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Abstract
Background: Lepidoptera represents more than 160,000 insect species which include some of the
most devastating pests of crops, forests, and stored products. However, the genomic information
on lepidopteran insects is very limited. Only a few studies have focused on developing expressed
sequence tag (EST) libraries from the guts of lepidopteran larvae. Knowledge of the genes that are
expressed in the insect gut are crucial for understanding basic physiology of food digestion, their
interactions with Bacillus thuringiensis (Bt) toxins, and for discovering new targets for novel toxins
for use in pest management. This study analyzed the ESTs generated from the larval gut of the
European corn borer (ECB, Ostrinia nubilalis), one of the most destructive pests of corn in North
America and the western world. Our goals were to establish an ECB larval gut-specific EST
database as a genomic resource for future research and to explore candidate genes potentially
involved in insect-Bt interactions and Bt resistance in ECB.

Results: We constructed two cDNA libraries from the guts of the fifth-instar larvae of ECB and
sequenced a total of 15,000 ESTs from these libraries. A total of 12,519 ESTs (83.4%) appeared to
be high quality with an average length of 656 bp. These ESTs represented 2,895 unique sequences,
including 1,738 singletons and 1,157 contigs. Among the unique sequences, 62.7% encoded putative
proteins that shared significant sequence similarities (E-value ≤ 10-3)with the sequences available in
GenBank. Our EST analysis revealed 52 candidate genes that potentially have roles in Bt toxicity
and resistance. These genes encode 18 trypsin-like proteases, 18 chymotrypsin-like proteases, 13
aminopeptidases, 2 alkaline phosphatases and 1 cadherin-like protein. Comparisons of expression
profiles of 41 selected candidate genes between Cry1Ab-susceptible and resistant strains of ECB
by RT-PCR showed apparently decreased expressions in 2 trypsin-like and 2 chymotrypsin-like
protease genes, and 1 aminopeptidase genes in the resistant strain as compared with the
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susceptible strain. In contrast, the expression of 3 trypsin- like and 3 chymotrypsin-like protease
genes, 2 aminopeptidase genes, and 2 alkaline phosphatase genes were increased in the resistant
strain. Such differential expressions of the candidate genes may suggest their involvement in
Cry1Ab resistance. Indeed, certain trypsin-like and chymotrypsin-like proteases have previously
been found to activate or degrade Bt protoxins and toxins, whereas several aminopeptidases,
cadherin-like proteins and alkaline phosphatases have been demonstrated to serve as Bt receptor
proteins in other insect species.

Conclusion: We developed a relatively large EST database consisting of 12,519 high-quality
sequences from a total of 15,000 cDNAs from the larval gut of ECB. To our knowledge, this
database represents the largest gut-specific EST database from a lepidopteran pest. Our work
provides a foundation for future research to develop an ECB gut-specific DNA microarray which
can be used to analyze the global changes of gene expression in response to Bt protoxins/toxins
and the genetic difference(s) between Bt- resistant and susceptible strains. Furthermore, we
identified 52 candidate genes that may potentially be involved in Bt toxicity and resistance.
Differential expressions of 15 out of the 41 selected candidate genes examined by RT-PCR,
including 5 genes with apparently decreased expression and 10 with increased expression in
Cry1Ab-resistant strain, may help us conclusively identify the candidate genes involved in Bt
resistance and provide us with new insights into the mechanism of Cry1Ab resistance in ECB.

Background
The genomic information on insects has increased tre-
mendously during last several years. Whole genomes have
been sequenced for several insect species, including the
fruit fly (Drosophila melanogaster) [1], African malaria mos-
quito (Anopheles gambiae) [2], yellow fever mosquito
(Aedes aegypti) [3], honey bee (Apis mellifera) [4], silk-
worm (Bombyx mori) [5,6], red flour beetle (Tribolium cas-
taneum) [7], and 11 other Drosophila species [8,9].
Genome sequencing of other insect species, including pea
aphid (Acyrthosiphon pisum), northern house mosquito
(Culex pipiens), three species of parasitoid wasp (Nasonia
sp.), Hessian fly (Mayetiola destructor), blood sucking bug
(Rhodnius prolixus), and body louse (Pediculus humanus),
are currently in progress [10-12]. The red flour beetle is
the only agricultural insect pest whose whole genome
sequence has become available to date.

Lepidoptera, the second most biodiverse group of insect
species after Coleoptera, represents more than 160,000
species including many of the most devastating pests of
crops, forests and stored products [13]. The silkworm was
the first lepidopteran insect to have its complete genome
sequenced [6]. However, genomic information for other
lepidopterans, particularly agricultural pest species is lim-
ited but urgently needed due to their economic impor-
tance and biodiversity. Sequencing of the expressed
sequence tags (ESTs) has been recognized as an economi-
cal approach to identify a large number of expressed genes
that can be used in gene expression and other genomic
studies [14-16]. Indeed, ESTs have been generated from
several lepidopteran insects including the silkworm [17],
spruce budworm (Choristoneura fumiferana) [18], cotton
bollworm (Helicoverpa armigera) [19], diamondback

moth (Plutella xylostella) [20], tobacco hawkmoth (Mand-
uca sexta) [21,22], and fall armyworm (Spodoptera fru-
giperda) [10,23].

It has been long recognized that the insect gut is an impor-
tant target for developing new strategies for insect pest
management. Until now, however, only a few studies
have focused on the development of gut-specific EST
libraries of lepidopterans as a tool to identify candidate
genes involved in the toxicity of insecticides and the devel-
opment of insecticide resistance. Gut-specific EST libraries
were reported for light brown apple moth (Epiphyas
postvittana) (6,416 ESTs) [24], bertha armyworm
(Mamestra configurata) (30 serine protease-related
sequences) [25], and European corn borer (ECB, Ostrinia
nubilalis) (1,745 ESTs) [26].

ECB is one of the most destructive pests of corn and can
cause as much as $1 billion of economic loss annually in
the United States alone [27,28]. ECB also represents a
complex of stalk borers, such as the southwestern corn
borer (Diatraea grandiosella) and the sugarcane borer (Dia-
traea saccharalis). These stalk borers share similar ecosys-
tem and create similar damage to corn plants. Although
ECB has been successfully managed using transgenic Bt
corn hybrids (plants that express insecticidal toxins of
Bacillus thuringiensis or Bt), there are increasing concerns
about the potential development of Bt resistance in ECB
because of the widespread use of Bt corn [28,29]. Indeed,
several ECB colonies have developed resistance to Bt tox-
ins under laboratory selection conditions [30,31].

The main target for Bt toxins is the insect midgut, where Bt
protoxins are activated by gut proteases to produce acti-
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vated Bt toxins. The activated toxins then bind to specific
receptor(s) to confer toxicity [32]. This means that insect
resistance to Bt toxins could be conferred by protease-
mediated and receptor-mediated mechanisms [33-37].
Because Bt toxins and insect gut interactions are deter-
mined by many gene products in the insect gut, including
many proteins/enzymes involved in Bt protoxin activa-
tion, toxin binding to receptors and toxin degradation,
any change in these systems has the potential to affect a
particular Bt's specificity and efficacy, and could lead to Bt
resistance in insects.

Our goals are to develop a gut-specific EST database from
ECB larvae and explore candidate genes that are poten-
tially involved in insect-Bt interactions and Bt resistance.
In this paper, we report the analysis and annotations of
15,000 ESTs derived from the gut of ECB larvae. We dis-
cuss the putative identities of the ESTs, their potential bio-
logical and molecular functions, and present comparative
analyses of our ESTs with sequences from other insects.
This work provides the opportunity for developing an
ECB gut-specific microarray that can be used to study
insect-Bt interactions and genetic basis of Bt resistance in
ECB. Furthermore, we revealed 52 candidate genes that
could be involved in Bt toxicity and resistance. Among the
41 selected candidate genes examined by RT-PCR, we
found 5 genes with apparently decreased expressions and
10 with increased expressions in Cry1Ab-resistant strain
of ECB as compared with the susceptible strain of ECB.
Differential expressions of these genes in a Cry1Ab-resist-
ant strain may suggest possible involvement of these
genes in Cry1Ab resistance, and therefore provides us with
new insights into the mechanism of Cry1Ab resistance in
ECB. This study may serve as a model for studying Bt
resistance mechanisms and for developing bio-pesticides
for all closely related corn stalk borers.

Results and discussion
Development and analysis of the ECB gut ESTs
We first used pPCR-XL-TOPO plasmid vector to prepare a
cDNA library using total RNA purified from the whole

guts of fifth-instar larvae of ECB. After we sequenced a
total of 1,152 cDNA clones, we found that the cDNA
inserts in the vector were not sufficient long (average
length: 441 bp). Therefore, we used lambda Uni-ZAP RX
vector to prepare a second cDNA library using mRNA
purified from the guts of fifth-instar larvae of ECB. This
library provided us with much longer cDNA inserts (aver-
age length: 674 bp). Because of this significantly
improved quality of the ESTs generated from the lambda
library, we used the lambda library for our further
sequencing of ESTs. Among the 15,000 random cDNA
clones sequenced, only <8% were from the plasmid
library whereas >92% were from the lambda library
(Table 1).

Our analysis of the 15,000 sequences resulted in 13,066
readable sequences (i.e., 87.1% success rate). These
sequences were first trimmed for removal of vector
sequences and then were subjected to filtration to exclude
the sequences of <100 bp. Further analysis, using Repeat-
Masker and Organelle Masker programs [38], removed an
additional 547 sequences. Thus, the total number of high
quality sequences obtained was 12,519 (83.4%) with an
average length of 656 bp (Table 1). These high quality
sequences have been deposited in the EST database
(dbEST) with GenBank accession numbers from
GH987145 to GH999663 at the National Center for Bio-
technology Information (NCBI). Redundancy and assem-
bly analyses of the high quality sequences using
Sequencher software (Gene Codes Corp., Ann Arbor, MI,
USA) resulted in 2,895 unique ESTs, including 1,157 con-
tiguous sequences (contigs) that consist of 2 or more
sequences, and 1,738 singletons that represent single
sequences. The majority of the contigs were assembled
from 10 or fewer ESTs (Figure 1A). On average, however,
each contig was assembled from 10.1 sequences due to a
few highly redundant ESTs. Putative identities of the
unique sequences were determined by searching the non-
redundant database in GenBank using BLASTx. Among
the 2,895 unique sequences, 1,816 (62.7%) showed sig-
nificant matches at E-values of ≤ 10-3, whereas the remain-

Table 1: Summary of the analysis of 15,000 ESTs from the guts of the European corn borer larvae

Library Sequence 
direction

Number of
clones

sequenced

Chromatographs checked 
(EST number)

Sequence quality checked 
(EST number)

Average 
length (bp)

Number of 
contigs b

Number of 
singletons

Good quality Poor quality a Good quality Poor quality

Plasmid 3'-end 1,152 764 388 722 42 441
Uni-ZAP RX 5'-end 13,848 12,302 1,546 11,797 505 674

Total -- 15,000 13,066 1,934 12,519 547 656 1,157 1,738

a The poor quality sequences were discarded and were not included in the analysis.
b The numbers of contigs and singletons were based on the analysis of all the ESTs sequenced from the two libraries.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GH987145
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GH999663
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ing 1,077 (37.3%) did not exhibit meaningful matches
(Figure 1B).

Transcript abundance
The abundance of transcripts for a particular gene of an
organism can be estimated from the corresponding EST
abundance in a cDNA library [39]. The most abundant
ESTs in our cDNA libraries were those encoding trypsin-
like proteases and chymotrypsin-like proteases (Table 2).
As this cDNA library was constructed from the gut of ECB,
the high number of transcripts from the digestive enzymes

was expected. The most abundant contig was #0038
which consisted of 525 ESTs, and it included 4% of the
total sequences. This contig shared maximum sequence
similarity with the trypsin-like protease, T25 precursor,
characterized previously in ECB [40]. Other abundant
transcripts were contigs #0026 and #0062. Contig #0026
included 197 ESTs and encoded a putative chymotrypsin-
like protease. Contig #0062 included 137 ESTs and
encoded a putative trypsin-like serine protease. The highly
expressed genes in ECB larval gut may have important
implications for their growth and development. However,

(A) Distribution of ECB gut-specific ESTs in each contigFigure 1
(A) Distribution of ECB gut-specific ESTs in each contig. (B) Distribution of the 2,895 ECB gut-specific contigs and sin-
gletons with or without match in NCBI database using BLASTx. Sequences were defined as identical or similar cDNA 
sequences when they had E-values ≤ 10-3.

    A                 B 

0

50

100

150

200

250

300

350

400

450

2 3 4 5 6 7 8 9 10 ≥11

N
u

m
b

er
 o

f 
E

S
T

s

        

62.7% significant gene 
identity   
(E-value ≤ 10-3) 

37.3% non-significant 
gene identity   
(E-value > 10-3) 

Table 2: List of 20 largest contigs assembled from 15,000 ESTs from the guts of European corn borer larvae

Contig Identification Putative identities Number of ESTs Length (bp) % Total E-value

Contig [0038] Trypsin-like protease T25 precursor 525 942 4.1 3e-148
Contig [0026] Chymotrypsin-like serine protease 197 1,321 1.5 1e-149
Contig [0062] Trypsin-like serine protease 132 1,076 1.0 1e-131
Contig [0074] Unknown 131 824 1.04 --
Contig [0059] Trypsin-like serine protease 129 1,497 1.0 1e-117
Contig [0076] Trypsin-like serine protease 129 1,133 1.0 1e-148
Contig [0077] Unknown 97 652 0.77 --
Contig [0060] Unknown 94 1,218 0.75 --
Contig [0125] Ribosomal protein s13 87 888 0.69 1e-79
Contig [0092] Trypsin-like serine protease 80 1,238 0.63 1e-149
Contig [0102] Unknown 80 800 0.63 --
Contig [0040] Thymosin isoform 1 78 1,447 0.62 1e-80
Contig [0243] Trypsin-like serine protease 78 701 0.62 1e-120
Contig [0034] Unkown 76 567 0.60 1e-60
Contig [0124] Pancreatic triacylglycerol lipase 75 1,263 0.59 1e-99
Contig [0426] Chymotrypsin-like serine protease 73 1,439 0.58 1e-129
Contig [0146] Unknown 71 839 0.56 --
Contig [0997] Unknown 71 574 0.56 --
Contig [0013] Unknown 68 1,244 0.54 --
Contig [0175] Phosphate mannosyltransferase 65 1,121 0.51 1e-20
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care must be taken in making general conclusions about
the redundancy of EST's because some artifacts could also
be involved [41].

Identification of the ORF and putative secretary proteins
The 2,895 contigs and singletons were subjected to the
ORF predictor software to identify the open reading frame
(ORF) of the sequences. This was done to identify the
novel gene candidates, which have clear coding capacity.
Among 2,895 unique ESTs, 1,119 (38.7%) had ORFs of at
least 450 bp. Among 1,119 ORFs, 994 putative protein
sequences (88.8%) shared sequence similarity (E-value ≤
10-3) with known proteins in the non-redundant (NR)
protein database in GenBank, whereas 125 (11.2%) did
not share significant similarity with any known protein in
the same database (Figure 2A). Thus, at least 11.2% of the
protein-coding genes in the gut of ECB are potentially new
genes. The remaining 1,553 contigs and singletons
(53.6%) had an ORF of <450 bp and 223 (7.7%) did not

have an ORF. Among the ESTs with ORFs of <450 bp, 452
(29.2%) had matches in the NR protein database, whereas
1,011 (70.8%) did not have matches. Many sequences did
not have ORF of ≥ 450 bp because the sequences were too
short (approximately 650 sequences were less than 450
bp). The lack of the ORFs in other sequences can be due
to frame shift errors, 5' truncation of cDNA clones and the
ESTs that were not derived from mRNA [42].

To identify the secretory proteins, putative protein
sequences were examined to identify potential secretion
signal peptide using SignalP software [43]. A total of 439
(15.2%) putative proteins were predicted to contain sig-
nal peptides (Figure 2B). Among the putative secretory
proteins, 298 sequences (67.9%) had matches with
known proteins in the NR protein database, whereas 141
putative secretory proteins (32.1%) were unique, sharing
no significant sequence similarity with any known pro-
tein. This information is valuable since secretory proteins

Open reading frame (ORF), secretory protein, and BLASTx resultsFigure 2
Open reading frame (ORF), secretory protein, and BLASTx results. (A) The proportion of the unique ESTs from 
ECB gut cDNA library with or without 450 bp of ORF region along with their matches in BLASTx using NCBI database. (B) 
Proportion of the unique ESTs with or without signal peptide along with their match in BLASTx using NCBI database.
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are important components of biological processes in the
gut [44,45].

Comparative analyses of ECB gut ESTs
The development of EST databases has been recognized as
a rapid method of sampling an organism's transcriptome
and is complementary to a whole genome-sequencing
project [46]. Indeed, a large number of ESTs have been
generated from other model organisms. The 2,895 contigs
and singletons obtained from the larval gut of ECB were
compared with the sequences from other organisms. The
first hits (highest score) of the sequences in the NR data-
base were taken into account to determine the most simi-
lar organism. The largest number of first hit sequences
(390; 13.5%) came up with B. mori (Figure 3). This can be
explained by the fact that the genome of B. mori has been
sequenced and partially annotated, and that both ECB
and B. mori are lepidopterans. The second largest number
of first hit sequences (290; 10.0%) was with T. castaneum,
followed by Ae. aegypti (109; 3.8%), Culex pipiens (91;
3.1%), and A. gambiae (81; 3.8%). Only 2.5% of the
sequences (72) were found to be most similar to predicted
protein sequences from O. nubilalis. This is simply due to
the very small number of sequences currently available in
NCBI database from ECB.

In order to compare our ECB gut ESTs with the 1,745 ECB
ESTs that are already available in NCBI database, we per-

formed BLASTN searches. Among our 2,895 contigs and
singletons, 1,279 (44.2%) had significant matches at a
cutoff E-value of ≤ 10-3 whereas 1,616 (55.8%) did not
show any significant matches in NCBI database using
BLASTN search. We compared our ECB ESTs with the ECB
ESTs available in NCBI dbEST database. We found 475
sequences (16.4%) that had significant matches with E-
values less than E-150 (Figure 4A). Within this category,
88 ESTs (3.0%) had matches with E-values less than E-
150, 23 (0.8%) had E-values between E-150 and E-100,
131 (4.5%) had E-values of E-100 and E-50, 152 (5.2%)
had E-values of E-50 and E-20, and 81 (2.7%) had E-val-
ues between E-20 and E-5 (Figure 4B). A total of 2,420
ESTs (83.6%) had no hits with currently available midgut
ESTs in NCBI database.

Because B. mori genome has not been fully annotated, we
have also compared our ESTs with all available B. mori
ESTs using BLASTN. Among the 2,895 contigs and single-
tons, 579 (20.0%) had hits with B. mori sequences at E-
value < 10-3 (Figure 4A). The remaining 2,316 ESTs
(80.0%) did not show a significant match with the B. mori
sequences. Among the 579 unique ESTs which had hits in
the database, 43 (7.4%) had matches with E-value less
than E-150, 64 (11.1%) had E-values between E-150 and
E-100, 156 (26.9%) had E-values between E-100 and E-
50, 135 (23.3%) had E-values between E-50 and E-20,
and 181 sequences (31.3%) had E-values between E-20
and E-5 (Figure 4B).

Gene ontology
Blast2GO software was used to obtain the gene ontology
(GO) terms for the unique sequences by comparing them
through the Gene Ontology Consortium [47]. Among the
2,895 contigs and singletons, 1,815 showed blast hits at E-
value ≤ 10-3 and 1,119 ESTs of the 1,815 were mapped. A
total of 120 mapped ESTs showed both the GO terms and
Enzyme Commission (EC) numbers. Figure 5 shows the
EST functional categories, where the ECB unique ESTs
were assigned to putative biological processes, molecular
functions, and cellular components. Within the biological
process category, 24.0% belong to cellular processes, fol-
lowed by 17.0% metabolic processes, 11.0% develop-
mental processes, 11.0% multi-cellular processes, and
8.0% each for biological regulation and localization. In
the molecular function category, the maximum GO terms
(40.0%) are included in catalytic activity, followed by
binding (31.0%), transporter activity (10.0%), and 5.0%
each for enzyme regulation activity and structural molec-
ular activity (9.0%). In cellular components category, cell
part, cell, and organelle had 27.0%, 24.0%, and 18.0% of
the GO terms, respectively. They were followed by
organelle part (13.0%), macromolecular complex
(11.0%), envelope (4.0%), and membrane-enclosed
lumen (3.0%).

Similarity of ECB gut-specific ESTs with other insectsFigure 3
Similarity of ECB gut-specific ESTs with other 
insects. The first hit sequence (highest score) was used to 
determine the most similar organism.
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Identification of ESTs potentially relevant to the Bt 
toxicity and resistance
The mode of Bt action in insects includes the ingestion of
Bt protoxins, solubilization of Bt protoxins in insect gut,
proteolytic activation of protoxins, binding of toxins to Bt
receptors, membrane integration, pore formation, cell
lysis, and insect death [48]. According to this mode of
action, a target insect could potentially develop resistance
to Bt protoxins or toxins via one or more changes in the
Bt-receptor interaction pathway. Indeed, the two most
commonly identified Bt resistance mechanisms are pro-
tease-mediated and receptor-mediated resistance [49].
Our analysis of ESTs derived from the larval gut of ECB
revealed a number of genes that are potentially involved
in Bt toxicity and resistance (Table 3). Specifically, we
identified 18 ESTs putatively encoding trypsin-like pro-
teases and 18 ESTs putatively encoding chymotrypsin-like
proteases with E-value ranges from 2e-26 to 3e-137 and E-
value 3e-27 to 3e-149, respectively. Changes in the prote-
olytic activity of digestive enzymes can alter the toxicity of
Bt protoxins or toxins through effects on crystal solubili-
zation and/or activation of protoxins, as well as degrada-
tion of activated toxin [33,50-56]. A previous study from
our lab has shown that Bt resistance in a Dipel-resistant

strain of ECB was primarily associated with reduced
trypsin-like protease activity [35,40]. These trypsin-like
proteases were also revealed in our EST analysis. Thus, our
analysis of the ESTs generated from the guts of ECB larvae
revealed many more candidate genes that deserve further
analysis for their roles in Bt toxicity and resistance in ECB.

Our EST analysis also revealed 13 ESTs putatively encod-
ing aminopeptidases (E-value 1e-64 to 1e-116), 1 encod-
ing a cadherin-like protein (E-value 1e-35), and 2
encoding alkaline phosphatases (E-value 1e-115 to 1e-
131). Aminopeptidase N, cadherin-like proteins, and
alkaline phosphatases have been found to serve as Bt
toxin binding receptors in other insect species [57-59]. To
verify the function of aminopeptidase N as a receptor for
Bt Cry1Ac toxin in Spodoptera litura, RNAi technology was
used to reduce the expression of aminopeptidase N. This
resulted in a significant reduction in the susceptibility of
the insect to Cry1Ac toxin [60]. Gahan et al. [61] showed
that in a resistant strain (YHD2) of Heliothis virescens,
there was a disruption of a cadherin-superfamily gene by
a retrotransposon-mediated insertion that resulted in
high levels of resistance to the Bt toxin Cry1Ac. Fernandez
et al. [62] also reported that a GPI (glycosylphosphatidyl-

(A) Percentage of the 2,895 ECB gut-specific unique ESTs which shared matches with O. nubilalis and B. mori sequences with E-value ranging from E-150 to E-5 using BLASTNFigure 4
(A) Percentage of the 2,895 ECB gut-specific unique ESTs which shared matches with O. nubilalis and B. mori 
sequences with E-value ranging from E-150 to E-5 using BLASTN. (B) Comparative analyses of the 2,895 ECB gut-spe-
cific unique ESTs to B. mori sequences and other O. nubilalis sequences available in NCBI database using BLASTN.

  A                 B 
                       

   
     Ostrinia nubilalis              Bombyx mori 
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inositol)-anchored ALP (alkaline phosphatase) was an
important receptor molecule involved in Cry11Aa interac-
tions with midgut cells and toxicity to Ae. aegypti larvae.
These studies demonstrate that aminopeptidases, cad-
herin-like proteins, and alkaline phosphatases can serve
as Bt toxin receptors involved in Bt toxicity and resistance.
Thus, identification of these candidate Bt receptor genes
in this study will allow us to further examine whether
receptor-mediated resistance is involved in Bt resistance in
ECB.

Comparison of expression profiles between Cry1Ab-
susceptible and resistant strains of ECB
We performed RT-PCR to compare the expression patterns
of the candidate genes relevant to Bt toxicity and resist-
ance between Cry1Ab-susceptible and resistant strains of
ECB. Among 41 selected genes from the 52 candidate
genes, which included 15 that putatively code for trypsin-
like serine proteases, 13 for chymotrypsin-like serine pro-
teases, 10 for aminopeptidases, 2 for alkaline phos-
phatases, and 1 for cadherin-like protein, we found
apparently decreased expressions in 2 trypsin-like and 2
chymotrypsin-like protease genes, and 1 aminopeptidase
genes in the resistant strain as compared with the suscep-
tible strain (Figure 6). Among these genes, 2 trypsin-like
protease genes (contig [0907] and ECB-30-C08) were vir-
tually absent in the resistant strain. In contrast, we found

apparently increased expressions in 3 trypsin-like and 3
chymotrypsin-like protease genes, 2 aminopeptidase
genes, and 2 alkaline phosphatase genes in the resistant
strain. The most noticeable increases were found in 1
trypsin-like protease (contig [3395]), 3 chymotrypsin-like
protease (ECB-V-25_E02, contig [0379], and ECB-
23_F02), 1 alkaline phosphatase (contig [5091]), and 1
aminopeptidase (ECB-D12) genes.

Although RT-PCR is not quantitative, reproducible results
of such differential expression patterns for these candidate
genes in the Cry1Ab-susceptible and resistant strains of
ECB may imply their potential roles in conferring or con-
tributing to Cry1Ab resistance as well as genetic differ-
ences between the susceptible and resistant strains of ECB.
Indeed, certain trypsin-like and chymotrypsin-like pro-
teases have previously been found to activate or degrade
Bt protoxins and toxins, whereas several aminopepti-
dases, cadherin-like proteins and alkaline phosphatases
have been demonstrated to serve as Bt receptor proteins in
other insect species. Thus, our results may help conclu-
sively identify the candidate genes involved in Cry1Ab
resistance and provide us with new insights into the
mechanism of Cry1Ab resistance in ECB. Nevertheless,
further research will be needed to confirm their involve-
ments and to elucidate their roles in Cry1Ab resistance in
ECB.

Distribution of the ECB gut-specific unique ESTs annotated at GO level 2Figure 5
Distribution of the ECB gut-specific unique ESTs annotated at GO level 2. The Y-axis shows the percentage of the 
sequences. The x-axis shows 3 areas of annotation and with each area the sequences were further divided into subgroups at 
GO level 2.
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Table 3: List of genes potentially involved in Bt toxicity and resistance as identified by EST analysis from the guts of the European corn 
borer larvae

European corn borer Silkwormb

EST ID Matches Organisma % Identities E-value Matches % Identities E-value

Trypsin-like serine proteases
1 Contig [0038] AAR98918.1 Ostrinia nubilalis 254/256 (99%) 3e-148 AAB26023.1 144/233 (61%) 2e-78
2 Contig [0157] ACB54937.1 Helicoverpa 

armigera
46/97 (47%) 8e-18 No match -- --

3 Contig [0111] ABF47507.1 Ostrinia furnacalis 248/257 (96%) 5e-135 AAB26023.1 136/231 (58%) 2e-64
4 Contig [0291] AAX62039.1 Ostrinia nubilalis 257/258 (99%) 5e-137 AAB26023.1 100/240 (41%) 1e-43
5 Contig [0486] ABU98624.1 Helicoverpa 

armigera
148/241 (61%) 1e-72 AAB26023.1 109/235 (46%) 4e-48

6 Contig [0754] AAX62034.1 Ostrinia nubilalis 154/266 (57%) 7e-69 AAB26023.1 128/244 (52%) 3e-56
7 Contig [0622] ABU98624.1 Helicoverpa 

armigera
145/249 (58%) 4e-82 AAB26023.1 101/238 (42%) 3e-50

8 Contig [0907] ABU98619.1 Helicoverpa 
armigera

89/206 (43%) 6e-47 No match -- --

9 Contig [1007] AAR98918.1 Ostrinia nubilalis 218/252 (86%) 1e-120 AAB26023.1 119/229 (51%) 1e-57
10 Contig [1400] ABU98619.1 Helicoverpa 

armigera
56/199 (28%) 2e-21 No match -- --

11 Contig [1615] ABF47507.1 Ostrinia furnacalis 101/189 (53%) 1e-64 AAB26023.1 95/183 (51%) 5e-50
12 Contig [3395] AAX62032.1 Ostrinia nubilalis 129/209 (61%) 3e-72 AAB26023.1 117/208 (56%) 7e-59
13 Contig [4300] AAX62035.1 Ostrinia nubilalis 79/84 (94%) 8e-43 AAB26023.1 43/72 (59%) 5e-16
14 Contig [4291] AAX62032.1 Ostrinia nubilalis 181/236 (76%) 2e-105 AAB26023.1 138/233 (59%) 7e-75
15 ECB-30_C08 AAX62036.1 Ostrinia nubilalis 36/45 (80%) 1e-13 No match -- --
16 ECB-17_C09 ABC87051.1 Ostrinia furnacalis 65/98 (66%) 5e-30 AAB26023.1 48/97 (49%) 4e-19
17 ECB-C-18_B11 AAR98920.2 Ostrinia nubilalis 198/204 (97%) 5e-114 No match -- --
18 ECB-V-26_H09 ABC87051.1 Ostrinia furnacalis 35/50 (70%) 6e-12 NP_001040350 24/48 (50%) 3e-04
Chymorypsin-like serine proteases
1 Contig [0026] AAX62029.1 Ostrinia nubilalis 258/261 (98%) 5e-149 NP_001036903.1 163/259 (62%) 1e-86
2 Contig [0058] AAX62029.1 Ostrinia nubilalis 228/261 (87%) 3e-120 No match -- --
3 Contig [0120] AAF71515.1 Agrotis ipsilon 174/287 (60%) 2e-84 NP_001040430.1 109/244 (44%) 2e-47
4 Contig [0141] AAX62028.1 Ostrinia nubilalis 197/262 (75%) 1e-101 NP_001040430.1 130/261 (49%) 2e-52
5 Contig [0187] AAX62026.1 Ostrinia nubilalis 193/202 (95%) 4e-97 No match -- --
6 Contig [0299] AAX62029.1 Ostrinia nubilalis 228/261 (87%) 6e-120 NP_001036903.1 166/259 (64%) 7e-82
7 Contig [0379] AAX62030.1 Ostrinia nubilalis 111/242 (45%) 1e-55 NP_001036903.1 109/236 (46%) 8e-55
8 Contig [0426] AAX62026.1 Ostrinia nubilalis 282/289 (97%) 1e-129 No match -- --
9 Contig [0560] NP_001040430.1 Ostrinia nubilalis 128/232 (55%) 1e-63 NP_001040430.1 171/272 (62%) 4e-93
10 Contig [0806] AAX62029.1 Ostrinia nubilalis 202/208 (97%) 6e-137 No match -- --
11 Contig [1061] CAL92020.1 Manduca sexta 169/281 (60%) 1e-87 No match -- --
12 Contig [1478] NP_001040430.1 Bombyx mori 152/260 (58%) 5e-84 NP_001040430.1 152/260 (58%) 4e-84
13 Contig [2079] AAL93243.1 Aedes aegypti 85/242 (35%) 7e-40 No match -- --
14 Contig [2569] AAF71518.1 Helicoverpa zea 119/240 (49%) 7e-49 NP_001040430.1 87/212 (41%) 1e-30
15 Contig [4479] AAC36150.1 Plodia 

interpunctella
140/263 (53%) 3e-77 NP_001036826.1 117/270 (43%) 3e-51

16 Contig [4699] AAX62029.1 Ostrinia nubilalis 195/261 (74%) 1e-102 NP_001036826.1 144/251 (57%) 9e-68
17 ECB-23_F02 CAM84318.1 Manduca sexta 88/209 (42%) 3e-36 No match -- --
18 ECB-V-25_E02 AAX62031.1 Ostrinia nubilalis 32/32 (100%) 2e-11 NP_001040430.1 99/203 (48%) 6e-42
Aminopeptidases
1 Contig [0722] AAP37951.1 Helicoverpa 

armigera
72/193 (37%) 9e-29 BAA33715.1 60/160(37%) 2e-21

2 Contig [1364] ABL01481.1 Ostrinia nubilalis 413/421 (98%) 0.0 NP_001037013.1 273/422 (64%) 2e-154
3 Contig [1716] XP_560264.3 Anopheles gambiae 132/354 (37%) 3e-59 No match -- --
4 Contig [1907] ACB87202.1 Ostrinia furnacalis 370/374 (98%) 0.0 BAA33715.1 240/368 (65%) 8e-135
5 Contig [4362] AAQ57405.1 Helicoverpa 

armigera
102/263 (38%) 2e-48 NP_001037013.1 89/266 (33%) 1e-42

6 Contig [4298] ACB47287.1 Ostrinia furnacalis 291/297 (97%) 3e-167 NP_001036834.1 213/297 (71%) 6e-118
7 Contig [4992] AAP37951.1 Helicoverpa 

armigera
168/246 (68%) 7e-99 BAA33715.1 85/238 (35%) 6e-38

8 Contig [4529] ABV01346.1 Ostrinia furnacalis 342/356 (96%) 0.0 NP_001104835.1 226/350 (64%) 4e-125
9 ECB-G02 AAK85539.1 Helicoverpa 

armigera
196/262 (74%) 2e-114 No match -- --
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Conclusion
Our study resulted in a gut-specific EST database contain-
ing 12,519 high-quality ESTs from a total of 15,000 ESTs
sequenced in an agriculturally important lepidopteran
pest. To our knowledge, this database represents the larg-
est gut-specific EST database from a lepidopteran pest.
Our analysis using ORF predictor software showed that
approximately 11.2% of the protein coding genes in our
database may be specific to ECB as these sequences have
an ORF of at least 450 bp but did not have significant
matches with known sequences in NCBI database. We
have also identified 52 candidate genes that are relevant to
Bt toxicity and resistance. These genes encode trypsin-like
proteases, chymotrypsin-like proteases, aminopeptidases,
cadherin-like protein, and alkaline phosphatases. Further-
more, we showed differential expressions of 15 out of the
41 representative candidate genes that were examined by
RT-PCR, including 5 genes with apparently decreased
expressions and 10 with increased expressions in Cry1Ab-
resistant strain. These results may help us further narrow
down the candidate genes possibly involved in Cry1Ab
resistance, and provide us with new insights into the
mechanism of Bt resistance in general in ECB.

We are in the process of developing a microarray using our
unique ESTs together with the ECB gut-specific sequences
which are already available in the GenBank. The microar-
ray technology will help us analyze the global change of
gene expression in response to Bt protoxins/toxins. It will
also allow us to analyze any genetic differences between Bt
resistant and -susceptible strains of ECB. Our genomic
information on ECB could also serve as a valuable
resource for identifying critical/vulnerable genes from the
gut of ECB that would make useful physiological targets
for new toxins that could be developed for use in pest
management.

Methods
Insects rearing and dissection
The KS-SC Bt-susceptible ECB colony was used for gener-
ating EST libraries. This colony originated from the egg

masses collected from the cornfields near St. John, Kansas,
in 1995. The colony has been reared since then on artifi-
cial diets in the laboratory at Kansas State University
according to Huang et al. [63]. The resistant ECB strain
originated from a field collection of 126 diapausing larvae
obtained from non-Bt hybrids in Kandiyohi Co., MN in
2001. The resistant strain was initiated from 14 larvae that
survived exposure to a diagnostic Cry1Ab concentration
used to identify potential changes in susceptibility to
Cry1Ab [64,65]. To minimize inbreeding or founder
effects, the resistant insects were backcrossed twice with
the susceptible strain which originated from the same col-
lection. Because the resistance was incompletely recessive
and involved multiple factors [65], the F1 progeny were
randomly mated to obtain recombination of resistance
factors in the F2 progeny to allow selection of resistant
genotypes. The insects were then subjected to selection at
a Cry1Ab concentration corresponding to two- to three-
fold the LC50 for the F1 progeny (150 ng/cm2) [66]. This
selection event was designed to eliminate all the suscepti-
ble homozygotes and most of the heterozygotes. The
resistant survivors from this selection event were then sub-
jected to a second cycle of backcrossing, random mating,
and selection. After six generations, the Cry1Ab concen-
tration used in selections was gradually increased to
achieve 750 ng/cm2 at generation F10, a concentration that
kills virtually all F1 progeny. At generation F17, the resist-
ance to Cry1Ab in the re-selected strain was in excess of
800-fold. The guts were dissected from fifth-instar larvae
in DEPC (diethylpyrocarbonate)-treated distilled water
and were stored in TRI reagent™ (Molecular Research, Inc.,
Cincinnati, OH) at -80°C until used.

cDNA library construction and sequencing
Total RNA was isolated from the whole guts of ECB larvae
using TRI reagent™. The plasmid library was constructed
using Creator SMART™ cDNA library construction kit
from Clontech (Palo Alto, CA) following the manufac-
turer's protocols with one modification; instead of using
the original phage vector, PCR fragments were cloned
directly into a pPCR-XL-TOPO plasmid using a TOPO TA

10 ECB-D07 ABQ51393.1 Ostrinia furnacalis 171/22 (75%) 1e-99 NP_001104835.1 159/225 (70%) 2e-95
11 ECB-D12 ABV01346.1 Ostrinia furnacalis 200/278 (71%) 1e-112 NP_001104835.1 155/275 (56%) 5e-80
12 ECB-C06 ABL01481.1 Ostrinia nubilalis 40/40 (100%) 9e-16 NP_001037013.1 23/39 (58%) 7e-07
13 ECB-F04 AAP37951.1 Helicoverpa 

armigera
117/208 (56%) 2e-61 BAA32475.1 67/190 (35%) 2e-24

Alkaline phosphatases
1 Contig [5091] NP_001037536.2 Bombyx mori 101/172 (58%) 3e-53 NP_001037536.2 101/172 (58%) 3e-53
2 Contig [2328] BAF62124.1 Bombyx mandarina 176/260 (67%) 8e-103 NP_001037536.2 177/260 (68%) 2e-102
Cadherin-like 
protein
1 ECB-B09 ABS59299.1 Ostrinia furnacalis 242/244 (99%) 7e-135 BAA99405.1 155/247 (62%) 1e-81

a Sequence with highest score in BLASTX search
b Match of ECB ESTs with silkworm sequence using BLASTX

Table 3: List of genes potentially involved in Bt toxicity and resistance as identified by EST analysis from the guts of the European corn 
borer larvae (Continued)
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cloning kit (Invitrogen, Carlsbad, CA). The λ-library was
constructed using ZAP-cDNA synthesis kit and ZAP-cDNA
Gigapack III gold cloning kit (Stratagene, La Jolla, CA)
according to the manufacturer's protocols. Briefly, double
stranded cDNA was synthesized from poly(A) RNA, size-
fractionated through a Sepharose CL-2B gel filtration col-
umn, and ligated into λ Uni-ZAP XR vector. The ligated
DNA was packaged with the Gigapack III gold packaging
extract and the library was plated on LB/agar plates.
Recombinant plasmid within the lambda Uni-ZAP XR
vector was in vivo excised using the ExAssist helper phage
and recircularized to generate subclones in the pBluescript
SK phagemid vector. To sequence the clones, M13R and
M13F primers were used for 5' and 3' sequencing, respec-
tively. Plasmid DNA was isolated using Qiagen Bio Robot
3000 and sequenced using an ABI 3700 DNA analyzer.

EST analyses and annotations
The DNA sequences were preprocessed by using the
online software EGassembler [38]. Specifically, sequence
cleaning process was employed to trim the vector and
adaptor sequences from the ESTs. RepeatMasker process
was used to mask the interspersed repeats and low com-
plexity regions of the sequences by using Drosophila Rep-
base repeat library. The sequences were further masked by
using vector masking against NCBI's vector library and
organelle masking against mitochondrial library. The pre-

processed ESTs were then assembled by using Sequencher
software (Gene Codes Corp., Ann Arbor, MI). The ORF
regions of the assembled ESTs were identified by using the
ORF predictor software [67] and secretory proteins were
identified by looking for signal peptide sequence using
SignalP software [43]. Gene ontology (GO) annotation
was derived using Blast2GO software http://
www.blast2go.de/[68].

Comparative analysis of ESTs
The ECB unique ESTs were comparatively analyzed for
their sequence similarities against other organisms. The
organism associated with the EST showing the highest
BLAST score in GenBank databases was selected. The ECB
gut ESTs were also compared with sequences from the
silkworm and ECB that are currently available in the data-
base by using BLASTN with a cutoff E-value of 10-3.

Expression profiling by RT-PCR
Forty-one out of the 52 candidate genes were selected for
comparing their apparent gene expression profiles
between the Cry1Ab-susceptible and resistant strains of
ECB by using RT-PCR. These genes were selected solely
based on their representations among different gene
groups from our EST analysis. After total RNA was isolated
from four midguts dissected from one-day-old fifth-instar
larvae of each strain (Cry1Ab-susceptible and resistant

Expression profiles of 41 candidate genes relevant to Bt toxicity and resistance, which include 15 trypsin-like serine protease (TP), 13 chymotrypsin-like serine protease (CP), 2 alkaline phosphatase (AK), 10 aminopeptidase (AP), and 1 cadherin-like pro-tein (CA) genes in the midgut of one-day-old fifth-instar larvae in Cry1Ab-susceptible (S) and resistant (R) strains of ECB as determined by RT-PCRFigure 6
Expression profiles of 41 candidate genes relevant to Bt toxicity and resistance, which include 15 trypsin-like 
serine protease (TP), 13 chymotrypsin-like serine protease (CP), 2 alkaline phosphatase (AK), 10 aminopepti-
dase (AP), and 1 cadherin-like protein (CA) genes in the midgut of one-day-old fifth-instar larvae in Cry1Ab-
susceptible (S) and resistant (R) strains of ECB as determined by RT-PCR. The arrows next to the gel pictures indi-
cate the apparently decreased (↓) or increased (↑) expression of a particular gene in Cry1Ab-resistant strain as compared with 
the susceptible strain of ECB. The ribosomal S3 (RPS3) gene was used as a reference gene. At least two biological replications 
were used for each primer pair. The sequences of PCR primers used in this study were given in Appendix A.
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strains) of ECB by using TRI reagentTM (Sigma, St. Louis,
MO), it was treated with TURBO™ DNase (Ambion, Aus-
tin, TX)to remove any genomic DNA contaminations.
Three micrograms of total RNA was used for synthesis of
first strand cDNA using SuperScript® III First-Strand Syn-
thesis System (Invitrogen, Carlsbad, CA). cDNA prepared
from total RNA was used as a template for RT-PCR. A min-
imum of two biological replications was used for all the
PCR primer pairs. For all trypsin-like (except for ECB-
30_C08) and chymotrypsin-like serine protease, alkaline
phosphatase, and RPS3 genes, 25 PCR cycles were used
whereas for aminopeptidase and cadherin-like protein, 27
PCR cycles were used. For one trypsin-like serine protease
gene (ECB-30_C08), however, 33 PCR cycles were used as
the expression of this gene using fewer cycles was not vis-
ible on agarose gels. Each PCR was performed for above
mentioned number of cycles, each consisting of 94°C for
30s, 55°C for 60s, and 72°C for 60s. The sequences of for-
ward and reverse PCR primers, and expected size of PCR
product for each of 41 candidate genes are provided in
Additional file 1.
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Additional File 

 
Sequences of PCR primers used to compare the gene expression profiles of trypsin-like and chymotrypsin-like serine 

proteases, alkaline phosphatases, aminopeptidases, and cadherin-like protein by RT-PCR between Cry1Ab-susceptible and 

resistant strains of European corn borer (Ostrinia nubilalis) 
 

Name Forward Primer Reverse Primer Product size 

(bp) 

 

Trypsin-like serine proteases 

Contig[0111] 

Contig[0486] 

Contig[0754] 

Contig[0622] 

Contig[0907] 

Contig[1007] 

Contig[1400] 

Contig[1615] 

Contig[3395] 

Contig[0157] 

Contig[4291] 

Contig[0038] 

ECB-30_C08 

ACCTGTCCATCATCCGAACC 

ATGGCGTCCTCGTTGGTG 

TGGGACTGTCTACACTATTGAAAG 

CTGGTGGAGTTATTGCCTACG 

GGCTACTCCTGCGGTCAC 

ATGCGTACCTTCATCGTTCTAC 

ACGGAAGGTGGCACTCTC 

ACCAGTTCACCAGGGACAAC 

TGCTGGTGACTCAAACTCAATG 

GCCAGCATTACACCTTCCG 

CTCAACAACCGTGCTATCCTC 

CATCACGGAGAACATGCTTTG 

GATCACCATTTTGGAATTTTCG 

TCAGACGACGATCCTCCTTG 

TGGTGCCTCCCACAATGC 

GATGTGACGGGTATGATGCC 

GTGGTTTGCTGGATGGATGG 

CTGGACTGCTGCTGTATTGG 

GCCATCTCAGGGTATTGGTTAATG 

TCTCTTGCGGAGGGATGTAG 

TGATGCTGCCAGGGATGAC 

TGATGACTCGGTTCAAATAGCG 

TCGCAGTTCTCGTAGTAAGAC 

GCAGTGTTAATTACAGTTCCATCG 

CGTTGACACCAGGGAAGAAG 

GAGATACACGGGCGTTGC 

157 

82 

120 

133 

103 

116 

154 

87 

101 

128 

119 

158 

192 
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ECB-17_C09 

ECB-C-18_B11 

TGTTTCATCGGTACTGTCACTG 

CACAAAGTCCTGGAGGAAGATTC 

GAGGATCACTCGTCTGTTAAGG 

GTTCACGCCTGTCTGTTGC 

193 

125 

 

Chymotrypsin-like serine proteases 

Contig[0026] 

Contig[0120] 

Contig[0141] 

Contig[0426] 

Contig[0560] 

Contig[1061] 

Contig[1478] 

Contig[2569] 

Contig[4479] 

Contig[0379] 

Contig[4699] 

ECB-23_F02 

ECB-V-25_E02 

GAGGAGGGCACGGACTTC 

TGTGATCCAGCCCATCTCTC 

GCTGGTTCCCTCTACTGGTC 

ACCTGCCTACCAGCGTTTC 

TCAGTGGAACCCGTGGAAC 

TCCTCGCCTGTGGTGTTC 

GCCGCTGGATTTGGAAAGAC 

TGCTTCTGGATTCGGAATGAC 

TTGCGGGATACGGGAAGAC 

CCTACTGAGGATGCGAATAACG 

CGTCCCTCTTGTGACAATGAAG 

TGGTGGAGCCTCTATCATCAG 

ATCACCGCTGCTCATTGC 

TTCCTGTGTTCAAGGTGATGAC 

CAGAAGTGCGTCCGAATCC 

GAGATGGTGTTGGAGAAGGC 

CCGAAGCCTGAAGCAATAGC 

CAGTGCGATTGGTTGGATGG 

GATGGTGGTCACGGTCAAC 

GAGGGTGCTCGGGAATACG 

GGAGATGACTGGAAGAGTAACG 

GGAGATTGACCGAGTGGAGAG 

TGGGTTGGCTGGGTTTGG 

CCAGATCCTGCTGCCATCG 

GATTGCCATTCGTTGGTTGC 

ACTCCTCCGCTGAAGATGG 

106 

95 

79 

112 

94 

156 

135 

85 

75 

96 

92 

129 

92 

 

Aminopeptidases 

 

Contig[0722]  

Contig[1364]  

Contig[1907]  

GCACCCCATTCATTGTTCGC 

TCTGTAGTCTGGTTCACATTATCC 

AATTCCAAACCTGGGCGTAC 

GTATCTGGACGAGCCTGGAC 

ACTCACCTCCGCTGTATCC 

GTTGTTCATGGCACTGTTGAC 

126 

84 

89 
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Contig[4362]  

Contig[4298]  

Contig[4292]  

Contig[4529]  

ECB-G02 

ECB-D07 

ECB-D12 

ATCTGAAAAGCACCAACAGTCTTC 

ACCCTAACAGTAAGACAGTTTGAC 

AAGTCGTAAAGAGTAAACTGAGAG 

CTTCAACAGCCCACTGGAGAG 

CGACTGGTTCAGGTATTGGTTC 

CGCCGTGACCGTAACTGG 

TGTATTGGCGGAGTCTGATTC 

CTCTCGCCCTGATCGTCTTATG 

TGGCACTACAAGCAAGTAACG 

GCCAGATCCAGCATGAAGTG 

ACGCAAGACATATTAGGTAACAGC 

AGGGTGATGCTTCAGACTACG 

GTCGTCGCTAACAGAGAAGAG 

CCAGTCGTCATTGAGGAACC 

156 

197 

112 

85 

137 

195 

93 

 

Alkaline phosphatases 

 

Contig[5091] 

Contig[2328] 

ACTCGCTCATCGTGGTCAC 

CGGATTATCTGCTGGGTTTATTTG 

GTCGTCCTCCGTCGTCAC 

AGTGTGGGCTCGGTAACG 

200 

79 

 

Cadherin-like protein 

 

ECB-B09 GGTCATCAGCACGAAGAG CAAGCATAGATACTAAGAACTGG 176 
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