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(R.L.R.); 0000-0001-6739-5527 (J.C.S.)

Identifying interspecies changes in gene regulation, one of the two primary sources of phenotypic variation, is challenging on
a genome-wide scale. The use of paired time-course data on cold-responsive gene expression in maize (Zea mays) and
sorghum (Sorghum bicolor) allowed us to identify differentially regulated orthologs. While the majority of cold-responsive
transcriptional regulation of conserved gene pairs is species specific, the initial transcriptional responses to cold appear to
be more conserved than later responses. In maize, the promoters of genes with conserved transcriptional responses to cold
tend to contain more micrococcal nuclease hypersensitive sites in their promoters, a proxy for open chromatin. Genes with
conserved patterns of transcriptional regulation between the two species show lower ratios of nonsynonymous to
synonymous substitutions. Genes involved in lipid metabolism, known to be involved in cold acclimation, tended to show
consistent regulation in both species. Genes with species-specific cold responses did not cluster in particular pathways nor
were they enriched in particular functional categories. We propose that cold-responsive transcriptional regulation in
individual species may not be a reliable marker for function, while a core set of genes involved in perceiving and responding to
cold stress are subject to functionally constrained cold-responsive regulation across the grass tribe Andropogoneae.

INTRODUCTION

Thegrassesareacladeofmore than10,000species,whichexhibit
conservedmorphology and genome architecture (Bennetzen and
Freeling, 1993). Grasses have adapted to grow in a wide range of
climates and ecologies across the globe, with 20% of total land
area covered by ecosystems dominated by grasses (Shantz,
1954). As a result, the range of tolerance to abiotic stresses
present in the grass family (Poaceae) far exceeds that present
within any single grass species. However, to date, studies at-
tempting to identify determinants of abiotic stress tolerance at
a genetic or genomic level have predominantly focused on in-
dividual species (Chopra et al., 2017; Priest et al., 2014; Revilla
et al., 2016; Tiwari et al., 2016;Waters et al., 2017). Themajority of
genetic changes with phenotypic effects can be broadly clas-
sified into two categories: those that alter protein-coding se-
quence and those that alter the regulation of gene expression.

DNA sequence changes that alter protein-coding sequences
can be identified in a straightforward fashion. The probability that
a given polymorphism in a protein-coding sequence will have
a phenotypic effect can also often be estimated. At a basic level,
this involves classification as synonymous,missense, andnonsense

mutations. Information on the overall level of evolutionary con-
servation for a given amino acid residue can also be used to
increase the accuracy of these predictions (Cooper et al., 2005;
Ng and Henikoff, 2001; Reva et al., 2011). Cross-species
comparisons of the protein-coding sequences from genes
co-opted into new functional roles in C4 photosynthesis have
been able to identify protein changes linked to changes in
function at a resolutionof individual aminoacid residues (Christin
et al., 2007).
Identifying changes in gene regulation across related species

is more challenging, and the associated methods are far less
advanced. For extremely close relatives, such as Arabidopsis
thaliana and Arabidopsis arenosa, RNA-seq reads from both
species can bemapped to a common reference genome (Burkart-
Waco et al., 2015). For species with greater levels of sequence
divergence in transcribed regions, this approach becomes im-
practical. Recent work in Sophophora (formerly Drosophila)
described some of the many challenges present in comparing
changes in baseline expression levels across closely related
species with independently sequenced and assembled refer-
ence genomes (Torres-Oliva et al., 2016). However, this ap-
proach is limited to identifyingchanges inbaselinesexpression in
the same treatment rather than examining patterns of regulation
across multiple treatments. Within the grasses, several research
groups have employed clustering-based methods to identify
genes with conserved patterns of regulation during either re-
productive or photosynthetic development (Davidson et al., 2012;
Wang et al., 2014). Among other results, one of these studies
concluded that orthologous genes conserved at syntenic locations
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are more likely to share correlated expression patterns across
multiple species than genes classified as orthologs based on phy-
logenetic analysis but located at nonsyntenic locations (Davidson
et al., 2012). Clustering-based methods can identify genes with
conserved patterns of regulation across multiple species, but
they have high false positive rates when used to identify genes
with changes in regulatory pattern.

Inevenclosely relatedspecies, thebaseline expression levelsof
orthologous genes can diverge significantly (Hollister and Gaut,
2009; Hollister et al., 2011). Testing for conserved or divergent
patterns of regulation across different genotypes or different
species when baseline expression levels have diverged creates
a statistical challenge. Modeling of multiple environmental or
genotype level effects can be combined either additively or
multiplicatively. The model selected will determine which set of
genes will be classified as differentially regulated between
species. While few attempts have been made to identify differ-
ential patterns of gene regulation across species, attempts to do
so between subspecies or diverse accessions have largely used
either only a multiplicative model (Lovell et al., 2016), an additive
model, or additive and multiplicative models separately (Waters
et al., 2017) but have not made comparisons between the
suitability of the two models.

Here, we sought to develop effective methods for comparing
gene regulatory patterns between syntenic orthologous genes in
closely related species. For initial cross-species comparisons,
data on changes in the transcriptional responses to cold stress in
maize (Zeamays) and sorghum (Sorghumbicolor) were employed.
Cold was selected as a stress that could be delivered in a con-
sistent fashion and time frame.Maize and sorghumwere selected
based on their close evolutionary relationship (Swigonová et al.,
2004), high-quality sequenced genomes (Paterson et al., 2009;
Schnable et al., 2009), and common susceptibility to cold stress
(Chinnusamyet al., 2007;Hetherington et al., 1989;Wendorf et al.,
1992). In addition, maize is a mesotetraploid species that expe-
rienced a whole-genome duplication ;12 million years ago after
its divergence from sorghum (Swigonová et al., 2004), producing
two functionally distinct maize subgenomes, maize1 and maize2
(Schnable et al., 2011). Approximately 3000 to 5000pairs of genes
are retained on both maize subgenomes (Schnable et al., 2009,
2011, 2012).Unlikeother typesofgeneduplication,whole-genome
duplicates initially retain almost all the same associated conserved

regulatory sequences (Freeling et al., 2012). Comparing the ex-
pression patterns of duplicated genes exposed to the same trans-
regulatory factors provides a bridge to comparing the expression
patterns of orthologous genes in closely related species with
similar phenotypes. These twosystemsprovide auseful platform
for developing and testing approaches to comparative gene
regulatory analysis. However, one goal of cross-species com-
parisons of transcriptional regulation must ultimately be to link
changes in regulation to changes in phenotype,which in the case
of low-temperature stress will require conducting comparisons
between species with differing, rather than similar, tolerance
to cold.

RESULTS

A set of 15,231 syntenic orthologous gene pairs conserved be-
tween the maize1 subgenome and sorghum and 9553 syntenic
gene pairs conserved between the maize2 subgenome was
employed in thisstudy (Figure1A).Thesequence identity incoding
regions of syntenic genes between sorghum and either maize
subgenomeorbetweenmaizesubgenomes is;90%(Supplemental
Figure 1), which is a level of divergence that makes alignment to
a common reference sequence impractical. We conducted parallel
expression analyses of the set of syntenic orthologous gene pairs
conserved between the maize1 subgenome and sorghum and the
smaller set of syntenic gene pairs conserved between the maize2
subgenome and sorghum.
Syntenic orthologs exhibited reasonably well-correlated pat-

terns of absolute gene expression levels between sorghum and
either subgenome of maize based on expression data generated
fromwhole seedlings under control conditions (Spearman’s rho =
0.79–0.84, Pearson r = 0.67–0.85, Kendall rank correlation 0.67–
0.63; Figure 1B). This observation is consistent with previous
reports about the analysis of expression across reproductive
tissues in three grass species (Davidson et al., 2012). However, it
should be noted that these correlations were significantly lower
than those observed between biological replicates (seeMethods
for a detailed explanation of what constituted a biological rep-
licate in this study) of the same species (Spearman’s rho = 0.88–
0.98, Pearson r = 0.89–0.99, Kendall rank correlation 0.78–0.91),
and many individual genes have large divergence in baseline

Figure 1. Gene Level and Expression Level Conservation between Sorghum, Maize1, and Maize2.

(A) The overlap between syntenic orthologous gene pairs conserved between maize1/sorghum and maize2/sorghum.
(B) Comparison of average control condition expression levels (log2 transformed FPKM) for either maize1/sorghum or maize2/sorghum gene pairs.
(To improve readability, a random sample of 1/3 of all gene pairs is displayed for each category.)
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expression levels between the two species, creating divergence
between the predictions of additive and multiplicative statistical
models of gene regulation, as described above.

Wevisuallyconfirmedthe lethaleffectofprolongedcoldstresson
maize and sorghum (Ercoli et al., 2004; Hetherington et al., 1989;
Olsen et al., 1993; Sánchez et al., 2014; Shaykewich, 1995) fol-
lowing prolonged cold treatment (Figures 2A to 2C; Supplemental
Figure 2; see Methods). We employed measurements of impair-
ment of CO2 assimilation rates after recovery from a controlled
length cold stress to provide more quantitative measures of cold
stress and to assess the suitability of the level of cold stress em-
ployed to distinguish differing degrees of cold stress sensitivity or
cold stress tolerance among maize, sorghum, and several related
panicoid grass species. Data were generated from a total of six
panicoid grasses, including the relatively cold tolerant paspalum
(Paspalumvaginatum) and the extremely cold sensitive prosomillet
(Panicummiliaceum) (Figure2D).After1dofcoldstress, thespecies
could be broadly classified as either cold stress insensitive or cold
stress sensitive, with both maize and sorghum in the cold stress
sensitive category. A longer period of cold stress (3 d) revealed
greater impairment of CO2 assimilation rates in sorghum than in
maize, consistent with previous reports on the relative cold sen-
sitivity of these two species (Chinnusamyet al., 2007;Chopraet al.,
2017; Fiedler et al., 2016; Hetherington et al., 1989; Wendorf et al.,

1992) and separated the six species into three broad categories of
cold tolerant, moderately cold sensitive and extremely cold sen-
sitive. Based on these data, we selected one day of cold stress,
when maize and sorghum still exhibit comparable levels of CO2

assimilation impairment (Figure 2D), for downstream expression
analysis.

Conventional Differentially Expressed Gene Analysis

We identified differentially expressed genes in each species by
comparing gene expression data in control seedlings to those
subjected to one day of cold stress (Supplemental Data Set 1).
Among maize1/sorghum syntenic gene pairs, 1686 (11.1%,
1686 out of 15,231) and 2343 (15.4%, 2343 out of 15,231) genes
were classified as differentially expressed genes (DEGs), re-
spectively (Figure 3A; see Methods). For maize2/sorghum syn-
tenic gene pairs, these values were 968 (10.1%, 968 out of 9553)
and 1446 (15.1%, 1446 out of 9553) genes, respectively. Only
836 (5.5%, 836 out of 15,231) of maize1/sorghum syntenic genes
were classified as showing differential regulation in response to
cold in both species (Figure 3A). In addition, there were 29 and
16 genes pairs in the maize1/sorghum and maize2/sorghum
gene pairs, respectively, where both genes were classified as
differentially expressed but in opposite directions (Figure 3B).

Figure 2. Effects of Cold Stress on Maize, Sorghum, and Related Species.

(A) to (C)Representativeseedlingphenotypes formaizeandsorghum.Control conditions (A), 24hof stressat6°C (B), and14dat6°Cand2d recoveryunder
greenhouse conditions (C).
(D)Normalized relative CO2 assimilation rates for six panicoid grass species with differing degrees of sensitivity or tolerance to cold stress. Individual data
pointswere jittered (adding randomnoise to data in order to prevent overplotting in statistical graphs) on the x axis to avoid overlap and improve readability.
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The 836 observed syntenic gene pairs is;3.2 times higher than
the 259 genes pairs that should have been identified if cold-
responsive gene regulation were not correlated between the two
species (see legend of Figure 3 for a detailed breakdown of how
this value was calculated). With these two values, the maximum
number of genes responding to cold in the same fashion as a result
of common descent from an ancestrally cold-responsive gene in
the common ancestor of maize and sorghum can be calculated
using the formula ((observed number of sharedDEGs)2 (expected
number of shared DEGs))/(observed number of shared DEGs). In
this case, amaximumof approximately two-thirds (69.0%, 577 out
of 836) of genes identifiedas responding tocold inboth species are
likely to do so as a result of commondescent. However, thismay in
fact be an overestimate if some of the same changes in cold-
responsive gene regulation have been selected for in parallel in
both lineages. Extending this calculation to the set of gene pairs
that responded transcriptionally to cold in either maize or sorghum
orboth, only 18.1% (577 out of 3193) of gene pairs responding to
cold in either species are likely to have retained a conserved
patternof cold-responsivegeneexpressionsince thedivergence
of maize and sorghum from a common ancestor 12 million years
ago (Swigonová et al., 2004).

One potential explanation for this observation is that low sta-
tistical power to detect differentially expressed genes may create
a false impression that differential expression is not conserved
between related species. Prior estimates from real biological
data in yeast (Saccharomyces cerevisiae) suggest that, given the
number of replicates and minimum cutoff for differential expres-
sion employed here, the power of DESeq2 to identify differentially
expressedgenesshouldbebetween0.65and0.90 (Schurchet al.,
2016). In addition, a simulation study using observed expression
values and variances in the maize data set generated here in-
dicated that the power to detect differential gene expression
ranged from 0.63 for genes with a change in expression exactly at

the minimum cutoff to 0.961 for genes with larger changes in
expression value (Supplemental Data Set 2). The expected
proportionof genesclassifiedasdifferentially expressed in either
species that are classified as differentially expressed in both
species is given by the formula power2=12 ð12powerÞ2. Given
the worst-case assumption (power = 0.628), this value would be
46% if gene regulation were perfectly conserved betweenmaize
and sorghum, which is higher than the observed value of 25%.
Results for maize2/sorghum gene pairs were largely comparable.

However, the proportion of genes classified as not differentially
expressed in either species was greater for maize2/sorghum gene
pairs (Figure 3A), likely because maize2 genes tend to have lower
overall levels of expression (Schnable et al., 2011). In total, 766
nonsyntenicmaizegeneswereclassifiedasdifferentiallyexpressed in
response to cold (2.0% of all nonsyntenic genes in maize, 766 out of
38,664), while 1333 (9.1%, 1333 out of 14,683) of nonsyntenic genes
in sorghumwere classified as differentially expressed in response to
cold. The absolute numbers of differentially expressed nonsyntenic
genes are more similar to each other than the proportions, as the
current set ofmaize genemodel annotations includesmany lower
confidence genes, which are generally nonsyntenic and often
show little or no detectable expression (Schnable, 2015), than the
current set of sorghum gene model annotations.
Maizeandsorghumshareaclose relationship (Swigonováet al.,

2004), and both originated from tropical latitudes (De Wet, 1978;
van Heerwaarden et al., 2011). The two species even have a high
degree of promoter conservation in abiotic stress-responsive
genes (Freeling et al., 2007). Therefore, the apparent lowdegreeof
conservation in cold stress-responsive regulation is unexpected.
However, this result is alsoconsistentwith studies that have found
significant divergence in abiotic stress responses between dif-
ferent haplotypes in maize (Waters et al., 2017).
Onepotential explanation is that the samecold stresspathways

are being induced in maize and sorghum, but these pathways are

Figure 3. Combined DEG Analysis of Maize and Sorghum.

(A) An illustration of the DEG-based gene pair classification model and a comparison of expected and observed values for gene pairs classified as
differentially expressed in response to cold in zero, one, or both species. Expecteddistributionswere calculated basedonanull hypothesis of no correlation
in gene regulation betweenmaize and sorghum (seeMethods). DE0, gene pairs classified as differentially expressed in response to cold in neither species;
DE1, gene pairs classified as differentially expressed in response to cold in one species but not the other; DE2, gene pairs classified as differentially
expressed in response tocold inbothspecies.Observednumberofgenepairs inmaize1/sorghum:DE1maize=850,DE2=836,DE1sorghum=1507,DE0=
12,038.Observednumberofgenepairs inmaize2/sorghum:DE1maize=508,DE2=460,DE1sorghum=986,DE0=7599.Expectednumberofgenepairs in
maize1/sorghum:DE1maize =1427,DE2=259,DE1 sorghum=2084,DE0=11,461. Expectednumber of genepairs inmaize2/sorghum:DE1maize=822,
DE2 = 146, DE1 sorghum = 1300, and DE0 = 7285.
(B) Comparison of fold change in gene expression between the treatment and control groups for pairs of orthologous genes in maize and sorghum. Log2-
transformed treatment/control expression ratios are shown.
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induced more rapidly in one crop than the other when exposed to
equivalent cold stresses. To test this hypothesis, we used data
fromamoredetailed timecourse tocompare theexpression levels
betweenmatchedpairsof coldstressedandcontrol plantsof each
species at six time points distributed over 24 h (see Methods;
Supplemental Data Set 1). The number of gene pairs classified as
differentially expressed at different time points ranged from 60 to
2199 for maize1/sorghum gene pairs and 29 to 1235 for maize2/
sorghumgenepairs.Comparing thenumber of genes identifiedas
differentially expressed in each of all 36 possible pairwise com-
binations of time points between the two species showed that the
greatest proportion of shared differentially expressed gene pairs
was identifiedwhen identical timepointswere comparedbetween
the twospecies and that theoverall number of shareddifferentially
expressed gene pairs increases at later time points (Figure 4A).
Overall, genes tended to remain in the same categories, with
a general trend towardmoreDE0genesmoving into all three cold-
responsive expression categories as the length of cold stress
increased (Figure 4A). Because the proportion of all genes clas-
sified as differentially expressed increases at later time points, the
expected number of gene pairs classified at DE2 under the null
model described above also increases. Therefore, considering
only the absolute number of gene pairs classified as DEGs in both
species (DE2) at each time point can be misleading. After con-
trolling for the expected number of DE2 genes, early time points
show significantly higher proportions of true positives than later
time points (Figure 4B).

Differentially Regulated Ortholog Analysis

Another potential explanation for the finding that relatively few
shared differentially expressed genes were identified between
maize and sorghum is that differential gene expression analysis
may not be testing the correct null hypothesis for between-
species comparisons (Paschold et al., 2014). The null hypothesis
of conventional DEG analysis is that the expression values ob-
served for a given gene under control and stress conditions are
drawn from the same underlying distribution. This approach is
perfectly suitable for single-species analysis. In a two-species
analyses, such as those conducted above, a DEG approach
divides genepairs into three categories: genespairs classifiedas
differentially expressed in neither species (DE0), in one species
but not the other (DE1), and in both species (DE2; Figure 3A).

As shown in Figure 5A, in principle, each of those three cate-
gories (DE0, DE1, and DE2) can include gene pairs without sig-
nificant differences in the pattern of regulation between species
(comparably regulated orthologs [CROs]), as well as gene pairs
that do show significant differences in regulation between the two
species (differentially regulated orthologs [DROs]). All six theo-
retical cases from Figure 5A were observed in the RNA-seq ex-
pression data set generated above (Supplemental Figure 3A).
DROs and CROs were both observed in all the DEG groups
(SupplementalFigure3B).DistinguishingbetweenDROsandCROs
requires testing a different null hypothesis: that the change in ex-
pression for a given gene between two treatments is equivalent to
the change in expression for an ortholog of that same gene, in
adifferent species, across thesame two treatments.Anotherway
of describing this same experimental approach is testing for

a statistically significant treatment by species interaction effect.
Several existing statistical packages incorporate the ability to
test for significant interactions between different treatments
(Love et al., 2014; Ritchie et al., 2015; Robinson et al., 2010) by
including species as an effect in themodel. However, comparing
across species under different conditions, including testing for
interaction effects to cross species comparisons, requires us to
define an accurate model for what the same change in gene
regulation looks like starting from different baseline levels of
expression. Testing this null hypothesis across species in turn
requires us to define an accuratemodel of what the same pattern
of gene expression looks like when starting from different baseline
levels of expression.
For an orthologous gene pair where gene copies are expressed

atdifferentbaseline levels in twospecies, twodifferentmodelscan
be used to compare a change in expression between treatment
and control conditions: additive and multiplicative (Figure 5B).
When expression under control conditions is equivalent between
the two species, thesemodels yield the samepredicted expression
under stressed conditions. However, when control condition ex-
pression is different between the two species, themodels produce
different expected expression values under stress conditions.
Using simulated data on additive and multiplicative models, an

Figure4. PatternsofGeneExpressionacrossaCold-StressTimeSeries in
Maize and Sorghum.

(A) Changes in classification of individual gene pairs as DE0, DE1 maize,
DE1 sorghum, and DE2 across adjacent time points.
(B) The proportion of genes identified as differentially expressed in both
species in excess of the number of gene pairs expected in this category in
the absence of either conservation of gene regulation or parallel evolution
of gene regulation. True discovery proportion is defined as (observed
positives 2 estimated false positives)/observed positives. The expected
number false positiveDE2genepairswascalculated from theproportion of
all genes classified as DEGs in maize and sorghum using the null model
described in Figure 3A.
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ANOVA-based test classified genes with different baseline ex-
pression levels but the same pattern of expression (as simulated
by a multiplicative model) as significantly differentially regulated
between species, while the generalized linear model-based
DESeq2 classified genes with different baseline expression
levels but the same pattern of expression (as simulated by
a additive model) as significantly differentially regulated be-
tween species (Supplemental Data Set 3).

To test which of these models is a better representation of how
cold-responsive gene regulation actually operates, we used a set
of 5257 gene pairs retained from the maize whole-genome du-
plication (WGD) (Schnable et al., 2011). The maize WGD created
two copies of each gene in the genome, each associated with the
same chromatin environments and regulatory sequences. RNA-
seq-based measurements of expression for duplicate genes can
be unreliable when gene copies are similar enough that reads
cannot be unambiguously mapped to individual copies. Maize
WGD-derived duplicate gene pairs show ;93% sequence simi-
larity in exon regions (Supplemental Figure 1). This is equivalent to
4.5 mismatches per 50-bp sequence read, significantly reducing
the risk of ambiguous or incorrect read mapping. The expression
level of each gene copy in aWGDgene pairs in themaize genome
in the same samples results from the exact same trans-factors
acting in the exact same tissue and cell types. Therefore, di-
vergence in the regulation of these genes should start out with the
same cis-regulatory sequence prior to their divergence from their

most recent common ancestor (whether at the time of WDG for
autopolyploids or at the time of speciation prior to WGD for al-
lopolyploids) (Freeling et al., 2012).
To test the additive and multiplicative null models, we used the

expressionpatternofonemaizegenecopybetweencontrol andcold
stress conditions to predict the expressionpattern of theothermaize
gene copy using each null model from Figure 5B.We conducted the
analysis inparallelateachof thesix timepoints inmaizeusingmaize1/
maize2 gene pairs where at least one copy was identified as dif-
ferentially expressedat that timepoint.Genepairswereomitted from
the analysis if the predictions of both models were more similar to
each other than either was to the observed value.
Themultiplicative model wasmore accurate at predicting cold-

responsive expression patterns between maize WGD duplicates
than the additive model at all time points (P = 0.004-2.4*10-15,
paired two tailed t test) (Supplemental Data Set 4). Requiring the
differencebetween thepredictionsof the twomodels tobeat least
twice as large as the difference between the better model and the
observed expression pattern produced similar results (Figure 5C;
Supplemental Data Set 4). The set of genes where the additive
model produced better predictions was examined for differences
in expression, selection (Ka/Ks ratio) (Supplemental Figure 4),
or Gene Ontology (GO) annotation. No significant markers for
which genes could be best predicted with which model were
identified. Therefore, going forward, we employed the multi-
plicative model for conserved gene regulation across species,

Figure 5. Conceptual Illustration of the Differentially Regulated Ortholog Model.

(A) Illustration of the different classification outcomes that can be produced for a given gene pair using both a DEG-based analysis (testing whether the
expression pattern of each gene changes significantly between conditions) and a DRO-based analysis (testing whether the pattern across the two
conditions is significantly different between copies of the same gene in both species).
(B) Two models, additive and multiplicative, for predicting what a conserved pattern of gene regulation should look like when the underlying level of
expression changes.
(C) Relationship between prediction error (log10 transformed) for expression under cold stress using a multiplicative model to predict expression between
maize1/maize2 gene pairs or an additivemodel to predict expression betweenmaize1/maize2 gene pairs.Maize1: Predictions for the expression pattern of
maize2 genes using data from their maize1 homoeologs. Maize2: Predictions for the expression pattern of maize1 genes using data from their maize2
homoeologs. Blue dots mark cases where the additive model was the better predictor; red dots mark cases where the multiplicative model was the better
predictor.
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as implemented in DESeq2’s test for multiple factors (Love
et al., 2014) (see Methods).

Figure6Ashows theproportionofgenepairsclassifiedasDROs
among all gene pairs in the DE0, DE1, and DE2 groups at each of
the six time points. Comparing the same time points for maize
and sorghum identifies fewer differentially regulated orthologs
thancomparisonsbetweennonequivalent timepoints in the two
species. Fewer differentially regulatedorthologswere identified
at earlier cold treatment time points than at later time points.
This is consistent with the results of DEG analysis described
above, which suggested early cold stress responsesweremore
conserved across sorghum and maize than later cold stress
responses.

Functional Differences between Genes with Conserved or
Lineage-Specific Regulatory Patterns

Genes classified as responding to cold stress in both species
(DE2) tended to have significantly lower ratios of nonsynonymous
nucleotide changes to synonymous nucleotide changes (Ka/Ks
ratio) thangenes that responded to cold stress in only one species
or inneitherspecies.Thissuggestsgeneswithconservedpatterns
ofcold-responsiveregulationexperiencestrongerpurifyingselection
than genes with lineage-specific patterns of cold-responsive regu-
lation (Figures 6B and 6C). GO enrichment analysis identified genes
differentially regulated in both species as enriched in transcription
factor-related GO terms, such as GO:0006355 “regulation of tran-
scription,DNA-templated.”Thisenrichmentwas furtherconfirmed in
a separate test for enrichment of genes annotated as transcription
factors in the GRASSIUS database (Yilmaz et al., 2009). No non-
transcription factor-related GO term showed significant enrichment
when compared with the population of gene pairs that were syn-
tenically conserved between both species. Comparison to the total
population of annotated genes in maize or sorghum showed many
additional enrichments; however, this approach can produce mis-
leading results, as nonsyntenic genes are enriched among genes
without any functional annotation (Schnable et al., 2012). We used
MapMan (Usadel et al., 2009) to visualize the patterns of expression
within particular functional categories among DE2 genes as well as
DE1maize and DE1 sorghum genes. As expected, genes related to
cell wall growth, a marker for plant growth, were downregulated in
both species in the cold, including xyloglucosyl transferase
(Sobic.001g538000 and GRMZM2G388684) and leucine-rich
repeat family protein (Sobic.003g205600 and GRMZM2G333811)
genes (Cui et al., 2005; Pearce, 2001; Tenhaken, 2014). Genes in-
volved in lipid metabolism were upregulated in both species, in-
cluding glycerol-3-phosphate acyltransferase 8 (Sobic.009g162000
and GRMZM2G166176), diacylglycerol kinase (Sobic.006g230400
and GRMZM2G106578), choline-phosphate cytidylyltransferase
(Sobic.001g282900 and GRMZM2G132898), MGDG synthase
(Sobic.004g334000 and GRMZM2G178892, Sobic.007g211900
and GRMZM2G141320), glycerophosphodiester phosphodiester-
ase (Sobic.007g190700andGRMZM2G064962,Sobic.004g157300
and GRMZM2G018820), and fatty acid elongation acyl-CoA ligase
(Sobic.004g015400 and GRMZM2G120539) genes. This observa-
tion is consistent with the reported role of changes in membrane
composition to avoid stiffening in the cold as an adaptive response
to cold (Quinn, 1988; Singer and Nicolson, 1972). No consistent

expression patterns of genes in particular metabolic processes (up-
or downregulated) were observed among the DE1 maize or DE1
sorghum gene pairs.
The previously defined binding site for DREB/CBF transcription

factors, which are induced in response to drought and cold stress
(Muiño et al., 2016), showedsignificant enrichment in the proximal
promoters of gene pairs in theDE2 category, aswell as significant
purification in the proximal promoters of gene pairs in the DE0
category (Supplemental Figure 5). As transcription factors are often
associatedwith largerquantitiesofconservednoncodingsequences
(CNSs) (Freeling et al., 2007; Turco et al., 2013), we also investigated
the number and quantity of conserved noncoding sequence asso-
ciated with different classes of genes; however, no strong patterns
were observed (Figure 6D). The use of conserved noncoding se-
quence data to identify regulatory sequence requires that the reg-
ulatorysequencebeconservedbetweenspecies.Given thatmanyof
thegenes identifiedas responding tocold in eithermaizeor sorghum
appear to do so in a lineage-specific fashion, this requirement may
not be satisfied in many cases. Various measurements of open
chromatin have been shown to be good predictors of where regu-
latory sequences will be identified using CNS-based methods (Lai
et al., 2017; Vera et al., 2014; Zhang et al., 2012), and unlike CNS-
basedmethods, chromatin structure-basedmethods do not require
that the same regulatory sequence be conserved across multiple
species. We therefore examined the chromatin states in the pro-
moters of geneswith different patterns of cold-responsive regulation
using a published data set of MNase hypersensitive sites (HSs)
generated from maize seedlings grown under nonstressed con-
ditions (Rodgers-Melnick et al., 2016). Comparisons were made for
maize DE0, maize DE1, sorghumDE1, DE2, and nonsyntenic genes
at each of the six cold stress time points. Many nonsyntenic genes
responded to cold; however, nonsyntenic genes as awhole showed
little or noopenchromatin (asdefinedbyMNaseHS) associatedwith
theirTSSs (transcriptional startsites)orproximalpromoters.Previous
studies of other epigenetic marks have also concluded that the
chromatin signatures of nonsyntenic genes inmaize aremore similar
to those of intergenic sequences versus syntenic genes (Eichten
etal., 2011).All categoriesof syntenicgenes tended tohaveapeakof
MNase sensitivity associated with their TSS and more open chro-
matin in their proximal promoters than nonsyntenic genes. Genes
with conserved cold-responsive regulation (DE2) appear to have the
greatest amount of open chromatin in their proximal promoters
(Figure 7). Intriguingly, the maize copies of maize DE1 gene pairs
exhibited stronger open chromatin signals that the maize copies of
sorghumDE1genepairs,eventhoughdataonMNasehypersensitive
sites came from seedlings grown under control conditions. The
patterns reported above remained apparent when genes were di-
vided intoninecategoriesbasedon their relativeexpression level and
Ka/Ks ratio, although statistical significance was reduced sub-
stantially as a result of the smaller number of genes included in each
analysis (Supplemental Figure 6).

DISCUSSION

The above results indicate that there are roughly equivalent
numbers of genes differentially expressed in response to cold
compared with those reported from separate studies in each
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species (Chopra et al., 2015; Makarevitch et al., 2015). However,
cross-species comparisons of the transcriptional regulation of the
same genes in these two different species reveals that many cold-
responsive patterns of regulation are not conserved between the
twospecies.Correcting for theexpectedoverlapacrossconserved

genes based solely on the absolute genes number exhibiting cold-
responsive transcriptional changes ineachspecies further reduced
the expected number of gene pairs where shared regula-
tion resulted from the conservation of an ancestral pattern of
cold-responsive transcriptional regulation. Thesedata imply that

Figure 6. Characteristics of Genes in Different DEG Groups at Different Time Points.

(A) The proportion of gene pairs classified as DROs between maize and sorghum in different DEG groups at each of the six time points examined.
(B)and (C)Median ratios of nonsynonymoussubstitutions to synonymoussubstations in codingsequences formaize andsorghum for genepairs classified
asDE0,DE1, orDE2at eachof six timepoints. Timepointswhere there is a statistically significant difference inKa/Ks ratio betweenDE2andanyof theother
three categories are marked with either + (if P < 0.05) or ++ (if P < 0.01). Color of the + indicates the category to which DE2 is being compared. Time points
where there is a statistically significant difference in Ka/Ks ratio between DE0 and either DE1 maize or DE1 sorghum categories are marked with either
* (if P < 0.05) or ** (if P < 0.01). Color of the asterisk indicates the category to which DE0 is being compared. Enrichment of genes annotated as transcription
factor genes among DE2 gene pairs relative to all syntenic gene pairs indicated by the black line and the right-hand axis. Double white triangles mark time
points where the enrichment is statistically significant (P < 0.01).
(D)FrequencyofCNSwithin thepromotersofgenesclassifiedasDE0,DE1maize,DE1sorghum,DE2,DRO,orCROateachof thesix timepoints.Black lines
within the box plot mark the average number of CNS per gene for each category.
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gains or losses of cold-responsive regulation are relatively fre-
quent in the grass tribe Andropogoneae. Genes that respond to
cold in only a single lineage experience lower levels of purifying
selection and are less likely to be annotated as transcription
factor genes than genes that are cold-responsive in both line-
ages. It should benoted that these results are basedondata from
a single accession of maize (B73) and a single accession of
sorghum (BTx623). Evidence suggests that lower, but still sig-
nificant, levels of divergence in transcriptional regulation in re-
sponse to cold are present in different accessions of a single
species (Makarevitch et al., 2015; Waters et al., 2017).

It appears that a relatively small core set of genes exhibit
conserved responses to cold across the two species in this initial
analysis, and functional analysis suggests that these genes are
more likely to be present in pathways with logical links to cold
stress (decreases ingrowthandcellwall biosynthesis, increases in
lipidmetabolism). Thus, we propose amodel where a small core set
of genes involved in the mechanisms by which panicoid grasses
perceive and respond to cold stress are under functionally con-
strained cold-responsive transcriptional regulation, while a much
larger set of genes can gain or lose cold-responsive transcriptional
regulation in a neutral fashion or potentially as a result stabilizing
selection, potentially through transposon-mediated mechanisms
(Makarevitch et al., 2015; Naito et al., 2009). Consistent with this
model, the genes with conserved cold-responsive gene regu-
lation exhibited lower ratios of nonsynonymous-to-synonymous
coding sequence substitutions than the other genes, which
would imply their coding sequence is also subject to greater
functional constraint. This model would also be consistent with

the relatively high proportion of maize cold-responsive genes
that exhibit variation in cold-responsive regulation across alleles
(Waters et al., 2017).
We evaluated two different models for predicting conserved

regulation across different expression levels and found that the
multiplicative model was more effective at predicting ortholo-
gous gene pair expression than the additive model (Figure 5C;
Supplemental Data Set 4). However, while this different was
statistically significant, the additive model remained the better
predictor for many gene pairs. While no obvious markers that
distinguish genes where one model is the better predictor than
the other were identified in this study, further study may identify
additional molecular traits measured from the genome that can
forecast which model is more appropriate for testing the ex-
pression pattern of a given gene acrossmultiple related species.

The Challenge of Linking Genes to Functions Based on
Expression Evidence

The model above would predict that the observation of stress-
responsive changes in transcript abundance in a single species is
not strong evidence that the associated gene plays a role in the
response to thatparticular stress.While sequencinggenomesand
identifying genes are becoming more straightforward tasks,
confidently assigning functional roles to newly identified genes
remains challenging. Many genes in maize (35.1%) and sorghum
(16.2%) are not associatedwith anyGOannotations in the current
release of Phytozome (v12). Many genes that do possess GO
annotations are associated with only extremely broad annotation
categories, such as protein binding or catalytic activity. “Guilt by
association” studies using coexpression analysis are an intriguing
method for assigning putative functional roles to some orphan or
poorly annotated genes (Li et al., 2016; Schaefer et al., 2014).
However, the use of these methods in a single species may also
produce false positive annotations in the case of selectively neutral
orstabilizingchanges ingeneregulation. Itmayprove tobethecase
that functionally constrained transcriptional responses are an ef-
fective method for identifying these links. Collecting parallel ex-
pression data sets in multiple species can be time consuming and
costly. We therefore tested a number of alternative approaches to
identifying functionally constrainedcold-responsive transcriptional
regulation. Early transcriptional responses to cold (30 min to 3 h)
appeared to show greater conservation across species than later
transcriptional responses. Regions of open chromatin detected
throughMNaseHS (Rodgers-Melnick et al., 2016; Vera et al., 2014)
were preferentially associated with genes that responded tran-
scriptionally to cold stress in maize; however, this association
was observed for genes with either conserved or lineage-specific
patterns of cold-responsive regulation.

Importance of Developing Methods for Cross-Species
Comparisons of Transcriptional Regulation

Bothmodeling (Orr, 1998, 1999) and empirical studies (Chanet al.,
2010; Studer et al., 2011) have found that genetic variants re-
sponsible for large, suddenchanges innaturalorartificial selection
tend to have large, pleiotropic effects. In maize, distinct genetic
architectures underlie traits that have been subjected to selection

Figure 7. Chromatin Patterns Associated with Different Groups of Genes
in Maize and Sorghum.

Patterns of MNase HS regions around the transcriptional start sites of genes
classified based on their pattern of gene regulation in the 24-h stress time
point. Maize1 sorghum gene pairs and maize2 sorghum gene pairs were
aggregated to increasestatistical power. The lighter bandaround theDE2 line
indicates a 2 SD confidence interval. Black bars at the bottom of the graph
indicate individual base pair positions where the amount of open chromatin
associated with DE2 genes is significantly different from that of each of the
other four categories displayed with a P value < 0.01 for each comparison.
Pairwise comparisons were performed using Fisher’s exact test.
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during domestication (one large-effect quantitative trait locus and
many small modifiers) and traits that were not selected on during
domestication (many small-effect quantitative trait loci) (Wallace
et al., 2014). This model was supported by recent work with an
intersubspecies cross of maize and its wild progenitor teosinte
(Z. mays ssp parviglumis). Looking at tassel morphology, dis-
tinctly genetic architectures were reported for traits believed to
have been under selection during domestication compared with
those traits that were not (Xu et al., 2017). Developing effective
approaches for comparing transcriptional regulation of con-
served syntenic genes across related grass species has the
potential to identify large-effect polymorphisms responsible for
interspecies phenotypic variation in traits such as abiotic stress
tolerancewhere substantial phenotypic variation exists between
species (Figure 2D).

Here, we have shown that by using synteny to identify pairs of
conserved orthologs across related species, it is possible to
identify species by treatment interactions, which signify changes
in gene regulation across species (DROs), using a multiplicative
model of gene regulation. The use of amultiplicativemodel was in
turn supported by analysis of the regulation of duplicated maize
genes within the same sample. By increasing the number of
species sampled, it may soon be possible to define a consistent
core set of genes subjected to functionally constrained regulation
in response to cold across the grasses. Changes in the regulation
of these core genes in specific lineages with different cold stress-
response phenotypes would be useful candidates for the type of
large-effect changes predicted to produce between-species
phenotypic variation. However, the interpretation of such data
must take into account that, unlikewithin-species studies of allelic
variation in cold-responsive regulation, between-species analysis
cannot distinguishcis-regulatory from trans-regulatory sourcesof
variation in transcriptional responses.

METHODS

Plant Growth and Cold Treatment

For maize (Zea mays) and sorghum (Sorghum bicolor), the reference
genotypes used for genome sequencing and assembly were B73 and
BTx623, respectively. SNPcalling usingRNA-seq data fromB73was used
toverify that theplantsused in this studycame from theUSASouthcladeof
B73 accessions, i.e., those closest to the original reference genome (Liang
and Schnable, 2016). Under the growing conditions employed, maize
developed more quickly than sorghum, and sorghum seedlings 12 d after
planting were selected as being roughly developmentally equivalent to
maize seedlings 10 d after planting based on leaf number andmorphology
(Figure 2A). Planting dates were staggered so that all species reached this
developmental time point simultaneously. For the original RNA-seq pre-
sented in Figure 2A, seeds were planted in MetroMix 200 and grown in
greenhouse conditions under 13 h daylength in greenhouses at Univer-
sity of Nebraska- Lincoln’s Beadle Center, with target conditions of
320 mol m22 s21, high-pressure sodium bulb, 13 h/11 h 29°C /23°C day/
night, and 60% relative humidity. Control plants were harvested directly
from the greenhouse three hours before lights on. Plants subjected to cold
stress treatment were moved to a cold treatment growth chamber, with
33molm22s21,metal halidegrowbulb,12h/12h6°C /6°Cday/night.Cold-
stressedplantswereharvested3hbefore lightson.Eachsampleconsisted
ofpooledaboveground tissue fromat least threeseedlings.Eachbiological
replicate was harvested from plants that were planted, grown, and

harvested at a distinct and separate time from each other biological
replicate. A total of three independent biological replicates where gen-
erated for this experiment. For the time courseRNA-seqdatapresented in
Figure 4 and onward in the study, maize and sorghum were planted as
above and grown in a Percival growth chamber (Percival model E-41L2)
with target conditions of 111 mol m22 s21 light levels, 60% relative hu-
midity, a 12h/12hdaynight cyclewith a target temperatureof 29°Cduring
the day and 23°C at night. The onset of cold stress treatment was im-
mediately before the end of daylight illumination, at which point half of the
plants were moved to a second growth chamber with equivalent settings
with the exception of a target temperature of 6°C both during the day and
at night. Each sample represents a pool of all aboveground tissue from
at least three seedlings. Samples were harvested from both the paired
control and cold stress treatments at 0.5, 1, 3, 6, 16, and 24 h after the
onset of cold stress. Biological replicates included both maize and
sorghum plants that were offset in planting but stressed and harvested at
the same time in the same growth chambers. A total of three independent
biological replicates were generated for this experiment.

Definition of Samples and Biological Replicates

Sample: Each sample consists of RNA extracted from the pooled tissue of
no less than three and no more than five separate plants planted and
harvested on the same date and grown in the same growth chamber. All
aboveground tissue was harvested from each plant included in a pool. All
aboveground tissue: At the stage plants were harvested, all aboveground
tissue included leaf blades, ligules, and leaf sheaths, but not apical
meristems, stems, or roots. Biological replicate: each biological replicate
consists of RNA extracted from pooled tissue harvested from plants of the
same genotype planted and harvested on separate dates from any other
biological replicate. Paired replicate: biological replicates were paired
across species, with tissue harvested on the same day from plants of each
species growth in the same growth chamber.

CO2 Assimilation Rate Measurements

Plants were grown and cold treated as above, with the modification that in
the case of sorghum, small plastic caps were placed over the seedlings to
prevent the plants from becoming too tall to fit into the LiCormeasurement
chamber (;2 inches). After 0, 1, or 3 d of cold treatment, the plants were
allowed to recover in the greenhouse overnight. The following morning,
CO2 assimilation rates were measured using the Li-6400 portable pho-
tosystem unit under the following conditions: PAR 200 mol mol21, CO2 at
400 mol mol21 with flow at 400 mol mol21, and humidity at greenhouse
conditions. Whole-plant readings weremeasured for sorghum, paspalum,
Japanesemillet (Echincloaesculenta), prosomillet, andurochloa (Urochloa
fusca) after covering their pots with clay and using the LiCor Arabidopsis
chamber. Maize was measured using the leaf clamp attachment, which
was consistently placed on the second leaf at a position 3 cm above the
ligule. Leaf area was measured using the Li-3100c Area meter (Li-Cor).
The accessions used for each species presented in Figure 1D included the
following: paspalum, USDA PI 509022; Japanese millet, USDA PI 647850;
proso millet, earlybird USDA PI 578073; urochloa, LBJWC-52; sorghum,
BTx623; and maize, B73.

Identifying Syntenic Orthologs

Codingsequencedata forprimary transcriptsofeachannotatedgene in the
genome assemblies of eight grass species, including maize and sorghum
used in the analysis,were obtained fromPhytozome 10.2. Similar sequences
were identified using LASTZ (Harris, 2007), requiring an alignment
spanning at least 50% of total sequence length and 70% sequence
identity. In addition, thearguments -ambiguous=iupac, -notransition, and
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-seed=match12 were all set in each run. LASTZ output was converted to
QuotaAlign’s “RAW” format using a version of the blast to raw.py script
that had beenmodified to take into account differences in output format
between BLAST and LASTZ. The additional parameters -tandem
Nmax=10 and -cscore=0.5 were specified when running this script.

RAW formatted data were processed using the core QuotaAlign al-
gorithmwith the parameters -merge, and -Dm=20. -quota was set to 1:2 in
comparisons to maize and 1:1 in all other comparisons. Pure QuotaAlign
pan-grass syntenic gene setswere constructedusing this data set directly.
Polished QuotaAlign pan-grass syntenic gene sets were constructed by
first predicting the expected location for a given query gene in the target
genome and then selecting the gene showing the greatest sequence
similarity (as determined by lastz alignment score) within the window from
20genesdownstreamof thepredicted location to20genesupstreamof the
predicted location.

RNA-Seq Data Generation

RNA isolation and library construction followed the protocol described by
Zhang et al. (2015). The number of reads generated per library is sum-
marized in Supplemental Data Set 1. Sequencing was conducted at Il-
lumina Sequencing Genomics Resources Core Facility at Weill Cornell
Medical College. Raw sequencing data are available through the
NCBI (http://www.ncbi.nlm.nih.gov/bioproject) under accession num-
bers PRJNA343268 and PRJNA344653. Adapters were removed from
raw sequence reads using cutadapt version 1.6 (Martin, 2011). RNA-seq
reads were mapped to genome assemblies downloaded from Phyto-
zome:RefGenv3 (Z.mays) andv3.1 (S.bicolor). RNA-seq reads fromeach
species were aligned using GSNAP version 2014-12-29 (Wu and Nacu,
2010; Wu and Watanabe, 2005). Per-gene read counts were obtained
using HTSeq version 0.6.1 (Anders et al., 2015).

Identifying DEGs

DEGs were identified using count data generated as described above and
DESeq2 (version 1.14.0) (Love et al., 2014) based on a comparison of the
treatment and control with adjusted P value# 0.05, meaning absolute log2

of fold change of between treatment and control value$ 1. All expressed
syntenic orthologous genes were classified into one of three categories.
The three categories include genes that were classified as responding
transcriptionally to cold in at least one species (DE1) (Figure 3A). The re-
maining category includes all expressed syntenic orthologous genes that
were not classified as cold-responsive in either of the two species (DE0).
Thenumberof sharedgenes identifiedasdifferentially expressed in the two
species (DE2) was tested relative to the expected overlap if there was no
correlation in gene regulation across species. For the time course RNA-
seq, analysis was conducted as above for all 36 possible pairwise com-
parisons of the six sorghum time points and six maize time points.

When estimating the true discovery proportion in analyses of DE2
genes (see Figures 3A and 4B), it was necessary to calculate the number
ofDE2genes expectedunder anull hypothesisof noconservationof gene
regulation. This expected number of DE2 genes was calculated using the
formula (percentage of gene pairs DE in species 1)*(percentage of gene
pairs DE in species 2)*(total number of gene pairs analyzed was used).
Total number of genepairswasfixedat 15,232syntenic orthologousgene
pairs for maize1/sorghum comparisons and 9554 for maize2/sorghum
comparisons.

Estimating the Power of DESeq2 in This Data Set Using
Simulated Data

One thousand genes were randomly sampled from the maize1/sorghum
syntenicgene list in each repetitionof thesimulation. Theseselectedgenes
included three replicates from both normal growth conditions (control) and

1-d cold treatment (treatment). The geometric mean of each gene was
calculated (adding1 to thedata toavoid0 readings). A randomsample from
the uniform distribution on (5, 50) was used as the estimate of the true
dispersion parameter. The simulated data for the non-differentially
expressed genes were generated from a negative binomial distribution
with the calculated geometricmean from the actual data and the sampled
dispersion parameter. To generate the list of differentially expressed
genes, the first 100 genes out of the 1000 sampled genes were selected
with a treatmentmeanvalue equal to thegeometricmean from theoriginal
data, whereas the mean value of the control was a multiple of the geo-
metric mean (multiples of 2, 2.5, and 3 are reported). The calculated false
discovery rate (ratio of number of false positives over total number of
discoveries) and the power (ratio of true positives over the true number of
differentially expressed genes) of the DESeq2 procedure are reported in
Supplemental Data Set 2.

Evaluating the Additive and Multiplicative Models of
Gene Regulation

From the 5257 duplicate genes retained from the maize WGD (Schnable
et al., 2011) in each of the six time points in maize, gene pairs where both
copies were classified as differentially expressed in response to cold were
used to test bothmodels. The expression pattern of themaize1 gene under
control and cold stress conditions plus the expression of the maize2 gene
under control conditions was used to predict the expression of the maize2
gene under cold stress using both the additive and multiplicative models
defined in Figure 5B. The distance between the prediction from the additive
model and the observed valuewasdefined as “a,” the distance between the
prediction from themultiplicativemodel and theobservedvaluewasdefined
as “b,” and the predictions between the twomodels were defined as “c.” In
the relaxed case, gene pairs where the two models produced predictions
that were closer to each other than either was to the observed expression
valueof themaize2geneunder cold stresswereexcluded. That is, if c<aand
c<b, the multiplicative model works better than the additive model, while if
b<a and b<c, the additive model works better than the other model. In the
most stringentcase, genepairswhere the twomodelsproducedpredictions
thatwere less than twiceas large as thedifferencebetween thebettermodel
and the observed value were excluded (Supplemental Data Set 4). In other
words, if b>2a and b>c, the multiplicative model was considered to be the
better model; if c>2a and c>b, the additive model was considered to be the
better model. Analyses were also conducted reciprocally using data from
control and cold stress conditions in maize2 plus data from maize1 under
control conditions to predict the expression of the maize1 gene under cold
stress conditions.

Identifying DROs

DROs were identified using count data generated as described above and
an interaction term for species (maize or sorghum) and treatment (cold or
control) in DESeq2 (Love et al., 2014). Species (maize and sorghum) and
condition (cold and control) were considered to be two factors for design in
this analysis. Simulated data for CROs generated using additive and
multiplicative models were used to confirm that this approach did not
classify simulated CROs based on the multiplicative model as having
significant species-by-treatment interactions. The formula used was
as follows: design _ condition + genotype + condition: genotype. Maize
sorghum gene pairs with an interaction adjusted P value # 0.001 were
classified as DROs, those with interaction adjusted P value $ 0.05 were
classifiedasCROs, and thosewith intermediateP valuesweredisregarded
(Yoav and Yosef, 1995). The decision was made to retain an ambiguous
case of gene pairs with interaction P values too high to be classified as
DROs but too significant to be classified as CROs rather than increase the
number of classification errors by forcing all gene pairs to be assigned to
one category or the other.
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Calculating Ka/Ks Values

“Primary transcript only” coding sequences for maize (v6a), sorghum
(v3.1), and setaria (v2.2) were retrieved from Phytozome version 12.0. The
genemodel annotations v6a formaizewere annotatedonto theB73RefGen
v3 pseudomolecules. Coding sequences were translated to protein se-
quencesandalignedusingKalignversion2.04 (LassmannandSonnhammer,
2005). The protein alignment was used as a guide to create a codon level
alignment of coding sequences. The codon alignmentwas supplied to PAML
(version 4.09) (Yang, 2007). Synonymous and nonsynonymous substitution
rates were calculated independently for each branch of the tree. When
both maize1 and maize2 gene copies were present for the same syntenic
gene group, alignment and substitution rate calculations were conducted
separately for the maize1 gene and its syntenic orthologs in sorghum and
setaria and for the maize2 and the same syntenic orthologous genes. To
eliminate geneswith extremeKa/Ks ratios resulting fromvery lownumbers
of synonymous substitutions, only Ka/Ks ratios from genes with an esti-
matedsynonymoussubstitution rategreater thanor equal to0.05 (;1/2 the
median Ks ratio observed between maize and the most common recent
ancestor of maize and sorghum) were considered.

MNase HS Analysis

Intervals defined as MNase HSs were taken from Rodgers-Melnick et al.
(2016). ThesameTSSwasused forMNaseandRNA-seqanalysis.Average
coverage of MNase HS was calculated on a per-base basis from 1 kb
upstream of the annotated TSS to 1 kb downstream of the TSS. When
multiple transcripts with different TSSwere present, the transcript with the
earliest TSS was selected for analysis.

Identifying CNSs

CNSs were identified using the CNS Discovery Pipeline 3.0 (CDP) (Turco
et al., 2013) with some modifications. Specifically, the built-in syntenic
gene identification pipeline from theCDPwas replacedwith the previously
defined syntenic gene list described above. Functions for finding local
duplicates and comparing CNSs to Arabidopsis proteins and RNA were
omitted. CNSs were identified between the region 12 kb upstream and
12kbdownstreamusingawordsizeof 15bp.CNSswithbit scores for each
gene pair < 29.5 were removed following the same scoring parameter
settings outlined in the original software pipeline.

Transcription Factor Enrichment Calculation

Transcription factor enrichment was calculated using the maize tran-
scription factor list from GRASSIUS (Yilmaz et al., 2009).

GO Enrichment Analysis

GO analysis was performed using GOATOOLS (Haibao et al., 2015) and
functional additions associated with the sorghum v3.1 sorghum gene
model and maize RefGen-v3 maize gene model annotations.

Pathway Analysis

Pathway analysis was conducted using the MapMan software package
(http://mapman.gabipd.org/web/guest) (Usadel et al., 2009).

Accession Numbers

Gene IDs for all syntenic gene sets and the final syntenic gene list used in
this study are posted at figShare (http://dx.doi.org/10.6084/m9.figshare.
3113488.v1). Adapter sequences used for library construction and for
adapter trimming are those provided in Illumina TruSeq Library Prep
Pooling Guide, with sequences reported on page 5 of the user manual.

Supplemental Data

Supplemental Figure 1. Coding sequence similarity among syntenic
genes in sorghum, maize1, and maize2.

Supplemental Figure 2. Representative sample of cold stressed
seedling phenotypes.

Supplemental Figure 3. Individual examples of genes in each of six
possible DRO/DEG classification categories.

Supplemental Figure 4. Comparison of Ka/Ks ratio and expression
level for genes grouped based on expression classification model.

Supplemental Figure 5. Frequency of known CBF binding motifs
within the 1-kb proximal promoters of maize and sorghum.

Supplemental Figure 6. Relationship between gene pair expression
pattern in maize and sorghum after subdividing genes based on Ka/Ks
ratio and expression tertile.

Supplemental Data Set 1. Number of sequenced and aligned reads
per library.

Supplemental Data Set 2. Estimates of power and FDR for DESeq2.

Supplemental Data Set 3. ANOVA and DESeq2 tests for DROs using
simulated data.

Supplemental Data Set 4. Accuracy of additive and multiplicative
expression models across maize duplicate gene pairs.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Institute of
FoodandAgriculture,U.S.DepartmentofAgricultureunderAward16-67013-
24613 to R.L.R. and J.C.S. This material is based on work supported by the
NationalScienceFoundationunderGrantOIA-1557417. Inaddition, thiswork
wassupportedbystart-up funding from theUniversityofNebraska-Lincoln to
R.L.R., Y.Q., and J.C.S.

AUTHOR CONTRIBUTIONS

J.C.S. and R.L.R. conceived the project and designed the studies. Y.Z.,
D.W.N., D.C., and Z.L. performed the research. Y.Z. and Y.Q. analyzed the
data. Y.Z., J.C.S., and R.L.R. wrote the article. All authors reviewed the
manuscript.

Received May 5, 2017; revised July 5, 2017; accepted July 18, 2017;
published July 21, 2017.

REFERENCES

Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq–a Python frame-
work to work with high-throughput sequencing data. Bioinformatics
31: 166–169.

Bennetzen, J.L., and Freeling, M. (1993). Grasses as a single genetic
system: genome composition, collinearity and compatibility. Trends
Genet. 9: 259–261.

Burkart-Waco, D., Ngo, K., Lieberman, M., and Comai, L. (2015). Per-
turbation of parentally biased gene expression during interspecific hy-
bridization. PLoS One 10: e0117293.

Chan, Y.F., et al. (2010). Adaptive evolution of pelvic reduction in
sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327:
302–305.

Gene Regulatory Changes between Maize and Sorghum 1949

http://mapman.gabipd.org/web/guest
http://dx.doi.org/10.6084/m9.figshare.3113488.v1
http://dx.doi.org/10.6084/m9.figshare.3113488.v1
http://www.plantcell.org/cgi/content/full/tpc.17.00354/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00354/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00354/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00354/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00354/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00354/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00354/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00354/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00354/DC1
http://www.plantcell.org/cgi/content/full/tpc.17.00354/DC1
http://dx.doi.org/10.13039/


Chinnusamy, V., Zhu, J., and Zhu, J.K. (2007). Cold stress regulation
of gene expression in plants. Trends Plant Sci. 12: 444–451.

Chopra, R., Burow, G., Hayes, C., Emendack, Y., Xin, Z., and Burke,
J. (2015). Transcriptome profiling and validation of gene based single
nucleotide polymorphisms (SNPs) in sorghum genotypes with con-
trasting responses to cold stress. BMC Genomics 16: 1040.

Chopra, R., Burow, G., Burke, J.J., Gladman, N., and Xin, Z. (2017).
Genome-wide association analysis of seedling traits in diverse Sorghum
germplasm under thermal stress. BMC Plant Biol. 17: 12.

Christin, P.A., Salamin, N., Savolainen, V., Duvall, M.R., and Besnard,
G. (2007). C4 Photosynthesis evolved in grasses via parallel adaptive
genetic changes. Curr. Biol. 17: 1241–1247.

Cooper, G.M., Stone, E.A., Asimenos, G., Green, E.D., Batzoglou, S.,
and Sidow, A.; NISC Comparative Sequencing Program (2005).
Distribution and intensity of constraint in mammalian genomic se-
quence. Genome Res. 15: 901–913.

Cui, S., Huang, F., Wang, J., Ma, X., Cheng, Y., and Liu, J. (2005). A
proteomic analysis of cold stress responses in rice seedlings.
Proteomics 5: 3162–3172.

Davidson, R.M., Gowda, M., Moghe, G., Lin, H., Vaillancourt, B.,
Shiu, S.-H., Jiang, N., and Robin Buell, C. (2012). Comparative
transcriptomics of three Poaceae species reveals patterns of gene
expression evolution. Plant J. 71: 492–502.

De Wet, J. (1978). Systematics and evolution of sorghum sect. sorghum
(gramineae). Am. J. Bot. 65: 477–484.

Eichten, S.R., et al. (2011). Heritable epigenetic variation among
maize inbreds. PLoS Genet. 7: e1002372.

Ercoli, L., Mariotti, M., Masoni, A., and Arduini, I. (2004). Growth
responses of sorghum plants to chilling temperature and duration of
exposure. Eur. J. Agron. 21: 93–103.

Fiedler, K., Bekele, W.A., Matschegewski, C., Snowdon, R., Wieckhorst,
S., Zacharias, A., and Uptmoor, R. (2016). Cold tolerance during juve-
nile development in sorghum: a comparative analysis by genomewide
association and linkage mapping. Plant Breed. 135: 598–606.

Freeling, M., Rapaka, L., Lyons, E., Pedersen, B., and Thomas,
B.C. (2007). G-boxes, bigfoot genes, and environmental response:
characterization of intragenomic conserved noncoding sequences
in Arabidopsis. Plant Cell 19: 1441–1457.

Freeling, M., Woodhouse, M.R., Subramaniam, S., Turco, G., Lisch,
D., and Schnable, J.C. (2012). Fractionation mutagenesis and sim-
ilar consequences of mechanisms removing dispensable or less-
expressed DNA in plants. Curr. Opin. Plant Biol. 15: 131–139.

Haibao, T., Klopfenstein, D., Pedersen, B., Flick, P., Sato, K.,
Ramirez, F., Yunes, J., and Mungall, C. (2015). Goatools: Tools for
Gene Ontology. http://dx.doi.org/10.5281/zenodo.31628.

Harris, R.S. (2007). Improved Pairwise Alignment of Genomic DNA.
PhD dissertation (State College, PA: Pennsylvania State University).

Hetherington, S.E., He, J., and Smillie, R.M. (1989). Photoinhibition
at low temperature in chilling-sensitive and -resistant plants. Plant
Physiol. 90: 1609–1615.

Hollister, J.D., and Gaut, B.S. (2009). Epigenetic silencing of trans-
posable elements: a trade-off between reduced transposition and
deleterious effects on neighboring gene expression. Genome Res.
19: 1419–1428.

Hollister, J.D., Smith, L.M., Guo, Y.-L., Ott, F., Weigel, D., and Gaut,
B.S. (2011). Transposable elements and small RNAs contribute to
gene expression divergence between Arabidopsis thaliana and
Arabidopsis lyrata. Proc. Natl. Acad. Sci. USA 108: 2322–2327.

Lai, X., Behera, S., Liang, Z., Lu, Y., Deogun, J.S., and Schnable,
J.C. (2017). Stag-CNS: An order-aware conserved non-coding se-
quences discovery tool for arbitrary numbers of species. Mol. Plant.
10: 990–999.

Lassmann, T., and Sonnhammer, E.L. (2005). Kalign–an accurate and fast
multiple sequence alignment algorithm. BMC Bioinformatics 6: 298.

Li, L., Briskine, R., Schaefer, R., Schnable, P.S., Myers, C.L., Flagel,
L.E., Springer, N.M., and Muehlbauer, G.J. (2016). Co-expression
network analysis of duplicate genes in maize (Zea mays L.) reveals no
subgenome bias. BMC Genomics 17: 875.

Liang, Z., and Schnable, J.C. (2016). RNA-seq based analysis of
population structure within the maize inbred B73. PLoS One 11:
e0157942.

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation
of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 15: 550.

Lovell, J.T., et al. (2016). Drought responsive gene expression regu-
latory divergence between upland and lowland ecotypes of a pe-
rennial C4 grass. Genome Res. 26: 510–518.

Makarevitch, I., Waters, A.J., West, P.T., Stitzer, M., Hirsch, C.N.,
Ross-Ibarra, J., and Springer, N.M. (2015). Transposable ele-
ments contribute to activation of maize genes in response to abiotic
stress. PLoS Genet. 11: e1004915.

Martin, M. (2011). Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet.journal 17:10–12.

Muiño, J.M., de Bruijn, S., Pajoro, A., Geuten, K., Vingron, M.,
Angenent, G.C., and Kaufmann, K. (2016). Evolution of dna-binding
sites of a floral master regulatory transcription factor. Mol. Biol. Evol.
33: 185–200.

Naito, K., Zhang, F., Tsukiyama, T., Saito, H., Hancock, C.N., Richardson,
A.O., Okumoto, Y., Tanisaka, T., and Wessler, S.R. (2009). Unexpected
consequences of a sudden and massive transposon amplification on rice
gene expression. Nature 461: 1130–1134.

Ng, P.C., and Henikoff, S. (2001). Predicting deleterious amino acid
substitutions. Genome Res. 11: 863–874.

Olsen, J., McMahon, C., and Hammer, G. (1993). Prediction of sweet
corn phenology in subtropical environments. Agron. J. 85: 410–415.

Orr, H.A. (1998). The population genetics of adaptation: the distribution
of factors fixed during adaptive evolution. Evolution 52: 935–949.

Orr, H.A. (1999). The evolutionary genetics of adaptation: a simulation
study. Genet. Res. 74: 207–214.

Paschold, A., Larson, N.B., Marcon, C., Schnable, J.C., Yeh, C.-T., Lanz,
C., Nettleton, D., Piepho, H.-P., Schnable, P.S., and Hochholdinger, F.
(2014). Nonsyntenic genes drive highly dynamic complementation of
gene expression in maize hybrids. Plant Cell 26: 3939–3948.

Paterson, A.H., et al. (2009). The Sorghum bicolor genome and the
diversification of grasses. Nature 457: 551–556.

Pearce, R.S. (2001). Plant freezing and damage. Ann. Bot. (Lond.) 87:
417–424.

Priest, H.D., Fox, S.E., Rowley, E.R., Murray, J.R., Michael, T.P.,
and Mockler, T.C. (2014). Analysis of global gene expression in
Brachypodium distachyon reveals extensive network plasticity in
response to abiotic stress. PLoS One 9: e87499.

Quinn, P.J. (1988). Effects of temperature on cell membranes. Symp.
Soc. Exp. Biol. 42: 237–258.

Reva, B., Antipin, Y., and Sander, C. (2011). Predicting the functional
impact of protein mutations: application to cancer genomics. Nu-
cleic Acids Res. 39: e118.

Revilla, P., et al. (2016). Association mapping for cold tolerance in
two large maize inbred panels. BMC Plant Biol. 16: 127.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and
Smyth, G.K. (2015). limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:
e47.

Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR:
a Bioconductor package for differential expression analysis of
digital gene expression data. Bioinformatics 26: 139–140.

Rodgers-Melnick, E., Vera, D.L., Bass, H.W., and Buckler, E.S.
(2016). Open chromatin reveals the functional maize genome. Proc.
Natl. Acad. Sci. USA 113: E3177–E3184.

1950 The Plant Cell



Sánchez, B., Rasmussen, A., and Porter, J.R. (2014). Temperatures
and the growth and development of maize and rice: a review. Glob.
Change Biol. 20: 408–417.

Schaefer, R.J., Briskine, R., Springer, N.M., and Myers, C.L. (2014).
Discovering functional modules across diverse maize transcriptomes
using COB, the Co-expression Browser. PLoS One 9: e99193.

Schnable, J.C. (2015). Genome evolution in maize: from genomes
back to genes. Annu. Rev. Plant Biol. 66: 329–343.

Schnable, J.C., Springer, N.M., and Freeling, M. (2011). Differentiation of
the maize subgenomes by genome dominance and both ancient and
ongoing gene loss. Proc. Natl. Acad. Sci. USA 108: 4069–4074.

Schnable, J.C., Freeling, M., and Lyons, E. (2012). Genome-wide
analysis of syntenic gene deletion in the grasses. Genome Biol.
Evol. 4: 265–277.

Schnable, P.S., et al. (2009). The B73 maize genome: complexity,
diversity, and dynamics. Science 326: 1112–1115.

Schurch, N.J., Schofield, P., Gierliński, M., Cole, C., Sherstnev, A.,
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