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Recently, there has been a significant amount of research related to heavy trucks 

operating as connected and autonomous vehicles (CAVs). In order to understand the 

potential impact on the freeway system of CAV technologies, analyses should be 

conducted using the standard US methodological framework. In the current version of the 

Highway Capacity Manual (HCM-6), equal-capacity passenger car equivalencies (EC-

PCEs) are used to account for the effect of heavy trucks on capacity and quality of 

service analyses. It is argued in this dissertation the HCM-6 EC-PCE methodology for 

basic freeway and multilane highway segments can be used to explore a wide variety of 

traffic situations beyond the scope of the existing results including those related to CAV 

technologies. However, there are various shortcomings to address before applying the 

methodology for these purposes.  

This dissertation develops new strategies to improve the current state-of-the-art 

methodology for estimating freeway capacity and PCEs. The end result is a new 

modeling methodology that can be used to analyze new traffic scenarios including 

connected and automated vehicles (CAVs). Specifically, this dissertation develops 

consistent metrics for the HCM-6, introduces simpler regression model structures for 



 

 

fitting simulated and estimated data, and proposes a replicable microsimulation 

framework. The proposed improvements are examined for both CAV and non-CAV 

conditions on unidirectional two-lane and three-lane freeway segments. In general, it was 

found EC-PCE values for CAV trucks are, on average, between 24% and 34% lower 

compared to the values for non-CAV trucks, indicating that CAV platoons can have a 

positive effect on freeway capacity. Additionally, it was demonstrated the proposed 

approaches can be successfully applied to the estimation of EC-PCEs. 

The new techniques proposed for capacity modeling and EC-PCE estimation can 

be used by engineers and traffic agencies for analyzing any traffic condition outside the 

HCM-6. It is vital all future EC-PCE analyses are performed using the same standard 

methodological framework to produce comparable results that can be applied consistently 

in the HCM-6.  
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    CHAPTER 1 

 INTRODUCTION 

1.1 Background 

Passenger car equivalencies (PCEs) are used to account for the effect of different vehicle 

types on capacity and quality of service of a mixed traffic stream. These vehicle types 

include heavy vehicles, motorcycles, and recreational vehicles and the PCE accounts for 

differences in size and operational characteristics as compared to passenger cars. In 

effect, the PCE represents the number of passenger cars that would produce the same 

effect on the traffic flow as a given vehicle type. Transportation engineers use PCEs to 

convert traffic streams, measured in vehicles per hour (veh/h), to an ‘equivalent’ stream 

measured in passenger car units per hour (pcu/h). This allows various roadways, which 

have different proportions of vehicle types, to be analyzed and/or designed based on a 

single metric.  

In the current version of the Highway Capacity Manual (HCM-6), PCEs for 

freeway and multilane highway segments are estimated using the equal-capacity method. 

The equal-capacity passenger car equivalences (EC-PCEs) are calculated using the 

estimated capacities of both mixed-flow and passenger car-only flow (HCM, 2016; 

Dowling et al., 2014a; Yang, 2013; Zhou, 2018). It is important to note that the HCM-6 

equal capacity methodology for freeway segments is based completely on VISSIM 

microsimulation model results aggregated over one-minute intervals. This is important 

because up until the HCM-6, all HCM data aggregations levels were at the 15 minute 
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level. The HCM-6 includes EC-PCE values for 14 levels of truck percentage, 13 levels of 

grade, 7 levels of grade distance, and 3 levels of truck composition type.  

The advantage of using a simulation model is obvious—it greatly reduces the 

amount of empirical data that needs to be collected and allows for a relatively quick 

analysis of many different situations. The disadvantages include complex and time-

consuming model calibration and validation, considerable inputs and simulation 

parameters, and a need for a deep understanding of the underlying logic of the models 

(Hendrickson and Rilett, 2017; Rilett, 2020). It is argued in this dissertation the HCM-6 

EC-PCE procedure can be used to explore a wide variety of traffic situations beyond the 

scope of the existing results. For example, the methodology allows a user to simulate 

disruptive technologies such as connected and autonomous vehicles (CAV) and use the 

resulting output to estimate capacity and PCE values. However, there are various 

shortcomings to address before applying the methodology for these purposes. Some of 

these shortcomings include the need for a calibration of the microsimulation model, 

compatibility issues between model versions, unclear consistency while computing 

metrics, and poor flexibility of the existing regression model for fitting data. Therefore, if 

analysts are going to use the HCM-6 EC-PCE procedure to model new traffic situations 

and use the output to estimate capacity and PCE values, they must ensure the experiments 

can be repeated and the results are consistent with the analytical methods contained in the 

HCM-6.  

The research described in this dissertation will develop new strategies that 

improves the current state-of-the-art methodology for estimating freeway capacity and 

PCEs. The end result is a new modeling methodology that can be used to analyze new 
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traffic scenarios including connected and automated vehicles (CAVs). The primary aim is 

to develop an improved microsimulation-based methodology that can be used to the 

current Highway Capacity Manual (HCM-6) for capacity modeling and the estimation of 

EC-PCE values at freeway and multilane highway segments. The new methodology 

would allow for more accurate, replicable, consistent, and comparable results while 

exploring new traffic scenarios beyond the existing scope of the HCM-6. The 

improvements of the proposed approach are mostly related to three aspects of the current 

HCM-6 EC-PCE methodology: (1) create a new simulation framework for the traffic 

microsimulation model that will improve the repeatability of the results despite the 

compatibility of the microsimulation model versions and their inherent uncertainties, (2) 

develop consistent metrics between the microsimulation based methodology and the core 

methodologies contained in the HCM-6, and (3) develop alternative regression model 

structures to fit simulated and estimated data that will facilitate the process of reporting 

results. 

In summary, this dissertation emphasizes the importance of having a standard 

methodological framework to estimate capacity and EC-PCE values for novel traffic 

situations in basic freeway and multilane highway segments. It is critical all future EC-

PCE analyses produce comparable results that can be applied consistently to the core 

methodologies described in the HCM-6. 

1.2 Passenger Car Equivalent (PCE) Concept 

The PCE concept has been used for over 55 years in the Highway Capacity Manual 

(HCM) and other design guides (HCM, 1965; HCM, 2016; AASHTO, 2011; Urbanik et 

al., 2015). In the current HCM-6, the PCEs are defined as ‘factors that allow the analyst 
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to convert a mixed traffic stream of cars and trucks to a single uniform PCE stream for 

purpose analysis.’ They are used to account for the effect of heavy vehicles on capacity 

and level of service (LOS) on freeways in the HCM-6.   

 The concept was formally introduced by Huber (1982), who proposed a 

framework for estimating PCE values for vehicles under free-flow and multilane 

conditions considering various measures of impedance. According to this approach, the 

PCE formulation can be simplified into a ratio between the flow rate of a basic traffic 

stream composed by passenger cars, and the flow rate of a mixed traffic stream composed 

by passenger cars and trucks, where both traffic streams experience the same level of 

impedance as shown in Figure 1-1. Thus, the PCE values based on a measure of 

impedance are calculated using Equation (1-1). 

 

Figure 1-1.  Flow-impedance relationship (modified from Huber, 1982) 

𝑃𝐶𝐸 =
1

𝑝
 
𝑞𝐵
𝑞𝑀

− 1 + 1 

   (1-1) 

Where:  
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𝑃𝐶𝐸: Passenger car equivalence factor. 

𝑞𝐵: Basic flow-rate composed by passenger cars at common impedance level. 

𝑞𝑀: Mixed flow-rate composed by passenger cars and trucks at common 

impedance level. 

𝑝: Proportion of trucks in the mixed traffic flow. 

 Various metrics of impedance have been used in the literature along with different 

methods for estimating PCE values. Some of the impedance metrics that have served as a 

basis for the proposed methods are provided in Table 1-1. Typically, the PCE is defined 

as the ratio of the impedance metric for the passenger car flow and the mixed flow 

conditions. An extensive literature review about the PCE concept can be found elsewhere 

(Raj et al., 2019; Sharma & Biswas, 2020). 

Table 1-1. Impedance Metrics Used in the Literature 

Author (Year) Impedance Metric Traffic Flow Condition 

Krammes & Crowley (1986);  

Okura & Sthapit (1995a) 
Headways Uninterrupted 

Elefteriadou, Torbic, & Webster (1997) Speed Uninterrupted 

Webster & Elefteriadou (1999);  

Rakha et al. (2007) 
Density Uninterrupted 

Benekohal & Zhao (2000);  

Chitturi & Benekohal (2008) 
Delay Interrupted 

Keller & Saklas (1984); 

Huber (1982) 
Travel Time Interrupted 

Al-Kaisy, Jung, & Rakha (2005);  

Al-Kaisy, Hall, & Reisman (2002) 
Queue Discharge Flow Interrupted 

Van Aerde, & Yagar (1984);  

Gunst & Webster (1975) 
Platoon-based Uninterrupted 

Okura & Sthapit (1995b) Volume to Capacity Ratio Uninterrupted 
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Huber (1982) Level of Service Uninterrupted 

Alecsandru, Ishak, & Qi (2012);  

Fan (1990);  

Yeung, Wong, & Secadiningrat (2015) 

Capacity Uninterrupted 

 In the current HCM-6, the PCE values were obtained using an equivalency 

method in which the capacity was the impedance metric of reference. The capacity is 

defined as the maximum sustainable hourly flow rate that can pass a given point of the 

road system during a given time period under prevailing roadway, environmental, traffic, 

and control conditions. Any change in the prevailing conditions (e.g., heavy vehicle 

percentage) changes the capacity of the system. The equal capacity passenger car 

equivalences (EC-PCEs) allow for the conversion of the mixed flow capacity values into 

passenger car-only capacity values and vice-versa. For obvious reasons, this equivalency 

method requires finding the capacities for the passenger car-only flow condition and the 

mixed traffic flow condition. These are then used to estimate the EC-PCE values. In the 

HCM-6 EC-PCE methodology, the capacity values were obtained using a 

microsimulation model approach explained in more detail later. The EC-PCE values are 

calculated using Equation (1-2). Note this equation is based on the Huber’s model 

(Huber, 1982). 

𝐸𝐶 − 𝑃𝐶𝐸𝑝𝑠 ,𝑚𝑠 ,𝑔𝑠 ,𝑑𝑠 =
1

𝑝
𝑠

∗  
𝐶1,𝑔𝑠 ,𝑑𝑠

𝐶2,𝑝𝑠 ,𝑚𝑠 ,𝑔𝑠 ,𝑑𝑠

− 1 + 1 

  (1-2) 

Where: 

𝐸𝐶 − 𝑃𝐶𝐸2,𝑝𝑠,𝑚𝑠,𝑔𝑠,𝑑𝑠: EC-PCE for the mixed flow at truck percentage 𝑝𝑠, truck 

composition 𝑚𝑠, grade 𝑔𝑠, and distance 𝑑𝑠. 
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𝐶2,𝑝𝑠,𝑚𝑠,𝑔𝑠,𝑑𝑠: Capacity for the mixed flow at p truck percentage level, m truck 

composition level, g grade level, d distance level, (veh/h/ln). 

𝐶1,𝑔𝑠,𝑑𝑠: Capacity for the passenger car-only flow at g grade level, d distance level, 

(veh/h/ln). 

𝑝𝑠: Truck percentage (between 0 and 1). 

 The HCM-6 methodology introduced the concept of the capacity adjustment 

factor (CAF) to represent the ratios between the capacities of both mixed traffic and 

passenger car-only conditions as shown in Equations (1-3) and (1-4). 

𝐶𝐴𝐹2,𝑝𝑠 ,𝑚𝑠 ,𝑔𝑠 ,𝑑𝑠 =
𝐶2,𝑝𝑠 ,𝑚𝑠 ,𝑔𝑠 ,𝑑𝑠

𝐶1,𝑔𝑠 ,𝑑𝑠

 

    (1-3) 

𝐶𝐴𝐹1,𝑔𝑠 ,𝑑𝑠 =
𝐶1,𝑔𝑠 ,𝑑𝑠

𝐶1,𝑔𝑠 ,𝑑𝑠

= 1 

    (1-4) 

 Where:  

𝐶𝐴𝐹2,𝑝𝑠,𝑚𝑠,𝑔𝑠,𝑑𝑠: Capacity adjustment factor for the mixed flow at truck percentage 

𝑝𝑠, truck composition 𝑚𝑠, grade 𝑔𝑠, and distance 𝑑𝑠. 

𝐶𝐴𝐹1,𝑔𝑠,𝑑𝑠: Capacity adjustment factor for the auto-only flow at grade 𝑔𝑠, and 

distance 𝑑𝑠. 

𝐶2,𝑝𝑠,𝑚𝑠,𝑔𝑠,𝑑𝑠: Capacity for the mixed flow at p truck percentage level, m truck 

composition level, g grade level, d distance level, (veh/h/ln). 

𝐶1,𝑔𝑠,𝑑𝑠: Capacity for the passenger car-only flow at g grade level, d distance level, 

(veh/h/ln). 
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By considering the capacity adjustment factors, the EC-PCE values can be also 

estimated using Equation (1-5), which is derived from Equation (1-2).  

𝐸𝐶 − 𝑃𝐶𝐸2,𝑝𝑠 ,𝑚𝑠 ,𝑔𝑠 ,𝑑𝑠 =
1 −  1 − 𝑝

𝑠
 ∗ 𝐶𝐴𝐹2,𝑝𝑠 ,𝑚𝑠 ,𝑔𝑠 ,𝑑𝑠

𝑝
𝑠
∗ 𝐶𝐴𝐹2,𝑝𝑠 ,𝑚𝑠 ,𝑔𝑠 ,𝑑𝑠

 

   (1-5) 

Where: 

𝐸𝐶 − 𝑃𝐶𝐸2,𝑝𝑠,𝑚𝑠,𝑔𝑠,𝑑𝑠: EC-PCE for the mixed flow at truck percentage 𝑝𝑠, truck 

composition 𝑚𝑠, grade 𝑔𝑠, and distance 𝑑𝑠. 

𝐶𝐴𝐹2,𝑝𝑠,𝑚𝑠,𝑔𝑠,𝑑𝑠: Capacity adjustment factor for the mixed flow at truck percentage 

𝑝𝑠, truck composition 𝑚𝑠, grade 𝑔𝑠, and distance 𝑑𝑠. 

𝑝𝑠: Truck percentage (between 0 and 1). 

1.3 HCM-6 EC-PCE Procedure  

The HCM-6 EC-PCE values were obtained using a microsimulation-based methodology 

comprised of five main steps as shown in Figure 1-2. 

 

Figure 1-2. Process for EC-PCE estimation according to HCM-6 
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In Step 1, the simulated capacities for both passenger car-only flow and mixed 

flow are obtained for combinations of grade, grade length, truck percentage, and vehicle 

fleet composition. In Step 2, the Capacity Adjustment Factors (CAFs) for 1,274 scenarios 

are calculated. A nonlinear regression model is created in Step 3 that can predict the CAF 

value as a function of the parameters analyzed in Step 1. These calibrated models are 

used to estimate CAFs in Step 4. In Step 5, the EC-PCEs for specific combinations of 

truck percentage, grade, and grade distance are estimated based on the CAF estimates. 

These are the values provided in the HCM-6. A complete description of the HCM-6 EC-

PCE methodology, including the key simulation parameters of the VISSIM model, can be 

found elsewhere (Zhou, Rilett, & Jones, 2019; Zhou, 2018; Dowling et al., 2014b). 

As the process demonstrates, the microsimulation model is used in the HCM-6 

EC-PCE methodology to obtain the capacity values for the 1,274 scenario combinations. 

The layout of the test network considered in the microsimulation model is depicted in 

Figure 1-3.  

 

Figure 1-3. Schematic of the HCM-6 VISSIM model for EC-PCE estimation 

(modified from Zhou, 2018) 
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This test network is a unidirectional freeway segment with a total length of 15 

miles. The intermediate grade section of 6 miles contains seven data collection points 

used to obtain the inputs required for calculating the capacity values. 

It is important to note the HCM-6 methodology has a large number of 

assumptions including those related to vehicle speed (e.g., all vehicles travel at the same 

uniform free-flow speed of 70 mph), vehicle type (e.g., single unit trucks and semitrailer 

trucks as heavy vehicles), weight and power, driving behavior (e.g., Wiedemann 99), 

operating conditions (e.g., three-lanes per direction, no lane restriction, etc.), and 

aggregation level (1 minute). A detailed description of the assumptions can be found 

elsewhere (Dowling et al., 2014a; Zhou, 2018). These assumptions define the scope of 

the existing results included in the HCM-6. Therefore, care must be taken in using the 

EC-PCE values obtained in the original research when the key assumptions are not met 

for a particular analysis.  

1.4 Relationship with HCM Analyses 

The EC-PCE values are used in various chapters of the HCM-6 to calculate the heavy 

vehicle adjustment factor 𝑓𝐻𝑉 given by Equation (1-6). This factor converts the observed 

traffic demand (mixed traffic condition) into a standard flow-rate measured in passenger 

cars per hour (pc/h).  

𝑓𝐻𝑉 =
1

1 + 𝑃𝑇 𝐸𝑇 − 1 
 

     (1-6) 

Where: 

𝑓𝐻𝑉: Heavy vehicle adjustment factor (decimal). 
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𝐸𝑇: Passenger car equivalent of one heavy vehicle in the traffic stream (PCEs). 

𝑃𝑇: Proportion of SUTs and TTs in the traffic stream (decimal). 

In the HCM-6, the heavy vehicle adjustment factor is used in the calculation of 

the following metrics related to freeway and multilane highway facilities: 

• Adjusted demand volume, 𝑣𝑝 (Chapter 12, Basic Segments, Equation 12-9),  

• Capacity of weaving segments, 𝐶𝑤 (Chapter 13, Weaving Segments, Equation 

13-6),  

• Demand flow rate for subject movement, 𝑣𝑖 (Chapter 14, Merging & 

Diverging Segments, Equation 14-1), and 

• Demand flow rate in PCEs, 𝑞𝑖,𝑡 (Chapter 25, Planning-Level Methodology for 

Freeway Facilities, Equation 25-41). 

It is clear the EC-PCEs are of vital importance for analyzing the capacity and 

level of service of extended lengths of freeway composed of continuously connected 

basic freeway segments, weaving segments, and merging and diverging segments. These 

operational analyses are key for transportation agencies that prioritize upgrading and new 

construction projects based on forecasted demand and supply of the freeway system. 

1.5 Problem Statement 

As discussed above, the HCM-6 EC-PCE methodology for freeway and multilane 

highway segments represents an important and significant improvement for estimating 

freeway capacity and associated Passenger Cars Equivalents. To fully realize its 

potential, the modeling approach should be capable of analyzing a wide variety of local 

conditions and different traffic scenarios. This is important because a more robust 
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capacity and PCE estimation methodology could be used to explore not only different 

operational conditions (e.g., lane restrictions, traffic compositions, etc.) and geometric 

arrangements (e.g., number of lanes, steep grades, etc.) but also the impact of disruptive 

technologies (e.g., connected autonomous vehicles, battery-based electric vehicles, etc.) 

in which transportation agencies are especially interested. However, to meet these goals a 

number of improvements to the current HCM-6 methodology are required. Specifically, 

methodologies related to experimental replication, consistency while computing metrics, 

and more flexible regression model structures to fit simulated and estimated data will be 

required. These issues represent the motivation behind this dissertation and are explained 

in further detail in the following sections.  

1.5.1 Need for a Replicable Microsimulation Model 

The HCM-6 CAF/EC-PCE values are dependent on the VISSIM Version 4.4 simulation 

model that is no longer available. It is important to note no empirical data was used to 

calibrate or validate the results (Dowling et al., 2014a, 2014b; Yang, 2013; Zhou, 2018). 

This is a huge advantage from a modeling perspective; it takes significantly less time to 

model the 1,274 HCM-6 scenarios in comparison to collecting empirical data and 

developing statistically-based models. In addition, it also allows modelers to study new 

traffic situations. However, there are a number of issues related to the “all-simulation” 

approach adopted by the HCM-6 that require further analyses to ensure consistent and 

replicable results. 

The HCM-6 included a section that provides recommendations for using 

alternative tools, such as microsimulation models, for analyzing freeway and multilane 

highway segments (HCM, 2016). Interestingly, the majority of these recommendations 
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were not observed in the original research (Dowling et al., 2014a, 2014b; Zhou, 2018). 

These recommendations are listed below: 

• Assure compatibility between the capacity obtained from alternative tools 

and those of the HCM:  In the HCM-6 there is no consistency in capacity 

values and definitions between the original research and the core methodology 

of the HCM-6 (Dowling et al., 2014b). This point will be discussed in more 

detail later. 

• Determine the free-flow speed (FFS) of the study site by field data or 

estimation: The original research behind the HCM-6 considered a constant 

speed of 70 mph for all vehicles instead of speed distributions (Zhou, Rilett, & 

Jones, 2019a). It is hypothesized this produces unrealistic driving behavior 

and, therefore, suspect results.   

• Calibrate the simulation model by modifying the parameters related to 

the minimum time headway so that the capacity obtained by the 

simulator closely matches the HCM estimate: Interestingly, in the research 

conducted as part of the HCM-6, the default driving-behavior parameters were 

used in the original model without targeting an empirical capacity value 

(Yang, 2013; Dowling et al., 2014b). 

• Estimate the number of runs required for a statistically valid comparison: 

In the original research only one simulation run was performed for each of the 

1,274 simulated scenarios. This point is crucial because performing a single 

simulation run drastically increases the noise of the simulation results and 
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could potentially negatively impact the accuracy of the capacity estimates and 

the associated EC-PCE values.  

1.5.2 Model Version Compatibility 

The VISSIM developers acknowledge simulation results can differ among different 

versions due to changes and updates in the internal logic of the simulator (PTV, 2019b). 

Because of this, there is no guarantee newer versions of VISSIM will result in the same 

EC-PCE values obtained from earlier versions, making difficult the replication of the 

experiments. Since the HCM-6 was released in 2016, there have been no less than five 

versions of VISSIM released. For example, it was observed from preliminary 

experiments the simulated capacity for the passenger car-only condition, which is the 

basis for the CAF/EC-PCE calculation, was 6.54% lower, on average, for the VISSIM 20 

results as compared to the VISSIM 9 results (Hurtado-Beltran & Rilett, 2021). A paired t-

test at 0.05 level of significance showed that such a difference was statistically 

significant. Similar results were found by comparing the capacity results from other 

VISSIM versions. Therefore, assuming that the simulation logic underlying VISSIM 

release 4.4, used in the original research is the same as newer VISSIM versions would be 

a mistake. Moreover, the exact version VISSIM 4.4 is not available anymore, which 

represents a significant problem for replicating the results.  

1.5.3 Model Calibration 

Although some operational and geometric characteristics of the vehicles including 

acceleration profiles, weight and power distributions, and vehicle dimensions, were set in 

the HCM-6 EC-PCE model according to findings from previous research, no empirical 
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data was used to calibrate the driving-behavior of vehicles in the simulation. In the 

original research, the default Wiedemann 99 (car-following) and slow lane rules (lane-

changing) were used to model the driving-behavior of the driver-vehicle units (Zhou, 

2018). A user may obtain capacity values that differ greatly from the base capacity values 

included in the HCM-6 (Exhibit 12-4). The difference will be a function of the VISSIM 

version and the capacity definition used. For example, the HCM-6 capacity of basic 

freeway and multilane highway segments under base conditions ranges from 1,900 to 

2,400 pc/h/ln and is a function of the free-flow speed and the facility type (HCM, 2016). 

These capacity values represent the national norm in the US. For example, the base 

capacity for a freeway segment at 70 mph of free-flow speed is 2,400 pc/h/ln; however, 

the microsimulation model of the original research may produce capacities as low as 

2,059 pc/h/ln (VISSIM 11) or 2,275 pc/h/ln (VISSIM 20) for the same conditions and this 

can negatively affect the calculation of CAF/EC-PCE values. 

It is hypothesized an adequate model calibration, targeting an empirical value of 

capacity (e.g., the HCM-6 base capacity), will improve the accuracy of the results. In 

addition, this will ensure the results can be reproduced and repeated by others regardless 

of the inherent uncertainties of the microsimulation model. 

1.5.4 Need for a Consistent Calculation of Capacity  

In the original EC-PCE research, the capacity is defined as the 95th percentile of the 

maximum one-minute average flow-rate for the given scenario (Dowling et al., 2014a, 

2014b; Yang, 2013). This is the first instance, to the author’s knowledge, that the HCM 

used an aggregation level other than 15-minutes to calculate a traffic flow metric. In fact, 
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the traffic demands used in HCM analyses are typically expressed as flow rates that 

represent four times the peak 15-minute traffic demand. 

In the HCM-6, the capacity for basic freeway and multilane highway segments is 

defined as the maximum hourly flow rate related to some type of breakdown during a 

sustained period of 15 minutes. The same manual included a section to estimate the 

capacity in the field while taking into account the same capacity definition. Moreover, a 

similar capacity definition can be found for various transportation facilities in the manual. 

For example, in weaving segments, the capacity is defined as “the maximum flow rate for 

a 15-min analysis period, as are all capacities”.  

 On the other hand, previous studies have shown the EC-PCE values may differ 

depending on the data aggregation level used to estimate capacity. For example, it has 

been reported the EC-PCE values were, on average, 11% lower for data aggregation 

levels of 15 minutes as compared to the aggregation level of one-minute used in the 

original research (Zhou, Rilett, & Jones, 2019b). The authors found this difference was 

statistically significant at 5% level of significance. Similar results were found if different 

percentiles were used in the calculations. For example, the authors used the maximum 

flow rate (e.g., 100th percentile) instead of the 95th percentile used in the original research 

and they found greater capacity values that tended to produce greater CAF values. 

 It was recognized in the original research that the capacity should be defined as 

the maximum flow rate which would be in concordance with the theoretical definition 

(Dowling et al., 2014b; Yang, 2013). Nevertheless, due to the amount of noise found in 

the flow-density plots, it was decided to calculate the capacity as the 95th percentile of the 

average one-minute flow rate. It is hypothesized this noise was mainly due to the data 
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aggregation level of one-minute and/or the use of only one simulation run. This, in turn, 

resulted in atypical flow rate peaks. It should be noted the developers of the original 

HCM approach stated the reliability of the procedure may improve if capacity is 

calculated in a more accurate way (Yang, 2013). 

Care must be taken in comparing the capacity values found in the EC-PCE 

research with other published capacity values based on larger aggregation levels. For 

example, in the HCM-6 mixed flow model, the estimated CAF values (one-minute 

aggregation level) of the EC-PCE research are used to compute the mixed-flow capacity 

(Equation 26-5, HCM, 2016). This mixed-flow capacity is compared with the auto-only 

capacity (Exhibit 12-6) that was based on a larger aggregation level (15 minutes). It is 

important to analyze the impact of using different percentiles of flow-rate and different 

aggregation levels on the EC-PCE estimation. It is expected by calculating the capacity, 

using a consistent percentile of flow-rate and aggregation level with those used in the 

core methodologies for basic freeway and multilane highway facilities, the approach will 

produce more reliable and comparable EC-PCE values as compared to the current values. 

1.5.5 Need for Alternative Regression Models for Calculating CAFs 

The capacity adjustment factors (CAFs) are defined as a ratio between the capacity of the 

mixed flow condition and the passenger car-only flow condition considering comparable 

scenario combinations. These CAFs are the main input to estimate EC-PCE values. 

Because of the inherent variability of the CAF results from simulation, the HCM-6 

developers chose not to use the CAF values for a given combination of parameters 

directly. Instead, they calibrated a nonlinear regression model that related the CAF value 

to the truck percentage, grade, distance, and free-flow speed parameters. The goal was to 
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mitigate the effect of the variability in the CAF results. The form for the HCM-6 

analytical model was based on kinematic and resistance equations related to vehicles 

ascending and descending different grades (Dowling et al., 2014c). A heuristic 

optimization approach was used to calibrate the model where the aim was to identify the 

model parameters that minimized the error between the simulated CAFs and the 

estimated CAFs. The parameters of these equations were optimized, using an Excel 

Spreadsheet. A detailed description of the nonlinear regression model used in the HCM-6 

EC-PCE methodology can be found elsewhere (Dowling et al., 2014b; List, et al., 2014) 

Zhou, Rilett, & Jones, 2019; Zhou, 2018). 

The current CAF/EC-PCE values suggest the combined effect of grade and 

distance is significantly different for positive grade values as compared to negative 

values. Indeed, the original research reported grade is the main influencing factor 

(Dowling et al., 2014b). It is hypothesized a segmented function based on the grade 

conditions (positive and negative) could improve the model fitting for the estimation of 

CAF values using simpler regression models. However, this approach has not been 

explored in previous studies. 

It is argued an analysis of the form and error of the regression models using fitting 

simulated and estimated data should be conducted. It is possible different model 

structures for the regression analysis might provide better results. In this regard, it is 

important to determine if simpler models may reasonably assist at this stage of the 

procedure while modeling novel traffic situations. This would represent an advantage for 

the analyst because the estimated CAFs could be calculated analytically through more 
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straightforward equations than those used in the HCM-6. This would facilitate the 

process of understanding and reporting the results.  

1.6 Research Objectives 

The primary goal of this dissertation is to develop an improved microsimulation-based 

methodology for capacity modeling. The new methodology will allow for more accurate, 

replicable, consistent, and comparable capacity results. This will, in turn, improve the 

estimation of equal capacity passenger car equivalences (EC-PCE) at freeway and 

multilane highway segments used in capacity and level of service analyses. Moreover, the 

dissertation will demonstrate how the approach can be further used to analyze new traffic 

situations such as the implementation of CAV technology. The specific objectives are: 

1. Demonstrate that the HCM-6 EC-PCE methodology has the potential to be 

used for exploring new traffic situations such as disruptive technologies. In 

this case, the EC-PCE values for CAV truck platooning on basic freeway 

segments (e.g., unidirectional three-lanes) will be explored using the original 

HCM-6 approach.  

2. Assess the convenience of alternative regression model structures to fit 

simulated and estimated data, especially while modeling disruptive 

technology such as CAVs. 

3. Propose simpler equations that facilitate the computation and interpretation of 

the CAF and EC-PCE values for the HCM-6.  

4. Propose a new simulation framework for the microsimulation model used in 

the EC-PCE methodology that provides results that can be replicated readily. 

It is important to overcome issues principally related to model calibration and 
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consistency of the results with the core methodology of the HCM-6 (e.g., 

comparable capacity, CAF, and PCE values). 

5. Propose an improved methodology to estimate EC-PCEs for freeway 

segments that overcomes the main issues identified in the original HCM-6 

EC-PCE research. The proposed approach will be used to examine the effect 

of CAV truck platooning under the US Western conditions (e.g., 

unidirectional two-lanes) using empirical data.  

1.7 Research Contributions 

The new techniques proposed in this dissertation for capacity modeling and EC-PCE 

estimation are expected to be applied for any traffic condition beyond the scope of the 

HCM-6. The proposed approach will provide a more flexible and repeatable procedure 

usable by engineers and traffic agencies for generic purposes. The original HCM-6 

methodology considered various assumptions (e.g., three-lanes per direction, no lane 

restriction, trucks and cars have the same free-flow speed, etc.) that can be easily 

violated. For these cases, the improved methodology allows repeating the procedure for 

the local conditions of interest to obtain more accurate, reliable, and comparable EC-PCE 

values.   

To illustrate, the new methodological framework could be used to model and 

explore further traffic scenarios as those related to emerging and disruptive technologies. 

It is expected these technologies will transform the operational dynamics of the national 

highway system in the following decades producing a significant impact on freeway 

capacity (Hallmark, Veneziano, & Litteral, 2019; Fitzpatrick et al., 2016; Bujanovic & 

Lochrane, 2018). In this regard, the proposed framework could be used to analyze how 
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the deployment of CAVs will affect freeway capacity, especially during the transitional 

period in which the CAVs and non-CAVs will share the road system. Similarly, the 

methodology could be applied to estimate EC-PCE values for battery-based electric 

trucks expected to have different acceleration/deceleration profiles and weight to power 

ratios that will change their operational behavior as compared to conventional vehicles.  

It is vital all the future capacity and EC-PCE analyses are performed using the 

same standard methodological framework to produce comparable results that can be 

applied consistently into the core methodologies described in the HCM-6.  

1.8 Structure of the Dissertation 

The remainder of this dissertation is organized into seven chapters. First, a literature 

review is included in Chapter 2 to provide background on the current state of the truck 

platooning research. Moreover, some key microsimulation models of special interest for 

the development of this research are exposed such as the vehicle generation model, the 

vehicle interaction model, and the CAV platoon forming logic. 

 Chapter 3 through 7 are the body of this research. These chapters provide an 

additional review of the literature on the background of each chapter’s research objective. 

Chapter 3 to Chapter 7 are either peer-reviewed published technical papers or currently 

under preparation or consideration by a technical journal for publication.  

 Chapter 3 uses the exact Highway Capacity Manual, Sixth Edition (HCM-6) equal 

capacity passenger car equivalencies (EC-PCE) methodology to estimate capacity and 

EC-PCEs for CAV truck platoons on three-lane freeway segments. The original HMC-6 

EC-PCE procedure is described step by step. A comparative analysis of the EC-PCE 

values estimated for CAV trucks and non-CAV trucks is discussed. In addition, a 
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sensitivity analysis explores some relevant CAV operational assumptions including 

market penetration rate, platoon size, truck type restriction, and lane restriction. This 

chapter also addresses some issues identified in the original HCM-6 methodology relative 

to experimental replication and regression models development. Note that a significant 

part of this chapter was published in the American Society of Civil Engineers Journal of 

Transportation Engineering (Hurtado-Beltran & Rilett, 2021). 

 Chapter 4 contributes to the dissertation narrative by assessing the performance of 

the original nonlinear regression model used in the HCM-6 EC-PCE research as 

compared to simpler regression model structures. The performance of the regression 

models is analyzed considering two traffic conditions, CAV truck platooning and 

conventional traffic. Note a significant part of this chapter will be published in a 

forthcoming edition of the Transportation Research Record journal (Hurtado-Beltran & 

Rilett, 2021). 

 Chapter 5 introduces a simpler nonlinear regression model used to develop 

equations for the estimation of CAF values and EC-PCE values for freeway and 

multilane highway segments. The benefits of the proposed equations and how they could 

be implemented in the HCM-6 are discussed in this chapter. Finally, the marginal effects 

of the main contributors in the proposed model are analyzed to better understand the 

relationship between the main influencing factors defined in the HCM-6 research and the 

traffic metrics.   

 Chapter 6 addresses some issues identified in the HCM-6 EC-PCE methodology 

including a new capacity definition and a new data aggregation level atypical of past 

HCM releases. This chapter compares the HCM-6 PCEs, and associated capacity 
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adjustment factors (CAFs), with values developed using the HCM-6 EC-PCE 

methodology with historic HCM assumptions. The proposed approach presented in this 

chapter is later used in Chapter 7. 

 The improved methodology developed in this dissertation for estimating capacity 

and EC-PCE values for traffic scenarios beyond the scope of the HMC-6 is presented in 

Chapter 7. The proposed methodology is illustrated using the Western U.S. conditions 

under the operation of CAV truck platooning as a case study. A comparative analysis of 

the results between the CAV condition and the non-CAV condition is also discussed.  

 The concluding remarks and future research recommendations of this dissertation 

are summarized in Chapter 8. 
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CHAPTER 2 

 LITERATURE REVIEW 

2.1 Introduction 

In this research, it is argued the HCM-6 EC-PCE methodology for basic freeway and 

multilane highway segments can be used to analyze different traffic situations beyond the 

scope of the HCM-6. In particular, the goal of this research is to examine the CAV truck 

platooning effect on the estimation of EC-PCE values using the existing HCM-6 

approach. It is important to note the HCM-6 EC-PCE methodology is microsimulation-

based where a VISSIM model is used for modeling the capacity of various traffic 

scenario combinations. As a result, the literature review is divided into two parts to 

provide a better background on these two main components of the research. The first part 

of the literature review provides a review of the state-of-the-art CAV truck platooning 

research. The second part provides a description of the microsimulation architecture of 

VISSIM with especial emphasis on the key models for traffic modeling such as the 

vehicle generation model and the vehicle interaction model that are of vital interest for 

the HCM-6 EC-PCE VISSIM model. 

2.2 CAV Truck Platooning Research 

This dissertation uses the ACEA truck platooning definition where truck platooning is 

defined as the “linking of two or more trucks in convoy, using connectivity technology 

and automated driving support systems.” Many researchers believe truck platooning will 

be one of the earliest CAV technologies to be deployed on the national highway system 

because of its lower operational complexity and the advantages offered to freight carrier 
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companies in terms of fuel savings, safety benefits, and labor costs, among others 

(Janssen, et al., 2015; ACEA, 2017). The Minnesota Department of Transportation 

reported local transportation agencies should prepare a plan for the gradual integration of 

automated technology and truck platooning in the next 5 to 10 years (Hallmark, 

Veneziano, & Litteral, 2019). The report “Challenges to CV and AV Applications in 

Truck Freight Operations” included an extensive discussion of the challenges and 

expected benefits of the truck platooning deployment in the US (Fitzpatrick et al., 2016). 

This report also listed various research needs including research on the impact of CAV 

platooning on transportation capacity.  

 Over the past few years, there have been a number of studies analyzing the effect 

of CAV technology on highway capacity. Kittelson & Associates (2019) derived capacity 

adjustment factors (CAFs), as a function of volume and market penetration rate, for 

CAVs on freeway segments that will be used in planning studies. This study utilized 

VISSIM and examined three different driving behaviors in VISSIM: AV Cautious, AV 

Normal, and AV All-knowing. The authors found that CAVs may increase freeway 

capacities by 30-40% at 100% market penetration rates with the caveat that these results 

would be a function of certain factors such as technology, legislation, and public 

acceptance.   

Stanek (2019) proposed an adjustment factor to modify the adjusted demand 

volume (Vp in Equation 12-9) of the HCM procedure. This adjustment factor was based 

on VISSIM modeling and was used to account for the effect of passenger car AVs on 

freeway capacity. The microsimulation model was calibrated so the 15-minute capacity 

replicated the base capacity included in the HCM-6. This calibrated model was then used 
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to explore various AV scenarios. Similar to the previous study, a sensitivity analysis of 

the effect of market penetration rates on freeway capacity was conducted. It was found 

the AV capacity ranged from 2,350 to 3,200 veh/h/ln. Note the study did not analyze 

platoon formation nor analyze driver behavior logic.   

Shi and Prevedouros (2016) explored the impact of CAV and AV technologies on 

freeway segment capacity by using a Monte Carlo simulation to estimate level of services 

(LOS) assuming AVs and CAVs headways (1.0 and 0.5 seconds respectively) and market 

penetration rates (0.1%, 1%, 5%, and 10% to 100% using 10% intervals). They used the 

HCM-5 macroscopic equations as a base situation. They found AVs can improve LOS at 

high density conditions. However, the scope of the study was limited in that they 

extrapolated existing HCM-5 equations to explore their AV/CAV scenarios. In addition, 

the HCM-5 capacity values were updated in the HCM-6. 

Other studies have also found capacity improvements on freeways due to the 

deployment of CAV technology (Makridis et al., 2018; Rossen, 2018). It should be noted 

these studies used experimental data instead of empirical data and did not include an 

analysis of truck platooning. There were no studies in the literature that used the EC-PCE 

methodology, which is the standard for capacity analyses of freeways in the U.S. (Zhou 

et al., 2018; HCM, 2016; Dowling et al., 2014a; Yang, 2013), to analyze truck platooning 

effects.  

 The Truck Platooning Project in Japan (TTC, 2019) assessed the deployment 

CAV truck platooning on a Japanese highway. The platoons ranged in size from 2 to 4 

trucks with truck spacing as small as 10 meters and speeds of 70 and 80 km/h. The 

authors reported successful operation of the platooning systems and identified issues 
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relative to visibility and merging points. Bevly and Ward (2019) assessed the feasibility 

of implementing driver assisted truck platooning using Cooperative Adaptive Cruise 

Control (CACC) and Vehicle to Vehicle (V2V) communication technology. The authors 

used computational fluid dynamics analysis and simulation models, which were validated 

using empirical data obtained from a test track. They found truck platooning resulting in 

fuel savings of between five and seven percent and the improvements were a function of 

the following distance of trucks in the platoons. The ENSEMBLE project 

(Konstantinopoulou, Coda, & Schmidt, 2019) identified V2V communication protocols 

for multi-brand truck platooning in Europe. Three platoon levels were defined based on 

automation capabilities and time gaps between vehicles. The FHWA Level 1 Truck 

Platooning Research Program is currently on-going and has the aim of exploring human 

factors and early deployment factors related to truck platooning operations in the U.S. 

(McHale, 2019). In addition to this, an extensive literature review relative to truck 

platooning control systems can be found elsewhere (Guanettia, Kima, & Borrelli, 2018; 

Li et al., 2016).  

2.3 Modeling the Traffic Demand in VISSIM 

2.3.1 Microsimulation Model Architecture 

During recent years, microsimulation has become an increasingly common traffic 

analysis tool for planning, operating, and researching transportation engineering systems. 

A traffic microsimulation model is a virtual representation of a traffic system where the 

driver-vehicle unit represents the fundamental entity of analysis. According to Jaume 

Barceló (2010), the architecture system of a microsimulation model generally comprises 
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four main building blocks: (1) infrastructure, (2) traffic, (3) control, and (4) output. The 

infrastructure building block shapes the road network and comprises the static objects 

such as lanes, ramps, connectors, medians, islands, parking lanes, bus stops, sidewalks, 

crosswalks, buildings, poles, marks, and detectors. On the other hand, the traffic building 

block includes the dynamic elements of the traffic simulation and has the aim to provide 

traffic demand and govern its behavior. The entities that are part of the traffic building 

block may include the driver-vehicle units, pedestrians, bicycles, buses of the transit 

system, and trains. It is important to mention this building block is key for a reliable 

traffic simulation because it defines how the dynamic elements are going to behave in the 

road network. Regarding the control building block, this contains the elements that 

change the behavior of the dynamic entities in terms of traffic operations. The traffic 

signal controls, priority rules, and the speed controls are some examples of elements that 

pertain to the control block. 

During the simulation process, the three blocks described above exchange 

information between each other, forming a loop as shown in Figure 2-1. In this loop, the 

output of one building block may be the input of another one. Within this process, the 

output building block saves the data derived from each block in the loop. This data 

collection can be done each tenth of a second or a greater time simulation unit (i.e., 

simulation time step) defined by the user. The output building block is responsible for 

processing the data to compute the performance measures or any relevant information 

requested by the user including a visual animation of the traffic simulation. 
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Figure 2-1. Building blocks of the microsimulation architecture (modified from 

Barceló, 2010) 

The focus of this dissertation is closely related to the traffic building block. Here 

the traffic demand is generated through three key models: (1) vehicle generation 

(introduce the vehicles in the simulation), (2) vehicle movement (control the behavior 

and routes of vehicles in the network), and (3) vehicle interaction (govern the reaction of 

vehicles to other vehicles present in the traffic stream) (Dowling, Skabardonis, & 

Alexiadis, 2004).  

The demand in a microsimulation model is often represented by an origin-

destination (OD) matrix, which lists the volume of vehicles traveling between all 

combinations of a given origin and a given destination over a set time period. For a given 

OD pair, the vehicle generation model takes the given OD volume and converts it into 

SUPPLY 

DEMAND 
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simulated vehicles that enter the network at specific times. The OD volume may be 

treated as either static (e.g., exactly 200 vehicles from origin node A to destination node 

B) or stochastic (e.g., on average, 200 vehicles travel from origin node A to destination 

node B where the exact number is randomly chosen during the simulation). The 

simulated vehicles are assigned to enter the network from a link (e.g., road segment) that 

originates from the origin (e.g., parking lot). When a driver-vehicle unit is generated in 

the simulation process, all their attributes are defined as well. These attributes may be 

grouped into three categories: (1) vehicle characteristics (length, width, 

maximum/minimum acceleration/deceleration, maximum speed, maximum turn radius, 

etc.), (2) driver characteristics (aggressiveness, reaction time, desired speed, critical gaps, 

route, etc.), and (3) time headways between two successive vehicles. The driver-vehicle 

attributes may be modeled by constants, functional relationships with other attributes, or 

using probability distributions (Dowling, Skabardonis, & Alexiadis, 2004). The 

probability distributions are used to reflect the variability of the driver-vehicle 

characteristics in the real transportation system. 

Usually, the traffic demand can be modeled from two main approaches: (1) static 

assignment (based on vehicle inputs and turning proportions), and (2) dynamic 

assignment (defined by traffic zones and origin-destination matrices) (Fellendorf & 

Vortisch, 2010). The first approach is more frequently applied because it is easy and 

quick to set when the network involves a limited number of turning movements, but here 

the routes followed by vehicles are randomly assigned. In contrast, the dynamic 

assignment provides more advantages when it is relevant in the study to track the vehicle 

path or deals with a more complex network, although obtaining the origin-destination 
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matrices, which are crucial for the reliability of this scheme, could represent extensive 

additional works. 

The VISSIM models also allows users to introduce driver-vehicle units using the 

COM interface. The COM (component object model) interface is an add-on module 

useful for data preparation and processing, scenario management, and objects controlling 

(PTV, 2019b). The COM interface can execute external script files from a high-level 

programming language (e.g., Python®, Microsoft® Visual Basic®, MATLAB®, Java®, 

etc.). Through this module, the user can create vehicle inputs in the network while 

controlling some stochastic attributes of the driver-vehicle units such as entry times (e.g., 

arrivals), vehicle type, desired speed, link and lane selection, traffic interaction type, and 

link position. By controlling the key sources of stochasticity, the COM interface allows 

users to conduct more realistic experimental studies. 

Due to the characteristics of the microsimulation model used in HCM-6 to 

analyze basic freeway segments, the vehicle generation model and the vehicle interaction 

model are of special interest for this dissertation. A brief discussion of these key models 

in VISSIM is provided in the following sections. 

2.3.2 Vehicle Generation Model 

The vehicle generation model determines how and when the driver-vehicle units are 

introduced in the simulation. Most microsimulation models include exact and stochastic 

options to vehicle generation (PTV, 2019b; TTS, 2016; Husch & Albeck, 2004; MnDOT, 

2008). In the former, the user decides exactly how many vehicles will be generated, and 

in the latter, the user inputs the parameters of a predefined distribution and the 

microsimulation identifies the number of vehicles generated by sampling from this 
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distribution (Dowling, Skabardonis, & Alexiadis, 2004). In VISSIM, the vehicle 

generation model uses either vehicle inputs for static assignment or parking lots for 

dynamic assignment to introduce the traffic in the simulation (PTV, 2018). 

2.3.2.1 Vehicle Generation Under Static Assignment 

Under the static assignment scheme, the traffic demand is generated at the link entries 

instead of traffic zones as it occurs in the dynamic assignment. The vehicle input function 

allows defining a traffic volume (either stochastic or exact) and choosing a predefined 

vehicle composition. This function requires selecting a link in which the vehicle input is 

placed. It is important to add the vehicle input generates vehicles for all the lanes part of 

the link; in other words, vehicles cannot be introduced in individual lanes for multilane 

links. Here, the lane selection of each generated vehicle depends on the maximum 

collision time offered by the available lanes (PTV, 2018). When a driver-vehicle unit is 

generated in the simulation process, all their attributes are defined as well. Such attributes 

may be grouped into three categories: (1) vehicle characteristics (length, width, 

maximum/minimum acceleration/deceleration, maximum speed, maximum turn radius, 

etc.), (2) driver characteristics (aggressiveness, reaction time, desired speed, critical gaps, 

route, etc.), and (3) Time headways between two successive vehicles (key for the vehicle 

generation model). The driver-vehicle attributes may be modeled by constants, functional 

relationships with other attributes, or using probability distributions (Dowling, 

Skabardonis, & Alexiadis, 2004). The probability distributions are used to reflect the 

variability of the driver-vehicle characteristics in the real transportation system. 
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2.3.2.2 Vehicle Inputs in the Vehicle Generation Model 

In some cases, the probability distributions used to generate stochasticity in the 

simulation are applied internally, and the user cannot change their parameters to reflect a 

specific condition, as occurs with the vehicle input function in VISSIM. According to the 

VISSIM manual (PTV, 2018), the model uses a seed number to generate a random 

number that serves as input for a probability distribution which defines the stochastic 

generation of vehicles at the link entry. The same manual also states the time headways 

are obtained from a negative exponential distribution (which relates to a Poisson 

distribution) where the average time gap comes from the hourly volume. For the vehicle 

input function, the user introduces the following parameters: 

• Volume in vehicles per hour [vph], regardless of the length of the associated time 

interval. 

• Volume type, stochastic or exact. 

• Vehicle composition associated with the volume (set of vehicle types and their 

associated classes). 

• Time interval in seconds [s] associated with the volume. Several time intervals 

with different volume and vehicle composition each may be introduced. 

• Continued time interval [Boolean]. If selected, the successive time intervals work 

as a single time interval. 

• Link in which the volume will be generated. 

The stochastic vehicle input is the default volume type in VISSIM. The user 

changes this option if the analysis requires deploying exact volumes. For example, the 

microsimulation model used to estimate the PCEs for the HCM-6 considered exact 
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vehicle inputs instead of stochastic volumes (Zhou, 2018; Dowling et al., 2014; Yang, 

2013). There is no discussion in the literature why this was chosen. In addition to this, 

some simulation guides also recommend applying exact volumes and a data aggregation 

interval of 15-min to calculate performance measures (Dowling, Skabardonis, & 

Alexiadis, 2004). However, in many simulation studies, only the more skilled users take 

care of the vehicle input type, while the impacts of this selection have not been entirely 

known. Therefore, volume type and data aggregation size are important aspects to 

consider while modeling the traffic demand to obtain reliable outputs from any 

microsimulation. 

The associated time interval of the vehicle input is another significant aspect to 

consider while deploying the traffic volumes. For example, if the user input a traffic 

volume of 1,200 veh/h for a time interval of 15-minutes in the ‘exact’ vehicle input 

scheme, the microsimulator will generate exactly 300 vehicles each 15 minutes. 

Therefore, the exact volumes would be exact only for the whole associate time interval. 

2.3.2.3 Entry Time Model 

The entry time model, which is also known as the arrival model in the simulation 

literature, is part of the vehicle generation model. This model not only creates the driver-

vehicle units but also sets the stochastic entry times for the driver-vehicle units by 

sampling from an input probability distribution. 

In some cases, the probability distributions used to generate stochasticity in the 

simulation are applied internally, and the user cannot change their parameters. This is the 

case for the entry time model in VISSIM. According to the VISSIM manual, the seed 

number input to the model is used to generate a series of pseudo-random numbers. These 
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numbers are used for stochastic modeling of a number of variables including the 

probability distribution which defines the stochastic generation of vehicles at the link 

entry location (PTV, 2019b).  In other words, the time a given vehicle is modeled as 

entering the network is generated in this model. If the seed number changes, so too does 

the simulated entry times. In VISSIM, the time headways of vehicles entering the 

network are obtained from an exponential distribution where the average time headway is 

derived from the volume input by the user. 

The time headway is defined as the time that elapses between two successive 

vehicles passing a given point on a link where the reference is taken from the front 

bumper of those vehicles (HCM, 2016). One of the earliest headway models used in 

traffic flow theory was the exponential model (Roy & Saha, 2018; Li & Chen, 2017). In 

this model, the time headways of vehicles traveling on uninterrupted flow conditions 

relate to an exponential distribution while the number of the vehicles over a time interval 

fits a Poisson distribution. It has been found this model is more realistic for lightly 

congested traffic conditions where the variance of the time headways is approximately 

equal to the mean time headway (Mannering, Kilareski, & Washburn, 2007). However, 

for underdispersed or overdispersed traffic other headway models may provide better 

results. 

Most of the commercial traffic microsimulation packages use the exponential 

distribution to model the stochasticity of time headways in vehicle generation because it 

is easy to code, has low processing demand, and if there are no platooning effects in the 

network, it fits standard traffic flow theory (PTV, 2019b; TTS, 2016; Husch & Albeck, 

2004; MnDOT, 2008). However, various empirical studies have shown that time 
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headways can fit different statistical distributions (e.g., lognormal, log-logistic, gamma, 

Pearson, etc.) depending on the characteristics of the traffic demand (Maridpour, 2015; 

Maurya, Dey, & Das, 2015). Table 2-1 shows various headway distributions that have 

been used to model different traffic operating conditions on highways in the literature. 

For example, the exponential distribution is considered suitable for modeling headways at 

low flow rates while the lognormal distribution is recommended when there are moderate 

to high levels of congestion (Roy & Saha, 2018; Li & Chen, 2017). It is important to note 

traffic microsimulation studies are often used to analyze transportation facilities when 

they are approaching or at congested conditions. Interestingly, the most recent version of 

the Highway Capacity Manual (HCM) has utilized the VISSIM microsimulation 

exclusively to identify capacity for freeways in the U.S. (HCM, 2016). 

Table 2-1. Headway Distribution Models (modified from Roy & Saha, 2018). 

Author (Year) 
Distribution 

Function 
Traffic Condition 

Adams (1936) Poisson Arrivals in short periods 

Greenberg (1966) 

Lognormal 
Moderate to heavy flow 

Car-following models 

Mei and Bullen (1993) 

Luttinen (1996) 

Dey & Chandra (2009) 

Adams (1936) 

Kumar and Rao (1998) 
Exponential 

Low flow; small vehicles (e.g., two-

wheelers) Al-Ghamdi (2001) 

Arasan and Koshy (2003) 

Luttinen (1996) Gamma Low to moderate flow 

Yin  et al. (2007) 
Log-logistic Heavy flow, congestion status 

Jang (2012) 

Riccardo and Massimiliano (2012) Pearson 5, Person 6 Heavy flow 
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2.3.3 Vehicle Interaction Model 

2.3.3.1 Car-Following Model 

The car-following model defines the interaction between two successive vehicles 

traveling in the same lane. This model assumes the driver of the following vehicle will 

accelerate or decelerate as a response to the stimulus received from the leading vehicle. 

There are two main types of car-following models that have been used to represent this 

basic behavior: (1) stimulus-response models (Chandler et al., 1958) and (2) psycho-

physical models (Wiedemann, 1974). 

VISSIM uses a psycho-physical car-following model that incorporates a 

stochastic response of the driver depending on its prevailing driving state. The thresholds 

of the stimulus in which the driver takes an action are known as action points and they 

define different car following stages. According to Wiedemann (1974), there are four 

different car following stages: (1) no reaction, (2) unconscious reaction, (3) conscious 

deceleration, and (4) collision. These four stages of following a leading vehicle can also 

be understood as driving states: (1) free flow, (2) following, (3) approaching, (4) braking, 

and (5) collision (PTV, 2018). These driving states are defined below: 

• Free flow: the leading vehicle does not influence the driving of the following 

vehicle. The target of the driver in the following vehicle is to reach its desired 

speed. This driving state is highlighted by a significant gap between both vehicles. 

• Approaching: The driver in the following vehicle adapts its speed to the lower 

speed of the leading vehicle. The driver consciously perceives a significant 

difference of speed between both vehicles, so he decelerates the vehicle to 
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diminish that difference of speed until reaching the desire safety distance. In this 

case, the driver applies the desired deceleration assigned to the vehicle category. 

• Following: The driver in the following vehicle maintains the desired safety 

distance between both vehicles without consciously accelerating or decelerating. 

The difference of speed oscillates around zero due to the imperfect throttle 

control. 

• Braking: The gap between the following and leading vehicle falls below the 

desired safety distance. The driver in the following vehicle applies medium to 

high deceleration rates to increase the gap and recover the desired safety distance.  

Figure 2-2 shows the four driving states and thresholds of Wiedemann’s car 

following model. The thresholds that define each driving state are a function of the 

difference of speed and distance gap, which implies that different values of these 

parameters will generate different regions for each driving state. These thresholds are 

defined as follows: 

• AX: desired distance between two successive vehicles in a standing queue. 

• ABX: desired safety distance (or desired minimum following distance).  

• SDV: approaching point when the driver consciously perceived a slower vehicle. 

• OPDV: increasing speed difference when the drivers of the follower vehicles 

perceived they are traveling at a lower speed than the leading vehicle.  

• CLDV: decreasing speed difference that accounts for small speed differences in 

short decreasing distances where additional deceleration is applied. In VISSIM 

this threshold is assumed to be equal to SDV.  
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• SDX: maximum following distance which varies between 1.5 and 2.5 times the 

minimum following distance. 

 

Figure 2-2. Car following model by Wiedemann (PTV, 2012) 

 According to the VISSIM manual (2018), if the following vehicle is driving 

below its desired speed during the free flow state, the acceleration is defined based on the 

following:  

1) If the desired safety distance is reached, the following vehicle drives at the same 

speed as the leading vehicle; 

2) If the desired safety speed is between 100% and 110%, the speed of the following 

vehicle is interpolated between its desired speed and the leading vehicle’s desired 

speed;  
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3) If the safety distance is greater than 110%, the follower vehicle accelerates to its 

desired speed. 

One of the challenges of the psycho-physical models is to define the distribution 

of the thresholds that produces representative results of real traffic scenarios.  The 

VISSIM manual (2018) stated the car following model has been calibrated through 

several measurements developed at the Institute of Transport Studies of the Karlsruhe 

Institute of Technology in Germany. The thresholds that define the different driving 

states are a function of the difference of the speed and the distance gap (front to rear 

distance). The variability of the driver dependent characteristics such as perception 

abilities and willingness to risk is modeled by including random values normally 

distributed to the parameters. The Wiedemann model assumes that the desired speed of 

the driver, the desired safety distance, and the perception of speed differences are 

parameters that vary across the driver population.  

In VISSIM, the user can select among three different types of car following 

models: (1) no interaction (vehicles do not recognize any other vehicles), (2) Wiedemann 

74 (recommended for modeling urban traffic and merging areas), and (3) Wiedemann 99 

(recommended for freeway traffic without merging areas). The formulas that provide the 

thresholds (action points) that define the different driving states in the Wiedemann 74 and 

Wiedemann 99 models are explained in the following sections. 

2.3.3.2 Wiedemann 74 

The Wiedemann 74 model considers six thresholds (action points) to define the four 

driving states. These thresholds are AX, ABX, SDV, OPDV, CLDV, and SDX. The 

equations to compute the thresholds were obtained from Olstam and Tapani (2004) who 
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refers to Wiedemann and Reiter (1992) for a complete explanation of the random 

numbers used in the model. It is important to note the exact difference between the car 

following model used in VISSIM and the model described by Wiedemann and Reiter 

(1992) has not been publicly known. The model parameters the user is able to change in 

VISSIM appear in red in Equations (2-1) to (2-7). In contrast, the remaining parameters 

included in the equations are managed internally in VISSIM. Figure 2-3 shows the 

Wiedemann 99 thresholds using Equations (2-1) to (2-6) assuming the default VISSIM 

parameters and a speed of 20 m/s (45 mph) for the leading vehicle. 

 

Figure 2-3. Wiedemann 74 thresholds. 

𝐴𝑋 = 𝐿𝑛−1 + 𝑨𝑿𝒂𝒅𝒅 + 𝑅𝑁𝐷1𝑛 ∗ 𝐴𝑋𝑚𝑢𝑙𝑡    (2-1) 

Where: 

AX: desired standstill distance. 

Ln-1: length of the leading vehicle. 
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RND1n: normally distributed driver dependent parameter. Mean equal to zero and 

standard deviation of 0.3 m.  

AXadd: calibration parameter. In VISSIM this parameter appears as W74ax 

(average standstill distance) and has a default value of 2.0 m with a tolerance that 

lies from -1.0 m to +1.0 m due to the values taken by the random parameter 

RND1n.  

AXmult: calibration parameter. Due to the tolerance of the parameter AXadd, it is 

assumed the value for this parameter is equal to 1.0 m. 

𝐴𝐵𝑋 = 𝐴𝑋 + 𝐵𝑋          (2-2) 

𝐵𝑋 =  𝑩𝑿𝒂𝒅𝒅 + 𝑩𝑿𝒎𝒖𝒍𝒕 ∗ 𝑅𝑁𝐷𝑍𝑛 ∗ √𝑣 

𝑣 = {
𝑣𝑛−1    𝑓𝑜𝑟   𝑣𝑛 > 𝑣𝑛−1 
𝑣𝑛          𝑓𝑜𝑟    𝑣𝑛 ≤ 𝑣𝑛−1 

  

Where: 

ABX: desired minimum following distance (desired safety distance d in the 

VISSIM manual). 

BXadd: calibration parameter. In VISSIM this parameter appears as W74bxAdd 

(additive part of the safety distance) and has a default value of 2.0. 

BXmult: calibration parameter. In VISSIM this parameter appears as W74bxMult 

(multiplicative part of the safety distance) and has a default value of 3.0. Greater 

values produce a greater distribution of the safety distance. 

RNDZn: normally distributed driver dependent parameter (appears as z in the 

VISSIM manual). The range of this value is [0,1] with mean equal to 0.5 and 

standard deviation of 0.15. This parameter was modified from Olstam & Tapani 
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(2004) in order to differentiate from the parameter RND1n that appears in the 

expression for the threshold AX. 

vn-1: current speed of the leading vehicle. 

vn: current speed of the follower vehicle. 

𝑆𝐷𝑋 = 𝐴𝑋 + 𝐸𝑋 ∗ 𝐵𝑋    (2-3) 

𝐸𝑋 =  𝐸𝑋𝑎𝑑𝑑 + 𝐸𝑋𝑚𝑢𝑙𝑡 ∗  𝑁𝑅𝑁𝐷 − 𝑅𝑁𝐷2𝑛  

Where: 

SDX: maximum following distance (varies from 1.5 to 2.5 times ABX). 

EXadd, EXmult: calibration parameters. 

NRND: normally distributed random number. 

RND2n: normally distributed driver parameter. 

𝑆𝐷𝑉 =  
∆𝑥 − 𝐿𝑛−1 − 𝐴𝑋

𝐶𝑋
 

2

 

         (2-4) 

𝐶𝑋 = 𝐶𝑋𝑐𝑜𝑛𝑠𝑡 ∗  𝐶𝑋𝑎𝑑𝑑 + 𝐶𝑋𝑚𝑢𝑙𝑡 ∗  𝑅𝑁𝐷1𝑛 + 𝑅𝑁𝐷2𝑛   

Where:  

SDV: approaching point. 

Δx: front to rear distance (distance gap) between both vehicles. 

CXconst, CXadd, CXmult: calibration parameters. 

𝐶𝐿𝐷𝑉 = 𝑆𝐷𝑉      (2-5) 

Where: 

CLDV: decreasing speed difference. 
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𝑂𝑃𝐷𝑉 = 𝐶𝐿𝐷𝑉 ∗  −𝑂𝑃𝐷𝑉𝑎𝑑𝑑 − 𝑂𝑃𝐷𝑉𝑚𝑢𝑙𝑡 ∗ 𝑁𝑅𝑁𝐷   (2-6) 

Where: 

OPDV: increasing speed difference. 

OPDVadd, OPDVmult: calibration parameters. 

NRND: normally distributed random number. 

 The speed of the following vehicle in the Wiedemann 74 model is given by 

Equation (2-7) (Gao, 2008). 

𝑢𝑛 𝑡 + Δ𝑡 = 𝑚𝑖𝑛

 
 
 

 
 3.6 ∗  

𝑠𝑛 𝑡 − 𝑠𝑗
𝐵𝑋

 

2

3.6 ∗  
𝑠𝑛 𝑡 − 𝑠𝑗
𝐵𝑋 ∗ 𝐸𝑋

 

2      , 𝑢𝑓  

  (2-7) 

Where: 

𝑢𝑛 𝑡 + Δ𝑡 : speed of following vehicle at instant 𝑡 + Δ𝑡, (km/h). 

𝑠𝑛 𝑡 : vehicle spacing between the front bumper of the leading vehicle and front 

bumper of following vehicle at time 𝑡, (m). 

𝑠𝑗: vehicle spacing at complete stop in a queue (i.e., standstill distance), (m). 

𝑢𝑓: free-flow speed, (km/h). 

2.3.3.3 Wiedemann 99  

The Wiedemann 99 model considers the same six thresholds (action points) that appear in 

the Wiedemann 74 to define the four driving states. These thresholds are AX, ABX, 

SDV, OPDV, CLDV, and SDX. In Wiedemann 99, the thresholds depend on ten 

parameters, from CC0 to CC9, that can be adjusted by the user to calibrate a traffic 
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model, demonstrating is as a more flexible model compared to the Wiedemann 74. The 

parameters CC0 to CC6 are used to define the thresholds in the model. The remaining 

parameters, CC7 to CC9, are related to different acceleration conditions of the follower 

vehicle. The equations to compute the thresholds were obtained from Aghabayk et al. 

(2013) where one of the co-authors collaborated with the PTV group. As occurs with the 

Wiedemann 74 model, the exact expressions for the Wiedemann 99 model coded in 

VISSIM has not been publicly known. The model parameters the user is able to change in 

VISSIM appear in red in the equations. The rest of the parameters are managed internally 

in VISSIM. Figure 2-4 shows the Wiedemann 99 thresholds using Equations (2-8) to (2-

13) assuming the default VISSIM parameters and a speed of 20 m/s (45 mph) for the 

leading vehicle. 

 

Figure 2-4. Wiedemann 99 thresholds. 

 𝐴𝑋 = 𝐿𝑛−1 + 𝑪𝑪𝟎             (2-8) 
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Where: 

AX: desired standstill distance [m].  

Ln-1: length of the leading vehicle. 

CC0: standstill distance. This parameter has no variation and the default value is 

1.5 m. 

𝐴𝐵𝑋 = 𝐴𝑋 + 𝑪𝑪𝟏 ∗ 𝑣    (2-9) 

𝑣 = {
𝑣𝑛−1    𝑓𝑜𝑟   𝑣𝑛 > 𝑣𝑛−1 
𝑣𝑛          𝑓𝑜𝑟    𝑣𝑛 ≤ 𝑣𝑛−1 

 

Where: 

ABX: desired minimum following distance (desired safety distance d in the 

VISSIM manual). 

CC1: headway time [s]. This is the distance in seconds the driver in the follower 

vehicle desires to maintain from the leading vehicle. This parameter can be 

defined as a constant value or as a time distribution (users are able to define a new 

empirical or normal time distribution). The default value for this parameter is 0.9 

seconds. According to the VISSIM manual (2018), the parameter CC1 has the 

most significant influence on capacity and saturation flow rate as compared to the 

other model parameters. 

v: subject vehicle speed (follower vehicle). 

vn-1: current speed of the leading vehicle. 

vn: current speed of the follower vehicle. 

𝑆𝐷𝑋 = 𝐴𝐵𝑋 + 𝑪𝑪𝟐        (2-10) 

Where: 
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SDX: maximum following distance. 

CC2: following variation [m]. This parameter restricts the distance difference 

(longitudinal oscillation) or the additional distance regarding the desired safety 

distance that a driver allows before he intentionally moves closer to the leading 

vehicle. The default value is 4.0 m. 

𝑆𝐷𝑉 = −
∆𝑥−𝑆𝐷𝑋

𝑪𝑪𝟑
− 𝑪𝑪𝟒          (2-11) 

Where: 

SDV: approaching point. 

CC3: threshold for entering following [s]. This is the number of seconds before or 

after the start of the deceleration process when the driver perceived a slower 

leading vehicle. The default value is -8.0 seconds. 

CC4: negative following threshold [m/s]. This is the negative speed difference 

during the following process. Low values produce a more sensitive driver reaction 

to the acceleration or deceleration of the leading vehicle. The default value is -

0.35 m/s. 

Δx: front to rear distance (distance gap) between both vehicles. 

𝐶𝐿𝐷𝑉 =
𝑪𝑪𝟔

17000
∗  ∆𝑥 − 𝐿𝑛−1 

2 − 𝑪𝑪𝟒         (2-12) 

Where: 

CLDV: decreasing speed difference. 

CC6: speed dependency of oscillation [1/m*s]. This is the influence of distance 

on speed oscillation during the following driving state. Values greater than zero 
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produce greater speed oscillation with increasing distance. The default value is 

11.44 m-1*s-1. 

𝑂𝑃𝐷𝑉 = −
𝑪𝑪𝟔

17000
∗  ∆𝑥 − 𝐿𝑛−1 

2 − 𝛿 ∗ 𝑪𝑪𝟓            (2-13) 

Where: 

OPDV: increasing speed difference. 

CC5: positive following threshold [m/s]. This is the positive speed difference 

during the following process in agreement to CC4. Low values produce a more 

sensitive driver reaction to the acceleration or deceleration of the leading vehicle. 

The default value is 0.35 m/s. 

δ: dummy variable [0-1]. If the subject vehicle speed v is greater than CC5, the 

dummy variable is equal to one, otherwise is equal to zero.  

Additionally, 

• CC7: oscillation acceleration [m/s2]. This is the actual acceleration during the 

oscillation process. The default value is 0.25 m/s2. 

• CC8: standstill acceleration [m/s2]. This is the desired acceleration when starting 

from standstill limited by the maximum acceleration associated to the vehicle 

type. The default value is 3.50 m/s2. 

• CC9: acceleration with 80 km/h [m/s2]. This is the desired acceleration at 80 km/h 

limited by the maximum acceleration associated to the vehicle type. The default 

value is 1.50 m/s2. 

 The speed of the following vehicle in the Wiedemann 99 model is given by 

Equation (2-14) (Gao, 2008). 
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𝑢𝑛 𝑡 + Δ𝑡 = 𝑚𝑖𝑛

 
 
 

 
 𝑢𝑛 𝑡 + 3.6 ∗  𝐶𝐶8 +

𝐶𝐶8 − 𝐶𝐶9

80
∗ 𝑢𝑛 𝑡  ∗ Δ𝑡

3.6 ∗  
𝑠𝑛 𝑡 − 𝐶𝐶0 − 𝐿𝑛−1

𝑢𝑛 𝑡 
 

2       , 𝑢𝑓  

 (2-14) 

Where: 

𝑢𝑛 𝑡 + Δ𝑡 : speed of following vehicle at instant 𝑡 + Δ𝑡, (km/h). 

𝑢𝑛 𝑡 : speed of following vehicle at instant 𝑡, (km/h). 

Δ𝑡: time step. 

𝑠𝑛 𝑡 : vehicle spacing between the front bumper of the leading vehicle and front 

bumper of following vehicle at time 𝑡, (m). 

𝐿𝑛−1: length of leading vehicle, (m). 

𝑢𝑓: free-flow speed, (km/h). 

2.3.3.4 Lane-Changing Model 

The lane changing model is a decision-making process in which the driver has to decide 

if it is possible to change to the desired adjacent lane. There are two main types of lane 

changes: (1) free lane change and (2) mandatory lane change (Gao, 2008). The free lane 

change occurs when a subject vehicle wants to improve its current speed (based on its 

desired speed) by overtaking a slower vehicle traveling on the same lane. The mandatory 

lane change is produced when a vehicle has to follow its own route or due to the 

constrictions of the road network such as a lane drop. In both cases, the lane change 

decision is mainly a function of a gap acceptance (Barcelo, 2010). During the lane 

changing process, the subject vehicle accepts that it forces a lag vehicle on the desired 

lane to decelerate with the aim of creating a safe distance for allowing the incorporation 
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of the vehicle performing the lane change. The majority of the lane-changing models the 

total gap is a function of two sub-gaps, lead gap and lag gap, as shown in Figure 2-5. The 

total gap is accepted by the subject vehicle once both the lead gap and lag gap are 

acceptable.  

 

Figure 2-5. Gap definitions in the lane-changing process (modified from Fransson, 

2018). 

The lane-changing logic coded in VISSIM is based on the Sparmann model 

developed by Willmann and Sparmann (1978). In this model, there are two types of lane-

changing behavior: (1) lane change to a faster lane, and (2) lane change to a slower lane. 

The lane-changing decision requires the evaluation of three hierarchical questions 

(Fransson, 2018): 

1) Does the driver desire to change lane? 

2) Are the driving conditions improved by a change to the adjacent lane? 

3) Is it feasible to safely perform the desired lane change? 
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According to the VISSIM manual (2019), there are two types of lane change: free 

lane change and necessary lane change. For free lane change, VISSIM checks two 

desired safety distances (1) the desired safety distance of the trailing vehicle on the 

desired lane to the lane changing vehicle, and (2) the desired safety distance of the lane 

changing vehicle to its preceding vehicle on the desired lane. In this regard, a safety 

reduction factor is applied to both desired safety distance that serves as a calibration 

parameter to increase or reduce the frequency of the lane changing. For necessary lane 

change, VISSIM checks the maximum acceptable deceleration for both the lane changing 

vehicle and the trailing vehicle on the new lane. The deceleration is a function of the 

distance to the next connector in the route. In both cases of lane change (e.g., free or 

necessary), the minimum clearance distance must be respected. Table 2-2 shows a 

description of the parameters used for the lane-changing model in VISSIM (PTV, 2019). 

Table 2-2. Lane-Changing Parameters in VISSIM. 

Parameter Description 

General behavior (lane 

change rule) 

There are two types of lane change rules: 

1) Free lane selection: overtaking is allowed in any lane. 

2) Slow lane rule: overtaking occurs using the fast lane (e.g., left side in the 

US). 

Necessary lane change 

(route) 

The deceleration thresholds for the lane change vehicle (own) and trailing 

vehicle are defined to reflect the level of aggressiveness for the lane change. 

The maximum accepted deceleration determines the range of deceleration 

accepted for the lane change. The reduction rate 1 m/s2 per distance defines 

the change rate for the maximum deceleration regarding the emergency stop 

distance.  

Waiting time before 

diffusion  

Maximum time a vehicle will stay at the emergency stop position waiting to 

perform a necessary lane change. The vehicle will be removed from the 

network if the waiting time exceeds this value.  
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Minimum clearance 

(front/rear) 

Minimum distance between two vehicles after the lane change. The default 

value is 0.5 m.  

To slower lane if 

collision time is above 

Minimum time headway that must be available on the slower lane, so that an 

overtaking vehicle switches to the slower lane. Only for slow lane rule.  

Safety distance 

reduction factor 

The safety distance of the trailing vehicle and the lane change vehicle is 

reduced by this factor during the lane change. The default value of 0.6 

represents a 40% reduction of the safety distance. 

Maximum deceleration 

for cooperative braking 

Determines to what extent the trailing vehicle in the new lane is braking 

cooperatively to help the lane change vehicle to incorporate to the new lane. 

A greater deceleration value will increase the lane-changing opportunities. 

Default value is -3 m/s2. 

Overtake reduced speed 

areas 

If selected, vehicles start a free lane change immediately upstream of a 

reduced speed area. The reduced speed area on the new lane is also observed. 

Advanced merging 

This option is considered for necessary lane change. If selected, the vehicles 

will change lane at an earlier point. This reduces the likelihood of stopped 

vehicles waiting for a gap. If not selected, the trailing vehicle will not break 

or cooperate with the lane change vehicle if it is within 50 m ahead.  

Vehicle routing 

decisions look ahead 

If selected, the vehicles identify routing decisions in advance and choose the 

lane accordingly.  

Cooperative lane 

change 

This option facilitates the lane changing by allowing the trailing vehicle on 

the new lane to detect the lane changing on the adjacent lane and then 

perform a lane change itself to accommodate the initial lane change. The 

trailing vehicle does not perform a cooperative lane change when the new 

lane is less suitable, the maximum speed difference is exceeded, or the 

maximum collision time is exceeded regarding the lane change vehicle. 

Rear correction of 

lateral position 

Ensures the lane change vehicle to be aligned to the middle of the lane at the 

end of the lane change. The rear correction occurs for slower vehicles than 

the specified maximum speed. The user can also define the elapsed time 

between the lane change and rear correction (active during time period from). 

2.3.4 CAV Platoon-Forming Logic 

Because of its widespread importance for many transportation planning agencies, many 

traffic microsimulation models have added features that allow for CAV modeling. For 

example, VISSIM 20 allows the user to model CAV platoons based on a preset platoon 
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forming logic and user-defined platoon properties. A comprehensive analysis of the 

platooning logic may be found elsewhere (PTV, 2019b). The platoon attributes defined 

by the user include the maximum number of vehicles in the platoon, the desired speed, 

and the intraplatoon spacing. Conversely, the platoon forming logic is defined by the 

following conditions: 

• CAVs must travel on the same lane to join a platoon (no lane-changing is 

allowed). 

• The headway must be shorter than the preset close-up distance. 

• Only CAVs are allowed in the platoon. 

• The desired speed of the following CAV must be higher than that of the preceding 

CAV. 

• The leading CAV controls the platoon speed and does not travel faster than the 

desired platoon speed input by the user. 

• Platoons cannot change lanes (e.g., they cannot pass). 

• The vehicles leave the platoon based on their individual path or route. 

• If a vehicle leaves the platoon, the original platoon is divided into two platoons. 

For an adequate interpretation of the simulation results, the analyst must take into 

account the conditions listed above. Because CAV is a disruptive technology that has not 

yet been fully implemented, it is impossible to calibrate the simulation results to 

empirical data. However, the VISSIM models have been calibrated to non-CAV 

conditions including the HCM-6 EC-PCE model that has been used in the most recent 

version of the Highway Capacity Manual (PTV, 2019b; HCM, 2016).  
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In summary , the following points were identified from the literature review: (1) 

there is a general agreement about the early deployment of CAV truck platooning in the 

freeway system, (2) the potential effects of CAV technology on freeway capacity is 

considered a research need, (3) the HCM-6 EC-PCE methodology has not been used to 

explore the effect of CAV technology, (4) there is a lack of empirical data relative to 

truck platooning; (5) microsimulation models have started adding CAV modeling 

capabilities due to the interest of traffic agencies; (6) existing microsimulation models 

have been calibrated for non-CAV traffic; (7) some key models of the traffic building 

block have limitations that the analyst must consider while modeling traffic. 

In the following chapter, the exact HCM-6 EC-PCE methodology will be used to 

explore the impact of CAV truck platooning on HCM-6 capacity and EC-PCE values. 

The original HCM-6 procedure will be described step by step and the identified 

shortcomings while modeling CAV traffic will be highlighted and discussed. These 

shortcomings are addressed in later chapters to provide support to the proposed 

methodology developed in this dissertation. 
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CHAPTER 3 

 IMPACT OF CAV TRUCK PLATOONING ON HCM-6 CAPACITY AND 

PASSENGER CAR EQUIVALENT VALUES 

3.1 Introduction 

The HCM-6 equal capacity methodology for freeway segments is based completely on 

VISSIM microsimulation model results aggregated over one-minute intervals. The HCM-

6 includes EC-PCE values for 14 levels of truck percentage, 13 levels of grade, 7 levels 

of grade distance, and 3 levels of truck composition type. The advantage to using a 

simulation model is obvious — it greatly reduces the amount of empirical data that needs 

to be collected and allows for relatively quick analysis of many different situations. For 

example, on the surface it would be relatively easy to simulate connected and automated 

(CAV) vehicles and use the resulting output to estimate capacity and PCE values. The 

disadvantages are also obvious (Hendrickson and Rilett, 2017). In particular, the 

developers of the VISSIM model periodically update their model and do not guarantee 

backward compatibility. Therefore, if users are going to use later versions of VISSIM to 

model new situations, such as CAV vehicles, and use the output to estimate capacity and 

PCE values, they must ensure the results are compatible with the original VISSIM model 

used to calculate the values in the HCM-6. 

Recently, there has been a significant amount of research related to heavy trucks 

operating as autonomous vehicles (AV) as well as connected and autonomous vehicles 

(CAV) (Bujanovic, & Lochrane, 2018; Kang, Ozer, & Al-Qadi,2019; Mahdavian, 

Shojaei, & Oloufa, 2019). CAVs are defined as vehicles capable of both autonomous 
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driving and connectivity with other entities of the transportation system (e.g., vehicles, 

road infrastructure, etc.) (Guanetti, Kim, & Borrelli, 2018). These CAVs will form 

platoons where the lead vehicle “controls” the behavior of the following vehicles and the 

following vehicles are able to maintain time headways much smaller than those used by 

non-CAVs. It is hypothesized these CAV platoons will, among other benefits, reduce 

congestion, increase capacity, reduce pollution, and alleviate the U.S. commercial driver 

shortage. It has been argued heavy trucks will be the first CAVs on the national truck 

highway system because the driving environment is not as complex as urban arterial 

networks and because there are significant benefits in terms of increased fuel efficiency, 

reduced operating costs, and improved truck safety (Hallmark, Veneziano, & Litteral, 

2019; Fitzpatrick et al., 2016; Janssen, et al., 2015).  

It is important the effect of CAVs on the performance of these systems be 

determined. While there has been considerable work done on CAV modeling (Sukennik 

& PTV Group, 2018; Kittelson & Associates, 2019; Stanek, 2019; Shi & Prevedouros, 

2016) none have used the HCM-6 methodology which is the national standard 

for estimating capacity and quality of service for freeways. Consequently, it is unclear 

exactly how the highway capacity metrics, including the HCM-6 PCE values, will need 

to change. It is argued in this chapter that to understand the potential impact on the 

freeway system of CAV technologies the analyses should be conducted using the 

standard U.S. methodological framework. This is the motivation of this chapter.   

 Specifically, this chapter uses the exact HCM-6 EC-PCE methodology to estimate 

EC-PCEs for CAV trucks on freeway and multilane highway segments. The main 

objective is to analyze highway capacity under the interaction of CAV trucks and 
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conventional vehicles. In addition, sensitivity analyses are conducted in order to explore 

the effect of four factors considered critical in the operation of CAVs: (1) market 

penetration rate, (2) lane restriction, (3) platoon truck type, and (4) platoon size. It should 

be noted it is assumed that only trucks can operate in CAV mode in this chapter. 

Passenger cars will operate as conventional or non-CAVs. This assumption may be 

relaxed without changes to the methodology discussed in this chapter. Additionally, it is 

assumed the operational and geometric characteristics of the vehicles and testbeds used in 

the CAV analysis (e.g., acceleration/deceleration profiles, speed distributions, weight, 

and power distributions, vehicle lengths, etc.) are the same as those used in the original 

HCM-6 methodology.   

The remainder of the chapter is laid out in four sections. First, the current HCM-6 

EC-PCE values are estimated to ensure the current version of VISSIM can be used to 

replicate the existing HCM-6 values. Secondly, the VISSIM microsimulation model is 

run with a CAV base case scenario and the output is used to estimate Capacity 

Adjustment Factors (CAFs) following the HCM-6 estimation methodology. Next, the 

exact HCM-6 EC-PCE methodology is used to estimate EC-PCEs for CAV trucks 

interacting with conventional traffic. Lastly, a sensitivity analysis is performed to 

measure the effect of different operational CAV conditions on highway capacity.  

3.2 HCM-6 EC-PCE Procedure 

The HCM-6 EC-PCE methodology is comprised of five main steps as shown in Figure 

1-2. In Step 1, the simulated capacities for both passenger car-only flow and mixed flow 

are obtained for various combinations of grade, grade length, truck percentage, and 

vehicle fleet composition. In Step 2, the Capacity Adjustment Factors (CAFs) for 1,274 
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scenarios are calculated. A nonlinear regression model is created in Step 3 that can 

predict the CAF value as a function of the parameters analyzed in Step 1. These 

calibrated models are used to estimate CAFs in Step 4. In Step 5, the EC-PCEs for 

specific combinations of truck percentage, grade, and grade distance are estimated based 

on the CAF estimates. These are the values provided in the HCM-6. A complete 

description of the HCM-6 EC-PCE methodology, including the key simulation 

parameters of the VISSIM model, can be found elsewhere (Zhou, Rilett, & Jones, 2019; 

Zhou, 2018; Dowling et al., 2014b). A brief description, which highlights issues critical 

for modeling the effects of CAV vehicles, is provided below. 

3.2.1 HCM-6 Model Assumptions 

It is important to note the HCM-6 CAF/EC-PCE values are dependent on the VISSIM 

Version 4.4 simulation model—to the author’s knowledge no empirical data was used to 

calibrate and validate the HCM-6 capacity and EC-PCE values (Dowling et al., 2014a, 

2014b; Yang, 2013; Zhou, 2018). This approach is a huge advantage from a modeling 

perspective; it takes significantly less time to model the 1,274 HCM-6 scenarios in 

comparison to collecting empirical data and developing statistically-based models. In 

addition, it also allows modelers to study new technologies, such as CAV truck 

platooning. However, there are a number of issues related to the “all-simulation” 

approach adopted by the HCM-6 (Hendrickson and Rilett, 2017). For example, the 

VISSIM developers do not guarantee backward compatibility so there is no guarantee the 

current version, VISSIM 20, will result in the same EC-PCE values as shown in the 

HCM-6. Since the HCM-6 was released in 2016, there have been no less than five 

updated versions of VISSIM released. Due to its CAV and platoon modeling capabilities, 
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VISSIM 20 was used in this research. Consequently, a considerable amount of effort was 

spent ensuring the reasonableness of using this version of VISSIM in this research. 

The layout of the HCM-6 test network is depicted in Figure 1-3. This test 

network is a unidirectional freeway segment with 3-lanes of 3.66 m (12 ft) width each. 

The total length of 24.1 km (15 mi) is divided in three sections: (1) an initial level section 

of 12.9 km (8 mi) to assure all vehicles may enter in the link regardless the congestion 

level, (2) an intermediate grade section of 9.7 km (6 mi) for data collection, and (3) a 

final level section of 1.6 km (1 mi). The intermediate grade section contains seven data 

collection points (each covering the 3 lanes). The traffic information obtained at these 

locations are used as input to the HCM-6 methodology.  

The HCM-6 methodology has a large number of assumptions including those 

related to vehicle speed (e.g., all vehicles travel at the same uniform free-flow speed of 

112.7 km/h (70 mph)), vehicle length, weight and power, and driving behavior. A 

detailed description of the assumptions can be found elsewhere (Dowling et al., 2014a; 

Zhou, 2018). Unless otherwise noted, all the assumptions in the original HCM-6 research 

were followed in this chapter. 

Note that four factors (e.g., truck percentage, grade, distance, and truck 

composition type) were examined in the original HCM-6 research. The same factors and 

scenarios were examined in this chapter. In the original research, three truck composition 

percentages also were explored: (1) 30/70 Single Unit Truck (SUT)/Tractor Trailer (TT), 

(2) 50/50 SUT/TT, and (3) 70/30 SUT/TT. In this chapter, only the former scenario was 

studied as it is the most common on the U.S. highway system (HCM, 2016). 
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3.2.2 Background Analysis 

The most recent version of VISSIM, VISSIM 20, has CAV platoon modeling 

capabilities. However, the HCM-6 EC-PCE values were calculated using VISSIM 4.4 

(Yang, 2013). Recent studies have shown that the HCM-6 EC-PCE results can be 

replicated using VISSIM 9 (Zhou, 2018, Zhou et al, 2019). However, it would be a 

mistake to assume the simulation logic underlying VISSIM releases 4.4 and 9 is the same 

as VISSIM 20. It is important to note the VISSIM developers acknowledge simulation 

results can differ among different versions due to changes and updates in the internal 

logic of the simulator (PTV, 2019b). Consequently, the first step was to ensure the HCM-

6 EC-PCE values can be replicated using VISSIM 20. If true, then the results of this CAV 

analysis in this chapter can be compared directly to the HCM-6 results.   

The first step was to compare the capacity values obtained from VISSIM 20 and 9 

for all scenarios included in the HCM-6. In these experiments, all the simulation 

parameters were set equal to the HCM-6 values and both passenger cars and mixed-flow 

traffic were analyzed. The results showed the capacity, which is defined in the HCM-6 as 

the 95th percentile of the 1-minute average flow-rate, of the passenger car-only condition 

was 6.54% lower, on average, for the VISSIM 20 results as compared to the VISSIM 9 

results. A paired t-test at 0.05 level of significance showed this difference was 

statistically significant. In contrast to the passenger car-only condition, the difference 

between VISSIM 20 and 9 for the mixed-traffic condition was only 0.60%, on average, 

and this was not statistically significant at the 0.05 level of significance.  

Based on the above results, it was decided to use VISSIM 20 for the mixed-flow 

simulations and VISSIM 9 for the passenger car-only flow condition because it was 
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assumed this would give the best chance for replicating the HCM-6 results. This 

assumption will be checked later in this chapter. The steps for replicating the HCM-6 EC-

PCE values are described below. 

3.2.3 Step 1: Flow-density plots 

In Step 1, the flow-density plots of each scenario are created based on output from the 

VISSIM model. Following HCM-6 protocols, each scenario is simulated using one single 

run and the same seed number. There are nine volume levels (e.g., 240, 600, 1200, 1800, 

1920, 2040, 2160, 2280, and 2400 veh/h/ln) in every run and these correspond to volume-

to-capacity ratios from 10% to 100% based on an assumed theoretical capacity of 2,400 

veh/h/ln. Each volume level consists of one-hour of vehicle loading to achieve a steady-

state condition, one-hour of steady-state for data collection, and one-hour of vehicle 

unloading. As a result, the simulation period comprises a total of 27 hours per scenario 

(e.g., 3 hours per volume level by 9 volume levels). The scenarios are defined by a 

combination of the following factors: 

• 2 flow-rate types (f) either passenger car-only or mixed traffic flow,  

• 13 levels of truck percentage (p) from 2% to 100%,  

• 13 levels of grade (g) from -6% to 6%, and  

• 7 levels of grade distance (d) from 0.40 km (0.25 mi) to 8.05 km (5.00 mi).   

In total, there are 91 scenarios for the passenger car-only flow condition (e.g., 13 

levels of grade x 7 levels of distance), and 1,183 scenarios for the mixed-traffic flow 

condition (e.g., 13 levels of truck percentage x 13 levels of grade x 7 levels of distance). 

The VISSIM model output consisted of the space mean speed and the flow rate collected 
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at each detector per one-minute interval. These outputs are used to compute the hourly 

flow rate and density, at one-minute averages, for each combination using Equations (3-

1) and (3-2), respectively. 

𝑞𝑓 ,𝑡 ,𝑝 ,𝑚 ,𝑔 ,𝑑 ,𝑟 = 𝑉𝑓 ,𝑡 ,𝑝 ,𝑚 ,𝑔 ,𝑑 ,𝑟 ∗ 60 1 

    (3-1) 

𝑘𝑓 ,𝑡 ,𝑝 ,𝑚 ,𝑔 ,𝑑 ,𝑟 =
𝑞𝑓 ,𝑡 ,𝑝 ,𝑚 ,𝑔 ,𝑑 ,𝑟

𝑣 𝑓 ,𝑡 ,𝑝 ,𝑚 ,𝑔 ,𝑑 ,𝑟
 1 

    (3-2) 

Where: 

𝑞𝑓,𝑡,𝑝,𝑚,𝑔,𝑑,𝑟: Flow rate for the f flow type at t time interval, p truck percentage 

level, m truck composition level, g grade level, d distance level, and r simulation 

flow-rate level based on 1-min interval traffic volume recorded by the detector, 

(veh/h/ln). 

𝑉𝑓,𝑡,𝑝,𝑚,𝑔,𝑑,𝑟: 1-min interval traffic volume recorded by the detector for the f flow 

type at t time interval, p truck percentage level, m truck composition level, g 

grade level, d distance level, and r simulation flow-rate level, (veh/min/ln). 

𝑘𝑓,𝑡,𝑝,𝑚,𝑔,𝑑,𝑟: Density for the f flow type at t time interval, p truck percentage level, 

m truck composition level, g grade level, d distance level, and r simulation flow-

rate level, (veh/mi/ln). 

𝑣 𝑓,𝑡,𝑝,𝑚,𝑔,𝑑,𝑟: 1-min interval space mean speed for the f flow type at t time interval, 

p truck percentage level, m truck composition level, g grade level, d distance 

level, and r simulation flow-rate level, (mph). 

The hourly flow-rate and density values populate the scatter plots for each 

scenario. There are 1,274 scatter plots in total. Each flow-density scatter plot for a given 
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scenario contains 540 pairs of flow-rate and density values (e.g., 60 minutes x 9 volume 

levels). Each scatter plot is used to identify the capacity value for a given scenario. Note 

in the HCM-6 capacity is defined as the 95th percentile of the maximum one-minute 

average flow-rate for the given scenario (Dowling et al., 2014a, 2014b; Yang, 2013). To 

the author’s knowledge, this is the first time the HCM has used an aggregation level other 

than 15 minutes to calculate a traffic flow metric. Therefore, care must be taken in 

comparing the capacity values found in the HCM-6, and by definition in this chapter, 

with other published capacity values based on larger aggregation levels. The simulated 

capacity for each of the 1,274 scenarios is calculated using Equation (3-3). Note if the 

540 observations from each scenario were ordered from smallest to largest, the 95th 

percentile value will be the 513th largest observation. 

𝐶𝑓 ,𝑝 ,𝑚 ,𝑔 ,𝑑 = P95
𝑡=1,60
𝑟=1,9

  𝑞𝑓 ,𝑡 ,𝑝 ,𝑚 ,𝑔 ,𝑑 ,𝑟  1 

   (3-3) 

Where: 

𝐶𝑓,𝑝,𝑚,𝑔,𝑑: Capacity for the f flow type at p truck percentage level, m truck 

composition level, g grade level, d distance level, (veh/h/ln). 

𝑃95: 95th percentile. 

𝑞𝑓,𝑡,𝑝,𝑚,𝑔,𝑑,𝑟: Flow rate for the f flow type at t time interval, p truck percentage 

level, m truck composition level, g grade level, d distance level, and r simulation 

flow-rate level, based on 60 1-min interval traffic volume recorded by the detector 

(veh/h/ln). 



64 

 

 

To illustrate, Figure 3-1 shows the flow-rate versus density graph for the 

passenger car-only flow, 3% grade, and 1.61 km (1.0 mi) distance scenario. It may be 

seen that the relationship between flow rate and density is linear. Using Equation (3-3), 

the definition of the HCM-6 EC-PCE methodology, the capacity is found to be 2,260 

veh/h/ln. 

 

Figure 3-1. Passenger car only flow-density scatter plot (grade 3%, distance 1 mi). 

Figure 3-2 shows the flow-rate versus density graph for the same conditions as 

Figure 3-1 but for the mixed-traffic flow condition and a 20% truck percentage. It may 

be seen that at low density the flow-rate density relationship is linear. A breakpoint 

occurs at approximately 25 veh/mi/ln and the capacity value is estimated to be 1,780 

veh/h/ln. 
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Figure 3-2. Mixed traffic flow-density scatter plot (grade 3%, distance 1 mi). 

3.2.4 Step 2: Computation of Capacity Adjustment Factors from Simulation Output 

In this step, the capacity adjustment factors (CAFs) for each scenario are calculated using 

the simulation results from Step 1. These are calculated for the mixed flow and passenger 

car-only flow scenarios using Equations (3-4) and (3-5), respectively. These equations 

use the capacity of each scenario obtained from the flow-density scatter plots from Step 

1.  

𝐶𝐴𝐹2,𝑝 ,𝑚 ,𝑔,𝑑 =
𝐶2,𝑝 ,𝑚 ,𝑔,𝑑

𝐶1,0,0,𝑔,𝑑
;  ∀𝑝 = 1,𝑃;  ∀𝑚 = 1,𝑀;  ∀𝑔 = 1,𝐺;  ∀𝑑 = 1,𝐷 1 

 (3-4) 

𝐶𝐴𝐹1,0,0,𝑔,𝑑 =
𝐶1,0,0,𝑔,𝑑

𝐶1,0,0,𝑔,𝑑
= 1; ∀𝑔 = 1,𝐺;  ∀𝑑 = 1,𝐷 1 

  (3-5) 

Where: 
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𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑: Capacity adjustment factor for the mixed flow at p truck percentage 

level (𝑃 = 13), m truck composition level (𝑀 = 3), g grade level (𝐺 = 13), d 

distance level (𝐷 = 7). 

𝐶𝐴𝐹1,0,0,𝑔,𝑑: Capacity adjustment factor for the auto-only flow at g grade level 

(𝐺 = 13), d distance level (𝐷 = 7). 

𝐶2,𝑝,𝑚,𝑔,𝑑: Capacity for the mixed flow at p truck percentage level, m truck 

composition level, g grade level, d distance level, (veh/h/ln). 

𝐶1,0,0,𝑔,𝑑: Capacity for the auto-only flow at g grade level, d distance level, 

(veh/h/ln). 

To illustrate, consider the scenario defined by mixed flow (f=2), 20% truck 

percentage (p=5), 30/70 SUT/TT truck composition (m=1), +3% grade (g=10), and 1.61 

km (1.0 mi) distance (d=4). Note the passenger-car only and mixed traffic scatter plots 

for this situation were shown in Figure 3-1 and Figure 3-2, respectively. Using 

Equation (3-4) the Capacity Adjustment Factor for this situation (𝐶𝐴𝐹2,5,1,10,4 ) is 0.788 

(1,780/2,260). This calculation is repeated for the other 1,273 scenarios using either 

Equation (3-4) or (3-5), as appropriate, for the given flow type. 

The CAFs for all 1,274 scenarios are shown in Figure 3-3. The x-axis represents 

the scenario number. Each specific scenario number is calculated using Equation (3-6) 

and is a function of the truck percentage, grade, and distance. There were 14 truck 

percentage values (including 0%) and these are shown on the top of Figure 3-3. The red 

line represents the simulated CAFs from this chapter and the orange line the estimated 

CAFs obtained in the original HCM-6 research. The blue line will be discussed in Step 4. 

For a given truck percentage, the CAFs for grade and grade distance are shown in order. 
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The general form is a flat straight line for the negative and zero grade scenarios, followed 

by decreasing CAF values for the positive grade values.   

 

Figure 3-3. Estimated CAF for Each Scenario. 

𝑛 = 91 ∗ 𝑝 +  𝑔 − 1 ∗ 7 + 𝑑 1 

  (3-6) 

Where: 

𝑛: Scenario number. 

𝑝: Ordinal number of truck percentage level, p = 1, 2,..., P, means 2-100% truck 

percentage. 

𝑃: Total levels of truck percentage, P = 13. 

𝑔: Ordinal number of grade level, g = 1, 2,., G, means –6% to 6% grade. 

𝐺: Total levels of grade, G = 13. 

𝑑: Ordinal number of distance level (the level of detector location), d = 1,2,., D, 

means 0.40-8.05 km (0.25-5.00 mi). 
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𝐷: Total levels of distance (detector location), D = 7. 

All else being equal a greater CAF value indicates a higher capacity of the 

freeway segment. A visual analysis suggests there is a good match between the estimated 

CAF values from the two sources. This closeness will be examined statistically in the 

next section. Note the CAF values from the HCM-6 are fairly stable while the simulation 

values tend to have considerable variability. This difference will be explained in the 

following section.   

3.2.5 Step 3: Regression Models Development for Estimated CAFs 

Because of the inherent variability of the CAF results from the simulation, the HCM-6 

developers chose not to use the simulated CAF values directly. Instead, they calibrated a 

regression model relating the simulated CAF values to the truck percentage, grade, and 

distance parameters. The goal was to lessen the variability in the CAF results. 

The CAF values from Step 2 are used as input and statistical regression techniques are 

used to calibrate the model. The nonlinear regression model used in the HCM-6 are 

shown in Equations (3-7) to (3-11) (Dowling et al., 2014b; Zhou, Rilett, & Jones, 2019; 

Zhou, 2018).  

𝐶𝐴𝐹2,𝑝 ,𝑚 ,𝑔 ,𝑑 = 𝐶𝐴𝐹1,0,0,𝑔 ,𝑑 − 𝐶𝐴𝐹2,𝑝 ,𝑚
𝑇𝑎 − 𝐶𝐴𝐹2,𝑝 ,𝑚 ,𝑔 ,𝑑

𝐺𝑎 − 𝐶𝐴𝐹2,𝑝 ,𝑚
𝐹𝐹𝑆𝑎  1 

  (3-7) 

𝐶𝐴𝐹2,𝑝 ,𝑚
𝑇𝑎 = 𝛼12,𝑚

𝑇𝑎 ∗ 𝑃𝑇
𝛽12,𝑚

𝑇𝑎

 1 

    (3-8) 

𝜌2,𝑝 ,𝑚
𝐺𝑎 =  

𝛾2,𝑚
𝐺𝑎 ∗  𝑝𝑠 𝑝 ; 𝑖𝑓  𝑝𝑠 𝑝 < 𝑝∗

𝜃2,𝑚
𝐺𝑎 − 𝜇2,𝑚

𝐺𝑎 ∗  𝑝𝑠 𝑝 ; 𝑖𝑓  𝑝𝑠 𝑝 ≥ 𝑝∗
 1 

   (3-9) 
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𝐶𝐴𝐹2,𝑝 ,𝑚 ,𝑔 ,𝑑
𝐺𝑎 = 𝜌2,𝑝 ,𝑚

𝐺𝑎 ∗ max  0,𝛼2,𝑚
𝐺𝑎 ∗  𝑒𝜙2,𝑚

𝐺𝑎 ∗ 𝑔𝑠 𝑔 − 𝜂2,𝑚
𝐺𝑎   

∗ max  0,𝛽2,𝑚
𝐷𝑎 ∗  1 − α2,𝑚

𝐷𝑎 ∗ 𝑒𝜙2,𝑚
𝐷𝑎 ∗ 𝑑𝑠 𝑑   

  1 

  (3-10) 

𝐶𝐴𝐹2,𝑝 ,𝑚
𝐹𝐹𝑆𝑎 = 𝜇2,𝑚

𝐹𝐹𝑆𝑎 ∗  1 − 𝜌2,𝑝 ,𝑚
𝐹𝐹𝑆𝑎 ∗  𝑝𝑠 𝑝

𝛽2,𝑚
𝐹𝐹𝑆 𝑎

 ∗   70 − 𝐹𝐹𝑆1 /100 𝜙2,𝑚
𝐹𝐹𝑆 𝑎

 1 

(3-11) 

Where: 

𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑: Capacity adjustment factor for the mixed flow at p truck percentage 

level, m truck composition level, g grade level, d distance level. 

𝐶𝐴𝐹1,0,0,𝑔,𝑑: Capacity adjustment factor for the auto-only flow at g grade level, d 

distance level. This value is assumed to be 1. 

𝐶𝐴𝐹2,𝑝,𝑚
𝑇𝑎 : Capacity adjustment factor for truck percentage effect for the mixed 

flow at p truck percentage level, m truck composition level. 

𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑
𝐺𝑎 : Capacity adjustment factor for grade effect for the mixed flow at p 

truck percentage level, m truck composition level. 

𝐶𝐴𝐹2,𝑝,𝑚
𝐹𝐹𝑆𝑎: Capacity adjustment factor for free-flow speed effect for the mixed 

flow at p truck percentage level, m truck composition level. 

𝜌2,𝑝,𝑚
𝐺𝑎 : Coefficient for capacity adjustment factor for grade effect for the mixed 

flow at p truck percentage level, m truck composition level. 

 𝑝𝑠 𝑝: Truck percentage at p truck percentage level (between 0 and 1). 

𝑝∗: Threshold of truck percentage for calculating coefficient for capacity 

adjustment factor related to grade with default value 0.01. 

 𝑔𝑠 𝑔: Grade at g grade level (between –0.06 and 0.06). 

 𝑑𝑠 𝑑: Distance of grade at d distance level (mile). 
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𝐹𝐹𝑆1: Free-flow speed for auto-only flow (mph). 

𝛼12,𝑚
𝑇𝑎 , 𝛽12,𝑚

𝑇𝑎 : Parameters for capacity adjustment factor for truck percentage 

effect. 

𝛾2,𝑚
𝐺𝑎 , 𝜃2,𝑚

𝐺𝑎 , 𝜇2,𝑚
𝐺𝑎 , 𝛼2,𝑚

𝐺𝑎 , 𝜙2,𝑚
𝐺𝑎 , 𝜂2,𝑚

𝐺𝑎 , 𝛽2,𝑚
𝐷𝑎 , α2,𝑚

𝐷𝑎 , 𝜙2,𝑚
𝐷𝑎 : Parameters for capacity 

adjustment factor for grade effect. 

𝜇2,𝑚
𝐹𝐹𝑆𝑎 , 𝜌2,𝑝,𝑚

𝐹𝐹𝑆𝑎 , 𝛽2,𝑚
𝐹𝐹𝑆𝑎 , 𝜙2,𝑚

𝐹𝐹𝑆𝑎: Parameters for capacity adjustment factor for free-

flow speed effect. 

This chapter adopted the same form of the nonlinear model (i.e., Equation (3-7)) 

as was used in the HCM-6. The parameters were estimated using a Generalized Reduced 

Gradient (GRG) approach. This is a nonlinear optimization method which uses an 

iterative process to optimize a target value. In this chapter, the target goal was to 

minimize the sum of squared errors between the simulated CAFs from Step 2 and the 

estimated CAFs from the non-linear regression model. A detailed description of the 

method can be found elsewhere (Lasdon, Fox, & Ratner, 1974). Note the original 

research did not mention the optimization technique that was applied to find the best 

estimates of the model parameters.  

Table 3-3 shows the values of the parameters in the CAF model for the original 

research and for this chapter in rows 1 and 2, respectively. It may be seen the estimators 

between both cases are very similar. It is hypothesized the small differences found are 

due to the different versions of the simulator. 
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3.2.6 Step 4: CAFs Estimation for Specific Conditions 

In this step, the CAFs for the mixed flow scenarios (𝐶𝐴𝐹2,𝑝𝑠,𝑚𝑠,𝑔𝑠,𝑑𝑠) are estimated for the 

specific conditions listed in the HCM-6. The parameters of interest are truck percentage 

ps, grade gs, and distance ds. These estimated CAFs are obtained using Equation (3-7) 

based on the calibrated parameters shown in Table 3-3 (Row 2).  

 

Figure 3-4. Original CAF from HCM-6 versus Estimated CAF derived from more 

recent VISSIM models. 

Figure 3-4 shows a scatter plot of the estimated CAF value from the original 

HCM research as a function of the estimated CAF value from this chapter. There are a 

total of 1,274 points or comparisons in this figure. It may be seen the approach adopted in 

this chapter resulted in a linear relationship with a very high R-squared value of 0.99. 

Figure 3-3 shows a direct comparison between the CAF values calculated in this chapter 

(blue line) and the CAF values from the HCM-6 (orange line). Not surprisingly, the CAF 
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values are generally in agreement. It was concluded using a VISSIM 9 model for 

passenger cars and a VISSIM 20 model for mixed traffic allowed for an accurate 

estimation of the HCM-6 values. 

Figure 3-4 also shows the relationship between the HCM-6 CAF values and the 

values obtained if all the simulation data was obtained from VISSIM 20. While the 

relationship is generally linear, there is considerably more scatter as evidenced by the 

MAPE value of 8.2%. In addition, the VISSIM 20 CAF results tended to underestimate 

the CAF values used in the HCM-6. This was why a combination of VISSIM 9 and 20 

was used in this chapter. Because VISSIM 20 limits lane changing for vehicles traveling 

at the same speed, it is hypothesized this adversely affected the passenger car only 

simulations (PTV, 2019b). With respect to mix-traffic conditions, this is not as critical as 

the vehicle characteristics that create more lane changing opportunities. This also 

illustrates a danger in using simulation models for national design guides without 

adequate controls such as clearly defining simulation logic and parameters (Hendrickson 

and Rilett, 2017; Rilett, 2020). 

3.2.7 Step 5: EC-PCEs Estimation 

In the last step of the methodology, the EC-PCEs (𝐸𝐶 − 𝑃𝐶𝐸2,𝑝𝑠,𝑚𝑠,𝑔𝑠,𝑑𝑠) at specific 

conditions of truck percentage ps, grade gs, and distance ds, are calculated using Equation 

(3-12).  

𝐸𝐶 − 𝑃𝐶𝐸2,𝑝𝑠 ,𝑚𝑠 ,𝑔𝑠 ,𝑑𝑠 =
1 −  1 − 𝑝

𝑠
 ∗ 𝐶𝐴𝐹2,𝑝𝑠 ,𝑚𝑠 ,𝑔𝑠 ,𝑑𝑠

𝑝
𝑠
∗ 𝐶𝐴𝐹2,𝑝𝑠 ,𝑚𝑠 ,𝑔𝑠 ,𝑑𝑠

 1 

    (3-12) 

Where: 
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𝐸𝐶 − 𝑃𝐶𝐸2,𝑝𝑠,𝑚𝑠,𝑔𝑠,𝑑𝑠: EC-PCE for the mixed flow at truck percentage 𝑝𝑠, truck 

composition 𝑚𝑠, grade 𝑔𝑠, and distance 𝑑𝑠. 

𝐶𝐴𝐹2,𝑝𝑠,𝑚𝑠,𝑔𝑠,𝑑𝑠: Capacity adjustment factor for the mixed flow at truck percentage 

𝑝𝑠, truck composition 𝑚𝑠, grade 𝑔𝑠, and distance 𝑑𝑠. 

𝑝𝑠: Truck percentage (between 0 and 1). 

The estimated EC-PCEs as a function of the HCM-6 EC-PCEs are shown in 

Figure 3-5. It may be seen that the relationship is approximately one to one with an R-

squared value of 0.997 and a MAPE of 3.9%. It was concluded the simulation approach 

adopted in this chapter 1) can replicate the current HCM-6 values using the HCM-6 

assumptions, and 2) can be used to model the effect of CAVs on capacity and PCE values 

using the same HCM-6 approach.  

 

Figure 3-5. Impact of the VISSIM version on the replication of HCM-6 EC-PCEs. 
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Also shown in Figure 3-5 is the relationship between the HCM-6 EC-PCE values 

and the estimated EC-PCE values if only VISSIM 20 were used. While linear, the fit is 

not nearly as good as evidenced by the MAPE value of 18.3%. 

3.3 CAV Modeling Methodology 

The HCM-6 methodology, using VISSIM 20 with the parameter sets described above, 

was applied to estimate the EC-PCEs when the trucks have CAV capabilities. Because 

the goal of this dissertation is to explore the effect of CAV truck platooning on the 

capacity of freeway segments, it was assumed only trucks could operate in CAV mode 

and the truck operational characteristics were the same as in the HCM-6. In other words, 

the only difference between the trucks in the HCM-6 and the trucks in the CAV analysis 

is the trucks in the latter scenario could form platoons based on CAV logic. 

The VISSIM CAV-related parameter values are based on the CoExist project 

(Sukennik & PTV Group, 2018). The CoExist project is one of the largest research 

projects relative to CAV technology that have been developed to date. This project was 

funded by the European Union to prepare the transitional period in which CAVs and 

conventional vehicles will share the road system. The developers of VISSIM, the PTV 

Group, were responsible for the traffic operation section of the project.  

 Table 3-1 shows the parameter set for the CAV vehicles used in this chapter. The 

default driving behavior was ‘AV aggressive (CoExist)’, which is recommended for CAV 

that have full automation (Sukennik & PTV Group, 2018). It should be noted some of the 

driving behavior parameters were modified in order to be consistent with the calibrated 

safety distance parameters (e.g., CC0 + CC1) used in the original research. Specifically, 

the headway time parameter CC1 was set to 0.5 seconds, instead of the default value of 
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0.6 seconds, as this was the value used in the original research. Similarly, the minimum 

clearance distance was set to 1.5 meters, instead of the default value of 2.0 meters as this 

was the value used in the CoExist project. The analysis in this chapter was repeated 

without making these two minor changes and the results in this chapter were not changed 

appreciably. 

Table 3-1. CAV Driving Behavior Parameters in VISSIM 20. 

Model Parameter Setting 

Autonomous Driving 

Enforce absolute braking distance Unselected 

Use implicit stochasticity Unselected 

Platooning possible 

Max. number of vehicles 

Max. desired speed 

Max. distance for catching up to a platoon 

Gap time 

Minimum clearance 

Selected 

7 

112.65 km/h (70 mph) 

250 m 

0.5 s 

1.50 m 

Following 

Look ahead 

Number of interaction objects & vehicles 

Min 0 m; Max 300 m 

10 & 8 

Look back distance Min 0 m; Max 150 m 

Behavior during recovery from speed breakdown 

Slow recovery 

Speed 

Acceleration 

Safety Distance 

Distance 

 

Unselected 

60% 

40% 

110% 

200 m 

Standstill distance for static obstacles Unselected 

Car Following 

Wiedemann 99 

CC0 standstill distance 

CC1 gap time 

CC2 following variation 

CC3 threshold for entering following 

CC4 negative following threshold 

CC5 positive following threshold 

CC6 speed dependency of oscillation 

CC7 oscillation acceleration 

CC8 standstill acceleration 

CC9 acceleration with 80 km/h 

 

1.0 m 

0.5 s (constant) 

0.0 m 

-6.0  

-0.10 

0.10 

0.0 

0.10 m/s2 

4.0 m/s2 

2.0 m/s2 

Following behavior depending on the vehicle class Same as conventional traffic 

Lane Change 

General behavior Free lane selection 

Necessary lane change (own &  trailing vehicle) 

Maximum deceleration 

-1 m/s2 per distance 

Accepted deceleration 

 

-4.0 m/s2 & -4.0 m/s2 

100 m & 100 m 

-1.0 m/s2 & -1.5 m/s2 

Waiting time before diffusion 

Min. clearance (front/rear) 

Safety distance reduction factor 

Maximum deceleration for cooperative braking 

Overtake reduced speed areas 

Advanced merging 

Vehicle routing decisions look ahead 

60 s 

0.5 m 

0.75 

-6.0 m/s2 

Unselected 

Selected 

Selected 
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Cooperative lane change 

Maximum speed difference 

Maximum collision time 

Selected 

10.8 km/h 

10.0 s 

Rear correction of lateral position Unselected 

Lateral behavior 

Desired position at free flow 

Observed adjacent lane(s) 

Overtake on same lane 

Exceptions for overtaking vehicles 

Middle of lane 

Unselected 

Unselected 

None 

3.3.1 CAV Base Case 

There were four major CAV factors studied. The market penetration rate parameter is 

defined as the percentage of trucks in the traffic stream with CAV capabilities that will 

allow CAV platoons to form. The value for the base case was 100 percent. The lane 

restriction parameter refers to the number of lanes, starting from the median lane, in 

which CAV trucks were prohibited from traveling. For the base case, it was assumed 

there were no lane restrictions. The platoon truck type factor is related to which truck 

types, either SUT or TT or both, are allowed to join a CAV truck platoon. For the base 

case, platoons could only form using trucks of the same type. Lastly, the platoon size 

parameter is defined as the maximum number of trucks that can be part of a given CAV 

truck platoon. For the base case, this value was set to seven. Sensitivity analyses were 

used to explore the effect of changing market penetration rate, lane restriction rules, truck 

platoon vehicles and truck platoon size on the EC-PCE values.  

3.3.2 Modeling the CAV Base Case 

The EC-PCE values for the CAV base case scenario were developed using the HCM-6 

procedure shown in Figure 1-2. 
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3.3.2.1 Steps 1 and 2: Simulated CAFs 

The 91 passenger car only scenarios, and their associated flow-density plots, were 

developed using VISSIM 9 as described previously. Next, the flow-density plots were 

developed for the 1,183 CAV scenarios using VISSIM 20. From these plots the HCM-6 

capacity, defined as the 95% maximum flow rate using 1-minute aggregation, was 

identified. These capacities were then used in Step 2 to calculate the CAF values of the 

CAV condition for each of the 1,274 combinations. 

 

Figure 3-6. Flow-density scatter plot for 20% CAVs (grade 3%, distance 1 mi) 

For illustrative purposes, Figure 3-6 shows the flow-density curve for the 

baseline CAV condition for the same conditions as Figure 3-2. It may be seen the 

breakpoint occurs at a higher density value (e.g., 30 veh/mi/ln). The figure also shows the 

CAV capacity (e.g., 2,080 veh/h/ln) is approximately 10 percent higher than the 
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equivalent non-CAV capacity (e.g., 1,780 veh/h/ln). It is hypothesized the higher capacity 

occurs due to the deployment of CAV truck platoons in the traffic stream, which vehicles 

present shorter headways and reduced stochasticity as compared to non-CAVs. 

3.3.2.2 Step 3: Nonlinear model development 

In the original HCM-6 research, a nonlinear regression model was used in Step 3. The 

form for the HCM-6 analytical model was based on kinematic and resistance equations 

related vehicles ascending and descending different grades (Dowling et al., 2014b). A 

heuristic optimization approach was used to calibrate the model where the goal was to 

identify the model that minimized the error between the simulated CAFs and the 

estimated CAFs. The parameters of these equations were optimized using an Excel 

Spreadsheet. The final model consisted of a combined grade and distance effect 

parameter, a free-flow speed effect parameter, and truck percentage effect parameter 

(Dowling et al., 2014b; Zhou, 2018) as shown in Equations (3-7) to (3-11). 

In this chapter, the same model structure was assumed. However, the truck 

percentage effect (𝐶𝐴𝐹2,𝑝,𝑚
𝑇𝑎   parameter could not be calibrated to an acceptable level. 

Therefore, it was decided to use four parameters to model this effect. No changes in 

model format were performed for combined grade and distance effect (𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑
𝐺𝑎 ) and 

free flow speed effect (𝐶𝐴𝐹2,𝑝,𝑚
𝐹𝐹𝑆𝑎 . The statistic used to assess model fitting was the 

standard error of the regression (S) as shown in Equation (3-13). The advantage to the S 

metric is it can be applied for both nonlinear and linear models in contrast to the R-

squared that is only valid for linear models (Spiegelman, Park, & Rilett, 2011). 
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𝑆 =  
𝑆𝑆𝐸

𝑁 − 𝑃
 1 

    (3-13) 

Where:  

S: standard error of the regression. 

SSE: sum of squared errors. 

N: number of observations. 

P: number of parameters in the model.  

 Seven potential models attempting to capture the truck percentage effect were 

analyzed in Table 3-2. The HCM-6 model, shown as model 1, is a power function with 

two parameters. It had an S value of 0.0578. Model 4, which is a polynomial model, had 

an S value approximately a sixth of the size of Model 1. This model was chosen because 

it had a low S value and fewer parameters as compared with other models. Once the final 

model structure was chosen, the same approach used in the HCM-6 methodology, was 

adopted to find the best estimators for the parameters of the nonlinear regression model. 

Table 3-2. Goodness of Fit Results for CAV Analysis 

No. Model for Truck Percentage Effect P 𝑆 = √𝑀𝑆𝐸  

1* 𝐶𝐴𝐹2,𝑝,𝑚
𝑇𝑎 = 𝛼12,𝑚

𝑇𝑎 ∗ 𝑃
𝑇

𝛽12,𝑚
𝑇𝑎

  15 0.0578 

2 𝐶𝐴𝐹2,𝑝,𝑚
𝑇𝑎 = 𝛼12,𝑚

𝑇𝑎 ∗ 𝑃
𝑇

𝛽12,𝑚
𝑇𝑎

+ 𝛼22,𝑚
𝑇𝑎  16 0.0215 

3 𝐶𝐴𝐹2,𝑝,𝑚
𝑇𝑎 = 𝛼12,𝑚

𝑇𝑎 ∗ 𝑃
𝑇

𝛽12,𝑚
𝑇𝑎

+ 𝛼22,𝑚
𝑇𝑎 ∗ 𝑃𝑇 16 0.0257 

4** 𝐶𝐴𝐹2,𝑝,𝑚
𝑇𝑎 = 𝛼12,𝑚

𝑇𝑎 ∗ 𝑃
𝑇

𝛽12,𝑚
𝑇𝑎

+ 𝛼22,𝑚
𝑇𝑎 ∗ 𝑃

𝑇

𝛽22,𝑚
𝑇𝑎

  17 0.0105 

5 𝐶𝐴𝐹2,𝑝,𝑚
𝑇𝑎 = 𝛼12,𝑚

𝑇𝑎 ∗ 𝑃
𝑇

𝛽12,𝑚
𝑇𝑎

+ 𝛼22,𝑚
𝑇𝑎 ∗ 𝑃

𝑇

𝛽22,𝑚
𝑇𝑎

+ 𝛼32,𝑚
𝑇𝑎  18 0.0103 

6 𝐶𝐴𝐹2,𝑝,𝑚
𝑇𝑎 = 𝛼12,𝑚

𝑇𝑎 ∗ 𝑃
𝑇

𝛽12,𝑚
𝑇𝑎

+ 𝛼22,𝑚
𝑇𝑎 ∗ 𝑃

𝑇

𝛽22,𝑚
𝑇𝑎

+ 𝛼32,𝑚
𝑇𝑎 ∗ 𝑃𝑇 18 0.0127 
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7 𝐶𝐴𝐹2,𝑝,𝑚
𝑇𝑎 = 𝛼12,𝑚

𝑇𝑎 ∗ 𝑃
𝑇

𝛽12,𝑚
𝑇𝑎

+ 𝛼22,𝑚
𝑇𝑎 ∗ 𝑃

𝑇

𝛽22,𝑚
𝑇𝑎

+ 𝛼32,𝑚
𝑇𝑎 ∗ 𝑃

𝑇

𝛽32,𝑚
𝑇𝑎

 19 0.0096 

Note: P = total number of parameters in the full nonlinear model; S = standard error of the regression in 

CAF units; 𝑃𝑇 = truck percentage value;  𝛼𝑖2,𝑚
𝑇𝑎  and 𝛽𝑖2,𝑚

𝑇𝑎 = model parameters relative to truck percentage 

effect. (*) original model; (**) proposed model.  

 Figure 3-7a and Figure 3-7b show the simulated CAF values versus the 

estimated CAF values for the original HCM-6 model formulation and the revised model 

formulation, respectively. It may be seen the revised model formulation performed much 

better at predicting the CAF value for a given scenario as evidenced by the linear 

relationship shown in Figure 3-7b and the very high R-squared statistic of 0.971. 

 

Figure 3-7. Goodness of fit between simulated and estimated CAFs for original and 

proposed model. 

Table 3-3 shows the model parameters used to calculate the estimated CAFs 

using Equations (3-7) to (3-11) for each scenario. Row 1 corresponds to the HCM-6 

research, row 2 to the HCM-6 replication described earlier, and row 3 to the CAV base 

case described above. 
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Table 3-3. Parameters and their Estimates for various CAF Models 

Condition 

(30/70 SUT/TT) 

Nonlinear Model Parameter 

𝛼12,𝑚
𝑇𝑎  𝛽12,𝑚

𝑇𝑎  𝛼22,𝑚
𝑇𝑎  𝛽22,𝑚

𝑇𝑎  𝛾2,𝑚
𝐺𝑎  𝜃2,𝑚

𝐺𝑎  𝜇2,𝑚
𝐺𝑎  𝛼2,𝑚

𝐺𝑎  𝜙2,𝑚
𝐺𝑎  𝜂2,𝑚

𝐺𝑎  𝛼2,𝑚
𝐷𝑎  𝛽2,𝑚

𝐷𝑎  𝜙2,𝑚
𝐷𝑎  

HCM-6 original 0.53 0.72 - - 8.0 0.126 0.030 0.69 12.9 1.0 1.71 1.72 -3.16 

Non-CAV 

replication 
0.52 0.75 - - 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 -3.16 

CAV base case 0.15 0.24 -0.25 7.37 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 -3.16 

Penetration rate 

100%* 
0.15 0.24 -0.25 7.37 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 -3.16 

Penetration rate 

75% 
2.41 0.30 -2.26 0.30 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 -3.16 

Penetration rate 

50% 
0.33 0.62 -0.04 10.80 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 -3.16 

Penetration rate 

25% 
0.49 0.81 -0.09 10.64 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 -3.16 

Two-lane 

restriction 
0.02 -0.35 0.65 1.41 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 -3.16 

One-lane 

restriction 
0.27 5.94 0.06 -0.12 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 -3.16 

Non-lane 

restriction* 
0.15 0.24 -0.25 7.37 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 -3.16 

Platoon per truck 

type* 
0.15 0.24 -0.25 7.37 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 -3.16 

Platoon any truck 

type 
0.22 0.36 -0.34 1.88 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 -3.16 

Platoon size 9 0.39 0.69 -15.1 26.19 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 -3.16 

Platoon size 7 0.33 0.62 -0.04 10.80 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 -3.16 

Platoon size 5 0.38 0.69 -0.05 6.99 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 -3.16 

Platoon size 3 0.39 0.70 -0.11 5.89 8.0 0.211 0.052 1.36 5.4 1.0 1.71 1.72 -3.16 

Note: The capacity adjustment factor for free-flow speed effect for the mixed flow is given by the 

following parameters:  𝜇2,𝑚
𝐹𝐹𝑆𝑎=0.25; 𝜌2,𝑚

𝐹𝑆𝑆=0.70; 𝛽2,𝑚
𝐹𝑆𝑆=1.0; 𝜙2,𝑚

𝐹𝑆𝑆=1.0. This factor is equal to zero when 

the assumed free-flow speed is 112.65 km/h (70 mph), as the case in the original research. * Base case 

scenario. 

3.4 Step 4: Estimated CAF Results for CAV Base Case 

Once the regression models were calibrated in Step 3, the CAFs were then estimated. A 

comparison between the estimated CAFs for the CAV condition (base case) and the 

estimated CAFs for the non-CAV condition (e.g., HCM-6 results) are shown in Figure 

3-8. 
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Figure 3-8. CAF values as a function of scenario number: CAV and non-CAV 

scenarios 

The green line represents the CAV condition and the orange line the non-CAV 

condition. The scenario number (horizontal axis) is given by Equation (3-6) and 

corresponds to a particular combination of truck percentage, grade, and distance used to 

compute the corresponding CAF. For the non-CAV condition, the CAF values decrease 

as truck percentage increases and this decrease is at a fairly linear rate. In contrast, for the 

CAV condition the CAF values increase as the percentage of trucks increase. For truck 

percentages of less than 10 percent, the CAF values are similar to the HCM-6. It is 

hypothesized this occurs because there are less opportunities for truck platoon formation. 

Interestingly, when trucks are 100 percent of the vehicle stream the CAF values are 

approximately 10.5 percent higher than the CAF for passenger cars. That is, a traffic 

stream with 100% CAV will have a higher vehicle flow rate than a traffic stream with 

100% passenger cars. Taking as reference the truck percentage interval from 10% to 
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100% (scenarios 274 to 1274), the CAF values for the CAV condition are, on average, 

41.0% higher (ranging from 0.1% to 176.5%) than those of the non-CAV condition.  

3.5 Step 5: EC-PCE Results for CAV Base Case 

Similar to the HCM-6, the EC-PCE values were estimated for ten levels of truck 

percentage (i.e., 10% to 100% in 10% increments), grade (i.e., 0%, +3%, and +6%), and 

distance (i.e., 0.8 km (0.5 mi), 1.61 km (1.0 mi), and 2.42 km (1.5 mi)). Figure 3-9 

shows the corresponding EC-PCE values as a function of truck percentage for the three 

levels of grade and three levels of distance for both the CAV condition (base case) and 

the HCM-6 values. The solid lines represent the CAV EC-PCE values and the dotted 

lines the HCM-6 (e.g., non-CAV) EC-PCE values. The EC-PCE values were calculated 

using Equation (3-12). Note any specific condition within the explored range of truck 

percentage, grade, and distance considered in the HCM-6 methodology can be computed 

using the model parameters provided in Table 3-3. On average, the EC-PCE values for 

the CAV condition are 34.3% lower than those of the non-CAV condition indicating the 

CAV technology lessens the impact of heavy trucks on traffic operations. For both the 

CAV and non-CAV conditions, the maximum EC-PCE values occur at a truck percentage 

of 10%. These values range from 2.0 to 4.5. In general, as grade and distance increase so 

does the EC-PCE. For higher truck percentages, the EC-PCE values for the non-CAV 

condition tend to decrease as truck percentages increases until the 30 percent value is 

reached. After this point, the EC-PCE values tend to increase at a decreasing rate with 

truck percentage. In general, the EC-PCE ranges from 2.0 to 4.5 for the non-CAV 

condition. In contrast, for the CAV condition the EC-PCE decrease at a smaller rate as 
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percentage of trucks increases. As would be expected from the earlier analysis, as truck 

percentage approaches 100 percent the EC-PCE value approaches 1. 

 

Figure 3-9. EC-PCE values as a function of truck percentage: CAV and non-CAV 

scenarios. 

In summary, the CAV technology increases capacity for a given scenario, all else 

being equal, and this results in corresponding lower EC-PCE values. The increase in 

capacity for a given scenario is a function of the grade, grade length, and percentage 

trucks in the scenario. It should be noted this comparison is for trucks equipped with 

CAV technology. It is hypothesized that if the passenger cars also had CAV platoon 

technology then the capacity increase shown in Figure 3-9 would be even greater. 

However, it is unclear how the EC-PCE values would change without a detailed 

simulation study, which is beyond the scope of this chapter.  
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3.6 Sensitivity Analysis of CAV Operation Factors 

The parameters studied in the sensitivity analysis were market penetration rate, lane 

restriction, platoon truck type, and platoon size as shown in Table 3-4. Note the values 

with the asterisk (e.g., *) were considered in the base case scenario described earlier. 

Table 3-4. List of Parameters Studied in the Sensitivity Analyses. 

Factor Scenarios 

Market penetration rate parameter 0%, 25%, 50%, 75%, 100%* 

Lane restriction parameter No lane restriction*, 1-lane restriction, 2-lanes restriction 

Platoon truck type parameter 
Restricted (only similar truck types)*, Unrestricted (Any 

truck type) 

Platoon size parameter 3, 5, 7*, 9 

*Base case  

The market penetration rate parameter is defined as the percentage of trucks in the 

traffic demand with CAV capabilities. Four other values, in addition to the base case 

value of 100 percent, were analyzed. Three lane restriction parameters values were 

analyzed including the base case value of “No lane restriction”. The “1-lane restriction” 

case meant the leftmost lane could not be used by trucks, while the “2-lanes restriction” 

meant the two leftmost lanes could not be used by trucks. The platoon truck type 

parameter included both the “Any truck type” meaning that platoons had no restriction on 

truck type and the “Per truck type” indicating platoons could only consist of similar truck 

types (e.g., base case). Lastly, four ‘platoon size’ parameter values were utilized, and 

these consisted of 3, 5, 7 (e.g., base case), and 9 for the maximum number of trucks that 

can be part of a CAV truck platoon.  
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The EC-PCE values as a function of scenario number for each of the four 

sensitivity analyses are shown in Figure 3-10 through Figure 3-13. The scenario number 

is calculated using Equation (3-6) and represents the combination of truck percentage, 

grade, and distance that was used to compute the corresponding EC-PCE. The EC-PCE 

values were calculated using the model parameters provided in Table 3-3, which were 

obtained following the same HCM-6 methodology used for the CAV base case. 

3.6.1 Market Penetration Rate 

As may be seen in Figure 3-10, the EC-PCE values tend to decrease as market 

penetration rate increases and this holds true for all truck percentage rates. For truck 

percentage in the range from 10% to 20% the EC-PCE values for the CAV scenarios are, 

on average, 15.8% lower compared to the non-CAV condition (0% market penetration 

rate). For truck percentages in the range from 30% to 100%, the EC-PCE values decrease 

as market penetration rate increases. The decrease for the 25%, 50%, 75%, and 100% 

market penetration rate is, on average, 12.9%, 25.2%, 37.6%, and 41.3% lower than the 

corresponding non-CAV scenario, respectively. Interestingly, the market penetration 

rates of 75% and 100% produce similar EC-PCE values up to the 70% truck percentage 

level. After this point the 100% market penetration rate scenario performs better with EC-

PCE values being, on average, 12.4% lower. 
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Figure 3-10. CAV EC-PCEs as a function of market penetration rate. 

In summary, higher market penetration rates tend to produce lower EC-PCE 

values, indicating as market penetration rates increase the impact of trucks on freeway 

capacity decreases, all else being equal. 

3.6.2 Platoon Truck Type: Restricted vs Unrestricted 

Figure 3-12 shows the EC-PCE values as a function of scenario for the truck type 

parameter. There are only small differences between the results for the restricted and 

unrestricted platoon types. For lower truck percentages (e.g., 0% to 30%) and the highest 

truck percentage (e.g., 100%), the EC-PCE values are approximately the same for both 

scenarios. For truck percentages in the range of 40% to 90% the EC-PCE values for the 

restricted platoon scenario were, on average, 10.6% greater than the unrestricted platoon 

scenario. This indicates that limiting platoons to a specific type of truck type could 

negatively affect freeway capacity as compared to the unrestricted implementation. It 
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must be noted this factor can be affected by the truck composition type, and for this 

analysis, only one truck composition type was explored (30/70 SUT/TT). It is expected 

the differences found would be greater if a different proportion of truck types (e.g., 50/50 

SUT/TT) were considered in the analysis. 

 

Figure 3-11. CAV EC-PCEs as a function of truck type platoon. 

3.6.3 Platoon Size 

Figure 3-11 shows the relationship between EC-PCE and platoon size. It can be seen the 

maximum platoon size has only a marginal effect on the EC-PCE values. For example, 

the largest difference between the three truck platoon value and the nine truck platoon 

value is on the order of 4%. It is hypothesized this result occurred because the 

interplatoon spacing and the intraplatoon spacing tend to be equivalent near or at capacity 

conditions. Note if merging and diverging zones, which are not part of the HCM-6 

methodology studied in this chapter, were considered it is easy to envision that platoon 
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size would affect the EC-PCE values. However, the analysis of this aspect was beyond 

the scope of this chapter.  

 

Figure 3-12. CAV EC-PCEs as a function of platoon size. 

3.6.4 Lane Restriction 

Figure 3-13 shows the EC-PCE values as a function of scenario number for the three 

lane restriction scenarios. Lane restriction had the greatest effect, in comparison to the 

other three sensitivity analysis parameters, on EC-PCE values. For truck percentages less 

than 20%, the three scenarios (e.g., no lane restriction, one-lane restriction, and two-lane 

restriction), had approximately similar EC-PCE values. However, as truck percentage 

increased past the 20 percent level so too did the EC-PCE values. The two-lane 

restriction scenario had EC-PCE values that were, on average, 91.8% higher than the base 

case (e.g., no lane restriction). Conversely, for truck percentages in the range of 20% to 

80% the one-lane restriction scenario had EC-PCE values that were, on average 11.5%, 
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lower than the non-lane restriction scenario. It was hypothesized this occurred because 

there was still sufficient room in the traffic stream for platoons to form and operate. For 

truck percentages in the range from 80% to 100%, the one-lane restriction has on average 

33.4% greater EC-PCE values compared to the non-lane restriction scenario. 

 

Figure 3-13. CAV EC-PCEs as a function of lane restriction. 

In summary, the effect of lane restriction on capacity is dependent on the truck 

percentage. The effect of lane restriction is negligible for low truck percentages (20% or 

below), but it can negatively affect capacity for moderate to high truck percentages (30% 

or above) particularly if two of the three lanes are restricted. 

3.7 Concluding Remarks 

The objective of this chapter was to analyze the effect of CAV trucks on freeway 

segments using the HCM-6 methodology. In particular, the changes in CAF and EC-PCE 

values for different operating characteristics were compared. CAV truck platoons are 
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expected to be one of the first technologies deployed on the national highway system. 

First, the HCM-6 EC-PCEs were replicated using a microsimulation model in VISSIM 

20. This VISSIM version was chosen because it can model explicitly CAV trucks and 

their associated platoons. Note the original CAF regression model was recalibrated to 

obtain a better fit between the simulated and estimated results. The impact of CAV 

technology on freeway capacity was then quantified using the estimated CAF values and 

the resulting EC-PCE values. Additionally, a sensitivity analysis of four CAV operational 

factors (e.g., market penetration rate, platoon truck type, platoon size, and lane 

restriction) was conducted to measure how these parameters affected the results.  

 Not surprisingly, it was found CAV truck platoons have the potential to increase 

capacity on freeway segments, all else being equal. The EC-PCE values for the CAV 

base case condition, which assumed a 100% CAV market penetration rate for trucks, 

were approximately 34.3 % lower, on average, than those for the non-CAV condition. In 

other words, CAV trucks have a lower impact on freeway operations than non-CAV 

trucks. To date, there has been no other analysis of the effect of CAV operations based on 

the HCM-6 methodology, which is the standard analysis and operations guide for U.S. 

transportation agencies. 

 Another major finding is that operational factors examined in the sensitivity 

analysis tended to have their greatest effect when truck percentage is greater than 30%. 

For truck percentage values below this cut-off, the sensitivity analyses scenarios tended 

to show similar behavior in operating characteristics. It was hypothesized this occurred 

because the proportion of CAV trucks was such that the resulting truck platoons, and 

associated truck platoon size, were not enough to influence the capacity of the freeway 
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segment. This finding indicates that CAV trucks may have the greatest impact in areas 

that have higher percentage truck values such as in the U.S. Midwest.  

Note that in the Western U.S., particularly in the rural areas, speed limits are 

higher, the maximum free flow speeds of trucks and cars are different, and most of the 

roads are only two lanes in each direction. It is hypothesized that in these areas the 

positive effect of CAV trucks on capacity will be different than those explained in this 

chapter. It was demonstrated in this chapter that conducting analyses for localized 

conditions is relatively straightforward because the HCM-6 approach is simulation-based. 

If the conditions assumed in the HCM-6 (e.g., three lanes in each direction, trucks and 

cars have the same free flow speed, etc.) are violated then it is recommended the 

procedure be repeated for local conditions. Note the effect of CAV truck platooning on 

four-lane freeways in the Western U.S. will be explored in Chapter 7 of this dissertation. 

It was found the microsimulation approach, which the current HCM-6 EC-PCE 

method for freeway segments and multilane highways is based on, has a number of issues 

that should be addressed in further studies. Because it was needed to use different 

versions of the VISSIM microsimulation model than was used in the HCM-6, a 

recalibration of the nonlinear regression model was required in order to replicate the 

results of the original research. It was hypothesized this was a result of periodic updates 

and changes in the internal logic of the microsimulation model made by the developer. In 

addition, it is recommended calibrating the HCM-6 methodology with empirical data. 

This would also include a deeper assessment of the form and error of the regression 

models using fitting simulated and estimated data. It is possible different model structures 

might provide better results, which is explored in Chapter 4 of this dissertation.  
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An assessment of the existing microsimulation framework and assumptions of the 

current HCM-6 EC-PCE methodology should also be performed. Interestingly, in the 

original research, only one simulation run was performed for each scenario combination. 

This is important because performing a single simulation run increases the noise of the 

simulation results and potentially could negatively impact the accuracy of the capacity 

estimates and the associated EC-PCE values. This point will be addressed in more detail 

in Chapter 6 of this dissertation. 

Finally, it is also recommended the effect of other variables related to driving 

behavior and operational characteristics such as interplatoon spacing, platoon forming 

logic, weight and power distributions, acceleration profiles, etc., be studied. These 

parameters were not studied in this chapter due to space limitations and the lack of 

empirical data related to these topics. This is an area of potential research that would 

further help transportation agencies as they begin the transition to CAV operations.   
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CHAPTER 4 

 AN ALTERNATIVE REGRESSION MODEL STRUCTURE FOR THE HCM-

6 EQUAL CAPACITY PASSENGER CAR EQUIVALENCY 

METHODOLOGY 

4.1 Introduction 

The HCM-6 EC-PCEs for freeway segments were estimated using a microsimulation-

based methodology. The HCM-6 includes EC-PCE values for 14 levels of truck 

percentage, 13 levels of grade, 7 levels of grade distance, and 3 levels of truck 

composition type. In particular, the VISSIM microsimulation model is used for modeling 

the capacity of 1,274 scenarios derived from these factors. The simulated capacity values 

are used to calculate capacity adjustment factors (CAFs), for various combinations of 

truck percentage, truck composition, grade, and grade length.  

Because of the stochasticity of the microsimulation results, including the capacity 

values, these CAFs are not used to calculate the PCE values directly. Instead, the CAFs 

are used as input to a multiple linear regression modeling process. The HCM-6 EC-PCE 

developed a 15-parameter nonlinear regression model (NLRM) which is used to estimate 

the CAF values (Zhou, Rilett, & Jones, 2019; Dowling et al., 2014b, 2014c). These 

estimated CAFs, as opposed to the CAFs calculated from the simulation output, are then 

used to calculate the EC-PCE values found in the HCM-6. Because of the complexity of 

the existing NLRM model structure, the EC-PCE results are presented in the HCM-6 as a 

series of tables. Previous studies have shown the HCM-6 EC-PCE methodology is 

suitable for analyzing traffic situations beyond the scope of the HCM-6 such as CAV 
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truck platooning (Hurtado-Beltran & Rilett, 2021). However, for this situation the 

original HCM-6 model structure had to be modified. In this regard, it is important to 

evaluate if the existing NLRM approach is flexible enough for fitting simulation results 

derived from novel traffic scenarios.  

The main objective of this chapter is to analyze the use of alternative regression 

models to fit simulated and estimated CAFs in the HCM-6 EC-PCE methodology for 

freeway and multilane highway segments. It is hypothesized simpler regression models 

could provide comparable results and would be easier for users to apply. This would 

allow the users to analyze specific applications using the calibrated models directly rather 

than using tables. This method would also make it simpler for users to develop their own 

localized CAF models for situations that do not conform to the HCM-6 assumptions.  

Three regression models were explored in this chapter: (1) the original HCM-6 

nonlinear regression model with 15 model parameters (NLRM), (2) a proposed 

multivariate linear regression model with 10 model parameters (MLRM), and (3) a 

proposed reduced nonlinear regression model with 8 model parameters (NLRMred). 

Following the HCM-6 protocols, these regression models were used to estimate CAF and 

EC-PCE values for two traffic situations: (1) existing HCM-6 conditions, referred to as 

the HCM-6 replication, and (2) CAV truck platooning. Finally, the performance of the 

regression models was assessed using various goodness-of-fit statistics. It is hypothesized 

simpler regression models may facilitate capacity analyses and the process of reporting 

results. Moreover, this chapter will provide insight about the performance of the current 

nonlinear regression model used in the HCM-6 EC-PCE methodology when modeling 

novel traffic scenarios such as CAV truck platooning. 
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4.2 Regression Model Approach 

Due to the inherent variability of the simulated capacity values, the HCM-6 developers 

chose not to use the CAF values developed from the simulated capacity values directly. 

Instead, they developed and calibrated a nonlinear regression model that related the 

simulated CAF values to the truck percentage, grade, distance, and free-flow speed 

parameters. The goal was to mitigate the effect of the variability in the CAF results. The 

structure of the nonlinear regression model will be discussed in more detail later.  

Previous research used simpler linear regression models to estimate the PCE 

values directly. For example, Washburn and Ozkul (2013) obtained linear regression 

models to estimate PCEs based on equal-density as a function of distance, grade, free-

flow speed, number of lanes, flow rate, truck percentage, and truck type. The model had a 

good R-squared value of approximately 0.72. Similarly, Bo (2013) proposed linear 

regression models to estimate PCEs based on equal-capacity as a function of truck type, 

weight to power ratio, truck percentage, and grade. In this case, the R-squared value was 

0.90 indicating a very good model fitting. It must be noted in both studies a single 

equation was used to model the influence of trucks on the traffic stream for the full range 

of values of the parameters, including grade effect. Moreover, these regression models 

were used to estimate the PCEs directly and no CAFs were involved in the computation 

process. This is in contrast to the HCM-6 approach, where regression models were used 

to estimate CAFs based on simulated data. These CAF models were used subsequently to 

calculate the EC-PCEs.  

The current HCM-6 CAF/EC-PCE values suggest the combined effect of grade 

and grade distance is significantly different for positive grade values as compared to 
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negative values. Indeed, the original research reported grade is the main influencing 

factor on capacity (Dowling et al., 2014). It is hypothesized a segmented function based 

on the grade conditions (e.g., positive or negative) could improve the model fitting for the 

estimation of CAF values while simultaneously employing a simpler format. This 

approach has not been explored in previous studies. It is important to determine if simpler 

models may be used in Step 3 of the HCM-6 procedure. There are two main advantages. 

The first is the simpler equations can be used to estimate the CAF, capacity, and PCE 

values directly. In other words, users would no longer need the HCM-6 tables and there 

would be no need to interpolate any results. Secondly, it would make it easier for users to 

calibrate models for their local conditions (Zhou, Rilett, & Jones, 2019). 

4.3 Methodology 

The main purpose of this chapter is to evaluate alternative regression models for fitting 

simulated and estimated capacity adjustment factors (CAFs) in the HCM-6 EC-PCE 

methodology for freeway and multilane highway segments. Two alternative regression 

models are proposed in this chapter: (1) a multivariate linear regression model (MLRM) 

and (2) a reduced nonlinear regression model (NLRMred). The proposed regression 

models use a segmented model structure that depends on the grade parameter (e.g., value 

of the negative or positive grade). The proposed model structures are simpler than the 

original HCM-6 nonlinear regression model (NLRM), which is comprised of 15 model 

parameters.  

 The two proposed regression models were evaluated using two scenarios: (1) 

HCM-6 replication, and (2) CAV truck platooning. The goal of the HCM-6 replication 

was to replicate the CAF values and EC-PCE values reported in the HCM-6 following the 
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protocol of the HCM-6 EC-PCE methodology. If the simpler models are not satisfactory 

then the hypothesis of this chapter is incorrect. The CAV truck platooning scenario was 

developed to show the proposed approach can be used to model a new traffic situation. 

For this case, it was assumed only trucks operate in CAV mode and all truck operational 

characteristics were the same as in the HCM-6. In other words, the only difference 

between the trucks in the HCM-6 and the trucks in the CAV analysis is the trucks in the 

latter scenario could form platoons based on CAV technologies. Otherwise, both analyses 

followed the HCM-6 EC-PCE methodology. 

The methodology applied in this chapter is comprised of three main steps. First, 

the microsimulation model in VISSIM was used to obtain the simulated capacity values 

and this corresponds to Steps 1 and 2 in the HCM-6 EC-PCE methodology. The next step 

was to develop the regression models for fitting the simulated and estimated CAF values. 

This corresponds to Step 3 in the HCM-6 EC-PCE methodology. Three regression 

models (NLRM, MLRM, and NLRMred) were explored in this step. Lastly, the estimated 

CAF values and EC-PCE values for specific conditions of truck percentage, grade, and 

distance were calculated. This corresponds to Steps 4 and 5 in the HCM-6 EC-PCE 

methodology. The EC-PCE values from the proposed models were then compared 

directly to the HCM-6 results.  

4.3.1 Step 1 and 2: HCM-6 EC-PCE Microsimulation Model Capacity 

The HCM-6 EC-PCE methodology uses the VISSIM microsimulation model to obtain 

the capacity values for each scenario combination (Dowling et al, 2014; Zhou, Rilett, & 

Jones, 2019a). In this chapter, the capacity values from the VISSIM model were obtained 

following HCM-6 protocols described in Section 3.2.3. In the original research three 
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truck composition percentages were explored: (1) 30/70 SUT/TT, (2) 50/50 SUT/TT, and 

(3) 70/30 SUT/TT. In this chapter, only the former scenario was studied as it is the most 

common on the US highway system (HCM, 2016). 

In the original research, the HCM-6 EC-PCE values were calculated using 

VISSIM 4.4 which is no longer available (Zhou, Rilett, & Jones, 2019; Yang, 2013). 

Previous research has shown the HCM-6 EC-PCE results can be replicated accurately 

using VISSIM 9 (Zhou, 2018). For the HCM-6 replication analysis the 1,274 scenario 

combinations and their associated flow-density plots were developed using VISSIM 9. 

The model assumptions and testbeds were the same as those used in the HCM-6 EC-PCE 

research. For the CAV truck platooning analysis, all the flow-density plots were 

developed using VISSIM 20 because this version can model CAV and their associated 

platoons. The original HCM-6 microsimulation model assumptions and testbeds were 

also observed. The only exception was in the mixed-traffic flow condition where all the 

trucks were modeled using CAV behavior. The maximum platoon size was set to 7 and 

the VISSIM ‘Aggressive CoExist’ protocol was used to model truck driver behavior 

(Hurtado-Beltran & Rilett, 2021; PTV Group, 2019; Sukennik, 2018). 

Once the capacity values were identified, the capacity adjustment factors (CAFs) 

were calculated for the mixed flow and passenger car-only flow scenarios using the 

HCM-6 definitions shown in Equations (3-4) and (3-5), respectively (see Section 3.2.4).  

The simulated CAFs for all 1,274 scenarios, which were calculated using the 

capacity values from the microsimulation models, are shown in Figure 4-1. The x-axis 

represents the scenario number. Each specific scenario number is calculated using 

Equation (3-6) and is a function of the truck percentage, grade, and distance. The red 
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line represents the simulated CAFs obtained for the HCM-6 replication analysis using 

VISSIM 9. The blue line corresponds to the simulated CAFs for the CAV truck 

platooning analysis using VISSIM 20. 

 

Figure 4-1. Simulated CAFs for each scenario combination. 

  It may be seen in Figure 4-1 that, as expected, the simulated CAF values for the 

CAV truck platooning condition, characterized by shorter headways, tended to be higher 

than those of the HCM-6 replication based on conventional traffic. This was because the 

CAV scenarios had higher capacity values as a result of the truck platooning. It is also 

important to note that Figure 4-1 demonstrates visually the inherent stochasticity in the 

CAF values. This stochasticity is directly attributable to the microsimulation-based 

approach defined in the HCM-6 research, which consisted of a single run with a single 

seed number for simulating each of the 1,274 scenario combinations (Dowling et al., 

2014b, 2014c).  
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4.3.2 Step 3: Regression Model Development for Estimated CAFs 

Because of the inherent variability of the microsimulation-based CAF results shown in 

Figure 4-1, the HCM-6 developers chose not to use the simulated CAF values for a given 

combination of parameters directly. Instead, they calibrated a regression model that 

related the CAF value to the truck percentage, grade, and distance parameters. The goal 

was to mitigate the variability in the CAF results. Consequently, the simulated CAF 

values from Step 2 were used as input and statistical regression techniques were used to 

calibrate the regression model. In this chapter, three regression models were explored: (1) 

the original nonlinear regression model (NLRM), (2) a proposed multivariate linear 

regression model (MLRM), and (3) a proposed reduced nonlinear regression model 

(NLRMred). These regression models were developed for both the HCM-6 replication and 

CAV truck platooning analyses. Note all the models were a function of the same 

explanatory variables used in the original HCM-6 research (e.g., truck percentage, grade, 

and distance). A description of these regression models is provided below. 

4.3.2.1 Original Nonlinear Regression Model (NLRM) 

In the original HCM-6 research, a nonlinear regression model with 15 model parameters 

was used for fitting the simulated and estimated CAF values. The form for the HCM-6 

analytical model was based on vehicle kinematic and resistance equations related to 

ascending and descending different grades (Dowling et al., 2014b). A heuristic 

optimization approach was used to calibrate the model where the goal was to identify the 

model parameter values that minimized the error between the simulated CAFs and the 

estimated CAFs. The explanatory variables were truck percentage, grade, and distance, 

while the truck composition type (𝑚) and the free-flow speed (𝐹𝐹𝑆) remained constant. 
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The parameters of these equations were optimized, using an Excel Spreadsheet. The final 

model consisted of a combined grade and distance effect parameter, a free-flow speed 

effect parameter, and truck percentage effect parameter (Zhou, Rilett, & Jones, 2019; 

Dowling et al., 2014b; List et al., 2014) as shown in Equations (3-7) through (3-11). 

In this chapter, the model parameters were estimated using a Generalized 

Reduced Gradient (GRG) approach (Lasdon, Fox, & Ratner, 1974). This is a nonlinear 

optimization method which uses an iterative process to optimize a target value. The target 

goal was to minimize the sum of squared errors between the simulated CAFs from the 

microsimulation output and the estimated CAFs from the non-linear regression model. 

4.3.2.2 Multivariate Linear Regression Model (MLRM) 

This chapter explored a multivariate linear regression model (MLRM) with 10 model 

parameters and a segmented model structure that was a function of grade condition (e.g., 

negative and level grade condition, or positive grade condition) as shown in Equation (4-

1). For the negative and level grade condition, truck percentage (𝑝) was the only 

explanatory variable, while the truck composition type (𝑚) and the free-flow speed (𝐹𝐹𝑆) 

effects remained constant. The grade (𝑔) and distance (𝑑) variables were removed from 

the model because a partial F-test revealed the reduced model was preferred over the full 

model at 𝛼 = 0.05 (Fstat = 0.39 < Fcrit = 3.01). For the positive grade condition, the 

explanatory variables were truck percentage (𝑝), grade (𝑔), and distance (𝑑). All 

parameters are statistically significant at 𝛼 = 0.05. The free-flow speed (𝐹𝐹𝑆) and the 

truck composition type (𝑚) effects remain constant. Because the original research takes 

into account a similar criteria for exploring new truck composition types, and the free-
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flow speed effect is null when the assumed free-flow speed is 70 mph, it is hypothesized 

the proposed model may provide comparable performance. 

𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑,𝐹𝐹𝑆 =

 
 
 

 
 𝛼2,𝑚,𝐹𝐹𝑆

0− + 𝛼2,𝑚,𝐹𝐹𝑆
𝑇𝑎
−

∗  𝑝𝑠 𝑝
𝛽2,𝑚,𝐹𝐹𝑆
𝑇𝑎
−

𝑖𝑓  𝑔𝑠 𝑔 ≤ 0 

𝛼2,𝑚,𝐹𝐹𝑆
0+ + 𝛼2,𝑚,𝐹𝐹𝑆

𝑇𝑎
+

∗  𝑝𝑠 𝑝
𝛽2,𝑚,𝐹𝐹𝑆
𝑇𝑎
+

+𝛼2,𝑚,𝐹𝐹𝑆
𝐺𝑎
+

∗  𝑔𝑠 𝑔
𝛽2,𝑚
𝐺𝑎
+

+ 𝛼2,𝑚,𝐹𝐹𝑆
𝐷𝑎
+

∗  𝑑𝑠 𝑑
𝛽2,𝑚,𝐹𝐹𝑆
𝐷𝑎
+ 𝑖𝑓  𝑔𝑠 𝑔 > 0

   (4-1) 

Where: 

𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑: Capacity adjustment factor for the mixed flow (𝑓 = 2) at p truck 

percentage level, m truck composition level, g grade level, d distance level, and 

𝐹𝐹𝑆 free-flow speed. 

 𝑝𝑠 𝑝: Truck percentage at p truck percentage level (between 0 and 1). 

 𝑔𝑠 𝑔: Grade at g grade level (between –0.06 and 0.06). 

 𝑑𝑠 𝑑: Distance of grade at d distance level (mile). 

𝛼2,𝑚,𝐹𝐹𝑆
0− : Intercept parameter for capacity adjustment factor at level or negative 

grade. 

𝛼2,𝑚,𝐹𝐹𝑆
𝑇𝑎
−

, 𝛽2,𝑚,𝐹𝐹𝑆
𝑇𝑎
−

: Parameters for capacity adjustment factor for truck percentage 

effect (𝑇𝑎
−) at level or negative grade. 

𝛼2,𝑚,𝐹𝐹𝑆
0+ : Intercept parameter for capacity adjustment factor at positive grade. 

𝛼2,𝑚,𝐹𝐹𝑆
𝑇𝑎
+

, 𝛽2,𝑚,𝐹𝐹𝑆
𝑇𝑎
+

: Parameters for capacity adjustment factor for truck percentage 

effect (𝑇𝑎
+) at positive grade. 

𝛼2,𝑚,𝐹𝐹𝑆
𝐺𝑎
+

, 𝛽2,𝑚,𝐹𝐹𝑆
𝐺𝑎
+

: Parameters for capacity adjustment factor for grade effect (𝐺𝑎
+) 

at positive grade. 
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𝛼2,𝑚,𝐹𝐹𝑆
𝐷𝑎
+

, 𝛽2,𝑚,𝐹𝐹𝑆
𝐷𝑎
+

: Parameters for capacity adjustment factor for distance effect 

(𝐷𝑎
+) at positive grade. 

 The model parameters of the multiple linear regression model were estimated 

using a multivariate Box-Cox transformation and the least square method for the 

statistically significant predictors (Sheather, 2009; Spiegelman, Park, & Rilett, 2011). 

4.3.2.3 Reduced Nonlinear Regression Model (NLRMred) 

This chapter also explored a new reduced nonlinear regression model (NLRMred) with 8 

model parameters and a segmented model structure that is a function of the grade 

condition as shown in Equation (4-2). This model was derived from the previous 

multivariate linear regression model. Similarly, this model used truck percentage effect, 

grade effect, and distance effect as the explanatory variables and used the simulated CAF 

values as the dependent variable. However, this model assumed a combined effect of 

grade and distance similar to the original HCM-6 nonlinear regression model (NLRM). It 

should be noted only the model format for the distance effect was taken from the original 

nonlinear model. Preliminary analysis revealed this model format performs better for 

modeling the distance effect compared to the linear model. 

𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑,𝐹𝐹𝑆 =

 
  
 

  
 𝐶𝐴𝐹1,0,0,𝑔,𝑑 + 𝛼2,𝑚,𝐹𝐹𝑆

𝑇𝑎
−

∗  𝑝𝑠 𝑝
𝛽2,𝑚,𝐹𝐹𝑆
𝑇𝑎
−

𝑖𝑓  𝑔𝑠 𝑔 ≤ 0 

  𝐶𝐴𝐹1,0,0,𝑔,𝑑 + 𝛼2,𝑚,𝐹𝐹𝑆
𝑇𝑎
+

∗  𝑝𝑠 𝑝
𝛽2,𝑚,𝐹𝐹𝑆
𝑇𝑎
+

+𝛼2,𝑚,𝐹𝐹𝑆
𝐺𝑎
+

∗  𝑔𝑠 𝑔
𝛽2,𝑚
𝐺𝑎
+

∗ [1 − 𝛼2,𝑚,𝐹𝐹𝑆
𝐷𝑎
+

∗ 𝑒𝛽2,𝑚,𝐹𝐹𝑆
𝐷𝑎
+

∗ 𝑑𝑠 𝑑]

𝑖𝑓   𝑔𝑠 𝑔 > 0
    (4-2) 

Where: 
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𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑: Capacity adjustment factor for the mixed flow (𝑓 = 2) at p truck 

percentage level, m truck composition level, g grade level, d distance level, and 

𝐹𝐹𝑆 free-flow speed. 

𝐶𝐴𝐹1,0,0,𝑔,𝑑: Capacity adjustment factor for the auto-only flow at g grade level, d 

distance level. This value is assumed to be 1. 

 𝑝𝑠 𝑝: Truck percentage at p truck percentage level (between 0 and 1). 

 𝑔𝑠 𝑔: Grade at g grade level (between –0.06 and 0.06). 

 𝑑𝑠 𝑑: Distance of grade at d distance level (mile). 

𝛼2,𝑚,𝐹𝐹𝑆
𝑇𝑎
−

, 𝛽2,𝑚,𝐹𝐹𝑆
𝑇𝑎
−

: Parameters for capacity adjustment factor for truck percentage 

effect (𝑇𝑎
−) at level or negative grade. 

𝛼2,𝑚,𝐹𝐹𝑆
𝑇𝑎
+

, 𝛽2,𝑚,𝐹𝐹𝑆
𝑇𝑎
+

: Parameters for capacity adjustment factor for truck percentage 

effect (𝑇𝑎
+) at positive grade. 

𝛼2,𝑚,𝐹𝐹𝑆
𝐺𝑎
+

, 𝛽2,𝑚,𝐹𝐹𝑆
𝐺𝑎
+

: Parameters for capacity adjustment factor for grade effect (𝐺𝑎
+) 

at positive grade. 

𝛼2,𝑚,𝐹𝐹𝑆
𝐷𝑎
+

, 𝛽2,𝑚,𝐹𝐹𝑆
𝐷𝑎
+

: Parameters for capacity adjustment factor for distance effect 

(𝐷𝑎
+) at positive grade. 

Similar to the NLRM, the model parameters of the NLRMred were estimated using 

the Generalized Reduced Gradient (GRG) approach. 

Table 4-1 summarizes the explanatory variables that were added and removed in 

the model formulation for the three regression models explored in this chapter. 

 



106 

 

 

Table 4-1. Explanatory Variables for the Regression Models 

Regression Model 
Explanatory Variable 

 𝑝𝑠 𝑝  𝑔𝑠 𝑔  𝑑𝑠 𝑑 𝐹𝐹𝑆* 𝑚* 

NLRM Yes Yes Yes Yes Yes 

MLRM 

 𝑔𝑠 𝑔 ≤ 0 Yes No No Yes Yes 

 𝑔𝑠 𝑔 > 0 Yes Yes Yes Yes Yes 

NLRMred 

 𝑔𝑠 𝑔 ≤ 0 Yes No No Yes Yes 

 𝑔𝑠 𝑔 > 0 Yes Yes Yes Yes Yes 

Note: NLRM = nonlinear regression model (original HCM-6 model); MLRM = multivariate linear 

regression model (proposed); NLRMred = reduced nonlinear regression model (proposed);  𝑝𝑠 𝑝= truck 

percentage;  𝑔𝑠 𝑔= grade;  𝑑𝑠 𝑑= distance; 𝐹𝐹𝑆= free-flow speed; 𝑚=truck composition type; (*) 

treated as constant. 

4.3.3 Step 4 and 5: CAF and EC-PCE Estimation 

The CAFs for the mixed flow scenarios (𝐶𝐴𝐹2,𝑝𝑠,𝑚𝑠,𝑔𝑠,𝑑𝑠) were estimated for the specific 

conditions listed in the HCM-6. The parameters of interest were truck percentage ps, 

grade gs, and distance ds. These estimated CAFs were obtained using the calibrated 

regression models described above. The CAF values were estimated for both the HCM-6 

replication analysis and the CAV truck platooning analysis.   

The last step was to calculate the EC-PCEs (𝐸𝐶 − 𝑃𝐶𝐸2,𝑝𝑠,𝑚𝑠,𝑔𝑠,𝑑𝑠) at specific 

combinations of truck percentage ps, grade gs, and distance ds. These EC-PCE values 

were calculated using the HCM-6 method shown in Equation (3-12). 
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4.4 Calibrated Regression Model Results 

4.4.1 NLRM Calibrated Models 

The calibrated model parameters of original nonlinear regression models (NLRM) are 

shown in Table 4-2. The calibrated model parameters were used in Equations (3-7) 

through (3-11), to calculate the estimated CAFs for the mixed-flow condition. The 

calibrated model parameters for the original values of the HCM-6 research and the HCM-

6 replication analysis are given in rows 1 and 2, respectively. It may be seen the 

calibrated parameters are relatively close. For the CAV truck platooning analysis, the 

calibrated model parameters are given in row 3. It is hypothesized the values in row 3 

differ from the non-CAV models because they were fit to CAV traffic conditions which 

are considerably different than the HCM-6 assumptions. 

Table 4-2. Parameters in the NLRM for CAF Estimation 

 

4.4.2 MLRM Calibrated Models 

The calibrated multivariate linear regression model (MLRM) for the HCM-6 replication 

analysis and the CAV truck platooning condition are shown in Equations (4-3) and (4-4), 

respectively. These equations were used to calculate the estimated CAF values for the 
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mixed traffic condition for both analyses. Note that all the predictors included in the 

models were statistically significant at 𝛼 = 0.05. 

• MLRM for HCM-6 replication:      (4-3) 

𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑,𝐹𝐹𝑆 = {
0.997 − 0.519 ∗  𝑝𝑠 𝑝

0.73 𝑖𝑓   𝑔𝑠 𝑔 ≤ 0  

0.884 − 0.514 ∗  𝑝𝑠 𝑝
0.66 − 0.828 ∗  𝑔𝑠 𝑔

0.68 + 0.141 ∗  𝑑𝑠 𝑑
−0.11 𝑖𝑓  𝑔𝑠 𝑔 > 0

  

• MLRM for CAV truck platooning:      (4-4) 

𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑,𝐹𝐹𝑆 = {
0.943 − 0.315 ∗  𝑝𝑠 𝑝

13.27 𝑖𝑓  𝑔𝑠 𝑔 ≤ 0  

1.865 + 0.227 ∗  𝑝𝑠 𝑝
8.16 − 4.399 ∗  𝑔𝑠 𝑔

1.28 − 0.916 ∗  𝑑𝑠 𝑑
−0.01 𝑖𝑓   𝑔𝑠 𝑔 > 0

 

Where: 

𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑: Capacity adjustment factor for the mixed flow (𝑓 = 2) at p truck 

percentage level, truck composition level 𝑚 = 30𝑆𝑈𝑇/70𝑇𝑇, g grade level, d 

distance level, and free-flow speed 𝐹𝐹𝑆 = 70𝑚𝑝ℎ. 

 𝑝𝑠 𝑝: Truck percentage at p truck percentage level (between 0 and 1). 

 𝑔𝑠 𝑔: Grade at g grade level (between –0.06 and 0.06). 

 𝑑𝑠 𝑑: Distance of grade at d distance level (miles). 

4.4.3 NLRMred Calibrated Models 

The calibrated models of the reduced nonlinear regression model (NLRMred) for the 

HCM-6 replication and the CAV truck platooning are shown in Equations (4-5) and (4-

6) respectively. The description of the model structure is analogous to the MLRM as 

discussed above. 
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• NLRMred for HCM-6 replication:      (4-5) 

𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑,𝐹𝐹𝑆 = {
1 − 0.521 ∗  𝑝𝑠 𝑝

0.72 𝑖𝑓  𝑔𝑠 𝑔 ≤ 0 

1 − 0.501 ∗  𝑝𝑠 𝑝
0.73 − 3.456 ∗  𝑔𝑠 𝑔

1.10 ∗ [1 − 1.786 ∗ 𝑒−3.72∗ 𝑑𝑠 𝑑] 𝑖𝑓  𝑔𝑠 𝑔 > 0
       

• NLRMred for CAV truck platooning:     (4-6)  

𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑,𝐹𝐹𝑆 = {
0.943 + 0.315 ∗  𝑝𝑠 𝑝

13.27 𝑖𝑓  𝑔𝑠 𝑔 ≤ 0 

1 + 0.205 ∗  𝑝𝑠 𝑝
7.14 − 1.162 ∗  𝑔𝑠 𝑔

0.66 ∗ [1 − 1.893 ∗ 𝑒−5.42∗ 𝑑𝑠 𝑑] 𝑖𝑓  𝑔𝑠 𝑔 > 0
       

Where: 

𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑: Capacity adjustment factor for the mixed flow (𝑓 = 2) at p truck 

percentage level, truck composition level 𝑚 = 30𝑆𝑈𝑇/70𝑇𝑇, g grade level, d 

distance level, and free-flow speed 𝐹𝐹𝑆 = 70𝑚𝑝ℎ. 

 𝑝𝑠 𝑝: Truck percentage at p truck percentage level (between 0 and 1). 

 𝑔𝑠 𝑔: Grade at g grade level (between –0.06 and 0.06). 

 𝑑𝑠 𝑑: Distance of grade at d distance level (miles). 

4.5 Goodness-of-Fit Results 

Table 4-3 shows the statistics calculated for assessing the goodness-of-fit of the 

regression models examined in this chapter. For the HCM-6 replication analysis, the 

statistics between the original NLRM and the proposed NLRMred are, not surprisingly, 

exactly the same. Although the goodness-of-fit statistics for the proposed MLRM are 

slightly poorer, as revealed by the residual standard error (S) and the coefficient of 

determination (R2), its performance is very close to the other two models. Interestingly, 

for the CAV truck platooning analysis, the proposed NLRMred reveals a better goodness-
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of-fit than both the original NLRM and the proposed MLRM as evidenced by a slightly 

higher R-squared value and a lower S value.  

Note the goodness-of-fit statistics of all three regression models are poorer for the 

CAV truck platooning analysis as compared to the HCM-6 replication analysis. This 

issue will be discussed in more detail later.  

Table 4-3. Goodness-of-Fit Statistics for Estimated CAF values 

Statistic 
HCM-6 Replication CAV Truck Platooning 

NLRM NLRMred MLRM NLRM NLRMred MLRM 

SSE 1.04 1.04 1.26 2.70 2.62 2.79 

SST 39.73 39.73 39.73 10.85 10.85 10.85 

N 1274 1274 1274 1204 1204 1204 

P 15 8 10 15 8 10 

S = √MSE 0.029 0.029 0.032 0.048 0.047 0.048 

R2 0.97 0.97 0.96 0.75 0.76 0.74 

MAPE 3.4% 3.4% 3.7% 3.8% 3.8% 3.9% 

Note: NLRM = nonlinear regression model; MLRM = multivariate linear regression model; SSE = sum 

of squared error; SST = sum of squared total; N = number of observations; P = number of regression 

parameters; S = residual standard error; R2 = coefficient of determination; MAPE = mean absolute 

percentage error. 

 Figure 4-2 shows the relationship between the simulated CAF values (CAF-sim) 

and the estimated CAF values (CAF-est) for the calibrated regression models explored in 

this chapter. Note the goal of the regression model was to identify a CAF-est model that 

best replicates the CAF-sim values output from VISSIM. The left graph corresponds to 

the HCM-6 replication analysis, while the right graph corresponds to the CAV truck 

platooning analysis. In both graphs, the three regression models are depicted: (1) NLRM 

(blue circles), (2) proposed MLRM (green crosses), and (3) proposed NLRMred (red Xs). 

For the HMC-6 replication the relationship is approximately one to one with an 
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approximate R-squared value of 0.97 for the three regression models. Note this R-squared 

value is higher than those obtained in previous related studies discussed in Section 

4.2(Washburn & Ozkul, 2013; Yang, 2013). For the CAV truck platooning analysis, the 

fit is not nearly as good as evidenced by the R-squared value of approximately 0.75. 

Although all three regression models have a similar performance, the proposed NLRMred 

performs slightly better. 

 

Figure 4-2. Comparison of goodness-of-fit between regression models. 

4.6 CAF Model Results 

4.6.1 HCM-6 Replication 

The estimated CAF values for the HCM-6 replication are shown in Figure 4-3. These 

estimated CAF values were calculated using each of the three regression models explored 

in this chapter. The orange line represents the HCM-6 original values, the blue line the 

original NLRM, the red line the proposed NLRMred, and the green line the proposed 

MLRM. Note the gray line in the background represents the VISSIM 9 simulated CAF 
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values used for fitting the regression models. For a given truck percentage, the CAFs for 

grade and grade distance are shown in order. The general form is a flat straight line for 

the negative and zero grade scenarios, followed by decreasing CAF values for the 

positive grade values. It may be seen the estimated CAF values decrease as truck 

percentage increases and this decrease is at a fairly linear rate. The estimated CAF values 

range from 1, which corresponds to the assumed value for the car-only flow condition 

(e.g., 0% truck percentage), to 0.34 for the 100% truck percentage. The mean absolute 

error between the estimated CAFs from the original HMC-6 results (orange line) and the 

estimated CAFs from the original NLRM (blue line) is only 0.006 with a maximum error 

of 0.018. Therefore, it was concluded the simpler models performed as well as the 

original, and more complex, HCM-6 model. 

Figure 4-3 is a visual example of why the developers of the EC-PCE 

methodology adopted the modeling approach shown in Figure 1-2. Specifically, the CAF 

values calculated using the simulated capacity values have considerable variation as 

compared to the CAF values estimated using the models. This is particularly evident for 

the negative grade scenarios where the estimated CAF values are effectively horizontal.  

If the simulated CAF values were used to estimate the EC-PCE values, then this 

variability would be propagated to the EC-PCE results. For example, if the simulated 

CAF values were used directly, the EC-PCE values for 10%, 15%, and 20% truck 

percentage, 3 percent grade, and 1 mile grade length, would be 3.03, 2.13, and 2.59, 

respectively. When the estimated CAF values are used, the EC-PCE values are 2.95, 

2.62, and 2.46.  It may be seen the variability of the simulation results would cause 

counter intuitive EC-PCE results. 
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Figure 4-3. CAF values as a function of scenario number for the HCM-6 Replication 

In general, the three regression models all estimated similar CAF values. The 

mean absolute error between the CAF values of the original NLRM (blue line) and the 

proposed NLRMred (red line) is only 0.0016 (maximum error of 0.0153) which is outside 

the range of significant digits. A two-sided paired t-test on estimated CAFs revealed the 

difference between both models was not statistically significant at α=5%. In contrast, 

while the fitting is acceptable for most of the truck percentage and grade values, the 

proposed MLRM (green line) shows a consistent poor fitting for combinations that have 

high grade length values (e.g., greater than 0.75 miles). The mean absolute error between 

the CAF values of the original NLRM (blue line) and the proposed MLRM is 0.007 

(maximum difference of 0.055). In this case, the two-sided paired t-test indicated the 

difference was statistically significant at α=5%. 
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4.6.2 CAV Truck Platooning 

The estimated CAF values for the CAV truck platooning analysis are shown in Figure 

4-4. The blue line represents the original NLRM, the red line the proposed NLRMred, and 

the green line the proposed MLRM. Note the gray line in the background represents the 

simulated CAF values from VISSIM 20 used for fitting the regression models. For this 

analysis, the estimated CAF values range from approximately 0.80 to 1.25. Note the trend 

of the CAF values differs considerably from those based on conventional traffic. 

Interestingly, in almost half of the 1,274 scenario combinations, the original NLRM (blue 

line) produces unrealistic CAFs for the scenarios at negative grade values as evidenced 

by the atypical peaks. Note the multiple linear regression analysis revealed the grade and 

distance predictors were not statistically significant at 𝛼 = 0.05 level for the simulated 

CAF values for negative and level grade conditions. Similar to the HCM-6 replication, 

the proposed MLRM (green line) shows a poor fitting for the scenario combinations at 

high distance values (e.g., greater than 0.75 miles). From the three regression models 

explored in this chapter, the proposed NLRMred model was better at estimating the CAF 

values. It was concluded the simpler NLRMred model can be used in place of the original 

HCM CAF model for modeling the new CAV scenarios. The model fitting process 

described in this chapter should be done when examining new traffic scenarios. In 

addition, it is clear the original HCM-6 model structure was not appropriate for the CAV 

scenarios. There is no guarantee the model form best for this CAV analyses will be best 

for other novel scenarios. 
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Figure 4-4. CAF values as a function of scenario number for the CAV condition 

4.7 EC-PCE Results 

The EC-PCE values at specific conditions were estimated for ten levels of truck 

percentage (i.e., 10% to 100% in 10% increments), grade (i.e., 0%, +3%, and +6%), and 

distance (i.e. 0.5, 1.0, and 1.5 mi). Figure 4-5 and Figure 4-6 show the corresponding 

EC-PCE values as a function of truck percentage for the three levels of grade and three 

levels of distance for the HCM-6 replication and the CAV truck platooning condition, 

respectively. The graph on the left side provides a comparison between the EC-PCE 

values from the original NLRM (dotted line) and the proposed MLRM (solid line). The 

graph on the right side compares the EC-PCE values from the original NLRM (dotted 

line) and the proposed NLRMred (solid line). The EC-PCE values were calculated using 

Equation (3-12).  
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Figure 4-5. EC-PCE values for the HCM-6 replication 

 

Figure 4-6. EC-PCE values for the CAV condition 

In general, as grade and distance increase so does the EC-PCE. For the HCM-6 

replication, the EC-PCE values tended to decrease as truck percentages increase until the 

30 percent value is reached. After this point, the EC-PCE values tend to increase at a 

decreasing rate with truck percentage. In contrast, for the CAV truck platooning 

condition the EC-PCE decreases at a smaller rate as percentage of trucks increases. 
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For the HCM-6 replication, the EC-PCE values between the proposed MLRM and 

the original NLRM describe the same general form as shown in Figure 4-5a. However, 

the proposed MLRM may underestimate the distance effect by the producing lower EC-

PCE values as evidenced by the conditions at +6% grade and distances of 1.0 and 1.5 

miles. The same issue was observed for the CAV truck platooning analysis. The mean 

absolute error of the EC-PCE values between the original NLRM and the proposed 

MLRM is 0.094 (maximum value of 0.692). In contrast, Figure 4-5b shows the EC-PCE 

values between the original NLRM and the proposed NLRMred are approximately the 

same at any truck percentage, grade, and distance combination. The mean absolute error 

between the EC-PCE values from the original NLRM and the proposed NLRMred is 0.021 

(maximum value of 0.105). 

 For the CAV truck platooning condition, the difference between the EC-PCE 

values produced by each regression model is more evident as shown in Figure 4-6a and 

Figure 4-6b. The mean absolute error between the original NLRM and the proposed 

MLRM is 0.065 (maximum error of 0.243). Similarly, the mean absolute error between 

the original NLRM and the proposed NLRMred is 0.073 (maximum error of 0.374). Note 

the NLRMred was the regression model that had the best goodness-of-fit for the CAV 

truck platooning condition.  

4.8 Concluding Remarks 

The objective of this chapter was to analyze the use of simpler regression models to fit 

simulated and estimated CAFs in the HCM-6 EC-PCE methodology for freeway and 

multilane highway segments. It was hypothesized simpler regression models could 

provide comparable results to the existing HCM-6 models and these models could be 
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used by HCM-6 users to estimate capacity, CAF, and PCE values directly. Moreover, the 

performance of the current nonlinear regression model when applied to new traffic 

situations such as CAV trucks has not been evaluated in previous studies.  

 One of the most significant findings to emerge from this chapter is that simpler 

regression models offer comparable results to those obtained with the original nonlinear 

regression model used in the HCM-6 EC-PCE methodology. For example, it was found 

that the difference of the results between the proposed NLRMred (8 model parameters) 

and the original NLRM (15 model parameters) was not statistically significant for the 

HCM-6 replication analysis. It was found that the NLRMred model is as accurate as the 

original HCM-6 model and can be used for exploring new traffic scenarios (e.g., CAVs, 

two-lanes, etc.) in the future with no loss in fidelity. In addition, the simpler model 

structure would facilitate the computations and the process of reporting results in HCM-6 

applications. Chapter 5 of this dissertation will develop simpler equations to calculate 

CAF and EC-PCE values for the HCM-6 based on the regression model structures 

analyzed in this chapter.  

 Another major finding is the existing nonlinear regression model (NLRM) may 

not be adequate for analyzing CAV traffic conditions. It was found that the original 

NLRM overestimates the effect of the distance parameter at negative grade levels 

producing atypical CAF values in approximately half of the simulated scenario 

combinations. In this regard, the segmented model structure of the proposed NLRMred 

was found to outperform the original NLRM when modeling CAV traffic. However, both 

models showed a poor fitting with respect to the truck percentage effect as evidenced by 

the moderate R-squared value of 0.75. It is hypothesized the polynomial format for the 
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term related to the truck percentage effect developed in Chapter 3 would improve the 

fitting for the CAV condition. If the HCM-6 EC-PCE methodology is expected to be used 

to analyze traffic conditions beyond the scope of the HCM-6 (e.g., CAV traffic, two-

lanes, etc.), it is important to perform a deeper assessment of the form and error of the 

regression models used for fitting the simulated and estimated data. It is possible different 

model structures might provide better results. In this regard. Chapter 7 of this dissertation 

will propose a simplified regression model structure that can be suitable for exploring 

CAV conditions.  
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CHAPTER 5 

 PROPOSED EQUATIONS FOR HCM-6 PASSENGER CAR EQUIVALENT 

VALUES 

5.1 Introduction 

The EC-PCEs for freeway segments were estimated using a microsimulation-based 

methodology where a nonlinear regression model (NLRM) with 15 model parameters 

was used to develop capacity adjustment factor (CAF) models using the microsimulation 

data as input (List, Rouphail, & Yang, 2014; Zhou, Rilett, & Jones, 2019). It is 

hypothesized that because of the complexity of the existing 15 parameter model structure, 

the HCM-6 EC-PCE values were reported using a set of tables (e.g., Exhibits 12-26, 12-

27, and 12-28, HCM, 2016). These tables are used to identify the required EC-PCE 

values for a given scenario (e.g., grade, grade distance, truck composition, and truck 

percentage). It is argued in this chapter a simpler regression model would allow HCM-6 

users to calculate the CAF and EC-PCE directly and would eliminate the need for the 

HCM-6 tables. 

The main objective of this chapter is to propose simpler equations to calculate the 

CAFs and EC-PCEs for basic freeway and multilane highway segments in the HCM-6. 

There are three main contributions of this chapter. The first is that simpler equations can 

be used to estimate the CAF and PCE values directly. In other words, users would no 

longer need to use the HCM-6 tables, there would be no need to interpolate any results, 

and more accurate EC-PCE values would be obtained for those situations where 

interpolation is currently required. Secondly, the simpler structure of the proposed model 
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allows a better understanding of the relationship between capacity, CAFs, and EC-PCEs 

and the main factors considered in the HCM-6 (e.g., truck percentage, grade, distance, 

and truck composition type). In addition, it is expected the proposed CAF model in this 

chapter would make it easier for users to calibrate the HCM-6 EC-PCE models for their 

local conditions (Zhou, Rilett, & Jones, 2019). 

5.2 Original Nonlinear Regression Model (NLRM) for Estimated CAFs 

Because of the inherent variability of the CAF results output from the simulation, the 

HCM-6 developers chose not to use the simulated CAF values for a given combination of 

parameters directly. Instead, they calibrated a nonlinear regression model that related the 

simulated CAF value to the truck percentage, grade, distance, and free-flow speed 

parameters. The goal was to mitigate the variability of the CAF results. This process is 

shown as Step 3 in Figure 1-2. 

The original nonlinear regression model has a complex structure comprised of 15 

model parameters. The form for the HCM-6 analytical model was based on vehicle 

kinematic and resistance equations related to trucks ascending and descending roadway 

sections of various grades and grade distance combinations (Dowling et al., 2014b). A 

heuristic optimization approach was used to calibrate the model where the goal was to 

identify the NLRM estimators that minimized the error between the simulated CAFs and 

the estimated CAFs. The final model consisted of a truck percentage effect parameter, a 

combined grade and distance effect parameter, and a free-flow speed effect parameter 

(List, Rouphail, & Yang, 2014; Zhou, Rilett, & Jones, 2019) as shown in Equations (3-7) 

through (3-11). It is clear from a quick examination of the original NLRM model it is 

very difficult to understand the relationship between CAF and truck percentage, traffic 
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stream composition, grade, and grade length.  This was one of the motivating factors 

behind developing a simpler model structure. 

5.3 Proposed Nonlinear Regression Model (NLRMred) for Estimated CAFs 

This chapter introduces a new reduced nonlinear regression model (NLRMred) for 

estimating HCM-6 CAF values. The simplified model is shown in Equation (5-1). The 

proposed model has six parameters and a dummy variable (𝐷) related to whether the 

section being analyzed has a grade that is positive or non-positive. It may be seen when 

the grade is positive the explanatory variables are truck percentage (𝑝), grade (𝑔), and 

distance (𝑑). Conversely, when the grade is negative or level, truck percentage (𝑝) is the 

only explanatory variable. In addition, for all scenarios the effect of truck percentage is 

independent of the combined effect of grade and distance. These relationships will be 

examined in greater detail in a later section. The free-flow speed (𝐹𝐹𝑆) and the truck 

composition type (𝑚) effects are set constant for all situations, similar to the original 

HCM-6 nonlinear regression model (NLRM). The model format was motivated by a 

multivariate linear regression model. However, the proposed model assumed a combined 

effect of grade and distance and the model format for the distance effect was taken from 

the original HCM-6 model. Previous analysis revealed this model format performs better 

for modeling the distance effect as compared to a conventional multivariate linear model 

(Hurtado-Beltran & Rilett, 2021). 

(5-1) 

𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑,𝐹𝐹𝑆 = 𝐶𝐴𝐹1,0,0,𝑔,𝑑 + 𝛼2,𝑚,𝐹𝐹𝑆
𝑇𝑎 ∗  𝑝𝑠 𝑝

𝛽2,𝑚,𝐹𝐹𝑆
𝑇𝑎

+ 𝛼2,𝑚,𝐹𝐹𝑆
𝐺𝑎 ∗  𝑔𝑠 𝑔

𝛽2,𝑚
𝐺𝑎

∗  1 − 𝛼2,𝑚,𝐹𝐹𝑆
𝐷𝑎 ∗ 𝑒𝛽2,𝑚,𝐹𝐹𝑆

𝐷𝑎 ∗ 𝑑𝑠 𝑑 ∗ 𝐷 

Where: 
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𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑: Capacity adjustment factor for the mixed flow (𝑓 = 2) at p truck 

percentage level, m truck composition level, g grade level, d distance level, and 

𝐹𝐹𝑆 free-flow speed. 

𝐶𝐴𝐹1,0,0,𝑔,𝑑: Capacity adjustment factor for the auto-only flow at g grade level, d 

distance level. This value is assumed to be 1. 

 𝑝𝑠 𝑝: Truck percentage at p truck percentage level (between 0 and 1). 

 𝑔𝑠 𝑔: Grade at g grade level (between –0.06 and 0.06). 

 𝑑𝑠 𝑑: Distance of grade at d distance level (mile). 

𝐷: Dummy variable, if  𝑔𝑠 𝑔 > 0 then 𝐷 = 1, otherwise 𝐷 = 0. 

𝛼2,𝑚,𝐹𝐹𝑆
𝑇𝑎 , 𝛽2,𝑚,𝐹𝐹𝑆

𝑇𝑎 , 𝛼2,𝑚,𝐹𝐹𝑆
𝐺𝑎 , 𝛽2,𝑚,𝐹𝐹𝑆

𝐺𝑎 , 𝛼2,𝑚,𝐹𝐹𝑆
𝐷𝑎 , 𝛽2,𝑚,𝐹𝐹𝑆

𝐷𝑎 : Parameters for capacity 

adjustment factor for truck percentage effect (𝑇𝑎), grade effect (𝐺𝑎), and distance 

effect (𝐷𝑎). 

5.4 Proposed Equations for Calculating HCM-6 EC-PCE Values 

The proposed NLRMred model was calibrated using the estimated CAF results obtained in 

the original HCM-6 EC-PCE research. The calibrated parameters were estimated using 

the Generalized Reduced Gradient (GRG) method (Lasdon, Fox, & Ratner, 1974) where 

the target goal was to minimize the sum of squared errors between the estimated CAF 

values given by the calibrated HCM-6 NLRM model and those estimated using the 

proposed model shown in Equation (5-1). Specifically, CAF models for the 30/70 

SUT/TT, 50/50 SUT/TT, and 70/30 SUT/TT truck composition levels were calibrated, 

and the results are shown in Equations (5-2), (5-3), and (5-4), respectively. These 

equations can be used in combination with Equation (5-5) to estimate the EC-PCE value 
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for a given scenario. A paired t-test was conducted on 405 CAF values corresponding to 

the parameter variables shown in the HCM-6. It was found the differences between the 

original HCM-6 model CAF values and the proposed model CAF values were not 

statistically significant at the 𝛼 = 5% level. This was true for all three truck composition 

types. 

• CAFs for a truck composition level 𝑚 = 30𝑆𝑈𝑇/70𝑇𝑇; 

𝑅𝑎𝑑𝑗
2 = 0.999; √𝑀𝑆𝐸 = 0.0018: 

𝐶𝐴𝐹𝑚𝑖𝑥 = 1 − 0.530 ∗  𝑝𝑠 
0.72 − 6.881 ∗  𝑔𝑠 

1.30 ∗ [1 − 1.381 ∗ 𝑒−2.56∗ 𝑑𝑠 ] ∗ 𝐷     (5-2) 

• CAFs for a truck composition level 𝑚 = 50𝑆𝑈𝑇/50𝑇𝑇;  

𝑅𝑎𝑑𝑗
2 = 1.000; √𝑀𝑆𝐸 = 0.0011: 

𝐶𝐴𝐹𝑚𝑖𝑥 = 1 − 0.499 ∗  𝑝𝑠 
0.70 − 7.271 ∗  𝑔𝑠 

1.36 ∗ [1 − 1.459 ∗ 𝑒−3.01∗ 𝑑𝑠 ] ∗ 𝐷     (5-3) 

• CAFs for a truck composition level 𝑚 = 70𝑆𝑈𝑇/30𝑇𝑇;  

𝑅𝑎𝑑𝑗
2 = 1.000; √𝑀𝑆𝐸 = 0.0009: 

𝐶𝐴𝐹𝑚𝑖𝑥 = 1 − 0.472 ∗  𝑝𝑠 
0.73 − 6.180 ∗  𝑔𝑠 

1.30 ∗ [1 − 1.239 ∗ 𝑒−2.81∗ 𝑑𝑠 ] ∗ 𝐷     (5-4) 

𝑃𝐶𝐸 =
1 −  1 − 𝑝𝑠 ∗ 𝐶𝐴𝐹𝑚𝑖𝑥

𝑝𝑠 ∗ 𝐶𝐴𝐹𝑚𝑖𝑥
 1 
    (5-5) 

Where: 

𝑃𝐶𝐸: Passenger car equivalent for the mixed flow. 

𝐶𝐴𝐹𝑚𝑖𝑥: Capacity adjustment factor for the mixed flow. 

𝑝𝑠: Truck percentage (between 0 and 1). 

𝑔𝑠: Grade (between –0.06 and 0.06). 
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𝑑𝑠: Distance of grade (between 0 and 1.5 miles). 

𝐷: Dummy variable, if 𝑔𝑠 > 0 then 𝐷 = 1, otherwise 𝐷 = 0. 

An EC-PCE can be calculated for any combination of truck percentage, grade, 

and distance using the calibrated regression models. For example, consider the scenario 

defined by an 8% truck percentage (ps=0.08), a +4.5% grade (gs=0.045), a distance of 

0.875 mi (ds=0.875), and a truck composition of 30/70 SUT/TT. Using Equation (5-2) 

the Capacity Adjustment Factor for this situation (𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑,𝐹𝐹𝑆 ) is 0.810. Using this 

value as input in Equation (5-5), the EC-PCE is estimated to be 3.92. Note that the 

HCM-6 provides a value of 3.92 for the same scenario (Exhibit 12-26) (HCM, 2016). 

The above EC-PCE estimation process was conducted for all entries in the 

corresponding HCM-6 PCE tables. The PCE values published in Exhibits 12-26, 12-27, 

and 12-28 were plotted against the estimated values using Equations (5-2), (5-3) and (5-

4) (HCM, 2016). These scatter plots are shown Figure 5-1, Figure 5-2, and Figure 5-3, 

respectively. It may be seen there is almost an exact one-to-one relationship between the 

original model and the simplified model. The Mean Absolute Percentage Error (MAPE) 

values were 0.64%, 0.46%, 0.42% for Exhibits 12-26, 12-27, and 12-28, respectively. 

The authors consider these errors to be negligible for practical purposes.  Based on this 

analysis it was concluded the calibrated models developed in this chapter (e.g., 

Equations (5-2) to (5-5)) can be used to replace the corresponding HCM-6 PCE tables 

with only a negligible loss in fidelity. 
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Figure 5-1. Goodness-of-fit of proposed equation for 30/70 SUT/TT truck 

composition. 

 

Figure 5-2. Goodness-of-fit of proposed equation for 50/50 SUT/TT truck 

composition. 
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Figure 5-3. Goodness-of-fit of proposed equation for 70/30 SUT/TT truck 

composition. 

The HCM-6 recommends a user should use interpolation when the HCM-6 PCE 

tables does not have the specific values for their analysis (HCM, 2016). Therefore, a 

comparison between the PCE values obtained from interpolation and those from the 

calibrated CAF model developed in this chapter was performed. In particular, the PCE 

values were calculated for 96 combinations of truck percentage, grade, and distance not 

listed in the HCM-6 PCE tables, as shown in Table 5-1. The combinations were selected 

to fall approximately midpoint between the HCM-6 table levels. Note that the 

interpolated values were obtained using a trilinear interpolation (Bourke, 1999). 

Intuitively, interpolation takes much more time when done manually, as compared to 

using the proposed equations directly. It was found the interpolation approach had an 

average error of 2.5% when the interpolated value was compared to the result of the 15 
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parameter HCM-6 model. The maximum error was 8.4%. In contrast, when the calibrated 

six parameter CAF model (i.e., Equation (5-2)) was compared to the 15 parameter 

HCM-6 CAF model the average error was 1.7%. This was an approximately 46.2% 

improvement. In summary, using the proposed 6-parameter model had more accurate 

results as compared to using interpolated values from the HCM-6 tables. The former was 

also much easier to calculate. 

Table 5-1. PCE Values from Trilinear Interpolation and HCM-6 CAF Model. 

Grade Length 
Percentage of Trucks (%) 

3% 9% 12% 

% km (mi) Interp HCM-6 PropEq Interp HCM-6 PropEq Interp HCM-6 PropEq 

1% 

0.40 0.250 2.72 2.64 2.64 2.22 2.21 2.21 2.15 2.13 2.13 

0.80 0.500 3.07 2.97 2.86 2.34 2.33 2.29 2.24 2.22 2.19 

1.21 0.750 3.27 3.11 2.97 2.40 2.38 2.33 2.29 2.27 2.23 

1.61 1.000 3.36 3.18 3.03 2.43 2.41 2.35 2.32 2.29 2.25 

2.21 1.375 3.41 3.22 3.08 2.45 2.42 2.37 2.33 2.30 2.26 

3% 

0.40 0.250 3.22 3.06 3.19 2.39 2.36 2.41 2.28 2.25 2.29 

0.80 0.500 4.38 4.21 4.15 2.77 2.78 2.77 2.59 2.58 2.58 

1.21 0.750 5.04 4.76 4.68 2.99 2.99 2.97 2.77 2.74 2.73 

1.61 1.000 5.34 5.02 4.97 3.09 3.08 3.08 2.84 2.81 2.82 

2.21 1.375 5.53 5.16 5.17 3.16 3.14 3.15 2.90 2.86 2.88 

4% 

0.40 0.250 3.54 3.31 3.53 2.49 2.45 2.54 2.36 2.32 2.39 

0.80 0.500 5.24 5.01 4.97 3.06 3.08 3.08 2.82 2.81 2.82 

1.21 0.750 6.23 5.84 5.78 3.39 3.38 3.38 3.08 3.05 3.06 

5% 

0.40 0.250 3.91 3.61 3.90 2.62 2.56 2.68 2.47 2.41 2.50 

0.80 0.500 6.26 5.96 5.90 3.40 3.43 3.43 3.09 3.09 3.09 

1.21 0.750 7.66 7.14 7.05 3.87 3.87 3.86 3.47 3.43 3.44 

Note: * = 30/70 SUT/TT truck composition type; Intrpl = PCE values from trilinear interpolation 

(Exhibit 12-16, HCM-6); HCM-6 = PCE values from calibrated NLRM from original HCM-6 EC-PCE 

research (List, Rouphail, & Yang, 2014); PropEq = PCE values from calibrated proposed CAF model 

(Equation (6-2)). 
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It is also important to note some combinations cannot be interpolated because 

their bounds lie outside the PCE tables. This occurs even though the bounds may have 

been included in the original research. Specifically, the original HCM-6 VISSIM 

analyses were based on truck percentages that ranged from 0% to 100%, grades that 

ranged from -6% to 6%, grade distances that ranged from 0.25 miles to 5 miles, and the 

three truck composition levels discussed earlier. For example, a user cannot analyze a 

4.0% grade and a 1.25 grade length using the HCM-6 tables even though this scenario 

was included in the original research. A major advantage of using the process developed 

in this chapter is that EC-PCE values can be calculated for any combination of factors 

including those not listed in the HCM-6 tables (e.g., truck percentage of 5.3%, +2.7% 

grade, and 0.9 miles distance). This would eliminate the need of interpolating the value 

from the appropriate HCM-6 tables since the EC-PCE values could be estimated directly. 

Moreover, as the HCM-6 EC-PCE methodology can be used to explore traffic conditions 

beyond the scope of the existing results, the proposed approach could be used to 

developed succinct and accurate equations for these novel conditions (Zhou, Rilett, & 

Jones, 2019; Hurtado-Beltran & Rilett, 2021). 

Additionally, the calibrated CAF models shown in Equations (5-2) through (5-4) 

can also be used to estimate the mixed-flow capacity for the mixed flow model included 

in Chapter 26 of the HCM-6 (e.g., Equation 26-5) (HCM, 2016). The HCM-6 

recommends the mixed flow model be used when analyzing scenarios with high truck 

percentages and extended steep upgrade conditions. Specifically, the calibrated CAF 

models shown in Equations (5-2), (5-3), and (5-4) can be substituted for HCM-6 

Equations 26-1 through 26-4 when analyzing truck compositions of 30/70, 50/50 and 
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70/30, respectively. To illustrate, consider a scenario with a 30/70 SUT/TT truck 

composition. A comparison of the mixed-flow capacity values using the existing HCM 

model and the proposed model (e.g., Equation (5-2)) found the average error was 0.73% 

across all 1,183 mixed-flow scenarios explored in the HCM-6 EC-PCE methodology.  

Interestingly, the mixed-flow model shown in Chapter 26 of the HCM-6 was 

based on the original CAF model calibrated for the 30/70 SUT/TT truck composition. In 

other words, the developers assumed the relationship for other truck composition levels 

(e.g., 50/50 and 70/30 SUT/TT) were the same as the 30/70 SUT/TT relationship.  It is 

hypothesized by the authors that using this approach may result in inaccurate capacity 

values for the other truck composition types (e.g., 50/50 and 70/30 SUT/TT).  When the 

above analysis was repeated for the 50/50 SUT/TT and 70/30 SUT/TT truck composition 

levels the average error was found to be 2.05% and 4.61%, respectively. It is 

hypothesized that using the three proposed CAF equations calibrated in this model would 

result in much more accurate results for the mixed flow methodology outlined in Chapter 

26 of the HCM-6. This would be particularly true when the truck composition values are 

considerably different than the 30/70 SUT/TT scenario.   

5.5 Analyzing the Marginal Effects in the Proposed CAF model 

One of the main benefits of the simpler model proposed in this chapter is transportation 

engineers will find it easier to understand the relationship between EC-PCE values and 

the main influencing factors (e.g., truck percentage, grade, and grade distance). It must be 

noted that a greater PCE value indicates a lower capacity for a given freeway segment, all 

else being equal. In turn, greater PCE values are related to lower CAF values and a lower 

percentage of trucks. It may be seen in the proposed equations there are two main 
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contributors to the CAF values: (1) a truck percentage effect, and (2) a combined grade 

and distance effect. These main contributors are independent of each other in the 

proposed model. Note this assumption may not be valid for traffic conditions outside of 

the scope of the original HMC-6 research. The marginal effect of truck percentage effect 

and the combined effect of grade and distance are discussed below.  

5.5.1 Marginal Truck Percentage Effect  

Because the truck percentage effect is independent from the other exploratory variables in 

the CAF model, it is possible to quantify how the capacity, CAFs, and PCEs change as 

truck percentage changes. Figure 5-4, Figure 5-5, and Figure 5-6 shows the marginal 

effect of truck percentage on CAF values, EC-PCE values, and capacity values, 

respectively. The relationships for all 3 truck composition types (e.g., 30/70, 50/50 and 

70/30 SU/TT) are also shown in the graphs. 

Figure 5-4 shows the marginal change in CAF values as truck percentage 

increases. This change is irrespective of grade and distance and as truck percentage 

increases the CAF values decrease at a slower rate. For example, when the truck 

percentage increases from 0 to 10 percent there is an approximately 0.101 drop in CAF 

values. However, from 10 to 20 percent the drop is approximately 0.065 and from 20 to 

30 percent it is approximately 0.056. As would be expected for a given truck composition 

type, the higher the percentage of tractor trailers, the greater the effect of truck percentage 

on the CAF values of the freeway segment. The change in CAF values range from 0 (e.g., 

only passenger cars) to -0.530 (e.g., 100% truck percentage) where the highest impact is 

for the 30/70 SUT/TT truck percentage. This implies the potential drop in CAF values for 
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a given freeway segment can be as high as 0.530 due solely to the presence of trucks in 

the traffic stream.  

 

Figure 5-4. Marginal Effect of Truck Percentage on CAFs. 

Figure 5-5 shows the marginal change in EC-PCE as the truck percentage 

increases. This change is irrespective of grade and distance and the relationship is 

parabola shaped. As truck percentage increases the EC-PCE value drops until it reaches a 

minimum (e.g., approximately at 40-50% truck percentage) and then increases again. 

This occurs because the EC-PCE values tend to have a minimum value when the product 

of truck percentage and CAF value is maximized, as shown in Equation (5-5). As the 

CAF value decreases when the truck percentage increases, it is easy to envision there is 

an optimum combination that produces the lowest EC-PCE value for a mixed traffic 

stream. The EC-PCE values are highly sensitive to small variations of CAF values, 
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particularly when the truck percentage is 5% or lower. This explains why the highest EC-

PCE values occur for these conditions.  

 

Figure 5-5. Marginal Effect of Truck Percentage on EC-PCEs. 

Figure 5-6 shows the marginal change in freeway capacity as truck percentage 

increases. This change is irrespective of grade and distance. The marginal change in 

capacity was calculated using the CAF values from the calibrated proposed models. A 

base capacity of 2,400 pc/h/ln was assumed as indicated in the mixed flow model of the 

HMC-6. As truck percentage increases capacity decreases at a slower rate. For example, 

when the truck percentage increases from 0 to 10 percent there is an approximately 241 

veh/h drop in capacity. However, from 10 to 20 percent the drop is approximately 157 

veh/h, and from 20 to 30 percent it is approximately 136 veh/h. As would be expected for 

a given truck composition type, the higher the percentage of tractor trailers, the higher the 
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effect of trucks on the capacity of the freeway segment. The change in capacity ranges 

from 0 veh/h/ln (e.g., only passenger cars) to -1,273 veh/h/ln (e.g., 100% truck 

percentage) as a function of the truck percentage and the truck composition type. This 

implies the potential drop in capacity for a given freeway segment can be as high as 

1,273 veh/h/ln due solely to the presence of trucks in the traffic stream. 

 

Figure 5-6. Marginal Effect of Truck Percentage on Freeway Capacity. 

In general, Figure 5-6 has the same form as Figure 5-4. This is because the CAF 

is a ratio of a mixed flow capacity to a passenger car-only flow capacity. Because, by 

definition, the passenger car-only flow capacity is not affected by the truck percentage, 

the values in Figure 5-6 are essentially the values in Figure 5-4 divided by a constant 

(e.g., base capacity value of 2,400 pc/h/ln). Therefore, the relationship between CAF 
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change and truck percentage is the same as the relationship between change in mixed 

flow capacity and truck percentage.  

It may be seen in Figure 5-4, Figure 5-5, and Figure 5-6 that there are only small 

differences between the three truck composition types considered in the HCM-6. It 

should be noted the 30/70 SUT/TT truck composition shows a slightly greater impact on 

the three traffic metrics analyzed. This is not surprising because this truck composition 

type was comprised of more tractor trailers (i.e., TT), the largest truck examined in the 

HCM-6 analysis. For all three truck composition scenarios, the maximum differences 

occur at 100% truck percentage value. The greatest differences were between the 30/70 

SUT/TT and 70/30 SUT/TT scenarios and these differences were equal to 139 veh/h/ln, 

0.058, and 0.23 for capacity, CAFs, and PCEs, respectively. 

5.5.2 Marginal Grade-Distance Effect 

Figure 5-7, Figure 5-8, and Figure 5-9 show the marginal change of CAF values, EC-

PCE values, and capacity values as a function of grade and distance. The grade-distance 

effect is independent of the truck percentage effect. The marginal change is only shown 

for the 30/70 SUT/TT truck composition scenario because of space limitation.  This truck 

composition was chosen because it is the most common in the U.S. (HCM, 2016). Similar 

results were found for the remaining truck composition types (e.g., 50/50 SUT/TT and 

70/30 SUT/TT). 

Figure 5-7 shows the marginal change in CAF values as a function of grade and 

distance. The y-axis represents the change in CAF values while the x-axis represents the 

distance values (e.g., 0.25 to 5 miles). Each line corresponds to a different percentage of 

upgrade value (e.g., 0% to 6% in 1% increments). The marginal change in CAF was 
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calculated in the same manner as the truck percentage effect discussed in the previous 

section. 

 

Figure 5-7. Marginal Effect of Combined Grade and Distance on CAFs. 

CAF values tend to decrease as both grade and grade distance increases. The 

change in CAF ranges from 0 (e.g., 0% grade and any distance) to -0.177 (e.g., +6% 

grade and 5 miles distance). This implies the drop in CAF values for a given freeway 

segment can be as high as 0.177 due solely to the grade and distance conditions 

irrespective of the truck percentage.  

However, the decrease in CAF produced by the combined effect of distance and 

grade occurs at a different rate when the variables are analyzed separately. For example, 

the effect on CAF increases with distance at a decreasing rate. The greatest effect occurs 

from 0 to 1.5 miles. After this point, increasing the distance value only produces a 
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minimal effect on CAF values. For example, approximately 97% of the potential CAF 

drop occurs by the 1.5 mile mark. This relationship is consistent for all the positive grade 

values explored for this analysis. On the other hand, in terms of grade effect, the decrease 

of CAF values occurs at a slightly increasing rate with the increase of the grade value. As 

would be expected, the maximum decrease corresponds to the +6% grade value, the 

steepest upgrade typically considered on freeways. In general, the potential change of the 

combined effect of truck and distance on the CAF values is lower than the potential truck 

percentage effect, all else being equal. However, the former may be more significant for 

lower values of truck percentage as can be observed by comparing Figure 5-4 and 

Figure 5-7. 

Figure 5-8 shows the EC-PCE values as a function of the grade and distance 

values for a scenario defined by a 10% truck percentage and a 30/70 SUT/TT truck 

composition type. The x-axis represents the EC-PCE value while the y-axis represents the 

distance value. Each line corresponds to a different grade value (e.g., 0% to 6% in 1% 

increments). In this case, the EC-PCE values range from 2.12 (e.g., 0% grade and any 

distance) to 4.85 (e.g., +6% grade and 5 miles distance) depending on the grade and 

distance combination. In general, the EC-PCE values tend to increase as both the grade 

and distance increase. However, this increase occurs at a decreasing rate with distance, 

while it occurs at a slightly increasing rate as grade increases. Similar to the CAF value 

analysis, the effect of distance on the EC-PCE values is minimal after 1.5 miles.  
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Figure 5-8. Marginal Effect of Combined Grade and Distance on EC-PCEs. 

Figure 5-8 also illustrates how the EC-PCE values for trucks are comprised of 

three parts: (1) the EC-PCE value assumed for passenger-cars (assumed equal to one, see 

purple dotted line), (2) the marginal change produced by the truck percentage effect 

(green dotted line), and (3) the marginal change produced by the combined effect of 

grade and distance (solid lines). For example, consider the scenario defined by a 10% 

truck percentage, a +6% grade, a distance of 4.0 miles, and a truck composition of 30/70 

SUT/TT. The EC-PCE value for this situation is 4.85 as shown in Figure 5-8. For this 

case, the marginal changes produced by the truck percentage effect and the combined 

effect of grade and distance are 1.12 and 2.37, respectively. This means that 67.9% of the 

EC-PCE value corresponds to the combined effect of grade and distance and the 

remaining 32.1% corresponds to the truck percentage effect. These percentages are a 

function of the truck percentage value as may be seen in Equation (5-5). It would be 
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expected, for low truck percentage values (e.g., approximately less than 20%), the 

combined effect of grade and distance on the EC-PCE will be lower as compared to the 

truck percentage effect.  

Figure 5-9 shows the marginal change in capacity of the combined effect of grade 

and distance. The y-axis represents the change in capacity values while the x-axis 

represents the distance values (e.g., 0.25 to 5 miles). Each line corresponds to a different 

percentage of upgrade value (e.g., 0% to 6% in 1% increments). The marginal change in 

capacity was calculated similar to that for the truck percentage effect. As both the grade 

and distance increase, capacity tends to decrease. The change in capacity ranges from 0 

veh/h/ln (e.g., 0% grade and any distance) to -425 veh/h/ln (e.g., +6% grade and 5 miles 

distance) as a function of the grade and distance values. This implies the drop in capacity 

for a given freeway segment can be as high as 425 veh/h/ln due solely to the grade and 

distance conditions independent of the truck percentage.  

However, the decrease in capacity produced by the combined effect of distance 

and grade occurs at different rates when the variables are analyzed separately. In general, 

Figure 5-9 has the same form as Figure 5-7 due to the same reasons discussed above for 

the marginal truck percentage effect. It may be seen the capacity values decrease as grade 

and distance increases. Although the potential change of the combined effect of truck and 

distance on capacity values is lower than the potential truck percentage effect, the former 

may be more significant for the lower values of truck percentage. This can be observed 

by comparing Figure 5-6 and Figure 5-9 for a given truck percentage value. 
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Figure 5-9. Marginal Effect of Combined Grade and Distance on Freeway Capacity. 

5.5.3 Additive Property of Marginal Effects 

Because the marginal effects discussed in this chapter are additive, the figures discussed 

above (e.g., Figure 5-4 to Figure 5-9) can be combined, as appropriate, to estimate the 

capacity, CAF, and EC-PCE value for a given scenario combination. For example, 

consider the scenario defined by a 20% truck percentage, a +5% grade, a distance of 1 

mile, and a 30/70 SUT/TT truck composition type. The analyst can estimate the drop in 

the mixed flow capacity by adding the marginal changes shown in Figure 5-6 and Figure 

5-9. In this case, the total drop in capacity is 700 veh/h/ln. This is 400 veh/h/ln from the 

truck percentage effect (Figure 5-6) plus 300 veh/h/ln from the combined grade and 

distance effect (Figure 5-9). The total drop in capacity of 700 veh/h/ln corresponds to a 

mixed flow capacity of 1,700 veh/h/ln, assuming a base capacity of 2,400 pc/h/ln for the 

freeway segment. A similar procedure can be used to estimate a specific CAF value. Of 
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course, the same result could be obtained by using Equations (5-2), (5-3), and (5-4) to 

calculate the CAF value and then using Equation (5-5) to estimate the corresponding 

EC-PCE value. 

 In summary, the proposed CAF model is comprised of two main contributors: (1) 

truck percentage effect, and (2) combined effect of grade and distance. The former has 

the greatest potential to impact on the operational performance of freeways, especially at 

moderate to high truck percentage values. However, the combined effect of grade and 

distance may be more critical than the truck percentage effect for steeper/longer grade 

values, especially when the truck percentage is lower than 20%. These findings can be 

useful for engineers and analysts to better understand the trade-off caused by key 

influencing factors such as the truck percentage, grade, distance, and truck composition 

type in the design and operation of freeways.   

5.6 Concluding Remarks 

The objective of this chapter was to propose simpler equations to calculate the EC-PCEs 

for basic freeway and multilane highway segments in the HCM-6. It was hypothesized 

simpler regression models could provide comparable results to the existing HCM-6 

models and these models could be used by HCM-6 users to estimate CAF and PCE 

values directly.  

One important finding to emerge from this chapter is that a proposed simpler 

regression model (NLRMred) offers comparable results to those obtained with the original 

nonlinear regression model used in the HCM-6 EC-PCE methodology. For example, it 

was found the error between the PCE values derived from the proposed NLRMred (6 

model parameters) and the original NLRM (15 model parameters) is effectively 



142 

 

 

negligible for practical purposes. Additionally, the simpler model structure would 

facilitate the computations and the process of reporting results in HCM-6 applications. 

The current version of the HCM includes a set of large tables for obtaining EC-PCE 

values for capacity analyses. Often the user must interpolate values in the tables. These 

tables could be substituted with simpler equations developed in this chapter. These can be 

used by analysts or developers of the Highway Capacity Software. 

Another major finding is the simpler structure of the proposed CAF model 

facilitates the interpretation of the EC-PCE values and their relationship with the main 

influencing factors defined in the HCM-6 EC-PCE methodology. This is in contrast to the 

original CAF model used in the HCM-6 research, which has a relatively complex model 

structure which makes interpretation difficult. The proposed CAF model was comprised 

of two main contributors assumed to be independent of each other: (1) truck percentage 

effect, and (2) combined effect of grade and distance. Note that this assumption may not 

be valid for traffic conditions not analyzed using the HCM-6 VISSIM model. The 

additive property of these contributors may facilitate the estimation of capacity, CAF, and 

EC-PCE values. This chapter provided a set of graphs showing the marginal changes 

produce by each of these contributors on the traffic metrics. These graphs can be used by 

analyst and engineers to better understand the trade-offs of the truck percentage, grade, 

distance, and truck composition type in the design and operation of freeways.  
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CHAPTER 6 

 IMPACT OF CAPACITY DEFINITION ON THE HCM-6 PASSENGER CAR 

EQUIVALENT VALUES 

6.1 Introduction 

The HCM-6 equal capacity methodology for freeway segments is based entirely on 

VISSIM microsimulation model results aggregated over one-minute intervals. In 

particular, the VISSIM microsimulation model is used to estimate the capacity of 1,274 

scenarios defined by combinations of truck percentage, grade, and grade distance levels 

as described in Section 3.2.3. These capacity values represent the main input to calculate 

the capacity adjustment factors (CAFs), which are subsequently used to calculate the 

HCM-6 EC-PCE values. 

However, there are three major concerns related to the microsimulation model 

approach used in the HCM-6 methodology. First, the HCM-6 EC-PCE methodology 

assumed a capacity definition inconsistent with the rest of the HCM-6. Secondly, the 

microsimulation model was not calibrated to any capacity value. This is critical because 

the capacity is an input to the PCE calculation. Lastly, the HCM-6 methodology 

aggregated the data at a different level than that used in the rest of the HCM-6 and, 

indeed, for every previous HCM release.  

The main objective of this chapter is to estimate EC-PCE values for basic freeway 

segments consistent with the standard assumptions underlying the HCM-6. Specifically, 

this chapter will examine the effect on HCM-6 PCE values when: 

1) The standard HCM-6 definition of freeway capacity is used; 
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2) The standard HCM-6 aggregation of data (e.g., 15 minutes) is used; 

3) The underlying microsimulation model is calibrated to the HCM-6 capacity 

definition; and 

4) The underlying microsimulation approach follows standard calibration and 

usage protocols. 

The goal is to quantify what, if any, changes occur in the HCM-6 CAF and PCE 

values when standard definitions are used. The goal is also to improve the core PCE 

methodology of the HCM-6. This would allow the engineers and analysts to use PCEs 

compatible with the traffic metrics in the HCM-6 in terms of definitions and aggregation 

levels. It is hypothesized this would improve the reliability of the capacity and levels of 

service analyses. More importantly, the improvements proposed in this chapter to the 

HCM-6 EC-PCE methodology would also facilitate users to develop their own localized 

PCEs for situations outside of the HCM-6 analyses using the same replicable and 

comparable framework. 

6.2 Issues with the HCM-6 EC-PCE Approach 

The HCM-6 CAF/EC-PCE values are dependent on the VISSIM Version 4.4 simulation 

model. This version of VISSIM is no longer available from the developers. It is important 

to note no empirical data was used to calibrate or validate the results (Dowling et al., 

2014a, 2014b; Yang, 2013; Zhou, 2018). This is a huge advantage from a modeling 

perspective; it takes significantly less time to model the 1,274 HCM-6 scenarios in 

comparison to collecting empirical data and developing statistically-based models. It is 

also amenable for modeling situations not covered by the original scenarios such as 

modeling the effects of commercial vehicles operating as connected and automated 
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vehicles (Hurtado-Beltran & Rilett, 2021). However, there are a number of issues related 

to the “all-simulation” approach adopted by the HCM-6 that require further analyses to 

ensure consistent and replicable results. 

6.2.1 HCM-6 Capacity Definition 

Interestingly, in the HCM-6 EC-PCE research, the developers chose to define capacity as 

the 95th percentile of the maximum one-minute average flow-rate for the given scenario 

(Dowling et al., 2014a, 2014b; Yang, 2013). This is the first instance, to the authors’ 

knowledge, the HCM used  

1) an aggregation level other than 15-minutes to calculate a traffic flow metric; 

and  

2) used a capacity definition related to the 95th percentile of maximum flow.  

In the HCM-6, the capacity for basic freeway and multilane highway segments is 

defined as “a maximum flow rate associated with the occurrence of some type of 

breakdown, which results in lower speeds and higher densities” (HCM, 2016, p. 12-7). 

The same manual included a section to estimate the capacity from the field that takes into 

account a similar capacity definition, “Freeway segment capacity is the maximum 15-min 

flow rate (in passenger cars per hour per lane) that produces an acceptable (𝜆%) rate of 

breakdown” (HCM, 2016, p. 26-18). Moreover, a similar capacity definition can be 

found for various transportation facilities in the manual. For example, in weaving 

segments, the capacity is defined as the maximum flow rate for a 15-min analysis period 

(HCM, 2016, p. 13-22).  
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Previous studies have shown the EC-PCE values may differ depending on the data 

aggregation level used to estimate capacity. For example, it has been reported the EC-

PCE values for four-lane freeways were, on average, 11% lower for data aggregation 

levels of 15 minutes as compared to the aggregation level of one-minute used in the 

original research (Zhou, Rilett, & Jones, 2019b). The authors found this difference was 

statistically significant at the 5% level of significance. Similar results were found if 

different definitions of capacity were used in the calculations. For example, the authors 

used the maximum flow rate (e.g., 100th percentile) instead of the 95th percentile used in 

the original research and they found the capacity values were, on average, 15.7 percent 

higher. This resulted in PCE values that were, on average, 8.8 percent lower than the 

HCM-6 approach. To date, no one has examined the effect of different aggregation levels 

and capacity definitions on the original HCM scenarios (e.g., six-lane freeway, all vehicle 

types have same maximum speed, etc.). 

Figure 6-1 shows the effect of capacity definition and aggregation level on the 

simulated capacity values of the 1,274 scenarios using the same output of the HCM-6 

microsimulation model. The x-axis represents the capacity values computed as the 

maximum flow rate and the y-axis represents the capacity values as the 95th percentile of 

the maximum flow rate (e.g., current approach). The red circles correspond to an 

aggregation level of 1 minute (e.g., current approach), while the blue crosses relate to an 

aggregation level of 15 minutes. It may be seen that both capacity definition and 

aggregation level affect the capacity values. If the 95% maximum flow definition at one-

minute averages is used, the capacity values range from 820 to 2,300 veh/h/ln. In 

contrast, if the standard HCM-6 capacity definition, maximum flow rate at 15-minutes 
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averages, is used then the capacity values range from 763 to 2,012 veh/h/ln. The average 

difference on the simulated capacity values between the two definitions was found to be 

10.7%. Interestingly, it was observed the capacity of mixed flow scenarios changed at a 

greater rate as compared to the passenger car only flow scenarios, 13.0% versus 6.2%, 

respectively. This explains why the CAF values are affected by the capacity definition 

and aggregation level even though the CAF is a ratio between the mixed flow and 

passenger car only flow capacities.  

 

Figure 6-1. Effect of capacity definition and aggregation level on simulated capacity. 

Therefore, it is the author’s contention that care must be taken in comparing the 

capacity values found in the original EC-PCE research with other published capacity 

values based on larger aggregation levels. For example, in the HCM-6 mixed flow model, 
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the estimated CAF values (one-minute aggregation level) of the EC-PCE research are 

used to compute the mixed-flow capacity (Equation 26-5, HCM, 2016). This mixed-flow 

capacity is compared with the auto-only capacity (Exhibit 12-6, HCM, 2016) that was 

based on a larger aggregation level (15 minutes). It is expected by calculating the 

capacity using a consistent percentile of flow-rate and aggregation level with those used 

in the core methodologies for basic freeway and multilane highway facilities, EC-PCE 

values consistent with the other sections of the HCM-6 will be obtained.  

6.2.2 Model Calibration 

In the VISSIM microsimulation model the HCM-6 developers input operational and 

geometric characteristics of the vehicles (e.g., acceleration profiles, weight and power 

distributions, vehicle dimensions, etc.) based on previous research. The default 

Wiedemann 99 (car-following) and slow lane rules (lane-changing) were used to model 

the driving-behavior of the driver-vehicle units (Zhou, 2018). However, no empirical data 

was used to calibrate the driving-behavior of vehicles in the simulation.  

It has been shown the VISSIM microsimulation capacity varies according to 

which VISSIM release is used. In one sense, this is not a problem as VISSIM 4.4 was 

used for the HCM-6. However, this version is no longer available nor supported by the 

microsimulation developer (PTV Group, 2019). For this reason, it is relatively easy to 

obtain capacity values that greatly differ from the base capacity values included in the 

HCM-6 without an adequate model calibration. For example, the HCM-6 capacity of 

basic freeway and multilane highway segments under base conditions ranges from 1,900 

to 2,400 pc/h/ln and is a function of the free-flow speed and the facility type (HCM, 

2016). These capacity values represent normal operating conditions across the US. Note 
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the HCM-6 base capacity for a freeway segment at 70 mph of free-flow speed is 2,400 

pc/h/ln (Exhibit 12-4, HCM, 2016). In the HCM-6 research, the VISSIM microsimulation 

model results produced capacities as low as 2,059 pc/h/ln (VISSIM 11) or 2,275 pc/h/ln 

(VISSIM 20) for the base capacity conditions (Hurtado-Beltran & Rilett, 2021). It is easy 

to show this can negatively affect the calculation of CAF/EC-PCE values. It is 

hypothesized calibrating the underlying microsimulation model to the HCM definition of 

base capacity will lead to more consistent and, hopefully, accurate results. 

6.2.3 Number of Microsimulation Replications for Each Scenario 

The original EC-PCE research considered one single simulation run per scenario 

combination. This approach greatly reduced the number of simulation runs to complete 

the analysis. As the original researchers noted, this approach also drastically increased the 

noise or variability of the results (Dowling et al., 2014b). There is some debate in the 

literature on how many iterations, each with a new random seed number, should be 

conducted for a given scenario. The FHWA advocates using a single run for each 

scenario during the calibration process because it considers the variability produced by 

the driving behavior or the vehicle generation does not have a substantial impact on the 

results for a well-coded model (Wunderlich, Vasudevan, & Wang, 2019). Others, 

including the author of this chapter, advocate conducting multiple runs and then using the 

average, and the associated confidence intervals, for conducting the analysis (Spiegelman 

et al, 2011; Toledo & Koutsopoulos, 2004; Tufuor, Rilett, & Zhao, 2020). This is 

particularly important when modeling scenarios where minor changes can have major 

consequences – such as what occurs when modeling conditions on the edge of 

congestion. If only one replication is needed then intuitively running multiple runs and 
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averaging the results will not affect the final results. The only cost would be the extra 

time to conduct the simulations.  

Note the original HCM researchers indicated the results, particularly related to the 

capacity values and the associated capacity adjustment factors (CAFs), had significant 

variation. As such, they made two adjustments in their methodology. The first was related 

to capacity. In particular, “The 95th flow rate was selected in this research to avoid the 

noise due to the randomness in simulation” (Yang, 2013). While this reduced the 

variability considerably, it did not completely remove the problem. Therefore, instead of 

using the CAF values directly to calculate the PCE the developers first calibrated 

regression models in order to identify a mathematical relationship between the simulated 

and estimated CAFs. The CAF estimates from these models were used to calculate the 

PCEs. It is hypothesized using a predefined number of simulations for each scenario, 

each using a different random number seed, will lead to microsimulation results that have 

much lower variation and higher consistency. 

6.2.4 Layout of Microsimulation Model 

Figure 1-3 shows a schematic of the underlying microsimulation model layout. It may be 

seen that the test bed includes an initial 12.8 km (8 miles) level section, followed by a 

central grade section of 9.7 km (6 miles), and a third level section of 1.6 km (1 mile). The 

grade of the central section varies according to the scenario (e.g., negative 6 degree to 

positive 6 degrees in increments of 1 degree) and it is on this central section where the 

microsimulation data is collected for the 1,274 scenarios. Note that virtual detectors are 

placed at various intervals on the central grade as shown in Figure 1-3. The data from 

these collectors are used to identify how grade and grade length affects various traffic 
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parameters including speed and capacity. In addition, the data for each scenario is 

collected concurrently. For example, a single run for a given input volume will collect 

information on the 0.4 km (0.25 mile) scenario, the 0.8 km (0.5 mile) scenario, etc.   

It is hypothesized running all the grade length scenarios simultaneously might 

result in biased results. Specifically, it is argued shockwaves produced by vehicles 

upstream of a given detector might affect the traffic flow at the downstream detectors. 

This would be particularly true for commercial trucks on steep uphill grades where their 

operational performance is often characterized by a gradual reduction in speed until they 

reach “crawl speed” that is a function of grade value and the traveled distance (Al-Kaisy, 

2006). This is, of course, less of an issue for passenger cars because their power/weight 

ratio is such that long, steep grades of the type in the analysis do not affect their ability to 

travel near the speed limit (Morris & Donnell, 2014).   

 Consequently, in this chapter each grade length scenario was run separately rather 

than concurrently. As an example, the 0.4 km (0.25 miles) length scenarios were all run 

with section 2 in Figure 1-3 being 0.4 km (0.25 miles) and the 2.4 km (1.5 miles) length 

scenarios were run with section 2 in Figure 1-3 being 2.4 km (1.5 miles) long. The goal 

is to verify the effect of the model layout on the results and how the proposed solution 

removes the problem.  

 To illustrate, Table 6-1 shows the capacity values for a mixed traffic scenario 

defined by 30% truck percentage, +5% grade, and 30/70 SUT/TT truck composition type. 

The seven distance levels from 0.4 km (0.25 miles) to 8.1 km (5.00 miles) were evaluated 

considering two approaches: (1) independent runs (e.g., the model layout was modified 

according to the distance level using separate runs), and (2) single run (e.g., the seven 
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distance levels were evaluated in the same simulation run). Note the latter was the 

original approach used in the HCM-6 EC-PCE methodology. The mean capacity values, 

which were based on five experimental replications, differ between the two approaches. 

A paired t-test on the mean capacity values exposed this difference was statistically 

significant at 𝛼 = 5% for grades of 0.4 km (0.25 miles) and 0.8 km (0.5 miles). In other 

words, the capacity was higher for the shorter roadway segments when they were 

modeled separately. As would be expected the greatest differences occurred for the 

scenarios with the highest grades. 

Table 6-1. Independent versus Single Runs on Capacity Values for a Mixed Traffic 

Scenario. 

Scenario 
Simulated Capacity (veh/h/ln) 

Independent Runs Single Run 

m p g d SR1 SR2 SR3 SR4 SR5 Mean SR1 SR2 SR3 SR4 SR5 Mean 

30/70 SUT/TT 30% 5% 0.25 1561 1541 1579 1564 1553 1560 1497 1509 1509 1508 1504 1506 

30/70 SUT/TT 30% 5% 0.50 1517 1519 1533 1520 1525 1523 1511 1520 1500 1521 1505 1511 

30/70 SUT/TT 30% 5% 0.75 1505 1509 1504 1513 1497 1506 1527 1519 1511 1504 1523 1517 

30/70 SUT/TT 30% 5% 1.00 1509 1497 1531 1512 1527 1515 1504 1532 1500 1511 1533 1516 

30/70 SUT/TT 30% 5% 1.50 1525 1508 1527 1507 1509 1515 1509 1517 1527 1499 1517 1514 

30/70 SUT/TT 30% 5% 2.50 1516 1499 1531 1493 1509 1510 1517 1508 1528 1511 1504 1514 

30/70 SUT/TT 30% 5% 5.00 1507 1532 1517 1496 1495 1509 1507 1532 1517 1496 1495 1509 

Note: m = truck composition type; p = truck percentage; g = grade; d = distance (miles); SRi = simulation run i. 

6.3 Proposed Approach for EC-PCE Estimation 

The objective of the proposed approach is to use a capacity definition in the HCM-6 EC-

PCE procedure consistent with the capacity definition for basic freeway segments in the 

HCM-6. The original protocols and assumptions were followed in this chapter except the 

simulated capacity was computed in agreement with the HCM-6 definition (e.g., using a 

15-minute aggregation level). Moreover, the microsimulation model was calibrated to 
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match the base capacity for basic freeway segments at 70 mph (e.g., 2,400 veh/h/ln). 

Additionally, independent simulation runs and five experimental replications were 

performed for each scenario combination to improve the accuracy and reduce the 

variability of the results. A detailed discussion of the changes considered in the proposed 

approach is provided in the following sections.  

6.3.1 Microsimulation Framework 

This chapter used a microsimulation model in VISSIM 20 to obtain the simulated 

capacity of the 1,274 scenario combinations that comprised the HCM-6 EC-PCE 

procedure. The methodology adopted in this chapter, which is based on VISSIM 20, gave 

statistically similar results to the original results based on VISSIM 4.4 as shown in 

previous publications (Hurtado-Beltran & Rilett, 2021).  

 With the exception of the changes discussed above, all the original assumptions 

related to traffic demand vehicle types (e.g., passenger cars, single-unit trucks, and 

tractor-trailers), and operational characteristics (e.g., acceleration profiles, weight and 

power ratios, speed distributions, etc.) were kept the same. However, the vehicle input 

scheme was modified to ensure exact vehicle input over time intervals.  

Although exact vehicle inputs were used in the original research, the time 

intervals used for vehicle generation (e.g., 60 minutes) and data aggregation (e.g., one 

minute) were incompatible to produce an exact vehicle generation as reported in the 

literature (Hurtado-Beltran & Rilett, 2021). Due to this, the proposed approach used a 

time interval of 15 minutes for both vehicle generation and data aggregation to reduce the 

variability of the results and to be consistent with the HCM-6 aggregation level.  



154 

 

 

In the original HCM-6 research, the scenario combinations related to the seven 

distance levels were analyzed in the same simulation run. To avoid the influence of the 

traffic shockwave at the detectors located upstream, the proposed approach considered 

independent simulation runs for each scenario combination. In addition, five 

experimental replications were used for each scenario combination. The number of 

experimental replications was determined based on the variability observed during the 

calibration process of the microsimulation model.  

6.3.2 Model Calibration 

The VISSIM 20 model was calibrated to match the HCM-6 base capacity of 2,400 

pc/h/ln, which corresponds to a basic freeway segment at a free-flow speed (FFS) of 70 

mph. It must be noted the driving behavior was not calibrated in the original research. 

Therefore, the capacity values tended to differ from Exhibit 12-4 in the HCM-6. In this 

chapter, a gap sensitivity analysis based on the parameter CC1 (i.e., gap time) was 

performed for the model calibration. Default values of Wiedemann 99 for car-following, 

except the CC1 parameter, and slow lane rules for lane-changing were used as in VISSIM 

20. The scenario combination used for the calibration of the model corresponds to a truck 

percentage of 0%, a grade of 0%, and distance of 0.4 km (0.25 miles), according to the 

base conditions in HCM-6.  

In contrast to the original research that used the lowest simulation resolution 

available in VISSIM (e.g., 1 time step/simulation second), the proposed approach used a 

higher simulation resolution of 2 time steps/simulation second. Preliminary analyses 

revealed the lowest simulation resolution may have a significant impact on the capacity 

values. A paired t-test on the simulated capacity values confirmed the difference between 
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a simulation resolution of 2 and 10 time steps/simulation second was not statistically 

significant at 𝛼 = 5% considering the capacity definition and aggregation level of the 

proposed approach. Based on the previous finding, the simulation resolution was selected 

to reduce the required simulation time per run without compromising the accuracy of the 

results. 

The results of the calibration process are shown in Figure 6-2. The horizontal axis 

represents the CC1 parameter value in seconds and the vertical axis the simulated 

capacity value in pc/h/ln. The gap sensitivity analysis explored CC1 values from 0.88 to 

0.94 seconds. Note the default CC1 value in VISSIM 20 is 0.90 seconds. Five 

experimental replications were used to estimate the simulated capacity related to the 

explored CC1 values. The number of experimental replications was calculated using 

Equation (6-1) (Spiegelman et al, 2011). In this case, it was considered a standard 

deviation of 14 veh/h/ln, allowable error of 2%, level of significance of 5%, and five 

initial runs. Although the estimated number of simulation runs was 0.43, it was decided 

to use five experimental replications per scenario to consider a multi-run approach as 

suggested in the literature. It may be seen that the optimal CC1 better matching the base 

capacity was 0.92 seconds. This CC1 value was used to model the driving behavior for 

all 1,274 scenario combinations in the proposed approach. 

𝑁𝑚 =  𝑡1−∝ 2 ,𝑛−1

𝜎𝑚
𝜀
 

2

   𝑚 = 1,… ,𝑀 1 

  (6-1) 

Where: 

𝑁𝑚: Number of simulation runs for performance measure 𝑚. 

𝑀: Number of performance measures that are being considered by the user. 
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𝜎𝑚: Estimated standard deviation of performance measure 𝑚. 

𝑡1−∝ 2 ,𝑛−1: t-statistic value for given significance level and number of simulation 

runs. 

𝜀: Allowable error; this is often specified as a fraction of the mean value of the 

performance measure 𝜇𝑚. 

 

Figure 6-2. Gap sensitivity results used for model calibration. 

6.3.3 Capacity Definition 

The proposed approach used a consistent definition of capacity with the HCM-6. In this 

case, the capacity of each scenario combination was defined as the maximum hourly flow 

rate for a 15-minute aggregation level. The simulated capacity for each of the 1,274 

scenarios was calculated using Equations (6-2) and (6-3). The simulated capacity was 

averaged over the experimental replications. Note that five experimental replications 

were used in this chapter. 
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𝐶𝑓 ,𝑝 ,𝑚 ,𝑔,𝑑 =
 𝑐𝑖𝑓,𝑝,𝑚,𝑔,𝑑
𝑛
𝑖=1

𝑛
 1 

   (6-2) 

𝑐𝑖𝑓 ,𝑝 ,𝑚 ,𝑔,𝑑
= Max

𝑡=1,4
𝑟=1,9

  𝑞𝑓 ,𝑡 ,𝑝 ,𝑚 ,𝑔,𝑑 ,𝑟  1 

    (6-3) 

Where: 

𝐶𝑓,𝑝,𝑚,𝑔,𝑑: Simulated capacity at 𝑓 flow type, 𝑝 truck percentage level, 𝑚 truck 

composition level, 𝑔 grade level, 𝑑 distance level, (veh/h/ln). 

𝑐𝑖𝑓,𝑝,𝑚,𝑔,𝑑
: capacity for experimental replication 𝑖 at 𝑓 flow type, 𝑝 truck 

percentage level, 𝑚 truck composition level, 𝑔 grade level, 𝑑 distance level, 

(veh/h/ln). 

𝑛: Number of experimental replications for each scenario combination. 

𝑀𝑎𝑥: Maximum value. 

𝑞𝑓,𝑡,𝑝,𝑚,𝑔,𝑑,𝑟: Flow rate for the f flow type at t time interval, p truck percentage 

level, m truck composition level, g grade level, d distance level, and r simulation 

volume level, based on 4 15-min interval traffic volume recorded by the detector 

(veh/h/ln). 

6.3.4 CAF and PCE Estimation 

The simulated capacity values, main input for the estimation of CAFs and PCEs, of all 

1,274 scenario combinations were obtained using the calibrated VISSIM 20 model. These 

scenarios corresponded to a 30/70 SUT/TT truck composition type. These capacity values 

were used to calibrate the nonlinear regression (NLR) model used for fitting simulated 

and estimated CAF values (e.g., Steps 2 and 3 in the HCM-6 procedure). The nonlinear 
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regression model used in the HCM-6 is shown in Equations (3-7) to (3-11) (Dowling et 

al., 2014b; Zhou, Rilett, & Jones, 2019; Zhou, 2018). 

This chapter adopted the same form of the nonlinear model (i.e., Equation (3-7)) 

as was used in the HCM-6. The parameters were estimated using a Generalized Reduced 

Gradient (GRG) approach (Lasdon, Fox, & Ratner, 1974). This is a nonlinear 

optimization method that uses an iterative process to optimize a target value. In this 

chapter, the target goal was to minimize the sum of squared errors between the simulated 

CAFs from Step 2 and the estimated CAFs from the non-linear regression model. 

Finally, the CAF and PCE values for specific conditions of truck percentage, 

grade, and distance were estimated (e.g., Steps 4 and 5 in the HCM-6 procedure). The 

EC-PCEs (𝐸𝐶 − 𝑃𝐶𝐸2,𝑝𝑠,𝑚𝑠,𝑔𝑠,𝑑𝑠) at specific conditions of truck percentage ps, grade gs, 

and distance ds, are calculated using Equation (3-12).  

6.4 Comparison of Estimated CAF Results 

The CAFs were estimated for all 1,274 scenario combinations using the calibrated 

parameters and the nonlinear regression model shown in Table 6-2 and Equation (3-7), 

respectively. A comparison between the estimated CAFs for the proposed approach and 

the estimated CAFs for the original approach (e.g., HCM-6 results) are shown in Figure 

6-3. The solid line represents the values estimated using the proposed approach and the 

dotted line represents the values from the HCM-6 methodology. The scenario number 

(horizontal axis) is given by Equation (3-6) and corresponds to a particular combination 

of truck percentage, grade, and distance used to compute the corresponding CAF. There 

were 14 truck percentage values (including 0%) and these are shown on the top of Figure 

6-3. For a given truck percentage, the CAFs for grade and grade distance are shown in 
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order. The general form is a flat straight line for the negative and zero grade scenarios, 

followed by decreasing CAF values for the positive grade values. For both approaches, 

the CAF values decrease as truck percentage increases and this decrease is at a fairly 

linear rate. However, for the proposed approach the CAF values are, on average, 5.17% 

lower (ranging from 0.02% to 7.63%) than those of the original approach. It is 

hypothesized this occurs because, in contrast to the original approach, the proposed 

approach considered a different definition of capacity, uses the standard aggregation level 

of 15 minutes, uses a calibrated microsimulation model to match the HCM-6 base 

capacity for basic freeway segments, and uses state of the practice microsimulation 

approaches (e.g., multiple runs, finer step sizes, etc.). 

Table 6-2. Calibrated NLRM Models. 

Condition 

(30/70 SUT/TT) 

Nonlinear Model Parameter (NLRM) 

𝛼12,𝑚
𝑇𝑎  𝛽12,𝑚

𝑇𝑎  𝛾2,𝑚
𝐺𝑎  𝜃2,𝑚

𝐺𝑎  𝜇2,𝑚
𝐺𝑎  𝛼2,𝑚

𝐺𝑎  𝜙2,𝑚
𝐺𝑎  𝜂2,𝑚

𝐺𝑎  𝛼2,𝑚
𝐷𝑎  𝛽2,𝑚

𝐷𝑎  𝜙2,𝑚
𝐷𝑎  𝑅2 

HCM-6  0.53 0.72 8.0 0.126 0.030 0.69 12.90 1.0 1.72 1.71 -3.16 - 

Proposed 0.56 0.59 8.0 0.127 0.070 0.69 10.63 1.0 1.72 1.71 -3.15 0.98 

Note: The capacity adjustment factor for free-flow speed effect for the mixed flow is given by the 

following parameters:  𝜇2,𝑚
𝐹𝐹𝑆𝑎=0.25; 𝜌2,𝑚

𝐹𝑆𝑆=0.70; 𝛽2,𝑚
𝐹𝑆𝑆=1.0; 𝜙2,𝑚

𝐹𝑆𝑆=1.0. This factor is equal to zero when 

the assumed free-flow speed is 112.65 km/h (70 mph), as the case in the original research.  NLRM = 

nonlinear regression model (original model); SUT = single unit truck; TT = tractor-trailer. 
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Figure 6-3. CAF values as a function of scenario number for the proposed and 

HCM-6 approaches. 

6.5 Comparison of EC-PCE Results 

A comparison of the EC-PCE values between the proposed approach and the original 

HCM-6 approach was performed. The EC-PCE values were estimated for ten levels of 

truck percentage (i.e., 10% to 100% in 10% increments), three levels of grade (i.e., 0%, 

+3%, and +6%), and three levels of distance (i.e., 0.8 km (0.5 mi), 1.61 km (1.0 mi), and 

2.42 km (1.5 mi)). Figure 6-4 shows the corresponding EC-PCE values as a function of 

truck percentage for the three levels of grade and three levels of distance for both the 

proposed approach and the HCM-6 values. The solid lines represent the proposed EC-

PCE values and the dotted lines the HCM-6 EC-PCE values. The EC-PCE values were 

calculated using Equation (4-12). Note any specific condition within the explored range 

of truck percentage, grade, and distance considered in the HCM-6 methodology can be 

computed using the model parameters provided in Table 6-2. On average, the EC-PCE 
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values for the proposed approach are 15.9% greater than those of the original HCM-6 

approach indicating the current PCE values in the HCM may underestimate the impact of 

heavy trucks on traffic operations. 

 

Figure 6-4. EC-PCE values for the proposed and HCM-6 approaches. 

For both the proposed and original HCM-6 approaches, the maximum EC-PCE 

values occur at a truck percentage of 10%. In general, as grade and distance increase so 

does the EC-PCE. For higher truck percentages, the EC-PCE values for both approaches 

tend to decrease as truck percentage increases until the 40 percent value is reached. After 

this point, the EC-PCE values tend to increase at a decreasing rate with truck percentage. 

However, the latter increase is milder for the proposed approach. In general, the EC-PCE 

ranges from 2.2 to 4.7 for the proposed approach and from 1.9 to 4.7 for the original 

approach. It must be noted that the EC-PCE values for the proposed approach are slightly 

greater than the original approach, especially for the 0% and 3% grade values. This 
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finding suggests the effect of trucks is greater at level and rolling terrain conditions as 

compared to the existing values. 

An EC-PCE can be calculated for any combination of truck percentage, grade, 

and distance using the calibrated nonlinear regression model. For example, consider the 

scenario defined by a 5% truck percentage (ps=0.05), a +3.5% grade (gs=0.045), a 

distance of 1.0 km (0.625 miles) (ds=0.625), and a truck composition of 30/70 SUT/TT. 

Using Equation (4-7) and the calibrated parameters in Table 6-2 the Capacity 

Adjustment Factor for this situation (𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑,𝐹𝐹𝑆 ) is 0.855. Using this value as input in 

Equation (4-12), the EC-PCE is estimated to be 4.4. Note the HCM-6 provides a value of 

3.9 for the same scenario (Exhibit 12-26) (HCM, 2016). 

The EC-PCE estimation process described above was conducted for all entries in 

the corresponding HCM-6 PCE table. Specifically, the PCE values corresponding to 

Exhibit 12-26 were estimated and compared to the published values as shown in Table 

6-3 (HCM, 2016). Similar to the previous PCE results, the MAPE value was 18.5% for 

these specific conditions. In general, the PCE values from the proposed approach are 

greater than the HCM-6 values also indicating trucks produce a greater effect on the 

traffic stream. As greater PCE values will translate into lower capacity values, it is 

hypothesized the PCE values from the proposed approach would reduce, or even 

eliminate, the possibility of overestimating the capacity of basic freeway segments.   

Table 6-3. PCE Values for Proposed and Original Approaches. 

Grade Length 
Percentage of Trucks (%) 

2% 5% 10% 15% 20% >25% 

% (miles) Prop. HCM Prop. HCM Prop. HCM Prop. HCM Prop. HCM Prop. HCM 
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0.0 

0.125 3.9 2.6 3.1 2.3 2.7 2.1 2.5 2.0 2.4 2.0 2.3 2.0 

0.375 3.9 2.6 3.1 2.3 2.7 2.1 2.5 2.0 2.4 2.0 2.3 2.0 

0.625 3.9 2.6 3.1 2.3 2.7 2.1 2.5 2.0 2.4 2.0 2.3 2.0 

0.875 3.9 2.6 3.1 2.3 2.7 2.1 2.5 2.0 2.4 2.0 2.3 2.0 

1.25 3.9 2.6 3.1 2.3 2.7 2.1 2.5 2.0 2.4 2.0 2.3 2.0 

1.5 3.9 2.6 3.1 2.3 2.7 2.1 2.5 2.0 2.4 2.0 2.3 2.0 

2.5 

0.125 3.9 2.6 3.1 2.3 2.7 2.1 2.5 2.0 2.4 2.0 2.3 2.0 

0.375 5.1 4.1 3.6 2.9 3.0 2.5 2.7 2.3 2.5 2.2 2.4 2.1 

0.625 5.9 5.0 4.0 3.3 3.1 2.7 2.8 2.4 2.6 2.3 2.5 2.2 

0.875 6.3 5.5 4.1 3.5 3.2 2.8 2.9 2.5 2.7 2.4 2.6 2.3 

1.25 6.5 5.7 4.2 3.6 3.3 2.8 2.9 2.5 2.7 2.4 2.6 2.3 

1.5 6.5 5.8 4.2 3.6 3.3 2.8 2.9 2.6 2.7 2.4 2.6 2.3 

3.5 

0.125 3.9 2.6 3.1 2.3 2.7 2.1 2.5 2.0 2.4 2.0 2.3 2.0 

0.375 5.8 4.9 3.9 3.3 3.1 2.6 2.8 2.4 2.6 2.3 2.5 2.2 

0.625 6.9 6.3 4.4 3.9 3.4 3.0 3.0 2.6 2.8 2.5 2.6 2.4 

0.875 7.5 7.0 4.6 4.2 3.5 3.1 3.1 2.8 2.8 2.6 2.7 2.5 

1.25 7.8 7.4 4.8 4.3 3.6 3.2 3.1 2.8 2.9 2.6 2.7 2.5 

1.5 7.9 7.5 4.8 4.4 3.6 3.2 3.1 2.8 2.9 2.6 2.7 2.5 

4.5 

0.125 3.9 2.6 3.1 2.3 2.7 2.1 2.5 2.0 2.4 2.0 2.3 2.0 

0.375 6.5 5.8 4.2 3.6 3.3 2.8 2.9 2.6 2.7 2.4 2.6 2.3 

0.625 8.1 7.9 4.9 4.5 3.6 3.3 3.2 2.9 2.9 2.7 2.8 2.6 

0.875 8.9 8.9 5.2 5.0 3.8 3.6 3.3 3.1 3.0 2.8 2.9 2.7 

1 9.1 9.2 5.3 5.1 3.9 3.6 3.3 3.1 3.1 2.9 2.9 2.7 

5.5 

0.125 3.9 2.6 3.1 2.3 2.7 2.1 2.5 2.0 2.4 2.0 2.3 2.0 

0.375 7.3 6.9 4.5 4.1 3.5 3.1 3.0 2.7 2.8 2.5 2.7 2.4 

0.625 9.5 9.8 5.5 5.3 4.0 3.8 3.4 3.2 3.1 2.9 2.9 2.8 

0.875 10.5 11.2 5.9 5.9 4.2 4.1 3.6 3.4 3.3 3.1 3.0 2.9 

1 10.8 11.6 6.1 6.1 4.3 4.2 3.6 3.5 3.3 3.2 3.1 3.0 

6.0 

0.125 3.9 2.6 3.1 2.3 2.7 2.1 2.5 2.0 2.4 2.0 2.3 2.0 

0.375 7.7 7.5 4.7 4.4 3.6 3.2 3.1 2.8 2.9 2.6 2.7 2.5 

0.625 10.2 10.8 5.8 5.8 4.2 4.0 3.5 3.4 3.2 3.1 3.0 2.9 

0.875 11.5 12.5 6.4 6.5 4.4 4.4 3.7 3.7 3.4 3.3 3.2 3.1 

1 11.8 13.0 6.5 6.7 4.5 4.5 3.8 3.7 3.4 3.4 3.2 3.1 

Note: Prop. =  proposed approach in this chapter; HCM = current HCM-6 approach. 
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6.6 Concluding Remarks 

The objective of this chapter was to estimate EC-PCE values consistent with the HCM-6 

capacity for basic freeway segments. It was hypothesized a capacity definition and 

aggregation level in agreement with the HCM-6 could produce more reliable PCE values 

for capacity and level of service analyses. The current PCE values in the HCM-6 were 

estimated considering an atypical definition of capacity (e.g., capacity as 95th percentile 

of the maximum flow rate) and aggregation level (e.g., one-minute) that differ from the 

standards observed to compute the traffic metrics in the HCM-6. It is important to assess 

to what extent the assumptions made in the original research can affect the PCE values 

published in the HCM-6.  

 One of the most significant findings to emerge from this chapter is the approach 

used to compute the capacity values in the HCM-6 procedure (e.g., Step 1) has a 

significant impact on the PCE results. This means the assumptions made in the original 

research regarding the capacity definition and aggregation level affect the PCE values 

shown in the HCM-6. As the PCE values are used to convert a mixed traffic stream into a 

passenger car stream, it is important the PCE values are based on the same capacity 

definition and aggregation level considered in the HCM-6 to produce comparable traffic 

metrics. 

 Another major finding is the approach proposed in this chapter produced greater 

PCE values as compared to the traditional approach, particularly for the lower grade and 

distance levels. This finding suggests the current PCE values in the HCM-6 may 

underestimate the effect of trucks in capacity and level of service analyses. The proposed 

approach addressed important issues identified in the original HCM-6 EC-PCE 
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methodology. It is argued the approach advocated in this chapter produces results more 

comparable and consistent with the underlying logic of the HCM-6. In particular, the 

proposed approach used a calibrated microsimulation model that targeted the base 

capacity for basic freeway segments in the HCM-6. Moreover, the capacity was 

computed using the same capacity definition (e.g., capacity as the maximum hourly flow 

rate) and aggregation level (e.g., 15 minutes) in agreement with the HCM-6. The PCE 

values from the proposed approach were, on average, 15.9% greater than those obtained 

in the original HCM-6 research. This finding is important because the proposed PCE 

values will produce more conservative capacity values and levels of service than the 

existing PCE values in the HCM-6 indicating the latter values may overestimate the 

capacity of basic freeway segments. Chapter 7 of this dissertation will consider a similar 

approach to the one exposed in this chapter as a part of the proposed methodology for 

EC-PCEs.  
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CHAPTER 7 

 IMPACT OF CAV TRUCK PLATOONING ON FOUR-LANE FREEWAY 

SEGMENTS IN WESTERN U.S. 

7.1 Introduction 

This chapter presents a new methodology to estimate EC-PCE values for generic 

purposes including CAV technologies. The proposed methodology will be illustrated by 

studying the deployment of CAV truck platooning on four-lane freeway segments in the 

Western U.S. As a part of the case study, two traffic conditions will be evaluated: (1) 

non-CAVs (e.g., only conventional cars and trucks) and (2) CAV truck platooning (only 

trucks operate as CAVs). A comparative analysis between both traffic conditions will 

provide insight about the potential impact of CAV truck platooning on the EC-PCE 

values and the capacity of four-lane freeways.  

The proposed methodology will estimate EC-PCE values for basic freeway 

segments (four-lanes) that are consistent with the standard assumptions underlying the 

HCM-6 and will overcome the issues discussed in previous chapters of this dissertation. 

Specifically, the proposed methodology will consider the following improvements: 

1) The standard HCM-6 definition of freeway capacity is used; 

2) The standard HCM-6 aggregation of data (e.g., 15 minutes) is used; 

3) The underlying microsimulation model is calibrated to the HCM-6 capacity 

values; 

4) The underlying microsimulation approach follows standard calibration and 

usage protocols; and 
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5) A simpler regression model structure for fitting simulated and estimated data 

is used. 

The goal is to demonstrate the proposed methodology developed in this 

dissertation can be suitable for exploring either conventional traffic situations or 

disruptive technologies such as CAVs. This would allow the engineers and analysts to 

use PCEs compatible with the traffic metrics in the HCM-6 in terms of definitions and 

aggregation levels. It is hypothesized this would improve the reliability of the capacity 

and levels of service analyses. More importantly, the EC-PCE methodology proposed in 

this chapter would also facilitate users to develop their own localized PCEs for situations 

outside of the HCM-6 analyses using the same replicable and comparable framework. 

7.2 Operational Traffic Conditions in Western U.S. 

The Western U.S. was selected as a case study because their operational conditions may 

differ from those assumed in the original HCM-6 EC-PCE research. In this regard, Zhou, 

Rilett and Jones (2019) argued the EC-PCE values published in the HCM-6 are not 

appropriate for the Western U.S. conditions. The HCM-6 EC-PCE values were developed 

for unrestricted three-lane freeway segments, a uniform free-flow speed (FFS) for 

passenger cars and trucks of 70 mph, a simplified truck composition type (e.g., only truck 

classes 5 and 8), and truck percentages up to 25%. The same EC-PCE value at 25% truck 

percentage is assumed for greater truck percentage values in the HCM-6. These 

conditions may not correspond to those that have been observed in western rural U.S.  

For example, the Nebraska Department of Transportation (NDOT) reported 

Interstate 80 in Western Nebraska frequently experiences truck percentages between 25% 

and 60% (USDOT, 2015). High truck percentages have been also reported in other states 
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including Wyoming, Kansas, Nevada, and Texas (WYDOT, 2009; KDOT, 2015; NDOT, 

2017; TxDOT, 2016). Moreover, it has been estimated truck percentages will continue to 

increase in the freeway system, reaching a 42% increase by 2040 (Mendez, Monje, & 

White, 2017). 

Another important point is that most of the heavy trucks in Western U.S. are 

governed through the use of speed limiters that reduce their maximum operational speed 

considerably below the posted speed limit (Bishop, 2008). In addition, the interaction of 

high truck percentages and large speed differences promotes the formation of moving 

bottlenecks, negatively affecting the operational performance of freeways. This is 

especially critical on four-lane freeways (e.g., two-lanes per direction) which widely exist 

in the Western U.S (Zhou, Rilett, & Jones, 2019). 

Therefore, care must be taken when the HCM-6 EC-PCE values are used to 

analyze freeway segments under the western rural US conditions. This was a main 

motivation for selecting this case study. 

7.3 Data Description 

The Nebraska Transportation Center (NTC) collected empirical traffic data at 13 sites on 

Interstate 80 between mileposts 177 and 399 in Nebraska. This data collection occurred 

from June to December 2015. The dataset is comprised of 48,903 valid vehicle records 

used to identify free-flow speed distributions for passenger cars, single unit trucks (SUT), 

and tractor trailers (TT). Free vehicles were defined as those are not in a moving 

bottleneck based on a ‘critical headway’ that ranged from 3 to 8 seconds. Further details 

of this dataset can be found elsewhere (Zhou, Rilett, Jones, & Chen, 2018). This 

empirical data, as representative of the western rural U.S. conditions (e.g., four-lanes 
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freeways, high truck percentages, and higher speed differentials), will serve as a basis to 

input the desired speed distributions and the truck length distributions in the 

microsimulation model. 

 Figure 7-1a shows the empirical free-flow speed (FFS) cumulative distributions 

for passenger cars (solid black line), single unit trucks (solid red line), and tractor trailers 

(solid blue line). In addition, it may be seen the uniform FFS of 70 mph assumed for cars 

and trucks in the HCM-6 EC-PCE methodology (gray dotted line), which drastically 

differs from the empirical data. Note the FFS for passenger cars, SUTs, and TTs are 

approximately normally distributed, and the average speed of SUTs and TTs are 7 mph 

and 10 mph lower than the average of passenger cars, respectively. 

 Figure 7-1b shows the empirical truck length cumulative distributions for single 

unit trucks (solid red line), and tractor trailers (solid blue line). For the Western U.S. the 

SUTs and TTs are modeled as having lengths that range from 30 to 45 ft for SUTs and 

from 50 to 95 ft for TTs. In contrast, the dotted lines correspond to the values used in the 

HCM-6 EC-PCE methodology where the SUTs and TTs are modeled as having the same 

length of 33 and 55 ft, respectively.  

Figure 7-1c, d, e, and f show the operational characteristics used for modeling 

trucks in the HCM-6 EC-PCE methodology. These data were based on the NCHRP report 

505 ‘Review of Truck Characteristics as Factors in Roadway Design’ (2003). It is 

important to note the exact operational characteristics shown in the figures were used for 

modeling trucks in the VISSIM 20 model for both the non-CAV condition and the CAV 

truck platooning condition. 
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Figure 7-1. Truck attributes considered in the microsimulation model (Zhou, 2018; 

Dowling et al., 2014). 

Thus, the Western U.S. conditions in this chapter refers to: 

1) Four-lane freeways (e.g., two-lanes per direction). 

2) Different free-flow speed distributions between vehicle types. Note the 

differences in speed distributions have been shown to be statistically significant 

(Zhou, 2018). 

3) Empirical truck length distributions between truck types. 
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7.4 Microsimulation Model 

Figure 7-2 shows a schematic of the underlying microsimulation model layout. The 

model layout corresponds to a unidirectional two-lane freeway segment. The test bed 

includes an initial 4.02 km (2.5 miles) level section, followed by a central grade section 

of variable length that is a function of the corresponding distance level of the explored 

scenario combination. 

 

Figure 7-2. Schematic of the VISSIM model for EC-PCE estimation. 

The length of the initial level section was reduced by approximately 70% 

compared to the HCM-6 test bed, in order to reduce the simulation running time. 

Preliminary experiments revealed approximately 90% of the platoon formation occurs at 

the 2.5 miles distance as shown in Appendix B of this dissertation (Hurtado-Beltran, 

Vakilzadian, & Rilett, 2020). It also was shown that shortening the length of the initial 

level section had no meaningful effect on the results. The grade of the central section 

varies according to the scenario (e.g., negative 6 degree to positive 6 degrees in 

increments of 1 degree) and it is on this central section where the microsimulation data is 
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collected for the 1,274 scenarios. Virtual detectors are placed on both lanes at various 

intervals on the central grade as shown in Figure 7-2. The data from these detectors are 

used to collect critical traffic data (e.g., speed, volume) so that the relationship between 

certain variables (e.g., grade, grade length) affect various traffic metrics including speed, 

flow rate, and capacity. In addition, the data for each scenario is collected independently. 

For example, the 0.4 km (0.25 miles) length scenarios were all run with section 2 in 

Figure 7-2 being 0.4 km (0.25 miles) and the 2.4 km (1.5 miles) length scenarios were 

run with section 2 in Figure 7-2 being 2.4 km (1.5 miles) long. The advantages of this 

scheme were discussed in Chapter 6 of this dissertation.  

7.5 Model Calibration 

The VISSIM 20 model was calibrated to match the base capacity values published in the 

HCM-6 for non-CAVs and CAVs. For the non-CAV condition, it was considered a base 

capacity of 2,400 pc/h/ln, which corresponds to a basic freeway segment at a free-flow 

speed (FFS) of 75 mph (Exhibit 12-4, HCM, 2016). In contrast, for the CAV condition, it 

was considered the CAV base capacity of 3,200 pc/h/ln that will be published in the 

forthcoming version of the HCM, HCM-6.1 (Exhibit 26-15). To estimate this CAV 

capacity, the HCM-6.1 assumed a maximum platoon size of 10 vehicles and an 

intraplatoon gap of 0.71 seconds. This cases study used the same assumptions for 

modeling the CAV truck platooning condition during the calibration process.  

A gap sensitivity analysis based on the parameter CC1 (i.e., gap time) was 

performed for the model calibration. For the non-CAV condition, default values of 

Wiedemann 99 for car-following, except the CC1 parameter, and slow lane rules for lane-

changing were used as in VISSIM 20. In contrast, default values of the ‘Aggressive 
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CoExist’ driving behavior in VISSIM 20 were considered for the CAV condition, except 

the CC1 parameters and the platooning parameters. The scenario combination used for 

the calibration of the model corresponds to a truck percentage of 0%, a grade of 0%, and 

distance of 0.4 km (0.25 miles), in agreement with the base conditions in HCM-6.  

In contrast to the original HCM-6 research that used the lowest simulation 

resolution available in VISSIM (e.g., 1 time step/simulation second), the proposed 

approach used a higher simulation resolution of 2 time steps/simulation second. 

Preliminary analyses revealed the lowest simulation resolution (e.g.., 1 time 

step/simulation second) may have a significant impact on the capacity values. This is 

shown in Appendix C of this dissertation. A paired t-test on the simulated capacity values 

confirmed the difference between a simulation resolution of 2 and 10 time 

steps/simulation second was not statistically significant at 𝛼 = 5% considering the 

capacity definition and aggregation level of the proposed approach. Based on the 

previous finding, the simulation resolution was selected seeking to reduce the required 

simulation time per run without compromising the accuracy of the results. It is important 

to note that the simulation resolution was treated as a fixed calibration parameter as 

suggested in Appendix C. 

The results of the calibration process are shown in Figure 7-3. The horizontal axis 

represents the CC1 parameter value in seconds and the vertical axis the simulated 

capacity value in pc/h/ln. Five experimental replications were used to estimate the 

simulated capacity related to the explored CC1 values. The gap sensitivity analysis 

explored CC1 values from 0.88 to 1.00 seconds for the non-CAV condition (Figure 

7-3a), and from 0.80 to 0.94 seconds for the CAV condition (Figure 7-3b). The default 



174 

 

 

CC1 value in VISSIM 20 is 0.90 seconds which coincides with the optimal values 

obtained in the calibration process for both conditions. These CC1 values were used to 

model the driving behavior for all 1,274 scenario combinations that comprise each 

condition in the proposed methodology. Table 7-1 shows the driving behavior parameters 

set for modeling the two conditions explored in this case study. 

 

Figure 7-3. Gap sensitivity results used for the model calibration of: (a) non-CAV 

condition and (b) CAV truck platooning condition. 

Table 7-1. Driving Behavior Parameters in VISSIM 20 

Model Parameter 

Setting 

Non-CAV 
CAV Truck 

Platooning 

Autonomous 

Driving 

Enforce absolute braking distance Unselected Unselected 

Use implicit stochasticity Selected Unselected 

Platooning possible 

Max. number of vehicles 

Max. desired speed 

Max. distance for catching up to a 

platoon 

Gap time 

Minimum clearance 

Unselected 

- 

- 

- 

- 

- 

Selected 

10 

112.65 km/h (70 mph) 

250 m 

0.70 s 

1.00 m 

Following 

Look ahead 

Number of interaction objects & 

vehicles 

Min 0 m; Max 250 m 

2 & 99 

Min 0 m; Max 300 m 

10 & 10 
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Look back distance Min 0 m; Max 150 m Min 0 m; Max 150 m 

Behavior during recovery from speed breakdown 

Slow recovery 

Speed 

Acceleration 

Safety Distance 

Distance 

 

Unselected 

60% 

40% 

110% 

200 m 

 

Unselected 

60% 

40% 

110% 

200 m 

Standstill distance for static obstacles Unselected Unselected 

Car 

Following 

Wiedemann 99 

CC0 standstill distance 

CC1 gap time 

CC2 following variation 

CC3 threshold for entering following 

CC4 negative following threshold 

CC5 positive following threshold 

CC6 speed dependency of oscillation 

CC7 oscillation acceleration 

CC8 standstill acceleration 

CC9 acceleration with 80 km/h 

 

1.5 m 

0.90 s (constant) 

4.0 m 

-8.0  

-0.35 

0.35 

11.44 

0.25 m/s2 

3.5 m/s2 

1.5 m/s2 

 

2.0 m 

0.90 s (constant) 

0.0 m 

-6.0  

-0.10 

0.10 

0.0 

0.10 m/s2 

4.0 m/s2 

2.0 m/s2 

Following behavior depending on the vehicle 

class 
None 

Same as conventional 

traffic for all vehicles 

Lane 

Change 

General behavior Slow lane rule Slow lane rule 

Necessary lane change (own & trailing vehicle) 

Maximum deceleration 

-1 m/s2 per distance 

Accepted deceleration 

 

-4.0 m/s2 & -3.0 m/s2 

200 m & 200 m 

-1.0 m/s2 & -0.5 m/s2 

 

-4.0 m/s2 & -4.0 m/s2 

100 m & 100 m 

-1.0 m/s2 & -1.5 m/s2 

Waiting time before diffusion 

Min. clearance (front/rear) 

To slower lane if collision time is above 

Safety distance reduction factor 

Maximum deceleration for cooperative braking 

Overtake reduced speed areas 

Advanced merging 

Vehicle routing decisions look ahead 

60 s 

0.5 m 

11 s 

0.60 

-3.0 m/s2 

Unselected 

Selected 

Selected 

60 s 

0.5 m 

11 s 

0.75 

-6.0 m/s2 

Unselected 

Selected 

Selected 

Cooperative lane change 

Maximum speed difference 

Maximum collision time 

Unselected 

- 

- 

Selected 

10.8 km/h 

10.0 s 

Rear correction of lateral position Unselected Unselected 

Lateral 

behavior 

Desired position at free flow 

Observed adjacent lane(s) 

Overtake on same lane 

Exceptions for overtaking vehicles 

Middle of lane 

Unselected 

Unselected 

None 

Middle of lane 

Unselected 

Unselected 

None 

Note: driving behavior parameters were input in VISSIM 20. 

The proposed methodology, using VISSIM 20 with the parameter sets described 

above, was applied to estimate the EC-PCEs for the case study. Because the goal of the 

CAV condition is to explore the effect of CAV truck platooning on the capacity of 

freeway segments, it was assumed only trucks could operate in CAV mode and the truck 

operational characteristics were the same as the non-CAVs. In other words, the only 
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difference between the trucks in the non-CAV condition and the trucks in the CAV 

condition is the trucks in the latter scenario could form platoons based on CAV logic. 

It must be noted that the microsimulation model was not calibrated to capture the 

effect of lateral constrictions imposed by the facility and the traffic stream. It has been 

reported in the literature that some factors such as lane width, number of lanes, lateral 

clearance, and oversize vehicles, affect the operational performance of freeways. In this 

regard, VISSIM 20 included some parameters to model the lateral behavior of the driver-

vehicle units, especially to restrict the overtaking maneuvers depending on the lateral 

frictions in the same lane or adjacent lanes. However, the analysis of these parameters 

was outside the scope of the test cases presented in this dissertation.  It should be noted 

that if the proper empirical data were available, it would be possible to calibrate and 

validate the model using the proposed methodology. 

7.6 Proposed Procedure for the EC-PCE Estimation 

The main steps of the proposed procedure for the estimation of EC-PCEs are basically the  

same as those for the HCM-6 EC-PCE methodology, except that Steps 1 and 3 consider 

the approaches evaluated in this dissertation. The proposed procedure for the estimation 

of EC-PCE values is shown in Figure 7-4. 
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Figure 7-4. Proposed Process for EC-PCE estimation. 

In Step 1, the simulated capacities, estimated using the calibrated VISSIM model, 

for both passenger car-only flow and mixed flow are identified for combinations of grade, 

grade distance, truck percentage, and vehicle fleet composition. In contrast to the original 

HCM-6 EC-PCE methodology, Step 1 uses a capacity definition (e.g., maximum flow 

rate) and data aggregation level (e.g., 15 minutes) in agreement with the HCM-6. In Step 

2, the Capacity Adjustment Factors (CAFs) for all 1,274 scenarios estimated based on the 

VISSIM flow values from Step 1. A nonlinear regression model (NLRMprop) is calibrated 

in Step 3 using the CAF values computed in Step 2 as input.  Step 3 considers an 

alternative regression model structure (e.g., NLRMprop) suitable for both non-CAV and 

CAV conditions as compared to the HCM-6 EC-PCE research. This NLRMprop is used to 

estimate CAF values as a function of the different truck percentage, vehicle composition, 

grade, and distance parameters analyzed in Step 1. In Step 4, these calibrated models are 

used to estimate CAFs. In Step 5, the EC-PCEs for specific combinations of truck 
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percentage, grade, and grade distance are estimated based on the CAF estimates from 

Step 4.  

The procedure must be repeated for assessing each truck composition type 

considered in the analysis. For this case study, the empirical Western U.S. truck 

composition described above will be used for the EC-PCE estimation of both the non-

CAV and CAV conditions. Typically, there are two approaches that have been used to 

account for the effect of trucks in the estimation of PCE values (Al-Kaisy, 2006): (1) an 

aggregate approach, and (2) and a discrete approach. The aggregate approach provides 

PCE values based on the average operational performance of a typical fleet of trucks 

(e.g., combination of single unit trucks and tractor trailers). In contrast, the discrete 

approach divides the trucks into categories of performance and provides PCE values for 

each category. Note that the discrete approach was only used in the third version of the 

HCM (1985), while the aggregate approach has been consistently used in all the 

subsequent versions.  

As the aggregate approach was used in the HCM-6 EC-PCE research, the 

proposed methodology presented in this Chapter will also assume the same treatment. 

However, it should be noted that the methodology can be used to analyze a single heavy 

vehicle type if desired by the user. This would allow to estimate PCEs for a specific 

heavy vehicle type which operational performance would greatly differ from the HCM 

assumptions, for instance, buses, recreational vehicles, or electric trucks. In this case, it is 

critical to perform an adequate calibration of the operational attributes of the subject 

vehicle in the microsimulation model, especially in terms of the weight to power ratio 

and acceleration and deceleration profiles.  
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 Although most of the Steps have been discussed in previous chapters of this 

dissertation, this chapter will provide a detailed description of each Step of the proposed 

procedure, so the reader can readily follow the process and changes.  

7.6.1 Step 1: Simulated Capacity Determination 

In Step 1, the simulated capacity value of each scenario was obtained based on the 

VISSIM model output. Each scenario was simulated using five simulation replications 

and different random seeds. The same set of random seeds were used to evaluate all the 

scenarios. The input volume was gradually increased in increments of 50 veh/h/ln until 

reaching a volume capacity ratio of one. A total of 48 volume levels (e.g., 50, 100, 150, 

…, 2,400 veh/h/ln) were considered in every run assuming a theoretical capacity of 2,400 

veh/h/ln (e.g., HCM-6 base capacity). Each volume level consisted of 15 minutes of 

vehicle loading to achieve a steady-state condition and 15 minutes of steady-state for data 

collection. As a result, the simulation period comprised a total of 24 hours per scenario 

(e.g., 0.5 hour per volume level by 48 volume levels). It is important to note that the 

volumes were input following the protocols recommended in Appendix A of this 

dissertation to ensure ‘exact’ vehicles inputs in agreement with the data aggregation level 

(15 minutes). Similar to the original HCM-6 EC-PCE methodology, the scenarios were 

defined by a combination of the following factors: 

• flow-rate types (f) either passenger car-only or mixed traffic flow,  

• 13 levels of truck percentage (p) from 2% to 100%,  

• 13 levels of grade (g) from -6% to 6%, and 

• 7 levels of grade distance (d) from 0.40 km (0.25 mi) to 8.05 km (5.00 mi). 
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In total, there are 91 scenarios for the passenger car-only flow condition (e.g., 13 

levels of grade x 7 levels of distance), and 1,183 scenarios for the mixed-traffic flow 

condition (e.g., 13 levels of truck percentage x 13 levels of grade x 7 levels of distance). 

The VISSIM model output consisted of the space mean speed and the flow rate collected 

at each detector per 15 minute interval in agreement with the HCM-6 data aggregation 

level. These outputs are used to compute the hourly flow rate, at 15 minute averages, for 

each combination using Equations (7-1) and (7-2), respectively. 

𝑞𝑓 ,𝑡 ,𝑝 ,𝑚 ,𝑔 ,𝑑 ,𝑟 = 𝑉𝑓 ,𝑡 ,𝑝 ,𝑚 ,𝑔 ,𝑑 ,𝑟 ∗ 4 1 

    (7-1) 

Where: 

𝑞𝑓,𝑡,𝑝,𝑚,𝑔,𝑑,𝑟: Flow rate for the f flow type at t time interval, p truck percentage 

level, m truck composition level, g grade level, d distance level, and r simulation 

volume level based on 15-min interval traffic volume recorded by the detector, 

(veh/h/ln). 

𝑉𝑓,𝑡,𝑝,𝑚,𝑔,𝑑,𝑟: 15-min interval traffic volume recorded by the detector for the f flow 

type at t time interval, p truck percentage level, m truck composition level, g 

grade level, d distance level, and r simulation volume level, (veh/min/ln). 

𝑣 𝑓,𝑡,𝑝,𝑚,𝑔,𝑑,𝑟: 15-min interval space mean speed for the f flow type at t time 

interval, p truck percentage level, m truck composition level, g grade level, d 

distance level, and r simulation volume level, (mph). 

The proposed methodology uses a consistent definition of capacity with the 

HCM-6. In this case, the capacity of each scenario combination was defined as the 

maximum hourly flow rate for a 15 minute aggregation level. The simulated capacity for 
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each of the 1,274 scenarios was calculated using Equations (7-1) and (7-2). The 

simulated capacity was averaged over the experimental replications. Five experimental 

replications were used in this case study. 

𝐶𝑓 ,𝑝 ,𝑚 ,𝑔 ,𝑑 =
 𝑐𝑖𝑓 ,𝑝 ,𝑚 ,𝑔 ,𝑑
𝑛
𝑖=1

𝑛
 1 

   (7-2) 

𝑐𝑖𝑓 ,𝑝 ,𝑚 ,𝑔 ,𝑑
= Max

𝑡=1
𝑟=1,48

  𝑞𝑓 ,𝑡 ,𝑝 ,𝑚 ,𝑔 ,𝑑 ,𝑟  1 

    (7-3) 

Where: 

𝐶𝑓,𝑝,𝑚,𝑔,𝑑: Simulated capacity at 𝑓 flow type, 𝑝 truck percentage level, 𝑚 truck 

composition level, 𝑔 grade level, 𝑑 distance level, (veh/h/ln). 

𝑐𝑖𝑓,𝑝,𝑚,𝑔,𝑑
: capacity for experimental replication 𝑖 at 𝑓 flow type, 𝑝 truck 

percentage level, 𝑚 truck composition level, 𝑔 grade level, 𝑑 distance level, 

(veh/h/ln). 

𝑛: Number of experimental replications for each scenario combination. 

𝑀𝑎𝑥: Maximum value. 

𝑞𝑓,𝑡,𝑝,𝑚,𝑔,𝑑,𝑟: Flow rate for the f flow type at t time interval, p truck percentage 

level, m truck composition level, g grade level, d distance level, and r simulation 

volume level, based on one 15-min traffic volume recorded by the detector 

(veh/h/ln). 

The hourly flow-rate and speed values can serve to populate scatter plots that 

describe this fundamental relationship. Each speed-flow scatter plot contains 240 pairs of 

flow-rate and speed values (e.g., 1 interval x 48 volume levels x 5 simulation runs). 

Figure 7-5 through Figure 7-7 are examples of speed-flow scatter plots for specific 
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scenario combinations that show the observations used to calculate the capacity values 

for every experimental replication (e.g., SR1 to SR5). 

 

Figure 7-5. Passenger car only flow-speed scatter plot (grade 3%, distance 1 mi). 

Figure 7-5 shows the speed versus flow-rate graph for the passenger car-only 

flow, 3% grade, and 1.61 km (1.0 mi) distance scenario. In general, it may be seen that 

after the breakpoint the speed decreases with the flow rate at an increasing rate. Using 

Equation (7-2), the definition of capacity for the proposed methodology, the capacity is 

found to be 2,370 veh/h/ln. As was assumed in the case study that only trucks would 

operate as CAVs for the CAV truck platooning condition, the capacity values for the 

passenger car-only scenarios (e.g., 91 scenarios) will be the same for both the non-CAV 

and CAV conditions.  

Figure 7-6 shows the speed versus flow-rate graph for the same conditions as 

Figure 7-5 but for the mixed-traffic flow condition and a 20% truck percentage. It may 
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be seen that the speed decreases at a linear rate with the flow rate. A breakpoint occurs at 

approximately 400 veh/h/ln and the capacity value for this scenario combination is 

estimated to be 1,892 veh/h/ln. 

 

Figure 7-6. Mixed traffic flow-speed scatter plot for non-CAV condition (20% truck 

percentage, 3% grade, and 1 mi distance). 

Figure 7-7 shows the speed-flow curve for the CAV condition for the same 

conditions as Figure 7-6. It may be seen that the breakpoint occurs at a higher flow value 

(e.g., 500 veh/h/ln). As well, the CAV capacity (e.g., 1,990 veh/h/ln) is approximately 

5.2% percent higher than the equivalent non-CAV capacity (e.g., 1,892 veh/h/ln). It is 

hypothesized the higher capacity occurs due to the deployment of CAV truck platoons in 

the traffic stream, which vehicles present shorter headways, and reduced stochasticity as 

compared to non-CAVs. 
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Figure 7-7. Mixed traffic flow-speed scatter plot for CAV condition (20% truck 

percentage, 3% grade, and 1 mi distance). 

7.6.2 Step 2: Simulated CAFs Computation 

In this step, the capacity adjustment factors (CAFs) for each scenario are calculated using 

the simulated capacity results from Step 1. These are calculated for the mixed flow and 

passenger car-only flow scenarios using Equations (7-4) and (7-5), respectively. These 

equations use the capacity of each scenario obtained from the flow-density scatter plots 

from Step 1.  

𝐶𝐴𝐹2,𝑝 ,𝑚 ,𝑔,𝑑 =
𝐶2,𝑝 ,𝑚 ,𝑔,𝑑

𝐶1,0,0,𝑔,𝑑
;  ∀𝑝 = 1,𝑃;  ∀𝑚 = 1,𝑀;  ∀𝑔 = 1,𝐺;  ∀𝑑 = 1,𝐷 1 

 (7-4) 

𝐶𝐴𝐹1,0,0,𝑔,𝑑 =
𝐶1,0,0,𝑔,𝑑

𝐶1,0,0,𝑔,𝑑
= 1; ∀𝑔 = 1,𝐺;  ∀𝑑 = 1,𝐷 1 

  (7-5) 
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Where: 

𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑: Capacity adjustment factor for the mixed flow at p truck percentage 

level (𝑃 = 13), m truck composition level (𝑀 = 3), g grade level (𝐺 = 13), d 

distance level (𝐷 = 7). 

𝐶𝐴𝐹1,0,0,𝑔,𝑑: Capacity adjustment factor for the auto-only flow at g grade level 

(𝐺 = 13), d distance level (𝐷 = 7). 

𝐶2,𝑝,𝑚,𝑔,𝑑: Capacity for the mixed flow at p truck percentage level, m truck 

composition level, g grade level, d distance level, (veh/h/ln). 

𝐶1,0,0,𝑔,𝑑: Capacity for the auto-only flow at g grade level, d distance level, 

(veh/h/ln). 

To illustrate, consider the scenario defined by mixed flow (f=2), 20% truck 

percentage (p=5), 30/70 SUT/TT truck composition (m=1), +3% grade (g=10), and 1.61 

km (1.0 mi) distance (d=4). The passenger-car only and mixed traffic scatter plots for this 

situation were shown in Figure 7-5 and Figure 7-6, respectively. Using Equation (7-4) 

the Capacity Adjustment Factor for this situation (𝐶𝐴𝐹2,5,1,10,4 ) is 0.798 (1,892/2,370). 

The process is analogous for the CAV condition. This calculation is repeated for the other 

1,273 scenarios using either Equation (7-4) or (7-5), as appropriate, for the given flow 

type.  

The CAF values computed in this step (e.g., CAF-sim) for both the non-CAV and 

CAV truck platooning conditions are shown in Figure 7-8. The x-axis represents the 

scenario number. Each specific scenario number is calculated using Equation (7-6) and 

is a function of the truck percentage, grade, and distance. There were 14 truck percentage 

values (including 0%) and these are shown on the top of Figure 7-8. The thin red line 
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represents the simulated CAFs from the non-CAV condition and the thin blue line the 

simulated CAFs from the CAV condition. The thick red and blue lines represent the 

estimated CAF values discussed later in Step 4. For a given truck percentage, the CAFs 

for grade and grade distance are shown in order. The general form is a flat straight line 

for the negative and zero grade scenarios, followed by decreasing CAF values for the 

positive grade values. 

𝑛 = 91 ∗ 𝑝 +  𝑔 − 1 ∗ 7 + 𝑑 1 

  (7-6) 

Where: 

𝑛: Scenario number. 

𝑝: Ordinal number of truck percentage level, p = 1, 2,..., P, means 2-100% truck 

percentage. 

𝑃: Total levels of truck percentage, P = 13. 

𝑔: Ordinal number of grade level, g = 1, 2,., G, means –6% to 6% grade. 

𝐺: Total levels of grade, G = 13. 

𝑑: Ordinal number of distance level (the level of detector location), d = 1,2,., D, 

means 0.40-8.05 km (0.25-5.00 mi). 

𝐷: Total levels of distance (detector location), D = 7. 

7.6.3 Step 3: Regression Models Development 

To perform a fair comparison between the non-CAV condition and the CAV truck 

platooning condition, the estimated CAFs should be obtained using the same regression 

model structure. This chapter proposed a nonlinear regression model with 8-model 

parameters to be calibrated using the simulated CAF values as input. The proposed 
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nonlinear regression model (NLRMprop) is based on the reduced nonlinear regression 

model (NLRMred) developed in Chapter 5 of this dissertation. However, the proposed 

regression model adds the same polynomial form for the truck percentage effect 

developed in Chapter 3 of this dissertation for the CAV condition. This decision was 

based on the assumption that the NLRMprop model can be suitable for both non-CAV and 

CAV truck platooning conditions. The proposed regression model is shown in Equation 

(7-7).    

𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑,𝐹𝐹𝑆 =
𝐶𝐴𝐹1,0,0,𝑔,𝑑 + 𝛼12,𝑚,𝐹𝐹𝑆

𝑇𝑎 ∗  𝑝𝑠 𝑝
𝛽12,𝑚,𝐹𝐹𝑆

𝑇𝑎

+  𝛼22,𝑚,𝐹𝐹𝑆
𝑇𝑎 ∗  𝑝𝑠 𝑝

𝛽22,𝑚,𝐹𝐹𝑆
𝑇𝑎

+𝛼2,𝑚,𝐹𝐹𝑆
𝐺𝑎 ∗  𝑔𝑠 𝑔

𝛽2,𝑚
𝐺𝑎

∗  1 − 𝛼2,𝑚,𝐹𝐹𝑆
𝐷𝑎 ∗ 𝑒𝛽2,𝑚,𝐹𝐹𝑆

𝐷𝑎 ∗ 𝑑𝑠 𝑑 ∗ 𝐷

     (7-7) 

Where: 

𝐶𝐴𝐹2,𝑝,𝑚,𝑔,𝑑: Capacity adjustment factor for the mixed flow (𝑓 = 2) at p truck 

percentage level, m truck composition level, g grade level, d distance level, and 

𝐹𝐹𝑆 free-flow speed. 

𝐶𝐴𝐹1,0,0,𝑔,𝑑: Capacity adjustment factor for the auto-only flow at g grade level, d 

distance level. This value is assumed to be 1. 

 𝑝𝑠 𝑝: Truck percentage at p truck percentage level (between 0 and 1). 

 𝑔𝑠 𝑔: Grade at g grade level (between –0.06 and 0.06). 

 𝑑𝑠 𝑑: Distance of grade at d distance level (mile). 

𝐷: Dummy variable, if  𝑔𝑠 𝑔 > 0 then 𝐷 = 1, otherwise 𝐷 = 0. 

𝛼12,𝑚,𝐹𝐹𝑆

𝑇𝑎 , 𝛼22,𝑚,𝐹𝐹𝑆

𝑇𝑎 , 𝛽12,𝑚,𝐹𝐹𝑆
𝑇𝑎 , 𝛽22,𝑚,𝐹𝐹𝑆

𝑇𝑎 , 𝛼2,𝑚,𝐹𝐹𝑆
𝐺𝑎 , 𝛽2,𝑚,𝐹𝐹𝑆

𝐺𝑎 , 𝛼2,𝑚,𝐹𝐹𝑆
𝐷𝑎 , 𝛽2,𝑚,𝐹𝐹𝑆

𝐷𝑎 : 

Parameters for capacity adjustment factor for truck percentage effect (𝑇𝑎), grade 

effect (𝐺𝑎), and distance effect (𝐷𝑎). 
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The proposed model has eight parameters and a dummy variable (𝐷) related to 

whether the section being analyzed has a grade that is positive or non-positive. It may be 

seen when the grade is positive the explanatory variables are truck percentage (𝑝), grade 

(𝑔), and distance (𝑑).  Conversely, when the grade is negative or level, truck percentage 

(𝑝) is the only explanatory variable. Although the truck percentage effect has a 

polynomial form, this effect is still independent of the combined effect of grade and 

distance as was discussed in Chapter 5 of this dissertation. In addition, the free-flow 

speed (𝐹𝐹𝑆) and the truck composition type (𝑚) effects are set constant for all situations.  

This is similar to the original HCM-6 nonlinear regression model (NLRM). 

7.6.4 Step 4: CAFs Estimation for Specific conditions 

In this step, the CAFs for the mixed flow scenarios are estimated for specific conditions 

(𝐶𝐴𝐹2,𝑝𝑠,𝑚𝑠,𝑔𝑠,𝑑𝑠). The parameters of interest are truck percentage ps, grade gs, and 

distance ds. These estimated CAFs are obtained using Equation (7-7) based on the 

estimators obtained from the regression model calibration (Step 3).  

7.6.5 Step 5: EC-PCEs Estimation 

In the last step of the methodology, the EC-PCEs (𝐸𝐶 − 𝑃𝐶𝐸2,𝑝𝑠,𝑚𝑠,𝑔𝑠,𝑑𝑠) at specific 

conditions of truck percentage ps, grade gs, and distance ds, are calculated using Equation 

(7-8).  

𝐸𝐶 − 𝑃𝐶𝐸2,𝑝𝑠 ,𝑚𝑠 ,𝑔𝑠 ,𝑑𝑠 =
1 −  1 − 𝑝

𝑠
 ∗ 𝐶𝐴𝐹2,𝑝𝑠 ,𝑚𝑠 ,𝑔𝑠 ,𝑑𝑠

𝑝
𝑠
∗ 𝐶𝐴𝐹2,𝑝𝑠 ,𝑚𝑠 ,𝑔𝑠 ,𝑑𝑠

 1 

        (7-8) 

Where: 
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𝐸𝐶 − 𝑃𝐶𝐸2,𝑝𝑠,𝑚𝑠,𝑔𝑠,𝑑𝑠: EC-PCE for the mixed flow at truck percentage 𝑝𝑠, truck 

composition 𝑚𝑠, grade 𝑔𝑠, and distance 𝑑𝑠. 

𝐶𝐴𝐹2,𝑝𝑠,𝑚𝑠,𝑔𝑠,𝑑𝑠: Capacity adjustment factor for the mixed flow at truck percentage 

𝑝𝑠, truck composition 𝑚𝑠, grade 𝑔𝑠, and distance 𝑑𝑠. 

𝑝𝑠: Truck percentage (between 0 and 1). 

7.7 Calibrated Regression Model Results 

The calibrated nonlinear regression model (NLRMprop) for the non-CAV condition and 

the CAV truck platooning condition are shown in Equations (7-9) and (7-10), 

respectively. These equations were used to calculate the estimated CAF values for the 

mixed traffic condition for both analyses. The calibrated parameters were estimated using 

the Generalized Reduced Gradient (GRG) method (Lasdon, Fox, & Ratner, 1974) where 

the target goal was to minimize the sum of squared errors between the simulated CAFs 

obtained in Step 2 and the estimated CAFs given by the proposed regression model 

shown in Equation (7-7). 

• CAFs for the Non-CAV condition (𝑚 = 𝑊𝑒𝑠𝑡𝑒𝑟𝑛 𝑈𝑆): 

(7-9) 

𝐶𝐴𝐹𝑚𝑖𝑥 = 1 − 8.498 ∗  𝑝𝑠 
1.13 + 8.007 ∗  𝑝𝑠 

1.18 − 7.119 ∗  𝑔𝑠 
1.30 ∗ [1 − 1.382 ∗ 𝑒−2.55∗ 𝑑𝑠 ] ∗ 𝐷   

• CAFs for the CAV condition (𝑚 = 𝑊𝑒𝑠𝑡𝑒𝑟𝑛 𝑈𝑆): 

(7-10) 

𝐶𝐴𝐹𝑚𝑖𝑥 = 1 − 8.335 ∗  𝑝𝑠 
1.22 + 8.173 ∗  𝑝𝑠 

1.29 − 8.119 ∗  𝑔𝑠 
1.30 ∗ [1 − 1.382 ∗ 𝑒−2.55∗ 𝑑𝑠 ] ∗ 𝐷   
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The above equations can be used in combination with Equation (7-8) to estimate 

the EC-PCE value directly for a given scenario. Note an EC-PCE can be calculated for 

any combination of truck percentage, grade, and distance using the calibrated regression 

models. For example, consider the scenario defined by an 34% truck percentage 

(ps=0.34), a +4.1% grade (gs=0.041), a distance of 0.875 mi (ds=0.875), for the CAV 

condition under Western U.S. conditions. Using Equation (7-10) the Capacity 

Adjustment Factor for this situation (𝐶𝐴𝐹𝑚𝑖𝑥 ) is 0.690. Using this value as input in 

Equation (7-5), the EC-PCE is estimated to be 2.32. Note that using Equation (7-9) the 

EC-PCE value is 2.71 for the non-CAV condition. 

Table 7-2 shows the statistics calculated for assessing the goodness-of-fit of the 

calibrated regression models. For the non-CAV condition, the statistics expose a very 

good fit with an approximate R-squared value of 0.98 for the calibrated model shown in 

Equation (7-8). Although the goodness-of-fit statistics for the CAV truck platooning 

condition is slightly poorer (e.g., R-squared value of 0.93), as revealed by the residual 

standard error (S) and the coefficient of determination (R2), its performance is very close 

to the non-CAV condition. Note these R-squared values are higher than those discussed 

in Chapter 4 of this dissertation, especially for the CAV condition. 

Table 7-2. Goodness-of-Fit Statistics for Estimated CAF values 

Statistic 
Non-CAV Condition 

CAV Truck Platooning 

Condition 

NLRMprop NLRMprop 

SSE 1.037 1.119 

SST 43.86 16.57 

N 1274 1274 

P 8 8 

S = √MSE 0.029 0.030 
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Radj
2  0.98 0.93 

MAPE 3.50% 2.70% 

Note: NLRMprop = proposed nonlinear regression model; SSE = sum of squared error; SST = sum of squared total; N = number of 

observations; P = number of regression parameters; S = residual standard error; Radj
2  = adjusted coefficient of determination; 

MAPE = mean absolute percentage error. 

7.8 Comparison of Estimated CAF Results 

The estimated CAF results were estimated using the calibrated regression models shown 

in Equations (7-9) and (7-10) for the non-CAV and CAV conditions, respectively. A 

comparison between the estimated CAFs for the CAV condition and the estimated CAFs 

for the non-CAV condition (e.g., conventional traffic) are shown in Figure 7-8. The thick 

blue line represents the CAV condition and the thick red line the non-CAV condition. 

The scenario number (horizontal axis) is given by Equation (7-6) and corresponds to a 

particular combination of truck percentage, grade, and distance was used to compute the 

corresponding CAF. For the non-CAV condition, the CAF values decrease as truck 

percentage increases and this decrease is at a fairly linear rate. In contrast, for the CAV 

condition the CAF values decrease as the percentage of trucks increase until a 50% truck 

percentage is reached. After this point, the CAF values increase with the truck 

percentage. For truck percentages of less than 10 percent, the CAF values are similar to 

the non-CAV condition. It is hypothesized this occurs because there are less opportunities 

for truck platoon formation. Interestingly, when trucks are 100 percent of the vehicle 

stream the CAF values are approximately 16.3 percent lower than the CAF for passenger 

cars at level grade conditions. That is, a traffic stream with 100% CAV will have a 

maximum vehicle flow rate of 2,009 veh/h/ln as compared to the 100% passenger cars 

scenario (e.g., 2,400 veh/h/ln) under the Western U.S. conditions. Taking as reference the 

truck percentage interval from 10% to 100% (scenarios 274 to 1274), the CAF values for 
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the CAV condition are, on average, 25.4% higher (ranging from 0.1% to 92.8%) than 

those of the non-CAV condition. 

 

Figure 7-8. CAF values for four lane freeways as a function of scenario number: 

CAV and non-CAV scenarios.  

7.9 Comparison of EC-PCE Results 

The EC-PCE values were estimated for ten levels of truck percentage (i.e., 10% to 100% 

in 10% increments), grade (i.e., 0%, +3%, and +6%), and distance (i.e., 0.8 km (0.5 mi), 

1.61 km (1.0 mi), and 2.42 km (1.5 mi)). Figure 7-9 shows the corresponding EC-PCE 

values as a function of truck percentage for the three levels of grade and three levels of 

distance for both the CAV condition and the non-CAV condition. The solid lines 

represent the CAV truck platooning EC-PCE values and the dotted lines the non-CAV 

(e.g., only conventional traffic) EC-PCE values. The EC-PCE values were calculated 

using Equation (7-8). Any specific condition within the explored range of truck 
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percentage, grade, and distance considered in the proposed methodology can be 

computed using the calibrated CAF models shown in Equations (7-9) and (7-10). On 

average, the EC-PCE values for the CAV condition are 24.4% lower than those of the 

non-CAV condition indicating the CAV technology lessens the impact of heavy trucks on 

traffic operations of four-lane freeways in the Western U.S. 

 

Figure 7-9. EC-PCE values for four-lane freeways as a function of truck percentage: 

CAV and non-CAV scenarios. 

For both the CAV and non-CAV conditions, the maximum EC-PCE values occur 

at a truck percentage of 10%. These values range from 1.9 to 4.9. In general, as grade and 

distance increase so does the EC-PCE. For higher truck percentages, the EC-PCE values 

for the non-CAV condition tend to decrease as truck percentages increases. After a 50% 

truck percentage value this decrease occurs at a mild rate. In general, the EC-PCE ranges 

from 2.0 to 4.9 for the non-CAV condition. Similarly, for the CAV condition the EC-PCE 
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decrease at a smaller rate as percentage of trucks increase. However, the EC-PCE shows 

a more noticeable decrease for the CAV condition ranging from 1.2 to 4.7. As would be 

expected from the earlier analysis, as truck percentage approaches 100 percent the EC-

PCE value approaches 1. 

Interestingly, the PCE values for the non-CAV condition under the Western U.S. 

(e.g., four-lane freeways) were, on average, 7.5% higher compared to those that were 

published in the HMC-6. These results were consistent with the results reported by Zhou, 

Rilett, and Jones (2019) in the analyses of moving bottlenecks on four-lane freeways. 

This finding suggests that the PCE values reported in the HCM-6, which were based on 

six-lane freeways (three-lanes per direction) and the set of assumptions discussed in 

Chapter 3 of this dissertation, may underestimate the effect of trucks in capacity and level 

of service analyses for the western rural U.S. This means that the actual capacity and 

level of service value that can be observed in this region could be lower than the values 

given by the core methodologies of the HCM-6.  

In summary, the CAV technology increases capacity for a given scenario under 

the Western U.S. conditions, all else being equal, and this results in corresponding lower 

EC-PCE values. The increase in capacity for a given scenario is a function of the grade, 

grade length, and percentage trucks in the scenario. This comparison is for trucks 

equipped with CAV technology. It is hypothesized if the passenger cars also had CAV 

platoon technology then the capacity increase shown in Figure 7-9 would be even 

greater. However, it is unclear how the EC-PCE values would change without a detailed 

simulation study, which is beyond the scope of this chapter.  
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7.10 Concluding Remarks 

The objective of this chapter was to analyze the effect of CAV truck platooning on four-

lane freeway segments using the new EC-PCE methodology proposed in this dissertation. 

It was argued the proposed methodology produces more consistent and comparable 

capacity, CAF, and EC-PCE values to be used in the core methodologies of the HMC-6. 

The proposed methodology was illustrated taking as a case study the western rural U.S. 

This region is characterized by four-lane freeways, high truck percentages, and 

significant speed differentials between cars and trucks that violate various assumptions 

considered in the original HCM-6 EC-PCE research. In the case study, empirical data 

(e.g., Western U.S.) was used to estimate EC-PCEs for two traffic conditions: (1) non-

CAVs and (2) CAV truck platooning. A VISSIM 20 model was calibrated to match the 

HCM-6.1 capacity values (e.g., 2,400 pc/h/ln for non-CAVs and 3,200 pc/h/ln for CAVs) 

to ensure comparable metrics with the HCM-6. In addition, a simpler nonlinear 

regression model suitable for non-CAVs and CAVs scenarios was used to perform a fair 

comparison between the two conditions. It is important to note this model showed a very 

good fit in both cases. Finally, the impact of CAV technology on freeway capacity was 

quantified using the estimated CAF values and the resulting EC-PCE values. 

 Not surprisingly, it was found CAV truck platoons have the potential to increase 

capacity on four-lane freeway segments, all else being equal. This finding was consistent 

to that for six-lane freeways discussed in Chapter 3 of this dissertation. In this case study, 

the EC-PCE values for the CAV truck platooning condition, which assumed a 100% 

CAV market penetration rate for trucks, were approximately 24.4% lower, on average, 
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than those for the non-CAV condition. In other words, CAV trucks have a lower impact 

on freeway operations than non-CAV trucks. 

In addition, it was found CAV truck platooning has the greatest effect when the 

truck percentage is greater than 30 percent. For truck percentage values below this cut-

off, the metrics tended to show similar values between the non-CAV and CAV 

conditions. It was hypothesized this occurred because the proportion of CAV trucks was 

such that the resulting truck platoons, and associated truck platoon size, were not enough 

to influence the capacity of the freeway segment. This finding indicates CAV trucks may 

have the greatest impact in areas that have higher percentage truck values such as in the 

Western U.S. 

Another interesting finding was that the PCE values for non-CAVs (e.g., only 

conventional vehicles) under the Western U.S. condition were higher than the published 

values in the HCM-6. This implies that the capacity and level of service values obtained 

from the core methodologies in the HCM-6 would be overestimated for the western rural 

U.S. It is recommended to explore to what extend the traffic metrics that have been 

considered for the analysis of freeway segments in the HCM-6 could be representative of 

the Western U.S. conditions, given that a significant part of the underlying research in the 

HCM has been mostly focused on other US regions such as the East or West coast. This 

would help to improve the reliability of the capacity and level of service analyses for the 

freeway system located in this important region of the U.S. where the proportion of 

trucks in the traffic demand has been reported above the average U.S. values.  

An additional benefit of the proposed methodology is that the same procedure can 

be used to obtain PCE values for a single heavy vehicle type (e.g., buses, recreational 
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vehicles, etc.). The case study that was used to illustrate the proposed methodology 

considered the effect of trucks using an aggregate approach as occurred with the original 

HCM-6 EC-PCE methodology.  This is that the effect of trucks on the traffic stream was 

derived from a specific combination of trucks (e.g., empirical Western US truck 

composition). However, heavy vehicles can be also treated using a discrete approach 

where they are divided into categories of performance, and the PCE values are estimated 

for each category. The proposed methodology is flexible enough to be used for this 

purpose. Under this approach, it will be needed to calibrate the operational characteristics 

of the subject heavy vehicle type (e.g., weight and power distributions, 

acceleration/deceleration profiles, etc.) in the microsimulation model. This is critical for 

the reliability of the PCE results.   

 Despite the various advantages provided by the proposed approach, there are 

some important limitations that require further review. For example, the microsimulation 

model was not calibrated to capture the effect of lateral constrictions on the traffic 

stream. It has been reported in the literature that some factors such as lane width, number 

of lanes, lateral clearance, and oversize vehicles, affect the operational performance of 

freeways. In this regard, the driving behavior in VISSIM 20 includes some parameters for 

modeling the lateral behavior of vehicles. However, these model parameters have not 

been sufficiently explored while modeling the behavior of vehicles under lateral frictions. 

An adequate modeling of the lateral effect is important because it has been reported that 

CAVs would be less sensitive to the lateral conditions of freeways compared to 

conventional vehicles. This would represent another benefit of CAV technologies on the 

capacity of freeways that should be further explored.  
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It is recommended to perform a similar sensitivity analysis as discussed in 

Chapter 3 of this dissertation to explore the effect market penetration rate, platoon truck 

type, lane restriction, and platoon size. It is hypothesized the effect of these variables will 

be different for four-lane freeways as compared to six-lane freeways. This was not 

explored due to time constraints. In addition, it is recommended some driving behavior 

and operational characteristics such as interplatoon spacing, platoon forming logic, 

weight and power distributions, acceleration profiles, etc., be studied. These parameters 

were not studied in this chapter due to the lack of empirical data related to these topics. 

This is an area of potential research that would further help transportation agencies as 

they begin the transition to CAV operations.   

Finally, it was observed most of the capacity values in the set of scenario 

combinations occurred at saturated flow conditions (e.g., queue discharge flow). 

Although the proposed methodology calibrated the microsimulation model targeting an 

empirical capacity value (e.g., HCM-6 base capacity), the simulated capacity of each 

scenario was computed using a deterministic approach (e.g., maximum flow rate) as 

occurred in the original HCM-6 research (e.g., 95th percentile of the maximum flow rate). 

This deterministic approach does not ensure the capacity values are taken from 

undersaturated flow conditions as suggested in the HCM-6 (e.g., maximum 

prebreakdown flow rate). It is hypothesized a stochastic method for computing the 

capacity values of each scenario (e.g., breakdown capacity method) could yield different 

capacity and EC-PCE values. It is recommended to explore the extent a stochastic 

determination of capacity may change EC-PCE results. In this regard, it is recommended 

to calibrate the microsimulation model taking as a reference not only the base capacity 
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value but also the corresponding speed-flow curve for basic freeway segments used in the 

HCM-6 (e.g., Exhibit 12-7). The reliability and consistency of the EC-PCE values will 

improve to the extent that the capacity of each scenario is better estimated.  
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CHAPTER 8 

 CONCLUDING REMARKS AND RECOMMENDATIONS 

This chapter provides a synopsis of the main findings of the research presented in this 

dissertation. A special emphasis is given on those results that correspond to the objectives 

of this research. Finally, a section that provides recommendations for future research is 

also included.  

8.1 Concluding Remarks 

Passenger car equivalencies (PCEs) are used to account for the effect of different vehicle 

types on capacity and quality of service of a mixed traffic stream. In the current version 

of the Highway Capacity Manual, Sixth Edition (HCM-6), the equal capacity passenger 

car equivalencies (EC-PCE) methodology was used to estimate EC-PCEs for heavy 

trucks on freeway and multilane highway segments. These EC-PCEs are widely used in 

the HCM-6 to convert a mixed traffic stream of passenger cars and trucks to a single 

uniform passenger car stream for purpose analysis. 

The EC-PCEs for freeway segments were estimated using a microsimulation-

based methodology where the capacity of the mixed-traffic and car-only flow scenarios 

were modeled. It is important to note the HCM-6 EC-PCE methodology has a large 

number of assumptions including those related to vehicle speed (e.g., all vehicles travel at 

the same uniform free-flow speed of 70 mph), vehicle type (e.g., two types of trucks: 

single unit and semitrailer), weight and power ratios, driving behavior (e.g., Wiedemann 

99 model, slow lane rules, etc.), operating conditions (e.g., three-lanes per direction, no 

lane restriction, etc.), capacity definition (95th percentile of the maximum flow rate), and 
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aggregation level (one minute). Therefore, care must be taken in using the EC-PCE 

values published in the HCM when these key assumptions are not appropriate for a 

particular analysis. 

It was argued in this dissertation the HCM-6 EC-PCE procedure can be used to 

analyze novel traffic situations including those related to CAV technologies. However, 

the following issues have been identified with the current HCM-6 EC-PCE methodology: 

1) The EC-PCEs were estimated under assumptions atypical of past HCM 

releases including a new definition of capacity (e.g., 95th percentile of the 

maximum flow rate) and a new data aggregation level (e.g., one minute). 

These assumptions affect the consistency of the results with the traffic metrics 

used in the HCM-6. 

2) The microsimulation model used for capacity modeling was originally 

developed for a VISSIM version no longer available, affecting the 

experimental replication of the procedure. In addition, the microsimulation 

model was not calibrated to target an empirical capacity value (e.g., HCM-6 

base capacity for basic freeway segments) to produce compatible outputs with 

the HCM-6. This is critical because the capacity is an input to the EC-PCE 

calculation. 

3) The nonlinear regression model used in the original HCM-6 research for 

fitting simulated and estimated data has a relatively complex model structure 

that makes the interpretation difficult of the traffic metrics and the process of 

reporting results. Equally important, the model structure is not flexible enough 

for modeling new traffic situations such as CAV truck platooning. This is 
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critical because the original regression model structure may limit the potential 

of the methodology to analyze further traffic situations.  

The main objective of this dissertation was to develop a new microsimulation-

based methodology that can be used with the current Highway Capacity Manual (HCM-

6) for capacity modeling and the estimation of CAF and EC-PCE values at freeway and 

multilane highway segments. Another major objective was to demonstrate how the 

proposed approach can be further used to analyze new traffic situations such as the 

deployment of CAV truck platooning on freeways. The following sections provides a 

summary of the findings for each specific objective defined in this dissertation. 

8.1.1 Use the Exact HCM-6 EC-PCE Methodology for Exploring CAV Truck 

Platooning 

This dissertation argued that to understand the potential impact on the freeway system of 

CAV technologies, analyses should be conducted using the standard US methodological 

framework. Consequently, the exact Highway Capacity Manual, Sixth Edition (HCM-6) 

equal capacity passenger car equivalencies (EC-PCE) methodology was used to estimate 

capacity and EC-PCEs for CAV truck platoons on freeway segments.  

It was found EC-PCE values for CAV trucks are, on average, 34.3% lower as 

compared to the values for non-CAV trucks, indicating CAV platoons can have a positive 

effect on freeway capacity. The amount of decrease is a function of a number of CAV 

operational assumptions and these were studied through a sensitivity analysis. This 

analysis demonstrated the effect of CAV truck platoons can be modeled using the 

standard HCM-6 approach. However, a number of issues were identified that required 



203 

 

 

further assessment including a need for consistent metrics, a more robust microsimulation 

framework, and a more flexible and simpler regression model structure. 

8.1.2 Assess the Convenience of Alternative Regression Model Structures 

The HCM-6 EC-PCEs for freeway segments were estimated using a microsimulation-

based methodology where the capacity of the mixed-traffic and car-only flow scenarios 

were modeled. A nonlinear regression model (NLRM) was used to develop capacity 

adjustment factor (CAF) models using the microsimulation data as input. The NLR 

model has a complex model structure and includes 15 model parameters. This 

dissertation developed alternative and simpler regression models of CAFs needed to 

derive the EC-PCE values in the HCM-6 methodology for freeway and multilane 

highway segments. 

It was found simpler regression models provided similar results as those obtained 

with the current NLRM model. Additionally, it was found the current NLRM model may 

not be adequate for analyzing CAV traffic conditions. It was concluded if the HCM-6 

EC-PCE methodology is expected to be used to analyze traffic conditions beyond the 

scope of the HCM-6, it is important to perform a deeper assessment of the form and error 

of the regression models used in fitting the simulated and estimated data. 

8.1.3 Propose Simpler Equations to Calculate and Interpret CAFs and EC-PCEs 

It was hypothesized because of the complexity of the existing 15 parameter model 

structure, the HCM-6 EC-PCE values were reported using a set of tables (e.g., HCM-6, 

Exhibits 12-26, 12-27, and 12-28). These tables are used to identify the required EC-PCE 

values for a given scenario (e.g., grade, grade distance, truck composition, and truck 
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percentage). This dissertation proposed a simpler nonlinear regression model with 6 

model parameters that can be used for the estimation of CAF values and EC-PCE values 

for freeway and multilane highway segments under conventional traffic. 

It was found the proposed model can readily substitute the original model with 

little loss in fidelity. Equally important, the CAF formulae developed in this dissertation 

can be used to calculate EC-PCE values directly, obviating the need for the HCM-6 EC-

PCE tables and interpolations. In addition, the marginal effects of the two main 

contributors in the proposed CAF model, truck percentage and combined effect of grade 

and distance, were discussed in this dissertation. This provides the user with a better 

understanding of the trade-offs between capacity, CAF, and EC-PCE values and the 

parameters that affect them.  

8.1.4 Propose a New Microsimulation Framework and Evaluate its Impact on HCM-6 

EC-PCEs 

The current HCM-6 EC-PCEs were estimated under assumptions atypical of past HCM 

releases including a new definition of capacity (e.g., 95th percentile of the maximum flow 

rate) and a new data aggregation level (e.g., one minute). It is important to assess to what 

extent these assumptions may affect the PCE values published in the HCM-6. 

Consequently, this dissertation compared the HCM-6 EC-PCEs, and associated capacity 

adjustment factors (CAF), with values developed using the HCM-6 EC-PCE 

methodology with historic HCM assumptions. In addition, the microsimulation model 

was calibrated to match the HCM-6 base capacity value for freeway segments to ensure 

consistent and comparable results.  
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It was found the EC-PCE values from the proposed approach were, on average, 

15.9% greater than those obtained in the original research. This finding suggests the 

values published in the HCM-6 could underestimate the effect of trucks in capacity and 

level of service analyses. Moreover, this analysis demonstrated the capacity definition, 

the data aggregation level, and the calibration of the microsimulation model have a 

significant impact on the EC-PCE results. These aspects must be considered when the 

HCM-6 EC-PCE methodology is used to analyze further traffic scenarios.  

8.1.5 Develop an Improved EC-PCE Methodology for Novel Traffic Scenarios 

An improved methodology that addresses the limitations of the HCM-6 EC-PCE 

methodology was developed. In contrast to the HCM-6 methodology, the proposed 

methodology used consistent metrics to the HCM-6, a replicable procedure based on a 

calibrated VISSIM model, and a more flexible and simpler regression model structure for 

fitting simulated and estimated data. The proposed regression model is easy to interpret 

and facilitate the process of reporting results (e.g., analytical equations instead of tables 

and interpolated values). The improved methodology can be used to estimate CAF and 

EC-PCE values for novel traffic scenarios including those related to CAV technologies.  

 The improved methodology was illustrated using the Western U.S. conditions as a 

case study. Two traffic conditions were explored: (1) non-CAVs and (2) CAV truck 

platooning. It was demonstrated the proposed procedure was able to estimate CAF and 

EC-PCE values for non-CAV and CAV conditions. 

It was found CAV truck platoons have the potential to increase capacity on four-

lane freeway segments, all else being equal. The EC-PCE values for the CAV truck 

platooning condition, which assumed a 100% CAV market penetration rate for trucks, 
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were approximately 24.4% lower, on average, than those for the non-CAV condition. In 

other words, CAV trucks have a lower impact on freeway operations than non-CAV 

trucks. In addition, it was found CAV truck platooning has their greatest effect when the 

truck percentage is greater than 30 percent. For truck percentage values below this cut-

off, the metrics tended to show similar values between the non-CAV and CAV 

conditions. This finding indicates that CAV trucks may have the greatest impact in areas 

that have higher percentage truck values such as the Western U.S. 

The new techniques proposed in this dissertation for capacity modeling and EC-

PCE estimation are expected to be applied for any traffic condition beyond the scope of 

the HCM-6. The proposed approach will provide a more flexible and repeatable 

procedure that can be used by engineers and traffic agencies for generic purposes. It is 

vital all the future capacity and EC-PCE analyses are performed using the same standard 

methodological framework to produce comparable results that can be applied consistently 

into the core methodologies described in the HCM-6. 

8.2 Future Research 

In some chapters of this dissertation, the analyses were performed considering a 30/70 

SUT/TT truck composition type, the most common in the rural U.S. The same procedure 

can be repeated for the remaining truck composition types considered in the HCM-6 (e.g., 

50/50 SUT/TT and 70/30 SUT/TT). However, as was discussed in Chapter 5 of this 

dissertation, there are only small differences on the EC-PCE values between the three 

truck composition types according to the HCM-6 assumptions. Note this point may not be 

valid for other traffic conditions. Another related point is that the proposed methodology 

could be used to estimate PCE values for a specific heavy vehicle type using a discrete 



207 

 

 

approach. This would allow to obtain PCE values for vehicles with physical attributes 

and operational performance that greatly differ from those that were assumed in the 

HCM-6, for instance, recreational vehicles and electric trucks.  

 This dissertation assumed the same weight and power distributions developed in 

the original HCM-6 research for conventional trucks to be used for the CAV truck 

platooning condition. These distributions are a critical element for modeling the behavior 

of trucks at steep grade conditions having an important impact on the results. It is 

suggested to perform a further review of the weight and power distributions to ensure 

they are representative of the behavior of CAV trucks in real scenarios. This was not 

done due to the lack of empirical data. 

 It is recommended to perform a further review of the effect of lateral frictions 

while modeling the driving behavior of the driver-vehicle units. The microsimulation 

model used in the proposed methodology was not calibrated to capture the effect of 

lateral constrictions given by the facility and the traffic stream. It has been reported in the 

literature that some factors such as lane width, number of lanes, lateral clearance, and 

oversize vehicles, affect the operational performance of freeways. An adequate modeling 

of the lateral effect is important because it is expected that CAVs would be less sensitive 

to the lateral frictions compared to conventional vehicles which would provide more 

capacity to the freeway facility.   

Another recommendation is to perform a deeper assessment of the form and error 

of the regression models be conducted when the HCM-6 EC-PCE methodology is used to 

analyze traffic conditions beyond the scope of the HCM-6 (e.g., restricted lanes, two-
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lanes, EVs, etc.). It is possible a different model structure than the one proposed in this 

dissertation might provide better results. 

Interestingly, it was found that the PCE values that were published in the HCM-6 

may underestimate the effect of trucks in capacity and level of service analyses. This 

finding was consistent with six-lane freeways and four-lane freeways. The approach 

proposed in this dissertation, which was based on more consistent metrics with the HCM-

6, produced greater PCE values compared to the original HCM-6 EC-PCE procedure. 

This means that that the capacity and level of service values obtained from the core 

methodologies in the HCM-6 would be overestimated, especially for the western rural 

U.S. It is recommended to explore to what extend the traffic metrics that have been 

considered for the analysis of freeway segments in the HCM-6 could be representative of 

different regions in the U.S. This would help to improve the reliability of the capacity and 

level of service analyses for the freeway system, especially where the presence of trucks 

is above the average U.S. values.  

Lastly, it was observed most of the capacity values in the set of scenario 

combinations occurred at saturated flow conditions (e.g., queue discharge flow). 

Although the proposed approach calibrated the microsimulation model targeting an 

empirical capacity value (e.g., HCM-6 base capacity), the simulated capacity of each 

scenario was computed using a deterministic approach (e.g., maximum flow rate) as 

occurred in the original HCM-6 research (e.g., 95th percentile of the maximum flow rate). 

This deterministic approach does not ensure the capacity values are taken from 

undersaturated flow conditions as suggested in the HCM-6 (e.g., maximum 

prebreakdown flow rate). It is hypothesized a stochastic method for computing the 
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capacity values of each scenario (e.g., breakdown capacity method) could yield different 

capacity and EC-PCE values. It is recommended to explore the extent to which a 

stochastic determination of capacity may change EC-PCE results. In this regard, it is 

recommended to calibrate the microsimulation model taking as a reference not only the 

base capacity value but also the corresponding speed-flow curve for basic freeway 

segments used in the HCM-6 (e.g., Exhibit 12-7). The reliability and consistency of the 

EC-PCE values will improve to the extent the capacity of each scenario is better 

estimated. 

  



210 

 

 

REFERENCES 

AASHTO. 2011. A policy on geometric design of highways and streets. Washington, DC: 

AASHTO. 

ACEA (European Automobile Manufacturers Association). 2017. “What is truck 

platooning? European automobile manufacturers association.” Accessed 

December 12, 2019. 

https://www.acea.be/uploads/publications/Platooning_roadmap.pdf. 

Aghabayk, K., Sarvi, M., Young, W., & Kautzsch, L. 2013. A novel methodology for 

evolutionary calibration of Vissim by multi-threading. In Australasian Transport 

Research Forum (Vol. 36, No. 1, pp. 1-15). 

Al-Kaisy, A., Jung, Y., & Rakha, H. 2005. Developing passenger car equivalency factors 

for heavy vehicles during congestion. Journal of transportation engineering, 

131(7), 514-523. 

Al-Kaisy, A. F., Hall, F. L., & Reisman, E. S. 2002. Developing passenger car 

equivalents for heavy vehicles on freeways during queue discharge flow. 

Transportation Research Part A: Policy and Practice, 36(8), 725-742. 

Al-Kaisy, A. 2006. Passenger car equivalents for heavy vehicles at freeways & multilane 

highways: some critical issues. ITE Journal, 2006(3), 40-43. Accessed January 4, 

2021. https://scholarworks.montana.edu/xmlui/handle/1/3489. 

Alecsandru, C., Ishak, S., & Qi, Y. 2012. Passenger car equivalents of trucks on four-

lane rural freeways under lane restriction and different traffic conditions. 

Canadian Journal of Civil Engineering, 39(10), 1145-1155. 

https://www.acea.be/uploads/publications/Platooning_roadmap.pdf
https://scholarworks.montana.edu/xmlui/handle/1/3489


211 

 

 

AVS (Automated Vehicles Symposium). 2019. Trucking Automation: Deployment 

Challenges and Opportunities – Part 2. 2019 Breakout Sessions. Orlando, FL. 

Jul. 15-18, 2019. Accessed Feb. 18, 2020. 

https://www.automatedvehiclessymposium.org/avs2019/program/breakouts. 

Barceló, J. 2010. Fundamentals of traffic simulation. New York: Springer. 

Benekohal, R. F., & Zhao, W. 2000. Delay-based passenger car equivalents for trucks at 

signalized intersections. Transportation Research Part A: Policy and Practice, 

34(6), 437-457. 

Bevly, D., et al. 2017. Heavy truck cooperative adaptive cruise control: Evaluation, 

testing, and stakeholder engagement for near term deployment: Phase two final 

report. Technical Rep. Washington, DC: USDOT, Federal Highway 

Administration. 

Bishop, R. 2008. Safety Impacts of Speed Limiter Device Installations on Commercial 

Trucks and Buses. Transportation Research Board, Washington, D.C. 

Bourke, P. Interpolation methods. Miscellaneous: projection, modelling, rendering, 1(10), 

1999. 

Bujanovic, P., and T. Lochrane. 2018. “Capacity predictions and capacity passenger car 

equivalents of platooning vehicles on basic segments.” J. Transp. Eng. Part A: 

Syst. 144 (10): 04018063. https://doi.org/10.1061/JTEPBS.0000188. 

Chandler, R. E., Herman, R., & Montroll, E. W. 1958. Traffic dynamics: studies in car 

following. Operations research, 6(2), 165-184. 

Chitturi, M. V., & Benekohal, R. F. 2008. Effect of Work zone length and speed 

difference between vehicle types on delay-based passenger car equivalents in 

https://www.automatedvehiclessymposium.org/avs2019/program/breakouts
https://doi.org/10.1061/JTEPBS.0000188


212 

 

 

work zones. In 87th Annual Meeting of the Transportation Research Board, 

Washington, DC. 

Delignette-Muller, Laure, M., & Dutang, C. 2015. "fitdistrplus: An R Package for Fitting 

Distributions." Journal of Statistical Software 64.4: 1-34. 

Dowling, R., Skabardonis, A., & Alexiadis, V. 2004. Traffic analysis toolbox volume III: 

guidelines for applying traffic microsimulation modeling software. No. FHWA-

HRT-04-040. 

Dowling, R., G. List, B. Yang, E. Witzke, and A. Flannery. 2014a. Incorporating truck 

analysis into the highway capacity manual. Washington, DC: Transportation 

Research Board. 

Dowling, R., G. List, B. Yang, E. Witzke, and A. Flannery. 2014b. Trucks in the freeway 

analyses of the highway capacity manual. Raleigh, NC: Institute for 

Transportation Research and Education. 

Dowling, R., List, G., Yang, B., Witzke, E. and Flannery, A. 2014c. Freeway Analysis 

Procedure for Mixed Flows on Constant Grades (Working Paper #2). Institute for 

Transportation Research and Education. September 15, 2014. 

Elefteriadou, L., Torbic, D., & Webster, N. 1997. Development of passenger car 

equivalents for freeways, two-lane highways, and arterials. Transportation 

Research Record, 1572(1), 51-58. 

Fan, H. S. 1990. Passenger car equivalents for vehicles on Singapore expressways. 

Transportation Research Part A: General, 24(5), 391-396. 

Fellendorf, M., & Vortisch, P. 2010. Microscopic traffic flow simulator VISSIM. In 

Fundamentals of traffic simulation (pp. 63-93). Springer, New York, NY. 



213 

 

 

Fitzpatrick, D., G. Cordahi, L. O’Rourke, C. Ross, A. Kumar, and D. Bevly. 2016. 

Challenges to CV and AV applications in truck freight operations. Washington, 

DC: Transportation Research Board. 

Fransson, E. 2018. Driving behavior modeling and evaluation of merging control 

strategies-A microscopic simulation study on Sirat Expressway. 

Gao, Y. 2008. Calibration and comparison of the VISSIM and INTEGRATION 

microscopic traffic simulation models. Master Thesis, Virginia Tech. 

Guanetti, J., Y. Kim, and F. Borrelli. 2018. “Control of connected and automated 

vehicles: State of the art and future challenges.” Annu. Rev. Control 45 (Jan): 

18–40. https://doi.org/10.1016/j.arcontrol.2018.04.011. 

Gunst, R. F., & Webster, J. T. 1975. Regression analysis and problems of 

multicollinearity. Communications in Statistics-Theory and Methods, 4(3), 277-

292. 

Hallmark, S., D. Veneziano, and T. Litteral. 2019. Preparing local agencies for the future 

of connected and autonomous vehicles. Rep. No. MN/RC 2019-18. St Paul, MN: 

Minnesota DOT. 

Harwood, D. W. 2003. Review of truck characteristics as factors in roadway design (Vol. 

505). Transportation Research Board. 

HCM (Highway Capacity Manual). 1965. Highway research board. Washington DC: 

HCM. 

HCM (Highway Capacity Manual). 2016. Transportation research board. Washington 

DC: HCM. 



214 

 

 

Hendrickson, C., and L. Rilett. 2017. “Traffic simulation and transportation 

engineering.” J. Transp. Eng., Part A: Syst. 143 (12): 01817002. 

https://doi.org/10.1061/JTEPBS.0000091. 

Huber, M. J. 1982. Estimation of passenger-car equivalents of trucks in traffic stream 

(discussion and closure) (No. 869). 

Hurtado-Beltran, A., & Rilett. 2019. The Importance of Stochasticity on Microsimulation 

Model Output. Presented at the 99th Transportation Research Board Annual 

Meeting, Washington DC, January 12-16, 2020. Paper No. 20-05777, Poster 

Session 1653. 

Hurtado-Beltran, A., Vakilzadian, H., & Rilett, L. R. 2020. Impact of the Entry Time 

Model on Connected and Automated Vehicle (CAV) Platoon Formation. In 2020 

IEEE International Conference on Electro Information Technology (EIT) (pp. 

655-662). IEEE. 

Hurtado-Beltran, A., & Rilett, L. R. 2021. Impact of CAV Truck Platooning on HCM-6 

Capacity and Passenger Car Equivalent Values. Journal of Transportation 

Engineering, Part A: Systems, 147(2), 04020159. 

https://doi.org/10.1061/JTEPBS.0000492. 

Hurtado-Beltran, A., & Rilett, L. R. 2021. An Alternative Regression Model Structure for 

the HCM-6 Equal Capacity Passenger Car Equivalency Methodology. 

Washington, DC: Transportation Research Record, Forthcoming. 

Husch, D. & Albeck, J. 2004. “SimTraffic 6 User Guide. Version 6,” Trafficware, 

Albany, CA. 

https://doi.org/10.1061/JTEPBS.0000091
https://doi.org/10.1061/JTEPBS.0000492


215 

 

 

Janssen, R., H. Zwijnenberg, I. Blankers, and J. Kruijff. 2015. Truck platooning driving 

the future of transportation. Hague, Netherlands: Netherlands Organization for 

Applied Scientific Research. 

Kang, S., H. Ozer, and I. L. Al-Qadi. 2019. Benefit cost analysis (BCA) of autonomous 

and connected truck (ACT) technology and platooning. Reston, VA: ASCE. 

Kansas Department of Transportation (KDOT). 2015. Traffic Flow Map, Kansas State 

Highway System.  

Keller, E. L., & Saklas, J. G. 1984. Passenger car equivalents from network simulation. 

Journal of Transportation Engineering, 110(4), 397-411. 

Kittelson & Associates. 2019. “HCM CAV CAFs: Capacity adjustment factors for 

connected and autonomous vehicles in the highway capacity manual.” In Proc., 

Presentation at the 17th National Transportation Planning Applications Conf. 

Salem, OR: Oregon Dept. of Transportation. 

Kong, D., & Guo, X. 2016. "Analysis of vehicle headway distribution on multi-lane 

freeway considering car–truck interaction," Advances in Mechanical 

Engineering, 8(4), 1687814016646673. 

Konstantinopoulou, L., A. Coda, and F. Schmidt. 2019. “ENSEMBLE: Enabling safe 

multi-brand truck platooning for Europe.” In Proc., Presentation at the 

Automated Vehicles Symp., 15–18. Brussel, Belgium: European Commission. 

Krammes, R. A., & Crowley, K. W. 1986. Passenger car equivalents for trucks on level 

freeway segments. Transportation Research Record, (1091). 

L'ecuyer, P. 1988. "Efficient and portable combined random number generators," 

Communications of the ACM, 31(6), 742-751. 



216 

 

 

Lasdon, L. S., R. L. Fox, and M. W. Ratner. 1974. “Nonlinear optimization using the 

generalized reduced gradient method: Revue française d’automatique, 

informatique, recherche opérationnelle.” Recherche opérationnelle 8 (3): 73–103. 

Li, J.J. 2017. Simulate Stochastic Vehicle Arrivals & Compare VISSIM Stochastic vs 

Exact Inputs. https://www.linkedin.com/pulse/simulate-stochastic-vehicle-

arrivals-compare-vissim-vs-li Accessed Oct. 08, 2018. 

Li, L., & Chen, X. M. 2017. "Vehicle headway modeling and its inferences in 

macroscopic/microscopic traffic flow theory: A survey," Transportation Research 

Part C: Emerging Technologies, 76, 170-188. 

Li, S. E., Y. Zheng, K. Li, L. Wang, and H. Zhang. 2017. “Platoon control of connected 

vehicles from a networked control perspective: Literature review, component 

modeling, and controller synthesis.” In IEEE transactions on vehicular 

technology. Piscataway, NJ: IEEE. 

Lieberman, E., & Rathi, A. K. 1997. Traffic simulation. Traffic flow theory. 

List, G., Rouphail, N., and Yang, B. 2014. PCE Values for Single Grades. Raleigh, NC: 

Institute for Transportation Research and Education. December 18, 2014. 

Luttinen, R. T. 1996.  "Statistical analysis of vehicle time headways," Helsinki University 

of Technology. 

Mahdavian, A., A. Shojaei, and A. Oloufa. 2019. “Assessing the longand mid-term 

effects of connected and automated vehicles on highways’ traffic flow and 

capacity.” In Proc., Int. Conf. on Sustainable Infrastructure, 263. Reston, VA: 

ASCE. https://doi.org/10.1061/9780784482650.027. 

https://doi.org/10.1061/9780784482650.027


217 

 

 

Makridis, M., K. Mattas, B. Ciuffo, M. A. Raposo, T. Toledo, and C. Thiel. 2018. 

“Connected and automated vehicles on a freeway scenario. Effect on traffic 

congestion and network capacity.” In Proc., 7th Transport Research Arena TRA. 

Vienna, Austria: Transport Research Arena. 

Mannering, F., Kilareski, W., & Washburn, S. 2007.  "Principles of highway engineering 

and traffic analysis," John Wiley & Sons. 

Maurya, A. K., Dey, S. & Das, S. 2015. "Speed and time headway distribution under 

mixed traffic condition," Journal of the Eastern Asia Society for Transportation 

Studies, 11, 1774-1792. 

McHale, G. 2019. “FHWA level 1 truck platooning research program.” In Proc., 

Presentation at the Automated Vehicles Symp., 15–18. Washington, DC: USDOT, 

Federal Highway Administration. 

Mendez, V. M., C. A. Monje, Jr., and V. White. 2017. Beyond Traffic: Trends and 

Choices 2045—A National Dialogue About Future Transportation Opportunities 

and Challenges. In Disrupting Mobility, Impacts of Sharing Economy and 

Innovative Transportation on Cities (G. Meyer, and S. Shaheen, eds.), Springer 

International Publishing, Cham, Switzerland, pp. 3–20. 

MnDOT. 2008. "Advanced CORSIM Training Manual," SEH No. A-MNDOT0318.00, 

Minnesota Department of Transportation. 

Moridpour, S. 2014. Evaluating the time headway distributions in congested highways. 

Journal of Traffic and Logistics Engineering Vol, 2(3). 

Morris, C. M., & Donnell, E. T. 2014. Passenger car and truck operating speed models 

on multilane highways with combinations of horizontal curves and steep grades. 



218 

 

 

Journal of Transportation Engineering, 140(11), 04014058. 

https://doi.org/10.1061/(ASCE)TE.1943-5436.0000715. 

Nevada Department of Transportation (NDOT). 2017. 2017 Vehicle Classification 

Distribution Report.  

Okura, I., & Sthapit, N. 1995a. Microscopic Headway Method of Estimating Passenger 

Car Equivalents. In Proceedings of Infrastructure Planning (Vol. 17). 

Okura, I., & Sthapit, N. 1995b. Passenger car equivalents of heavy vehicles for 

uncongested motorway traffic from macroscopic approach. Doboku Gakkai 

Ronbunshu, 1995 (512), 73-82. 

Olstam, J. J., & Tapani, A. 2004. Comparison of Car-following models (Vol. 960). 

Linköping: Swedish National Road and Transport Research Institute. 

PCT (Python Core Team). 2015. Python: A dynamic, open source programming 

language. Python Software Foundation. URL https://www.python.org/. 

PTV (Planung Transport Verkehr). 2018. VISSIM 10 user manual. Karlsruhe, Germany: 

PTV AG. 

PTV (Planung Transport Verkehr). 2019a. PTV VISSIM & VISWALK 2020: Release 

notes (last modified: 2019-10-09). Karlsruhe, Germany: PTV AG. 

PTV (Planung Transport Verkehr). 2019b. VISSIM 20 user manual. Karlsruhe, Germany: 

PTV AG. 

PTV Group. 2021. PTV Vissim & PTV Viswalk Service Pack Download Area. Accessed 

January 11, 2021. http://cgi.ptvgroup.com/cgi-bin/en/traffic/vissim_download.pl.  

https://doi.org/10.1061/(ASCE)TE.1943-5436.0000715
https://www.python.org/
http://cgi.ptvgroup.com/cgi-bin/en/traffic/vissim_download.pl


219 

 

 

Raj, P., Sivagnanasundaram, K., Asaithambi, G., & Ravi Shankar, A. U. 2019. Review of 

methods for estimation of passenger car unit values of vehicles. Journal of 

Transportation Engineering, Part A: Systems, 145(6), 04019019. 

Rakha, H., Ingle, A., Hancock, K., & Al-Kaisy, A. 2007. Estimating truck equivalencies 

for freeway sections. Transportation research record, 2027(1), 73-84. 

RCT (R Core Team). (2013). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-

project.org/. 

Rilett, L. R. 2020. “Using simulation to estimate and forecast transportation metrics: 

Lessons learned.” In Proc., CIGOS 2019, Innovation for Sustainable 

Infrastructure, 23–33. New York: Springer. 

Rossen, V. G. 2018. “Autonomous and cooperative vehicles and highway capacity.” 

Accessed September 28, 2019. https://essay.utwente.nl/76615/. 

Roy, R., & Saha, P. 2018. Headway distribution models of two-lane roads under mixed 

traffic conditions: a case study from India. European transport research review, 

10(1), 3. 

Sharma, M., & Biswas, S. 2020. Estimation of Passenger Car Unit on urban roads: A 

literature review. International Journal of Transportation Science and 

Technology. 

Sheather, S. 2009. A modern approach to regression with R. Springer Science & 

Business Media. 

http://www.r-project.org/
http://www.r-project.org/
https://essay.utwente.nl/76615/


220 

 

 

Shi, L., and P. Prevedouros. 2016. “Autonomous and connected cars: HCM estimates for 

freeways with various market penetration rates.” Transp. Res. Procedia 15 (Jun): 

389–402. https://doi.org/10.1016/j.trpro.2016.06.033. 

Sparmann U. 1978. Spurwechselvorgänge auf zweispurigen BAB-Richtungsfahrbahnen. 

Forschung Straßenbau und Straßenverkehrstechnik, Heft 263, Bonn. 

Spiegelman, C., E. S. Park, and L. R. Rilett. 2011. Transportation statistics and 

microsimulation. Boca Raton, FL: CRC Press. 

Stanek, D. 2019. A procedure to estimate the effect of autonomous vehicles on freeway 

capacity. Washington, DC: Transportation Research Board. 

Sukennik, P. 2018. Micro-simulation guide for automated vehicles. Karlsruhe, Germany: 

PTV Group. 

Texas Department of Transportation (TxDOT). 2016. 2016 Texas Truck Flow Band Map.  

Toledo, T., & Koutsopoulos, H. N. (2004). Statistical validation of traffic simulation 

models. Transportation Research Record, 1876(1), 142-150. 

TSS. 2006. "AIMSUN 5.1 Microsimulator user's manual Version 5.1," TSS-Transport 

Simulation Systems, S.L. 

TTC (Toyota Tsusho Corporation). 2019. “Truck platooning project in Japan.” In Proc., 

Presentation at the Automated Vehicles Symp., 15–18. Tokyo: Ministry of 

Economy, Trade and Industry. 

Tufuor, E., Rilett, L. R., & Zhao, L. 2020. Calibrating the Highway Capacity Manual 

Arterial Travel Time Reliability Model. Journal of Transportation Engineering, 

Part A: Systems, 146(12), 04020131. https://doi.org/10.1061/JTEPBS.0000451. 

https://doi.org/10.1016/j.trpro.2016.06.033
https://doi.org/10.1061/JTEPBS.0000451


221 

 

 

Urbanik, T., A. Tanaka, B. Lozner, E. Lindstrom, K. Lee, S. Quayle, and S. Sunkari. 

2015. Signal timing manual. Washington, DC: Transportation Research Board. 

U.S. Department of Transportation (USDOT). 2015. Traffic Flow Map of the State 

Highways. State of Nebraska. 

Van Aerde, M., & Yagar, S. 1984. Capacity, speed and platooning vehicle equivalents 

for two-lane rural highways. TRB. 

Virginia Department of Transportation (VDOT). 2020. Vissim User Guide Version 2.0. 

VDOT Traffic Engineering Division. Virginia Department of Transportation. 

Washburn S., & Ozkul, S. 2013. Heavy Vehicle Effects on Florida Freeways and 

Multilane Highways, FDOT Contract BDK77 977-15 (UF Project 00093817). 

Webster, N., & Elefteriadou, L. 1999. A simulation study of truck passenger car 

equivalents (PCE) on basic freeway sections. Transportation Research Part B: 

Methodological, 33(5), 323-336. 

Wiedemann, R. 1974. Simulation des Strassenverkehrsflusses. 

Wiedemann, R., & Reiter, U. 1992. Microscopic traffic simulation: the simulation system 

MISSION, background and actual state. Project ICARUS (V1052) Final Report, 

2, 1-53. 

Wunderlich, K. E., Vasudevan, M., & Wang, P. 2019. TAT Volume III: Guidelines for 

Applying Traffic Microsimulation Modeling Software 2019 Update to the 2004 

Version (No. FHWA-HOP-18-036). United States. Federal Highway 

Administration. Accessed January 7, 2021. 

Wyoming Department of Transportation (WyDOT). 2009. Interstate 80 Tolling 

Feasibility Study, Phase 2. Final Report.  



222 

 

 

Yang, B. 2013. “On the HCM’s treatment of trucks on freeways.” Master thesis, Dept. of 

Civil Engineering, North Carolina State University. 

Yeung, J. S., Wong, Y. D., & Secadiningrat, J. R. 2015. Lane-harmonised passenger car 

equivalents for heterogeneous expressway traffic. Transportation Research Part 

A: Policy and Practice, 78, 361-370. 

Zhou, J. 2018. “Effects of moving bottlenecks on traffic operations on four-lane level 

freeway segments.” Doctoral dissertation, Dept. of Civil and Environmental 

Engineering, Univ. of Nebraska-Lincoln. 

Zhou, J., Rilett, L., Jones, E., & Chen, Y. 2018. Estimating passenger car equivalents on 

level freeway segments experiencing high truck percentages and differential 

average speeds. Transportation Research Record, 2672(15), 44-54. 

Zhou, J., L. Rilett, and E. Jones. 2019a. Estimating passenger car equivalent using the 

HCM-6 PCE methodology on four-lane level freeway segments in western US. 

Washington, DC: Transportation Research Record. 

Zhou, J., Rilett, L., & Jones, E. 2019b. Sensitivity analysis of speed limit, truck lane 

restrictions, and data aggregation level on the HCM-6 passenger car equivalent 

estimation methodology for western US conditions. Transportation research 

record, 2673(11), 493-504. 

 

  



223 

 

 

GLOSARY AND KEY ABBREVIATIONS 

Basic Freeway Segment – freeway section where the traffic flow is uninterrupted. A 

basic freeway segment is outside the influence of on and off ramps for at least 1,500 feet.   

CAF – capacity adjustment factor. This factor is defined as a ratio of mixed traffic flow 

capacity to passenger car-only flow capacity. 

Capacity – maximum sustainable flow rate that can pass a given point of the road system 

during a specified time period under prevailing roadway, environmental, traffic, and 

control conditions.  

CAV – connected and automated vehicles. These vehicles are capable of both 

autonomous driving and connectivity with other entities of the transportation system 

(e.g., vehicles, road infrastructure, etc.). It was assumed that CAVs have Cooperative 

Adaptative Cruise Control, which takes advantage of the communication exchange to 

form platoons with harmonized speeds and shorter gaps between them. 

Density – number of vehicles occupying a road lane per unit length at a given instant 

(e.g., veh/mi/ln, veh/km/ln). 

EC-PCE – equal capacity passenger car equivalent. It represents the passenger car 

equivalents that were estimated for the current version of the Highway Capacity Manual. 

These passenger car equivalents were estimated using capacity as the impedance metric 

of reference. 

Flow Rate – equivalent hourly volume that would occur if a sub hourly flow (e.g., peak 

15-minute flow) was sustained for an entire hour. 
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Gap – time interval between the passage of consecutive vehicles moving in the same 

stream, measured between the rear of the lead vehicle and the front of the following 

vehicle. 

HCM-6 EC-PCE – original methodology for the estimation of equal capacity passenger 

car equivalents in the 6th edition of the Highway Capacity Manual.  

HCM-6 – 6th edition of the Highway Capacity Manual. 

Headway – time interval between passage of consecutive vehicles moving in the same 

stream, measured between corresponding points (e.g., front bumper) on successive 

vehicles. 

Microsimulation – virtual representation of the traffic system where the driver-vehicle 

unit represent the fundamental entity of analysis. 

MLRM – multivariate linear regression model. 

NLRM – nonlinear regression model. 

PCE – passenger car equivalent. It represents the number of passenger cars that would 

produce the same effect on the traffic flow as a given vehicle type (e.g., trucks). A 

passenger car equivalent is a factor used to convert a mixed traffic stream of passenger 

cars and trucks into a single uniform traffic stream of passenger cars. 

Spacing – distance between vehicles moving in the same lane, measured between 

corresponding points (front to front) of consecutive vehicles. 

Speed – time rate of change of distance. 

Space Mean Speed – arithmetic mean of the speed of those vehicles occupying a given 

length of road at a given instant. 
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Truck Platooning – linking of two or more trucks in convoy using connectivity 

technology and automated driving support systems. 

Uninterrupted Flow – traffic flow conditions where vehicles traversing a length of 

roadway are not required to stop by any cause external to the traffic stream. 

VISSIMTM – a microscopic traffic microsimulation software package abbreviated from 

“Verkehr In Städten - SIMulationsmodell" (German for "Traffic in cities - simulation 

model"). 

Volume – number of vehicles passing a point per unit of time (e.g., veh/hour/ln, 

veh/day). 
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APPENDIX A 

 THE IMPORTANCE OF STOCHASTICITY ON MICROSIMULATION 

MODEL OUTPUT 

A.1  Introduction 

One of the most important characteristics of a microsimulation is the ability to model the 

temporal and spatial nature of traffic demand. Every microsimulation has a vehicle 

generation model that determines how and when the driver-vehicle units are introduced in 

the simulation. This model typically allows for both exact volumes, where the exact 

number of vehicles are generated, and stochastic volumes where the number of vehicles 

generated follows a statistical distribution. 

While stochastic vehicle generation is often used in practice, there is very little 

information in the literature on how this option affects the results. More importantly, the 

characteristics of the stochasticity applied in most microsimulation models are unknown 

to the user because the underlying code is proprietary. In addition, the documentation is 

often inadequate with respect to understanding the exact theory underlying the modeling 

approach. There is a paucity of studies examining the potential impacts on simulation 

outputs between stochastic and exact vehicle generation. The only exception was an 

informal study that had neither interpretations nor conclusions (Li, 2017). It is important 

engineers understand the logic behind the underlying theory of the microsimulation 

model and be aware of the extent to which the stochastic component in the vehicle 

generation model may have an influence on the variables of interest in the 
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microsimulation. This need has been recognized in previous publications (Hendrickson & 

Rilett, 2017). 

This study will examine one component of microsimulation models – 

stochasticity of vehicle generation. Most of the commercial microsimulation packages 

available today allow the user to associate stochasticity to some simulation inputs 

including traffic volumes. The stochastic condition is usually the default option for the 

user. However, how this option impacts vehicle generation is rarely well documented. In 

this study, the analysis will be focused on the vehicle generation model, using the 

software VISSIM 10 as a study case since it is widely used by engineers and researchers 

in the transportation engineering field. It should be noted the characteristics of the 

stochasticity in the vehicle generation model of VISSIM are unknown because they have 

not been published either by the developer or through a formal study. This study will 

analyze the stochastic component of vehicle generation and provide equations that relate 

VISSIM inputs to the resulting vehicle generation characteristics. In addition, two 

examples, for interrupted and uninterrupted flow conditions, are included to demonstrate 

the effect on performance measures when the user chooses between stochastic and exact 

vehicle inputs. 

The methodological approach of this study is based on microsimulation models 

and several statistical analyses. Three microsimulation case studies, including the PCE 

model of the HCM-6, are used for assessing the potential impacts on some performance 

measures when different vehicle generation approaches are used. A simple regression 

analysis is performed to determine the relationship between the expected coefficient of 

variation and stochastic vehicle inputs. Additionally, a statistical analysis between the 
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exact versus stochastic outputs doing a paired t-test is conducted. The range of stochastic 

volumes that may affect the results of the analyzed performance measures are identified. 

It should be noted this methodology will be performed considering traffic modeling as a 

static assignment (based on vehicle inputs). 

It is hypothesized the stochasticity has a significant impact on the simulation 

outputs by varying the number of potential interactions of driver-vehicle units in the 

simulation. This will support the importance of indicating, in any microsimulation study, 

the conditions in which the driver-vehicle units were deployed in order to make a 

satisfactory interpretation of the simulation results. In sum, this study emphasizes the 

need to have a deep understanding of the underlying logic of microsimulation models, to 

document the parameter sets chosen in a microsimulation study, and to calibrate the 

models to local conditions.  

Three scenarios in VISSIM 10 were produced with the aim of addressing the 

following four specific objectives:  

1) identify the best-fit distributions of stochastic volumes and time headways 

(scenario 1),  

2) explore the variability of the stochastic vehicle input (scenario 1),  

3) estimate the impact of the stochastic volume on performance measures at 

interrupted flow (scenario 2) and uninterrupted flow conditions (scenario 3), and  

4) demonstrate whether stochastic and exact vehicle inputs are sensitive to the 

associated time intervals (scenario 1). The three scenarios are described in more 

detail in the following sections. 
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A.1  Underlying Theory of Stochasticity in Vehicle Generation 

A.1.1  Scenario (1) for Exploring Stochasticity 

To identify the underlying theory of the stochastic component in vehicle generation, a 

basic case in VISSIM 10 was used consisting of a single-lane link. The relevant 

characteristics and parameters of the model are shown below: 

• One-lane at level (unidirectional); length = 1,609 m (1 mi); and width = 3.65 m 

(12 ft). 

• Vehicle composition = Passenger-car only (100: Car). 

• Desired speed = 120 km/h (75 mph). 

• Behavior type = urban motorized (default Wiedemann 74). 

The urban motorized link type was selected for this scenario because this allows a 

more reduced time headway between successive vehicles at the selected desired speed 

compared to the freeway link type (based on default settings of VISSIM 10). This is 

relevant because it drastically reduced the number of “stuck” vehicles that occur at the 

link entrance for moderate to high volume levels. The problem with “stuck” vehicles 

(recognized as simulation errors) is they cannot be counted as simulated vehicles because 

they would not be introduced in the network, although they were generated by the code. 

However, this study is focused on how the vehicle generation model supplies vehicles in 

the simulation, so it was critical that all vehicles generated enter the network. 

Specifically, this model was used to measure the variability produced by the 

stochastic vehicle input on simulated volumes and time headways and its sensitivity to 

the time interval size. In this case, the generated vehicles at the entry of the link were 
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collected using the output files. Due to the massive number of simulation runs performed 

in the analysis, a Python routine was created to extract, from the vehicle input data files, 

the total number of generated vehicles for each simulation run (PCT, 2015). 

Each combination of simulation runs was composed of a stochastic vehicle input 

(V) and a time interval size (T). Five levels of vehicle inputs (from 150 to 2,400 vph) and 

four levels of time intervals (from 60 to 3,600 seconds) were considered for this analysis 

(see Table A-2). It is important to note the user must give the vehicle input in terms of 

vehicles per hour (vph), regardless the time interval size which is given in seconds and 

may be a fraction of or larger than an hour. In total, 20,000 simulations were deployed 

considering 1,000 simulation runs per combination. A different seed number per 

simulation run (from 1 to 1,000 with Δ=1) was used to guarantee unlike generations of 

stochastic volumes. 

Additionally, the best fit distributions for stochastic volumes and time headways 

were explored. To do this, the Akaike and Schwarz’s Bayesian information criteria in 

addition to the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling 

goodness-fit-statistics were estimated. In this regard, smaller values of the previous 

statistics are preferred in determining the best fit distribution (Delignette-Muller, Laure, 

& Dutang, 2015). From the same scenario for exploring stochasticity, the combination 

V1200-T3600 (stochastic vehicle input = 1,200 vph, time interval = 3,600 s, and 1,000 

simulation runs) was selected as a basis to identify the best-fit distributions. The 

combination represents a moderated traffic volume where no stuck vehicles were 

observed in the set of simulation runs.  
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A.1.2  Results of Distributions for Stochastic Volumes and Time Headways 

Table A-1 shows the statistics of the applied criterions that were calculated to identify 

the best-fit distributions (smaller values are preferred). It was found the theoretical 

lognormal distribution fit both stochastic volumes and time headways (for stochastic and 

exact vehicle inputs). These findings are consistent with other previous studies where 

time headways were calibrated based on field data (Moridpour, 2014; Roy & Saha, 

2013). 

Table A-1. Applied Criterions for Best-fit Distributions on: (a) Stochastic Volume 

and (b) Time Headways. 

Criteria 
Probability Distribution 

Normal Lognormal Gamma Weibull Exponential 

(a) Stochastic Volume 

   Goodness-of-fit statistics 

         Kolmogorov-Smirnov statistic 0.026 0.025 0.024 0.078 - 

        Cramer-von Mises statistic 0.079 0.052 0.059 1.707 - 

        Anderson-Darling statistic 0.438 0.326 0.344 11.105 - 

   Goodness-of-fit criteria 

        Akaike's Information Criterion 9997.4 9996.7 9996.6 10137.7 - 

        Bayesian Information Criterion 10007.3 10006.5 10006.5 10147.5 - 

(b) Time Headways 

   Goodness-of-fit statistics 

         Kolmogorov-Smirnov statistic 0.205 0.130 0.130 0.133 0.179 

        Cramer-von Mises statistic 16.949 3.464 5.979 5.255 5.083 

        Anderson-Darling statistic 94.185 22.117 36.036 34.283 37.687 

   Goodness-of-fit criteria 

        Akaike's Information Criterion 6196.5 4816.8 5048.2 5101.3 5142.4 

        Bayesian Information Criterion 6206.8 4827.1 5058.5 5111.6 5147.5 
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The histograms of stochastic volumes and time headways can be seen in Figure 

A-1. The histogram of stochastic volumes comprises 1,000 simulation runs with V=1,200 

vph and T=60-min. The histogram reveals a mean value equal to 1198.6 vph and a 

standard deviation of 35.81 vph. Although the stochastic vehicle input was 1,200 vph. In 

this case, the user could expect volumes as low as 1,104 vph or as high as 1,316 vph 

depending on the selected seed number in the simulation. On the other hand, the 

histogram of time headways has a mean value of 3 s, and the most frequent value is 

around 1 s, which is consistent with its statistical distribution. The VISSIM manual (PTV, 

2018) indicates the time headways are obtained from a negative exponential distribution. 

However, the behavior found in the lower values makes the data better fit a log-normal 

distribution (see Figure A-1). It is important to note no examples of either histograms 

were found in the literature.  

 

Figure A-1. Example of histograms for (a) stochastic volumes and (b) time headways 
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A.1.3  Results of Variability of Stochastic Volumes 

The descriptive statistics of each combination of volume and time interval are shown in 

Table A-2. The variability of stochastic volumes changes according to the target volume 

defined as the expected number of generated vehicles within the associated time interval. 

Due to this, the measures of central tendency are given in terms of vehicles per time 

interval size (veh/T). By comparing the combinations V1200-T1800 and V600-T3600 in 

Table A-2 it can be observed the standard deviations are the same because the 

combinations refer to the same proportion of expected vehicles (e.g., 600 vehicles). This 

is a key point to understanding the variability of stochastic volumes in VISSIM because it 

suggests this variability depends on the expected number of generated vehicles within the 

time interval regardless of the time interval size. 

Table A-2. Descriptive Statistic of the Analyzed Stochastic Vehicle Input 

Combinations 

Combination n 

Target 

Volume 

[veh/T] 

Mean 

[veh/T] 

Median 

[veh/T] 

Mode 

[veh/T] 

StdDev 

[veh/T] 
CV [%] Min Max Kurtosis Skewness 

V2400-T3600 1000 2400 2396.8 2393.0 2391 49.33 2.06 2246 2555 -0.01 0.08 

V2400-T1800 1000 1200 1198.3 1197.5 1193 35.82 2.99 1104 1316 -0.16 0.06 

V2400-T600 1000 400 398.9 399.0 406 19.97 5.01 340 454 -0.26 -0.01 

V2400-T60 1000 40 39.8 39.0 39 6.13 15.41 21 60 0.05 0.20 

V1200-T3600 1000 1200 1198.6 1198.0 1198 35.81 2.99 1104 1316 -0.17 0.07 

V1200-T1800 1000 600 598.7 600.0 606 24.59 4.11 520 679 -0.15 -0.05 

V1200-T600 1000 200 199.7 200.0 202 14.01 7.02 161 241 -0.20 0.02 

V1200-T60 1000 20 20.1 20.0 20 4.33 21.57 7 34 0.23 0.34 

V600-T3600 1000 600 598.9 600.0 606 24.57 4.10 520 679 -0.17 -0.04 

V600-T1800 1000 300 299.4 300.0 292 17.33 5.79 247 352 -0.14 -0.02 

V600-T600 1000 100 100.2 100.0 97 9.88 9.87 72 133 -0.09 0.11 

V600-T60 1000 10 10.1 10.0 9 3.13 31.09 2 23 0.17 0.42 

V300-T3600 1000 300 299.5 300.0 307 17.31 5.78 247 352 -0.15 -0.02 

V300-T1800 1000 150 150.3 150.0 145 12.01 7.99 116 182 -0.27 0.05 
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V300-T600 1000 50 50.2 50.0 51 6.93 13.79 30 75 0.13 0.20 

V300-T60 1000 5 5.0 5.0 5 2.22 43.93 0 14 0.35 0.45 

V150-T3600 1000 150 150.4 150.0 152 12.00 7.98 116 182 -0.28 0.05 

V150-T1800 1000 75 75.3 75.0 74 8.65 11.48 48 113 0.32 0.19 

V150-T600 1000 25 25.2 25.0 24 4.94 19.63 11 42 0.18 0.33 

V150-T60 1000 2.5 2.5 2.0 2 1.53 62.32 0 10 0.82 0.66 

Note: V = input volume [vph]; T = simulation time interval [s]; CV = coefficient of variation; n = sample size (equal to number of 

simulation runs). 

The coefficient of variation is a measure of dispersion defined as the ratio of the 

standard deviation to the mean, usually expressed as percentage (Spiegelman, Park, & 

Rilett, 2011). It was found the correlation between the coefficient of variation and 

stochastic volumes follows a non-linear trend that decreases as the stochastic target 

volume increases (see Figure A-2). However, there is still an important variation for high 

volumes. For example, taking as reference an input volume of 2,400 veh/T, the 

coefficient of variation (CV) is around 2%, which represents a variation of ±49 veh/T 

(considering one standard deviation). 

 

Figure A-2. Variability of stochastic input volumes. 
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These findings were complemented with a simple regression analysis using R 

software between both variables to define their mathematical relationship (RCT, 2013). 

In the regression model, the coefficient of variation was considered the response variable 

and the stochastic volume the exploratory variable. Box-Cox transformation was applied 

to the exploratory variable in order to fit the data. Equation (A-1) shows the transformed 

regression model obtained from this analysis. As can be seen in the regression model, the 

coefficient of variation seems to be inversely proportional to the square root of the 

stochastic volume. 

𝐶𝑉 =  
𝛽1

 𝑉𝑇
+ 𝜖  

  (A-1) 

Where: 

CV: coefficient of variation in percentage. 

VT: stochastic target volume in veh/T. 

β1: estimator coefficient of the predictor. 

ε: error. 

 Equation (A-2) can be derived from the transformed regression model. It shows 

the variance of stochastic volumes is approximately equal to the stochastic vehicle input. 

For example, if the stochastic vehicle input were equal to 1,600 vph considering a time 

interval of 15-min (which would represent 400 generated vehicles in the time interval), it 

would be expected the variance would be 400 vehicles2 or a standard deviation of 20 

vehicles (square root of 400 vehicles2) within the 15-min time interval. 

𝑉𝑎𝑟 ≈  𝑉𝑇     (A-2) 
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Where: 

Var: variance of stochastic target volume within the time interval T in veh2/T2. 

VT: stochastic target volume in veh/T. 

The probability distribution consistent with Equation (A-2) is a Poisson 

distribution, which has a mean value equal to the variance. The Poisson distribution is 

usually used to model the number of arrivals in a given time interval when the waiting 

time between arrivals is small and independent (Spiegelman, Park, & Rilett, 2011). 

Therefore, it can be stated that in VISSIM 10 the total number of stochastic vehicles 

introduced in a simulation within a time interval are given by a Poisson distribution. This 

is important because it illustrates the logic behind the vehicle generation model but is not 

included in the VISSIM 10 literature. 

A.1.4  Results of Variability in Exact Volumes 

As was mentioned in previous sections, the exact volume is only exact for the entire time 

interval associated with the vehicle input. It is important to add the exact volumes would 

be exact only if the continued interval check mark is unselected (PTV, 2018). In this case, 

the user must create as many time intervals as necessary, not just for different volumes 

and vehicle compositions, but to guarantee exact volumes in a time period of interest. 

For fractions of the associated time interval, exact volumes may behave following 

similar patterns as stochastic volumes. For example, Figure A-3 shows a comparison of 

the standard deviations of generated vehicles between stochastic and exact volumes, 

considering 15-min fractions of a 60-min time interval. In total, 50 simulation runs were 

deployed using an input volume of 1,200 vph; theoretically, a mean of 300 vehicles 
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would be expected per 15-min fraction. As can be seen in the graphs, the variability of 

exact volumes in fractions of the time interval may be even slightly higher than the one 

shown by stochastic volumes (depending on the seed numbers). This is important because 

in many simulation studies it is a common practice to use a 60-min interval for vehicle 

inputs and a 15-min interval for data aggregation to compute the outputs. Therefore, this 

finding supports the recommendation of using a time interval size for vehicle inputs in 

concordance to the interval size for data aggregation to guarantee an expected behavior in 

the generation of vehicles if exact volume is required. 

 

Figure A-3. Example of existing stochasticity in fractions of the time interval. 
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A.2  Impact of Stochasticity on Performance Measures 

A.2.1  Scenarios (2 & 3) for Assessing Impact on Performance Measures 

With the aim of measuring the effect of the vehicle input type on the traffic performance 

measures, two scenarios were elaborated in VISSIM 10 accounting for the interrupted 

and uninterrupted flow conditions. The theoretical characteristics of each traffic flow type 

can be found elsewhere (Lieberman & Rathi, 1997). In both cases, the effect on 

performance measures was evaluated by comparing the results from simulations where 

the only difference was if the volumes were stochastic or exact. It was hypothesized the 

difference between the outputs given by both volume types would be statistically 

significant; in other words, the null hypothesis was the difference would be equal to zero 

because, at present, they have been used indistinctly. A description and a brief 

explanation of these scenarios are given in the following sections. 

A.2.2  Interrupted Flow Case (Scenario 2) 

This scenario was similar to the previous scenario used for exploring stochasticity with 

the difference that a fixed signal control was added close to the end of the link. Figure 

A-4a shows the schematic of this scenario with the location of the signal control. The 

relevant characteristics and parameters are provided below: 

• One-lane at level (unidirectional); length = 1,676 m (1 mi); and width = 3.65 m 

(12 ft). 

• Vehicle composition = Passenger-car only with uniform distribution (only Toyota 

Yaris). 

• Desired speed = 56 km/h (35 mph) with uniform distribution. 
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• Behavior type = urban motorized (default Wiedemann 74). 

• Signal control settings: Cycle = 120 s; 2 phases; Green = 56 s; and Change Period 

= 4 s. 

• Time interval = 15-min for deploying volumes, and 15-min for data aggregation. 

 

Figure A-4. Schematic of scenarios for (a) interrupted and (b) uninterrupted flow 

(modified from Zhou, 2018). 

This scenario considered a uniform distribution of vehicle composition and 

desired speed to reduce the sources of variability in the traffic simulation that could have 

an influence on the estimation of performance measures. Besides, all the generated 

vehicles had the same geometry and operational features, and they were traveling through 

the link with a constant speed and the same driving behavior. Theoretically, the unique 

sources of variability were given by the vehicle input type (comparing stochastic versus 

exact) and the applied seed number. 
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The procedures described in the HCM-6 consider an analysis period of 15-min to 

calculate the performance measures in signalized intersections, and other publications 

recommend considering the same interval size to calculate the simulation outputs (HCM, 

2016; Dowling & Alexiadis, 2004). Due to this, the analyzed performance measures in 

this model were calculated using a time interval of 15-min for deploying the input 

volumes (for both stochastic and exact conditions) and the same interval size for data 

aggregation. This is important because it was observed in the previous scenario and 

related studies that the performance measures are sensitive to the data aggregation size 

and the time interval associated with the vehicle input (Zhou, 2018).  

A total of 2,000 simulation runs (2 vehicle input types x 10 volume levels x 100 

seed numbers) were executed to compare the performance measures produced while 

choosing between stochastic or exact vehicle inputs. The values of the performance 

measures compared in the analysis had the same volume level and seed number but 

different vehicle input type (stochastic or exact). Ten volume levels (from 120 to 1,200 

vph) related to theoretical volume to capacity ratios of 10, 33, 50, 67, 75, 80, 85, 90, 95, 

and 100% were considered. The simulation period of each simulation run was 21 hours 

accounting for one-hour for vehicle loading to achieve a steady state and 20-hours of 

steady state with a constant volume controlled by 15-min time intervals (80 observations 

per simulation run). In the case of the exact vehicle input, this means VISSIM generated 

an exact number of vehicles for every single interval; for instance, if the exact vehicle 

input was 800 vph, 200 vehicles were exactly generated at the end of each 15-min 

interval. In contrast with the exact type, the stochastic vehicle input is not sensitive to the 

time interval size, as was exposed by the model for exploring stochasticity; however, the 
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same time interval scheme was used for the set of simulation runs with stochastic 

volumes. Thus, 160,000 observations were obtained in this model to calculate the 

performance measures that served as a basis for the comparison between both types of 

vehicle inputs. 

A.2.3  Uninterrupted Flow Case (Scenario 3) 

For this traffic flow condition, a similar VISSIM model was used as compared to the one 

considered in the HCM-6 to obtain the simulated capacity adjustment factors (CAFs) 

with which the equal capacity passenger cars equivalence (EC-PCEs) are estimated for 

freeway segments and multilane highways (Zhou, 2018; Dowling et al., 2014; Yang, 

2013). With this model, it was evaluated if the stochastic volume had a significant impact 

on performance measures at uninterrupted flow by comparing stochastics versus exact 

outputs. A complete and detailed description of the EC-PCE (HCM-6) model can be 

found elsewhere (Zhou, 2018). The relevant characteristics and parameters are given 

below: 

• General conditions: 

o Three-lane unidirectional freeway segment; total length = 24.14 km (15 

mi); and total width = 10.97 m (36 ft). 

o Desired speed = 113 km/h (70 mph) with uniform distribution. 

o Behavior type = freeway (default Wiedemann 99 and slow-lane rules for 

lane-changing). 

o Time interval = 60-min for deploying volumes and 1-min for data 

aggregation. 

• Specific conditions: 
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o Grade section = +1%. 

o Vehicle composition = Mixed traffic (90% passenger-car and 10% 

30SUT/70TT). 

The schematic of this scenario appears in Figure A-4b. The model layout was 

divided into three segments: (1) initial level section, (2) central grade section, and (3) 

ending level section. The central grade section included a set of eight detectors (data 

collection points) that were used to collect the vehicle data. In this case, the performance 

measures were estimated for one-mile length using the detectors located at 2.4 km (1.5 

mi) and 4.0 km (2.5 mi) from the beginning point of the central grade section. 

Additionally, two travel time detectors (vehicle travel time measurements) were placed at 

the same points for measuring travel times and delays. The analyzed performance 

measures were calculated using a time interval of 60-min for deploying the input volumes 

(for both stochastic and exact types) and an interval size of 1-min for data aggregation. It 

must be pointed out the same interval sizes have been used to calculate capacity and 

density in the EC-PCE (HCM-6) model. 

A total of 200 simulation runs (2 vehicle input types x 100 seed numbers) were 

executed to compare the selected performance measures while choosing between 

stochastic or exact vehicle input type. The values of the performance measures compared 

in the analysis had the same volume level and seed number but different vehicle input 

type (stochastic or exact). Nine volume levels (from 240 to 2,400 vph) from theoretical 

volume to capacity ratios of 10, 25, 50, 75, 80, 85, 90, 95, and 100% were considered. 

The simulation period of each simulation run was 36 hours (3-hours x 9 volume levels) 

accounting for one-hour of vehicle loading to achieve a steady state, one-hour of steady 
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state at the volume level for data collection, and one-hour of vehicle unloading. Hence, 

108,000 observations (60 1-min observations x 9 volume levels x 100 seed numbers x 2 

vehicle input types) were obtained to calculate travel times and delays that served as a 

basis for the comparison between both types of vehicle inputs. 

A.2.4  Results of the Impact of Stochasticity on Performance Measures 

Another important objective of this study was to define if the stochasticity in the vehicle 

generation model may have a statistically significant impact on performance measures at 

interrupted and uninterrupted flow conditions. This potential impact was measured 

through a paired t-test assuming a difference of zero in the null hypothesis by comparing 

the outputs from stochastic and exact vehicle inputs. In both conditions, it was found the 

impact of the stochasticity on the analyzed performance measures is statistically 

significant considering a confidence level of 95%. In general, the impact on performance 

measures is more evident from moderate to high volumes before reaching the capacity in 

the system. These results are summarized in Table A-3 and Table A-4. 

Table A-3. Descriptive Statistic and Paired t-test of Performance Measures at 

Interrupted Flow Conditions. 

Performance Measure 

Statistics 

Vehicle Input Volume V [vph] 

V=120 V=400 V=600 V=800 V=900 

Exact Stoch. Exact Stoch. Exact Stoch. Exact Stoch. Exact Stoch. 

Average Queue Length [m] 

      Mean 2.9 2.9 13.1 13.1 24.7 24.9 48 50.4 85 115.2 

      StdDev 0.75 0.95 1.88 2.58 3.22 4.72 9.4 16.9 29.31 77.82 

      CV [%] 25.6 32.9 14.3 19.7 13.1 18.9 19.6 33.5 34.5 67.5 

      p-value (t-test) 0.004 0.95 5.6x10-4 2.1x10-29 1.7x10-216 

Number of Queue Stops 

      Mean 15.3 15.4 58.9 58.9 99 99.6 159.4 163.1 227.5 268.1 
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      StdDev 3.06 4.15 6.98 9.47 9.97 14.26 17.99 31.91 44.02 108.96 

      CV [%] 20 27 11.8 16.1 10.1 14.3 11.3 19.6 19.3 40.6 

      p-value (t-test) 0.14 0.55 1.8x10-3 7.8x10-21 7.2x10-198 

Average Delay per Vehicle [s] 

      Mean 16.5 16.3 18.8 18.8 21.1 21.2 25.9 26.5 34.7 42.2 

      StdDev 3.78 3.99 2.43 2.61 2.3 2.52 3.4 4.95 8.13 20.15 

      CV [%] 22.9 24.5 12.9 13.9 10.9 11.9 13.1 18.6 23.4 47.7 

      p-value (t-test) 1.0x10-4 0.8 0.44 9.0x10-22 1.9x10-197 

  
V=960 V=1020 V=1080 V=1140 V=1200 

Exact Stoch. Exact Stoch. Exact Stoch. Exact Stoch. Exact Stoch. 

Average Queue Length [m] 

      Mean 386.4 369.1 419.3 418.3 421.2 420.9 421.9 421.8 422.2 422.2 

      StdDev 79.17 106.5 36.53 39.62 28.92 28.91 23.79 23.78 20.5 20.25 

      CV [%] 20.5 28.9 8.7 9.5 6.9 6.9 5.6 5.6 4.9 4.8 

      p-value (t-test) 2.2x10-52 9.0x10-6 0.08 0.45 0.92 

Number of Queue Stops 

      Mean 613.6 589.6 648.3 647 650.4 650.1 651.2 651.1 651.6 651.6 

      StdDev 94.91 130.61 45.73 49.47 36.32 36.43 29.95 30.19 26.46 26.13 

      CV [%] 15.5 22.2 7.1 7.6 5.6 5.6 4.6 4.6 4.1 4 

      p-value (t-test) 4.3x10-66 7.7x10-6 0.0504 0.34 0.67 

Average Delay per Vehicle [s] 

      Mean 146.6 188.2 270.3 268.9 275 274.7 276.8 276.6 277.7 277.6 

      StdDev 52.06 89.11 40.88 43.47 31.74 32.29 27.06 27.23 24.19 24.1 

      CV [%] 35.5 47.3 15.1 16.2 11.5 11.8 9.8 9.8 8.7 8.7 

      p-value (t-test) ≈ 0 1.1x10-13 0.0011 0.011 0.055 

Note: sample size of each vehicle input volume type was n=8000 for interrupted flow. 

Although several performance measures were analyzed for the interrupted flow 

condition and similar results were found on them, Table A-3 only shows the three 

performance measures considered more relevant for this traffic flow type. For example, 

in terms of average queue length, the greatest difference in the mean value (based on 

8,000 observations) appears for the vehicle input volume of 900 vph. This means 75% of 

the theoretical volume to capacity ratio (v/c) assuming a theoretical capacity of 1,200 

vph. The difference is statistically significant and consistent through the volume range 

from 600 to 1,020 vph (50% to 85% of v/c). A comparison of mean values and standard 

deviations of delay between stochastic and exact volumes for the ten volume levels are 
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depicted in Figure A-5. It must be noted that, in most of the cases, the variability of the 

performance measures for stochastic volumes is consistently larger than those given by 

the exact volumes. 

 

Figure A-5. Means and standard deviations of average delay from scenario 2. 

On the other hand, average delay and average travel time were the analyzed 

performance measures for the uninterrupted flow condition. The difference given by the 

vehicle input type in the average delay is statistically significant and consistent through 

the volume range from 240 to 2,160 vph (10% to 90% of v/c assuming a theoretical 

capacity of 2,400 vph). A similar pattern is observed for average travel time; however, 

the variability is considerably lower than those obtained for average delay. In general, the 

variability for the uninterrupted flow condition is less evident compared to the interrupted 

flow, although the observed differences are still statistically significant. It is important to 

note that this scenario (3) presents more sources of stochasticity that may affect the 
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results; for instance, the fact that the vehicle composition is mixed traffic with variable 

geometry and performance. However, the comparison between the performance measures 

poured by both vehicle input types was applied to observations with the same simulation 

conditions (e.g., seed number, volume level, time interval, data aggregation, etc.). In 

theory, the unique difference in terms of model inputs was the vehicle input type. 

Table A-4. Descriptive Statistic and Paired t-test of Performance Measures at 

Uninterrupted Flow Conditions. 

Performance Measure 

Statistics 

Vehicle Input Volume V [vph] 

V=120 V=240 V=600 V=1200 V=1800 

Exact Stoch. Exact Stoch. Exact Stoch. Exact Stoch. Exact Stoch. 

Average Delay [s] 

      Mean - - 0.44 0.51 0.5 0.52 0.95 0.85 3.68 2.96 

      StdDev - - 0.59 0.66 0.43 0.42 0.85 0.6 2.84 2.33 

      CV [%] - - 134.7 131.6 71.3 80 89.7 71.3 77 78.6 

      p-value (t-test) - 4.1x10-12 0.0002 7.5x10-17 3.0x10-53 

Average Travel Time [s] 

      Mean - - 51.84 51.91 51.91 51.93 52.38 52.28 55.16 54.44 

      StdDev - - 0.59 0.67 0.43 0.42 0.74 0.38 2.83 2.33 

      CV [%] - - 1.1 1.3 0.8 0.8 1.7 1.2 5.1 4.3 

      p-value (t-test) - 3.7x10-12 0.0002 5.6x10-16 9.2x10-53 

  
V=1920 V=2040 V=2160 V=2280 V=2400 

Exact Stoch. Exact Stoch. Exact Stoch. Exact Stoch. Exact Stoch. 

Average Delay [s] 

      Mean 5.46 4.58 8.47 7.78 14.5 14.1 15.9 15.7 16.12 16.33 

      StdDev 4.01 3.28 5.76 5.46 7.92 7.90 8.00 7.94 8.06 8.13 

      CV [%] 73.6 71.6 68.0 70.2 54.5 55.8 50.5 50.5 50.0 49.8 

      p-value (t-test) 4.8x10-38 2.0x10-11 0.0113 0.4135 0.1567 

Average Travel Time [s] 

      Mean 56.94 56.07 59.95 59.27 65.99 65.61 67.31 67.19 67.58 67.79 

      StdDev 4.0 3.27 5.73 5.44 7.89 7.86 7.97 7.91 8.03 8.10 

      CV [%] 7.0 5.80 9.56 9.17 12.0 12.0 11.8 11.8 12.0 11.9 

      p-value (t-test) 6.9x10-38 1.9x10-11 0.0111 0.4091 0.1565 

Note: sample size of each vehicle input volume type was n=6000 for uninterrupted flow. 
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A.3  Concluding Remarks 

The general purpose of the current study was to examine the stochastic component of the 

vehicle generation model using the software VISSIM 10 as a test case. Three scenarios 

were used for exploring the underlying logic of stochastic volumes and for assessing the 

potential impacts derived from this stochasticity on some performance measures at 

interrupted and uninterrupted flow conditions. A simple regression analysis was 

performed to determine the relationship between the expected coefficient of variation and 

stochastic vehicle inputs. Additionally, a statistical analysis based on paired t-test (exact 

versus stochastic outputs) allowed identification of the range of stochastic volumes and 

volume to capacity ratios that may affect the results of the analyzed performance 

measures.   

One important finding to emerge from this study is that the stochastic component 

of the vehicle generation model in VISSIM 10 shows a variance approximately equal to 

the target stochastic volume within the associated time interval, which is consistent with a 

Poisson distribution. Because of this, the coefficient of variation of stochastic volumes 

declines in a non-linear manner as vehicle demand increases. Moreover, it was found that 

the theoretical lognormal distribution fit both stochastic volumes and time headways. It is 

vital the user understand the theory behind the demand generation in order to make a 

proper interpretation of the results. 

In terms of exact volumes, there is stochasticity present within the time interval in 

which they are deployed. The exact volumes are only exact for the entirety of the 

associated time interval. If a fraction of the time interval is considered for analysis, the 

simulated volumes may behave as stochastic volumes. Due to this, it is suggested to use a 
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time interval size for deploying exact volumes at most the length of the time interval 

considered for the data aggregation used in the computation of simulation outputs. Note 

this point will be considered as a part of the proposed microsimulation framework in 

Chapter 6 and 7 of this dissertation. 

Another major finding is the stochasticity of vehicle generation may have an 

impact on performance measures, particularly from moderated to high volumes before 

reaching the capacity in the system. For the analyzed performance measures at both 

interrupted and uninterrupted flow conditions, statistically significant differences were 

found at 95% confidence level while choosing between exact or stochastic volumes. Note 

because HCM-6 has begun using microsimulation to analyze capacity it is important to 

understand how vehicles are generated (Zhou, 2018). The larger variability associated 

with stochastic volumes would require setting an adequate number of simulation runs to 

guarantee consistency in the results.  

These findings enhance our understanding of the stochastic component of the 

vehicle generation model in microsimulations, a key model of the traffic building block 

that has not been well documented. The evidence suggests any traffic microsimulation 

study must indicate the conditions in which the volumes were deployed (e.g., vehicle 

input type, time interval size, data aggregation interval, etc.) to ensure that others may 

replicate the experiments. 

The generalizability of these results is subject to certain limitations. For instance, 

the results are valid only for traffic modeling as a static assignment, which is based on 

vehicle inputs and routing proportions. Further work needs to be done to explore the 

stochastic component in the dynamic assignment scheme, although it is suspected the 
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behavior could be similar. On the other hand, an important part of the analysis was 

performed considering default simulation parameters and uniform distributions on some 

attributes of the driver-vehicle units that may not be valid in other simulation studies. 

Moreover, this research was based on VISSIM 10, future studies on the current topic are 

therefore recommended to explore the stochasticity in other commercial microsimulation 

packages. 
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APPENDIX B 

 IMPACT OF THE ENTRY TIME MODEL ON CAV PLATOON 

FORMATION 

B.1  Introduction 

The majority of microsimulation packages use the exponential time headway model to 

introduce the driver-vehicle units in the network because it is easy to code, has low 

processing demand, and if there are no platooning effects in the network, it fits standard 

traffic flow theory. However, various empirical studies have shown that time headways 

can follow different statistical distributions depending on traffic conditions as was 

discussed in the literature review of this dissertation. The purpose of this study is to 

analyze the effect of the entry time model used in the vehicle generation on connected 

and automated vehicle (CAV) platoon formation on freeways. Two entry headway 

distributions were explored: (1) the exponential headway model that is used in VISSIM 

(note that the user cannot change the distribution of the entry time model); and (2) the 

lognormal headway model that is frequently observed when there are moderate to high 

levels of congestion. The goal is to determine if the distribution of the entry time model 

has a significant impact on the simulation outputs when freeway segments are analyzed 

under the operation of CAV platoon formation. In addition, it is important to examine 

how the CAV platoon formation behaves as a function of the freeway distance. The latter 

will help to determine an appropriate distance before the data collection section in the 

HCM-6 EC-PCE model. 
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The methodology applied in this study is comprised of three main steps. First, the 

time headway models of both exponential and lognormal distributions were used to 

develop vehicle entry times. The vehicle type and desired speed were also defined 

externally using random variates and input modeling approaches for controlling their 

influence on the results of the experimental replications (runs). The only difference 

between the two simulated scenarios were the vehicle entry times for each simulated 

vehicle.  The next step was to run the traffic simulation models in VISSIM 20 using the 

two sets of inputs. The COM interface was used to control vehicle generation in the 

simulation. The function ‘AddVehicle()’ was coded in a Python script to generate the 

vehicles with the calculated stochastic attributes (PTV, 2019). In the last step, the 

simulation output from each scenario were processed to identify the CAV platoon metrics 

as a function of distance from the entry node. Statistical analyses were performed with 

the aim of determining any difference between the two scenarios in terms of platoon size 

and platoon frequency. A brief description of the study is provided below. 

B.2  Methodology 

B.2.1  Microsimulation Model and Testbed 

As the targeted simulation outputs are related to CAV platoon formation, VISSIM  20 

was used in this study due to its CAV and platoon modeling capabilities. The layout of 

the microsimulation test network is depicted in Figure B-1.  
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Figure B-1. Schematic of the microsimulation model. 

The testbed contains ten data collection points, each covering the three lanes, that 

were used to obtain platoon size and platoon frequency information. Note that a similar 

test network was used in the latest version of the Highway Capacity Manual (HCM-6) to 

simulate the capacity of freeway segments (HCM, 2016). This test network has a large 

number of assumptions including those related to vehicle types, operational capabilities, 

and driving behavior that were discussed in this dissertation. Unless otherwise noted, all 

of the HCM-6 assumptions were followed in this study. The key assumptions that were 

considered for this study are the following: 

• Unidirectional three-lane freeway segment. 

• Volume to capacity ratio (V/C) of 0.75 assuming a theoretical capacity of 2,400 

veh/h/ln.  

• Vehicle composition:  50% passenger cars (A) and 50% tractor-trailers (TTs). 

• All passenger cars (A) operating as non-CAVs. 

• All TTs operating as CAVs (assuming 100% market penetration rate) 

• Empirical desired speed distributions on level terrain under western rural U.S. 
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• Driving behavior: (a) 'Wiedemann 99' (default) for non-CAVs, and (b) 

'Aggressive CoExist' for CAVs. 

• Maximum platoon size of seven trucks (only CAVs can perform platoon 

formation). 

• External vehicle generation using the COM interface. 

• Total simulation period of 60 min divided in 15 min for warming period, 15 min 

for data collection, 15 min to extend steady state, and 15 min for vehicle 

unloading.   

• Data aggregation of 15 min for computing the simulation outputs. 

Note that to aid the analysis the input traffic variables, including desired speed 

distributions, volume-to-capacity ratio, and vehicle composition were selected to favor 

platoon formation. For example, according to the platoon-forming logic set in the traffic 

simulator, a speed differential between successive CAVs is required in order to allow for 

a CAV truck to approach a CAV platoon. Therefore, the empirical speed distribution 

assumed in this analysis will create the speed differential required for platoon formation. 

Moreover, a moderate traffic volume will facilitate platoon formation because there is an 

ample presence of potential vehicles for CAV platooning; and there is still room for lane 

changing, so the CAVs can encounter each other in the mixed traffic stream to form a 

new platoon. Consequently, the assumed volume to capacity ratio will facilitate these 

conditions. Additionally, a vehicle composition of 50%-50% for non-CAVs and CAVs, 

respectively was chosen because it allowed for the maximum amount of interaction 

between both vehicle types, all else being equal. 
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B.2.2  Time Headway Models 

Two time-headway distributions were explored in this study: (1) exponential distribution 

(a.k.a. negative exponential) and (2) lognormal distribution. The following assumptions 

were considered for the time headway model. 

• The OD volumes are exact. In other words, there is no variation in volumes. If a 

given OD input volume is 1800 veh/h/ln, then exactly 1800 vehicles will enter the 

network in an hour.   

• The vehicle lane that a given vehicle enters the network is based on equal 

probability (e.g., given there are three lanes the probability of selecting any one 

lane is 1/3).  

• Each lane has identical time headway distribution (e.g., lognormal or 

exponential). 

In both cases, the time headways were calculated assuming that the entry traffic 

flow is 1,800 veh/h/ln. This implies that exactly 450 vehicles per lane would be generated 

per 15-min simulation period. To guarantee exact traffic volumes within the time interval 

of interest, it is necessary to adjust the time headways. For example, if 450 vehicles will 

be generated for a 15-min time interval, the 450 time headways must add up to exactly 15 

min (or 900 sec). Equation (B-1) has been used to calculate a factor that allows adjusting 

the set of time headways (Lieberman & Rathi, 1997). The same approach was used in this 

study to ensure the exact vehicle generation. 

𝐾 =
𝑇

 ℎ𝑖
𝑁
𝑖=1

 

   (B-1) 
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where: 

𝐾: adjustment factor for exact vehicle generation within the time interval 𝑇. 

𝑇: time interval associated with the exact traffic vehicle input, seconds. 

𝑁: total number of generated vehicles within the time interval 𝑇. 

ℎ𝑖: time headway for the subject vehicle 𝑖, seconds. 

The random numbers used to feed the headway models that will be explained 

below were obtained using the generator proposed by L'Ecuyer (1988) that combines 

three multiplicative congruential generators. The same generator was used to model the 

stochasticity of vehicle type and desired speed. 

B.2.2.1  Exponential Time Headways  

The random variates for the exponential time headway model were calculated using the 

quantile function, also known as the inverse transform function, as shown in Equation 

(B-2) (Lieberman & Rathi, 1997; Luttinen, 1996). 

ℎ𝑖 =  𝐻 − ℎ𝑚𝑖𝑛 ∗  −𝑙𝑛 1 − 𝑅𝑖  + ℎ𝑚𝑖𝑛   (B-2) 

where:  

ℎ𝑖: time headway exponentially distributed for the subject vehicle 𝑖, seconds. 

𝐻: mean time headway computed as the reciprocal of the traffic flow input, 

seconds. 

ℎ𝑚𝑖𝑛: minimum expected time headway, seconds. 

𝑅𝑖: random number ~𝑈 0,1  for the subject vehicle 𝑖. 

For the scenarios explored, the mean time headway (𝐻) was set to equal 2 seconds 

by definition (e.g., entry flow is 1,800 veh/h/ln). The minimum time headway (ℎ𝑚𝑖𝑛) was 
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set to 0.9 sec. This is in agreement with the default value of the VISSIM parameter CC1 

(time headway) which defines the safety distance between successive vehicles (PTV, 

2019).  

To illustrate, Table B-1 shows an example of the summary statistics of the 

exponential time headway model (first row). The statistics were calculated for the set of 

time headways corresponding to Lane 1 (outermost lane) and Run 1 (first simulation run).  

Table B-1. Summary Statistics for a Sample of Time Headways. 

Headway Model Mean Sd Min Max 
MLEs 

Rate MeanLog SdLog 

Exponential 2.000 1.110 0.903 6.724 0.500 - - 

Lognormal 2.000 0.346 1.358 3.208 - 0.679 0.166 

Note:  Sd = Standard Deviation; MLEs = Maximum Likelihood Estimators. 

Figure B-2 shows the histogram of the exponential time headway model for this 

set. The exponential time headways for the remaining lanes and simulation runs were 

calculated using the exact headway distribution model but considering different random 

numbers. As can be seen, the shifted mean (mean headway minus the minimum headway, 

this was 2.0 - 0.9 = 1.1 sec) and the standard deviation of the exponential model was 

approximately the same (1.10 ≈ 1.11) in concordance with the theoretical properties of 

the exponential distribution. Additionally, the mean headway of the exponential time 

headway model was equal to 2 sec which corresponds to the input hourly traffic volume. 

The minimum headway observed in the set was 0.9 seconds, which satisfied the 

minimum time headway defined in the analysis of 0.9 sec. 
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Figure B-2. Histograms for lognormal and exponential time headway models. 

B.2.2.2  Lognormal Time Headways 

The lognormal distribution does not have an inverse-transform function to generate 

random variates. In this study, the random variates for the lognormal time headway 

model were calculated using the expression shown in Equation (B-3), which was solved 

using statistical software (Luttinen, 1996). 

ℎ𝑖 = [𝑒𝑥𝑝 𝜇 + 𝜎 ∗ Φ−1 𝑅𝑖  ] + ℎ𝑚𝑖𝑛   (B-3) 
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𝜇 = 𝑙𝑜𝑔  
 𝐻−ℎ𝑚𝑖𝑛 

2

  𝐻−ℎ𝑚𝑖𝑛 
2+𝜎𝐻2

     ;   𝜎2 = 𝑙𝑜𝑔  1 +
𝜎𝐻

2

 𝐻−ℎ𝑚𝑖𝑛 
22
  

where:  

ℎ𝑖: time headway lognormal distributed for the subject vehicle 𝑖, seconds. 

𝐻: mean time headway computed as the reciprocal of the traffic flow input, 

seconds. 

ℎ𝑚𝑖𝑛: minimum expected time headway, seconds. 

𝜎𝐻: desired standard of deviation of the expected time headways, seconds. 

𝑅𝑖: random number ~𝑈 0,1  for the subject vehicle 𝑖. 

Φ: standard normal distribution function. 

𝜇, 𝜎2: parameters of the lognormal distribution. 

A mean time headway (𝐻) of 2 sec and a minimum time headway (ℎ𝑚𝑖𝑛) of 0.9 

sec were used for the lognormal headway model, in agreement with the target traffic flow 

and the exponential headway model described previously. On the other hand, this 

approach also requires the user to input the standard deviation of the expected time 

headways. Previous studies have reported that U.S. multilane freeway segments that have 

lognormally distributed headways have observed standard deviations (𝜎𝐻) that were 

approximately 50% of the observed mean (Maridpour, 2014). Consequently, this study 

assumed a desired standard deviation (𝜎𝐻) of 0.55 sec (e.g., 50% of 1.1 sec). 

An example of the summary statistics of the lognormal time headway model is shown 

in the second row of Table B-1. As occurred with the exponential model, the statistics were 

also calculated for the set of time headways corresponding to Lane 1 (outermost lane) and 

Run 1 (first simulation run). Figure B-2 shows the histogram of the lognormal time 
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headway model for the same set. The same approach was applied for the remaining lanes 

and simulation runs but different random numbers were used. The mean headway of the 

lognormal time headway model was equal to 2 sec which corresponds to the input hourly 

traffic volume. The minimum headway observed in the set was 1.358 sec, which satisfies 

the minimum time headway defined in the analysis of 0.9 sec. 

B.2.3  Stochastic Attributes Definition 

B.2.3.1  Vehicle Type 

The study considered two vehicle types:  passenger car and tractor-trailer. As the assumed 

vehicle composition for the explored scenarios was 50%-50%, the vehicle type (VT) was 

sampled using a uniform distribution 𝑅𝑖~𝑈 0,1 , as shown in Equation (B-4).  

𝑉𝑇 = {
𝐴, 0 ≤ 𝑅𝑖 < 0.5

𝑇𝑇, 0.5 ≤ 𝑅𝑖 < 1.0
    (B-4) 

The vehicle type was computed independently for each of the three lanes. Due to 

the stochasticity of the procedure, the overall vehicle composition was A=50.96% and 

TT=49.04%. Note that the same vehicle composition was used for all of the scenarios 

explored and simulation runs.  

B.2.3.2  Desired Speed 

The desired speed attribute for the driver-vehicle units was determined stochastically using 

empirical continuous distributions. Free-flow speed data collected at 13 sites on Interstate 

80 between mileposts 177 and 399 in Nebraska was used. Further details of this dataset can 

be found elsewhere (Zhou, 2018). This dataset served to define the empirical continuous 

distribution of the desired speed of each vehicle type. The empirical cumulative distribution 
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functions (CDFs) of both passenger cars and tractor-trailers are depicted in Figure B-3. 

Note that the same values of desired speed for each driver-vehicle unit were used for all of 

the scenarios explored and simulation runs. 

 

Figure B-3. Empirical CDFs of desired speed. 

B.2.4  Simulation Runs 

The number of simulation runs was defined considering a preliminary set of three 

simulation runs. The standard deviation of the platoon frequency that was found at the ten 

data collection points was used to calculate the minimum number of runs. It was assumed 

an allowable error (𝜀) of eight platoons, which represents 5% of the observed mean platoon 

frequency after 10 miles (approximately 160 platoons). Considering a two-sided t-test at a 

level of significance ∝= 0.05, the number of simulation runs for the analysis was found to 

be greater than four (4) with a power of the test of 90%. Therefore, five runs were run for 

each scenario. 
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B.2.5  Simulation Output Processing 

In order to identify the CAV truck platoons at the ten detector locations, the output 

simulation file 'data collection (raw data)' (*.mer) was generated from VISSIM 20. For 

each driver-vehicle unit, the entry times at the detector, the lane, and the vehicle type were 

extracted from the above file. This data was used to identify each CAV truck platoon that 

passed the given detector location. Depending on the prevalent speed, it was found that the 

time headway between successive CAV trucks in platoon mode ranged approximately from 

1.1 to 1.3 seconds at 70 to 45 mph, respectively. This time headway range and the 

maximum number of trucks in the platoon (e.g., seven) served as thresholds to create an 

algorithm to filter and process the data. The aim was to collect the platoon frequency 

(number of platoons) and platoon size (number of CAV trucks in the platoon), at each of 

the ten detector locations for the 15-min time interval at steady-state conditions. 

B.3  Results and Discussion 

B.3.1  Platoon Formation 

This study compared the exponential and lognormal entry time models to explore their 

impact on CAV platoon formation at isolated freeway segments. Figure B-4 shows the 

CAV platoon formation, in terms of platoon frequency (vertical axis) and platoon size, as 

a function of distance (horizontal axis), ranging from 0 to 10 miles, for both the exponential 

and lognormal time headway models. Each line corresponds to a particular combination of 

time headway model and platoon size. The solid lines represent the exponential time 

headway model and the dotted lines the lognormal time headway model. Note that the 

notation 'EX' stands for the exponential model and 'LN' for the lognormal model; on the 
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other hand, the notation 'PS#' denotes the platoon size. For example, the symbol 'LN-PS7' 

refers to the lognormal time headway condition and a platoon size of seven CAV trucks. 

 

Figure B-4. Platoon formation for lognormal and exponential time headway models. 

Not surprisingly, at the beginning of the freeway segment (0.25 mile-detector), the 

majority of the CAV truck platoons were comprised of two (approximately 80%) or three 

trucks (approximately 15%) for the exponential and lognormal conditions. Note that the 

platoon frequency values at 0.25 begin to diverge, this phenomenon will be discussed later. 

For the platoon size of two trucks, the platoon frequency drastically increased as the 

distance of the freeway segment increased until a maximum value was reached somewhere 

between 0.5 and 1.0 miles. After this point, the number of platoons of two started a gradual 

decrease because platoons of larger size began to appear in the system.  It was hypothesized 

that this was due to the following CAV trucks joining the platoon and from small platoons 

forming a larger platoon. The increasing trend of platoon frequency for platoon sizes of 
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three to seven trucks showed an inflection point between 1.0 and 2.5 miles. After this point 

the platoon size distribution was approximately steady. 

It should be noted that between 7% and 8% of the CAV truck platoons in the system 

reached the maximum platoon size of seven trucks at distances greater than 2.5 miles. 

Similarly, based on the assumptions considered in this study, approximately 80% of the 

platoons showed a moderate to low platoon size of fewer than five trucks even though the 

theoretical maximum value of seven trucks was input. It is expected that different traffic 

characteristics might produce a different proportion of platoon sizes in the traffic stream. 

In general, it may be seen that the exponential and lognormal conditions tended to 

show a similar trend in platoon formation. The only exception was at the first detector (e.g., 

at the 0.25 mile marker). This finding suggests that the entry time model effect on CAV 

platoon formation is minimal and only occurs in the first 0.25 miles of the test network. It 

is recommended that if the HCM approach, and associated test network, is used to model 

CAV technologies that the vehicles travel at least 0.5 miles before platoon data is collected.   

B.3.2  Platoon Frequency 

The platoon frequency was measured as the number of CAV truck platoons observed at a 

given detector over a 15-minute aggregation level. The mean platoon frequency (vertical 

axis) as a function of distance (horizontal axis) for both the exponential and lognormal 

conditions is shown in Figure B-5. The red solid line represents the exponential time 

headway model, and the blue dotted line represents the lognormal time headway model. 

The mean platoon frequency was calculated by averaging, from the set of simulation runs, 

the number of platoons observed at each of the detectors.  
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Figure B-5. Mean platoon frequency as a function of distance:  exponential and 

lognormal models. 

It can be seen that the mean platoon frequency for both conditions was 

approximately the same when the distance was greater than 0.5 miles. For both conditions, 

the highest mean platoon frequency was approximately 160 platoons, and this occurred at 

the 2.0-mile mark. There was an inflection point at the 1.0-mile detector which represents 

approximately 93.8% of the highest mean platoon frequency. 

Interestingly, at the 0.25-mile detector, there is a noticeable difference in platoon 

frequency between the exponential and lognormal scenarios. The lognormal condition had 

a mean platoon frequency of 34 platoons (15.0% of the highest mean platoon frequency) 

as compared to the exponential condition that had 93 platoons (58.1% of the highest mean 

platoon frequency). It was hypothesized that the shorter time headways of the exponential 

model facilitated a faster platoon formation because, two successive CAV trucks would 

theoretically enter the network closer in distance to each other. Therefore, platoons could 
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form earlier in the simulation. However, after the 0.25 mile point the effect of the entry 

time model disappeared. At the 0.5-mile maker both the exponential and lognormal models 

revealed a similar mean platoon frequency. A two-sided paired t-test on mean platoon 

frequency values revealed that the time headway model does not produce a significant 

effect on platoon frequency in the microsimulation model at 𝛼 = 5%. 

B.3.3  Platoon Size 

The platoon size was defined as the average number of CAV trucks that comprised each 

platoon observed at the detector locations considering a 15-min aggregation level. Figure 

B-6 shows the mean platoon size as a function of distance (for both the exponential and 

lognormal conditions. The red solid line represents the exponential time headway model, 

and the blue dotted line represents the lognormal time headway model. The mean platoon 

size was calculated by averaging, from the set simulation runs, the platoon size observed 

at the detectors. It can be seen that the mean platoon size for both conditions was 

approximately the same for all locations on the test network. In contrast to the abrupt 

increase shown by the mean platoon frequency, the mean platoon size revealed a gradual 

increase as the distance factor increased. For both conditions, the minimum and maximum 

mean platoon sizes were approximately 2.30 (0.25-mile detector) and 3.45 (10.0-mile 

detector) trucks, respectively. Note that the maximum platoon size was, by definition, 

seven trucks. It can be observed an inflection point at the 2.5-mile detector in which the 

mean platoon size represented approximately 90% of the maximum mean platoon size. 

After this point, the platoon size continues to grow but at a decreasing rate as compared to 

the situation before the inflection point. It was hypothesized that this gradual increase was 

due to the travel distance required by the following CAV trucks to reach the existing CAV 
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truck platoons. A two-sided paired t-test on mean platoon size values revealed that the entry 

time model does not produce a significant effect on platoon size in the microsimulation 

model at 𝛼 = 5%. 

 

Figure B-6. Mean platoon size as a function of distance: exponential and lognormal 

models. 

It must be noted that according to the platoon-forming logic in VISSIM 20, two 

existing platoons cannot be combined to form a greater single platoon. Only faster 

isolated vehicles with CAV capabilities can join an existing platoon and this occurs when 

a CAV vehicle approaches a platoon from the rear.  It is important to highlight that this 

platoon-forming logic impedes the appearance of greater platoon sizes in the traffic 

stream. It is important to note that the maximum platoon size that is input to the 

simulation does not ensure that most of the platoons observed in the simulation will reach 

this maximum.  Instead, the distribution of platoon size results from a complex 

interaction between various traffic and operational factors, including traffic flow, vehicle 
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composition, market penetration rate, speed distribution, volume-to-capacity ration, 

platoon attributes, etc.  

B.4  Concluding Remarks 

This study explored the effect of the entry time model used in vehicle generation on CAV 

platoon formation on isolated freeway segments. There is no discussion in the literature 

about the effects of the entry time model on the results of traffic microsimulation studies.  

One of the most significant findings to emerge from this study is that the 

distribution of the entry time model did not affect the CAV platoon formation based on 

the assumptions stated in this study. Although the entry model had a minimal effect at the 

beginning of the link, it is hypothesized that this effect was rapidly removed by the 

driving-behavior logic that takes control of the driver-vehicle unit once it is traveling 

along the link. 

Another major finding is that the CAV platoon formation may require longer 

travel distances to obtain the highest values of platoon frequency and platoon size. 

According to the assumptions of this study, the mean platoon frequency required 

approximately a distance of 2.5 miles to achieve the greatest platoon frequency. At this 

point, the platoon size was approximately 90% of the greatest mean platoon size. 

Although the maximum platoon size set in the study was seven CAV trucks, the greatest 

mean platoon size observed after 10 miles was only 3.45 trucks. The analyst should be 

aware that the maximum platoon size does not guarantee that most platoons will reach 

this size, but rather the interaction of various operational and traffic factors. 

On the other hand, it is hypothesized that the current platoon-forming logic in the 

VISSIM 20 microsimulation model may limit the appearance of greater platoons than 
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those that could be observed in practice. For example, in the simulation, two successive 

CAV platoons of two vehicles each cannot merge to form a single platoon of four 

vehicles as would be expected to occur in reality. It is also recommended that 

microsimulation models include outputs relative to those vehicles that participate in CAV 

platoon formation at following and approaching states to facilitate user identification for 

analysis purposes. 

Further work needs to be done to explore other statistical distributions for the 

entry time model. For example, many models assume that vehicles enter the network 

following a uniform distribution. It is recommended that a sensitivity analysis be 

performed to explore the effect of other parameters on CAV platoon formation, such a 

desired speed, vehicle composition, market penetration rate, driving behavior, platoon-

forming logic, weight and power distributions, acceleration profiles, etc. This is an area 

of potential research that would further help transportation agencies as they begin the 

transition to CAV operations. 
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APPENDIX C 

 IMPACT OF THE SIMULATION RESOLUTION ON MICROSIMULATION 

MODEL OUTPUT  

C.1  Introduction 

Typically, a traffic microsimulation is a stochastic (there is variability in attributes and 

behavior), a dynamic (system state change in time), and a discrete (change at fixed points 

in time) model. The simulation resolution is a simulation parameter that is related to the 

dynamic and discrete nature of the microsimulation model. This simulation resolution 

determines the number of times that the dynamic objects in the simulation (e.g., vehicles, 

pedestrians, signal controls, etc.) are recalculated during the simulation run. A high 

simulation resolution will result in a more realistic and detailed model but will demand 

more computational resources and longer simulation run time (PTV, 2019). Some 

microsimulation guidelines have recommended that low simulation resolutions should be 

used only for preliminary analysis and reserve the highest resolutions for the final 

microsimulation model (VDOT, 2020). However, the simulation resolution parameter has 

received little attention in traffic microsimulation studies and its implications on the 

results are not entirely known.  

In the current version of the Highway Capacity Manual (HCM-6), equal capacity 

passenger car equivalents (EC-PCE) for basic freeway segments were obtained using a 

microsimulation model approach (HCM, 2016). Specifically, a VISSIM microsimulation 

model was used for modeling the capacity of 3,822 traffic scenario combinations that 

served as main inputs for the EC-PCE values that were published in the HCM-6. To the 
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author’s knowledge, this is the first time that the HMC uses a microsimulation model 

approach for capacity modeling. Interestingly, the HCM-6 EC-PCE microsimulation 

model used the lowest simulation resolution that is available in VISSIM (Dowling et al., 

2014). There is no discussion on how the simulation resolution was selected nor the 

implications of this selection on the results of the HCM-6 EC-PCE microsimulation 

model. In this regard, it is important to evaluate if the existing simulation resolution has a 

significant impact on the capacity values, so other may replicate the experiments or 

evaluate novel traffic scenarios using the HCM-6 EC-PCE approach. 

The main objective of this study is to analyze the impact of the simulation 

resolution on the capacity values obtained with the HCM-6 EC-PCE microsimulation 

model. A simulation resolution sensitivity was performed to compare the simulated 

capacity of 84 traffic scenario combinations that were simulated using the original HCM-

6 EC-PCE protocols in VISSIM 20. It is hypothesized that the simulation resolution may 

affect the simulation outputs, so it should be treated as a calibration parameter in the 

microsimulation model to ensure consistent outputs. This is important to make possible 

the experimental replication of the results obtained from the microsimulation model. 

C.2  Methodology 

The main purpose of this study is to perform a simulation resolution sensitivity on the 

simulated capacity values obtained with the HCM-6 EC-PCE microsimulation model. 

This study used the same microsimulation model assumptions that were used in the 

original HCM-6 EC-PCE research. Five simulation resolutions were explored in VISSIM 

20 including the simulation resolution of 1 second (i.e., 1 time step/simulation second) 

that was selected for the HCM-6 EC-PCE approach. In addition, two capacity definitions 



271 

 

 

were also explored to process the VISSIM model outcomes: (1) capacity as the 95th 

percentile of the maximum flow rate (e.g., HCM-6 EC-PCE capacity definition), and (2) 

capacity as the maximum flow rate (e.g., traditional capacity definition). The goal was to 

determine how that simulation resolution may affect the results in both capacity 

definitions.  

The methodology applied in this study is comprised of three main steps. First, the 

microsimulation model in VISSIM was used to simulate a set of traffic scenario 

combinations under the explored simulation resolutions. The next step was to develop 

flow-density scatterplots based on the VISSIM model outputs. These scatterplots were 

the basis to calculate the simulated capacity for each scenario combination considering 

the two definitions of capacity explored in this study. Lastly, the comparisons between 

the results from the explored simulation resolutions and capacity definitions were 

conducted using standard statistical theory.  

C.2.1  Traffic Scenario Combinations 

A total of 84 scenario combinations were evaluated for exploring the impact of the 

simulation resolution on the HCM-6 EC-PCE VISSIM model results. The scenarios were 

defined by a combination of the following factors: 

• 2 flow-rate types (f) either passenger car-only or mixed traffic flow,  

• 3 levels of truck percentage (p), 5%, 10%, and 20%,  

• 3 levels of grade (g), 0% (level terrain), 3% (rolling terrain), 6% (mountainous 

terrain),  

• 7 levels of grade distance (d) from 0.25 mi to 5.00 mi. 
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• 1 level of truck composition type (m), 30/70 SUT/TT.   

Therefore, there were 21 scenarios for the passenger car-only flow condition (e.g., 

3 levels of grade x 7 levels of distance), and 63 scenarios for the mixed-traffic flow 

condition (e.g., 3 levels of truck percentage x 3 levels of grade x 7 levels of distance x 1 

level of truck composition type). 

C.2.2  Simulation Resolution Sensitivity 

Five simulation resolutions were explored: (1) 1.0 second (1 time step/simulation second) 

(e.g., HCM-6 EC-PCE approach), (2) 0.5 seconds (2 time-steps/simulation second), (3) 

0.33 seconds (3 time-steps/simulation second), (4) 0.2 seconds (5 time steps/simulation 

second), and (5) 0.1 seconds (10 time steps/simulation second). Note that the simulation 

resolution ranges from 1 to 20 time-steps/simulation second in VISSIM 20 (1). 

C.2.3  Time per Run 

The time per run is the time required to complete a single simulation run. This time 

depends on the characteristics and performance of the computer that is used to execute 

the VISSIM model. Due to the HCM-6 EC-PCE methodology is comprised of a total of 

3,822 scenario combinations is important to estimate in advance the time that would be 

required to complete the whole set of simulations. For example, by knowing the mean 

time per run, the analyst could estimate the time that would be required to complete the 

total set of simulations and the number of computers needed to meet a time frame.  

 In this case, the time per run was calculated as the average time from 120 

simulation runs (12 scenario combinations x 10 replications). The timestamp from the 

simulation run list in VISSIM was used to calculate the time elapsed by each simulation 
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run. The fastest time per run is achieved considering the lowest simulation resolution 

(e.g., 1 second). This time was used as a reference to calculate a relative time per run, 

which specifies how many times the time per run with higher resolutions is greater than 

the time given by the lowest resolution.   

C.3  Discussion and Results 

C.3.1  Simulated Capacity Results 

The impact of the simulation resolution on the simulated capacity results of the HCM-6 

EC-PCE VISSIM model are shown in Figure C-1 and Figure C-2. Two capacity 

definitions were explored to estimate the simulated capacity based on the VISSIM 20 

model outputs: (1) capacity as the 95th percentile of the maximum flow rate which 

corresponds to the HCM-6 EC-PCE capacity definition (Figure C-1), and (2) capacity as 

the maximum flow rate which corresponds to the theoretical capacity definition (Figure 

C-2). In both graphs, the y-axis represents the simulated capacity in veh/h/ln and the x-

axis represents the scenario number. Each specific scenario number is calculated using 

Equation (C-1) and is a function of the truck percentage, grade, and distance. Each line 

in the graph represents a different simulation resolution value. The red solid line 

corresponds to the simulated resolution of 1 second that was used in the HCM-6 EC-PCE 

approach. The dotted lines correspond to higher simulation resolutions from 0.5 to 0.1 

seconds.  

𝑛 = 21 ∗ 𝑝 +  𝑔 − 1 ∗ 7 + 𝑑   (C-1) 

Where: 

𝑛: Scenario number. 
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𝑝: Ordinal number of truck percentage level, p = 1, 2,..., P, means 5%, 10%, and 

20% truck percentage. 

𝑃: Total levels of truck percentage, P = 3. 

𝑔: Ordinal number of grade level, g = 1, 2,., G, means 0%, 3%, and 6% grade. 

𝐺: Total levels of grade, G = 3. 

𝑑: Ordinal number of distance level (the level of detector location), d = 1,2,., D, 

means 0.25-5 mi. 

𝐷: Total levels of distance (detector location), D = 7. 

 

Figure C-1  Impact of simulation resolution on simulated capacity (as 95th percentile 

of maximum flow rate). 
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Figure C-2  Impact of simulation resolution on simulated capacity (as maximum 

flow rate). 

 It may be seen that the simulated capacity values obtained with the simulation 

resolution of 1 second (e.g., HCM-6 EC-PCE approach) greatly differ from those 

obtained with higher simulation resolutions for both capacity definitions. Interestingly, 

the simulated capacity obtained with simulation resolutions from 0.5 to 0.1 seconds 

shows similar results. It must be noted that the simulated capacity was calculated as the 

mean value of the ten simulation runs that were performed for each scenario combination. 

This approach greatly reduced the variability in the simulated capacity results produced 

by the stochastic component of the VISSIM model. 

Table C-1 shows the results of a two-sided t-test on the simulated capacity values 

based on the 84 scenario combinations that were performed for exploring each simulation 

resolution. It may be seen that the difference between the capacity values given by the 
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simulation resolutions of 1 second and 0.5 seconds are statistically significant at a 5% 

level of significance. In contrast, the difference between the capacity values obtained 

with higher simulation resolutions from 0.5 to 0.1 seconds is not statistically significant 

at a 5% level of significance. These results were consistent for both capacity definitions. 

In addition, a paired t-test on 12 capacity values (defined as maximum flow rate) at the 5-

mile detector (same detector) shows that the difference between the simulation 

resolutions of 0.5 and 0.1 seconds was not statistically significant at a 5% level of 

significance. 

Table C-1  Descriptive Statistics and two-sided t-test of Explored Simulation 

Resolutions. 

Statistic 
Simulation Resolution (SR) 

SR=1.0 s SR=0.5 s SR=0.5 s SR=0.33 s SR=0.33 s SR=0.2 s SR=0.2 s SR=0.1 s 

(a) 95th         

Mean 1931 2433 2433 2450 2450 2461 2461 2491 

StdDev 192.6 188.6 188.6 173.7 173.7 169.0 169.0 154.1 

Observations 84 84 84 84 84 84 84 84 

Pooled Variance 36348 32884 29375 26156 

df 166 166 166 166 

t Stat -17.05 -0.60 -0.42 -1.21 

p-value (two-tail) 0.000 0.549 0.675 0.229 

t Critical (two-tail) 1.97 1.97 1.97 1.97 

(b) Max.         

Mean 2203 2807 2807 2828 2828 2851 2851 2870 

StdDev 207.2 251.9 251.9 243.7 243.7 238.1 238.1 231.9 

Observations 84 84 84 84 84 84 84 84 

Pooled Variance 53200 61420 58025 55237 

df 166 166 166 166 

t Stat -16.95 -0.55 -0.63 -0.52 

p-value (two-tail) 0.000 0.581 0.530 0.603 

t Critical (two-tail) 1.97 1.97 1.97 1.97 

Note: (a) 95th = capacity as the 95th percentile of the maximum flow rate; (b) Max = capacity as the 

maximum flow rate; df = degrees of freedom; StdDev = standard deviation. 
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 As was expected, the simulated capacity values obtained as the 95th percentile of 

the maximum flow rate (e.g., HCM-6 EC-PCE capacity definition) are lower than those 

obtained as the maximum flow rate (e.g., theoretical capacity definition). On average, the 

simulated capacity values defined as the 95th percentile of the maximum flow rate are 

12.4% lower than the simulated capacity values defined as the maximum flow rate using 

VISSIM 20. It is important to note that scenarios 1 to 7 in Figure C-1 correspond to the 

base capacity conditions (e.g., passenger car only and level grade conditions) for a basic 

freeway segment. According to the HCM-6, the base capacity for a freeway segment at 

70 mph of free-flow speed is 2,400 pc/h/ln; however, the VISSIM model of the HCM-6 

EC-PCE research produces an average capacity of 2,123 pc/h/ln for the same conditions. 

It is easy to show that this can negatively affect the results of HCM-6 EC-PCE research. 

 Another interesting point is that higher simulation resolutions (e.g., ≤ 0.5 seconds) 

can yield capacity values as high as 2,800 veh/h/ln observing the original assumptions of 

the HCM-6 EC-PCE VISSIM model (e.g., default Wiedemann 99 and slow lane rules) as 

shown in Figure C-1. This indicates that if higher simulation resolutions are to be used in 

the HCM-6 EC-PCE VISSIM model, a model calibration targeting an empirical value of 

capacity (e.g., the HCM-6 base capacity) must be performed. This will improve the 

accuracy of the simulated capacity values and will ensure the results can be reproduced 

and repeated by others regardless of the inherent uncertainties of the microsimulation 

model. 

C.3.2  Flow-Density Scatterplots Results 

In the HCM-6 EC-PCE methodology, the simulated capacity values for each scenario 

combination are obtained from the flow-density scatterplots (e.g., Step 1 in the 
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methodology). The flow-density scatterplots were developed for the 84 scenario 

combinations and for the five simulation resolutions explored in this study; in other 

words, 420 flow-density scatterplots were developed in this study. To illustrate, Figure 

C-3 shows four flow-density scatterplots that correspond to simulation resolutions of 1 

second (i.e., HCM-6 approach), 0,5 seconds, 0.2 seconds, and 0.1 seconds considering 

the same traffic scenario combination. This scenario combination corresponds to the 

following conditions: mixed traffic flow, 20% truck percentage, 3% grade, and 1.0-mile 

distance.  

 

Figure C-3  Flow-density scatterplots as a function of simulation resolution. 
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It may be seen that the flow-density scatterplot related to the simulation resolution 

of 1 second (e.g., HCM-6 approach) shows a different trend as compared to the 

scatterplots related to higher simulation resolutions.  In the former scatterplot (i.e., 1 

second simulation resolution), an abrupt traffic breakdown appears at an approximate 

density value of 25 veh/mi/ln and a relative lack of flow-density pairs can be observed 

between density values of 25 and 35 veh/h/ln. In contrast, the flow-density scatterplots 

developed for higher simulation resolutions show a smoother transition for the traffic 

breakdown from density values of 25 veh/h/ln to the flow-density pairs related to the 

maximum flow-rate values. It is hypothesized that higher simulation resolutions (e.g., ≤ 

0.5 seconds) in the HCM-6 EC-PCE VISSIM model will allow detecting small variations 

in the flow-density-speed relationship exposing a more accurate and realistic behavior of 

the traffic stream.  

C.3.3  Time per Simulation Run Results 

As was explained previously, a higher simulation resolution in the microsimulation 

model will require a longer time per simulation run because the position of the dynamic 

objects in the simulation is recalculated more frequently demanding more computational 

resources. Figure C-4 shows the relative time per simulation run as a function of the 

simulation resolution value. The relative time was estimated regarding the lowest 

simulation resolution available in VISSIM 20 (e.g., 1 second = 1 time step/simulation 

second). Consequently, the relative time per run for the simulation resolution of 1 second 

(e.g., HCM-6 approach) is equal to one. It may be seen that as the simulation resolution 

value decrease (i.e., more time steps per simulation second) the relative time per run 

increases at an increasing rate. For example, for a simulation resolution of 0.1 second, the 
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relative time per run is approximately 8 times greater than the time required to execute a 

run with the lowest simulation resolution of 1 second.  

 

Figure C-4. Relative time per run as a function of simulation resolution. 

In this research, the mean time per simulation run that was found in the HCM-6 

EC-PCE VISSIM model with a simulation resolution of 1 second was 24 minutes, using a 

processor Intel® Core ™ i7 @ 3.07 GHz with 8.00 GB ram. This implies that a higher 

simulation resolution of 0.1 seconds will require, on average, 192 minutes to execute one 

simulation run. Given that the HCM-6 EC-PCE methodology is comprised of 3,822 

scenario combinations, running the total set of scenarios would require 12,230 hours (i.e., 

≈ 510 days) of simulation time considering only a single simulation run per scenario. 

Evidently, this time will vary depending on the specific computer capabilities used in a 

particular experiment. For this reason, it is important to select a simulation resolution to 

calibrate the HCM-6 EC-PCE VISSIM model that allows the analyst to perform the 
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experiments within a reasonable time frame based on the technological resources 

available in the research, but at the same time ensuring enough accuracy on the model 

results. 

C.4  Concluding Remarks 

The objective of this study was to analyze the impact of the simulation resolution on the 

capacity values obtained with the HCM-6 EC-PCE microsimulation model. Interestingly, 

the original HCM-6 EC-PCE research used the lowest simulation resolution in VISSIM 

(e.g., 1 time step/simulation second) for modeling the capacity values of 3,822 traffic 

scenario combinations that served to estimate the EC-PCE values that appear in the 

HCM-6. There is no discussion about the implications of this selection and how it may 

affect the experimental replication of the HCM-6 EC-PCE methodology. A simulation 

resolution sensitivity was performed to compare the simulated capacity of 84 traffic 

scenario combinations that were simulated using the original HCM-6 EC-PCE protocols 

in VISSIM 20.  

 One of the most significant findings to emerge from this study is that the 

simulation resolution parameter has a significant impact on the simulated capacity values 

obtained with the HCM-6 EC-PCE microsimulation model. This implies that a different 

simulation resolution would yield different capacity values for the same traffic scenario 

combination. In this sense, it is recommended to calibrate the HCM-6 EC-PCE 

microsimulation model to match an empirical capacity value while considering a fixed 

simulation resolution. It is important to emphasize that the simulation resolution used to 

calibrate the model should be documented as a calibration parameter to facilitate that 

others may replicate the experiments. 
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 Another interesting finding is that the difference between the capacity values 

obtained with a simulation resolution of 1 second (e.g., HCM-6 approach) and those with 

higher simulation resolutions (e.g., 0.5, 0.3, 0.2, 0.1 seconds) was statistically significant 

at a 5% level of significance. In contrast, the difference between the simulated capacity 

values obtained with higher simulation resolutions, from 0.5 to 0.1 seconds, was not 

statistically significant at a 5% level of significance. These findings were consistent with 

both capacity definitions explored in this study. It is important to note that the simulation 

resolution of 0.5 seconds may produce similar results as those obtained with the higher 

simulation resolutions with a significant reduction of the required simulation time. This is 

important because further traffic scenarios beyond the scope of the HCM-6 could be 

simulated considering a simulation resolution of 0.5 seconds without significant loss in 

fidelity and accuracy as compared to more demanding simulation resolutions, although 

this should be corroborated for microsimulation model versions other than VISSIM 20.  

Interestingly, the HCM-6 EC-PCE microsimulation model produced capacity 

values that were not consistent with those that appear in the HCM-6. In the HCM-6, the 

capacity for basic freeway segments is defined as the maximum flow rate observed 

during a sustained period of 15 minutes. However, the HCM-6 EC-PCE research defined 

the capacity as the 95th percentile of the maximum one-minute average flow-rate for the 

given scenario. As was shown in this study, the capacity values defined as the maximum 

flow rate were, on average, 14.2% greater than the capacity values defined as the 95th 

percentile of the maximum flow rate. Previous studies have also shown that the 

aggregation level has a significant impact on the capacity values (Zhou, Rilett, & Jones, 

2019). It is important that the HCM-6 EC-PCE methodology uses a consistent definition 
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of capacity and aggregation level, so the capacity values obtained from the 

microsimulation model can be compared with those in the HCM-6. Note that the mixed 

flow model included in the HCM-6 (Equation 26-1) compares the HCM-6 EC-PCE 

capacity with the base capacity values for basic freeway segments (Exhibit 12-4). It is 

clear that both capacity sources must be compatible.  
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