypyfusinter$lrt,12) == round(interm$lrt,12) 

brun<-loglm(~Site+Genera, ct7) 
brunoo<-loglm(~Site+Genera, ct8) 

LMA<-loglm(~Location+Pathogen, ct9) 

oofusa<-loglm(~Genera+Site, ct10) 

round(brun$lrt + brunoo$lrt + LMA$lrt + oofusa$lrt ,12) == round(phypyfusinter$lrt,12) 
 

#Mosaic plot 

ggplot(data = as.data.frame(prop.table(ct1))) + 

  geom_mosaic(aes(weight= Freq, x = product(Pathogen, Location), fill=Pathogen), color="black", na.rm=TRUE, 
show.legend = TRUE)+ 

  scale_fill_manual('Primary Pathogenic Genera',values=c("gray80", "gray55","grey30","black"), 

                    labels = c(substitute(paste(italic('Fusarium')," (n=151)")), substitute(paste(italic('Phytophthora')," (n=46)")), 
                               substitute(paste(italic('Pythium')," (n=28)")),substitute(paste(italic('Rhizoctonia')," 

(n=6)"))),guide=guide_legend(override.aes=aes(color="black"),reverse=T))+ 

  scale_y_productlist(labels = c(substitute(paste(italic('Fusarium'))), substitute(paste(italic('Phytophthora'))), 

                                 substitute(paste(italic('Pythium'))),substitute(paste(italic('Rhizoctonia')))), position="left")+ 
  scale_x_productlist(labels = c("Lincoln 17","Mead 17", "Tekamah 18", "Arizona 18", "Mead 18", "Bruno 18")) 
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