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 Nitrogen (N) is often the most limiting nutrient to corn. Once applied to the field, N can 

be lost through different pathways, which contributes to low N use efficiency (NUE) by plants. 

Increases in NUE and decreases in N losses can be potentially achieved by using management 

options that allow a better synchrony between N supply and demand, such as stabilized 

fertilizers, and spatially-variable sensor-derived in-season N application. Three studies were 

conducted in order to assess the effects of different stabilized fertilizers and crop canopy sensors 

on irrigated corn yield. The first study evaluated the effect of urease inhibitor on ammonia losses 

and corn grain yield. The use of urease inhibitors significantly reduced ammonia volatilization 

losses by 21 to 62%, but this did not translate into higher corn yields. The second study 

evaluated the effect of various management practices along with the use of a nitrification 

inhibitor and their interaction with weather on irrigated corn grain yield over 28 yrs. The use of a 

nitrification inhibitor had negative, neutral, and positive effects on corn grain yield, and the 

magnitude of its effect was less than other management practices. The most important weather 

variables in explaining different yield responses were year- yield potential, precipitation volume 

and distribution, and air temperature. The third study compared active and passive crop canopy 

sensors in assessing corn N deficiency and the accuracy of recommended side-dress N rates 



 

 

compared to the economic optimum N rate. This study included eight field studies using 

different N fertilizer rates and the use of both active and passive crop canopy sensor during the 

mid-vegetative growth stage in corn. Active and passive sensors recommended comparable side-

dress N rates given proper selection of algorithm inputs. Their recommendation was partially or 

fully accurate in four of six studies. Both stabilized fertilizers and crop canopy sensors are 

important management tool options for producers, and an understanding of their strengths and 

weaknesses is needed to guide proper adoption decisions. 
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Chapter 1 - Literature Review 

 Corn Production and Fertilizer Consumption 

 The U.S. is the largest corn producer in the world, with ~371 million metric tons of the 

grain harvested in 2018 (USDA-NASS, 2018). The large area planted with the crop and high 

average yields are the main drivers of this level of production. To achieve high corn yields, 

farmers need to properly manage their crop, and fertilization is one key aspect. The main nutrient 

supplied via fertilization to corn in the U.S. is nitrogen (N). Corn fields alone received 47% of all 

N applied to crops in the U.S. in 2014 (USDA-NASS, 2018). Of all the N applied that year, 44% 

was in the form of N solutions, 24% as urea, and 14% as anhydrous ammonia (AA) (USDA-

NASS, 2018). 

Corn is an important crop in Nebraska, generating ~ US$ 5.5 billion in the state economy 

in 2017 (USDA-NASS, 2018) which represented about 58% of all crop production value in the 

state. In 2017, Nebraska ranked third nationally in corn planted area (3.8 million ha, of which 

57% were irrigated), third in corn production (43 million metric tons of grain) and fourth in yield 

[11.4 Mg ha-1 averaged over irrigated (13.1 Mg ha-1) and non-irrigated (9 Mg ha-1)].  

Nitrogen is often the most limiting nutrient to corn as soil supply can greatly vary and 

plant demand is high. To ensure high yielding conditions, farmers supplement N nutrition by the 

addition of fertilizers. In 2016, Nebraskan farmers applied an average rate of 160 kg N ha-1 on 

corn as different formulations. In that year, the three most utilized N fertilizers in corn 

production were urea-ammonium nitrate (UAN, 28-32% N), AA (82% N) and urea (46% N), 

representing 65%, 15.7% and 13.3% of total only-N fertilizer applied in the state, respectively 

(Nebraska Department of Agriculture, 2016). About 20% more fertilizer was applied as UAN 
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and 8% less as urea in Nebraska compared to average U.S. consumption. Regardless of the 

source, once applied to the environment, N is transformed into different forms and can be lost 

through different pathways, including ammonia (NH3) volatilization (Pan et al., 2016), nitrate 

(NO!!) leaching (Quemada et al., 2013), and denitrification (Shcherbak et al., 2014). 

 Nitrogen Losses and Crop Nitrogen Use Efficiency 

Ammonia volatilization is the emission of N as NH3 gas to the atmosphere, and is an 

important loss mechanism for surface-applied, urea- or NH!!-containing fertilizer sources, 

especially in cropping systems with high residue quantity on the soil surface. Ammonia 

volatilization losses from the field are affected by multiple factors and thus are highly variable, 

ranging from 0 to ~60% of applied fertilizer (Terman, 1980; McInnes et al., 1986a; b; Harrison 

and Webb, 2001; Pan et al., 2016; Silva et al., 2017), with an average loss of the order of 17.6% 

of applied fertilizer (Pan et al., 2016).  

Nitrate leaching is the loss of N as NO!! to soil depths beyond the root system. Leaching 

can be a significant pathway of loss in both free-draining coarser-texture soils and artificially 

drained soils when soil NO!! concentration is high, excessive water is present, and 

evapotranspiration rates are limited (Dinnes et al., 2002; Quemada et al., 2013; Karimi and 

Akinremi, 2018). Under these conditions, reported NO!! leaching losses can occur even when no 

fertilizer is applied, and increase with N rate with up to 80% loss when N is applied (Bergström 

and Johansson, 1991; Randall et al., 2003; Quemada et al., 2013; Karimi and Akinremi, 2018).  

Denitrification is a biologically-driven anaerobic process where NO!! is reduced in a step-

wise chain of reactions following the sequence NO!!, NO!!, NO, N2O, N2 (Wrage et al., 2001). 

Different products during the denitrification reaction chain can escape to the atmosphere, 

including nitrous oxide (N2O). Nitrous oxide is a greenhouse gas with a global warming potential 
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~300 times higher than CO2 (Solomon et al., 2007). Furthermore, N2O reacts with oxygen in the 

stratosphere to form nitric oxide (NO), which promotes ozone destruction (Ravishankara et al., 

2009). Agricultural N management is the main source of national and global N2O emissions 

(Forster et al., 2007; EPA, 2018), with N2O losses ranging from ~0 to 8% of the applied fertilizer 

but normally not exceeding 1% (Kim et al., 2013; Fernández et al., 2014; Halvorson and Bartolo, 

2014). The magnitude of N2O loss increases with increasing N rates, especially at N rates 

exceeding the optimum N rate for plant production (Kim et al., 2013; Halvorson and Bartolo, 

2014; Shcherbak et al., 2014).  

 Fertilizer losses from NH3 volatilization, NO!! leaching and denitrification combined can 

be large and contribute to the low fertilizer N use efficiency (NUE) observed for various crops, 

including corn (Raun and Johnson, 1999). Cassman et al. (2002) reported that the regional N 

fertilizer recovery efficiency (REN) of corn, calculated as the percentage of applied N fertilizer 

accumulated on the crop aboveground biomass for 55 on-farm studies during the period 1995-

1999 across eight U.S. Midwest states, was 37%. Despite this low value, Cassman et al. (2002) 

noted that the ratio of crop yield per unit of applied fertilizer (also known as the partial factor 

productivity of N fertilizer, PFPN) for U.S. corn increased from 42 in 1980 to 57 kg grain kg-1 N 

in 2000. This consistent increase in PFPN was attributed to a significant increase in average corn 

yield of 109 kg ha-1 yr-1 combined with a stable fertilizer N application rate over time (Cassman 

et al., 2002). Thus, farmers are able to produce more grain with the same N input, thereby 

increasing crop NUE over time. Ferguson (2015) demonstrated a similar trend for corn 

production in Nebraska, with PFPN values increasing from ~42 in 1965 to 67 kg kg-1 in 2010.  
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Asynchrony in the timing of crop N demand and N application is a common reason for 

low observed NUE and high potential for environmental N losses. In addition to temporal 

asynchrony, spatial asynchrony contributes to N losses when the application of a single N rate to 

an entire field results in sub-field areas that are either over- or under-fertilized (Mamo et al., 

2003). Therefore, further increases in NUE and decreases in N losses can be potentially achieved 

by using management options and technologies that allow a better synchrony between N supply 

and demand. In Nebraska, improvements in corn NUE have been proposed to be attainable by 

continued development and adoption of next-generation management practices such as 

fertigation, controlled release fertilizers, and spatially-variable sensor-derived in-season N 

application (Ferguson, 2015). 

 “4Rs” Framework 

Producers are faced with a multitude of management to make the most efficient use of 

applied fertilizer, including those related to soil, crop, fertilizer, and their interactions. Given this 

complexity, Bruulsema et al. (2008) proposed a framework for fertilizer best management 

practices named the “4 Rs of nutrient stewardship”. The 4Rs are related to selecting the “right 

rate, source, timing, and placement” of fertilizers to achieve the objectives of productivity, 

profitability, sustainability and environmental health. 

The literature on corn fertilizer management is vast, and many studies have summarized 

the effects of one or more of the 4Rs on corn yield, NUE, and N losses (Hergert and Wiese, 

1980; Dinnes et al., 2002; San Francisco et al., 2011; Quemada et al., 2013; Halvorson and 

Bartolo, 2014; Anderson and Kyveryga, 2016; Pan et al., 2016; Silva et al., 2017; Tao et al., 

2018). For example, Tao et al. (2018) conducted an extensive study that included 920 corn fields 

over four U.S. Midwest states during seven years assessing the effect of multiple variables on 
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corn N availability. Their work used the end-of-season corn stalk nitrate test (CSNT) as a 

measure of crop N availability during the growing season, where sample N levels were 

categorized as deficient, marginal, optimal, or excessive. The authors found that N rate, N source 

and timing, previous crop in rotation, tillage, and drainage class significantly impacted the 

probability of CSNT to be in a higher category. Although N rate was an important factor and 

normally receives the most attention, the most useful understanding of NUE, losses and yield 

considers N rate within the context of the other practices (e.g. placement, timing, source, 

previous crop) (Tao et al., 2018). 

Hereafter, this review focuses on two next-generation N management technologies which 

are part of the 4Rs framework and proposed by Ferguson (2015). Those are: i) the use of 

different types of enhanced-efficiency fertilizers as a protective strategy; and ii) the use of crop 

canopy sensors for in-season N application as a reactive strategy. 

 Protective Strategy – Enhanced Efficiency Fertilizers 

 The terminology and description for enhanced efficiency fertilizers (EEFs) and its 

different categories lack agreement in the literature. Trenkel (2010) summarized the most 

accepted terminology and proposed most of the concepts used herein. Enhanced efficiency 

fertilizers are defined as “fertilizers that reduce loss to the environment and/or increase nutrient 

availability compared with conventional fertilizers” (Olson-Rutz et al., 2011). Generally, EEFs 

can be categorized as slow- and controlled-release fertilizers (SCRFs), or stabilized fertilizers 

(SFs) (Trenkel, 2010). SCRFs decrease the rate of nutrient release by using a physical coating 

that creates a somewhat predictable release pattern (e.g. sulfur- and polymer-coated fertilizers), 

or by chemical formulations that reduce fertilizer solubility to moderate unpredictable N release 

due to soil and weather variability (e.g. urea-formaldehyde, magnesium ammonium phosphate) 
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(Trenkel, 2010). SFs are regular N fertilizers amended with a urease inhibitor (UI), nitrification 

inhibitor (NI), or both to decrease the reactivity of fertilizer N in chemical and biological 

processes that lead to N losses. 

 Urease Inhibitors 

Urease is an environmentally ubiquitous enzyme that catalyzes the hydrolysis of urea to 

NH!! in the soil, which increases the availability of N to subsequent volatilization loss. Urease 

inhibitors are molecules that bind to the active site of the urease enzyme to temporally reduce the 

onset and rate of urea hydrolysis (Eq. [1.1]). This reduction then decreases the potential for and 

magnitude of NH3 losses (San Francisco et al., 2011; Silva et al., 2017; Sunderlage and Cook, 

2018; Cantarella et al., 2018).  

 

𝑪𝑶 𝑵𝑯𝟐 𝟐 +𝑯! + 𝟐𝑯𝟐𝑶 
𝒖𝒓𝒆𝒂𝒔𝒆

 𝟐𝑵𝑯𝟒
! +𝑯𝑪𝑶𝟑!     [ 1.1 ] 

 

A large number of compounds and mixtures tested as UIs have shown varying levels of 

efficacy (Kiss and Simihaian, 2013). The most successful to inhibit urease are urea analogues. 

The compound N-(n-butyl) thiophosphoric triamide (NBPT, Agronomic Services, Wichita, KS) 

has the most proven efficacy and is the most utilized commercially since its market introduction 

in the mid-1990s (Cantarella et al., 2018). More recently, a new compound developed by BASF, 

N-(n-propyl) thiophosporic triamide (NPPT), has been introduced to the UI market and sold in a 

mixture with NBPT under the trade name Limus (BASF Crop Protection). Both NBPT and 

NBPT+NPPT are commercialized for use with urea and UAN fertilizers. Another commercially 

available UI is NutriSphere-N (Specialty Fertilizer Products, LLC, Leawood, KS), which is a 

polymer-based product containing maleic and itaconic acid. Although the product 
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manufacturer’s description claims that NutriSphere-N inhibits both nitrification and urea 

hydrolysis by complexing soil copper and nickel, respectively, the specific modes of action of 

this product have not been demonstrated in refereed literature and its efficacy frequently 

questioned (Goos, 2018; Sunderlage and Cook, 2018). 

 Ammonia Volatilization 

Ammonia volatilization arises from the equilibrium reaction between NH!! and NH3 (Eq. 

[1.2]). All compounds containing NH!! (e.g. AN, AS, UAN) or NH!!–forming compounds (e.g. 

urea, UAN) undergo this reaction, which has a pKa = 9.25 at 25C.  

   𝑁𝐻!!  ⇌  𝑁𝐻! +  𝐻!          [ 1.2 ]  

Ammonia volatilization can comprise a large percentage of applied N fertilizer under 

certain conditions. These losses are important from both an economic and environmental 

perspective. Pan et al. (2016) estimated that, with an average NH3 loss of 17.6% of the fertilizer 

N applied and the estimated global demand for N fertilizer in 2014 of 112 million tons, the cost 

of global NH3 losses from N application were in the order of US$ 15 billion. This economic cost 

estimate increases substantially if subsequent crop yield declines due to limited N nutrition are 

included. The environmental cost of volatilized NH3 includes the deposition of reactive N into 

non-target ecosystems, causing undesirable changes on reproductive success, herbivory, and 

competition patterns (Adams, 2003) and subsequent biodiversity impacts (Guthrie et al., 2018).  

 The potential and magnitude of NH3 volatilization from NH!!-containing and NH!!-

forming fertilizer is affected by multiple factors. Those include fertilizer management (source, 

rate, placement), soil properties (texture, H+ buffering capacity, cation exchange capacity, pH, 

reside cover, moisture, temperature, competing processes), weather (rainfall/irrigation, wind 

speed/air exchange, air relative humidity (RH)), and their interactions (Hargrove, 1988; Harrison 
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and Webb, 2001; Gioacchini et al., 2002; Sommer et al., 2004; Kissel et al., 2008; San Francisco 

et al., 2011; Silva et al., 2017; Sunderlage and Cook, 2018). These factors are discussed below.  

 Important Factors 

 Fertilizer management plays an important role in NH3 loss magnitude because the 

selection of N fertilizer type (i.e. N source), amount, placement, and use of inhibitor product will 

define the specific environmental reactions that may lead to loss. Fertilizer N sources can be 

categorized as acidic [e.g. ammonium sulfate (AS), ammonium nitrate (AN)] or alkaline (e.g. 

AA, urea) in relation to how they change soil pH after dissolution and decomposition (Sommer 

et al., 2004). Furthermore, N sources containing NH!! salts can be categorized as Ca!! 

precipitate-forming (e.g. AS) and nonprecipitate-forming (e.g. AN) in relation to the soil calcium 

carbonate (CC) content and soil pH (Fenn and Kissel, 1974; Sommer et al., 2004).  

Generally, as the initial soil/residue pH rises, the proportion of total ammoniacal N 

(TAN) prone to NH3 loss increases. More precisely, the NH3 proportion of TAN prone to 

volatilization is 0.0026, 0.26, and 20.8% at initial pH values of 5, 7, and 9 at 14.5 ºC, 

respectively. 

Under acidic soil conditions (indicative of negligible CC), the potential and magnitude of 

NH3 losses from fertilizer N source follows the order of urea > UAN > AN ~ AS (Keller and 

Mengel, 1986; Hargrove, 1988; Harrison and Webb, 2001; Sommer et al., 2004; San Francisco et 

al., 2011; Pan et al., 2016). Urea has the highest NH3 loss potential because its hydrolysis 

consumes H!(Eq. [1.1]), which directly increases the pH of the surrounding soil and shifts the 

equilibrium in Eq. [1.2] to the right. For example, Keller and Mengel (1986) found that NH3 

losses from urea, UAN, and AN were 30, 9, and 4% of the total N fertilizer applied on an acidic 
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sandy loam. Similarly, AS under acidic soil conditions has a very low NH3 loss potential since 

the initial low pH favors the NH!!.  

Under alkaline soil conditions (indicative of increased CC content), the sulfate anion of 

AS competes with soil carbonate anions (CO!!!) to form a precipitate with Ca!! thereby 

removing Ca!! from the soil solution. This shifts Eq. [1.3] to the left, increasing CO!!! 

availability (Harrison and Webb, 2001). To compensate for excess CO!!!, the equilibrium in Eq. 

[1.4] shifts to the right, causing a consumption of H! and a concurrent increase in soil pH, which 

favors NH3 formation (Eq. [1.2]) and loss (Fenn and Miyamoto, 1981). Therefore, NH3 

volatilization potential is the highest for urea and lowest for AN and AS under acidic soil 

conditions, whereas under alkaline soil conditions AN is the least prone to losses. 

𝑪𝒂!𝟐 𝒂𝒒 +  𝑪𝑶𝟑𝟐! 𝒂𝒒 ⇌  𝑪𝒂𝑪𝑶𝟑 (𝒔)    [ 1.3 ] 
 

𝑪𝑶𝟐 𝒂𝒒,𝒈 ⇌  𝑯𝟐𝑪𝑶𝟑 𝒂𝒒 ⇌  𝑯𝑪𝑶𝟑! 𝒂𝒒 +  𝑯! 𝒂𝒒 ⇌  𝑪𝑶𝟑𝟐! 𝒂𝒒 + 𝟐𝑯!(𝒂𝒒) [ 1.4 ] 
 

Fertilizer N rate interacts with soil pH, CC content, and H! buffering capacity in 

determining the extent of NH3 volatilization. On acidic (i.e. noncalcareous) soils, greater NH3 

volatilization occurs with increasing application rates of surface-applied fertilizers containing or 

forming NH!! (Fenn and Kissel, 1974; Hargrove, 1988; Wang et al., 2004; Ma et al., 2010; Pan et 

al., 2016; Cantarella et al., 2018). On alkaline (i.e. calcareous) soils, increasing N rate has no 

effect on NH3 volatilization losses (Fenn and Kissel, 1974; Du Preez and Burger, 1988). For 

example, Pan et al. (2016) summarized a total of 824 observations from 145 published studies on 

ammonia volatilization and concluded that increasing N rate of various N sources increased 

average NH3 loss up to 180% more as compared to the lowest N rate. The authors attributed this 

to the increased availability of NH!!, and in the case of urea, a greater increase in soil pH. On the 
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other hand, Fenn and Kissel (1974) found that increasing AN application rate on a calcareous 

soil did not influence total NH3 volatilization, which varied from 15 to ~28% of applied fertilizer 

for N rates varying from 33 to 550 kg N ha-1 under temperatures ranging from 12 to 32C. 

Fertilizer placement is an important management practice in controlling NH3 loss 

potential. Generally, NH!!-containing and NH!!-forming fertilizers, and especially urea, are more 

prone to NH3 volatilization when surface-applied compared to when incorporated (Ernst and 

Massey, 1960; Hargrove, 1988; Sommer et al., 2004; Pan et al., 2016). Greater potential for NH3 

loss from surface application results from an increase in TAN in solution, and in the case of urea, 

a concurrent hydrolysis-driven pH increase, favoring TAN in the NH3 form. When incorporated, 

both TAN and pH are controlled by soil cation exchange capacity (CEC) and H! buffering 

capacity (HBC), respectively, which reduces the potential for NH3 loss. For example, Pan et al. 

(2016) observed a 55% reduction in NH3 volatilization when various N fertilizers were deep-

placed compared to surface application, and Rochette et al. (2013) found negligible NH3 losses 

when urea was placed at 7.5 cm below the soil surface. The depth of injection plays an important 

role, with NH3 losses decreasing the deeper the fertilizer is placed (Fenn and Miyamoto, 1981; 

Rochette et al., 2013). Surface application method, however, can affect NH3 volatilization. 

Broadcasting urea fertilizer can both increase (Hargrove, 1988)  or decrease (Bouwmeester et al., 

1985; Sommer et al., 2004; Cantarella et al., 2018)  volatilization compared to surface banding. 

Various soil properties are known to influence the potential of NH3 losses (Hargrove, 

1988; Sommer et al., 2004; Silva et al., 2017; Sunderlage and Cook, 2018). In addition to soil pH 

effects (discussed previously), multiple studies have reported a significant correlation between 

soil texture and NH3 losses, with larger losses observed under higher sand content (Martens and 

Bremner, 1989; San Francisco et al., 2011) and lower losses under higher silt and clay content 
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soils (San Francisco et al., 2011; Sunderlage and Cook, 2018), although this relationship has not 

always been observed (Silva et al., 2017).  

Initial soil pH has been shown to impact NH3 losses, with higher pH favoring higher 

losses (Ernst and Massey, 1960; Ferguson et al., 1984), especially in the case of AN application 

(San Francisco et al., 2011). In the case of urea application, perhaps a more important variable in 

explaining NH3 loss magnitude is the soil HBC (Avnimelech and Laher, 1977; Ferguson et al., 

1984; Sommer et al., 2004; Sunderlage and Cook, 2018). Higher soil HBC can both increase or 

decrease NH3 loss, depending on whether buffering power is working against a decrease or 

increase in pH, respectively (Ferguson et al., 1984; Hargrove, 1988). For example, Ferguson et 

al. (1984) observed a decrease in NH3 loss from 42 to 18% of 224 kg N ha-1 as HBC increased 

while keeping CEC and initial pH the same on a noncalcalreous silt loam that buffered against an 

increase in pH. On the other hand, Avnimelech and Laher (1977) found an increase in NH3 loss 

as HBC increased on a calcareous soil that buffered against a decrease in pH.  

Another soil variable closely related to NH3 loss is soil CEC. Generally, NH3 losses 

decrease as CEC increases (Keller and Mengel, 1986; Hargrove, 1988; Sommer et al., 2004). 

Higher soil CEC allows greater adsorption of NH!!, thus decreasing soil solution TAN and 

subsequent loss potential. However, the effect of CEC can be suppressed by HBC, as 

demonstrated by Ernst and Massey (1960). The authors observed that applying lime to a silt loam 

increased both CEC and NH3 losses, and attributed this effect to a decrease in HBC due to 

liming.  

Soil residue cover also affects NH3 losses and is especially important for surface-applied 

urea fertilizer. Crop residue has both high pH and HBC (McInnes et al., 1986a); greater urease 

activity than soil (McInnes et al., 1986a); and creates a physical barrier between fertilizer and 
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soil (Silva et al., 2017), all of which increase the chances for NH3 loss. For example, a literature 

review by Pan et al. (2016) observed that residue cover increased NH3 losses by 25%. Similarly, 

San Francisco et al. (2011) found that NH3 losses (as percentage of applied urea) increased by a 

median value of 60% in residue-covered soils compared to bare soils across 12 different soils.  

Two other important aspects that control NH3 losses and are related to residue cover are 

soil temperature and moisture. Soil temperature impacts NH3 losses through multiple chemical 

and biochemical reasons. As soil temperature rises, it i) increases urea hydrolysis rate; ii) 

increases NH3 proportion in the gas rather than liquid phase; iii) increases diffusion rates of both 

urea and NH!!; and iv) increases CaCO3 solubility in alkaline, calcareous soils (Hargrove, 1988). 

For example, Ernst and Massey (1960) observed cumulative NH3 volatilization of 6, 10, 15, and 

24% of surface-applied urea fertilizer when under a Dickson silt loam incubated at temperatures 

of 7, 16, 24, and 32°C, respectively, during 11 days (initial soil pH of 6.5). However, field- and 

laboratory-measured NH3 volatilization has been reported to be in the order of ~11-25%, ~82-

92% and 93% of added ammonia via manure application under temperatures of -20, -3, and 

10°C, respectively (Steenhuis et al., 1979), with lower temperatures having a longer emitting 

period than higher temperatures. Furthermore, soil temperature interacts with soil water content 

in determining NH3 peak loss (Hargrove, 1988). Larger losses have been observed when soil 

temperature is increasing and soil is drying, but not at daily maximum temperature 

(Bouwmeester et al., 1985; McInnes et al., 1986a; b), because at this point soil surface reaches 

dryness, and the lack of water to drive urea hydrolysis becomes the controlling factor.  

Soil water content is an important driver of NH3 losses due to i) controlling urea 

hydrolysis rate; and ii) affecting diffusion and mass flow of surface-applied fertilizer both into 

the soil and upward thereafter as the surface dries (Hargrove, 1988). For example, Ernst and 
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Massey (1960) reported cumulative NH3 loss of 3, 3, 12, and 19% of surface-applied urea on a 

Dickson silt loam with initial soil gravimetric moisture content of 1, 5, 21, and 38%, 

respectively, over 14 days. The significantly smaller losses at 1 and 5% soil moisture content 

were attributed to incomplete urea hydrolysis. Similar conclusions were reported by others 

(Bouwmeester et al., 1985; McInnes et al., 1986b). Other soil competing processes, such as 

nitrification, may play a role on the extent of NH3 losses by controlling TAN concentration, and 

by reducing soil pH. For example, Flowers and O’Callaghan (1983) reported on a pH decrease of 

1 unit after complete nitrification of 250 ppm of NH!!-N. 

Weather variables interact with both fertilizer management choices and soil properties to 

determine NH3 losses. The most important weather variables impacting NH3 volatilization are 

rainfall/irrigation, wind speed, and RH. Rainfall/irrigation volume and frequency are perhaps the 

most important variables when considering urea surface application because they determine the 

extent of water availability for both urea hydrolysis on the surface (increased loss potential) and 

urea movement into the soil (decreased loss potential) (Harper et al., 1983; Bouwmeester et al., 

1985; McInnes et al., 1986a; b; Sommer et al., 2004; Holcomb et al., 2011; Pan et al., 2016). 

Some studies have reported a significant decrease in NH3 volatilization from surface-applied 

urea after receiving a single-input event of 11-22 mm (Holcomb et al., 2011) and 24 mm 

(Bouwmeester et al., 1985). On the other hand, McInnes et al. (1986b) observed that rainfall 

volumes up to 9 mm promoted urea hydrolysis but were not enough to leach urea into the soil 

and ended up increasing volatilization losses. Rainfall frequency can impact the potential and 

magnitude of losses, with loss potential increases under high-frequency, small-volume events 

compared to a one-time, same-volume event (Bouwmeester et al., 1985; McInnes et al., 1986a; 

b). Changes in wind speed can impact NH3 losses by promoting soil drying and air exchange. 
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Bouwmeester et al. (1985) reported on increased NH3 losses at the lowest wind speed and 

attributed this effect to the concurrent slow drying of the soil. Additionally, higher wind speeds 

cause faster soil drying, which decreases the rate of urea hydrolysis and loss potential (Ernst and 

Massey, 1960; Bouwmeester et al., 1985). Air RH is also important in determining NH3 losses. 

High RH (ca. 85%) can have a similar effect as high-frequency, small-volume rainfall events on 

increasing urea hydrolysis and NH3 losses (Bouwmeester et al., 1985). Various studies have 

demonstrated a decrease in NH3 volatilization with decreased RH (Ernst and Massey, 1960; 

Ferguson and Kissel, 1986; McInnes et al., 1986a), which is attributed to soil drying and 

concurrent decrease in the rate of urea hydrolysis. 

Ammonia volatilization losses are very complex and respond to multiple fertilizer, soil, 

and weather variables, and their interactions. Generally, higher losses are expected from urea or 

urea-containing fertilizers on any type of soil and from AS on calcareous soils; when applied on 

the soil surface on top of moist crop residue on a coarser-texture soil; when CEC and HBC are 

low and in pH is high; under medium-to-high air temperatures and high RH; and when winds are 

slow. 

 UI Effect on Loss 

 When urea is surface-applied, the use of a UI can create large savings in N kept from 

being volatilized (Gioacchini et al., 2002; San Francisco et al., 2011; Soares et al., 2012; Pan et 

al., 2016; Sunderlage and Cook, 2018). A UI increases the efficacy of urea application under 

loss-conducive conditions by both delaying hydrolysis and decreasing the extent of peak loss rate 

(Soares et al., 2012; Silva et al., 2017). As a result, a UI allows more time for urea incorporation 

into the soil before significant hydrolysis occurs (Sommer et al., 2004). In an incubation study 

comprising 79 soils across the U.S., Sunderlage and Cook (2018) observed that 24.5% of 



 

 

15 

surface-applied urea-N was volatilized, but that the addition of NBPT+NPPT decreased losses to 

6.3% of applied N (a 75% loss reduction). Similarly, and incubation study by San Francisco et al. 

(2011) found significant reductions in NH3 volatilization from 10 of 12 soils with 2.4 t ha-1 of 

wheat residue and receiving surface application of urea alone or urea+NBPT. The authors 

reported NH3 losses of untreated urea ranging from 28 to 59% of applied N (mean=44%, 

median=43%), while those from urea+NBPT were significantly reduced and ranged from 4 to 

34% (mean=17.5%, median=20%). In a meta-analysis of 35 studies from 12 different countries, 

Silva et al. (2017) found that UIs decreased NH3 losses by 50% compared to untreated urea 

across a wide range of soil pH, soil texture, soil organic carbon content, N application rates, and 

NBPT rates. Finally, Cantarella et al. (2018) found no difference in NH3 loss reductions from 

using NBPT (53.2% reduction compared to urea alone) between laboratory or field studies when 

summarizing the results from four meta-analyses. 

 UI Effect on Yield 

 In spite of the demonstrated efficacy of NBPT in decreasing NH3 losses from applied 

urea, limited yield responses to urea+NBPT application compared to untreated urea have been 

found (Gioacchini et al., 2002; Abalos et al., 2014; Silva et al., 2017; Cantarella et al., 2018). 

Cantarella et al. (2018) observed a yield increase averaged over multiple crops of 6% from 

NBPT use compared to untreated urea. These authors reported on crop-specific average yield 

increases of 10.2, 7.6, 4.1, and 1.8% for wheat, rice, corn, and cotton, respectively, from NBPT 

use compared to urea alone. In accordance, Abalos et al. (2014) summarized 27 studies and 160 

observations related to the impact of UI on yield of multiple crops and reported an average yield 

increase of 10% from using NBPT compared to untreated fertilizer. Similarly, Silva et al. (2017) 

observed an average yield increase of 5.3% over multiple crops, and noted that application rates 
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< 80 kg N ha-1 had the largest benefit from NBPT use (8% yield increase), and attributed the 

response to N likely being the most limiting factor under such conditions. Fox and Piekielek 

(1993) also found no significant corn yield increase at low N rates (56 kg N ha-1) when 

comparing both untreated and NBPT-treated urea and UAN, but observed a 11 to 16% yield 

increase when NBPT was applied with urea at the highest rate (168 kg N ha-1). The lack of or 

reduced yield response from NBPT use, even when N savings from volatilization are high, has 

been attributed to the large contribution of mineral N from other sources (e.g. mineralization) 

that end up supplying enough N and avoid untreated urea to cause crop N deficiency (Cantarella 

et al., 2018). Rose et al. (2018) further pointed out that many studies evaluating the effect of 

EEFs, including UIs, on grain or biomass yield do not include them at multiple N rates, and 

reported that the largest yield increase from their use (11% over untreated fertilizer) was 

observed at 50% of the optimal N rate. Therefore, excessive N supply from different sources, 

including N mineralization and high N rates, likely mask the positive effects of UI loss savings 

and thus are weakly translated into increased final yield. 

 UI Effect on NUE 

 The effect of UI use on NUE has been reported by multiple studies and currently 

summarized in two meta-analyses (Abalos et al., 2014; Cantarella et al., 2018). Abalos et al. 

(2014) found that using inhibitors overall (UI, NI, and UI+NI) significantly increased NUE 

(12%) compared to no inhibitor use for multiple crops. This benefit was greatest when soil pH<6 

(~24%), under medium-texture soils (~22%), and when applied with N at rates > 300 kg N ha-1 

(~22%). Furthermore, the authors noted that UI alone had the largest variability among inhibitors 

(UI, NI, and UI+NI), with NUE confidence interval ranging from ~5 to ~25% compared to 

untreated fertilizer. Fox and Piekielek (1993) evaluated N uptake from urea and UAN with and 
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without NBPT at three fertilizer rates (56, 112, and 168 kg N ha-1) over three years, and found 

that the use of NBPT averaged over years: i) had no effect on N uptake at the lowest N rate; ii) 

increased N uptake by 20 to 28% when both urea and UAN were applied at planting, but 

decreased N uptake at the medium rate by 12% when UAN was applied at side-dress at the 

medium rate; and iii) increased N uptake by 18% when urea was applied at both planting and 

side-dress at the highest N rate. Fox and Piekielek (1993) results partially disagree with those 

found by Abalos et al. (2014), in that the highest N uptake increase from NBPT use was found at 

an intermediate N rate on the former study, whereas the latter observed higher NUE increase 

from NBPT at higher N application rates. 

 

 Nitrification Inhibitors 

Nitrification inhibitors (NIs) are compounds that block one or more of the steps in the 

nitrification process. Nitrification is the biologically-driven process where first NH!! is 

transformed into NO!! by Nitrosomonas spp. (Eq. [1.5]), followed by the transformation of nitrite 

to nitrate by Nitrobacter spp. (Eq. [1.6]).  

 

𝟐𝑵𝑯𝟒
! + 𝟑𝑶𝟐  ⟶ 𝟐𝑵𝑶𝟐! + 𝟐𝑯𝟐𝑶+ 𝟐𝑯!     [ 1.5 ] 
𝟐𝑵𝑶𝟐! + 𝑶𝟐  ⟶ 𝟐𝑵𝑶𝟑!      [ 1.6 ] 

 

Hauck (1980) stated that the ideal NI for agricultural use would “specifically block 

ammonia but not nitrite oxidation, does not adversely affect other beneficial soil organisms and 

higher plants, is not toxic to animals and humans in amounts used to effectively inhibit 

nitrification, remains effective in soil for several weeks after fertilizer application, and is 

economical to use”. Three commercial NIs have been the most utilized and researched. They are 
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nitrapyrin (2-chloro-6-trichloromethyl-pyridine), dicyandiamide (DCD), and DMPP (3, 4-

dimethylpyrazole phosphate). Nitrapyrin was the first commercial NI to become available, 

introduced into the market in 1974 (Wolt, 2000) as N-Serve® (Dow Agrosciences LLC, 

Indianapolis, IN). Nitrapyrin is volatile (Briggs, 1975) and thus mostly used with AA 

applications, although a new encapsulated formulation with decreased nitrapyrin volatilization 

potential (Instinct, Dow Agrosciences LLC, Indianapolis, IN) has been recently launched for use 

with surface applied N fertilizer (Sassman et al., 2018). Various products in the U.S. contain 

DCD, but the most commercially recognized are Super-U® and Agrotain Plus SC® (Koch 

Agronomic Services, Wichita, KS). Super-U® is a urea formulation incorporated with both DCD 

(NI) and NBPT (UI), while Agrotain Plus SC® is a fertilizer stabilizer containing DCD designed 

to add to UAN. DMPP has not yet been commercialized in the U.S., and is sold under the trade 

name Entec® (BASF) in Europe.   

 Nitrate Leaching and Denitrification 

 Normally, losses from NO!! leaching are higher than as N2O emissions (Gollany et al., 

2004; Quemada et al., 2013; Maharjan et al., 2014; Pan et al., 2016). Under loss-prone 

conditions, NO!! leaching can represent a large portion of applied N, causing crop N deficiency, 

economic loss to the producer, and negative environmental impacts. For example, increased 

adoption of irrigation and fertilizer practices in Nebraska corn production from 1950 to 1970 

resulted in groundwater contamination with agriculturally-derived NO!! in large areas, especially 

those with coarse soil and shallow aquifers (Ferguson, 2015). In contrast, denitrification losses as 

N2O emissions are generally small and unlikely to be intentionally managed by a producer 

(Snyder et al., 2014). Nonetheless, management practices that improve NUE in general will 

likely decrease N losses, including N2O (Snyder et al., 2009; Van Groenigen et al., 2010).  
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 Several factors influence the loss potential and magnitude as NO!! leaching and 

denitrification (Bergström and Johansson, 1991; Dinnes et al., 2002; Hofstra and Bouwman, 

2005; David et al., 2009; Cameron et al., 2013), including soil [texture, organic matter (OM), 

drainage, tillage, pH for denitrification only], management (N fertilizer timing and rate, irrigation 

timing and rate, crop rotation, tillage), and weather (rainfall, temperature). The majority of these 

factors impact NO!! leaching and denitrification in the same direction. Soil drainage is perhaps 

the main variable that has a significant different directional effect on leaching as compared to 

denitrification, with the former increasing as drainage increases (Dinnes et al., 2002; Hofstra and 

Bouwman, 2005), and the latter increasing as drainage decreases (David et al., 2009).    

To reduce or mitigate these N losses, various management practices can be implemented, 

including adjusting N rates to optimum yield, better irrigation management, and the use of a NI 

(Dinnes et al., 2002; Hofstra and Bouwman, 2005; Cameron et al., 2013; Quemada et al., 2013). 

 NI Effect on Loss 

 The use of a NI can significantly decrease NO!! leaching and denitrification losses under 

certain environmental and edaphic conditions (Wolt, 2004; Akiyama et al., 2009; Quemada et al., 

2013; Qiao et al., 2015). Wolt (2004) summarized seven studies from the U.S. Midwest region 

that compared NO!! leaching loss from NI-treated and untreated fertilizer under different crops; 

N fertilizer timing, application method, N rate, and N source; and different soil types. The use of 

NI decreased N lost via leaching by 15.8% as compared to fertilizer alone in 19 out of 24 

observations, though results varied widely and ranged from a maximum reduction of 42.6% to 

increased N losses of 31.7%. Similarly, a meta-analysis by Quemada et al. (2013) found an 18% 

reduction in leaching losses when NI was used compared to untreated fertilizer, but noted that 

NIs were less effective than improved water management, which reduced N leaching by 58%. 
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However, Quemada et al. (2013) further noted that the use of NI was the strategy that had the 

least impact on NO!! leaching, with improved water management having the largest impact in 

reducing leaching (58% less than the control).  

 Wolt (2004) also reported that NIs reduced N2O losses by 51.2% compared to untreated 

fertilizer alone. In a larger meta-analysis of EEFs, Akiyama et al. (2009) concluded that the 

overall effect of NI on N2O losses was -38% compared to untreated fertilizer, specifically where 

losses were -30, -50, and -50% using DCD, nitrapyrin and DMP, respectively.   

 NI Effect on Yield 

 The reported effects of NI on grain yield are variable, with positive, neutral, and negative 

outcomes compared to fertilizer alone (Touchton et al., 1979; Hergert and Wiese, 1980; Hoeft, 

1984; Blackmer and Sanchez, 1988; Cerrato and Blackmer, 1990; Ferguson et al., 1991, 2003; 

Wolt, 2004; Randall and Vetsch, 2005; Quemada et al., 2013; Burzaco et al., 2014; Qiao et al., 

2015; Sassman et al., 2018). It is often expected that the use of a NI will be reflected in higher 

grain yield in case a response to N fertilizer exists and N loss pressure is high to the point of 

limiting N availability to crops (Hergert and Wiese, 1980).  For example, Hergert and Wiese 

(1980) reported a 10-40% frequency of positive yield response from NI for irrigated corn in fine 

textured soils in Kansas and Nebraska. Wolt (2004) reported a 75% frequency of positive yield 

from NI use, with an average positive yield effect of 7%.  However, NIs can also negatively 

impact grain yield as a result of: i) drier soil conditions causing N positional unavailability 

(Hoeft, 1984; Sassman et al., 2018); ii) NI-induced N immobilization (Ferguson et al., 1991, 

2003); and/or iii) adverse effects of NI on plant growth (Blackmer and Sanchez, 1988).  Hoeft 

(1984) reported a yield decrease from the use of AA at 67 kg N ha-1 with NI on a dry year, and 

attributed this to positional unavailability since roots were likely extracting water from deeper 
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soil layers whereas N was positioned on layers closer to the dry surface. Sassman et al. (2018) 

observed the use of NI to decrease corn grain yield in two out of three years, and increase 

agronomic and economic optimum N rate in one year when UAN was applied at multiple N 

rates. The authors suggested that the negative impact of NI could be due to the high efficacy of 

the inhibitor, thus maintaining more N as ammonium in a small soil volume, decreasing the 

chances of fertilizer interception by roots. Ferguson et al. (1991) observed a decrease in 

inorganic N in NI-treated AA injection bands in three years of field corn studies, and suggested 

that this was due to NI-induced temporary N immobilization. Blackmer and Sanchez (1988) 

observed that most of the site-year-rate data points that increased corn leaf, stover, and grain N 

concentration yet produced grain yields below plateau levels were NI-treated, and attributed this 

to a negative effect of the inhibitor on plant growth. 

 NI Effect on NUE 

 Similarly to its variable effect on yield, NI effect on crop NUE can be positive, neutral, 

and negative (Chancy and Kamprath, 1982; Walters and Malzer, 1990; Ferguson et al., 1991; 

Burzaco et al., 2014; Qiao et al., 2015), depending on NO!! leaching loss pressure, N deficiency 

extent, and N immobilization. Chancy and Kamprath (1982) observed no effect of NI on NUE of 

corn grown on coarse-texture soils in a year when NO!! leaching losses were negligible (42 vs. 

46% recovery of applied fertilizer from urea and urea+NI, respectively), but NI increased NUE 

and grain yield in a wet year when significant NO!! leaching occurred (17 and 53% of applied 

fertilizer from urea and urea+NI, respectively). Walters and Malzer (1990) observed an increase 

in corn NUE from urea+NI only at a low N rate (90 kg N ha-1) when high NO!! leaching 

conditions existed, but not when NO!! leaching was negligible compared to urea alone. Burzaco 

et al. (2014) reported on the REN for both a 2-year study with UAN alone and with NI applied to 
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corn at two different timings, as well as a meta-analysis including 112 treatment means from 

eight studies. The authors found that REN for the 2-year field study increased 10% when NI was 

used, and to a greater extent when applied pre-plant (20% increase) vs. side-dress (negligible), 

but their meta-analysis indicated no effect of NI on REN. Ferguson et al. (1991) reported on REN 

from three years of corn field studies receiving different N rates of AA with and without NI 

applied at V6 to V9 stages. The authors found that NI reduced REN at two N rates in two years, 

and had a positive, neutral, and negative effect in REN in the third year depending on the N rate. 

These authors attributed the overall negative impact of NI on corn REN to a temporary 

immobilization of N caused by the presence of NI. 

 Urease plus Nitrification Inhibitors 

 Fertilizer products containing both UI and NI have been suggested as an option to 

reducing all three major N losses (Xu et al., 2000), and further protecting yield and improving 

NUE (Zaman et al., 2008). However, the effect of UI+NI on N losses, crop yield and NUE has 

been variable in the literature (Gioacchini et al., 2002; Soares et al., 2012; Abalos et al., 2014; 

Pan et al., 2016).  

 Combined Inhibitor Effect on Loss 

 Studies evaluating the effect of UI+NI have found:  i) NH3 volatilization generally being 

intermediate compared to the inhibitors individually (Gioacchini et al., 2002; Soares et al., 2012; 

Pan et al., 2016); ii) N2O emissions being larger, equal, and smaller with UI+NI compared to UI 

alone (Akiyama et al., 2009; Khalil et al., 2009; Sanz-Cobena et al., 2012; Drury et al., 2017); 

and iii) NO!! leaching losses being larger with UI+NI compared to UI only (Gioacchini et al., 

2002; Sanz-Cobena et al., 2012). 
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 Adding UI only appears more effective at reducing NH3 losses compared to combining 

UI+NI. Soares et al. (2012) conducted a laboratory study evaluating the effect of UI and UI+NI 

when surface applied with urea and their effects on NH3 volatilization. Of the total applied N, 

37% was lost as NH3 from unprotected urea, 15% lost for urea+UI, 44% lost for urea+NI, and 

intermediate losses (28-33%) for urea+UI+NI. The authors observed higher soil pH, higher NH!! 

and lower NO!!as a result of nitrification inhibition, and attributed these effects as the reason for 

higher NH3 losses from NI use. Pan et al. (2016) summarized 145 studies on the effect of 

different management practices on NH3 volatilization, and found that fertilizer+NI increased 

NH3 loss by 38% compared to untreated fertilizer, except for DMPP (no effect). Gioacchini et al. 

(2002) studied the effect of urea alone, urea+UI, and urea+UI+NI on NH3 volatilization and NO!! 

leaching losses from a clay loam and sandy loam, reporting that urea+UI+NI increased NH3 

volatilization from both soils but to a larger extent from the clay loam compared to urea+UI. 

These studies indicate that adding NI to UI-containing fertilizer offsets some of the NH3 

volatilization savings from UI alone.  

 Conversely, studies have found that adding UI to NI-containing fertilizer has limited or 

no effectiveness on reducing N2O losses, and in many cases increased N2O losses.  Khalil et al. 

(2009) conducted a laboratory study evaluating the effect of urea, urea+NI, urea+UI, and 

urea+NI+UI on N2O losses over 45 d, and found that urea+UI significantly increased N2O losses 

by ~7 times compared to urea+NI or urea+UI+NI, and by ~2 times to unprotected urea when 

fertilizers were surface-applied. Similarly, Woodley et al. (2018) reported an average increase in 

N2O losses of ~17 and 19% from UAN+UI compared to both UAN+UI+NI and unprotected 

UAN, respectively, over two years of a field study. Drury et al. (2017) also found that 

broadcasting urea with UI significantly increased N2O losses compared to urea alone, and 
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numerically more than urea+UI+NI in one out of two years of field study. During this same year, 

injecting UAN+UI emitted significantly 2.4 times more N2O than both unprotected UAN and 

UAN+UI+NI. Sanz-Cobena et al. (2012) observed significantly less N2O cumulative losses 

under urea+UI as compared to urea alone, but no difference from urea+UI+NI in one year; and 

no difference among urea, urea+UI, and urea+UI+NI on the second year of a field study with 

corn. The authors attributed this result to a negative effect of one inhibitor on the other.  The 

overall UI-effect of stimulating N2O loss may reflect that urea hydrolysis is not directly linked to 

N2O production as is nitrification, but that eventually all urea will be hydrolyzed and undergo 

nitrification regardless of hydrolysis rate (Akiyama et al., 2009). 

 Although NI alone has been demonstrated to decrease NO!! leaching losses (Wolt, 2004; 

Quemada et al., 2013), combining NI and UI appears to have no effect or increases NO!! leaching 

losses compared to using inhibitors individually.  Gioacchini et al. (2002) found that the 

inclusion of any of the inhibitors (UI, NI) enhanced both fertilizer-derived and total (fertilizer- 

plus soil-derived) nitrate leaching compared to untreated fertilizer in both a sandy loam and clay 

loam soils, and that UI+NI had significantly higher nitrate leaching losses than UI alone. The 

authors attributed this effect to an increase in N mineralization through an additive priming effect 

derived from the use of inhibitors. Sanz-Cobena et al. (2012) also observed a significant increase 

in NO!!
 leaching during the growing season when both UI+NI were used as compared to UI-only 

in one year (17 vs. 12 kg NO!! −N ha-1), but no difference between them in the second year. 

Interestingly, authors observed a 6-month lag in inhibitor effects, such that effects were noted 

during the fallow period between growing seasons when leaching losses were significantly 

higher and losses were greatest in urea+UI+NI, then urea alone, then urea+UI (75, 60, and 43 kg 

NO!! −N ha-1, respectively).  These studies provide some evidence that adding NI to UI-treated 
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fertilizers leads to higher NO!! leaching losses compared to using UI alone.  The addition of NI 

may change immobilization/mineralization dynamics due to the presence of both inhibitors, 

though the exact mechanisms are unclear and warrant further study. 

 Combined Inhibitor Effect on Yield 

Combining inhibitors appears to provide limited or no benefit to crop yields compared to 

untreated fertilizers or fertilizers treated with inhibitors individually. In a meta-analysis including 

27 studies, Abalos et al. (2014) reported an average yield increase of 10% with NBPT (UI), 6% 

with DCD and ~2% with DMPP (NIs), and ~7% with  NBPT+DCD (UI+NI), with the only 

significant difference being that from NBPT and DMPP alone. Gioacchini et al. (2002) observed 

that the inclusion of UI or UI+NI with urea did not affect wheat grain yield, in spite of increased 

leaching losses when inhibitors were used. They attributed this effect due to a large portion of 

the N taken up by the plants being soil-derived. Sanz-Cobena et al. (2012) observed no corn 

yield differences from the use of UI or UI+NI over untreated urea in two years of a field study. 

On a two-year corn study receiving side-dress application of UAN, UAN+UI, and UAN+UI+NI 

at 130 kg N ha-1 rate, Woodley et al. (2018) found that no inhibitor treatment was able to 

significantly increase grain yield over untreated UAN, and attributed this lack of effect to small 

loss magnitude. In spite of large reductions in NH3 losses from the use of UI+NI as compared to 

untreated fertilizer, Drury et al. (2017) did not observe significant grain yield differences 

between untreated fertilizer, fertilizer+UI and fertilizer+UI+NI in any given year of a two-year 

corn study, but noted that when averaged over years, fertilizer+UI+NI increased yield from 5 to 

7% over untreated fertilizer. Overall, the use of UI or UI+NI produced similar yields to that from 

untreated fertilizer most of the time, and when a yield gain existed it was about 5 to 10% greater 

than fertilizer alone.  
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 Combined Inhibitor Effect on NUE 

Combining inhibitors has promoted higher, lower, and similar NUE compared to 

untreated fertilizer or fertilizers amended with a single inhibitor type. In the same meta-analysis 

study by Abalos et al. (2014), the authors reported  that applying NBPT+DCD was the inhibitor 

combination that increased NUE the most (14.7% compared to no inhibitor), but that high 

variability precluded any significant differences between inhibitors alone or combined. 

Conversely, Gioacchini et al. (2002) reported on a significant decrease in fertilizer-derived N 

uptake by wheat when both UI+NI were used compared to UI-only. This effect was due to an 

increase in N mineralization from the use of inhibitors, and concurrent increased proportion of N 

uptake from this source. Sanz-Cobena et al. (2012) reported no differences in N uptake between 

UI+NI and UI-only, but both were higher than untreated urea in two years of corn field studies. 

Woodley et al. (2018), however, found no significant differences in N uptake between UAN, 

UAN+UI, and UAN+UI+NI in two years of corn field studies. Similar findings were reported by 

Drury et al. (2017), who concluded that neither fertilizer+UI nor fertilizer+UI+NI significantly 

improved corn N uptake compared to fertilizer alone in a 2-yr study including broadcast urea and 

injected UAN. The use of UI and UI+NI has demonstrated limited efficacy in increasing NUE, 

even under high N loss conditions like those observed by Drury et al. (2017). Nonetheless, the 

retention of N due to inhibitors may still benefit cropping systems in the long-term, as this N can 

be incorporated into soil organic matter (SOM) and conserved as N reserves (Cantarella et al., 

2018). 
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 Reactive Strategy – Crop Canopy Sensors  

 Properly managing fertilizer practices to achieve optimum yields without generating 

surplus N is difficult and greatly influenced by N rate decisions. To assist producers on N rate 

decisions, researchers have created algorithms based on the mass balance theory developed by 

Stanford (1973), that follows simple mathematical logic of needed inputs vs. generated outputs.  

This approach remains as the dominant corn N recommendation approach in 34 U.S. states today 

(Morris et al., 2018). Briefly, these algorithms calculate a pre-plant N rate by first estimating 

crop N needs as the product of expected yield (EY) multiplied by an efficiency coefficient (e.g. 

1.2 bu lb-1 N), and then deducting N credits based on field-specific information, such as expected 

N mineralized from SOM, soil residual NO!!, manure application, previous crop (legume vs. non-

legume), N from irrigation water, and others.  

Historically, mass balance approaches have not considered soil-plant N resiliency (i.e. the 

capacity of soil-plant system to vary plant available N according to growing conditions). 

Furthermore, mass balance approaches seldom include economic considerations. One example of 

a mass balance approach that does consider both of these factors is the University of Nebraska-

Lincoln corn N algorithm (Shapiro et al., 2008). In this algorithm, soil-plant N resiliency is 

accounted for by correcting the SOM contribution to N mineralization by considering EY the 

term (0.14 x EY x OM). This algorithm also incorporates a correction factor for price adjustment 

based on the cost of N and the price of corn.  

Although the input-output approach of mass balance algorithms is easy to convey and has 

led to its widespread adoption, the approach uses only pre-existing information to predict crop N 

need. As a result, in-season conditions (i.e. weather) that add variability to crop N demand, soil 

N dynamics, and N fertilizer loss are not considered. Furthermore, while total N uptake (e.g. 
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from fertilizer, soil N mineralization, residual NO!!, etc.) is strongly correlated with grain yield in 

corn (Cassman et al., 2002; Nyiraneza et al., 2009), it has been shown that yield and economic 

optimum N fertilizer rate (EONR), which can be calculated only after the crop is harvested, are 

uncorrelated (Cassman et al., 2002; Nyiraneza et al., 2009).  

Regardless of the method used to determine fertilizer N rate, the optimum rate needed to 

economically maximize yield varies in both space (i.e. across and within fields) and time (i.e. 

across and within years).  As a result, applying a single N rate to an entire field at a single time 

point can create areas of under-fertilization (e.g. lower realized yield) and over-fertilization (e.g. 

lost input costs, greater environmental risk) (Raun et al., 2002; Mamo et al., 2003; Scharf et al., 

2005). Given these limitations, researchers have been investigating a reactive approach to N 

management using crop canopy sensors during the growing season to estimate crop N status and 

fertilization needs that vary in space (Raun et al., 2002; Teal et al., 2006; Barker and Sawyer, 

2010; Holland and Schepers, 2010; Solari et al., 2010; Scharf et al., 2011). Because crop growth 

integrates soil and weather effects on N nutrition from time of planting to time of sensing, in-

season sensor use on crop canopy color can diagnose N status and N application rate.  

A series of steps and decisions need to occur before crop canopy data can be translated 

into an N rate recommendation. Translation of canopy data depends on: i) the type of sensor and 

what platform carries it; ii) spectral bands available from the sensor; iii) vegetation indices that 

can be calculated from those bands; iv) the standardization procedure used to overcome 

confounding effects (e.g. planting date, hybrid); and v) selection of sensor-based N rate 

algorithm to generate a prescription.  
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 Sensor Type 

 Sensor types can be classified according to different characteristics, such as their light 

source (active vs. passive), number of bands (multispectral vs. hyperspectral), and distance from 

the target (remote vs. proximal vs. contact). Active sensors are those that emit their own 

modulated light, making sensor performance theoretically independent of atmospheric 

conditions, such as cloud cover and time of day. Active sensors have been used “on-the-go”, 

capable of assessing crop N status and directing variable rate N (VRN) application on the same 

pass. Due to these advantages, commonly used algorithms for VRN recommendation have been 

developed for active sensors (Holland and Schepers, 2010; Solari et al., 2010). Because they emit 

their own light source, active sensors require a certain proximity to their target, and thus are 

mostly limited to ground-based platforms (e.g. tractor, application implement boom) and low-

flying (0.5 to 1.5 m above canopy) unmanned aerial systems (Krienke et al., 2015). The most 

commonly studied active sensors are the Crop Circle family of sensors (e.g. ACS-430, ACS-470, 

RapidSCAN CS-45) (Holland Scientific, Lincoln, NE), and the GreenSeeker sensor (NTech 

Industries, Inc., Ukiah, CA). 

Passive sensors, in contrast, rely on sunlight as the energy source and thus may be limited 

by atmospheric conditions like time of day and cloud cover (de Souza et al., 2010). Furthermore, 

the use of passive sensors to generate VRN application is a two-step process, where first the field 

is imaged, and only after data correction and processing can a prescription map be generated and 

fed into a variable rate applicator software. Historically, passive sensors have been mostly 

employed in agriculture via satellite or aircraft. Recently, unmanned-aerial systems (UAS) have 

become a popular platform for carrying passive sensors both in research and commercially. 

UAS-mounted passive sensors have the flexibility of sensing independently of field conditions 
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(e.g. wet soil). A variety of different passive sensors have been utilized in agriculture, including 

MicaSense RedEdge (MicaSense Inc., Seattle, WA, USA), and Parrot Sequoia (Parrot Inc., San 

Francisco, CA, USA). 

 Bands 

Plants absorb most radiation in the visible light range (400 to 700 nm) for photosynthesis, 

and the relative amount absorbed depends on the concentration of different pigments in leaf 

material, such as chlorophyll a and b, carotenoids, and anthocyanins (Chappelle et al., 1984). 

Reflectance in the near-infrared (NIR) part of the spectrum (800 to 1100 nm) is related to crop 

biomass and leaf structure. As a result, gross plant N responses in leaf reflectance, leaf density, 

vegetation cover and biomass can be assessed with both visible and NIR wavelengths instead of 

relying on physical sampling and chemical analysis of plant N concentration (Fox et al., 2008). 

Crop canopy sensors often have one to two bands in the visible range, and one band in 

the NIR range. In the visible range, sensors commonly have bands centered on the green (G, 500 

to 600 nm) and red (R, 600 to 700 nm) regions. The R band is the most common in sensors due 

to its inclusion in the classic normalized difference vegetation index (NDVI, Eq [6]), which was 

the first vegetation index (VI) developed for vegetation monitoring based on satellite-mounted 

sensors (Rouse Jr et al., 1974).  

However, reflectance in the R band saturates when leaf area index (LAI) values are > 2 

(Gitelson et al., 1996; Viña et al., 2011) and when chlorophyll concentrations are as low as 3 to 5 

µg cm-2 (Gitelson and Merzlyak, 1997), values which are common for corn during the period 

when sensors would be utilized (e.g. after ~V8 growth stage). Thus, the saturation of the R band 

renders it insensitive in differentiating between N deficient or N sufficient crop conditions 

(Blackmer and Schepers, 1994; Holland and Schepers, 2013).  
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Because of this limitation, other bands in the visible range have been used in place of the 

R band, including the G and red-edge (RE, 700 to 800 nm) bands.  For example, Blackmer and 

Schepers (1994) found that reflectance in the G region was significantly more sensitive than 

reflectance in the R region in differentiating leaves from corn plants at tasseling that had 

received different levels of N fertilization (0, 40, 80, 120, and 160 kg N ha-1). Similarly, Gitelson 

et al. (2003) demonstrated that reflectance in the G and RE bands was significantly more 

sensitive to increases in chlorophyll levels than those in the R and blue (400 to 600 nm) bands. 

Given that different bands contribute different plant-related information, individual bands are 

rarely used alone but instead combined in multiple different formulations (i.e. vegetation index). 

 Vegetation Index 

Vegetation indices (VIs) are combinations of different single-band reflectance values. 

Their development allowed normalizing single-band reflectance measurements with respect to 

atmospheric conditions, crop structure, soil reflectance, sensor calibration, illumination angle, 

among others (Bannari et al., 1995). Moreover, VIs allow combining bands related to different 

plant biophysical characteristics. For example, NDVI (Rouse Jr et al., 1974; Eq [6]), one of the 

most common VIs used, combines both the R band (related to chlorophyll content) and NIR band 

(related to leaf structure) (Eq. [1.7]). This unitless index can range in value from -1.0 to 1.0, with 

very low values indicating bare soil and higher positive values correlated with greater canopy 

density or greenness. Saturation of the R band under higher biomass conditions promoted the 

study and development of other VIs that overcome this limitation. The R band can be replaced 

by the RE band in the NDVI formula to create the Normalized Difference Red Edge (NDRE), 

which is more sensitive to high-biomass crop conditions such as those observed in corn. 
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𝑵𝑫𝑽𝑰 =  (𝑵𝑰𝑹!𝑹𝒆𝒅)
(𝑵𝑰𝑹!𝑹𝒆𝒅)

       [ 1.7 ] 

 

 Various VIs have been developed for assessing different vegetation parameters (Mulla, 

2013). For example, the Visible Atmospherically Resistant Index [VARI, Gitelson et al. (2002)] 

was shown to behave linearly in a range of 10 to 100% vegetation fraction, while NDVI became 

unresponsive >65% vegetation fraction in corn and >50% in wheat. Another VI developed to 

address the saturation of R band at higher chlorophyll content was the green NDVI [GNDVI, 

Gitelson et al. (1996)], which uses the G band instead of the R band in the NDVI formula. The 

use of GNDVI can provide increased power to differentiate N status in high-chlorophyll 

situations over NDVI (Shanahan et al., 2001; Solari et al., 2008), especially when a sensor lacks 

a RE band but has a G band.  

The assessment of N status can be confounded if other stresses are also present (e.g. 

drought, disease, other nutrient deficiencies). Given that limitation, the canopy chlorophyll 

content index (CCCI), calculated as the ratio between NDVI and NDRE, was developed to assess 

N and water deficiency independently (Barnes et al., 2000), but the ability of  CCCI to make this 

differentiation is inconsistent (Fitzgerald et al., 2006; El-Shikha et al., 2008). In short, VIs 

combine crop-related information from multiple bands into a single value, but the differential 

effects of other non-N related variables on VIs complicate any generalizations of VI-based 

applications to different hybrids, growth stages, and locations (Schepers et al., 1992). 

 Reference 

To account for some of the non-N related factors confounding VIs, different approaches 

based on an N-rich reference strip (NRS) have been developed. The NRS is an area of the field 

that receives a non-limiting N rate to assure total N-sufficiency at the time of sensing (Biggs et 
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al., 2002). The NRS then serves as the basis of comparison for the remainder of the field where 

N status is unknown. Two different approaches relate field VI and NRS VI. The first is the 

response index (RI, Eq. [1.8]), where the VI of the reference (e.g. NRS) is divided by the VI of 

the unknown-N area (Raun et al., 2002). The second is the sufficiency index (SI, Eq. [1.9]), 

which is the inverse of RI (Blackmer and Schepers, 1994). Both RI and SI normalize non-N 

related confounding effects and have widespread effectiveness indicating N-related crop 

responses. For example, Hawkins et al. (2007) analyzed 102 site-year studies of corn in Iowa 

with multiple N rates (0 to 270 kg N ha-1) and over different soil and growing conditions. The 

authors used a SPAD (Soil-Plant Analyses Development) unit to measure plant chlorophyll at 

different growth stages, and reported that lower variability in NRS-normalized SPAD 

measurements improved the prediction of EONR independent of previous crop phase (i.e. corn 

or soybeans) and growth stage. 

 

𝑹𝑰 =  𝑽𝑰𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆
𝑽𝑰𝑼𝒏𝒌𝒏𝒐𝒘𝒏

      [ 1.8 ] 

 

𝑺𝑰 =  𝑽𝑰𝑼𝒏𝒌𝒏𝒐𝒘𝒏
𝑽𝑰𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆

      [ 1.9 ] 

 

Both RI and SI approaches rely on proper NRS establishment such that the only 

difference between the reference and the rest of the field is their N sufficiency level. In other 

words, a valid NRS should be planted the same date, with the same hybrid, receiving the same 

fertility management (except for N), under a similar soil type, topography, etc. as the remainder 

of the field. If this is not attainable due to any of these aspects, each differing management group 

should have its own NRS.  
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 Establishing a NRS can be inconvenient and even restricted in commercial sensor-

derived N applications (Holland and Schepers, 2013). Given this limitation, Holland and 

Schepers (2013) proposed the use of a virtual reference (VR), defined as the 95th cumulative 

percentile of a histogram from a given VI data collected over a subfield area which best 

represents the range of crop N status levels in the entire field. The use of a VR solves a problem 

where high-N-induced sulfur deficiency may occur when high N rates are applied to create the 

NRS (Franzen et al., 2016). Regardless of which normalization approach (SI vs. RI) or what 

reference type is used, the last step in the process is to translate SI or RI into a recommended N 

rate through the use of an algorithm. 

 Recommendation Algorithm 

After normalizing field VI by a reference VI, either SI or RI values serve as input to an 

algorithm to calculate an N rate recommendation that overcomes observed N stress. Available 

algorithms vary in number and type of inputs in translating sensor-derived plant nutrient 

deficiency status into a recommended N rate (Holland and Schepers, 2010; Scharf et al., 2011; 

Solie et al., 2012; Franzen et al., 2016). The algorithm developed by Holland and Schepers 

(2010) calculates an N rate based on a quadratic plateau response function between SI and N 

rate, and then uses a mass approach to deduct N credits. Input variables include optimum N rate, 

management zone scalar, different sources of N credits (i.e. previous crop, organic matter, 

irrigation water NO!!, manure application, fertilizer applied prior to sensing), SI, and delta SI 

(DSI, defined below) (Eq. [1.10]). Of these, the minimum required inputs to generate a VRN 

prescription are optimum N rate and SI. 

𝑵𝒂𝒑𝒑 =  (𝑴𝒁𝒊 ∙  𝑵𝒐𝒑𝒕 −𝑵𝒄𝒓𝒆𝒅𝒊𝒕𝒔) .
(𝟏!𝑺𝑰)
∆𝑺𝑰

, where    [ 1.10 ] 
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 MZi = management zone scalar (unitless)  

Napp = calculated recommended side-dress N rate (kg ha-1) 

 Nopt = optimum N rate defined by producer (kg ha-1) 

 Ncredits  = N credits (kg ha-1) 

 SI = sufficiency index (unitless) 

 ΔSI = difference between 1 and SI for an unfertilized area [SI(0)] (unitless). 

 

Another popular algorithm used for sensor-based N rate recommendations was developed 

by Solie et al. (2012) for both wheat and corn, also referred to as the N fertilization optimization 

algorithm (NFOA). This algorithm assumes that yield potential and N response are independent, 

thus requiring each to be separately estimated (Raun et al., 2011). This nine-step algorithm 

includes defining the maximum yield potential (e.g. by producer); choosing a crop-specific 

potential yield curve (wheat, corn, or combined wheat-corn); calculating an NDVI-based RI; 

calculating the curve inflection and curvature based on NRS NDVI; calculating the N-

unfertilized yield potential; calculating yield with additional N fertilizer; and finally, outputting a 

recommended N rate based on previous calculations. 

Current commercially-available variable N rate systems use active sensors to detect crop 

N status, calculate a specified VI, use it to calculate a SI considering a reference VI, inputs the SI 

into an algorithm, calculates and applies to the field a given N application rate, which changes as 

the applicator moves through the field and senses new areas. The algorithms developed by 

Holland and Schepers (2010) and Solie et al. (2012) are the two most prominent in commercial 

use due to their inclusion into AgLeader OptRx and GreenSeeker systems, respectively. 
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The use of algorithms to translate sensor information into N rate is an important 

development for N site-specific management. However, this sensor-based approach relies on the 

efficiency and accuracy of N recommendations, and the extent to which these recommendations 

can reduce N input costs so as to increase producer profit margins. 

 Total N Rate, Grain Yield, and Use Efficiency 

 The adoption of sensor-based variable N rate application is generally low (<10%) and 

attributed to inconsistent production, environmental, and economical benefits (Scharf et al., 

2011; Colaço and Bramley, 2018). Many studies have evaluated these aspects of sensor-based N 

management, with performance metrics reported as being positive, neutral, and negative, 

compared to a non-sensor based standard practice (Raun et al., 2002; Kitchen et al., 2010; Ma et 

al., 2010; Scharf et al., 2011; Colaço and Bramley, 2018).  

 In a recent review, Colaço and Bramley (2018) summarized 24 publications that included 

at least one standard non-sensor based N practice and a sensor-based N management option with 

the use of Crop Circle and/or GreenSeeker and that utilized either Holland-Schepers or NFOA as 

the implemented algorithm. The authors reported that, on average, sensor-based N approaches 

increased yield by 3.3%, decreased N rates by 26.7%, increased PFPN by 41%, and increased 

profit by US$ 30.40 ha-1. While average outcomes were positive, individual observations per 

metric varied widely. For example, yield varied from -4 to 17.5% compared to the standard 

practice, with 25% of the studies reporting a negative yield outcome from the use of sensors. 

Furthermore, profit varied from -26 to 196 US$ ha-1, with 33% of the studies reporting a negative 

profit value from the use of sensors. Similarly, PFPN varied from -18 to 554%, with 33% of the 

studies reporting a negative outcome from the use of sensor-based N management. Nitrogen rate 
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was the metric that improved most frequently and varied from -82 to 31% compared to the 

standard practice, with only 12% of studies reporting higher N rates in sensor-based approaches.  

 The use of crop canopy sensors for in-season N management is a promising tool to 

decrease N rates to levels that maximize yield and profit and minimize environmental losses. 

This level of N management fine-tuning is expected to be adopted first by producers that 

recognize the need for more sustainable N practices, and that are already relatively efficient with 

their current N management. However, the level of improvement from the use of sensor-based N 

management depends not only on the degree of field spatial variability, but also on the current 

management as a starting point. Thus, farmers that are already highly efficient in N management 

are likely the ones that will see the least relative benefit from implementing such technologies. 

 Summary 

Once applied to the environment, N fertilizer is prone to different losses. Ammonia 

volatilization, NO!! leaching and N2O emission can vary from 0 to 80% of the applied fertilizer, 

and their magnitude depends on various soil, management, and weather variables. Larger losses 

are observed when N supply in the soil greatly surpasses N demand, coupled with the fact that 

soil N balance varies spatially and temporally.  

The mismatch between N supply and demand at a given moment and place may lead to 

increased N losses, which in turn can impact plant productivity and N use efficiency. Because N 

dynamics in the soil is greatly affected by weather, especially rainfall and temperature, 

management practices adopted to decrease losses and improve yield need to address the 

unpredictability of weather. For that, protective and reactive approaches have been studied as 

next-generation N management practices. 
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Protective approaches are used in order to protect N fertilizer from possible loss-

conducive weather events, and thus are implemented before losses occur. Protective approaches 

include the use of stabilized fertilizers like those containing UI, NI, or both. The use of UI with 

broadcast urea-based fertilizers has been shown to decrease NH3 losses by 50-75%, increase 

yield in 4-10%, and promote NUE ranging from -12 to 28% compared to untreated fertilizer. The 

use of NI has been shown to decrease NO!! leaching by 17%, decrease N2O losses by 38-52%, 

promote yield ranging from -30 to 7%, and NUE ranging from -20 to 200% compared to 

untreated fertilizer. The combined use of UI+NI has been shown to decrease NH3 losses to a 

lesser extent than UI alone, have little effect on N2O emissions compared to NI-only, and 

promote higher NO!! leaching compared to fertilizer alone, while having an impact on yield that 

ranged from 0 to 7%, and NUE ranging from 0 to 15% compared to untreated fertilizer. 

The lack of consistent response of stabilized fertilizers on yield and NUE has been 

attributed to many factors. Those include i) lack of yield response to N application (i.e. N was 

not the limiting factor); ii) large contribution of N from soil organic matter mineralization or 

other sources including excessively high N rates; iii) conditions not conducive to loss; iv) N 

positional unavailability in relation to root active uptake region; v) negative effect of inhibitor on 

crop growth. 

Reactive approaches are used in-season in order to react to a nutritional stress early on its 

development. This type of approach allows for soil, management, and especially weather, to 

affect the crop nutritional condition, assesses the level of stress through crop color, and reacts to 

it by recommending a fertilizer rate to mitigate the stress. Reactive approaches are more complex 

as they require some type of crop vigor measurement via a sensor (proximal or remote), 

formulation of a VI, calculation of an SI, which is then used as input into an algorithm to 
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translate it to a fertilizer rate. The use of sensor-based N management has been shown to increase 

yield in 3.3%, decrease total N application rates in 27%, increase N use efficiency as measured 

by PFPN by 41%, and increase profit in US$30, on average, compared to a non-sensor based 

management approach. Nonetheless, there were occasions where sensor-based management 

failed compared to conventional, non-sensor management. 

Although protective and reactive approaches have been demonstrated to decrease N 

losses, improve N use efficiency, and maintain or increase yield, negative results have also been 

observed. The success of these tools to manage N more sustainably largely depends on whether 

they are the correct tool for a given situation. Therefore, while the current knowledge can assist 

in selecting the correct tool for a specific site, future studies will aid in elucidating different 

conditions that may or may not benefit from the use of one or more of these technologies. The 

following chapters of this dissertation will summarize studies evaluating protective and reactive 

approaches for irrigated corn N management in Central Nebraska. 
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Chapter 2 - Urease Inhibitor Decreases Ammonia Loss without Affecting 

Corn Grain Yield 

 Introduction 

Once applied to soil, N fertilizer is dynamic with high risk of loss through different 

pathways including ammonia (NH3) volatilization (Pan et al., 2016), nitrate (NO!!) leaching 

(Quemada et al., 2013), and denitrification (i.e. emission as nitrous oxide, N2O)  (Shcherbak et 

al., 2014). Losses via NH3 volatilization are of particular interest in Nebraska, where all three of 

the most utilized N fertilizer sources [urea-ammonium nitrate (UAN), anhydrous NH3 (AA) and 

urea] contain or convert to ammonium (NH!!) and are susceptible to volatilization. In-field NH3 

losses are affected by multiple factors and thus are highly variable, ranging from 0 to ~60% of 

applied fertilizer (Terman, 1980; McInnes et al., 1986a; b; Harrison and Webb, 2001; Pan et al., 

2016; Silva et al., 2017), with an average loss of 18% (Pan et al., 2016).  

Urea is hydrolyzed to NH!! and bicarbonate through the urease enzyme, which is found 

both in the soil and on crop residue (McInnes et al., 1986). During hydrolysis, a proton is 

consumed causing a temporary increase in pH around the urea granule. This increase in pH can 

shift the equilibrium between NH3 and NH!! towards the gaseous, loss-prone NH3 form and 

enhance volatilization loss. 

 Producers can decrease NH3 loss potential and magnitude by exerting different levels of 

control over fertilizer, soil, and weather variables. Among the fertilizer-related variables, N 

placement and source are most important as they relate to NH3 loss potential, followed by N rate 

and timing (Ma et al., 2010; Pan et al., 2016; Silva et al., 2017). The application of N fertilizer 

below the surface is one of the simplest ways to avoid NH3 losses from urea-containing 
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fertilizers. This practice places fertilizer in contact with soil colloids and allows for NH!! to be 

removed from solution by cation exchange capacity (CEC) sites (Sommer et al., 2004). For 

example, Pan et al. (2016) observed a 55% reduction in NH3 volatilization when various N 

fertilizers were deep-placed compared to surface applied, and Rochette et al. (2013) observed 

negligible NH3 losses when urea was placed 7.5 cm below the soil surface.  

Fertilizer source choice plays an important role, especially if surface-applied. For 

example, urea, UAN and ammonium nitrate (AN) have a high, intermediate and low potential for 

NH3 loss if surface applied, respectively (Keller and Mengel, 1986; Hargrove, 1988; San 

Francisco et al., 2011). The rapid hydrolysis of urea-based fertilizers increases soil NH!! 

availability for volatilization and promotes volatilization potential by increasing pH in the 

vicinity of the fertilizer (Sommer et al., 2004). In contrast, AN transformations do not lead to 

immediate increases in soil pH, limiting risk losses to when initial soil pH is alkaline (Sommer et 

al., 2004). 

 Another way of decreasing the magnitude and potential NH3 loss from surface-applied 

urea-containing fertilizers is to impede urea hydrolysis using a urease inhibitor (UI) (Silva et al., 

2017; Sunderlage and Cook, 2018; Cantarella et al., 2018). The most common, commercially 

available UI is N-(n-butyl) thiophosphoric triamide (NBPT, Koch Agronomic Services, 

Wichita). NBPT bonds with the urease active site to reduce the rate of urea hydrolysis, thus 

decreasing the potential for both pH to increase and for NH!! to build up in solution. Delaying 

these reactions also allows more time for rainfall to occur and incorporate fertilizer into the soil 

where fertilizer is better protected from volatilization loss. The use of NBPT has been 

demonstrated to both delay the peak NH3 loss from surface-applied urea and lower overall loss 

rates compared to untreated fertilizer (Soares et al., 2012; Silva et al., 2017), such that 
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cumulative NH3 loss reductions range from 15 to 75% (San Francisco et al., 2011; Silva et al., 

2017; Sunderlage and Cook, 2018; Cantarella et al., 2018). 

In 2015, a new compound developed by BASF, N-(n-propyl) thiophosphoric triamide 

(NPPT), was introduced in the UI market and is sold in a mixture with NBPT (5.6% NPPT, 

16.9% NBPT) under the trade name Limus® (BASF Crop Protection). Given its recent 

commercial availability, published evaluations of Limus are limited (Li et al., 2015; Sunderlage 

and Cook, 2018), and no published studies were found where Limus was compared to the 

industry standard NBPT. Sunderlage and Cook (2018) conducted a laboratory study comparing 

NH3 losses from untreated urea and urea+Limus on 79 soils from the U.S., and found that 

urea+Limus reduced 75% of the NH3 losses observed with urea alone but that product 

effectiveness decreased in acidic soil conditions due to UI degradation. The effect of soil pH on 

UI efficiency is not unique to Limus and has been observed for NBPT-only products (San 

Francisco et al., 2011).  Additional studies are needed to understand how Limus compares to 

NBPT-only products in both NH3 loss mitigation and its effect on grain yield, and to assess its 

efficacy under different soil and weather conditions. 

 Fertilizer products containing both UI and nitrification inhibitors (NI) have been 

suggested as an option to reducing all three major N losses (Xu et al., 2000), and further 

protecting yield and improving NUE (Zaman et al., 2008). However, various studies have 

reported on increased NH3 losses from UI+NI application compared to UI only (Gioacchini et al., 

2002; Soares et al., 2012; Abalos et al., 2014; Pan et al., 2016). The increase in NH3 

volatilization from NI use is attributed to higher soil pH, higher NH!! and lower NO!! as a result 

of nitrification inhibition (Soares et al., 2012). 
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 Different approaches have been developed to measure field NH3 losses, including mass 

balance, tracer techniques, enclosures (static and dynamic, semi-open and closed chambers), 

micrometeorological methods, gradient diffusion methods, eddy correlation, relaxed eddy 

accumulation, and modeling (McGinn and Janzen, 1998; Sommer et al., 2004). Among these, 

enclosures are one of the most used methods (Nômmik, 1973; Schlegel et al., 1986; Grant et al., 

1996; Rawluk et al., 2001; Gioacchini et al., 2002; Ma et al., 2010; Jantalia et al., 2012) due to 

their level of portability and overall simplicity, applicability to multiple experimental units in 

small plot studies, low cost, and high sensitivity (McGinn and Janzen, 1998; Sommer et al., 

2004; Smith et al., 2007).  

The amount of measured NH3 volatilized is dependent upon the measurement 

methodology. Enclosures may alter the measured environment compared to plot-level conditions, 

especially regarding gas concentration gradient, air movement, water flux, and temperature 

regime (Marshall and Debell, 1980; McInnes et al., 1986; Schlegel et al., 1986; Martha et al., 

2004; Smith et al., 2007). Closed static chambers generally recover less volatilized NH3 (22 to 

96%) compared to semi-open chambers (Marshall and Debell, 1980; Wang et al., 2004), wind 

tunnel, and micrometeorological approaches (Smith et al., 2007).  

Although UIs can effectively decrease NH3 losses from urea application, crop yield and 

NUE responses to UI applications do not match the quantities of N conserved (Fox and 

Piekielek, 1993; Gioacchini et al., 2002; Abalos et al., 2014; Silva et al., 2017; Cantarella et al., 

2018). Compared to untreated urea, positive yield responses under urea+NBPT range from only 

1.8% to 12% across multiple crops (Abalos et al., 2014; Cantarella et al., 2018). In addition, crop 

NUE variability is highest in UIs compared to a variety of inhibitor treatments (i.e. UI, 

nitrification inhibitors (NI), UI+NI), with confidence intervals ranging from ~5 to 25% compared 
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to untreated fertilizer (Abalos et al., 2014). The lack of larger yield and NUE improvements from 

NBPT use has been attributed to crop N demand being met through other N sources like soil N 

mineralization (Cantarella et al., 2018), factors other than N being limiting to crop growth and 

yield (Silva et al., 2017), and studies evaluating UI at N rates close to the required amount for 

optimum grain yield (Rose et al., 2018). 

 We hypothesize that i) the use of an UI with pre-plant broadcast applied fertilizer will 

decrease NH3 volatilization compared to untreated fertilizer; ii) Limus will promote NH3 loss 

reductions similar to other NBPT-only products; iii) the use of UI+NI will promote NH3 loss 

reductions that are intermediate between fertilizer+UI and untreated fertilizer; and that iv) the 

use of UI and UI+NI will promote greater grain yield than untreated fertilizer if weather 

conditions are conducive to N losses, such as no rainfall during the first 3-5 days after fertilizer 

application. The objectives of this study were to i) compare different UI and UI+NI products on 

how they affect sealed-chamber measured NH3 volatilization losses from surface-applied UAN, 

ii) compare NH3 volatilization losses of Limus at different rates to other inhibitors in reducing 

NH3 loss, and iii) assess the impact of different UI and UI+NI products on corn growing season 

vigor and grain yield. 

 Material and Methods 

This project was comprised of experiments conducted from 2014 through 2017 at two 

sites for a total of five studies (Table 2.1). The soils were classified as Crete silt loam (fine, 

smectitic, mesic Pachic Udertic Argiustolls) at SCAL14 and SCAL15, Novina sandy loam 

(coarse-loamy, mixed, superactive, mesic Fluvaquentic Haplustolls) at CC15, and Hastings silt 

loam (fine, smectitic, mesic Udic Argiustolls) at SCAL16 and SCAL17. 
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Table 2.1. Characterization of each site-year study. 
    ––––––– Soil Properties (0-20 cm)† –––––––   
Study 
  

Site 
 

Year 
 

Soil Type 
 pH 

OM 
(%) 

CEC 
(me 100g-1) 

K 
(ppm) 

P-M3 
(ppm) 

Planting  
Date 

N App. 
Date 

SCAL14 SCAL 2014 Silt Loam - - - - - 5-May 7-May 
CC15 Central City 2015 Loamy Sand  7.2 1.1 7 104 12 15-Apr 22-Apr 
SCAL15 SCAL 2015 Silt Loam  6.6 3.6 14 458 33 24-Apr 30-Apr 
SCAL16 SCAL 2016 Silt Loam 7.0 3.1 22 406 20 12-May 18-May 
SCAL17 SCAL 2017 Silt Loam 7.6 3.5 14 348 25 8-May 22-May 

†pH (1:1 soil:water), OM = organic matter, CEC = cation exchange capacity, K = potassium, P-M3= 
Mehlich-3 phosphorus. 
 

The treatment design at each study was one-way with different combinations of N rate, 

inhibitor type (UI alone, UI+NI) and inhibitor rate. Different inhibitor types and rates were used 

depending on the study (Table 2.2). The inhibitors used were Agrotain Ultra (AgU, Koch 

Agronomic Services, LLC, Wichita, KS), Agrotain Plus (AgP, Koch Agronomic Services, LLC, 

Wichita, KS), Limus (BASF Corp., Research Triangle Park, NC), DMP (3, 4-dimethylpyrazole 

phosphate) nitrification inhibitor (BASF Corp., Research Triangle Park, NC), and NutriSphere-N 

(NS, Verdesian, Cary, NC). AgU contains the UI N-(n-butyl) thiophosphoric triamide (NBPT, 

26.7%); AgP contains both a UI (NBPT, 1-5%) and an NI (dicyandiamide, DCD, 35-55%); 

Limus contains two types of UI compounds (NBPT, 16.9%, and N-(n-propyl) thiophosphoric 

triamide, NPPT, 5.6%); NS is a polymer-based product containing maleic and itaconic acid 

(40%) and purportedly inhibits both nitrification and urea hydrolysis by complexing soil copper 

and nickel, respectively (mechanisms have not been demonstrated in refereed literature). All 

inhibitors were applied at manufacturer recommended rates, except for Limus, which was 

applied at multiple rates including the manufacturer recommended rate. Inhibitor application 

rates were 1.5 L Mg-1 UAN for AgU, 7 kg Mg-1 UAN for AgP, variable rates for Limus (from 

0.8 to 2.1 L Mg-1 UAN; Table 2.2), 0.7 L ha-1 for DMP, and 0.5% v/v for NS. When not 

explicitly noted, the Limus rate used was the label-recommended rate of 1.5 L Mg-1 UAN.  
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Table 2.2. Description of applied treatments, sensor information (type and timing), 
response to N fertilizer, and agronomic optimum N rate (AONR, in kg ha-1) for each study.  

Study Treatments* Sensor Sensor timing N-responsive 
AONR 

(kg ha-1) 
SCAL14 0N,  

136N, 136N+AgU, 
136N+L-0.8,  
136N+L-1.2, 
136N+L-1.5,  
182N, 182N+AgU, 
182N+L-0.8, 
182N+L-1.2, 
182N+L-1.5, 
182N+L-2.2, 
226N 

SPAD V10, VT Yes 208 

CC15 0N,  
96N, 96N+L, 
130N, 130N+AgP,  
130N+AgU, 
130N+L, 
161N, 161N+L 

RapidScan V6, V12,  
VT, R4 

No** 146 

SCAL15 0N, 
96N, 96N+L, 
96N+L+DMP, 
130N, 130N+AgP, 
130N+AgU, 
130N+L, 
130N+L+DMP, 
161N 

RapidScan V6, V13,  
VT, R4 

No 0 

SCAL16 0N, 
173N, 173N+AgP, 
173N+AgU, 
173N+L-0.5, 
173N+L-1,  
173N+L-1.5, 
173N+NS, 
215N, 215N+L-1.5 

RapidScan V6, V7,  
V9, V12,  
V16, VT,  
R3, R5 

Yes 160 

SCAL17 0N, 45N, 90N, 
133N, 133N+AgP, 
133N+AgU, 
133N+L-0.5, 
133N+L-1,  
133N+L-1.5,  
178N, 178N+L-1.5, 
268N 

RapidScan V7, V9,  
V12, V16,  
R1, R3, R4 

Yes 173 

*Only treatment names in bold were measured for ammonia volatilization. 
**Yield response to N fertilizer at CC15 was marginally significant (p=0.077). 



 

 

58 

AONR = agronomic optimum N rate.  
Treatment labels include information on N rate (0, 45, 90, 96, 130, 133, 136, 161, 173, 178, 182, 215, 226, 268 kg N 
ha-1), inhibitor type (none, AgU=Agrotain Ultra, AgP=Agrotain Plus, L=Limus, DMP), and Limus rate (0.5, 0.8, 1, 
1.2, 1.5, 2.2 L Mg-1 fertilizer). 
 

Each study was conducted as a randomized-complete block design with four replicates. 

Corn was planted at a target population of 84,000 plants ha-1 with a row spacing of 0.76 m (dates 

in Table 2.1). Plots were 20-24 m long and 3 m wide, comprising four rows. Corn population at 

harvest varied from 80,000 to 82,000 plants ha-1 except for SCAL14, which had a windstorm on 

June 14th causing plant breakage and reducing harvest population to 52,000 plants ha-1. All 

studies were irrigated fields with a central pivot system. Irrigation frequency was determined by 

soil moisture balance monitoring with the use of Watermark matric potential sensors for all 

studies but CC15, where irrigation frequency was determined by the cooperator based on his 

experience. Irrigation single-event volume ranged from 25 to 40 mm. 

The N source utilized for all studies was UAN solution (32% N) surface broadcast after 

planting and before emergence through a boom attached to a tractor. Treatment mixtures were 

performed directly in the tractor mixing tank connected to the boom, at volumes that matched 

both N and inhibitor application rates. Fertilizer N rates were determined by first calculating the 

full rate through the University of Nebraska-Lincoln corn N algorithm (Shapiro et al., 2008), 

which considers yield goal and N credits from organic matter and soil residual nitrate. 

Thereafter, other N rates were selected as a percentage (from 0 to 200%) of the full N rate, with 

different levels over different studies. Weather data was collected from automated weather 

station installed in proximity to the study area.  

 Volatilization losses of NH3 were assessed only at specific treatment levels (Table 2.2, 

bold text). Losses of NH3 were measured by using sealed polyvinyl chloride chambers with 0.55 

m height and 0.1 m inner radius. Two weeks prior to fertilizer application, NH3 traps were 
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prepared by syringe-applying 35 mL of phosphoric acid-glycerol solution (40 mL glycerol, 50 

mL concentration H3PO4 acid, 910 mL deionized water) to foam disks (0.03 m height, 0.1 m 

radius), which were thoroughly kneaded to incorporate solution within the foam. Each foam trap 

was then placed inside a Ziploc bag, sealed and stored at 4°C until deployed in the field. On the 

same day following fertilizer application, one chamber was installed per plot in the mid row 

position between rows 2 and 3 by driving the chamber base ~10 cm into the soil. The chambers 

were equipped with four equally-spaced 3-cm long screws on the inner walls to suspend the 

foam trap at ~0.4 m above the soil surface. After chamber installation, one foam trap was 

deployed per chamber, then the chamber top sealed by covering it with impermeable plastic held 

in place by a 2-cm wide rubber band to minimize water exchange between the enclosed chamber 

headspace and the external atmosphere. This chamber design is similar to that employed by 

Marshall and Debell (1980), except the current study did not have an umbrella protecting from 

rainfall. 

Ammonia volatilization losses generally peak at two to three days after fertilizer 

application (DAA), with 75% of cumulative losses occurring up until six and 11 DAA for 

untreated and NBPT-treated urea, respectively (Silva et al., 2017). For this study, foam traps 

were exchanged at 5, 10, 15, 20, and 30 DAA, with eventual departure of  ±1 day, comprising 

the main period of NH3 losses. Used foam traps were sealed individually in Ziploc bags and 

stored at 4C until analysis for NH!! concentration. Losses of NH3 were estimated by extracting 

the phosphoric acid-glycerol solution from the foam trap followed by analysis for NH!!. Total 

NH!! mass in solution was then standardized to the chamber area and summed over all sampling 

dates to calculate cumulative NH3 volatilized (kg N ha-1 30 d-1).  
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Crop vigor was assessed at different crop stages using a handheld sensor. For SCAL14, 

the sensor utilized was a SPAD meter (Konica Minolta, Japan), whereas all other studies were 

sensed with the active sensor RapidScan CS-45 (Holland Scientific, Lincoln, NE, USA). The 

SPAD meter is a contact sensor that measures light transmittance through an area of 6 mm2 of 

plant leaf in the spectral regions of 650 and 940 mm. SPAD measurements were taken from the 

upper-most fully expanded leaf before tasseling (V10) and from the ear-leaf after tasseling (VT), 

midway between the leaf tip and base and also between leaf margin and midrib, from 20 plants in 

the middle rows. SPAD measurements were internally averaged and one value was recorded per 

plot.  

The RapidScan CS-45 is an active handheld sensor equipped with a modulated light 

source and three photodetector measurement channels at 670, 730 and 780 nm. The RapidScan 

was oriented in the nadir position and approximately 0.6 m above the crop canopy. The two 

central rows of each plot were scanned individually, producing one average value from each 

measurement channel per row. RapidScan readings were taken directly over the corn row. 

Values generated for each row were averaged to create one value for each wavelength per plot. 

Active sensor bands of red-edge and near infrared were used to calculate the normalized 

difference red-edge (NDRE) index.  

Both SPAD and NDRE values were used to calculate a sufficiency index (SI), obtained 

by dividing the sensor value of each plot by a virtual reference sensor value. Virtual reference 

sensor values were determined for each study-replicate-growth stage combination as the 95th 

percentile of the sensor measurement (SPAD or NDRE) histogram including data from all N 

treatments (Holland and Schepers, 2013). The use of an SI provides crop N status information 
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that is normalized and independent of crop growth stage in comparison to non-normalized sensor 

measurements (SPAD or NDRE).  

Corn grain yield was determined by combine-harvesting the middle two rows of each plot 

and correcting grain moisture content to 155 g kg-1 moisture content. The agronomic optimum N 

rate (AONR, kg N ha-1) for each study was estimated by regressing N rate against grain yield 

data using linear, linear-plateau, quadratic, and quadratic-plateau models. The model with the 

lowest Akaike information criterion was chosen for AONR calculation. 

All statistical analyses were conducted in R (R Core Team, 2017). The data were 

analyzed by performing study-specific ANOVAs for each of the response variables cumulative 

ammonia volatilization, SI, and grain yield. Studies were analyzed separately because i) UI effect 

on N loss, N nutrition, and grain yield is site- and year-specific, and ii) treatment design was not 

consistent. Analysis of variance for the fixed-effect sources and further pairwise comparisons 

(Fisher’s least-significant differences) were deemed significant at α =0.05. Cumulative ammonia 

volatilization and SI were analyzed by using the function gls from the nlme package (Pinheiro et 

al., 2017) with block, treatment, DAA and treatment × DAA as fixed effects and a linear spatial 

error correlation structure to account for the unevenly-spaced repeated measure nature of the 

response variables. Grain yield was analyzed by using the lm function from the stats package (R 

Core Team, 2017) with block and treatment as fixed effects. Model assumptions were visually 

assessed by constructing fitted vs. residual, residual quantile-quantile and residual histogram 

plots. All models residuals satisfactorily met the assumptions. 

 Results 

In order to address the objectives of this study, water input (precipitation and irrigation) 

and air temperature were monitored throughout the growing season (April-September) and were 
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used to interpret the effect of UI and UI+NI on plot-level NH3 losses. Sealed-chamber measured 

NH3 losses were monitored from the date of fertilizer application through 30 days thereafter. 

Measured NH3 volatilization were affected by the chamber environment and may not represent 

the plot-level NH3 loss, and thus cannot be directly related to plot-observed grain yield. Corn 

vigor was assessed throughout the growing season by the use of both SPAD and RapidScan. This 

data was used to determine if stressing factors such as N affected crop color, and whether the use 

of inhibitors mitigated N stress magnitude. 

 
 Weather 

Weather data for each study is shown on Figure 2.1, including growing season (April 

through September) monthly cumulative rainfall, irrigation, and total water input; and average air 

temperature; and average daily temperature and rainfall in a window of -5 to +10 days 

surrounding N fertilizer application timing. Average growing season total precipitation ranged 

from 476 to 578 mm, and average growing season total irrigation ranged from 120 to 318 mm, 

with an average growing season total water input that ranged from 661 to 798 mm. Average 

growing season air temperature was generally higher at CC15 and SCAL15. Average daily air 

temperature ranged from 8 to 22°C over the 15-d window surrounding N application. Daily 

precipitation patterns varied over different studies during the 15-d window surrounding N 

application. During the period preceding N application, CC15, SCAL16, and SCAL17 received 

~4 to 40 mm, while SCAL14 and SCAL15 did not receive precipitation. During the 10-day 

period after N application, all studies received some precipitation volume at different 

frequencies. While SCAL14 and CC15 received a total of 72 and 21 mm within five DAA, 

respectively, SCAL15, SCAL16, and SCAL17 only received significant amounts of rain after 

five DAA, totaling 91, 59 and 5 mm, respectively during the 5 to 10 DAA period. 
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Figure 2.1. Growing season weather summary for each study. Tables include cumulative 
precipitation, irrigation, and total water input (mm), and mean air temperature (°C). 
Figures show mean air temperature (°C) and cumulative rainfall (mm) for a window of -5 
to +10 days after N application (purple dashed line = N application date). 
  

  Ammonia Volatilization 

Although NH3 loss comparisons among treatments in this study are valid, they do not 

represent the loss conditions to which the entire plot area was subjected. This limitation is an 

artifact of the methodology employed, where NH3 losses were measured from a sealed chamber 
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that did not allow for moisture exchange, wind movement and likely had a different daily 

temperature pattern than the exterior environment. Therefore, NH3 volatilization losses measured 

on these studies should be interpreted with caution especially in regard to effects on final grain 

yield. 

 Thirty-day NH3 volatilization after N fertilizer application was assessed at all studies 

except for SCAL15, and for a subset of treatments (Table 2.2). Over all studies, measured NH3 

volatilization losses ranged from 0 to 26 kg NH3-N ha-1. The maximum NH3 loss observed varied 

from 16 to 26 kg NH3- N ha-1 and represented 10 to 15% of total fertilizer N. The use of 

inhibitors decreased NH3 losses from 21 to 62% compared to untreated fertilizer. Even though a 

UI only protects the urea portion of UAN (44% of total N), relative losses will be expressed as 

percent of total fertilizer N in order to facilitate comparison with other studies that used different 

N sources.  

At SCAL14, cumulative NH3 volatilization was affected by N rate and inhibitor addition 

(Figure 2.2). Background soil NH3 loss (0N) was 2 kg NH3-N ha-1. Applying fertilizer increased 

losses (19 kg NH3- N ha-1), with no differences between untreated 182N or 182N treated with 

AgU, or L-2.2.  Losses from these treatments were ~10% of total applied fertilizer. Ammonia 

losses in the L-0.8 and L-1.5 treatments (15 kg NH3- N ha-1) were lower by 21%. Intermediate 

losses in 182N-L-1.2 did not differ from any other treatment. All UI treatments showed some 

reduction in NH3 loss soon after N application (through 15 DAA), but treatments that 

significantly reduced volatilization did so throughout the 30-d measurement period. 
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Figure 2.2. Mean cumulative ammonia volatilization (kg ha-1) from 0 to 30 days after N 
application (DAA) at SCAL14. Treatment means within a date sharing the same letter are 
not statistically different at α=0.05. Numbers on the right are the cumulative ammonia 
losses at 30 DAA. AgU = Agrotain Ultra; L = Limus at 0.8, 1.2, 1.5 and 2.2 L Mg-1 UAN 
rates. 
 

At CC15, cumulative NH3 volatilization was affected by N rate and inhibitor addition 

(Figure 2.3). Background soil NH3 loss (0N) was 1 kg NH3- N ha-1.  Total ammonia losses 

increased with fertilizer rate and were highest for untreated fertilizer (18 and 23 kg NH3-N ha-1 

for 130N and 161N, respectively), with respective losses of 14 and 10% of applied N.  Relative 

to controls, adding Limus reduced NH3 losses by 30 to 33% at both 130N and 161N rates (12 

and 16 kg NH3-N ha-1, respectively).  At the 130N level, total NH3 losses were greatest for UI-

only amendments (AgU, Limus; 10, 12 kg NH3-N ha-1, respectively), and to a lesser extent for 

AgP (UI+NI; 15 kg NH3-N ha-1), which did not differ from control. Ammonia loss reductions 
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corresponded to 44%, 33%, and 17% of untreated control, respectively. Inhibition activity was 

greatest for all products for 10 to 15 DAA, then persisted until the end of the 30-d period. 

 

Figure 2.3. Mean cumulative ammonia volatilization (kg ha-1) from 0 to 30 days after N 
application (DAA) at CC15. Treatment means within a date sharing the same letter are not 
statistically different at α=0.05. Numbers on the right are the cumulative ammonia losses at 
30 DAA. AgP = Agrotain Plus; AgU = Agrotain Ultra; L = Limus. 
 

At SCAL16, cumulative NH3 volatilization was affected by N rate and inhibitor addition 

(Figure 2.4). Background soil NH3 loss (0N) was 0.23 kg NH3-N ha-1 over the 29-d sampling 

period. Untreated fertilizer (173N) showed the highest total losses (26 kg NH3-N ha-1, 15% of 

applied fertilizer), with no effect of Limus at rates below the manufacturer recommendation (L-

0.5, L-1), ranging from 24 to 21 kg NH3-N ha-1. All other inhibitors (AgP, AgU, L-1.5, NS) 

decreased NH3 losses to 10 to 13 kg NH3-N ha-1, representing 50 to 62% loss reduction 
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compared to untreated control. Inhibition activity for effective products was established by 15 

DAA, and then increased to the end of the 29-d sampling period. 

 

Figure 2.4. Mean cumulative ammonia volatilization (kg ha-1) from 0 to 29 days after N 
application (DAA) at SCAL16. Treatment means within a date sharing the same letter are 
not statistically different at α=0.05. Numbers on the right are the cumulative ammonia 
losses at 30 DAA. AgP = Agrotain Plus; AgU = Agrotain Ultra; L = Limus at 0.5, 1 and 1.5 
L Mg-1 UAN rates, NS = NutriSphere-N. 
 

  At SCAL17, cumulative NH3 volatilization was affected by the addition of N and 

inhibitors (Figure 2.5). Total background soil NH3 loss (0N) was 0.24 kg NH3-N ha-1 by the end 

of the 31-day sampling period.  Total ammonia losses were greatest in untreated N regardless of 

N rate.  Although losses did not differ between untreated N rates (16 and 15 kg NH3-N ha-1 for 

133N and 178N, respectively), respective proportional losses of applied N were concomitantly 

larger at the lower rate (12%, 8%).  At 133N, reductions in NH3 losses increased with Limus-

amendment rate (8 to 12 kg NH3-N ha-1), equivalent to 25 to 50% reduction in N loss relative to 
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untreated controls. There was no effect of Limus at the higher 178N rate. At the 133N rate, a 

reduction in total NH3 losses occurred for AgP (UI+NI; 11 kg NH3-N ha-1) to a similar extent as 

Limus amendments, but no reductions occurred using AgU (UI; 14 kg NH3-N ha-1).  For 

effective products, inhibitor action was established by 10 DAA and continued to the end of the 

31-d sampling period. 

 

 

Figure 2.5. Mean cumulative ammonia volatilization (kg ha-1) from 0 to 31 days after N 
application (DAA) at SCAL17. Treatment means within a date sharing the same letter are 
not statistically different at α=0.05. Numbers on the right are the cumulative ammonia 
losses at 30 DAA. AgP = Agrotain Plus; AgU = Agrotain Ultra; L = Limus at 0.5, 1 and 1.5 
L Mg-1 UAN rates.  
 

 Ammonia volatilization loss maximum, extent of protection by using an UI, and effect of 

UI+NI varied across studies (Table 2.3). The greatest loss across studies was observed at 

SCAL16 under untreated fertilizer applied at 173 kg N ha-1 (26 kg NH3-N ha-1). The use of AgU 
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(NBPT only) and Limus (NBPT/NPPT) reduced NH3 volatilization compared to untreated 

fertilizer in two and four studies, respectively. The addition of NI to fertilizer+UI only 

significantly increased NH3 volatilization compared to fertilizer+UI at CC15. 

Table 2.3. Cumulative ammonia volatilization summary across all studies except for 
SCAL15 for treatments 0N, N (untreated fertilizer, study-rate specified in parenthesis on 
first column), N+AgU (NBPT), N+L-1.5 (NBPT/NPPT at 1.5 L Mg-1 UAN), and N+UI+NI. 

  0N  N  N+AgU N+L-1.5 N+UI+NI 

 

 ------- Cumulative Ammonia Volatilization (kg NH3-N ha-1) -----
-- 

SCAL14 (182N) 2 c 19 a 19 a 15 b NA 
CC15 (130N) 1 e 18 b 10 d 12 cd 15 bc 
SCAL16 (173N) 0 c 26 a 12 b 13 b 13 b 
SCAL17 (133N) 0 e 16 a 14 abc 8 d 11 bcd 

 

 Reflectance 

 For all studies, in-season crop canopy sensor data showed limited treatment differences in 

crop vigor, though differences were clearer at earlier growth stages (V6 to V9). Sensor data 

obtained at VT for SCAL14 and SCAL15, at V6 for CC15, from V9 through V16 and R5 for 

SCAL16, and R3 for SCAL17, more closely followed the differences observed on final grain 

yield (shown and discussed later in the chapter). 

At SCAL14, SPAD SI values at V10 and VT generally were below SI=0.95 (Figure 2.6), 

where 0.95 is a threshold between sufficient (>0.95) and deficient (<0.95) crop status (Blackmer 

and Schepers, 1995). At V10, SPAD SI was highest for 182N+AgU, which was greater than 

182N, 136N+L0-1.2, and 0N only. At VT, SPAD SI was highest for 182N+L-1.2, which was 

greater than 182N+L-0.8, 182N, 136N+L-1.2, and 0N only, the latter being the lowest value. 

SPAD SI decreased numerically (i.e. not significant) from V10 to VT for most treatments. 
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Figure 2.6. Mean SPAD sufficiency index (SI) at SCAL14. Treatment means within a 
growth stage with the same letter are not statistically different (α=0.05). AgU = Agrotain 
Ultra; L = Limus at 0.8, 1.2, 1.5, and 2.2 L Mg-1 UAN rates. Blue and black lines show SI of 
0.95 and 1, respectively. 
 

At CC15, NDRE SI values varied over the growing season by N treatments (Figure 2.7). 

Overall, variability due to N treatments was greatest at V6 and V12, then treatment values tended 

to converge at VT and R4. Most treatment means were below SI=0.95 for all growth stages. The 

numerically highest NDRE SI value occurred during V6 and V12 for 130N+AgP, and the lowest 

value at these same stages was for 0N. No treatment differences were observed at VT, and R4 

NDRE SI values were highest for 161N and lowest for 0N. 
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Figure 2.7. Mean NDRE sufficiency index (SI) at CC15. Treatment means within a growth 
stage with the same letter are not statistically different (α=0.05). AgP = Agrotain Plus; AgU 
= Agrotain Ultra; L = Limus. Blue and black lines show SI of 0.95 and 1, respectively. 
 

At SCAL15, NDRE SI values varied over the growing season for different N treatments 

(Figure 2.8). Overall, more variability due to N treatments occurred at V6 and R4, whereas 

treatment means converged at V12 and VT. Only 0N NDRE SI was <0.95 at V6 and remained 

lower than other N treatments at all stages. All other SI treatment means were >0.95. The 

numerically highest NDRE SI value at V6 was for 96N, which was greater than 96N+L+DMP 

and 0N only. At V12, the highest NDRE SI values were for 130N+L+DMP, 130N+L, 

130N+AgU and 96N, which were greater than 0N only. At VT, no treatment differences were 
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found. At R4, the highest NDRE SI value was for 130N+AgU, which was greater than 

130N+L+DMP, 130N+L, and 0N only. 

 

 

Figure 2.8. Mean NDRE sufficiency index (SI) at SCAL15. Treatment means within a 
growth stage with the same letter are not statistically different (α=0.05). AgP = Agrotain 
Plus; AgU = Agrotain Ultra; L = Limus. Blue and black lines show SI of 0.95 and 1, 
respectively. 
 

At SCAL16, NDRE SI values varied over the growing season for different N treatments 

(Figure 2.9). Treatment variability was greatest at V6, VT, and R3. Mean NDRE SI was lowest 

for 0N, which remained <0.95 throughout the season.  All other treatment means were greater 

than 0N with values >0.95 and converged towards similar values after V6. At V6, the highest 

NDRE SI values were for 173N, 173N+AgP, 173N+AgU, and 173N+NS, ranging from 0.94 to 

0.97, and the lowest value for 0N (0.81). At V7, the highest NDRE SI occurred for 215N+L-1.5, 
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which was greater than 215N, 173N+L-0.5, and 0N only. At V9, V12, V16, VT and R5, all 

treated fertilizers showed similar NDRE SI and were greater than 0N. At R3, the highest NDRE 

SI was for 215N+L-1.5, which was greater than 173N+L-0.5, 173N+L-1.5, and 0N only. 

 

 

Figure 2.9. Mean NDRE sufficiency index (SI) at SCAL16. Treatment means within a 
growth stage with the same letter are not statistically different (α=0.05). AgP = Agrotain 
Plus; AgU = Agrotain Ultra; L = Limus at 0.5, 1 and 1.5 L Mg-1 UAN rates; 
NS=NutriSphere-N. Blue and black lines show SI of 0.95 and 1, respectively. 
 

At SCAL17, NDRE SI values varied over the growing season for different N treatments  

(Figure 2.10). Variability due to N treatments was highest at V7, V9, and R3.  Mean NDRE SI 

was lowest for 0N, which remained <0.95 throughout the season.  All other treatment means 

were greater than 0N with values >0.95 and converged towards similar values after V7.  Most SI 

means for treated fertilizers were >0.95 after V12, except for 0N and 45N (only >0.95 at V16). 
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At V7, the highest NDRE SI was for 133N+L-1, which was greater than 133N+L-0.5, 90N and 

0N only. At V9, the highest NDRE SI was for 133N, which was greater than 90N and 0N only. 

At V12, VT, and R4, all SI values were similar and greater than 0N.  At R1 and R3, 45N was 

lower than other N treatments.   

 

 

Figure 2.10. Mean NDRE sufficiency index (SI) at SCAL17. Treatment means within a 
growth stage with the same letter are not statistically different (α=0.05). AgP = Agrotain 
Plus; AgU = Agrotain Ultra; L = Limus at 0.5, 1 and 1.5 L Mg-1 UAN rates. Blue and black 
lines show SI of 0.95 and 1, respectively. 
 

 Yield 

 Corn grain yield responded to N fertilizer treatments for only three of five studies, and 

AONR varied from 160 to 208 kg N ha-1 among the N-responsive studies (Table 2.2). Yield 

ranged from 5.7 (SCAL14) to 15.2 Mg ha-1 (SCAL17). Inhibitor use (UI, UI+NI) did not 
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increase yield compared to untreated fertilizer at any study, and decreased yield in one case 

(182N-AgU at SCAL14).  

At SCAL14, grain yield responded to N fertilizer, with a significant AONR of 209 kg N 

ha-1 estimated using a linear-plateau model. The lowest grain yield occurred in unfertilized 

control (0N; 8.7 Mg ha-1). The highest yield occurred at 226N which was not different from 

182N+L-1.5, 182N+L-1.2, and 182N, ranging from 12.1 to 12.7 Mg ha-1 (Figure 2.11). 

Compared to fertilizer alone, using any UI did not improve yield for either 136N or 182N rates, 

and yield decreased for AgU-amended N. 

 

Figure 2.11. Boxplot (n=4) of corn grain yield (Mg ha-1) at SCAL14. Numbers above the 
boxplots are the mean yield for that treatment. Treatment means sharing the same letter 
are not statistically different at α=0.05. Vertical bars separate different N rate groups. AgU 
= Agrotain Ultra; L = Limus at 0.5, 1 and 1.5 L Mg-1 UAN rates.  
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At CC15, grain yield responded marginally to N fertilizer application (p=0.077), with an 

AONR of 146 kg N ha-1 estimated using a quadratic-plateau model.  The lowest grain yield 

occurred at 0N, which was not different from any other N-added treatments except for 161N and 

130N+AgP (Figure 2.12). The highest grain yield occurred for 130N+AgP which was not 

different than 161N, 161N+L, 130N, and 130N+L, ranging from 6.3 to 7.1 Mg ha-1. Using UIs 

did not improve grain yield at any N rate (96, 130, 161N). However, adding AgP (UI+NI) at the 

130N rate increased yield compared to adding AgU (UI only). 

 

 

Figure 2.12. Boxplot (n=4) of corn grain yield (Mg ha-1) at CC15. Numbers above the 
boxplots are the mean yield for that treatment. Treatment means sharing the same letter 
are not statistically different at α=0.05. Vertical bars separate different N rate groups. AgP 
= Agrotain Plus; AgU = Agrotain Ultra; L = Limus. 
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At SCAL15, grain yield did not respond to N fertilizer or inhibitor amendments (p=0.8), 

and AONR was set to 0 kg N ha-1. Grain yield varied from 13.7 (0N) to 14.3 Mg ha-1 (130N) 

(Figure 2.13), with overall site mean of 13.9 Mg ha-1. 

 

Figure 2.13. Boxplot (n=4) of corn grain yield (Mg ha-1) at SCAL15. Numbers above the 
boxplots are the mean yield for that treatment. Vertical bars separate different N rate 
groups. AgP = Agrotain Plus; AgU = Agrotain Ultra; L = Limus. 
 

At SCAL16, grain yield responded to N fertilizer, with a significant AONR of 160 kg N 

ha-1 estimated using a quadratic model. The lowest grain yield occurred under 0N (13.1 Mg ha-1; 

Figure 2.14).  Yield increased after any fertilizer addition regardless of N rates or inhibitor 

addition, with an overall mean of 15 Mg ha-1.    
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Figure 2.14. Boxplot (n=4) of corn grain yield (Mg ha-1) at SCAL16. Numbers above the 
boxplots are the mean yield for that treatment. Treatment means sharing the same letter 
are not statistically different at α=0.05. Vertical bars separate different N rate groups. AgU 
= Agrotain Ultra; L = Limus at 0.5, 1 and 1.5 L Mg-1 UAN rates; NS= NutriSphere-N. 
 

At SCAL17, grain yield responded to N fertilizer, resulting in an AONR of 173 kg N ha-1 

estimated using a quadratic-plateau model. The lowest grain yield occurred under 0N (10.4 Mg 

ha-1) (Figure 2.15). Yield increased significantly with N rate from 0 to 133N, followed by limited 

to no yield improvements for higher N rates.  The highest grain yield occurred for 268N which 

did not differ from 178N+L-1.5, 178N, 133N+L-1.5, 133N+AgU and 133N, and ranged from 

14.4 to 15.2 Mg ha-1. The use of any inhibitor did not improve grain yield compared to fertilizer 

alone at 133N and 178N. 



 

 

79 

 

Figure 2.15. Boxplot (n=4) of corn grain yield (Mg ha-1) at SCAL17. Numbers above the 
boxplots are the mean yield for that treatment. Treatment means sharing the same letter 
are not statistically different at α=0.05. Vertical bars separate different N rate groups. AgU 
= Agrotain Ultra; L = Limus at 0.5, 1 and 1.5 L Mg-1 UAN rates. 
 

 Discussion 

 Ammonia Volatilization 

  For four of five studies measured, total NH3 volatilization losses for the 30 d following 

fertilizer application varied from ~0 (when no fertilizer was applied) to 26 kg NH3- N ha-1, with 

maximum losses ranging from 10 to 15% of applied fertilizer. Measured values here agreed with 

other published studies reporting 5 to 16% losses (McInnes et al., 1986a, Keller and Mengel 

1986). Relatively low loss rates here are also consistent for surface-applied UAN compared to 

urea because the lower urea content of UAN decreases potential hydrolysis-driven pH increases 

that promote NH3 volatilization (Keller and Mengel, 1986; Hargrove, 1988). 
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Inhibitor use reduced volatilization losses by 21 to 62% compared to untreated fertilizer 

in five out of six study-N rate combinations, saving 4 to 16 kg NH3- N ha-1 from being 

volatilized. The loss reductions form UI reported here are comparable to other studies reporting 

25 to 89% reductions in volatilization losses by adding UI to urea fertilizer (San Francisco et al., 

2011; Silva et al., 2017; Sunderlage and Cook, 2018). Ammonia volatilization from UAN is 

generally lower than that from urea, since UAN only has 44% of its total N in the urea form. 

Nonetheless, studies evaluating the effect of UI on NH3 losses from UAN application have 

reported similar loss reduction percentages (from 37 to 84%) to those found for urea (Grant et 

al., 1996; Goos, 2013).  

The highest N savings from UI use were observed at SCAL16, while the other studies 

had similar N savings from UI use (from 4 to 7 kg NH3-N ha-1). The largest reduction in NH3 

volatilization from UI use in SCAL16 is likely related to this study having the highest observed 

cumulative NH3 loss of unprotected fertilizer (26 kg NH3-N ha-1 under 173N), coupled with 

lower volatilization observed when a UI was used. Other studies had either lower maximum 

volatilization potential of unprotected fertilizer (SCAL14 and SCAL17), and/or decreased 

efficacy of UI in protecting N from being volatilized (SCAL14, CC15, SCAL17). 

 The degree of inhibitor effectiveness varied by study and by product.  When applied at 

the manufacturers’ recommended rates, all products evaluated (AgP, AgU, L, NS) showed 

effectiveness in reducing volatilization losses, except for AgU (UI) at SCAL14 and, to a lesser 

extent, AgU at SCAL17 and AgP (UI+NI) at CC15. Limus (NBPT+NPPT) was the only product 

tested at rates in addition to the manufacturer recommended rate in effort to perform a more 

thorough evaluation of this new UI product. The efficacy of Limus in decreasing NH3 loss 

compared to other UI products depended on the study. At least one Limus rate was more 
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efficient than AgU or AgP in decreasing NH3 volatilization at SCAL14 and SCAL17, and Limus 

had comparable efficiency with AgU or AgP at CC15 and SCAL16. Over all studies, Limus 

applied at the 1.5 L Mg-1 UAN rate (the manufacturer recommended rate) was the most 

consistent in decreasing NH3 losses, whereas both lower and higher Limus rates had mixed 

results. This result is consistent with a recent meta-analysis reporting no benefit of increasing 

NBPT above the manufacturer-recommended rate on NH3 loss reduction (Silva et al., 2017). 

Adding an NI to a UI (i.e. AgP) had mixed effects on NH3 losses. At CC15, AgP 

enhanced cumulative NH3 losses compared to UI only (L, AgU; 15 vs. 10 kg NH3-N ha-1, 

respectively), but no product differences were observed at SCAL16 and SCAL17. This effect 

likely resulted from differences in soil properties, where CC15 soils were coarser-textured with 

lower CEC than SCAL16 and SCAL17. Because soils with lower CEC have lower capacity to 

adsorb NH!! (Keller and Mengel, 1986; Hargrove, 1988; Gioacchini et al., 2002; Sommer et al., 

2004), CC15 soils likely favored the maintenance of N in ammoniacal form for a longer period 

and promoted higher NH3 losses. Gioacchini et al. (2002), however, found that adding NI to UI 

overrode the UI savings of NH3 in a clay loam to a greater extent than in a sandy loam, in 

contrast to our findings.  Nonetheless, our results confirm reported increases in NH3 losses from 

adding NI to UI+fertilizer (Gioacchini et al., 2002; Soares et al., 2012; Peng et al., 2015; Pan et 

al., 2016). 

A major limitation of the results reported here is that the sealed chamber-based method 

does not represent the loss conditions of the entire treatment area. The chambers themselves 

altered soil microsite conditions because they were deployed continuously, protecting the 

measurement area from water inputs and wind and potentially altering daily temperature patterns 

compared to the exterior environment. The absence of water inputs to incorporate surface-
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applied fertilizer into the soil plus reduction in soil drying due to reduced wind speeds could both 

enhance soil NH3 losses compared to ambient plot areas (Bouwmeester et al., 1985; McInnes et 

al., 1986b; a; Holcomb et al., 2011).  As a result, crop vigor and yield data presented here are 

heavily dependent on antecedent soil conditions prior to chamber deployment.  Because 

chamber-based methods are common in many studies, our results are comparable to published 

reports and relative treatment effects within a study are valid, but data should be interpreted with 

caution in regard to crop vigor and final grain yield (below). 

 Weather 

 The weather patterns during the 15-day window surrounding N application date (-5 to 

+10 DAA) varied in both volume and frequency of rainfall, both of which potentially affect NH3 

losses. As mentioned above, chamber-based volatilization measurements protected soils from 

inputs following N application, suggesting greater impacts of pre-deployment soil moisture 

status on NH3 losses (5 d prior to N application vs. 10 d post N application). Pre-fertilization 

precipitation inputs occurred at CC15, SCAL16, and SCAL17 only. At SCAL17, precipitation 

events of 41, 10, and 5 mm happened three, two, and zero days before fertilizer application, 

followed by days with increasing air temperature. These conditions could have been optimum for 

NH3 volatilization as fertilizer was applied on wet residue followed by a drying period. For 

example, Bouwmeester et al. (1985) reported increased NH3 losses at a low wind speed and 

attributed this effect to the concurrent slow drying of the soil.   

Small-volume high-frequency water additions can avoid TAN buildup in the soil, 

resulting in half the NH3 losses compared to applying the same total volume in larger, less 

frequent events (Bouwmeester et al., 1985). Similarly, Holcomb et al. (2011) estimated a 95% 

reduction in NH3 losses from surface-applied urea using a single small irrigation event (19 mm) 
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shortly after fertilizer application. In contrast, other studies have found that rainfall volumes <25 

mm can enhance NH3 losses by providing enough water to promote urea hydrolysis on the 

surface yet not enough to move fertilizer into the soil (McInnes et al., 1986ab). SCAL14 and 

CC15 received >20 mm rainfall at four and three DAA, which were likely sufficient to move the 

fertilizer into the soil and reduce losses. In contrast, SCAL15 had a 10-mm rainfall event at four 

DAA, and SCAL16 received precipitation every day from five to nine DAA, with each event 

being of small magnitude. The only rain event at SCAL17 to happen within 10 DAA was at five 

DAA and of only 5 mm, which could have further enhanced NH3 losses. 

 Sensor-based Crop Vigor 

 Normalized sensor data in the form of a sufficiency index (SI) was used to infer in-season 

crop vigor as affected by different N treatments. At SCAL14, SPAD was used at V10 and VT, 

with 182N+L-1.2 ranking high (>0.95) at both stages whereas 182N ranked low (<0.95) in both 

stages. This could be an indication that using a UI at the 1.2 L Mg-1 UAN rate was able to keep 

NH3 from being volatilized compared to untreated fertilizer to the point of being expressed in 

crop vigor.  However, both higher and lower rates of UI applied at 182N had SPAD SI values 

lower than 0.95, indicating that there must exist an optimum UI rate.  

At all other studies, an active sensor was used and crop vigor was assessed at multiple 

growth stages. At CC15, the use of UI at 96, 130 and 161N did not create significantly higher SI 

than their untreated counterparts at any growth stage. The only treatment combination with 

higher SI than untreated fertilizer was 130N+AgP, which contains both UI and NI. This study 

was a sandy loam soil and received 315 and 318 mm of precipitation and irrigation, respectively, 

from June through August. The excessive water input on a coarse-texture soil likely promoted 

nitrate leaching losses, evidenced by visual assessment during active sensor data collection. 
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Under these circumstances, the use of an NI likely protected N fertilizer against leaching losses 

and thus created higher SI values. This can be observed on the SI data as almost all SI values are 

below 0.95, including both unfertilized and fertilized treatments. In this case, NH3 volatilization 

played a secondary role on N losses, which was likely dominated by nitrate leaching.  

At SCAL15, little difference was observed in SI over the growing season. The use of 

UI+NI (Limus+DMP) decreased NDRE SI at 96N compared to untreated fertilizer at V6, and UI 

at 130N had significantly lower SI at R4 compared to 130N alone. Although these differences 

were significant, SI values were all above 0.95 including the unfertilized treatment, indicating 

that crop vigor and N nutrition differences may not have been of agronomic significance.  

At SCAL16, the use of UI at 215N created SI values that remained among the highest 

throughout the growing season, even though treatments were similar and above 0.95 at almost all 

crop stages. The only treatment that had consistently lower SI was 0N. This is evidence that N 

fertilization promoted crop vigor, but the crop was sufficiently provided with N at 173N and 

above. A similar pattern was found at SCAL17. No differences in SI were observed throughout 

the growing season when UI alone or in combination with NI was added at 133N and above. 

Lower SI values were observed consistently with 0N and occasionally with 45N. This indicates 

that crop vigor responded to N fertilizer up to a certain rate and became unresponsive thereafter, 

regardless of inhibitor use, partially due to the fact that inhibitors were used at N rates above the 

responsive threshold.  

 Grain Yield 

Grain yield integrates the effects of N management on N losses and plant N sufficiency 

over the growing season. In spite of differences observed from chamber-measured NH3 losses 
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and crop vigor throughout the growing season, crop responses to N fertilizer were measurable in 

only three of the five studies, with resulting AONR values varying from 160 to 208 kg N ha-1.  

Overall, the use of UIs at different rates reduced potential NH3 losses, which varied from 

4 to 16 kg NH3-N ha-1. However, in no occasion was a UI able to improve grain yield compared 

to untreated fertilizer. Limited yield response to UI-treated fertilizer has been demonstrated in 

the literature (Gioacchini et al., 2002; Abalos et al., 2014; Silva et al., 2017; Cantarella et al., 

2018). Cantarella et al. (2018) summarized multiple studies on the impact of NBPT on the yield 

of various crops and found that, on average, NBPT increased corn grain yields by 4.1%. These 

authors attributed the limited or lack of yield response to NBPT to the large contribution of 

mineral N from other sources (e.g. mineralization) that end up supplying enough N and avoid 

untreated fertilizer loss causing crop N deficiency. Rose et al. (2018) further pointed out that 

many studies evaluating the effect of EEFs, including UIs, on grain or biomass yield do not 

include them at multiple N rates, and reported that the largest yield increase from their use (11% 

over untreated fertilizer) was observed at 50% of the optimal N rate.  

Therefore, the use of a UI is expected to increase grain yield when i) conditions 

conducive to fertilizer-derived NH3 volatilization exist, ii) fertilizer is applied at below-optimum 

N rates (N rate < AONR), and iii) the amount of N kept from being lost is large in comparison to 

loss from untreated fertilizer. None of the studies included in this study fulfilled all three of these 

conditions. At SCAL14 and SCAL17, inhibitors were applied at N rates below AONR, but 

potential NH3 volatilization from UI use was decreased by only 4 kg NH3-N ha-1 compared to 

untreated fertilizer. At CC15, SCAL15, and SCAL16, inhibitors were applied at N rates in excess 

of AONR.  



 

 

86 

The three conditions for observing a UI effect on yield are manageable to different 

degrees. All studies herein reported received N applications in the form of urea-containing N 

fertilizer, broadcast on the soil surface with varying amounts of crop residue, and with no 

weather forecast of rainfall following fertilizer application. Even then, potential NH3 losses 

measured by the sealed chamber method demonstrated limited room for UIs to save N, mostly 

due to low potential losses from untreated fertilizer. In three of five studies, UIs were only 

applied at N rates that were greater than AONR. Future studies evaluating the efficacy of UI on 

losses and grain yield should include UI treatments at lower N rates, perhaps closer to at least 

half of the full pre-plant recommended N rate, so the extent of N saved from UI use can 

contribute towards plant N demand.  

These constraints should create N fertilizer management scenarios where UI savings on 

volatilization could benefit N nutrition and have an impact on grain yield. Moreover, results from 

such studies could better inform producers and policymakers on the extent of how excessive 

current N rates can be and by how much they can be decreased given that fertilizer is protected 

against NH3 volatilization.  

 Conclusions 

 The efficacy of different inhibitors (UI, UI+NI) in decreasing NH3 volatilization losses 

and increasing corn grain yield was evaluated. All inhibitors were tested with broadcast 

application of UAN fertilizer at different rates. Volatilization losses from these studies were 

relatively low, ranging from 10 to 15% of applied fertilizer. The use of a UI decreased NH3 

losses from 21 to 62%, and Limus applied at the label rate was comparable to AgU and/or AgP 

in decreasing NH3 losses. Although using UIs decreased sealed-chamber measured NH3 losses, 

no inhibitor was able to improve grain yield over untreated fertilizer. That was because i) the 
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amount of fertilizer lost via volatilization was small, and ii) other sources of N (e.g. soil 

mineralization), likely provided N in excess of crop needs.   

 Although limited losses were observed in our study, NH3 volatilization can be significant 

for urea-containing, surface-applied N fertilizer. The extent of loss is directly dependable on 

rainfall volume and frequency surrounding fertilizer application. Therefore, using a UI can assist 

a producer in managing fertilizer loss risk associated with application window constraints and 

weather unpredictability by conserving time, soil, and economic resources.  
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Chapter 3 -  Nitrogen Management Practices and Yearly Weather Impact 

Long-term Yield Variability in Irrigated Corn 

 Introduction 

The application of nitrogen (N) fertilizer is a key management practice for achieving high 

yields in corn (Zea mays L.). Vast areas of the U.S. are planted to corn annually. In 2018, 89 

million ha in the U.S. was planted to corn (USDA-NASS, 2017). As a result, national fertilizer 

use for corn is also high, with 5.7 million tons of N fertilizer applied in 2014, or ~48% of all N 

fertilizer utilized in the country (USDA-NASS, 2017). However, once applied to the soil, 

fertilizer N is at risk of being lost to the environment through multiple pathways and in varying 

forms, including gas emissions as ammonia (NH3) (i.e. volatilization) and nitrous oxide (N2O) 

(i.e. byproducts of soil microbial N processes such as denitrification), and as N dissolved in 

solution (i.e. nitrate (NO!!) leaching) (Motavalli et al., 2008). In addition to causing negative 

environmental impacts, fertilizer N losses decrease N availability for crop uptake and conversion 

to grain yield, resulting in lower fertilizer returns on investment. Krupnik et al. (2004) estimated 

only 39% of fertilizer N was recovered in North American corn crops, comparable to the 37% 

estimated by Cassman et al. (2002) from 55 corn on-farm studies in the U.S. Midwest.  

To achieve greater crop fertilizer use efficiency and yield, best practices developed for 

fertilizer management often focus on adaptive approaches that address field-specific 

characteristics (i.e. soil type, local climate). The most widespread best practices are the “4Rs” of 

nutrient stewardship, where each “R” represents the right source, right rate, right placement and 

right timing (Bruulsema et al., 2008).  Although there exists a general understanding of cause 

and effect between N management practices and their effects on yield and losses, yield outcomes 

are not always assured due to the complexity of the N cycle and the interactions between 
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management, soil, and weather. For an example of N timing, the widely accepted best practice is 

to minimize the time between N application and when crops begin their growing season. In other 

words, N applied in the fall after grain harvest is expected to be more prone to loss and thus less 

favorable for yield and profit compared to N applied in the spring (Hendrickson et al., 1978; 

Touchton et al., 1979; Torbert et al., 2001; Randall et al., 2003; Randall and Vetsch, 2005; Tao et 

al., 2018). Some studies, however, have reported no differences (Torbert et al., 2001) or even 

higher yields from fall vs. spring applications in certain conditions (Randall and Vetsch, 2005).   

In the case of selecting N rate, predictive approaches (i.e. mass balance, maximum return 

on N) are the historical standard, where a single N rate is recommended for whole-field use.  For 

a given fertilizer source, newer technological advances can now address multiple aspects of the 

4R paradigm simultaneously (i.e. rate, timing, placement) by using in-season reactive approaches 

through crop sensors (Raun et al., 2002; Scharf and Lory, 2009; Holland and Schepers, 2010; 

Solari et al., 2010), models (Melkonian et al., 2008; Setiyono et al., 2011), and the development 

of new products such as stabilized fertilizers.    

Stabilized fertilizers are defined by the American Plant Food Control Officials 

(Association of American Plant Food Control Officials, 2013) as “…a fertilizer to which 

nitrogen stabilizer has been added…[to extend] the time the nitrogen component of the fertilizer 

stays in the soil in the urea-N or ammoniacal-N form.”  Nitrification inhibitors (NIs) and urease 

inhibitors (UIs) are both categorized as stabilizers for N fertilizer. The use of these inhibitors 

with conventional fertilizer sources is often effective in decreasing average N losses and 

increasing average crop yield (Hergert and Wiese, 1980; Wolt, 2004; Abalos et al., 2014). The 

range of N losses and yield responses to inhibitors, however, vary widely, with reports of no or 
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negative effects on N losses (Gioacchini et al., 2002; Soares et al., 2012) and yield (Blackmer 

and Sanchez, 1988; Cerrato and Blackmer, 1990).  

Researchers and producers are continually exploring the 4Rs for N fertilizer management 

to better identify specific soil and weather conditions that favor yield and reduce loss outcomes. 

Most studies evaluating N management practices are relatively short (<5 yr) and have limited 

assessment of how other management practices and interannual weather variability interact with 

N management to affect grain yield.  Such comprehensive evaluations require long-term datasets 

with static combinations of different management treatments. To identify the individual or suite 

of best practices that optimized yield level while reducing yield variability and N losses, we 

assessed a 28-yr field study of irrigated corn in south central Nebraska USA. Specifically, we:  i) 

evaluated the effects of N rate, tillage, N application timing, and the use of nitrapyrin (an NI) on 

grain yield; and ii) assessed how weather affected grain yield responses under these different N 

management practices over time. Soils were also measured to evaluate the effectiveness of 

different management practices on soil fertility status (organic matter, nutrient availability). 

 

 Material and Methods 

 Site Description 

This study was conducted at the University of Nebraska-Lincoln South Central 

Agricultural Laboratory (SCAL), near Clay Center, Nebraska (40.571297° N, 98.134988° W). 

The predominant soil type is a Crete silt loam (Fine, smectitic, mesic Pachic Udertic 

Argiustolls). The study was established in 1986. While study location remained constant, corn 

hybrid changed over time as new hybrids were released in the region to better represent relevant 
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producer practice.  Management treatments were also adjusted periodically to maintain relevancy 

(see below). 

Corn was planted in 0.76-m row spacing at a target population of 74,000 plants ha-1, with 

planting dates varying from April 17th to May 21st over the 28 years of study. All treatments 

below received the same irrigation inputs.  Herbicides and/or pesticides were applied as needed.  

Since 2010, 112 kg ha-1 of monoammonium phosphate (11-52-0) was surface broadcasted during 

winter to the entire study area. Tillage occurred shortly after 11-52-0 application. Grain yield 

was measured by combine-harvesting the middle 2 rows of each plot and reported on a 15.5% 

moisture basis.  

 Experimental and Treatment Design 

This study was established in a randomized complete block with four replicates, with 

minor treatment changes over the full 31-yr period (1986 to 2017).  From 1986 to 1988, 

treatments were in a split-split-split-plot arrangement with the main factor of N fertilizer rate 

applied as anhydrous ammonia (0, 75, 150, 300 kg N ha-1, hereafter 0N, 75N, 150N, 300N, 

respectively), the split-plot factor of tillage [conventional chisel/disk (CT), reduced tillage (RT)], 

the split-split-plot factor of corn hybrid (Pioneer 3377, 3475, 3551), and split-split-split plot 

factor of nitrification inhibitor (with NI, without NI) as N-Serve® (0.5 kg nitrapyrin ha-1; Dow 

Agrosciences LLC, Indianapolis, IN].  Reduced tillage is defined as intermittent no-till and 

ridge-till. From 1989 to 1992, fertilization timing treatment factor was added as early side-dress 

(SD, approximately V4) and late SD (approximately V8). In 1990, the corn hybrid treatment 

factor was dropped, and a single hybrid adapted to the region was planted thereafter. From 1993 

to 2013, fertilization timing was changed to spring pre-plant (PP) (from four weeks to one day 



 

 

95 

before planting) and SD (approximately V4). From 2014 through present, fertilizer timing was 

dropped as a variable, and all fertilizer has been applied PP in the spring.  

 Soil Data 

Soil was sampled for fertility characterization in the fall of 2000 and 2006 after harvest. 

Sampling in 2000 characterized 14-yr changes in surface soils (0-20 cm) since study 

establishment, for which the last 10 yrs (1990 to 2000) covered the period using only one corn 

hybrid throughout the study.  In 2000, samples were taken from the N rate treatment plots (0N, 

75N, 150N and 300N) from blocks 1 and 4 at the 0-20 cm depth. Samples were pooled by plot, 

mixed and analyzed for pH, soil organic matter (SOM; % loss on ignition), nitrate (NO!!-N; 

ppm), Bray phosphorus (P; ppm), potassium (K; ppm), and zinc (Zn; ppm).   

Sampling in 2006 characterized 20-yr soil changes throughout the whole soil profile (to 

91-cm depth) since study establishment. In 2006, samples were taken from 10 treatments in 

blocks 1, 2 and 3. Treatments sampled were all combinations of three N rates (0N, 150N, 300N), 

two tillage types (CT, RT) and Nserve (with vs. without), except for 0N-CT-Nserve and 0N-RT-

Nserve, which were not treatments in the field design. Six cores per plot from a radius of 3 m 

around a sampling point were taken to 91-cm depth and split into 15-cm increments, for a total of 

six depths. Three cores were randomly selected and composited by depth for fertility 

characterization (pH, SOM, P, K; described above). In addition, particulate organic matter 

(POM; Mg ha-1) was also measured. The remaining three cores were kept intact for 

determination of bulk density (Mg m-3) (data not shown).  

 Weather Data 

Daily weather data for the 28-yr period from 1990 to 2017 was obtained from a weather 

station located within 1 km of the study site. Weather variables included solar radiation 
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(Solar_MJm2d, in MJ m-2 d-1); air relative humidity (RH_pct, in %); precipitation (Precip_mm) 

and evapotranspiration (ET_mm); wind speed (WindSp_ms, in m s-1); soil temperature at 10 cm 

depth (SoilT10cm_C) and minimum (Tmin_C), and maximum air temperature (Tmax_C), in °C. 

Secondary variables were calculated from the measured variables and included growing degree 

days (GDD, Eq. [3.1]) with a base temperature of 10°C, corn heat units (CHU, Eq. [3.2]), 

precipitation Shannon diversity index (SDI, Eq. [3.3]) and abundant well-distributed rainfall 

(AWDR, Eq. [3.4]) (Tremblay et al., 2012).  

   𝑮𝑫𝑫 =   (𝑻𝒎𝒂𝒙! 𝑻𝒎𝒊𝒏)
𝟐

− 𝟏𝟎, where                                 [ 3.1] 
 

Tmax = maximum daily air temperature in °C. If Tmax > 30°C, then Tmax is set to 30°C. 

Tmin = minimum daily air temperature in °C. If Tmin < 10°C, then Tmin is set to 10°C. 

 
𝑪𝑯𝑼 =   (𝒀𝒎𝒂𝒙! 𝒀𝒎𝒊𝒏)

𝟐
, where                   [ 3.2 ] 

 

 Ymax = 3.3(Tmax – 10) – 0.084(Tmax – 10)2. If Tmax < 10C, then Ymax is set to 0. 

 Ymin = 1.8(Tmin – 4.44). If Tmin < 4.44C, then Ymin is set to 0. 

 Tmax is the maximum daily temperature, in °C. 

 Tmin is the minimum daily temperature, in °C. 

 

𝑺𝑫𝑰 = ! 𝒑𝒊 𝐥𝐧 (𝒑𝒊)
𝐥𝐧 (𝒏)

, where                                         [ 3.3 ] 

 

  𝑝𝑖 = !"#$% !"#$%"&& !" !! 
!"#"$%&'() !!"#$!%% !" !!

  

 n is the number of days in the period used to calculate the cumulative rainfall. 
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 𝑨𝑾𝑫𝑹 = 𝑪𝒖𝒎𝒖𝒍𝒂𝒕𝒊𝒗𝒆 𝒑𝒓𝒆𝒄𝒊𝒑𝒊𝒕𝒂𝒕𝒊𝒐𝒏 × 𝑺𝑫𝑰                     [ 3.4 ] 
  

 Statistical Analysis 

Soil properties measured in 2000 were analyzed separately using a mixed model analysis 

of variance (ANOVA), with Nrate as a fixed effect and Block as random effect. Soil properties 

measured in 2006 were analyzed separately for each soil depth using a mixed model ANOVA, 

with Nrate, tillage, Nserve and their two- and three-way interactions as fixed effects. Block and 

all interaction terms including it were considered random and were appropriately pooled at each 

experimental unit size to represent experimental error. Means for significant fixed treatment 

responses were compared with Fisher’s least-significant differences.  All statistical outcomes 

were significant at α = 0.05, unless noted. 

Although this study has been ongoing for 31 years, only data from the last 28 years (1990 

to 2017) are evaluated here. Grain yield responses were analyzed for two time periods. Period 

one (1994 to 2013) corresponded to the study period that included fertilizer application timing as 

a variable. Analyses for period one excluded 1993 because no SD application was applied that 

year, and excluded 1999 due to hail damage. Period two (1990 to 2017) corresponded with the 

study period when only one corn hybrid was used across treatments. Yield data were pooled 

across timing treatments from 1990 to 1993 before joining data to the full 28-year dataset.  

For each time period, 0N grain yields were excluded from statistical analysis to evaluate 

the full factorial nature of the design (0N with Nserve was not an applied treatment). Period one 

grain yield was analyzed with a mixed model ANOVA, where year, N rate, tillage, application 

timing, and Nserve were considered as fixed effects. Block, block within year and all interaction 

terms including these effects were considered random and were appropriately pooled at each 
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experimental unit size to represent experimental error. Period two grain yield was analyzed 

similarly, except with no application timing treatment included.  For each time period, yield 

differences for significant fixed treatment responses were evaluated with Fisher’s least-

significant differences. All statistical outcomes were significant at α = 0.05, unless noted. 

Post-hoc analyses for significant treatment effects showed a high range of interannual 

variability in grain yield. To facilitate statistical analyses of weather (described below), mean 

grain yields for year were grouped into three year-yield potential categories: high-yielding years 

(12.6 to 14.7 Mg ha-1), medium-yielding years (10 to 12 Mg ha-1), and low-yielding years (8.5 to 

9.8 Mg ha-1). Years were grouped by utilizing the k-means unsupervised classification algorithm. 

The number of groups (k, i.e. three in this case) was chosen based on the value of k that most 

parsimoniously maximized inter-group variance and minimized intra-group variance.  For period 

one, significant treatments that included both year and application timing (Ntiming) were 

selected for further weather assessment.  For period two, weather assessment was conducted for 

significant treatments with the most interaction terms that included year.   

For the significant treatments identified above, years were classified as having a negative 

(less than), neutral (equal to) or positive (greater than) yield group response in relation to a given 

significant interaction between year and other treatment factors. For example, for the interaction 

between Year and Nserve, a year that using Nserve created higher yield than untreated fertilizer 

was categorized as “Positive”; a year that using Nserve created lower yield than untreated 

fertilizer was categorized as “Negative”, and a year where no yield difference existed was 

categorized as “Neutral”.  

Thereafter, weather data were summed or averaged into increments of 1 to 15 weeks, 

starting with the N fertilizer application date(s) of each year.  Weather variables summed were 
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Precip_mm, ET_mm, CHU_sum, and GDD_sum, and those averaged were Solar_MJm2d, 

RH_pct, WindSp_ms, SoilT10cm_C, Tmin_C, Tmax_C, SDI, and AWDR. Incremental weather 

data and year-yield potential (i.e. high, medium, low) were then input into a conditional 

inference tree (CIT; described below) to identify which variables had the strongest ability to 

predict the effectiveness of significant management treatments.  In addition, the CIT identified 

the optimum time windows (1 to 15 weeks) after fertilizer application for which these weather 

variables had the strongest predictive power.     

Conditional inference trees have been increasingly used for unstructured agricultural data 

such as weather (Mourtzinis et al., 2018a; b).  The main advantages for using CIT are 

unbiasedness; avoidance of overfitting; robustness to outliers, missing data, multicollinearity and 

heteroscedasticity; handling of both continuous and categorical data; accounting of interactions 

among variables and of variables measured at different scales; and consideration of distributional 

properties of the measures (Hothorn et al., 2006).   

Here, the CIT is used to identify significant weather predictors for yield level (i.e. 

variable selection), then partition those significant predictors in order of strongest to weakest 

effect (i.e. splitting). The effect level is pre-defined (here, α = 0.1; see below) such that for all 

combinations of predictor variables (weather), the strongest predictor is identified (i.e. lowest p-

value) and the CIT splits (i.e. node one), with each subsequent weather predictor branching the 

tree into subsequent nodes (i.e. nodes two through X) in order of predictive strength.  These 

independence tests are conducted through a permutation test framework where all steps are 

recursively repeated until no significant independent predictors remain and the tree is complete 

(Hothorn et al., 2006).  
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For this work, the independence test was performed by using a Bonferroni-adjusted 

Monte-Carlo p-value (α = 0.1). Further, each terminal node was ensured to account for at least 

14% of the total observations to protect against overfitting and power loss. To prioritize simpler 

tree models, the maximum tree depth here was set to 10 nodes. After performing CIT, selected 

weather variables were fit into a logistic (two categorical outcomes) or ordinal multinomial 

(three categorical outcomes) regression algorithm to assess the probability of yield group 

responses to CIT-selected weather variables.  

All statistical analyses were performed in R (R Development Core Team, 2017). The lme 

function from nlme package (Pinheiro et al., 2017) was used for soil and grain yield analysis. 

The kmeans function from stats package (R Core Team, 2017) was used for year-yield potential 

grouping. The ctree function from partykit package (Hothorn et al., 2006; Hothorn and Zeileis, 

2015) was used for weather CIT analysis. The functions glm and polr from packages stats (R 

Core Team, 2017) and MASS (Venables and Ripley, 2002) were used to fit logistic and ordinal 

multinomial regression analysis, respectively. 

 Results 

 Soil Characterization 

 Soil properties at the 0-20 cm layer varied among different N rate treatments in 2000 

(Figure 3.1). Nitrogen rate affected NO!! (p<0.001), K (p=0.035), and pH (p<0.001). Nitrate did 

not differ among 0N, 75N, and 150N (average of 6.1 ppm) but was highest under 300N (17.3 

ppm). Adding N fertilizer increased soil K relative to 0N, but no pairwise comparison between N 

rates were different at α =0.1. This is likely a result of the low number of replicates (n=2) and 

high degree of variability. Soil pH tended to decrease as N rate increased, with lowest pH under 

300N (5.8) and pH 6.5 for all other N rates (range 6.45 to 6.65). 
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Figure 3.1. Soil properties boxplots (n=2) from N rate treatments (0N, 75N, 150N and 
300N) at 0-20 cm depth in 2000.  
 

 Soil properties varied as a function of N rate, tillage type and Nserve at different soil 

depths in 2006 (Figure 3.2). Soil pH was only affected by one or more treatment factors at the 0-

15, 15-30, 30-46, and 46-61 cm depths. Soil pH at the 0-15 cm depth was affected by N rate × 

tillage (p=0.02), with the lowest pH under CT-300N.  Soil pH at the 15-30, 30-46 and 46-61 cm 

depths was affected by N rate only, with 300N < 150N and differences between N rate 

treatments decreasing as depth increased. 

Soil POM was affected by one or more treatment factors at the 0-15, 30-46 and 46-61 cm 

depths only. Soil POM at the 0-15 cm depth was affected by N rate × Tillage × Nserve 

(p=0.008), where POM was highest for 300N-RT-noNserve (7.35 Mg ha-1) and lowest for both 

300N-CT-noNserve (5.4 Mg ha-1) and 300N-RT-Nserve (5.8 Mg ha-1). Soil POM at the 30-46 
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cm depth was affected by Nserve only (p=0.0002), where POM was lower with vs. without 

Nserve (0.72 vs. 0.81 Mg ha-1). Soil POM at the 46-61 cm depth was affected by the main effects 

of tillage (p=0.007) and Nserve (p=0.04), where POM was marginally higher in CT than RT 

(0.74 vs. 0.61 Mg ha-1, p=0.054), and marginally lower with vs. without Nserve (0.63 vs. 0.73 

Mg ha-1, p=0.073). 

Soil OM was affected by one or more treatment factors at the 15-30, 30-46, and 76-91 cm 

depths only. Soil OM at the 15-30 cm depth was marginally affected by tillage, with CT < RT 

(2.3 vs. 2.42%, p=0.063). Although SOM at the 30-46 cm depth was affected by tillage × Nserve 

(p=0.02), no pairwise comparison was significant at α =0.1 (varying from 1.93% for RT without 

Nserve to 2.15% for RT with Nserve). Soil OM at the 76-91 cm depth was affected by the main 

effect of Nserve (p=0.01) and N rate × tillage (p=0.03), where SOM was lower with vs. without 

Nserve (1.24 vs. 1.32%), and lower in CT-150N (1.22%) vs. RT-150N (1.39%).  

Soil K was only affected by one or more treatment factors at the 0-15, 15-30, 30-46, and 

46-61 cm depths. Soil K at the 0-15 and 15-30 cm depths was affected by N rate (p=0.005 and 

0.01, respectively), with 300N numerically higher than 150N at both depths. Soil K at the 30-46 

and 46-61 cm depths was affected by N rate × Nserve (p=0.042 and 0.05, respectively). In spite 

of the significant effect on the ANOVA, the N rate × Nserve pairwise comparisons at these 

depths were not significant at α =0.1, with numerically higher K under 300N without Nserve 

(488 and 524 ppm at the 30-46 and 46-61 cm depths, respectively) and lower under 150 without 

Nserve (407 and 478 ppm at the 30-46 and 46-61 cm depths, respectively). 

Soil P was only affected by one or more treatment factors at the 15-30, 30-46 and 61-76 

cm depths. Soil P at the 15-30 cm depth was affected by N rate × tillage (p=0.046), and though 

no pairwise comparison was significant at α =0.1, P was numerically highest at 300N under RT 
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only. Soil P at the 30-46 cm depth was significantly affected by N rate × Nserve (p=0.02), 

however no pairwise comparison was significant at α =0.1, with 300N with Nserve having the 

numerically greatest P concentration (6.7 ppm) and 150 N with Nserve having the lowest (5.2 

ppm). Soil P at 61-76 cm depth was affected by N rate × tillage × Nserve (p=0.048), with adding 

Nserve decreased soil P in the 150N-RT treatment only (21.6 ppm with vs 8.4 ppm without). 

 

 

Figure 3.2. Soil properties boxplots (n=3 for 0N, n=6 for all others) at six depths from N 
rate (0N, 150N and 300N) and tillage (conventional and reduced) treatments across block 
and Nserve (with and without) treatment levels in 2006. 

 Weather Summary 

 Weather conditions were highly variable during the 28 yrs of study (Figure 3.3). For 

analysis purposes, weather variables were summarized [either summed (Precip_mm, ET_mm, 

CHU_sum, GDD_sum) or averaged (all others)] from 1 to 13 weeks after fertilizer application. 

Because each summarizing window creates unique data, weather variables from a period of 3 
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and 13 weeks after fertilizer application have been chosen for display.  These two periods were 

approximately the ones that best explained most of the weather-related yield variability observed 

under different treatment factors and interactions (discussed below). 

For the 3-week window after fertilizer application over all years, daily air minimum 

temperature ranged from 0.6 to 18ºC and averaged 11ºC. Cumulative corn heat units ranged from 

137 to 497 and averaged 372. Daily solar radiation ranged from 11.4 to 24.5 and averaged 20 MJ 

m-2 d-1. Cumulative precipitation ranged from 16 to 182 mm and averaged 70.7 mm. SDI ranged 

from 0.14 (more concentrated) to 0.75 (more distributed) and averaged 0.46. 

For the 13-week window after fertilizer application over all years, daily air minimum 

temperature ranged from 7.9 to 16.2ºC and averaged 13.8ºC over the years. Cumulative corn heat 

units (CHU_sum) ranged from 1296 to 2158 and averaged 1723. Daily solar radiation ranged 

from 17.5 to 23.2 and averaged 20.5 MJ m-2 d-1. Cumulative precipitation ranged from 114.4 to 

543.8 mm and averaged 274.2 mm. SDI ranged from 0.48 to 0.69 and averaged 0.58. 
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Figure 3.3. Daily weather variables and yield summary for windows of 3 and 13 weeks after 
fertilizer application. Red and green shades represent values that are closer to the 
minimum and maximum for a given variable over all years, respectively. 
 

 Grain Yield and Weather from Period One (1994 to 2013) 

 ANOVA 

Corn grain yield from period one (1994 to 2013 except 1999, 19 years) was significantly 

affected by year, N rate, tillage, timing, Nserve, and many two- and three-way interactions 

between these variables at α=0.05 (Table 3.1). Given that the main focus of period one was to 

assess the impact of timing on grain yield, alone and as part of interactions, expected marginal 

means were calculated for Year × Ntiming × Nserve (p<0.05), Year × Nrate × Ntiming (p<0.01), 
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and Year × Ntiming (p<0.001). Other significant three-way interactions not including Ntiming 

(i.e. Year × Nrate × Nserve) were explored using the period two dataset (discussed later). 

Table 3.1. Grain yield analysis of variance table for period one (1994 to 2013 except 1999, 
19 years). 
Source NumDF DenDF Pr(>Chisq) Significance 
(Intercept) 1 684 <0.001 *** 
Year 18 54 <0.001 *** 
Nrate 2 114 <0.001 *** 
Tillage 1 171 <0.001 *** 
Ntiming 1 342 <0.001 *** 
Nserve 1 684 <0.001 *** 
Year × Nrate 36 114 <0.001 *** 
Year × Tillage 18 171 <0.001 *** 
Nrate × Tillage 2 171 <0.001 *** 
Year × Ntiming 18 342 <0.001 *** 
Nrate × Ntiming 2 342 <0.001 *** 
Tillage × Ntiming 1 342 0.51 

 Year × Nserve 18 684 <0.001 *** 
Nrate × Nserve 2 684 <0.01 ** 
Tillage × Nserve 1 684 <0.001 *** 
Ntiming × Nserve 1 684 <0.001 *** 
Year × Nrate × Tillage 36 171 0.91 

 Year × Nrate × Ntiming 36 342 <0.01 ** 
Year × Tillage × Ntiming 18 342 0.83 

 Nrate × Tillage × Ntiming 2 342 0.26 
 Year × Nrate × Nserve 36 684 <0.01 ** 

Year × Tillage × Nserve 18 684 0.18 
 Nrate × Tillage × Nserve 2 684 <0.05 * 

Year × Ntiming × Nserve 18 684 <0.05 * 
Nrate × Ntiming × Nserve 2 684 0.17 

 Tillage × Ntiming × Nserve 1 684 0.13 
 Year × Nrate × Tillage × Ntiming 36 342 1 
 Year × Nrate × Tillage × Nserve 36 684 0.81 
 Year × Nrate × Ntiming × Nserve 36 684 0.23 
 Year × Tillage × Ntiming × Nserve 18 684 0.88 
 Nrate × Tillage × Ntiming × Nserve 2 684 0.84 
 Year × Nrate × Tillage × Ntiming × Nserve 36 684 0.84   

 

 Year × Ntiming × Nserve 
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 The use of Nserve significantly increased grain yield (from 0.37 to 0.73 more Mg ha-1) in 

six out of 19 years when fertilizer was PP applied, compared to one occasion (0.36 Mg ha-1) 

when fertilizer was SD applied (Figure 3.4). The use of Nserve decreased yield in one occasion 

for each fertilizer timing, 0.35 and 0.41 less Mg ha-1 for PP and SD applied, respectively, 

compared to not using Nserve. 

  

Figure 3.4. Mean (n=24) corn grain yield as affected by year, fertilizer timing (pre-plant vs. 
side-dress) and Nserve (W=with vs. W/O=without) for period one (1994 through 2013 
except for 1999). Means within a given year and fertilizer timing followed by a common 
letter are not significantly different at α=0.05. Numbers in the plot area represent Δyield 
calculated as YieldwithNserve – YieldwithoutNserve, in Mg ha-1. 
 

 Based on the yield responses observed for Nserve (with, W; without, W/O) for its 3-way 

interaction with Year and Ntiming (Figure 3.4), annual yield outcomes (YieldwithNserve – 

YieldwithoutNserve) were classified as W < W/O (2001, 2012), W > W/O (1994, 1997, 2005, 2007, 
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2008, 2010) and W = W/O (all other years). The optimum prediction window for assessing 

weather impacts on Nserve effectiveness was 3 weeks after fertilizer application. The CIT-

selected weather variables with the strongest predictive power for Nserve effectiveness were:  

year-yield potential (high vs. medium and low categories) and air minimum temperature 

(Tmin_C = 6ºC; Figure 3.5), with a collective predictive accuracy of 86%.  Using Nserve during 

high-yielding years either had no effect (78% of years) or a negative effect (22% of years) on 

yield, but never a positive effect (0% of years).  For medium/low-yielding years, using Nserve 

had a positive effect on yield when Tmin_C < 6ºC during the 3-week window after fertilizer 

application for 60% of years and no effect for 40% of years.  When Tmin_C > 6ºC, Nserve 

benefits dropped to only 8% of years, with no effect occurring for 92% of year 
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Figure 3.5. Conditional inference tree for the response of Nserve (negative, neutral or 
positive based on YieldwithNserve – YieldwithoutNserve from the Year × Ntiming × Nserve 
interaction) across year and timing over three weeks after fertilizer application. Each 
terminal node contains the ratio of cases in each yield response category. Note: n= number 
of observations, YearYieldPotential is the year-yield potential grouping (High from 12.6 to 
14.7 Mg ha-1, Medium from 10 to 12 Mg ha-1 and Low from 8.5 to 9.8 Mg ha-1). 
 

 The probabilities of observing Nserve yield responses to Tmin_C based on the Year × 

Ntiming × Nserve interaction was calculated for each year-yield potential group (Figure 3.6).  

For high-yielding years, the probability of observing a negative Nserve yield response increased 

as Tmin_C increased. For medium-yielding years, the probability of observing a positive Nserve 

yield response decreased as Tmin_C increased. For low-yielding years, using Nserve had a 100% 

probability of having no effect on yield (i.e. neutral). 
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Figure 3.6. Ordinal multinomial regression for the response of Nserve (negative, neutral or 
positive based on YieldwithNserve – YieldwithoutNserve from the Year × Ntiming × Nserve 
interaction) as impacted by year-yield potential and average air minimum temperature 
over three weeks after fertilizer application. 

 Year × Nrate × Ntiming 

The effect of fertilizer application timing and N rate on grain yield varied among years 

(Figure 3.7). Side-dressed N fertilizer increased grain yield compared to PP application nine 

years at 75N, three years at 150N, and one year at the 300N rate.  Pre-planting applied N 

fertilizer increased grain yield compared to SD for one year at 150N and three years at 300N. 
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Figure 3.7. Mean (n=16) corn grain yield as affected by year, N rate (75, 150 and 300 kg N 
ha-1) and fertilizer timing (pre-plant vs side-dress) for period one (1994 through 2013 
except for 1999). Means within a given year and N rate followed by a common letter are not 
significantly different at α=0.05. Numbers in the plot area represent Δyield calculated as 
Yieldpre-plant – Yieldside-dress, in Mg ha-1. 
  

Based on the yield responses observed for Ntiming (pre-plant, PP; side-dress, SD) for its 

3-way interaction with Year and Nrate (Figure 3.7), annual yield outcomes (Yieldpre-plant – 

Yieldside-dress) were classified as PP > SD (1995, 1997, 1998, 2004), PP < SD (1994, 2000, 2001, 

2005, 2006, 2007, 2008, 2010) and PP = SD (all others). The optimum prediction window for 

assessing weather impacts on Ntiming effectiveness was 13 weeks after fertilizer application. 

The CIT-selected weather with the strongest predictive power for Ntiming effect were: solar 

radiation (Solar_Mjm2d = 19 MJ m-2 d-1), year-yield potential (low vs. medium and high 

categories) and precipitation (Precip_mm = 211 mm, Figure 3.8), with a collective predictive 
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accuracy of 70%. Positive yield response from PP fertilizer application was observed with the 

highest frequency (70% of years) when solar radiation was below 19.4 MJ m-2 d-1. Negative 

yield response from PP fertilizer application was observed when solar radiation was above 19.4 

MJ m-2 d-1 in high- and medium-yielding years, and at a higher frequency (60% of years) when 

cumulative precipitation was above 211 mm. Neutral response (no yield difference between PP 

and SD) was observed in all scenarios, with the highest probability (80% of years) when solar 

radiation was above 19.4 MJ m-2 d-1 under low-yielding years.  
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Figure 3.8. Conditional inference tree for the response of application timing (negative, 
neutral or positive based on Yieldpre-plant – Yieldside-dress from the Year × Nrate × Ntiming 
interaction) across year and N rate over 13 weeks after fertilizer application. Each terminal 
node contains the ratio of cases in each yield response category. Note: n= number of 
observations, Solar_Mjm2d is the average solar radiation in MJ m-2 d-1, YearYieldPotential 
is the year-yield potential grouping (High from 12.6 to 14.7 Mg ha-1, Medium from 10 to 12 
Mg ha-1 and Low from 8.5 to 9.8 Mg ha-1), Precip_mm is the cumulative precipitation in 
mm. 
 

The probabilities of observing different yield response groups based on the Year × Nrate 

× Ntiming interaction as affected by solar radiation, year-yield potential and cumulative 

precipitation are shown on Figure 3.9. In general, the probability of observing a decrease in yield 

from PP compared to SD (negative) increased as both cumulative precipitation and solar 

radiation increased. The highest probability of a negative yield response (PP lower than SD) was 

at higher cumulative precipitation and higher average solar radiation conditions under medium- 
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and high-yielding years. The highest probability of a positive yield response (PP higher than SD) 

was at lower cumulative precipitation and lower average solar radiation conditions under low-

yielding years. 

 

 

Figure 3.9. Ordinal multinomial regression for the response of application timing (negative, 
neutral or positive based on Yieldpre-plant – Yieldsid-edress from the Year × Nrate × Ntiming 
interaction) as impacted by year-yield potential, solar radiation quantile levels and 
cumulative precipitation over 13 weeks after fertilizer application. 

 Year × Ntiming 

 Grain yield was significantly affected by application timing over the years (Figure 3.10). 

SD N fertilizer produced higher grain yield (from 0.38 to 1.21 Mg ha-1 more grain) than PP 

applications in seven out of 19 years. PP fertilizer application produced higher grain yield (from 

0.39 to 0.49 Mg ha-1 more grain) than SD in three out of 19 years.  
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Figure 3.10. Mean (n=48) corn grain yield as affected by year, and fertilizer timing (pre-
plant vs. side-dress) for period one (1994 through 2013 except for 1999). Means within a 
given year followed by a common letter are not significantly different at α=0.05. Numbers 
in the plot area represent Δyield calculated as Yieldpre-plant – Yieldside-dress, in Mg ha-1. 
 

Based on the yield responses observed for the Ntiming (pre-plant, PP; side-dress, SD) for 

its 2-way interaction with Year (Figure 3.10), annual yield outcomes (Yieldpre-plant – Yieldside-dress) 

were classified as PP > SD (1995, 1997, 2004), PP < SD (1994, 2005, 2006, 2007, 2008, 2009, 

2010) and PP = SD (all others). The optimum prediction window for assessing weather impacts 

on Ntiming effect was 15 weeks after fertilizer application. The CIT-selected weather variables 

with the strongest predictive power for Ntiming effect were: year-yield potential (low and high 
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vs. medium categories) and precipitation (Precip_mm = 219 mm, Figure 3.11), with a collective 

predictive accuracy of 78%. Negative yield response from PP application was observed only 

under medium-yielding years, with highest frequency (60% of years) when cumulative 

precipitation was above 219 mm. Positive yield response from PP application was also observed 

in medium-yielding years, and at a higher frequency (20% of years) when cumulative 

precipitation was above 219 mm. Neutral response (no yield difference between PP and SD) was 

observed in all scenarios, with the highest probability (100% of years) occurring under low- and 

high-yielding years. 

 

 

Figure 3.11. Conditional inference tree for the response of application timing (negative, 
neutral or positive based on Yieldpre-plant – Yieldside-dress from the Year × Ntiming 
interaction) across year over 15 weeks after fertilizer application. Each terminal node 
contains the ratio of cases in each yield response category. Note: n= number of 
observations, YierYieldPotential is the year-yield potential grouping (High from 12.6 to 
14.7 Mg ha-1, Medium from 10 to 12 Mg ha-1 and Low from 8.5 to 9.8 Mg ha-1), Precip_mm 
is the cumulative precipitation in mm. 
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The probabilities of observing different yield response groups based on the Year × 

Ntiming interaction as affected by year-yield group and cumulative precipitation are shown on 

Figure 3.12. In general, the probability of observing a decrease in yield from PP compared to SD 

(negative) increased as cumulative precipitation increased for all year-yield groups. However, 

the probability of a negative impact of PP vs. SD increased at a faster rate under medium-

yielding years. The highest probability of a positive yield response (PP higher than SD) was at 

lower cumulative precipitation under low and high-yielding years. 

 

 

Figure 3.12. Ordinal multinomial regression for the response of application timing 
(negative, neutral or positive based on Yieldpre-plant – Yieldside-dress from the Year × Ntiming 
interaction) as impacted by year-yield potential and cumulative precipitation over 15 weeks 
after fertilizer application. 
 

 Grain Yield from Period Two (1990 to 2017, 28 years) 

 ANOVA 
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Corn grain yield from period two (1990 to 2017, 28 years) was significantly affected by 

year, N rate, tillage, Nserve, many two-way interactions between these variables and one three-

way interaction at α=0.05 (Table 3.3). Expected marginal means were calculated for Year × 

Nrate × Nserve (p<0.001), Year × Tillage (p<0.001), Year × Nrate (p<0.001), Tillage × Nserve 

(p<0.001), and Nrate × Tillage (p<0.001). 

 

Table 3.2. Grain yield analysis of variance table for period two (1990 to 2017, 28 years). 
Source NumDF DenDF Pr(>Chisq) Significance 
(Intercept) 1 504 <0.001 *** 
Year 27 81 <0.001 *** 
Nrate 2 168 <0.001 *** 
Tillage 1 252 <0.001 *** 
Nserve 1 504 <0.05 * 
Year × Nrate 54 168 <0.001 *** 
Year × Tillage 27 252 <0.001 *** 
Nrate × Tillage 2 252 <0.001 *** 
Year × Nserve 27 504 <0.001 *** 
Nrate × Nserve 2 504 0.12 

 Tillage × Nserve 1 504 <0.001 *** 
Year × Nrate × Tillage 54 252 0.93 

 Year × Nrate × Nserve 54 504 <0.001 *** 
Year × Tillage × Nserve 27 504 0.05 

 Nrate × Tillage × Nserve 2 504 0.29 
 Year × Nrate × Tillage × Nserve 54 504 0.99   

  

 Year × Nrate × Nserve 

 Grain yield was affected by the interaction between Year × Nrate × Nserve (Figure 3.13). 

Positive responses to Nserve were observed 4, 2 and 3 times at 75N, 150N and 300N, 

respectively, ranging from 0.4 to 0.6 Mg ha-1 more grain compared to fertilizer alone. Negative 

responses were observed 2, 1 and 1 times at 75N, 150N and 300N, respectively, ranging from 0.5 
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to 0.7 Mg ha-1 less grain compared to fertilizer alone. All other years for all N rate treatments 

showed no response to Nserve.   
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Figure 3.13. Mean (n=8) corn grain yield as affected by N rate (75, 150 and 300 kg N ha-1), 
year and Nserve (W=with vs. W/O=without) for period two (1990 through 2017). Means 
within a given year followed by a common letter are not significantly different at α=0.05. 
Green-shaded panels indicate that the use of NI statistically increased yield in at least one 
N rate. Red shaded panels indicate that the use of NI statistically decreased yield in at least 
one N rate. Numbers in the plot area represent Δyield calculated as YieldwithNserve – 
YieldwithoutNserve, in Mg ha-1. 
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Based on the yield responses observed for the Year × Nrate × Nserve interaction (Figure 

3.13), years were classified as W < W/O (1991, 2002, 2012, 2017), W > W/O (1992, 1994, 2000, 

2004, 2005, 2009, 2010, 2011, 2014) and W = W/O (all others) based on YieldwithNserve – 

YieldwithoutNserve. The optimum prediction window for assessing weather impacts on Nserve 

effectiveness was 10 weeks after fertilizer application. The CIT-selected weather variables with 

the strongest predictive power for Nserve effectiveness were:  precipitation (Precip_mm = 142 

mm), year-yield potential (high and medium vs. low categories), and cumulative heat units 

(CHU_sum = 15) (Figure 3.14), with a predictive accuracy of 66%.  For all yield potential 

groups, yield responses to Nserve were predominantly negative when Precip_mm < 142 mm 

(65% of years) or no N serve effect (35% of years). When Precip_mm >142 mm, there was no 

Nserve effect for 85% of low-yielding years and a positive effect in 15% of those years, but no 

negative Nserve responses under these conditions.  For Precip_mm > 142 mm, positive Nserve 

yield responses occurred in 60% of medium/high-yielding years when CHU_sum > 15, with no 

effect of Nserve in 40% of those years and no negative Nserve responses occurring under these 

conditions. When CHU_sum < 15, there was no response to Nserve in 55% of medium/high-

yielding years, a positive response in 30% of those years, and a negative response in 15% of 

those years. 

 



 

 

122 

  

 

Figure 3.14. Conditional inference tree for the response of Nserve (negative, neutral or 
positive based on YieldwithNserve – YieldwithoutNserve from the Year × Nrate × Nserve 
interaction) across year and N rate over 10 weeks after fertilizer application. Each terminal 
node contains the ratio of cases in each yield response category. Note: n= number of 
observations, Precip_mm is the cumulative precipitation in mm, YearYieldPotential is the 
year-yield potential grouping (High from 12.6 to 14.7 Mg ha-1, Medium from 10 to 12 Mg 
ha-1 and Low from 8.5 to 9.8 Mg ha-1), and CHU_mean is the average corn heat units. 
 

The probabilities of observing yield responses to Precip_mm and CHU_sum based on the 

Year × Nrate × Nserve interaction was calculated for each year-yield potential group (Figure 

3.15). In general, the probability of negative yield responses to Nserve was greatest under i) low 

CHU, high Precip, and ii) high CHU, low Precip. The probability of positive yield responses to 

Nserve was greatest under i) low CHU, low Precip, and ii) high CHU, high Precip. 
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Figure 3.15. Ordinal multinomial regression for the response of Nserve (negative, neutral 
or positive based on YieldwithNserve – YieldwithoutNserve from the Year × Nrate × Nserve 
interaction) as impacted by average corn heat units (CHU) and cumulative precipitation 
over 10 weeks after fertilizer application. 
 

 Year × Tillage 

 Grain yield was significantly affected by tillage over the years (Figure 3.16). Grain yields 

were higher under CT in 11 out of 28 years, ranging from 0.5 to 2 Mg ha-1 more grain than RT.  

There was no tillage difference in yields for the remaining study years (17 yrs), and no years 

when grain yield in RT was greater than CT. 
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Figure 3.16. Mean (n=24) corn grain yield as affected by tillage (CT=conventional tillage 
vs. RT=reduced tillage) for period two (1990 through 2017). Means within a given year 
followed by a common letter are not significantly different at α=0.05. Numbers in the plot 
area represent Δyield calculated as YieldRT – YieldCT, in Mg ha-1. 
 

Based on the yield responses observed for the Year × Tillage interaction (Figure 3.16), 

years were classified as RT < CT (1991, 1992, 1993, 1994, 1998, 2000, 2001, 2004, 2007, 2008, 

2017) or RT = CT (all others) based on YieldRT – YieldCT. The optimum prediction window for 

assessing weather impacts on tillage response was two weeks after fertilizer application.  The 

CIT-selected weather variables with the strongest predictive power for tillage response were: 

average wind speed (WindSp_ms = 3.6 m s-1), precipitation Shannon diversity index (SDI = 

0.32), and average air minimum temperature (Tmin_C = 4.5ºC) (Figure 3.17), with a predictive 

accuracy of 80%.  Using RT when WindSp_ms < 3.6 m s-1 resulted in negative yield responses 
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80% of years and no response in 20% of years compared to CT.  When WindSp_ms > 3.6 m s-1 

and SDI < 0.32, negative yield response to RT occurred in 75% of years and no response 

occurred in 25% of years.  When WindSp_ms > 3.6 m s-1 and SDI > 0.32, negative yield 

responses occurred in 50% of years when the Tmin_C of the 2-week window after N application 

was < 4.5ºC, but the negative effect of RT was greatly diminished to no effect in 95% of years 

when Tmin_C > 4.5ºC. 

 

 

Figure 3.17. Conditional inference tree for the response of tillage (negative or neutral based 
on Yieldreducedtillage – Yieldconventionaltillage from the Year × Tillage interaction) across year over 
two weeks after fertilizer application. Each terminal node contains the ratio of cases in 
each yield response category. Note: n= number of observations, WindSp_ms is the average 
wind speed in m s-1, SDI is the precipitation Shannon diversity index, and Tmin_C is the 
average air minimum temperature in ºC. 
 

The probabilities of observing a tillage-related yield response to WindSp, SDI, and Tmin 

based on the Year × Tillage interaction are shown on Figure 3.18. In general, negative yield 
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responses to RT compared to CT were most probable when WindSp was intermediate (4.3 m s-1) 

and precipitation was highly concentrated (SDI=0), regardless of Tmin. At higher WindSp, 

negative yield responses to RT became less probable as both Tmin and SDI increased, except for 

SDI=0 when RT < CT increased with Tmin. The probability of observing no tillage effect on 

yield was greatest when WindSp was intermediate (4.3 m s-1) and precipitation was highly 

distributed (SDI=0.76), with a minor effect of Tmin. 

 

 

Figure 3.18. Logistic regression for the response of Tillage (negative or neutral based on 
Yieldreducedtillage – Yieldconventionaltillage from the Year × Tillage interaction) as impacted by 
precipitation Shannon diversity index (SDI), wind speed and average air minimum 
temperature over two weeks after fertilizer application. 
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 Year × Nrate 

 Grain yield was significantly affected by N rate over the years (Figure 3.19). In general, 

the three N rates followed a similar pattern in time, producing more in high-yielding years and 

less in low-yielding years, differing mostly by the magnitude of the yield response. Overall, 

300N produced the largest grain yields over time, but only significantly higher than the 150N in 

nine out of 28 years. Furthermore, only in one occasion the 75N yielded similarly to 300N. 

 

 

Figure 3.19. Mean (n=16) corn grain yield as affected by N rate (75, 150 and 300 kg N ha-1) 
for period two (1990 through 2017). Means within a given year followed by a common 
letter are not significantly different at α=0.05. Numbers in the plot area represent Δyield 
calculated as Yield300N – Yield150N, in Mg ha-1.  
 

Based on the yield responses observed for the Year × Nrate interaction (Figure 3.19), 

years were classified as 300N > 150N (2003, 2004, 2005, 2008, 2009, 2010, 2011, 2015, 2017), 
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and 300N = 150N (all others) based on Yield300N – Yield150N. The summarizing week-window 

interval that best predicted the yield response from this interaction was two weeks after fertilizer 

application. Summarized weather variables, application timing and year-yield group (high-, 

medium- and low-yielding years) were fit to a CIT. The most important variables in explaining 

yield response were year-yield potential, average air maximum temperature and SDI (Figure 

3.20), with a predictive accuracy of 84% on training data.  Positive yield response from applying 

300N over 150N was observed with the highest frequency under medium-yielding years when 

SDI was above 0.39. This response was also observed under low- and high-yielding years when 

air maximum temperature was below 18ºC, however at a lower frequency. No response from 

applying 300N over 150N was observed at the highest frequency under high- and low-yielding 

years when maximum temperature was above 18ºC, followed by medium-yielding years when 

SDI was below 0.39. 
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Figure 3.20. Conditional inference tree for the response of Nrate (positive or neutral based 
on Yield300N – Yield150N from the Year × Nrate interaction) across year over two weeks after 
fertilizer application. Each terminal node contains the ratio of cases in each yield response 
category. Note: n= number of observations, YearYieldPotential is the year-yield potential 
grouping (High from 12.6 to 14.7 Mg ha-1, Medium from 10 to 12 Mg ha-1 and Low from 
8.5 to 9.8 Mg ha-1), Tmax_C is the average air maximum temperature in ºC, and SDI is the 
precipitation Shannon diversity index. 
 

The probabilities of observing different yield response groups based on the Year × Nrate 

interaction as affected by year-yield potential, average air maximum temperature and SDI are 

shown on Figure 3.21. The probability of observing higher grain yield under 300N compared to 

150N was highest under medium- and high-yielding years at high SDI and maximum 

temperature values. However, higher maximum temperature levels only increased the probability 

of a positive response (300N > 150N) if accompanied by more-distributed rainfall (SDI=0.76). 

Under more-concentrated rainfall cases (SDI<0.4), increasing maximum temperature decreased 

the probability of higher yield at 300N compared to 150N. The probability of observing a neutral 
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yield response (300N = 150N) was highest and the only predicted outcome under low-yielding 

years. 

 

 

 

Figure 3.21. Logistic regression for the response of Nrate (neutral or positive based on 
Yield300N – Yield150N from the Year × Nrate interaction) as impacted by precipitation 
Shannon diversity index (SDI) and year-yield potential over two weeks after fertilizer 
application. 
 

 Tillage × Nserve and Nrate × Tillage  
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 Grain yield was affected by the two-way interactions of Tillage × Nserve (n=336) and 

Nrate × Tillage (n=224) (Table 3.4). Using Nserve had no yield effect under CT, and CT yields 

were greater than RT yields.  The lowest yield was under RT without Nserve and adding Nserve 

improved RT yields, but not enough to reach mean CT yields.  Grain yield was highest at 300N, 

regardless of tillage type. For lower N rates (75N, 150N), however, yields were higher under CT 

compared to RT. 

Table 3.3. Mean corn grain yield from Tillage vs. Nserve (n=336, averaged over levels of N 
rate and N timing) and Tillage vs. N rate (n=224, averaged over levels of Nserve and N 
timing) interactions. Means followed by a common uppercase and lowercase letter are not 
significantly different for the Tillage vs. Nserve and Tillage vs. N rate interactions, 
respectively, at α =0.05. 

  CT RT 
 ---- Yield (Mg ha-1) ---- 
Nserve 

  W 11.18 A 10.87 B 
W/O 11.21 A 10.71 C 

   N Rate (kg ha-1) 
  75 9.45 d 9.01 e 

150 11.77 b 11.07 c 
300 12.36 a 12.29 a 

 

 Discussion 

 Soil Properties 

 Soil properties were affected over time by N rate, tillage type and Nserve. In 2000, 14 

years after experiment initiation, soil pH, K and NO!! in the 0-20 cm depth were the main soil 

features impacted by N rate. Lower soil pH values and higher residual nitrate values were 

observed at higher N rates. Applying ammonium-containing fertilizer increases soil acidification 

by stimulating nitrification, which produces H!. For example, Flowers and O’Callaghan (1983) 

reported on a pH decrease of 1 unit after complete nitrification of 250 ppm of NH!!-N.  Greater 
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nitrification of NH!! into NO!! also increases the risk of NO!! leaching which decreases NO!! 

availability for plant uptake, further promotes soil acidification because plant roots neutralize 

soil acidity when NO!! is taken up (Bolan et al., 1991). 

In 2006, 20 years after experiment initiation, soil pH, POM, OM, K, and P were affected 

by different treatment factors at different depths. Soil pH was mostly affected by N rate up until 

a depth of 61 cm, and N rate and tillage at the 0-15 cm depth, with pH lowering as both N rate 

and tillage increased.  Other long-term tillage studies have found CT to both increase (Dick, 

1983; Hickman, 2002) and decrease (Ismail et al., 1994) soil pH at the surface layers compared 

to no-tillage practices. Ismail et al. (1994) attributed lower soil surface pH under CT compared to 

NT due the lack of soil mixing following lime application six years prior to soil sampling. In our 

study, no record of lime application occurred to the best of our knowledge, but the reason for 

lower surface soil pH with CT could be attributed to higher rates of mineralization compared to 

RT. 

Soil POM is expected to increase as N rate increases to levels that optimize grain 

production (Liebig et al., 2002; Brown et al., 2014), and as tillage decreases (Hussain et al., 

1999). That is because optimum levels of N input increase plant biomass production, and lack of 

tillage reduces residue incorporation and decomposition rate. In our study, this trend was 

partially confirmed, with higher POM observed under the highest N rate plus RT at the 0-15 cm 

depth. However, given that the lowest observed POM at this depth was under the highest N rate 

plus CT, it appears that tillage played a stronger effect than N rate. At intermediate depths, POM 

was only affected by Nserve and tillage, with the use of Nserve decreasing POM, and CT having 

higher POM than RT. While the positive effect of CT on POM at depth is expected due to 

residue incorporation, the reason for a negative effect of Nserve on POM is unclear.  
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 Grain Yield 

 Year-to-year weather variability was the main driver of corn yield differences over the 

28-yr study period. Different studies have attempted to understand the main N management 

factors driving corn response (Wolt, 2004; Kyveryga et al., 2010; Tao et al., 2018). While these 

reviews are important for understanding yield responses over larger geographic regions, they fail 

to quantify the complex soil, weather, and management interactions inherent to each individual 

study and across them. In the current report, we focus on the primary effects of weather 

variability and management on grain yield and assume that changes in soil properties over time 

have a secondary feedback role in yield variability. 

 Year, N timing, and Nserve Interaction 

The use of Nserve with PP fertilization improved yield more frequently than when 

applied SD. The longer the elapsed time between N application and plant N demand the higher 

chances for N to be lost by processes such as leaching and denitrification. Therefore, PP 

applications are more prone to losses and thus are more responsive to protecting N by the use of 

Nserve than if applied at SD. In contrast to our findings, Burzaco et al. (2014) found no 

significant yield response to either NI or application timing when UAN was applied with and 

without nitrapyrin in three corn studies in Indiana. Despite the lack of yield response, Burzaco et 

al. (2014) observed a significant increase in plant N uptake when N was applied at V6 as 

compared to at-planting. These authors also reported an increase in N recovery efficiency when 

UAN was applied at-planting with NI, but no effect of NI when UAN was applied side-dress. 

Studies evaluating the use of NI applied at different timings normally evaluate fall vs. spring 

applications, and planting vs. side-dress comparisons are scarce. Randall and Vetsch (2005) 

evaluated AA application to corn both in the fall and spring in six years, with and without an NI, 
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and found that adding NI in the fall had a larger positive effect on yield compared to untreated 

fertilizer than when applied in the spring. On a survey over 920 corn fields from four US 

Midwest states under multiple different N management practices, Tao et al. (2018) found that 

spring-applied and SD-applied anhydrous ammonia did not significantly differ in promoting 

higher end-of-season cornstalk nitrate test (CSNT), a measure of nitrogen use efficiency. The 

same study also reported on the lack of significance of NI in changing the odds ratio of a 

cornstalk to test in a higher CSNT category (i.e. more efficient).  

The use of Nserve decreased yields compared to fertilizer alone in 2012 and 2001 for PP 

and SD, respectively. Although 2012 was one of the driest and hottest years in this dataset with 

cumulative precipitation inputs of only 48 mm in the first three weeks after PP fertilizer 

application, irrigation successfully alleviated the severe drought conditions such that 2012 was 

the highest yielding year in this long-term study. The negative effect of Nserve in 2012 may have 

reflected restricted N mobility, especially as NO!!, to the roots in a year when plant N demand 

was high and low soil moisture early in the season limited N movement. While NO!! is highly 

mobile and moves towards the roots mainly by mass flow, NH!! is involved in reactions with 

clay mineral lattices and moves towards the roots mainly by diffusion (Forde and Clarkson, 

1999), which has been estimated to be from 50- to 500-fold slower than mass-flow-driven NO!! 

(Forde and Clarkson, 1999). 

Weather analysis identified the highest proportion of positive yield response to Nserve 

under low- to medium-yielding years when average minimum temperature was below 6ºC.  This 

scenario is likely conducive to lower plant N demand early in the season and prolonged fertilizer 

N protection due to temperature-driven slower Nserve degradation (Keeney, 1980; Hoeft, 1984). 

On the other hand, negative effects of Nserve on yield were predicted to happen under high-
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yielding years, likely related to limiting accessibility of N in the mobile nitrate form, and 

especially as this was the case in 2012 when drier conditions early in the season were observed. 

Furthermore, the probability of a negative yield effect from Nserve in high-yielding years 

increases as minimum temperature increases, likely a result of faster plant growth and its 

associated higher N demand coupled with soil drying. Medium-yielding years were predicted to 

have a positive yield effect from Nserve under lower air minimum temperatures, and this 

probability decreases in place of neutral yield response as temperature increases, likely as a 

result of Nserve degradation (Keeney, 1980; Hoeft, 1984). 

 

 Year, N Rate, and N Timing Interaction 

Applying fertilizer at SD increased corn grain yield 47% of the years compared to PP 

under at least one N rate. The most frequent yield benefits from SD over PP application occurred 

at the lowest N rate, and benefits decreased in frequency as N rate increased. Side-dressing at the 

lowest N rate likely resulted in positive yields by better matching N availability with crop N 

demand. Side-dressing also likely avoided greater N risk loss over time compared to pre-plant N, 

particularly for this low N rate.  The yield benefits of delaying fertilizer application to occur 

during the growing season (instead of before it as PP) was reflected in the higher fraction of PP < 

SD years under high solar radiation in medium- to high-yielding years, especially when 

cumulative rainfall over 13 weeks after fertilizer application was above 211 mm. Under these 

conditions, high solar radiation promoted more plant growth and development in yield-

responsive years. In turn, the accompanied demand for N likely could not have been met with PP 

as higher precipitation likely increased N losses during this window of time, giving SD a yield 

advantage.  
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A negative effect of SD compared to PP was also observed in 21% of the years. In those 

years when PP > SD, this effect happened with the highest frequency at the highest N rate. The 

highest proportion of this scenario happened under lower solar radiation conditions, but had a 

decreased probability of being observed as both solar radiation and cumulative precipitation 

increased. Therefore, PP application is more likely to yield greater than SD in low-yielding 

years, when N demand is lower, and under lower cumulative precipitation, when N loss potential 

is also decreased.  

 

 Year, N Rate, and Nserve Interaction 

 The use of Nserve at different N rates produced variable yield responses over the years. It 

is expected that the use of a NI will reflect in higher grain yield in case a response to N fertilizer 

exists and N loss pressure is high to the point of limiting N availability to crops (Hergert and 

Wiese, 1980). However, the possibility of an NI to negatively impact grain yield also exists and 

has been reported in various occasions (Blackmer and Sanchez, 1988; Cerrato and Blackmer, 

1990; Sassman et al., 2018). In this study, the use of Nserve produced higher, lower and equal 

yields at different N rates compared to fertilizer alone over the years.  

Positive yield response from NI use was observed in at least one N rate in 32% of the 

years. This is in agreement with the 10-40% frequency of positive yield response from NI 

summarized by Hergert and Wiese (1980) for irrigated corn in fine textured soils in Kansas and 

Nebraska. However, the frequency of positive yield response to NI found in the present study is 

well below the 75% frequency found by Wolt (2004) in a summary of 436 mean comparisons, 

mostly from field corn studies in the U.S. Midwest states. The highest frequency of greater yield 

from using Nserve was observed under higher cumulative precipitation and CHU in medium- to 
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high-yielding years. Under this scenario, the overall higher year-yield potential was met by both 

higher thermal units to drive growth and development, and higher precipitation. Higher 

precipitation volume can often lead to increased chances for N losses, which in this case were 

avoided by both higher plant N demand and the use of Nserve.  

The highest frequency of a negative yield effect of Nserve was observed in years with a 

cumulative precipitation below 142 mm over 10 weeks after fertilizer application. Dry conditions 

early in the growing season and before irrigation likely decreased nutrient mobility from the bulk 

soil towards the rhizosphere. By keeping N in the NH!! form, it is possible that the use of Nserve 

limited N supply to the roots in such dry conditions. Studies demonstrating a decrease in yield 

and/or N uptake from NI use normally attribute this effect to i) drier soil conditions causing N 

positional unavailability (Hoeft, 1984; Sassman et al., 2018), ii) NI-induced N immobilization 

(Ferguson et al., 1991, 2003), and iii) adverse effects of NI on plant growth (Blackmer and 

Sanchez, 1988). Hoeft (1984) reported a yield decrease from the use of AA at 67 kg N ha-1 with 

NI in a dry year, and attributed this to positional unavailability since roots were likely extracting 

water from deeper soil layers whereas N was positioned on layers closer to the dry surface. 

Sassman et al. (2018) observed the use of NI to decrease corn grain yield in two out of three 

years, and increase agronomic and economic optimum N rate in one year when urea-ammonium 

nitrate was applied at multiple N rates. The authors suggested that the negative impact of NI 

could be due to the high efficacy of the inhibitor, thus maintaining more N as NH!! in a small soil 

volume, decreasing the chances of fertilizer interception by roots. Ferguson et al. (1991) 

observed a decrease in inorganic N in NI-treated AA injection bands in three years of field corn 

studies, and suggested that this was due to NI-induced temporary N immobilization. Blackmer 

and Sanchez (1988) observed that most of the site-year-rate data points that increased corn leaf, 
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stover, and grain N concentration yet produced grain yields below plateau levels were NI-treated, 

and attributed this to a negative effect of the inhibitor on plant growth. 

 

 Tillage Interactions 

Tillage type was part of two-way interactions with Year, Nrate, and Nserve. Tillage had a 

variable impact on grain yield over the years, where yields were either not affected by tillage, or 

greater under CT than RT but never vice-versa.  Similarly, Drury et al. (2012) observed higher 

corn yields under CT vs. NT in two out of three years in Ontario, Canada.  Tao et al. (2018) also 

found that CSNT, an end-of-season proxy for corn N sufficiency, was more likely to be higher 

under CT than no-till (NT), likely due to greater N availability after tillage disturbance.  Ismail et 

al. (1994) found that CT outyielded NT in the first 12 years of a 20-year continuous corn study, 

but that NT outyielded CT with greater frequency later in the study (7 years).  Similar temporal 

trends were found in our study, where CT outyielded RT at a greater frequency early in the study 

compared to later in the study (50%, 50%, 13% for 1990-1999, 2000-2009, 2010-2017, 

respectively). Therefore, although the frequency of CT yield benefit over RT has decreased in 

the last eight years, this relationship has not shifted (i.e. CT has not yielded less than RT) over 

the years as observed by Ismail et al. (1984).  

When averaged over years, using Nserve in CT had no effect on grain yield whereas it 

increased yield in RT compared to untreated fertilizer. When averaged over years, CT and RT 

produced similarly only at the 300N fertilizer rate, with CT producing more than RT at the 150 

and 75N rates. Both of these interactions demonstrate that less N was available to the crop under 

RT than CT, either because more N was lost (e.g. as NO!! leaching and/or denitrification) in RT 
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or because N was less available in RT compared to CT (e.g. due to greater immobilization of 

fertilizer-N in RT and/or greater mineralization of soil organic matter in CT). 

Yield increases under CT compared to RT occurred with highest frequency in years with 

lower average wind speed during the two-week window after fertilizer application. The 

relationship with wind speed did not meet our expectation that tillage-related yield responses 

would be more sensitive to weather variables that directly impacted soil water and temperature 

status (e.g. precipitation, air temperature). Given that wind speed is independent of tillage 

practice, it is possible that its integrated effects on other soil thermal and hydrological properties 

derived from tillage type were more explanatory of yield differences. For example, low speed 

winds will cause less soil water evaporation, which in turn maintains a lower soil temperature 

especially under high-residue conditions found in continuous corn RT. Stanley and Smith (1956) 

observed in a laboratory incubation study that soil moisture from the top five cm layer decreased 

from 23% to 7% after supplying heat and air movement for 48 hours, and that when no heat or 

wind was supplied only 2% of soil moisture was lost. Similarly, Greb (1966) suggested that the 

presence of residue decreased soil water evaporation because the physical presence of residue 

reduced both soil temperature and the gradient of wind speed on the soil surface. Sauer et al. 

(1996) noted a decrease in soil moisture evaporation as surface cover increased, with a reduction 

in evaporation of 41 and 43% on two different soils. Ussiri and Lal (2009) found lower soil 

temperatures from June to October and higher soil gravimetric water content during the growing 

season under NT vs. CT, attributed differences to the residue cover in NT decreasing evaporation 

and enhancing soil water retention through increases in SOM. These conditions can have an 

impact on both corn early season growth and development (Hatfield et al., 2001) and N 

mineralization, ultimately impacting grain yield.  
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The second most frequent weather condition causing CT to yield higher than RT was 

under higher wind speeds accompanied by a lower SDI. This scenario reinforces the hypothesis 

of damp RT conditions as the cause for lower yields, as more concentrated rainfall would likely 

cause a similar effect on soil moisture and temperature, even at higher levels of wind speed and 

evaporative pressure. The condition most likely to be observed under years where RT produced 

similarly to CT was at higher wind speeds, higher SDI and higher air minimum temperature. 

These conditions favor soil evaporation in both tillage systems and especially under RT to the 

point of soil temperature not being a limiting factor for early-season plant growth and N 

mineralization.  

 Year and N Rate Interaction 

 Nitrogen rate had a variable impact on yield over the years. In all years, at least the first 

N increment (i.e. 75N) was able to produce greater yield than 0N, indicating N responsiveness 

throughout the study duration (data not shown). In only one occasion 75N produced similarly to 

300N. Given that 150N is close to the average rate used in the region (i.e. 160 kg N ha-1) and that 

300N would be excessive and likely represent a non-limiting N condition, these two rates were 

compared more closely for their effect on yield.   

The 300N treatment produced more than 150N in 32% of the years, indicating that 150N 

may have been yield-limiting possibly due to higher N loss pressure, higher crop N demand, or 

both. The highest frequency of observing a positive yield response from 300N over 150N 

happened under medium-yielding years at high SDI values over 13 weeks after fertilizer 

application. These conditions suggest that more evenly distributed rainfall benefited a response 

to higher N rate. However, since this scenario happened mostly in medium-yielding years, it is 

possible that other factors were then limiting to yield (e.g. other nutrients, stress timing, etc.). 
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Nonetheless, results from the logistic regression model indicate that not only medium- but also 

high-yielding years were more likely to respond to 300N, especially as maximum temperature 

and SDI increase. Higher temperatures coupled with evenly distributed precipitation likely 

promoted enhanced crop growth and development and crop N demand, which in turn was met by 

higher N application rates.  

Averaged over years, CT produced more than NT at 75N and 150N, and produced 

equally to RT at 300N. Based on yield and weather results, it is likely that i) N mineralization 

under CT was higher, being able to supply more N and thus improve grain yield at a yield-

limiting N rate, ii) continuous corn RT immobilized a portion of the applied N fertilizer, making 

less of it available for crop uptake and thus causing lower grain yield at yield-limiting N rate, or 

iii) a combination of both conditions. However, neither mineralization nor immobilization were 

measured, and these yield results do not agree with what is reported for long-term tillage studies. 

Kitur et al. (1984) reported higher soil N immobilization in NT compared to CT at a low N 

fertilizer rate only (84 kg N ha-1), but no net effect on grain yield was found in three years. Rice 

et al. (1986) reported that N mineralization from a 16-yr tillage study on corn was similar 

between NT and CT, but that mineralization differences were observed prior to the 10th yr. The 

authors suggested that lower N availability in NT compared to CT was transient, and that it 

becomes unimportant after a new OM steady state is reached (about after 10 yrs). 

 Conclusions 

 Soil characteristics and yearly weather interact with N fertilizer management practices to 

impact grain yield response over time in irrigated corn. The management practices that had the 

greatest magnitude of response in grain yield were Nrate > tillage > N timing > Nserve. For the 

conditions of this study, the use of Nserve would be recommended when applied pre-plant only. 
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When averaged over application timing, Nserve produced yield responses ranging from negative 

to positive, with the former happening mostly in drier-than-normal early springs. When 

considering different timing options alone, side-dress application around V4 should be 

recommended over pre-plant applications. In this study, CT either produced as much or more 

grain yield than RT. It is not clear why RT did not produce greater yields than CT, especially as 

the study progressed past 10 yrs. The choice of tillage should not only consider yield, but also 

other benefits that RT may present over CT (e.g. erosion control; decreased fuel, labor and 

equipment cost; weed suppression, water retention). 

This study elucidated how weather variables interacted with different N management 

practices to impact yield response in irrigated corn. The specific weather variables most 

important in explaining yield responses from different N management practices varied. The most 

important weather variables in explaining different yield responses over time were related to 

year- yield potential, air temperature, precipitation volume and distribution, solar radiation and 

wind speed. These relationships were only able to be assessed given the many years of both yield 

and weather data. Long-term studies are important in allowing the assessment of complex 

interactions between management and weather that may not be evident in short-term studies.  
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Chapter 4 -  Active and Passive Sensors are Comparable for Variable Rate 

Nitrogen Determination and Accuracy in Irrigated Corn 

 Introduction 

Nitrogen (N) is often the most limiting nutrient to crop productivity. To maximize yield 

potential, fertilizer N is supplemented to non-legume (i.e. non N-fixing) crops such as corn (Zea 

mays L.). The annual fertilizer input to U.S. corn crops alone is substantial, with ~46% of all N 

applied to crops in 2010 (USDA-NASS, 2017). The large quantities of fertilizer applied for crop 

growth can pose environmental risks once applied to the field. Nitrogen transformations are 

dynamic, and losses resulting from these processes can be significant especially when soil N 

supply is much greater than the demand by the crop (Cameron et al., 2013). Because conditions 

for both crop N demand and environmental N losses vary spatially and temporally, applying a 

single fertilizer rate to an entire field that varies in landscape characteristics can create areas of 

under- and over- fertilization (Mamo et al., 2003; Scharf et al., 2005). To better match fertilizer 

application rate with crop N demand and landscape characteristics, the use and development of 

crop canopy sensors for assessing crop N status and applying N variably has been of major 

research interest. 

Both active and passive crop canopy sensors can be used for variable rate N (VRN) 

management. Active sensors emit their own modulated light. Because of that, sensing 

performance is theoretically independent of atmospheric conditions, such as cloud cover and 

time of day. Moreover, active sensors have been used “on-the-go”, capable of assessing crop N 

status and directing VRN application on the same pass. Because they emit their own light source, 

active sensors require a certain proximity to their target, and thus are mostly limited to ground-
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based platforms (e.g. tractor, application implement boom) and low-flying (0.5 to 1.5 m above 

canopy) unmanned aerial systems (Krienke et al., 2015).  

Passive sensors rely on sunlight as the energy source and thus may be limited by 

atmospheric conditions like time of day and cloud cover (de Souza et al., 2010). Furthermore, the 

use of passive sensors to generate VRN application is a two-step process, where first the field is 

imaged, and only after data correction and processing can a prescription map be generated and 

fed into a variable rate applicator software. Historically, passive sensors have been mostly 

employed in agriculture via satellite or aircraft. Recently, unmanned-aerial systems (UAS) have 

become a popular platform for carrying passive sensors both in research and commercially.  

Recently, many studies have compared how different active crop canopy sensors can be 

used for VRN (Barker and Sawyer, 2010; Shaver et al., 2011, 2014; Li et al., 2014), but fewer 

have compared active vs. passive sensors (Erdle et al., 2011). There is strong interest in passive 

sensors because these are the most common sensors used from airplanes and, more recently, on 

unmanned aerial systems (UAS). With the rapidly growing UAS market, there will be an 

increasing opportunity to use passive sensors for quantitative decision-making in agriculture, 

including N management.   

Various vegetation indices (VIs) have been developed for assessing different vegetation 

parameters (Mulla, 2013). Two of the most common VIs calculated from bands found in both 

active and passive sensors are the normalized difference vegetation index (NDVI) and the 

normalized difference red-edge (NDRE). Reflectance on the spectral region of red (600-700 nm), 

which is used to calculate NDVI, saturates when leaf area index (LAI) values are > 2 (Gitelson et 

al., 1996; Viña et al., 2011) and at chlorophyll concentrations as low as 3-5 micrograms cm-2 

(Gitelson and Merzlyak, 1997). The saturation of the red band renders it insensitive in 
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differentiating N deficient and sufficient crop condition (Blackmer and Schepers, 1994; Holland 

and Schepers, 2013). One solution is to use a different index that does not contain the red band, 

such as NDRE that replaces the red band with the red-edge band (700-800 nm) in its formula. 

For example, Gitelson et al. (2003) demonstrated that reflectance in the green and red-edge 

bands was significantly more sensitive to increasing chlorophyll levels than those in the red and 

blue (400-600 nm) bands. 

Different algorithms have been developed to translate sensor-measured plant nutrient 

deficiency status into an N rate recommendation (Raun et al., 2005; Teal et al., 2006; Holland 

and Schepers, 2010; Scharf et al., 2011). In the algorithm developed by Holland and Schepers 

(2010), input variables include optimum N rate, management zone scalar, different sources of N 

credits (i.e. previous crop, organic matter, water nitrate, manure application, fertilizer applied 

prior to sensing), a sufficiency index (SI) and a delta SI (DSI). The SI is the ratio of the 

vegetation index (VI) values from a the field area receiving VRN to the VI of a high N reference 

strip, or N-rich strip (NRS) (Biggs et al., 2002). The NRS represents the N rate for maximum 

crop growth under no N limitation.  By normalizing sensor data from unknown parts of the field 

to the NRS, sensor-derived comparisons can be made across different hybrids, planting dates, 

fields, and sampling dates (Blackmer and Schepers, 1995).  Establishing an NRS, however, can 

be inconvenient and even restricted in commercial sensor-derived N applications (Holland and 

Schepers, 2013).  The high N inputs used for an NRS could also induce crop sulfur deficiencies 

(Franzen et al., 2016), which sensors are unable to differentiate from N deficiency effects on 

crop canopies.  

Given these limitations, Holland and Schepers (2013) proposed the use of a virtual 

reference (VR), defined as the 95th cumulative percentile of a histogram from a given VI data 
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collected over parts of the field demonstrating different crop N status levels.  Although the 

implementation of the VR concept has been introduced as a solution for large-scale commercial 

field applications, it is unclear how VRN recommendations are impacted by choice of reference 

(e.g. NRS vs. VR) to calculate SI and, subsequently, DSI. The delta SI (DSI) is the difference in 

SI between the reference and an N-unfertilized area [i.e. 1 – SI(0)], and these values impact the 

accuracy of sensor-based N rate recommendation (Holland and Schepers, 2010).  Although DSI 

can change according to sensor type, the specific bands utilized to calculate the VI used for 

VRN, and crop stage (Holland and Schepers, 2010), the major challenge to calculating DSI is 

that commercial production fields are unlikely to have any non-fertilized areas.  As a result, a 

default DSI value of 0.3 [i.e. SI(0)=0.7] has been proposed (Holland and Schepers, 2010).  

Sensor-based VRN application can be an important tool to adjust N rates while 

maintaining grain yield levels, thus enhancing the efficiency with which the crop uses fertilizer. 

One way to assess the agreement of the sensor-based N recommendation to the optimum N rate 

required by the crop is to compare the recommendation to the end-of-season calculated economic 

optimum N rate (EONR). The EONR is the N rate that economically optimizes grain yield 

production, and after which the return on investment decreases with increasing N rates.  

The hypotheses that were tested were that i) NRS and VR create similar reference VI 

values; ii) DSI varies depending on site, sensor type, and VI; iii) active and passive sensors 

generate similar VRN; iv) NDRE-based VRN is higher than NDVI-based VRN; and v) sensor-

generated VRN, when summed to the pre-plant N rate, approximates the field EONR. The 

objectives of this research were to i) assess the agreement between the NRS vs. VR values for 

each individual site-year (SY)-sensor-VI combination; ii) assess if and how DSI varies over 

different SYs, sensor types and VIs, and inform the variable rate algorithm on proper DSI term 
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selection; iii) compare active and passive crop canopy sensors’ recommended side-dress N rate 

derived from different VIs; and iv) assess side-dress N rate recommendation accuracy of 

different sensor and VI types compared to the EONR in irrigated corn.  

 Material and Methods 

 Site Description and Field Experimental Design 

This study is comprised of eight site-years (SYs), conducted from 2015 through 2018 on 

different soil types and with a range of N fertilizer rates applied at pre-plant (Table 4.1). The 

studies were located either on-farm (Central City and Hastings, NE) or at the University of 

Nebraska-Lincoln’s South Central Agricultural Laboratory (SCAL) near Clay Center, NE. The 

soils were classified as Novina sandy loam (coarse-loamy, mixed, superactive, mesic 

Fluvaquentic Haplustolls) at SY1; Crete silt loam (fine, smectitic, mesic Pachic Udertic 

Argiustolls) at SYs 2, 3, 5, 8; Hastings silt loam (fine, smectitic, mesic Udic Argiustolls) at SYs 

4, 6; and Cass fine sandy loam (Coarse-loamy, mixed, superactive, mesic Fluventic Haplustolls) 

at SY 7. Corn was planted in 0.76-m spacing at 79,800 to 82,000 plants ha-1. Each plot was 15-

20 m long and comprised four rows. For all site-years, the experiment was single factor 

(treatment = N rate) in a randomized complete-block design with four blocks (Table 4.1). The N 

source utilized varied among SYs and included urea-ammonium nitrate (UAN), urea (U), or 

anhydrous ammonia (AA). Fertilizer was either surface applied (UAN, U) or injected (AA) prior 

to corn planting. Fertilizer N rate was calculated based on the University of Nebraska-Lincoln N 

recommendation algorithm for corn (Shapiro et al., 2008). 

 



 

 

153 

Table 4.1. Description of each site-year (SY) study related to site characteristics, N 
management and passive sensor utilized. 
Site-year Site Year Soil† N Source N rates  UNL‡    AONR§  EONR Sensor 
     –––––––––––––––––––kg N ha-1–––––––––––––––  
SY1 Central City 2015 SL UAN 0, 65, 96, 130, 161 161 - - Tetracam 
SY2 SCAL 2015 SiL UAN 0, 65, 96, 130, 161 161 0 0 Tetracam 
SY3 SCAL 2015 SiL AA 0, 94, 126, 157 157 84 30 Tetracam 
SY4 SCAL 2016 SiL UAN, U 0, 108,161, 173, 215 215 160 108 RedEdge 
SY5 SCAL 2017 SiL AA 0, 77, 163, 233, 309 233 293 235 Sequoia 
SY6 SCAL 2017 SiL UAN 0, 45, 90, 133, 178, 268 178 173 160 Sequoia 
SY7 Hastings 2018 SiL UAN 0, 98, 146, 194, 388 194 149 133 Sequoia 
SY8 SCAL 2018 SiL AA 0, 72, 152, 217, 289 217 288 210 RedEdge 

†SL = sandy loam; SiL = silt loam 
‡UNL = optimum N-rate for corn recommended by UNL algorithm 
§AONR and EONR of “-” or 0 indicate no crop response to N added at any rate compared to no fertilizer added. 

 Sensor Description and Sensor Data Processing 

Crop reflectance data was acquired using four different sensors: RapidScan (handheld, 

active) and Tetracam, MicaSense RedEdge or Parrot Sequoia (unmanned aerial system-mounted, 

passive). On each SY, a specific passive sensor was utilized (Table 4.1), and for all SYs 

RapidScan was used as the active sensor. Crop canopies were sensed during the V12 stage for 

each SY, with data used to calculate simulated side-dress N rates that would be recommended for 

management systems using split-N applications (described below).  To maintain equivalent field 

conditions among sensor types, active and passive sensing were completed on the same day 

within a SY, and sensing was limited to sunny days to maximize passive sensor performance.   

The RapidScan CS-45 (Holland Scientific, Lincoln, NE, USA) is an active handheld 

sensor equipped with a modulated light source and three photodetector measurement channels at 

670, 730 and 780 nm (Table 4.2). RapidScan was oriented on the nadir position and 

measurements taken at ~0.6 meters directly over the corn row. The two central rows of each plot 

were scanned individually. Values generated for each row were averaged to create one value per 

wavelength per plot. The passive multispectral sensors used were Tetracam MCA6 Mini 
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(Tetracam Inc., Chatsworth, CA, USA), MicaSense RedEdge (MicaSense Inc., Seattle, WA, 

USA) or Parrot Sequoia (Parrot Inc., San Francisco, CA, USA) (Table 4.2).  

Table 4.2. Sensor information on band, wavelength center and full width at half maximum 
(FWHM, in parenthesis). 

Sensor name Sensor type Blue Green Red Red Edge NIR 

  –––––– Wavelength Center and FWHM (nm) ––––––  
RapidScan Active - - 670 730 780 
Tetracam Passive - 530 (10) 670 (10) 760 (10) 800 (10) 
RedEdge Passive 475 (20) 560 (20) 668 (10) 717 (10) 840 (40) 
Sequoia Passive - 550 (40) 660 (40) 735 (10) 790 (40) 

 

Each passive sensor was mounted on a UAS and flown to an altitude of 70 to 120 m.  

Imaging scenes were acquired with overlapping regions over the entire study area. A 

downwelling radiation sensor on the UAS was used for radiometric correction.  Corrections were 

performed in PixelWrench II (Tetracam Inc., Chatsworth, CA) when Tetracam was the passive 

sensor, and in Atlas (MicaSense Inc., Seattle, WA, USA) and Pix4D (Pix4D S.A., Lausanne, 

Switzerland) when MicaSense RedEdge and Parrot Sequoia were the passive sensors, 

respectively. Following image radiometric and geometric adjustment, the remaining image 

processing steps were performed in R Statistical Software (R Core Team, 2017). Unsupervised 

classification and image reclassification were used to exclude soil pixels from plant pixels.   

 Calculation of Vegetation Index, Sufficiency Index, and N Rate Recommendations 

VIs were calculated for the entire field and averaged within each plot. NDVI and NDRE 

were derived from the reflectance data of the red and near-infrared (NIR) bands and red-edge 

(RE) and NIR bands, respectively. The RE band from the passive sensor Tetracam had a 

wavelength center positioned too close to the NIR band (760 and 800 nm, respectively), resulting 

in NDRE values that were unrelated to pre-plant applied N rates. Due to this, NDRE values from 
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the SYs where Tetracam was the passive sensor (i.e. SY1, SY2, and SY3) were removed from 

the dataset. 

Two different methods were tested to set the reference VI values used for SI calculated 

from active and passive sensors used for each SY. The first reference method, the NRS, was 

calculated as the VI from the treatment receiving the highest N rate in each treatment block. The 

second reference method, the VR, was calculated as the 95th percentile of the histogram for each 

treatment block across all N rates. For both reference types, SI values were calculated for all 

other N treatments by block so as to retain n=4 per treatment combination per site-year (below). 

To calculate an SI, the VI of a treatment was divided by that of the VR derived for each 

SY-sensor-VI-block combination. Then, the SI was used as an input in the simplified algorithm 

developed by Holland and Schepers (2010) for side-dress N rate determination (Eq. [4.1]): 

𝑵𝒂𝒑𝒑 =  (𝑵𝒐𝒑𝒕 −𝑵𝑷𝒓𝒆𝑭𝒆𝒓𝒕) .
(𝟏!𝑺𝑰)
∆𝑺𝑰

, where    [ 4.1 ] 

 Napp = calculated recommended side-dress N rate, in kg ha-1 

 Nopt = optimum N rate calculated using the UNL nitrogen fertilizer algorithm for 

corn, in kg ha-1 

 NPreFert  = pre-plant applied N rate, in kg ha-1 

 SI = sufficiency index 

 ΔSI = DSI = difference between 1 and SI(0), which is the SI for when pre-plant 

applied N rate=0. Allowed to vary for each SY-sensor-VI combination. 

 

Delta SI was calculated for each SY-sensor-VI combination as 1 – SI(0), where SI(0) 

represents the SI value for the 0N check plot. Prior to side-dress N rate calculation, the SI and 

DSI datasets were filtered to meet the VRN algorithm constraints of DSI >0 and 0 ≤ SI ≤ 0. A 
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total of five data points were removed at this step, resulting from blocks where the 0N VI value 

was greater than the VR value such that SI0N > 1 and DSI<0 for a given SY-sensor-VI-block-

treatment. It is important to make the distinction that pre-plant N rates were actual applied 

treatments, whereas recommended side-dress N rates (hereafter referred to as side-dress N rate) 

were only simulated (not applied) for all treatments using data collected at the V12 corn growth 

stage.  

The effectiveness of the sensor-based side-dress recommendation rate was assessed by 

calculating the total N fertilizer input (pre-plant plus simulated side-dress) for each treatment, 

then comparing total simulated inputs to the economic optimum N rate (EONR).  First, crop N-

responsiveness was determined for each SY as a linear contrast of grain yield from 0N vs. grain 

yield from added N rates. When contrasts were significant (α =0.05), grain yield was considered 

responsive to N fertilization and AONR and EONR could be calculated. Otherwise, no values for 

EONR could be calculated for corn with no N response. EONR was calculated by regressing 

grain yield data against N rate using linear, linear-plateau, quadratic, and quadratic-plateau 

models, then selecting the model with the lowest Akaike information criterion. EONR was then 

determined from the linear and quadratic terms derived from the selected model (Scharf et al., 

2005) and by assuming a corn price of $134.8 Mg-1 grain and fertilizer price of $0.93 kg-1 N. 

 Statistical Tests 

All statistical analyses were conducted in R (R Development Core Team, 2017). First, to 

evaluate reference type effect on reference VI (response variable), reference VI data were tested 

using a four-way mixed effect ANOVA with fixed main and interaction treatments of SY (1 

through 8); reference type (NRS, VR); sensor type (active, passive); and VI (NDVI, NDRE), and 

the random effect of block nested in SY.  Because all main and interaction effects of reference 
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type were not significant (see Results), all SI and DSI values were recalculated using the VR 

approach only. Second, to evaluate treatment effects on DSI, the fixed main and interaction 

effects of SY, sensor type, and VI on DSI were calculated using a three-way mixed effect 

ANOVA with the random effect of block nested in SY. Finally, the resulting side-dress N rate 

recommendations were analyzed for each SY.  For SYs 1-3, side-dress N rates were assessed 

with a three-way mixed effect model ANOVA with block as random effect and the main and 

interaction fixed effects of pre-plant N rate, sensor type (active, passive), and VI (NDVI, 

NDRE), except for passive sensor NDRE data because Tetracam data was excluded.  For SYs 4-

8, side-dress N rates were assessed with a three-way mixed effect model ANOVA with block as 

random effect and the main and interaction effects of pre-plant N rate, sensor type (active, 

passive), and VI (NDVI, NDRE).  For all ANOVAs, treatment means were compared using 

Fisher’s Least Significant Difference test for significant treatment effects.  Significance for 

model terms and mean comparisons was set at α =0.05. Data were visually assessed by 

constructing fitted vs. residual, residual quantile-quantile and residual histogram plots, and met 

all assumptions of homogeneity and heteroscedacity. 

 Results 

 
 Reference Comparison 

 Reference VI values varied over SYs, sensor types and VIs (p<0.001), but was not 

affected by the main or interaction effects of reference type (VR = NRS) (Figure 4.1). All SI and 

DSI values hereafter were based on the VR approach in order to retain the highest N rate 

treatment in the VRN calculation (e.g. otherwise excluded in the NRS approach). 
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Figure 4.1. Boxplots (n=4) of reference vegetation index value for different reference types 
[virtual reference (VR) and N-rich strip (NRS)], sensor types (active vs. passive), and 
vegetation indices (NDRE and NDVI) at each site-year (SY).  

 Delta SI 

 Delta SI (DSI) was significantly affected by the 3-way interaction of SY × sensor type × 

VI (p<0.001), and ranged from 0.001 to 0.23 (Table 4.3). DSI averaged within SYs ranged from 

0.118 to 0.013, while DSI averaged over sensor-VI ranged from 0.027 to 0.107. Given the 

significance of different variables, DSI was calculated for each SY-sensor-VI combination and 

allowed to vary accordingly when calculating side-dress N rate.  
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Table 4.3. Delta SI for site-years (SY) 1 through 8 as affected by sensor type and vegetation 
index (VI).  Means within a given SY followed by a common lowercase letter are not 
significantly different at α=0.05.  

Sensor VI SY1 SY2 SY3 SY4 SY5 SY6 SY7 SY8 Mean 
Active NDRE 0.12 a 0.03 a 0.021 a 0.122 a 0.157 b 0.145 a 0.095 a 0.067 a 0.095  
Passive NDRE NA  NA  NA  0.089 a 0.229 a 0.155 a 0.024 b 0.036 ab 0.107  
Active NDVI 0.078 b 0.009 a 0.007 a 0.04 b 0.052 c 0.085 b 0.021 b 0.007 bc 0.037  
Passive NDVI 0.087 ab 0.005 a 0.01 a 0.03 b 0.032 c 0.038 c 0.016 b 0.001 c 0.027  
Mean   0.095  0.014  0.013  0.07  0.118  0.106  0.039  0.028    

  

 Side-Dress N Rate as Affected by Pre-Plant N Rate, Sensor, and VI 

 Recommended side-dress N rates based on both NDRE and NDVI from active and 

passive sensors decreased as pre-plant N rates increased at all SYs (Figure 4.2).  For SYs 1 

through 3 (no passive NDRE data), and SYs 4 through 6, side-dress N recommendations did not 

differ between sensor type or VI methods.  For SYs 7 and 8, a significant three-way interaction 

between pre-plant N rate, sensor, and VI-type reflected that passive sensors resulted in both 

lower or higher side-dress recommendations, depending on VI-type and intermediate pre-plant 

rates.  For SY7, side-dress N rate at pre-plant N rate=98 kg N ha-1 from passive-NDRE (89 kg N 

ha-1) was higher than other sensor-VI combinations, with the lowest side-dress N rate from 

active-NDVI (16 kg N ha-1). At pre-plant N rate=146 kg N ha-1, however, side-dress N rate was 

highest when derived from passive-NDRE (32 kg N ha-1) and different only from the lowest 

side-dress N rate (passive-NDVI, 8 kg N ha-1). For SY8, side-dress N rate at pre-plant N rate=72 

kg N ha-1 from active-NDVI (124 kg N ha-1) was the highest and different only from the lowest 

side-dress N rate (passive-NDVI, 61 kg N ha-1).  For SY8, side-dress N rate at pre-plant N 

rate=172 kg N ha-1 from passive-NDVI (97 kg N ha-1) was higher than other sensor-VI 

combinations, with the lowest side-dress N rate observed from both active- and passive-NDRE, 

and active-NDVI (22, 22, and 46 kg N ha-1, respectively). 
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Figure 4.2. Recommended side-dress N rate derived from both sensor types (active and 
passive) and vegetation indices (NDRE and NDVI) as a function of pre-plant-applied N rate 
at different site-years (SY). Side-dress N rate means within a given SY and over multiple 
pre-plant N rates followed by a common lowercase letter are not significantly different at 
α=0.05. Side-dress N rate means within a given SY and pre-plant N rate followed by a 
common uppercase letter are not significantly different at α=0.05. Text box in each panel is 
the passive sensor used at that SY.  
 

 N-responsiveness and EONR 

 Response to N application varied among SYs, where all years showed positive crop N 

response to fertilizer except for SYs 1 and 2 (Table 4.1).  For SY1, N deficiency at time of 

sensing was severe and affecting all pre-plant N rates such that EONR was not estimable. For 

SY2, yield showed no response to pre-plant N rate compared to the already high-yielding 0N 

check (13.7 Mg ha-1), so EONR was set to zero.  For SYs 3 through 8, the best-fit model between 

Tetracam	

Tetracam	 Tetracam	 RedEdge	

RedEdge	Sequoia	 Sequoia	 Sequoia	
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grain yield and pre-plant-applied N rate was either quadratic or quadratic plateau. For those SYs, 

EONR varied from 30 to 235 kg N ha-1 (Table 4.1). 

 VRN Accuracy 

 For each SY, the accuracy of VRN recommendations was assessed by how well a side-

dress N rate plus pre-plant N rate (i.e. total annual fertilizer input) approximated EONR (Figure 

4.4).  A side-dress N rate recommendation was considered accurate if it met two criteria: i) under 

N-deficient conditions, the total annual N input was EONR ± 10 kg N ha-1, and ii) under N-

sufficient conditions, the side-dress N rate recommendation was near or at zero. 

 Given that side-dress N rate at SYs 1 through 6 was not affected by either sensor type or 

VI, side-dress N rate accuracy was assessed for each pre-plant N rate (Figure 4.3). At SY1, N 

deficiency at time of sensing was severe to the point of affecting all pre-plant N rates. Thus, 

EONR was not estimable due to the overall low grain yields regardless of pre-plant N rate. At 

SY2, no pre-plant N rate was able to improve yield compared to the already high-yielding 0N 

check, and thus EONR was set to zero. Although a lack of grain yield differences among pre-

plant N rates was observed, all sensors and VIs inaccurately recommended side-dress N rate at 

SY 2. For SYs 3 and 4, all recommended side-dress N rates were greatly above EONR, with the 

highest discrepancy for the 0N checks. For SY5, side-dress N rates were accurate for the 0N 

check but too low at 77N and 163N.  The recommendation to add no side-dress N was accurate 

at 233N and 309N, which equaled or exceeded EONR.  Similarly for SY6, side-dress N rates 

were accurate for 0N and pre-plant rates >133N, but too low for 45N and 90N rates.     

 Side-dress N rate at SYs 7 and 8 was affected by both sensor type and VI, and thus side-

dress N rate was calculated for all four combinations (Figure 4.4). At SY7, all sensor x VI 

combinations generated side-dress N rates that surpassed EONR when pre-plant N rate=0, while 
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only active-NDRE side-dress N rate was able to match EONR at the other pre-plant N rates. At 

SY8, all sensor x VI combinations generated side-dress N rates that matched EONR when pre-

plant N rate=0, while active-NDVI was the best combination for creating side-dress N rates that 

approached EONR at other pre-plant N rates while concurrently recommending no side-dress N 

rate when pre-plant N rate > EONR. 

 

Figure 4.3. Recommended side-dress N rate averaged over vegetation indices (NDRE, 
NDVI) and sensor types (active, passive) at V12 growth stage for site-years (SY) 1 through 
6 using the Holland-Schepers algorithm. Black bars represent standard error of the mean 
side-dress N rate. Light blue horizontal line represents SY-specific EONR, with shaded 
light blue band representing EONR ± 10 kg N ha-1. 
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Figure 4.4. Recommended side-dress N rate for each combination between vegetation 
indices (NDRE, NDVI) and sensor types (active, passive) at V12 growth stage for site-years 
(SY) 7 and 8 using the Holland-Schepers algorithm. Black bars represent standard error of 
the mean side-dress N rate. Light blue horizontal line represents SY-specific EONR, with 
shaded light blue band representing EONR ± 10 kg N ha-1. 
 

 Discussion  

The selection of reference type, sensor type, VI, and DSI can impact the accuracy of in-

season sensor-based N application rates. The negligible differences (~0.6%) between reference 

VI values calculated with NRS or VR suggests that NRS can be replaced by VR without loss of 

information under these conditions. Different combinations of SY, sensor type, and VI are not 

expected to have similar reference VI values due to inherent differences among SYs (sensing 

time, planting date, soil type, weather conditions until sensing date, level of N stress), sensor 

types, and between VIs (absolute NDVI values are higher than NDRE due to differential 

response of R and RE to increased biomass and chlorophyll content). Vegetation index values 

could differ between NRS and VR, however, when i) the VR area does not include N-sufficient 

patches; ii) the VR area includes many patches of bare soil (i.e. poor stand establishment); iii) the 
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VR area is sensed before sufficient canopy cover; and/or iv) the NRS exhibits high-N-induced 

sulfur deficiency as decreased crop vigor (Franzen et al., 2016). These conditions pose a greater 

problem when on-the-go active sensors are utilized because VR area sizes are limited unless 

continuously updated. 

 In-season side-dress recommendations are sensitive to DSI, and we found that DSI was 

sensitive to sensor type, VI calculation, and SY-specific crop and N management characteristics. 

Overall, however, DSI based on NDRE was higher than NDVI, and NDVI-based DSI never 

exceed that calculated from NDRE.  Smaller DSI values from NDVI likely occurred because the 

red band reflectance used to calculate NDVI saturates at LAI values >3 (Viña et al., 2011) and 

chlorophyll concentrations > 3 µg cm-2 (Gitelson et al., 1996), above which NDVI loses 

sensitivity in differentiating between varied crop N status levels.  NDRE, however, continues to 

differentiate because it uses the RE band instead of the red band (Viña et al., 2011), and could 

show larger DSI values. In contrast to our findings, Holland and Schepers (2010) suggested that 

RE-based DSI are normally smaller than those from red bands. Other authors attribute 

differences between NDVI and NDRE in active sensors to the mathematical function itself, 

because reflectance from red and NIR bands move in opposite directions as crop biomass 

increases whereas reflectance from RE and NIR bands move in the same direction (Bean et al., 

2018). 

Side-dress N rate will only vary when 0 < pre-plant N rate < Nopt. In cases where pre-

plant N rate =0, side-dress N rate=Nopt because 0N is used to set SI(0) and to calculate DSI. 

Under these conditions, the square root component of the algorithm becomes 1.  When pre-plant 

N rate > Nopt, side-dress N rate is set to zero since otherwise side-dress N rate would be 

calculated as a negative number. Overall, we found that crops were N-responsive in 75% of SYs 
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(6 of 8), and that partially or fully accurate side-dress N rates were recommended for 67% of N-

responsive years (4 of 6).  The accuracy to side-dress N rates were based on whether pre-plant 

plus side-dress rates approximated EONR (± 10 kg N ha-1) under N deficient conditions, or if 

side-dress recommendations were near or at 0 under N-sufficient conditions. Furthermore, in 

75% of SYs, side-dress N recommendation rates were similar regardless of sensor type nor VI 

calculation method, varying only as a function of pre-plant N rate.   

At SY1, grain yield was not responsive to N fertilizer, likely due to high N deficiency in 

all treatment plots that resulted from N leaching through coarse-textured soils under high water 

inputs (315 mm of rainfall plus 318 mm of irrigation water from June to August). In contrast, 

side-dress N rates for SY2 were set to 0 because non N-responsive yield was due to overall high-

yielding conditions. At SYs 2 and 3, side-dress N rate was well above EONR, evidenced from 

the lack of differences in active sensor data acquired throughout the growing season. 

At SY4, NDRE SI varied more over time. The increase in NDRE SI for pre-plant N 

rate=0 from V12 to R5 indicates that considerable N mineralization from SOM occurred during 

this period. Since side-dress N rate was based on sensor data collected at V12, no combination 

between sensor and VI could have accounted for atypical N mineralization that occurred after 

sensing. When comparing rainfall and air temperature data after sensing among SYs conducted 

at SCAL over different years (data not shown), the only noticeable difference is the average 

mean air temperature in September. At SYs 2 and 3 (both conducted in 2015 at SCAL), average 

mean air temperature in September was 25.7°C, compared to 19.2, 19.6, and 19°C at SYs 4-5, 6, 

and 8, respectively, which were the other SYs conducted at SCAL over different years. This 

significantly higher temperature in September at SYs 2 and 3 could have led to increased N 
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mineralization and explain, in part, the hypothesis of enhanced N mineralization in those two 

occasions.  

At SYs 7 and 8, side-dress N rate was affected by pre-plant applied N rate, sensor, and 

VI. Passive-NDVI side-dress N rate performance at SY8 was an example of a desirable outcome 

when using sensor-derived VRN, because it was able to generate a high enough side-dress N rate 

that was within EONR ± 10 kg N ha-1 under N-deficient conditions, and a low enough side-dress 

N rate that did not surpass EONR under N-sufficient conditions.  

Bean et al. (2018) evaluated the performance of different VRN algorithms in 

recommending a side-dress N rate that was aligned with end-of-season calculated EONR for 49 

sites. The authors observed that the Holland-Schepers algorithm performed better when NDRE 

was used instead of NDVI, although this algorithm was developed in such a way to be sensor-VI 

independent. However, Bean et al. (2018) used a constant DSI value of 0.3 when assessing the 

algorithm performance. In our study, DSI varied considerably and the use of a SY-sensor-VI 

specific DSI considerably improved the side-dress N rate agreement between different sensors 

and VIs.  

While active sensor data quality can be impacted by the amount of non-plant pixels 

sensed, passive sensors data are more prone to variability related to multiple sources and 

decisions taken in the imagery acquisition and processing steps. For instance, factors that could 

have impacted passive sensor data variability are time of the day when sensing was performed, 

cloud cover, quality of downwelling radiation acquisition for reflectance correction, proper 

geolocation of multiple bands, proper non-plant pixel identification and removal, etc. Although 

these conditions and decisions were controlled to our best capacity, normal variation could have 

created somewhat different outcomes. Under these studies, the passive sensor was flown between 
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10:30 to 16:00 local time, with most flights between ± 2h from solar noon under sky conditions 

varying from clear to some scattered clouds not casting shadow on the study area. Furthermore, 

the same statistical procedures were utilized for non-plant pixel identification and separation 

before band reflectance was averaged within each plot. 

It has been demonstrated that NDVI loses sensitivity in differentiating crop N status at 

higher biomass and chlorophyll levels (Gitelson et al., 1996; Viña et al., 2011). These conditions 

were observed in our irrigated corn studies at the V12 growth stage, as evidenced by VI data (not 

shown). However, the implementation of a variable DSI for each SY-sensor-VI combination was 

able to create side-dress N rates that were comparable regardless of VI and sensor used in most 

cases. This finding is key because i) it demonstrates that sensors having only red and NIR bands 

can still generate reliable information to derive side-dress N rates even when VI data 

demonstrates sensitivity loss, and ii) it reinforces the need to use site-sensor-VI specific DSI 

rather than a default value. One limitation of using a variable DSI is that its calculation involves 

collecting reflectance data from an area not fertilized with N. Thus, the use of variable DSI in 

sensor-based VRN of normal production fields where non-fertilized areas are not desirable may 

not practical. 

It is important to note that EONR was calculated based on pre-plant N rate treatments 

only, and that EONR based on side-dress N application could have been different. A U.S. 

Midwest multi-state, multi-year corn N management study comprising a total of 49 sites with N 

rates varying from 0 to 315 kg N ha-1, applied both all at pre-plant or split into 45 kg N ha-1 pre-

plant plus different side-dress N rates, observed a wide range in EONR from both pre-plant and 

split-applied fertilizer (from 0 to 315 kg N ha-1), with average pre-plant and split application 

EONR of 169 and 159 kg N ha-1, respectively (Kitchen et al., 2017). This is an indication that 
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EONR based on pre-plant N rates may be a reliable proxy to what side-dress EONR could have 

been had it been evaluated.  

 Conclusions 

The performance of different crop canopy sensors in assessing in-season corn N status 

and recommending a side-dress N rate that matches EONR has been shown. The main findings 

of our work were: i) no difference was found in reference VI when comparing NRS and VR; ii) 

observed DSI << default DSI of 0.3 in Holland-Schepers algorithm; and iii) different passive and 

active sensors can be used to effectively recommend in-season N rates, though efficacy can be 

dependent on VI selection in some years.  

The Holland-Schepers algorithm was utilized to translate sensor information into an N 

recommendation. To implement the algorithm, a virtual reference approach was utilized when 

calculating SI, based on preliminary evaluation that found NRS and VR approaches resulted in 

the same SI under conditions of this study. Delta SI significantly varied depending on the SY, 

sensor type and VI. Once DSI was allowed to vary accordingly, side-dress N rates from different 

sensors and VIs were comparable. Therefore, DSI should be calculated using information 

specific to the sensor and VI being employed at the site that is receiving VRN. Different sensor 

types and VIs have the potential to similarly assess corn N stress and create a side-dress N rate in 

agreement with EONR when proper algorithm inputs are selected and when no significant N-

stressing and yield-reducing event happens after the time of sensing. 
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Chapter 5 - Summary and Generalized Recommendations for Nebraska 

Corn Production 

 Introduction 

On a state level, Nebraska corn producers have continuously improved their nitrogen (N) 

fertilizer use efficiency (NUE) through increasing grain production at near-constant average N 

rates over the past 60 years. However, corn production NUE under certain groundwater 

management areas has stagnated in the past three decades, possibly due to current N fertilizer 

management practices having achieved their maximum potential efficiency. In order to further 

improve NUE, next-generation management practices such as fertigation, the use of stabilized 

fertilizers, and in-season sensor-based N management have been proposed (Ferguson, 2015). 

These tools can be categorized as protective and reactive approaches. Protective 

approaches include the use of stabilized fertilizers in order to keep N from being lost given 

conducive weather conditions exist. These conditions could be no rainfall following urea-based 

fertilizers application, or excessive rainfall after N application leading to leaching. By protecting 

fertilizer from weather-driven environmental losses, protective approaches may maintain more N 

available for the crop and avoid a nutritional deficiency that can lead to yield penalty. 

Reactive approaches include the use of in-season sensor-based assessment of crop vigor 

and the formulation of an N rate to mitigate a stress when present. Reactive approaches work by 

allowing weather conditions to affect N dynamics and crop nutrition to the point of a mild 

nutritional stress, and then work to correct it. Because a reactive approach is normally used 

during the mid-vegetative growth stages in corn, it reduces the need to predict and account for 

early-season weather-driven losses before they happen. With that, the uncertainty of how much 
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N will be needed to finish the season is also decreased, and N rates can be fine-tuned to better 

match the optimum required for production.  

The benefits of using sensors to assess spatial variability in crop vigor and vary N rate 

accordingly are often confounded with the fact that it is also split-applied (Colaço and Bramley, 

2018). Studies evaluating both the sensor-based and the timing aspects of in-season N 

management separately have demonstrated that the use of sensors can improve NUE and grain 

yield compared to fixed-rate split application, but that split application alone comprised most of 

the improvement over pre-plant-only applied N fertilizer (Colaço and Bramley, 2018).  

The objectives of this chapter were: i) to summarize recent evaluations of the use of 

stabilized fertilizers including urease inhibitors (UI) and nitrification inhibitors (NI), and the use 

of crop canopy sensors for in-season crop vigor assessment and fertilizer recommendation; and 

ii) to generalize these research findings to other corn growing regions of Nebraska based on 

county-level weather and soils data. To extrapolate sensor-based N management, it was 

hypothesized that county-level soil texture class variability was related to within and between 

fields soil texture variability. 

 Materials and Methods 

In order to generalize recent research findings about the effect of next-generation N 

management practices on corn production to the entire state, various spatial data layers were 

downloaded, processed, and analyzed. Those included county-level corn planted and harvested 

area in 2018 (USDA NASS, 2019); state-level monthly cumulative precipitation normal (1981-

2010); and state-level STATSGO soil surface texture data (USDA Geospatial Data Gateway, 

2019). 
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The first processing step was to select only counties that reported corn production data 

for the 2018 growing season. The filtered county layer was utilized to subset the state-level 

monthly precipitation and soil texture layers, and to extract a mean value for each county. 

Whenever a county comprised multiple values for a given spatial layer, the area extent of each 

different value within the county was derived, and a weighted mean value per county was 

calculated. For the precipitation layers, county-level data was extracted for the months of 

February through April. Thereafter, county-level precipitation layers were categorized according 

to different response thresholds (explained below). 

To extrapolate UI use to Nebraska, the main variable considered was cumulative 

precipitation following fertilizer application, assuming 20-mm precipitation volume to be the 

threshold between high and low potential for ammonia loss for surface-applied ammonium-

containing fertilizer. Since the precipitation data layers were the average cumulative precipitation 

in a given month, the specific timing of fertilizer application could not be derived. To grossly 

overcome this limitation, a threshold of 50 mm cumulative rainfall was considered for each of 

the months March, April, and May, assuming that N surface application to corn would mostly 

happen within this period. Thereafter, counties were classified as <50 mm and >50 mm for each 

of these months, assuming <50 mm to be under higher risk of ammonia loss and most probably 

responsive to UI. 

To extrapolate NI use to Nebraska, the main variable considered was cumulative 

precipitation in two-month intervals (February and March, March and April, and April and May). 

The interval of two months (~eight weeks) was chosen because, according to results observed in 

Chapter 3 of this document, 10 weeks after fertilizer application was the summarizing window 

that best described the response of corn yield to NI use (negative, neutral, and positive NI effect). 
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The monthly average cumulative precipitation of the two months considered for a given interval 

were summed, and a threshold of 142 mm was used to classify counties as <142 mm (higher 

chance of negative NI effect on yield) and >142 mm (higher chance of positive NI effect on 

yield). 

To extrapolate the use of sensor-based N management to Nebraska, the main variable 

considered was soil surface textural class variability within a county. Because the extrapolation 

was aimed at the county level, it was hypothesized that greater variability of soil texture in a 

county would also be reflected in greater variability within and among fields in that county, and 

be most benefitted from sensor-based variable rate N management. 

In order to calculate surface soil texture variability at the county level, the number of 

different soil texture classes and their relative area  to the county total area was calculated using 

STATSGO surface soil texture data. Thereafter, counties were classified as having low, medium, 

and high surface soil texture variability when the soil texture class with the higher proportion in 

the county represented >70%, between 50% and 70%, and <50% of the county total area.  

 Results and Discussion 

 County Selection 

Of the total 93 counties in the state, only 72 reported corn production data in 2018 

(Figure 5.1) and were selected for subsequent analysis. The largest and smallest harvested corn 

area in 2018 was recorded in Perkins (95,142 ha) and Garfield (4,569 ha) counties, respectively.  
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Figure 5.1. Nebraska state and county boundaries, including county names, depicting the 
harvested corn area (1000 ha) for the 2018 growing season based on USDA reported data. 
 

 Urease Inhibitor – Summary and Extrapolation to Nebraska 

The UI study was aimed at i) comparing different UI, including a new commercial 

formulation, and UI+NI products on how they affect sealed-chamber measured NH3 

volatilization losses from surface-applied urea-ammonium nitrate; and ii) assessing the impact of 

different UI and UI+NI products on corn growing season vigor and grain yield. This study was 

comprised of five site-years (SY), conducted from 2014 through 2017 on different soil types (silt 

loam, loamy sand) and with a range of pre-plant-applied N rates (0 to 268 kg N ha-1).  

Over all SYs, volatilization losses ranged from 0 to 26 NH3-N ha-1. The use of UI was 

able to decrease NH3 losses from 4 to 16 kg NH3-N ha-1, which represented a reduction in loss of 

21-62%. The use of UI+NI increased NH3 losses compared to UI only at the loamy sand site, 

possibly due to lower cation exchange capacity and H+
 buffering capacity, and was not different 
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from UI in two other silt loam sites. Three of the five SYs responded to N fertilization, with 

agronomic optimum N rate ranging from 160 to 208 kg N ha-1. However, corn grain yield was 

not affected by UIs in any of the sites.  

Based on our research results, review of the literature, and availability of public data, the 

average normal (1981-2010) cumulative precipitation for the months of February through May 

was summarized for the selected counties (Figure 5.2) and used as a proxy for the probability of 

response to UI use in Nebraska (Figures 5.3 through 5.5). Cumulative precipitation varied in 

space and time, with smallest and largest volumes of 0 to 23 mm in February, 0 and 51 mm in 

March, 25 and 76 mm in April, and 51 and 124 mm in May, respectively. 

 

Figure 5.2. Nebraska state and county boundaries, including county names, depicting the 
average normal (1981-2010) cumulative precipitation, in mm, for the months of February 
through May. 
 

 



 

 

178 

 Based on the assumption that monthly normal cumulative precipitation volumes of 50 

mm or greater would likely comprise at least one 20-mm precipitation event that could 

incorporate surface-applied N fertilizer, data from Figure 5.2 was reclassified at the county-level 

for the months of March, April, and May as <50 mm and >50mm. The month of February was 

not considered given that surface application of N fertilizer during this time of the year is not 

recommended and likely not performed by the majority of the producers. 

 For surface applications of urea-containing N fertilizer during the month of March, 60 of 

the total 72 counties were classified as <50 mm and thus considered susceptible to N losses in 

the form of ammonia volatilization (Figure 5.3). These counties would have a higher probability 

of decreasing ammonia volatilization by using a UI and therefore protecting final grain yield. 

 

Figure 5.3. Nebraska state and county boundaries, including county names, depicting the 
average normal (1981-2010) cumulative precipitation for the month of March as <50 mm 
and >50 mm. 
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For surface applications of urea-containing N fertilizer during the month of April, 13 of 

the total 72 counties were classified as <50 mm and thus considered susceptible to N losses in 

the form of ammonia volatilization (Figure 5.4). These counties would have a higher probability 

of decreasing ammonia volatilization by using a UI and therefore protecting final grain yield. 

 

Figure 5.4. Nebraska state and county boundaries, including county names, depicting the 
average normal (1981-2010) cumulative precipitation for the month of April as <50 mm 
and >50 mm. 
 

For surface applications of urea-containing N fertilizer during the month of May, none of 

the total 72 counties were classified as <50 mm and thus considered susceptible to N losses in 

the form of ammonia volatilization (Figure 5.5). Therefore, the risk of ammonia loss and 

probability of benefiting from UI use when surface-applying urea-containing N fertilizer is 

greatest for March applications, intermediate for April applications and very limited for May 

applications for different counties in Nebraska.  
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Figure 5.5. Nebraska state and county boundaries, including county names, depicting the 
average normal (1981-2010) cumulative precipitation for the month of May as <50 mm and 
>50 mm. 
 

 One limitation of the UI extrapolation is the fact that rainfall timing in relation to N 

application timing could not be explicitly considered. Also, this extrapolation does not account 

for the effect of temperature on urea hydrolysis. Urea hydrolysis will be slower at cooler 

temperatures. Thus, urea applied in March may remain in the urea form longer than with warmer 

temperatures in May, and the likelihood of rainfall incorporating urea before much volatilization 

occurs is higher. Nonetheless, this extrapolation provides a general idea of where and when in 

Nebraska conditions could be more conducive to ammonia volatilization considering the lack of 

rainfall as the main driving factor. 
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 Nitrification Inhibitor – Summary and Extrapolation to Nebraska 

The NI study was aimed at i) understanding the long-term effects of N rate (0, 75, 150 

and 300 kg N ha-1), tillage [conventional (CT) vs. reduced (RT)], N application timing (pre-plant 

and side-dress) and the use of a NI (Nserve, with vs. without) on irrigated corn grain yields, and 

ii) assessing weather patterns responsible for different yield responses over time. The study has 

been continuously conducted near Clay Center, NE on a silt loam for over 28 years.  

All treatment factors impacted corn grain yield over time, in the order of N rate > Tillage 

> N Timing > NI. The most important weather variables in explaining different yield responses 

over time were related to year-yield potential, air temperature and precipitation. NI applied at 

pre-plant increased yield over fertilizer alone more often then when applied side-dress (32 vs. 

5% of the years), especially under medium to low-yielding years under lower mean air 

temperature (<6°C) three weeks after fertilizer application (AFA). Side-dress fertilizer 

application increased yield over pre-plant in 47% of the years, which occurred mostly during 

medium- and high-yielding years under dry conditions (cumulative precipitation over 13 weeks 

AFA <210 mm).  

The use of NI at different N rates created positive (32% of years), neutral (54% of years) 

and negative (14% of years) impact on yield as compared to fertilizer alone. Most of the years 

with a negative impact of NI on yield happened under dry conditions (cumulative precipitation 

over 10 weeks AFA < 141 mm), whereas most of the years with a positive impact of NI 

happened in wetter (>142 mm) and hotter (average corn heat units >15) conditions under 

medium- and high-yielding years. CT yielded higher than RT 40% of the years, and in no 

occasion RT yielded higher than CT. Weather conditions most conducive to CT yielding higher 
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were higher wind speeds (> 3.6 m s-1), more evenly distributed rainfall and higher mean air 

temperature (>4.5°C) over two weeks AFA.  

Overall, the use of NI had the least impact on yield over time compared to other N 

fertilizer practices, and promoted positive, neutral, and negative yield outcomes. The use of NI 

was most beneficial when applied pre-plant followed by wet and hot weather conditions early in 

the season. The use of NI had the most negative impact on yield under dry conditions early in the 

season, and thus cannot be considered a risk-free practice.   

Based on our research results, review of the literature, and availability of public data, the 

average normal (1981-2010) cumulative precipitation for the periods of February to March, 

March to April, and April to May were summarized, assuming fertilizer application in the first 

month of each period, for the selected counties and used as a proxy for the probability of 

response to NI use in Nebraska (Figures 5.6 through 5.8). Cumulative precipitation varied in 

space and time, with all counties receiving <142 mm rainfall in the period of February-March 

(Figure 5.6) and March-April (Figure 5.7), and thus being at higher risk of NI negatively 

impacting corn yield if fertilizer was applied in early February and early March. The period of 

April-May had 29 and 43 counties receiving <142 and >142 mm, respectively. In this case, a 

larger number of counties would have a higher probability of NI use to benefit grain yield if 

fertilizer was applied in early April. 
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Figure 5.6. Nebraska state and county boundaries, including county names, depicting the 
average normal (1981-2010) cumulative precipitation for the period of February-March as 
<142 mm and >142 mm. 

 

Figure 5.7. Nebraska state and county boundaries, including county names, depicting the 
average normal (1981-2010) cumulative precipitation for the period of March-April as 
<142 mm and >142 mm. 
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Figure 5.8. Nebraska state and county boundaries, including county names, depicting the 
average normal (1981-2010) cumulative precipitation for the period of April-May as <142 
mm and >142 mm. 
 

 One limitation of the NI extrapolation is that the 142 mm precipitation threshold was 

derived from a long-term study conducted on a silt loam soil in Clay County, and did not include 

data derived from other soil textural classes. In order to assess the relevancy of this 

extrapolation, STATSGO data was analyzed by extracting the most predominant soil texture 

class in every county, and calculating the total number of counties within each soil texture class 

category. Of the total 72 selected counties, 41 had silt loam as the most predominant soil texture 

class (Figure 5.9). Therefore, although the results of extrapolation reported should be considered 

with caution, they were generated from a study conducted on the most predominant surface soil 

textural class in the state. 
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Figure 5.9. Number of counties with a given predominant surface soil texture class.  
 

 In-Season Sensor-Based Variable Nitrogen Rate – Summary and Extrapolation to 

Nebraska 

The sensor-based N management study was aimed at i) comparing active and passive 

crop canopy sensors’ recommended side-dress N rate derived from different vegetation indices 

(VI); and ii) assessing recommended side-dress N rate recommendation accuracy of different 

sensor and VI types compared to the economic optimal N rate (EONR) in irrigated corn. This 

study was comprised of eight site-years (SYs), conducted from 2015 through 2018 on different 

soil types (silt loam, loam, and sandy loam) and with a range of pre-plant-applied N rates (0 to 

390 kg N ha-1). Crop reflectance data was acquired using four different sensors: RapidScan 

(handheld, active) and Tetracam, MicaSense RedEdge or Parrot Sequoia (unmanned aerial 

system-mounted, passive). Sensors were utilized at the V12 growth stage. For all sensors, 
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normalized difference vegetation index (NDVI) and normalized difference red-edge (NDRE) 

were calculated.  

Recommended side-dress N rate based on both NDRE and NDVI was affected by pre-

plant N rate at all SYs, and further affected by sensor type at SYs 7 and 8. Overall, side-dress N 

rate varied from 0 to 233 kg N ha-1 and decreased as pre-plant N rate increased for all SYs. Six 

out of eight SYs were responsive to pre-plant applied N, of which four performed partially or 

fully satisfactorily in creating a side-dress N rate that when summed to the pre-plant N rate was 

within EONR ± 10 kg N ha-1 of that SY. Different sensor types and VIs have the potential to 

similarly assess corn N stress and create a side-dress N rate in agreement with EONR when 

proper algorithm inputs are selected and when no significant N-stressing and yield-reducing 

event happens after the time of sensing.  

Because the main objective of this study was to compare N variable rate recommendation 

from different sensors, it did not generate results that could be directly used for state-level 

extrapolation of the suitability of this technology. Therefore, the likelihood of a positive response 

from sensor-based variable rate N management was extrapolated to the state of Nebraska based 

on the number and extent of different soil textural classes within the selected counties (Figure 

5.10).  
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Figure 5.10. Nebraska state and county boundaries, including county names, depicting soil 
surface texture classes based on STATSGO data. 
 

 The hypothesis of using soil texture variability was that greater variability of soil texture 

in a county would also be reflected in greater variability within and between fields in that county, 

and be most benefitted from sensor-based variable rate N management. Selected counties were 

classified as low, medium, and high variability in soil textural class when the major soil texture 

class in that county represented  >70%, between 50% and 70%, and <50% of the total county 

area, respectively.  

Of the total 72 counties, 32, 22, and 18 were classified as low, medium, and high soil 

textural class variability, respectively (Figure 5.11). With that, approximately 56% of the 

selected counties in Nebraska could potentially benefit from utilizing in-season crop canopy 
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sensors to not only assess the effects of spatial variability in corn, but also to variably apply N to 

compensate for this variability. 

 

Figure 5.11. Nebraska state and county boundaries, including county names, depicting soil 
texture variability class of low (>70%), medium (between 50% and 70%), and high (<50%) 
according to the soil texture class with highest proportion in the county. 
 

 County-level Suitability of the Three Next-Generation Strategies 

The suitability of using each individual next-generation N management strategy has been 

demonstrated above. To better understand which management options a producer may have in a 

given county, a summary containing all three strategies was created (Figure 5.12). The use of UI 

was classified as “recommended” when either cumulative precipitation in March or April was 

<50 mm; the use of NI was classified as “recommended” when the cumulative precipitation 

during the period between April and May was >142 mm; and the use of sensor-based in-season 
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N variable rate application was classified as “recommended” when the soil texture class 

variability was classified as either medium or high.  

 

Figure 5.12. Nebraska state and county boundaries, including county names, depicting 
recommended next-generation N management strategies. UI = urease inhibitor, NI = 
nitrification inhibitor.  
 

Overall, all selected counties could benefit from the use of at least one next-generation N 

management strategy, based on the assumptions of this work. The number of counties with a 

higher probability of positive response from the use of NI alone, UI alone, UI/NI, NI/Sensor, 

UI/Sensor, and UI/NI/Sensor was 7, 14, 11, 5, 15, and 20, respectively. The fact that all selected 

counties were considered suitable for at least one next generation strategy demonstrates how N 

fertilizer can be at risk in the entire state if not properly managed.  

Counties identified as suitable for the use of more than one technology (e.g. UI/NI) are at 

risk of N loss via different pathways and could benefit from managing N by implementing more 

than one strategy. However, this may become unfeasible given the added cost of different 
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technologies. Other aspects of N fertilizer management such as N source, placement, and timing 

should be considered to identify the most critical N loss conditions in a given field and guide the 

decision of adopting a technology that better protects N loss and grain yield. For example, 

producers that inject N fertilizer into the soil will not benefit from using a UI, even if the field is 

within a county classified as “UI/NI”. In this case, these producers could consider the adoption 

of NI only, which best suits their specific N management conditions.  

The results of this extrapolation should be validated using information from previous 

studies evaluating the effect of these technologies in different growing conditions of Nebraska. 

Furthermore, once validated, this extrapolation could aid in the targeted selection of regions with 

a high probability of response for future studies including the use of NI, UI, and sensor-based 

management. 

 

 Conclusions 

The use of next-generation protective and reactive approaches to N management have 

been demonstrated for Central Nebraska. Overall, the use of a UI decreased N losses as NH3, but 

this was not translated into higher yields when compared to untreated fertilizer. Nonetheless, 

loss-saved fertilizer may have been incorporated into soil organic matter and become available in 

following growing seasons. The use of an NI created negative, neutral, and positive yield 

responses compared to untreated fertilizer depending on weather conditions. The use of sensor-

based in-season N management was able to recommend an N rate that partially or fully matched 

crop demand in four of six N-responsive SYs. 

The lack of consistent response of stabilized fertilizers on yield has been attributed to 

many factors. Those include i) lack of yield response to N application (i.e. N was not the limiting 
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factor); ii) large contribution of N from soil organic matter mineralization or other sources 

including excessively high N rates; iii) conditions not conducive to loss; iv) N positional 

unavailability in relation to root active uptake region; v) negative effect of inhibitor on crop 

growth.  

Stabilized fertilizers have been utilized as “insurance” against weather uncertainty. While 

UIs either have shown positive or no effect on yield depending on the conditions stated above, 

NIs cannot be considered risk-free since under certain conditions they can also negatively impact 

yield. Future studies should focus on the probability of different yield responses from the use of 

stabilized fertilizers based on past weather to generate probable scenarios for a current growing 

season. 

The conditions under which both protective and reactive approaches have failed in these 

studies were commonly related to weather. The lack of yield response from UI was attributed to 

either low NH3 losses and/or N from other sources such as soil organic matter mineralization, 

both of which are governed by weather. The effect of NI on both loss and yield was weather-

driven, with higher chance of decreasing losses and having a positive yield response under wet 

years. In-season sensor-based N management failed when increased soil mineralization likely 

happened after sensing.  

The extrapolation of these technologies at the county level in the state of Nebraska was 

demonstrated. Overall, all counties where corn is produced had a high probability of benefiting 

from the implementation of at least one of the three technologies. This demonstrates that N 

fertilizer can be at risk of different loss pathways in different regions of the state, and that the use 

of next-generation N management technologies can aid in managing these losses. 
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Once validated, this extrapolation could be used to inform the placement of future 

research field trials evaluating the effect of UI, NI and sensor-based in season N management. 

Furthermore, future N management approaches would likely benefit from explicitly 

incorporating weather information into their adoption decision and implementation, rather than 

be expected to indirectly account for weather uncertainty.  
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