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Advisor: P. Stephen Baenziger 

 To optimize the performance and marketing of hybrid wheat, breeders need to 

understand the impact parents have on end-use quality. The goal of this study was to 

investigate the inheritance of end-use quality traits of hard winter wheat reciprocal 

hybrids produced by Easterly (2017). The 2016 analysis included 71 reciprocal hybrid 

combinations from 13 parents and the 2017 analysis included 79 reciprocal hybrid 

combinations from 14 parents. The reciprocals were composed of crosses between the top 

performing and bottom performing parents with respect to end-use quality as quantified 

by a Mixograph, a SDS sedimentation assay, and a SDS-SRC hybrid assay. The 

Mixograph was digitalized using Mixsmart® software provided by the National 

Manufacturing Company (National Manufacturing Company) and two Mixograph 

analyses were derived to determine the quality of the hybrid; the mix peak time (min) 

analysis, and the gluten strength {(%TQ*min)/grams of protein} x tolerance (unitless) 

analysis. In general, the Mixograph analyses of the reciprocals indicated the dough 

strength of the hybrid tended to reflect the dough strength of the female parent as hybrids 

that combined a strong female with a strong male and hybrids that combined a strong 

female with a weak male had relatively strong dough strength. Conversely, the hybrids 

that combined a weak female with a weak male and a weak female with a strong male 



 
 

exhibited relatively weak dough strength. The maternal effects could be due to higher 

rates of self-pollination than initially thought, or due to the genetic composition of the 

triploid endosperm, which is composed of 2N maternal and 1N paternal DNA. Easterly 

indicated that one parent, NE07531 was well sterilized, and hybrids NE07531 was the 

female parent appeared to have mid-parent dough strength, suggesting that at least in 

some cases, true hybrids were produced. Irrespective of any reciprocal cross differences, 

it appeared in some cases a single high quality parent can potentially mask end-use 

quality deficiencies of the other parent in the performance of the hybrid, but this need 

further work to determine. 



i 
 

Acknowledgements 

 I would like to take this opportunity to express my gratitude towards the people 

who have supported me during my pursuit of a higher education degree. The men and 

woman at Bayer Cropscience (now BASF) were critical to helping me build a 

foundational knowledge of wheat quality and those indivuduals are; Edward Souza, Rhett 

Kaufman, William Berzonsky, Mitchell Roth, and Rachel Gibson. I would have never 

sought a higher education degree without the influence of these people and for that I am 

extremely grateful. In addition, I’d like to thank Devin Rose and Bill (again) for their 

commitments as members of my graduate committee. I recognize that without the time 

and energy that they volunteered into participating in the project, I would never have 

made it this far. Furthermore, I owe Stephen Baenziger and his research team including 

Greg Dorn and Amanda Easterly a huge debt for the work that they put into project. 

Throughout this project, Stephen consistently went above and beyond what my 

expectations of him were as an advisor. Whether it was staying late or coming in early to 

squeeze in a one-on-one meeting, providing feedback on my thesis, or being the voice 

that would help get my project going when it seemed to be at a speed bump, he always 

went the extra mile and never made me feel like I was an inconvenience, and I’m deeply 

grateful for having the opportunity to work with him. Lastly, none of the work that I did 

on this project would have been possible without my wife Anna and son Rowen. Rowen 

was my motivation to improve myself and Anna provided me with the necessary support 

so that I could pursue a higher education degree. All the work that I have done on this 

project was for them.  

 



ii 
 

TABLE OF CONTENTS 

List of Tables……………………………………………………………………………..iii  

List of Figures……………………………………………………………………………..v 

Chapter 1…………………………………………………………………………………..1 

Introduction: Hybrid Wheat……………………………………………………………….3 

Literature Review Part 1: Floral Architecture and Fertility Control Systems…………….5 

Literature Review Part 2: Hybrid Wheat Quality………………………………………..10 

Materials and Methods…………………………………………………………………...21 

Results and Discussion…………………………………………………………………..28 

Conclusion……………………………………………………………………………….58 

References………………………………………………………………………………..61 

Appendix A……………………………………………………………………………..128 

Appendix B……………………………………………………………………………..132 

Appendix C……………………………………………………………………………..137 

Appendix D……………………………………………………………………………..138 

Appendix E……………………………………………………………………………..139 

Appendix F……………………………………………………………………………...140 



iii 
 

LIST OF TABLES 

Table 1. Parent Cultivars Used to Produce F1 Hybrids………………………………….71 

Table 2. Parental Quality Evaluation Results: Strongest and Weakest Parents………….73  

Table 3. 2016 Parent Performance Comparisons by Mixograph, SDS Sedimentation, and 

SDS-SRC Hybrid Assays………………………………………………………………...76 

Table 4. 2017 Parent Performance Comparisons by Mixograph, SDS Sedimentation, and 

SDS-SRC Hybrid Assays………………………………………………………………...79 

Table 5. Mixograph Mix Peak Time Analysis of the 2016 TX12M4063 Reciprocal 

Hybrids…………………………………………………………………………………...88 

Table 6. Mixograph Mix Peak Time Analysis of the 2017 TX12M4063 Reciprocal 

Hybrids…………………………………………………………………………………...89 

Table 7. Mixograph Mix Peak Time Analysis of the 2017 NE07531 Reciprocal 

Hybrids…………………………………………………………………………………...91  

Table 8. Paired t-test Results for Mixograph Strength of the 2016 Hybrids…………….96 

Table 9. Paired t-test Results for Mixograph Strength of the 2017 Hybrids…………….97 

Table 10. Paired t-test Results for Mixograph Tolerance of the 2016 Hybrids……….....98 

Table 11. Paired t-test Results for Mixograph Tolerance of the 2017 Hybrids……….....99 

Table 12. Paired t-test Results for Mixograph Mix Peak Time of the 2016 Hybrids…..101  

Table 13. Paired t-test Results for Mixograph Mix Peak Time of the 2017 Hybrids…..103 

Table 14. 2016 Overall Summary of Hybrid Pairs that Exhibited Reciprocal Effect as 

Determined by the Mixograph Strength, Tolerance, and Mix Peak Time……………...104  

Table 15. 2016 Hybrids Exhibiting Reciprocal Effect for Mixograph Strength………..105 

Table 16. 2016 Hybrids Exhibiting Reciprocal Effect for Mixograph Tolerance……...105 



iv 
 

Table 17. 2016 Hybrids Exhibiting Reciprocal Effect for Mix Peak Time…………….106  

Table 18. 2017 Overall Summary of Hybrid Pairs that Exhibited Reciprocal Effect as 

Determined by the Mixograph Strength, Tolerance, and Mix Peak Time……………...107  

Table 19. 2017 Hybrids Exhibiting Reciprocal Effect for Mixograph Strength………..108  

Table 20. 2017 Hybrids Exhibiting Reciprocal Effect for Mixograph Tolerance……...108 

Table 21. 2017 Hybrids Exhibiting Reciprocal Effect for Mix Peak Time…………….109 

Table 22. Mixograph Mix Peak Time Analysis of the 2016 Goodstreak Reciprocal 

Hybrids………………………………………………………………………………….111  

Table 23. Mixograph Mix Peak Time Analysis of the 2017 Goodstreak Reciprocal 

Hybrids………………………………………………………………………………….113  

Table 24. Mixograph Mix Peak Time Analysis of the 2016 LCH13NEDH_11_24 

Reciprocal Hybrids……………………………………………………………………..115 

Table 25. Mixograph Mix Peak Time Analysis of the 2017 LCH13NEDH_11_24 

Reciprocal Hybrids……………………………………………………………………..117  

Table 26. Paired t-test Results for SDS Sedimentation Ratio of 2016 Hybrids………..119 

Table 27. Paired t-test Results for SDS Sedimentation Ratio of 2017 Hybrids………..121  

Table 28. Paired t-test Results for the SDS-SRC Hybrid Assay of 2016 Hybrids……..123 

Table 29. Paired t-test Results for the SDS-SRC Hybrid Assay of 2017 Hybrids……..125 

Table 30. Paired t-test Results for Kernel Hardness of 2016 Hybrids………………….126 

Table 31. Paired t-test Results for Kernel Hardness of 2017 Hybrids………………….127 

 

 

 

 



v 
 

LIST OF FIGURES 

Figure 1. Freeman Mixograph (2017) - Example of Strong Performing Cultivar………72  

Figure 2. Goodstreak Mixograph (2017) - Example of Weak Performing Cultivar……..72 

Figure 3. 2016 Parent Cultivar SDS Sedimentation Assay Results……………………...74 

Figure 4. 2017 Parent Cultivar SDS Sedimentation Assay Results……………………...75 

Figure 5. 2016 Parent Cultivar SDS-SRC Hybrid Assay Results………………………..77 

Figure 6. 2017 Parent Cultivar SDS-SRC Hybrid Assay Results………………………..78 

Figure 7. 2016 Parent Cultivar Mixograph Mix Peak Development Times……………..80 

Figure 8. 2017 Parent Cultivar Mixograph Mix Peak Development Times……………..81  

Figure 9.1 2016 Parent Cultivar Mixograph Strength x Tolerance Analysis – Excluding 

LCH13NEDH_11_24…………………………………………………………………....82 

Figure 9.2 2016 Parent Cultivar Mixograph Strength x Tolerance Analysis……………83  

Figure 10. 2017 Parent Cultivar Mixograph Strength x Tolerance Analysis……………84 

Figure 11. Comparing Cultivars with Similar Dough Strength as Measured by the 

Mixograph Strength x Tolerance Analysis………………………………………………85  

Figure 12. Mixograph Strength x Tolerance Analysis evaluating 2016 TX12M4063 (P1) 

reciprocal hybrids………………………………………………………………………...86 

Figure 13. Mixograph Strength x Tolerance Analysis evaluating 2017 TX12M4063 (P1) 

reciprocal hybrids………………………………………………………………………...87 

Figure 14. Mixograph Strength x Tolerance Analysis evaluating 2017 NE07531 (P1) 

reciprocal hybrids………………………………………………………………………...90 

Figure 15.1 Mixograph Strength vs. Tolerance Analysis of 2016 Hybrids – Tolerance 

range from 1 – 6………………………………………………………………………….92  



vi 
 

Figure 15.2 Mixograph Strength vs. Tolerance Analysis of 2016 Hybrids – All 

Samples…………………………………………………………………………………..93  

Figure 16.1 2017 Hybrids Mixograph Strength vs. Tolerance Analysis of 2017 Hybrids - 

Tolerance range 1-7……………………………………………………………………...94 

Figure 16.2 Mixograph Strength vs. Tolerance Analysis of 2017 Hybrids - All 

Samples…………………………………………………………………………………..95 

Figure 17. Mixograph Mix Peak Time Analysis of 2016 Hybrids……………………..100  

Figure 18. Mixograph Mix Peak Time Analysis of 2017 Hybrids……………………..102 

Figure 19. Mixograph strength x tolerance analysis evaluating 2016 Goodstreak (P1)  

reciprocal hybrids……………………………………………………………………….110 

Figure 20. Mixograph strength x tolerance analysis evaluating 2017 Goodstreak (P1)  

reciprocal hybrids……………………………………………………………………….112 

Figure 21. Mixograph Strength x Tolerance Analysis Evaluating 2016 

LCH13NEDH_11_24 (P1) Reciprocal Hybrids………………………………………..114 

Figure 22. Mixograph Strength x Tolerance Analysis Evaluating 2017 

LCH13NEDH_11_24 (P1) Reciprocal Hybrids………………………………………..116 

Figure 23. SDS Sedimentation Assay Results of 2016 Hybrids………………………..118  

Figure 24. SDS Sedimentation Assay Results of 2017 Hybrids………………………..120 

Figure 25. SDS-SRC Hybrid Assay Results of 2016 Hybrids………………………….122 

Figure 26. SDS-SRC Hybrid Assay Results of 2017 Hybrids………………………….124



1 
 

 

CHAPTER 1 

INVESTIGATING PARENTAL EFFECTS ON END-USE QUALITY IN HARD 

WINTER WHEAT (Triticum aestivum L.) HYBRIDS 

ABSTRACT 

To optimize the performance and marketing of hybrid wheat, breeders need to understand 

the impact parents have on end-use quality. The goal of this study was to investigate the 

inheritance of end-use quality traits of hard winter wheat reciprocal hybrids produced by 

Easterly (2017). The 2016 analysis included 71 reciprocal hybrid combinations from 13 

parents and the 2017 analysis included 79 reciprocal hybrid combinations from 14 

parents. The reciprocals were composed of crosses between the top performing and 

bottom performing parents with respect to end-use quality as quantified by a Mixograph, 

a SDS sedimentation assay, and a SDS-SRC hybrid assay. The Mixograph was 

digitalized using Mixsmart® software provided by the National Manufacturing Company 

(National Manufacturing Company) and two Mixograph analyses were derived to 

determine the quality of the hybrid; the mix peak time (min) analysis, and the gluten 

strength {(%TQ*min)/grams of protein} x tolerance (unitless) analysis. In general, the 

Mixograph analyses of the reciprocals indicated the dough strength of the hybrid tended 

to reflect the dough strength of the female parent as hybrids that combined a strong 

female with a strong male and hybrids that combined a strong female with a weak male 

had relatively strong dough strength. Conversely, the hybrids that combined a weak 

female with a weak male and a weak female with a strong male exhibited relatively weak 
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dough strength. The maternal effects could be due to higher rates of self-pollination than 

initially thought, or due to the genetic composition of the triploid endosperm, which is 

composed of 2N maternal and 1N paternal DNA. Easterly indicated that one parent, 

NE07531 was well sterilized, and hybrids NE07531 was the female parent appeared to 

have mid-parent dough strength, suggesting that at least in some cases, true hybrids were 

produced. Irrespective of any reciprocal cross differences, it appeared in some cases a 

single high-quality parent can potentially mask end-use quality deficiencies of the other 

parent in the performance of the hybrid, but this need further work to determine.
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INTRODUCTION 

As the population of the world increases, there becomes an increased demand to 

raise the production of crops and the foods from which they are made. The Declaration of 

the World Summit on Food Security (FAO, 2009) predicted that world food production 

will have to increase by 70 percent from 2009 to 2050 to securely feed an estimated 9 

billion people. Globally, as the third highest cereal crop produced (FAO, 2015), wheat 

(Triticum spp.) is critical to attaining a plentiful food supply. Hybrid wheat is a strategy 

that offers a means of increasing production because similar to other hybrid crops, grain 

yields and resistance to abiotic and biotic stresses are generally boosted based on 

heterosis(Longin et al., 2012, 2013, Tester et al., 2010, Whitford et al., 2013). However, 

long-term success in hybrid wheat breeding hinges on breeders creating and maintaining 

heterotic pools of parents that when crossed, result in the highest performing hybrids for 

grain yield and end-use quality (Zhao et al., 2015, Pickett, 1993).   

In addition to creating hybrids that deliver optimal grain yields, hybrid wheat 

breeders have the added challenge of meeting end-use quality requirements and 

delivering ahigh-quality product (Guzman et al., 2016). This can be problematic since 

quantifying end-use quality often requiressourcing seed that may not be available at the 

early generation stages of a hybrid seed program (Gross et al., 2007). Ideally, breeders 

can also use marker or genomic assisted selection (MAS and GAS respectively) to screen 

early generations of hybrid material for end-use quality (Liu et al., 2016, Goutam et al., 

2013, Whitford et al., 2013, Guzman et al., 2016), but few markers exist to account for 

the many genes that determine the complex mixing characteristics intrinsic to different 

wheat flours. Furthermore, there is a general lack of  research into the effects of parents 
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on end-use quality, and heterosis for quality traits in hybrid hard winter wheat (Morojele 

and Labuschagne, 2013, McNeal et al., 1968) 

Perhaps the most effective way of addressing these research gaps with respect to 

hybrid wheat end-use quality will be through collaborations between public universities 

and industry. This study represents just such a collaborative effort, and it was undertaken 

by Bayer CropScience (now BASF) and the University of Nebraska-Lincoln. The 

objective was to investigate heterosis and parental effects on end-use quality in hybrid 

hard winter wheat produced by Easterly (2017). 

In comparison to other crops, wheat’s floral biology has made it more challenging 

to produce and analyze seed from hybrids for end-use quality. Common or bread wheat 

(T. aestivum L.). is naturally cleistogamous, or self-pollinating, which makes outcrossing 

and commercial hybrid seed production more difficult(Pickett 1993, Sarkar et al. 2013, 

Whitford et al., 2013, Longin et al., 2012). Overcoming the tendency to naturally self-

pollinate is key to successfully producing hybrid wheat seed, and it requires; 1) The 

development of male and female parents with floral traits that enable outcrossing, and 2) 

the implementation of a robust and reliable fertility control system (Whitford et al., 2013, 

Singh et al., 2010, Pickett, 1993, Mette et al., 2015). Regardless of the obstacles to 

produce and maintain wheat hybrids, successfully marketing such hybrids will require 

end-use quality to equal, or exceed the quality of pure-line bred and released cultivars.  
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LITERATURE REVIEW PART 1: FLORAL ARCHITECTURE, FERTILITY 

CONTROL SYSTEMS, DOUBLE FERTILIZATION 

Floral Architecture 

As previously stated, male and female parents in hybrid wheat programs must 

exhibit traits that promote outcrossing. Specifically, male parents must possess good 

anther extrusion, anther size, pollen longevity, pollen quantity, and most importantly the 

pollination period must nick, or sync with the female parent’s flowering period (Boeven 

et al., 2016, Khan et al., 1973). Due to the short longevity of wheat pollen, about 10-30 

minutes (de Vries, 1971), having female parents that also nick with the male parent is 

essential, and can be improved by developing female cultivars with longer flowering 

periods and more receptive stigmas (Khan et al., 1973, Pickett, 1993, Boeven et al., 

2018). However, elite germplasms that exhibit strong male floral traits are rare and 

fertility control systems are designed to be genotype independent, which expands the 

range of potential female parents. As a result, hybrid wheat programs typically have 

fewer potential male parents than female parents (Liu et al., 2016) and most research 

focuses on developing cultivars with better male traits like anther extrusion (Garst, 2017). 

Several studies (Okada et al., 2018, Boeven et al., 2016, Langer et al., 2014, de 

Vries 1971, Garst, 2017) have reported phenotypic variation in male floral traits that 

would encourage out-crossing, so there is hope for breeders to improve these traits 

through traditional breeding approaches. Additionally, Boeven et al. (2018) correlated 

visual anther extrusion with female seed set, thus showing an opportunity to develop 

male cultivars by selecting for visual anther extrusion. Okada et al. (2018) has also 
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shown that after flowering, unfertilized wheat ovaries push open the wheat flower in a 

second effort to be fertilized, which is both a helpful indication to breeders that whatever 

chosen fertility control mechanism was effective and acts to help expose the stigma to 

neighboring pollen donors. It is critical that research programs and seed companies 

continue capitalizing on the phenotypic diversity of wheat floral traits to improve both 

male and female floral characteristics to ensure a reliable seed set in hybrids. 

Fertility Control Systems 

The other component of attaining a reliable hybrid seed set in wheat is a stable 

and robust fertility control system. This prevents self-pollination and guarantees only 

hybrid seed is produced on a commercial scale. Several extensive reviews have been 

published about the fertility control systems that are used in hybrid wheat seed 

production (Whitford et al. 2013, Singh et al. 2010, Mette M.F. 2015, Longin C.F.H. 

2012, Pickett A.A. 1993, de Vries A. 1971,). The cytoplasmic male sterility (CMS) 

system and the chemical hybridizing agents (CHAs) are currently the most promising and 

commonly used fertility control systems and will be the focus of this section. 

CMS System 

  Kihara (1951) was the first to report CMS in wheat and sparked the effort to 

develop the first hybrid wheat seed production system based on the CMS model (Wilson 

and Ross, 1962). Triticum a. CMS systems rely on transposons in mitochondrial DNA 

that results in the inability to produce male pollen (Hanson et al., 2004), thus inducing 

male sterility. Fertility restoration in the resulting hybrid is facilitated with nuclear 

fertility restorer (Rf) genes that encode proteins that negate the effects of the CMS genes 
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and restore fertility in the offspring. This represents a critical step in wheat hybrid seed 

production. The CMS system requires 3 lines designated the A, B, and R line, with their 

genetic properties listed below (Singh et al., 2010, Whitford et al., 2013, Pickett 1993). 

• A-line - female parent that carries the cytoplasmic male sterility gene, male 

sterile 

• B-line - maintainer line that has the same nuclear DNA as A-line but does not 

carry the CMS gene, male fertile 

• R-line – male parent that carries Rf genes 

 The Rf genes are classified as either sporophytic or gametophytic, depending on 

which tissue the restorative affects manifest in (Horn 2006). In hybrid breeding, 

sporophytic Rf genes are more practical because they restore fertility to the female pollen 

producing cells, resulting in 100% restored pollen viability (Pickett 1993). If the same 

hybrid was produced with a Rf gene that acted gametophytically, male fertility would 

only be restored to the gametes that contained the Rf gene, and only 50% of the resulting 

pollen would be viable, which would be unacceptable. 

 Unfortunately, the CMS system is still complex and commercial efforts to create a 

CMS system for hybrid wheat seed production have largely been unsuccessful (Singh et 

al., 2010). Complications arise because several major Rf genes are needed to restore 

fertility (Bahl et al., 1973), and these genes must be present in the crop genome and must 

not be linked with deleterious mutations. Also, effectiveness of certain CMS systems can 

be dependent on environmental conditions like temperature and photoperiod (Kaul 1988), 

resulting in incomplete sterility and shriveling of the F1 seed. Finally, the hybrids 
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produced must capture enough heterosis to justify the additional expenses associated with 

establishing and maintaining a CMS program. However, our understanding of Rf genes is 

improving (Martin et al., 2008) and sequencing and marker technologies are allowing 

breeders to backcross Rf genes into elite cultivars more efficiently. These improvements 

are making CMS systems for hybrid wheat seed production more feasible. 

CHA System 

 Limitations in the CMS system have sparked a significant amount of effort to 

develop chemical methods to induce male sterility in wheat without compromising 

female fertility. These compounds that cause male sterility in a crop are called chemical 

hybridizing agents, or CHAs, and are mainly used for hybrid seed production. CHA 

hybridizing systems eliminate many of the problems associated with CMS systems; 

mainly that there is no need for a maintenance line (B-line), does not require any pre-

breeding to introduce the Rf or CMS genes into the R and A-lines respectively, is fast and 

relatively easy to implement, and allows for a much wider range of parental combinations 

(Singh et al., 2010). However, there is an extensive list of requirements that a CHA must 

meet before it can be commercially used (Singh et al., 2010, Whitford et al., 2013) 

• female fertility must remain unaffected  

• genotype independent 

• systemic activity and persistence that allows treated plants to be in varying stages 

of maturity and still be effective 

• wide application period to account for weather delays like rain or wind 

• non-phytotoxic and non-mutagenic 
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• environmentally safe 

• economic to synthesize 

• practical to apply 

• low dosage to ensure reasonable margins are still attainable 

• Must not affect F1 seed quality and seedling or plant vigor 

Current CHAs meet most of these qualifications but are still limited due to narrow 

windows of application. Utilizing a CHA system poses a significant financial risk to seed 

production companies because success hinges on unpredictable factors like wind and 

rain, which can delay application. Application delays can result in failure to inhibit self-

pollination, which ultimately signifies a failure to produce a hybrid. Croisor®100 (EFSA 

2010) was the CHA that was used to produce the hybrids that were used in our analysis 

(Easterly, 2017), and has an approximate window of application of 2-3 days. Other CHAs 

have application windows of up to 5 or 6 days, but at the cost of being slightly more 

toxic.  

Ultimately, the resources available to the researcher or seed producer will 

determine what fertility control system is used. Also, as transgenic systems become more 

widely adopted, de Block et al. (1997) has developed a barnase/barstar transgenic hybrid 

seed production strategy. Kempe et al. (2014) improved this system by establishing a 

split-gene method, allowing for only the female plant to be transformed instead of both 

parents, which considerably reduces the initial investment costs. Hybrid wheat breeders 

must keep these systems in mind moving forward.  
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Double-Fertilization 

Wheat (Triticum aestivum L.) is a flowering plant, which means that it undergoes 

double-fertilization during its reproductive cycle. This process begins when a male pollen 

lands on a receptive stigma and the pollen germinates, initiating the growth of the pollen 

tube (Dumas and Rogowsky, 2008). The pollen tube proceeds to deposit two male sperm 

cells into the ovule of the flower; one pollen fertilizes the egg cell and result in a diploid 

embryo, while the other sperm fertilizes the two polar nuclei cells which eventually 

become the triploid endosperm. Zhang (2016) demonstrated that corn kernel size was 

affected by the maternal tissue of the corn and could be a result of the triploid endosperm 

tissue. Hybrid wheat kernels may similarly be impacted; however, it is the F2 seed that is 

harvested from the F1 hybrid that is used to make final bread products. There would have 

to be a genetic mechanism like imprinting that would cause the F1 maternal tissue to pass 

on any traits that would be exhibited in the F2 kernels.    
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LITERATURE REVIEW PART 2: HYBRID WHEAT END-USE QUALITY 

Wheat end-use quality is complex because it is partially determined by the user 

and the product to be produced from the flour, meaning the end-use is usually a result of 

the growing environment and food markets being targeted(Guzman et al., 2016). 

Australia and Canada have end-use quality scales that categorize wheats based on protein 

content (Blakeney et al., 2009) and quality performance compared to a standard 

check(Bushuk et al., 1978). End-use qualities that millers are mainly concerned with 

optimizing are physical properties of the grain, such as; kernel hardness, size, and density 

(test weight), which have a significant impact on flour yield and quality (Matsuo and 

Dexter, 1980, Morris, 2002). Food companies and bakers require flour that has good 

dough-mixing and baking properties, so they can produce and deliver a consistent 

product to consumers. Finally, aside from the food product type, the consumer is 

generally interested in purchasing and eating safe food products that are delicious and 

nutritious. To successfully develop hybrid wheat cultivars that meet these demands, it is 

necessary to understand how parents contribute to quality in the F2 harvested seed 

generation.   

Unfortunately, adequately quantifying end-use quality in hybrid wheat often 

requires significantly more seed than is typically available in the early stages of breeding 

programs (Goutam et al., 2013). To overcome this limitation, various assays and 

instruments have been developed that can utilize relatively small amounts of grain and 

provide important information on the physical and biochemical end-use properties of 

flour (AACC 2010, Lorenzo et al., 1987, Moonen et al., 1982, Seabourn et al., 2012, 

Martinant et al., 1998, Gaines et al., 1996, Perten Instruments North America, 
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Springfield, IL). However, these assays have limitations, particularly when analyzing 

cultivars with high protein content (Seabourn et al., 2012). Until now, breeders and cereal 

chemists have had little opportunity or need to consider how various parental 

combinations in an F1 might impact the end-use quality of final food products made by 

food producers. As stated earlier, this collaboration represents such an opportunity to 

meet the growing need to address this question.  

Kernel hardness (Pasha et al. 2010, Morris 2002), gliadins (Sozinov and 

Poperelya, 1980, 1982, Pogna et al., 1982, 1990, Branlard et al., 2001, Metakovsky et al., 

1997b,c, Wrigley et al., 1982, Killermann and Zimmermann, 2000, Shewry et al., 2003), 

and glutenins (Payne et al., 1979, 1981b, 1987a, 1987b, 1987c, Payne and Lawrence, 

1983, Payne P. I., 1987, Pogna et al., 1988, Lawrence et al., 1988, MacRitchie et al., 

1990, Gupta and MacRitchie, 1995, Killermann and Zimmermann, 2000, Shewry et al., 

2003, Pasha et al., 2010, Rodriguez-Quijano et al., 1996b, Rousset et al., 1992, Lorenzo 

et al., 1987, Cooper et al., 2016,) are wheat seed traits demonstrated to determine end-use 

quality. A few studies have attempted to document the heterosis for kernel hardness and 

gluten quality expressed by wheat hybrids (Morojele and Labuschagne, 2013) as well as 

the effects that maternal tissue has on hybrid wheat end-use quality (McNeal et al., 

1968).Gaining an understanding of the heterosis for quality traits, and the impact of 

parents on hybrid wheat end-use quality should assist breeders in selecting, and utilizing 

genomic selection (Liu et al., 2016, Goutam et al., 2013, Guzman et al., 2016) to 

potentially predict the parents that optimize performance in various food products.  

Physical and Chemical Properties Associated with Wheat Quality 
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Wheat quality is generally determined by its physical and chemical properties, 

and Goutam et al. (2013) provides a comprehensive list of the traits associated with those 

properties.  

Some physical properties are: 

• Grain appearance score 

• Kernel or grain hardness  

• Vitreousness of kernel 

• 1000 kernel weight 

• Test Weight 

• Kernel size and shape  

Whereas, some chemical properties are:  

• Protein content (NIR) 

• Protein quality and sedimentation test  

• Assays that measure dough mixing (i.e. Mixograph) or viscoelastic 

properties (i.e. Alveograph) 

Morphological traits (grain kernel size, test weight, 1000 kernel weight), and 

grain appearance (absence of grain damage) are important to producers because in many 

situations, these determine the market grade and the price received (Guzman et al., 2016). 

These traits are also important to millers because kernel morphology can determine flour 

yield, and damaged or shriveled seed often reduces flour yield. Besides kernel 

morphology, hardness is a major determinant of end-use quality in bread wheat (Pasha et 
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al., 2010,) because when compared with soft kernels, when hard kernels are milled, they 

produce more broken starch chains which absorb more water and result in an increase in 

loaf volume (Morris, 2002).  

Kernel Hardness 

Morris (2002) describes the genetic mechanism responsible for kernel texture, or 

hardness. The wild-type puroindoline proteins a and b confer a soft kernel texture; 

whereas, the absence of a functional puroindoline protein (either due to a null allele or 

mutation) results in a hard kernel texture. It is necessary for millers and other wheat 

handlers to be able to measure hardness and other individual kernel traits in a high-

throughput manner, which is why Perten Instruments (Perten Instruments North America 

Inc., Springfield, IL) developed a single-kernel characterizations system; the SKCS 4100. 

The SKCS 4100 measures kernel weight (mg), diameter (mm), moisture (%), and kernel 

hardness (HI). The SKCS is fitted with a teethed rotor that crushes the seed, and an 

algorithm that results in the measurements (Gaines et al. 1996). This method only uses 

300 seeds and is a useful tool for collecting end-use quality data in about two or three 

minutes..  

Once the grain has been milled and processed into flour, the focus of quality shifts 

from physical properties of the kernel to the chemical properties of the proteins in the 

endosperm. Among these proteins, gluten has a significant impact on end-use quality and 

is comprised mainly of glutenins and gliadins. These proteins polymerize into massive 

networks during dough-formation, and they enable the unique extensibility and 

viscoelastic properties exhibited by the wheat dough (Shewry et al., 2003, Gale, 2005, 
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Payne, 1987, Goutam et al., 2013, Pogna et al., 1988). Glutenins are grouped into high-

molecular weight subunits (HMW-GS) and low-molecular weight subunits (LMW-GS), 

and gliadins can be separated and designated as α, β, γ, or ω, based on the method 

developed by Bushuk and Zillman (1978).   

Gliadins 

Gliadins are alcohol soluble and glutenins are alcohol insoluble and are made up of 

monomeric proteins, while glutenins are polymeric (Shewry et al., 2003)Gli-1 and Gli-2 are 

the loci responsible for encoding gliadins, and variation at these loci is associated with 

differences in bread-making quality and gluten strength (Sozinov and Poperelya, 1980, 

1982, Pogna et al., 1982, Wrigley et al., 1982, Metakovsky et al., 1997b,c,). Shewry et 

al. (2003) points out that the SDS sedimentation assay is widely used to determine 

breadmaking quality. In this assay, larger sedimentation volumes are caused by the 

formation of a mesh, or gel, that is solely comprised of insoluble glutenin proteins 

(Moonen et al., 1982, Payne et al., 1987c). This demonstrates that the positive 

association between the Gli-1 allele and loaf volume is a result of genes encoding LMW 

subunits at Glu-3. Gli-2 was also shown to express C-type LMW-GS (Masci et al., 2002), 

which is additional evidence that gliadins, and the variation expressed by the gliadin 

genes are important to determining end-use quality.Understanding the relationship 

between gliadins and end-use quality enables hybrid wheat breeders to use gliadin 

markers to select for improved end-use quality. It also emphasizes the importance of 

gluten to quality, and the need to use gliadins and glutenins to select for hybrid wheat 

quality.  
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Glutenins: HMW-GS and LMW-GS 

Payne et al. (1979) were the first to identify HMW-GS as a source of genetic 

variation for bread-making quality. Subsequent research has shown that Glu-A1, Glu-B1, 

and Glu-D1 loci encode the HMW-GS, with Glu-B1 and Glu-D1 being the most 

influential to determining end-use quality (Lawrence and Shepherd, 1980, Payne and 

Lawrence, 1983, Zheng et al., 2009, Cooper et al., 2016, Goutam et al., 2013). The Glu-

1B and Glu-1D loci encode compound proteins, meaning each encodes up to two protein 

subunits. Different alleles at these loci can have a significant impact on dough strength 

and baking quality. For example, the Glu-D1d allele that encodes the Dx5 + Dy10 

subunits confers superior dough strength and loaf volume compared with the Glu-D1a 

allele that encodes Dx2 + Dy12 subunits which have a deleterious effect on quality 

(Payne et al., 1987c, Cooper et al., 2016, Butow et al., 2003, Ammar et al., 1997, Kolster 

et al., 1991). Butow et al. (2003) also demonstrated that the Glu-B1a1 allele (Bx7OE 

+By8) is associated with increased dough strength, likely due to an overexpressed Bx7 

subunit compared to the more common Glu-B1b allele (Bx7 + By8). 

The Glu-3 loci alsohas a significant impact on gluten strength and dough 

extensibility (Payne et al., 1984, 1987a, Gupta and Shepherd, 1988, Pogna et al., 1988, 

Cornish et al., 2001), and the LMW-GS are classified into 3 groups; B-type, C-type, and 

D-type. The D- and C- groups of LMW-GS have not been studied in detail, but they are 

highly similar in sequence to ω-type and α/γ-type gliadins respectively (Shewry et al., 

2003). The C- and D-type LMW-GS are thought to be a result of mutations in gliadin 

alleles that resulted in the inclusion of cysteine residues, which enables them to form 
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disulfide bonds and polymeric proteins (Shewry et al., 2003). B-group glutenins make up 

most of the LMW-GS, but they do not show any similarities in sequences with gliadins.  

Polymeric proteins, which are interconnected via disulfide bonds are foundational 

in establishing the gluten network largely responsible for determining end-use quality. 

Gupta et al. (1995) used lines developed by Gupta and Shepherd (1993) carrying either 

single, double, or triple translocations that systemically eliminated LMW-GS to 

determine the effect they had on quality. Eliminating LMW-GS impacted size 

distribution of the polymeric proteins and resulted in reduced gluten quality. 

Furthermore, they created lines that eliminated all HMW-GS and demonstrated that the 

LMW-GS were not as critical as HMW-GS in determining polymer size. There have also 

been reports of epistatic interactions between the Glu-A1, Glu-B1, and Glu-D1 alleles. 

Kolster et al. (1991) showed that the effects of the Glu-A1 and Glu-B1 alleles were 

dependent on the allele present at the Glu-D1 loci. Epistatic relationships have also been 

identified between the Glu-1 and Glu-3 loci (Gupta and MacRitchie, 1994). Hybrid wheat 

offers a new opportunity to use these epistatic interactions to potentially mask the 

expression of deleterious end-use quality alleles and optimize the quality in the final 

product.  

Previous Literature Addressing Heterosis and Maternal Effects on Wheat Quality 

To make sound crossing decisions, hybrid wheat breeders must consider the 

effects of heterotic interactions between genes associated with end-use quality, and how 

maternal tissue will influence gluten quality. The literature available addressing these two 

interactions are limited, but studies have been conducted to measure heterosis and 
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maternal effects potentially impacting end-use hybrid wheat quality, (Morojele and 

Labuschagne, 2013, McNeal et al., 1968, Borghi and Perenzin, 1994). 

Using 5 parents, each expressing different end-use quality, Morojele and 

Labuschagne (2013) produced 38 F1 and F2 progeny from a 5 x 5 diallel crossing strategy 

and estimated mid-parent and best-parent heterosis for 7 quality characteristics, 

including; break flour yield (BFY), flour protein content (FPC), mixograph development 

time (MDT), SDS sedimentation value (SDS), kernel weight (kw), kernel diameter (kd), 

and kernel hardness (HI), however, they did not investigate any reciprocal effects. There 

was a significant difference amongst the F1 and F2 progeny for all 7 of the traits. The F1 

hybrids showed positive mid-parent heterosis in SDS volume, HI, BFY, and kw. In the F2 

progeny, they reported positive mid-parent heterosis for MDT, HI, and SDS volume, and 

positive best-parent heterosis for MDT, HI, kw and kd. The F2 quality is much more 

important than the quality of the actual hybrid F1 seed, because it is the F2 seed that is 

milled to produce food products  

Borghi and Perenzin (1994) similarly used a diallel crossing scheme composed of 

7 parents to create 21 F1 hybrids. They observed significant heterosis in agronomic traits 

such as: yield, plant height, and time to heading. They did not include reciprocal cross 

hybrids in the analysis. They also observed significantly improved alveographic 

parameters (P) and P/L ratio, signifying an increased grain value of up to 30 % in 

commercial hybrid production. They concluded hybrids show significant potential to 

boost farmer profits by providing better quality grain.    
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McNeal et al. (1968) made reciprocal crosses using four parents expressing a 

range of quality for baking and milling. They also evaluated F2 seed to determine if there 

was a maternal effect on quality. This is reasonable to investigate because the endosperm 

and the embryo of a wheat kernel are two separate organs, and the endosperm is 

technically a triploid organ with 2N from the mother parent and 1N from the male 

(Shewry et al., 2003). Since the endosperm contains all the gluten proteins, there’s 

potential for quality to be influenced by the extra dose of female parent. Thus, it’s 

important to examine if there’s a maternal influence on quality because it could affect the 

direction of the cross. McNeal et al. (1968) concluded their investigation saying, ‘These 

data indicate that reciprocal crosses have little if any effect on quality characteristics.’  

Lorenzo et al. 1987 showed that high sedimentation values using the sodium 

dodecyl sulphate sedimentation test (SDS-sedimentation) correlated with higher loaf 

volume, an important quality trait determined by gluten, particularly HMW-GS. This 

assay used less material than was needed for bake assays and could be performed at a 

high-throughput. Seabourn et al. 2012 introduced the SDS-SRC (sodium dodecyl sulfate-

solvent retention capacity) assay which had an even higher correlation to loaf volume 

compared with the SDS assay. It also used very little material and could be used to 

evaluate end-use quality traits in early generation materials at high-throughput.  

Another instrument that is routinely used to identify gluten strength and select for 

its expression is the Mixograph (Martinant et al., 1998), which uses an aggressive mixing 

action to separate weak and strong dough and determine mixing time, strength, and 

tolerance. Also, in addition to the Perten SKCS 4100, there is also a Perten infrared 
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reflectance (NIR) instruments that can quickly and accurately measure protein content in 

grain and flour (Perten Instruments North America, Springfield, IL).  

The assays that were used by McNeal et al. (1968) were limited to wheat and 

flour protein content (via ion-binding method), milling yield (Brabender quadruplex), 

sedimentation (Zeleny et al., 1960), farinograph and grain yield. Considering this is one 

of the only studies done on end-use quality looking solely at reciprocal hybrid wheat 

crosses, maternal influence on end-use quality in hybrid wheat is poorly understood. 

Maternal impact on end-use quality is important for hybrid wheat breeders to understand 

because in a CMS hybridization system the only difference between the reciprocal cross 

is the cytoplasm of the parents. If there are interaction between cytoplasmic genes of the 

two parents that affect quality, then it would be important to consider which parent is 

used as the female parent.This justifies our objectives to investigate the influence of 

maternal tissue on end-use quality using reciprocal hybrid wheat crosses. It is also a good 

opportunity to look at mid-parent and better-parent heterosis in hybrid wheat, another 

topic of crucial importance.  
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MATERIALS AND METHODS 

Seed Sources and Production of Hybrids: 

A diallel crossing plan similar to Borghi and Perenzing (1994), Morojele and 

Labuschagne (2013), and McNeat et al. (1968) was implemented to achieve yield trial 

hybrid combinations and the combinations that were evaluated for quality. Twenty-six 

genotypes were selected and used as the parents to produce the F1 hybrids within a 26 x 

25 diallel crossing block located near Mead, NE, at the Agricultural Research and 

Development Center (ARDC). One parent was only included in the 2015 crossing block 

(NE10478-1), and it was replaced by Harry in the 2016 crossing block. The F1 seed was 

produced in the summer of 2015 and 2016, planted in the fall of 2015 and 2016, and 

harvested in the summer of 2016 and 2017. The parents consisted of germplasm 

developed by the University of Nebraska-Lincoln and Texas A&M University and they 

represented a diversity of expression for end-use quality traits.  

The hybrid trials that provided the seed for quality evaluations were designed as 

described by Easterly (2017). The trials were planted to an augmented design with 

replicated checks, and they included over 800 plots and over 600 F1 hybrids representing 

313 reciprocal crosses. The resulting F2 seed harvested from the yield trials was 

subsequently used for quality analyses.  

Male-sterility within the diallel blocks was achieved by applying Croisor 100® 

(active ingredient - sintofen; 1-(4-chlorophenyl)-5-(2-methoxyethoxy)-4-oxo-1,4-

dihydrocinnoline-3) (Saaten-Union Recherche, City, France; Easterly 2017) CHA. 

According to Easterly (2017), roughly three weeks post-CHA application, female 
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genotypes from four crossing blocks a year were selected and three to five heads were 

covered with pollen impermeable bags and secured with tape and bamboo stakes. After 

the grain filling period and prior to harvest the bagged heads were removed and threshed 

individually, and the seed number was recorded, indicating how successful the CHA 

application was. In 2015 there was an average of 5.7 seeds per spike, and in 2016 there 

were 2.6 seeds per spike. In 2016, it was determined that approximately 64% of the 

females were completely male-sterile; whereas in 2015, approximately 38% were 

completely male sterile. The improvement in the level of sterility achieved by the CHA in 

2016 was likely due to the CHA being applied more efficiently (Easterly, 2017). To focus 

on evaluating a representative group of hybrids that combined parents considered to be 

classified as weak and strong for end-use quality, all parents were first tested and ranked 

for end-use quality. Parental testing included: Mixograph analyses, SDS  assays, and 

SDS-SRC hybrid assays as described in the Analytical Methods and Instruments. The 

parent lines were subsequently grouped as the strongest (top ~25%) and weakest (bottom 

~25%) parents (Table 2) by visually comparing the Mixographs to known quality checks, 

with Overland representing a poor quality check and Freeman representing a good quality 

check. Although all of the assays had similar results, the Mixograph represented the most 

robust assay for determining gluten strength, therefore, the Mixograph results were 

weighed more heavily than the other assays. Thirteen parents in total were categorized in 

2016 (six strong and seven weak) and 14 parents were categorized in 2017 (seven strong 

and seven weak), and the hybrids produced between those representative parents were all 

analyzed. Therefore, in 2016, each parent was represented in a maximum of twelve 
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hybrids along with their reciprocals, and in 2017, each parent was represented in a 

maximum of thirteen hybrids along with their reciprocals.   

 Hybrids and their reciprocals were categorized prior to evaluation based on the 

apriori determination of the parents as being either strong, or weak for end-use quality. 

Consequently, hybrids and their reciprocals were in turn categorized as representative of: 

1) strong x strong, 2) weak by weak, and 3) weak x strong, and 4) strong x weak 

combinations (List of hybrids evaluated for 2016 and 2017 can be found in appendix A). 

In 2016, 149 hybrid samples were analyzed, of which 144 were represented by a 

reciprocal combination. In 2017, 167 hybrid samples were analyzed, of which 158 were 

represented by a reciprocal combination. Evaluations were performed in the Quality Lab 

located within the Bayer Cropscience wheat research stationat Beaver Crossing, NE. The 

SDS Sedimentation and SDS-SRC Hybrid Assay Control Compilation (Appendix E) 

shows a compilation of SDS sedimentation values (mL) and weight value percentatge  

using a control variety. The CV of the SDS sedimentation control compilation was 1.70, 

while the CV for the SDS-SRC hybrid assay was 2.43, indicating that there was relatively 

little variation in the performance of an assay across samples. assays have a high 

repeatability. Also, according to the Mixsmart® Handbook, the mid-line integrals section 

as reported by this assay is one of the most reproducible parts of a Mixograph analysis 

(Walker and Walker, 2004). In the present study, the Mixograph data were important to 

the evaluation of hybrid end-use quality, and because of the known reproducibility of the 

assay, a large sampling of hybrid combinations was evaluated in deference to repeatedly 

evaluating the same hybrid combinations. 

Analytical Methods and Instruments:  
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Analytical procedures to determine the end-use quality of hybrids were developed 

by the American Association of Cereal Chemists (AACC 2010) and USDA (Seabourn et 

al., 2012). The AACC method 39-25.01 was performed to determine whole grain protein 

content (%) using a Perten DA 7250 NIR (Perten Instruments North America, 

Springfield, IL), and AACC method 39-11.01 was used to determine flour protein (%), 

moisture (%), and ash (%) content using a Perten Inframatic 9500 (Perten Instruments, 

Springfield, IL.). A Perten SKCS 4100 was used to perform AACC method 55-31.01 and 

determine single-kernel traits, including kernel mass (mg), hardness index (HI), kernel 

diameter (mm), and kernel moisture (%). The SKCS is fitted with a teethed rotor that 

crushes the seed, and it employs an algorithm that results in the data that is output for 

each measurement (Gaines et al. 1996). The procedure was modified such that only 100, 

instead of the typical 300 kernels were analyzed.   

The UDY cyclone sample mill (UDY corporation, Fort Collins, CO) was used to 

grind samples for the AACC method 56-70.01 sodium dodecyl sulfate (SDS) analyses as 

well as for the SDS-SRC hybrid assay described by Seabourn et al. (2012). The SDS 

sedimentation test was used to determine the sedimentation value (mL), and the SDS-

SRC hybrid assay was used to determine the weight value %.. The sedimentation assay 

followed the AACC method 56-70.01 with slight modifications. Weight values were 

calculated using the following equation from Seabourn et al. (2012). 

Equation 1 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑉𝑎𝑙𝑢𝑒 (%) = ((
𝑃𝑒𝑙𝑙𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 

𝐹𝑙𝑜𝑢𝑟 𝑤𝑒𝑖𝑔ℎ𝑡
) 𝑥 {[

86

100 − 𝐹𝑙𝑜𝑢𝑟 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 %
]} − 1)  𝑥 100 
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Flour samples were produced using a slightly modified version of the AACC 

method 26-50.01, Brabender Quadrumat Jr. (Quadruplex) method for milling wheat (C. 

W. Brabender® Instruments, South Hackensack, NJ). Instead of using the sieve provided 

in the Quadrumat Jr., samples were sifted using the Sampl-sifter produced by Great 

Western Manufacturing (Great Western Manufacturing Inc. Co., Leavenworth, KS) and 

separated into three partitions; the bran, middlings, and flour. Among these partitions, 

only the flour was retained.  

Mixograph data was collected on the 35-gram mixograph (National 

Manufacturing Company, Lincoln, NE) that followed AACC method 54-

40.02.Mixograms were visually ranked and digitally analyzed using the MIXSMART® 

for windows: Computerized Data Acquisition and Analysis For the Mixograph (Walker 

and Walker, 2004). Values collected by the MIXSMART® used in our analysis included 

peak height (% torque), peak development time (min), peak time integral (min*% 

torque), peak width (% torque), right of peak width (min), and right of peak height (% 

torque).  

Two other values were used in our analysis and are derived from the 

MIXSMART data; one is a measurement of tolerance to overmixing and the other is a 

measure of gluten strength per gram of protein. Tolerance can be calculated as shown in 

equation 2 (method developed by Dr. Kaufman at Bayer Crop Science (now BASF), 

personal communication) while gluten strength per gram of protein was developed by the 

author (equation 3). Because the tolerance equation takes the reciprocal of the amount of 

strength lost, samples that lose very little or no strength result in tolerance values that 

approach infinity. These equations represent an effort to assign more objective 
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measurements to determining gluten quality. Visual scoring and parameters determined 

using the Mixsmart® data were used to rank parents. The following sections describe the 

methods used to evaluate heterosis and the maternal effect in the hybrids.  

 

Equation 2 

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 1/| {
(𝑀𝑃𝐻 ∗ 𝑀𝑃𝑊) − (𝑅𝑃𝐻 ∗ 𝑅𝑃𝑊)

𝑀𝑃𝐻 ∗ 𝑀𝑃𝑊
} | 

Equation 3 

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ (
%𝑇𝑄 ∗ 𝑀𝑖𝑛

𝑔𝑟𝑎𝑚𝑠 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
) =

𝑀𝑃𝐼

𝐺𝑟𝑎𝑚𝑠 𝑜𝑓 𝑃𝑟𝑜𝑡𝑒𝑖𝑛
 

Where MPH = Midline-peak height, MPW = Midline-peak width, RPH = Right of peak 

height, RPW = Right of peak width, MPI = Mid-line peak integral  

Graphical Analysis: By collecting data on many reciprocal crosses and graphing them all 

together, we can observe how the end-use quality of the hybrids compare to the quality of 

the parents. and determine if there is any maternal effect on end-use quality in hybrid 

wheat as possibly represented by the detection of reciprocal effects The SDS 

sedimentation assay and SDS-SRC assay are graphed with the sedimentation value (mL) 

and weight value (%) on the y-axis and the protein content (%) on the x-axis. Since 

sedimentation value and weight value are greatly impacted by overall protein content 

(Seabourn et al., 2012), this allows us to evaluate samples in terms of protein 

functionality as a function of protein quantity. The Mixograph should be the most 

effective tool at separating the difference in protein functionality among the hybrids. The 
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Mixograph analysis is presented in two ways; the first is more traditional and displays 

peak mix development time on the y-axis and flour protein content (%) on the x-axis. The 

second representation of the Mixograph data utilize the strength and tolerance terms 

derived from equations 3 and 4 and has the strength value plotted on the y-axis and the 

tolerance value on the x-axis. When looking at the graphs, samples that have larger 

strength values and larger tolerance values are more desirable than samples with smaller 

strength or tolerance value.  

Calculating Maternal Effect: To meet our objective of determining if there is a 

reciprocal effect on the end-use quality of F2 progeny we had to determine if the hybrids, 

along with their reciprocal crosses, performed identically in end-use quality assays and 

physical kernel measurements.. Our alternative hypothesis is that the direction of the 

cross does impact the trait of the hybrid, or HA: A x B ≠ B x A. We tested our hypothesis 

using a t-test between the mean values of the hybrids when parent A was used as a 

female, and the mean values of the reciprocal hybrids when parent A was used as the 

male. We performed a t-test for each parent (thirteen in 2016 and fourteen in 2017) on 

kernel hardness (HI), kernel diameter (mm), kernel weight (mg), grain protein (%), SDS 

sedimentation value (mL), weight value (%), and mix peak time (Min) test using the add-

in data analysis tools available in the 2013 edition of Microsoft excel using an α of .05. 

The degrees of freedom for each t-test was dependent on how many reciprocal crosses 

were completed in the analysis because hybrids without a reciprocal were not included in 

the analysis. P-values of less than .05 signify a significant difference between the average 

performance of the hybrids depending on the direction of the cross. 

 



28 
 

RESULTS AND DISCUSSION 

Determining Strong and Weak Parents for 2016 and 2017 

It was essential that the parents that we selected were distinctive from each other 

because it allowed us to examine how the quality of the hybrid and reciprocal compared 

to the quality of the parents. Mixsmart® digital data was collected and analyzed for both 

years, and Mixsmart® digital pictures were collected on the 2017 year. Digital pictures of 

a strong (Freeman, Fig. 1) and a weak (Goodstreak, Fig. 2) Mixograph illustrate the 

dough strength profiles of two parental cultivars, and the type of data obtained in the 

determination of whether the dough is considered strong, or weak in performance. The 

Freeman Mixograph had a smooth and steady development up to the peak time of 5.51 

Min, while the Goodstreak Mixograph had a steep and rapid development to the peak 

time of 2.43 Min. In addition, the Freeman Mixograph appeared to be more tolerant to 

overmixing based on the visual assessment of the Mixograph, while the Goodstreak 

Mixograph quickly reduced in strength and appeared have little tolerance to overmixing. 

In 2016, the weakest parents based on these Mixograph standards were determined to be; 

Goodstreak, Overland, TX10D2063, TX10D2230, TX11D3129, TX12M4063, 

TX12M4065; whereas, the strongest performing parents were; Freeman, 

LCH13NEDH_11_24, NE07531, NE09517_1, Wesley, and Settler_CL, (Table 2). In 

2017, the weakest performing 25% were determined to be; Goodstreak, Overland, 

TX09D1172, TX10D2063, TX10D2363, TX11D3129, TX12M4063; whereas, the 

strongest performing 25% were; Freeman, LCH13NEDH_11_24, NE07531, NE09517_1, 

Robidoux, Settler_CL, and Harry (Table 2).  
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Goodstreak, Overland, TX10D2063, TX11D3129, and TX12M4063 were visually 

identified as bottom performing parents in both years of testing, while Freeman, 

LCH13NEDH_11_24, NE07531, and NE09517_1 were identified as top performing 

parents in both years. Based on the visual assessment of the parent Mixographs, 

Goodstreak and LCH13NEDH_11_24 were visually identified as the weakest and 

strongest, respectively. Additionally, it is important to note that in some cases, the 

difference between a strong and an intermediate or a weak and an intermediate parent 

Mixograph was subtle, meaning that identifying the parents that performed in the top 10 

%  and bottom 10 % can be done easily by visual analysis, but selecting the top 25 % and 

bottom 25 % is more time consuming. In 2016 Robidoux and NE10683 performed well 

relative to the entire pool of parents but were classified as intermediate performing 

parents due to the small discrepancies in their Mixograph curves. In 2017, several parents 

including Ruth, NE10683, TX12M4065, and TX12M4004 also appeared to have 

desirable quality, but Harry was ranked over these cultivars based on subtle differences in 

the Mixograph. Ultimately, visually assessing each parent Mixograph relative to a pool of 

parent Mixographs was time consuming and subjective to the experience of the scorer. 

This highlights the need for a better analytical tool to assess Mixographs and the 

extensive data collected by the Mixsmart® software presented an opportunity to increase 

efficiency and improve accuracy of scoring Mixographs One suggestion to improve this 

method would be to establish specific benchmarks for strength, tolerance, or mix peak 

time based on check cultivars with known end-use quality, such as Overland for poor 

quality and Freeman for strong quality. Any parent cultivar performing lower or higher 

than these standards could then be classified as strong or weak accordingly.  
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After classifying the parent Mixographs visually, it was important to compare the 

results to the SDS sedimentation assay and SDS-SRC hybrid assay results. The SDS 

sedimentation assay and the SDS-SRC hybrid assay can be biased by high protein content 

samples because high protein quantity can overcompensate for poor protein quality 

(Seabourn et al. 2012). Evaluating the sedimentation volume (mL) and weight value (%) 

as a function of protein content (%) was suggested to reduce this potential bias by 

creating a sedimentation and weight value ratio that adjusts for both protein performance 

and quantity. The SDS sedimentation assay results for the 2016 and 2017 parents were 

graphed to show the performance difference between the strong parents and the weak 

parents (Fig. 3 and Fig. 4). Strong parents consistently are represented as data points 

above the dashed green line, indicating that it has desirable quality. Alternatively, the 

weak parents generally are represented as data points below the red dashed line, 

indicating they have undesirable dough quality. Graphs representing the SDS-SRC hybrid 

assay results for 2016 and 2017 enable a similar separation of the categories (Fig. 5 and 

Fig. 6). 

The 2016 parents were ranked from 1 to 25 based on their performance as 

assessed by the SDS sedimentation and the SDS-SRC assay. These rankings are shown in 

relation to the visual Mixograph determination of dough strength for each genotype 

(Table 3). The strong parents NE09517-1, Settler CL, Wesley, Freeman, LCH13NEDH-

11-24, and NE10589 ranked in the top ten for the SDS sedimentation assay and the SDS-

SRC hybrid assay, while the weak parents ranked in the bottom ten for both assays. 

Assessments of the parents of hybrids tested in 2017 similarly demonstrated that the 

strong parents were ranked in the top ten for both assays and the weak parents, with the 
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exception of Goodstreak, ranked in the bottom half.(Table 4). Agreement between the 

SDS sedimentation assay and the SDS-SRC assay in the ranking of parents indicates that 

the Mixograph profiles are able to adequately distinguish between genotypes with 

different dough mixing characteristics. 

Developing an Objective Assessment Tool Using Mixsmart® Parameters 

With the strong and weak parents categorized, our second intent was to make an 

objective assessment of dough strength based on Mixographs.  The most important 

parameters to bakers and food producers are the mix peak development time (min) and 

tolerance to overmixing. The mix peak time is the time it takes for the gluten network to 

develop to peak strength and represents an important quality indicator. Additionally, 

Walker and Walker (2004) stated that one of the most repeatable measurements in the 

Mixograph analysis was the midline integral, which is interpreted as the amount of work 

needed for the dough to reach peak development. The data collected by Mixsmart® was 

used to graph the Mixographs for mix peak time (min), tolerance, and strength 

(%TQ*Min/grams of protein) as opposed to visually assessing each hybrid Mixograph 

and comparing them to the quality of the parents individually. 

Bar graphs represent the mix peak time of the parents used in the 2016 (Fig. 7) 

and the 2017 (Fig. 8) analysis. In 2016, the strong parents had mix peak times ranging 

from 3.5 minutes (NE10589) to 5.9 minutes (LCH13NEDH_11_24), while the weak 

parents had mix peak times ranging from 1.97 minutes (Goodstreak) to 3.06 

(TX12M4065), showing no overlap in mix peak time between the strong and weak 

parents (Fig. 7). In 2017, the mix peak time of the parents identified with strong quality 

ranged from 4.34 minutes (Harry) to 8.13 minutes (LCH13NEDH_11_24), while the mix 
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peak time of the weak quality parents ranged from 2.43 minutes (Goodstreak) to 3.87 

minutes (TX12M4063). There was excellent separation between the strong and weak 

dough strength parents (Fig. 8).  

Mix peak time data collected by Mixsmart® was effective at elucidating the 

differences in performance between the strongest and weakest dough quality genotypes. 

However, it is important to note that there was some overlap between the intermediate 

performing cultivars and the strong and weak parents in both years. Specifically, in 2016, 

Robidoux (4.34 min), TX11D3008 (3.74 min), NE07531 (3.74 min), and TX12M4004 

(3.59 min) were categorized as having intermediate performance based on the visual 

analysis of the Mixographs, despite having a longer mix peak time than NE10589 (3.50 

min). Additionally, TX09D1172 (2.99 min) and TX10D2363 (2.77 min) were both 

categorized as having intermediate quality based on the visual analysis, despite having 

shorter mix peak times than TX12M4063 (3.09 min). Furthermore, in 2017 Harry (4.34 

min) was determined to have strong dough strength based on the visual analysis, but also 

a slower mix peak time than seven cultivars that were categorized as having intermediate 

quality; including; TX12M4065 (4.94 min), TX12M4004 (4.87 min), TX10D2230 (4.71 

min), Ruth (4.60 min), PSB13NEDH_15_58W (4.58 min), TX11D3112 (4.47 min), and 

NE10683 (4.38 min). Lastly, TX11D3026 (3.63 min) and Wesley (3.25 min) were both 

classified as having intermediate quality based on the visual analysis, despite having 

slower mix peak times than TX12M4063 (3.09 min). While the mix peak time analysis 

effectively identifies the strongest and weakest performing cultivars, it is limited in 

separating cultivars that have similar quality. This conclusion is partially due to the fact 

that the mix peak development time does not consider the tolerance of the variety to 
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overmixing, which is carefully examined while assessing the Mixograph visually. An 

analysis that quantifies dough strength as well as tolerance to overmixing could 

potentially be a valuable analytical tool in quantifying end-use dough quality in wheat. 

Using the Mixsmart® data, the Mixograph strength x tolerance analysis was 

developed that considers gluten strength (Eq. 2, {(%TQ*Min)/grams of protein}) as well 

as tolerance to overmixing (Eq. 3, unitless). Comparing the results of the Mixograph 

strength x tolerance analysis to the mix peak time analysis and visual assessment of the 

parent Mixographs helped us determine the value of this assay as an analytical tool in 

evaluating end-use quality. The 2016 strong quality parents had strength values ranging 

from 29.7 ({%TQ*Min}/grams of protein, NE10589) to 45.7 ({%TQ*Min}/grams of 

protein, LCH13NEDH_11_24) and tolerance values ranging from 1.6 (NE10589) to 26.7 

(LCH13NEDH_11_24) (Fig. 9.1 and Fig. 9.2). The 2016 weak quality parents ranged 

from Goodstreak which had the lowest strength of 13.64 ({%TQ*Min}/grams of protein) 

to TX10D2230 with a strength of 21.88 ({%TQ*Min}/grams of protein), while 

Goodstreak also had the lowest tolerance value of 1.18 ranging to TX10D2230 with a 

tolerance of 1.46 (Fig. 9.1 and Fig. 9.2). In 2017, the parents that were visually 

categorized as strong had strength values ranging from 36.0 ({%TQ*Min}/grams of 

protein, Harry) to 54.3 ({%TQ*Min}/grams of protein, LCH13NEDH_11_24 ), and the 

same group in this category had tolerance values ranging from 3.3 (Robidoux) to 7.1 

(Freeman, Fig. 10). The weak parents of 2017 had strength values ranging from 16.6 

({%TQ*Min}/grams of protein, Goodstreak) to 28.9 ({%TQ*Min}/grams of protein 

TX12M4063), and tolerance values ranging from 1.26 (TX10D2063) to 1.87 

(TX09D1172, Fig. 10). The Mixograph strength x tolerance analysis also supports our 
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visual analysis by identifying Goodstreak as the having the weakest gluten strength and 

LCH13NEDH_11_24 as has having the strongest gluten strength for samples derived 

from both years. Use of the Mixograph strength x tolerance parameter is an effective 

means of at separating the weak quality from thestrong quality parents.  

Another critical observation is how NE10589, which was visually scored as a top 

performing parent in 2016, was tightly grouped with three parents that were visually 

categorized as having intermediate strength; and included TX11D3008, TX12M4004, 

and TX11D3026 (Fig. 9.1 and Fig. 9.2). Visually comparing these specific parents, 

including NE10589, they all appeared to perform very similarly. NE10589 was selected 

over the other cultivars because it appeared to have slightly better tolerance, but 

ultimately it was very challenging to distinguish. This implies the Mixograph strength x 

tolerance analysis is comparable to a visual assessment performed by an experienced 

laboratory technician. A similar result was observed with Harry in 2017 (Fig. 10). Harry 

was designated a top performing parent based on the visual assessment but performed 

similarly to four other parents, including TX12M4004, TX12M4065, Ruth, and 

NE10683, which were categorized as having intermediate quality. The digital photos of 

the Mixographs for Harry, TX12M4004, TX12M4065, Ruth, and NE10683 provides 

additional evidence that the Mixograph strength x tolerance analysis is comparable to a 

visual assessment of the Mixograph (Fig. 11). After making these observations, it was 

determined that the Mixograph strength x tolerance analysis would make a valuable tool 

in making comparisons between the quality of the hybrid, the quality of the reciprocal, 

and the quality of the parents. With a better understanding of how the Mixsmart® data 

can be used to represent the Mixograph profile, it is possible to establish standard 
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thresholds of strength and tolerance that can be used to categorize the end-use quality of 

the cultivars based on the Mixograph.  

Using the Mixograph Strength x Tolerance and Mix Peak Time To Evaluate Inheritance 

of Reciprocal Hybrids 

 After collecting the hybrid Mixograph data, we used the Mixograph strength x 

tolerance analysis that we developed to examine how the quality performance of the 

reciprocal hybrids compared with the parents. Specifically, it was important that we 

determine if there was a reciprocal effect on quality, or if the hybrids performed close to 

the mid-parent value, or both. The Mixograph strength x tolerance analysis was applied 

to all of the hybrids, and to compare the quality of the reciprocals to the quality of the 

parents. Appendix F shows the numbers assigned to each parent cultivar categorized.  

We initially focused our analysis on several cultivars to evaluate their reciprocal 

hybrids to see if there were any notable patterns among their Mixographs, a strategy that 

we then expanded to include all the hybrids evaluated in the analysis. The first reciprocal 

hybrids that we isolated to evaluate were crossed using the cultivar TX12M4063 as either 

the female (P1) or the male (P2) parent. TX12M4063 performed in the bottom 25 % in 

both years of our analysis, additionally, Easterly (2017) reported TX12M4063 to have a 

mean seed count of 27 seeds per self-bag, indicating it wasn’t sterilized well and that the 

hybrids may have high levels of self-pollination. The 2016 Mixograph strength x 

tolerance analysis of the reciprocal hybrids with TX12M4063 designated as the P1 parent 

indicates that the P1xP2 hybrids (blue) are tightly grouped with the TX12M4063 parent, 

indicating the P1xP2 hybrids all had poor dough strength similar to TX12M4063 (Fig. 

12). Alternatively, the P2xP1 reciprocal hybrids (green) appear to have strong and weak 



36 
 

performing hybrids that mirror the dough strength of the P2 parent (Fig. 12). The 2017 

Mixograph strength x tolerance results showed a similar trend were most of the P1xP2 

hybrids performed poorly and were tightly associated to the TX12M4063 parent, with the 

exception of the hybrids between Goodstreak and Robidoux (Fig. 13). The TX12M4063 

x Robidoux hybrid appeared to have improved tolerance compared to the TX12M4063 

parent and worse strength than the Robidoux parent. In addition, the TX12M4063 x 

Goodstreak hybrid falls between both of the parents on the graph. These results suggest 

that the Mixograph strength x tolerance analysis detected a difference between the 

TX12M4063 reciprocal hybrids, and that the hybrid dough strength tended to reflect the 

quality of the female parent. This may have been caused by human or sprayer error 

applying the CHA unsuccessfully or the line being hard to sterilize, resulting in hybrids 

partially composed of unsterilized female seed, which influenced the quality of the hybrid 

enough to be detected by the Mixograph strength x tolerance analysis. Making physical 

blends of the parents in different ratios and then performing the Mixograph on those 

blends could help determine the effect of having self-pollinated female seed in the hybrid. 

Furthermore, comparing the Mixograph of the blends to the hybrid and reciprocal 

Mixograph that are verified hybrids (comparing plant height of hybrid compared to 

parents) could help elucidate the relationship between the end-use quality of the hybrid 

and the parents.  

It was then important for us to examine the Mixograph mix peak time (min) of the 

reciprocal hybrids of TX12M4063 so that a comparison between the two Mixographs 

analyses could be made. A paired t-test was set up to see if there was a reciprocal effect 

mix peak times between the P1xP2 and the P2xP1 hybrids when TX12M4063 was 
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designated as the P1 parent (α = .05). The 2016 analysis showed the average mix peak 

time (min) of the P1xP2 hybrids was 2.75 min while the average of the P2xP1 hybrids 

was 3.53 min, with a p-value = .020 (Table 5), indicating a significant difference. This 

supports the conclusion made by the 2016 Mixograph strength x tolerance analysis of the 

TX12M4063 reciprocal hybrids. The paired t-test of the 2017 Mixograph mix peak time 

(min) analysis with TX12M4063 designated as the P1 parent showed that P1xP2 hybrids 

had an average mix peak time of 4.25 min while the P2xP1 hybrids had an average mix 

peak time of 4.36 min, with a p-value of .700 (Table 6). This also supports previous 

conclusion that the 2017 hybrids were made more successfully. Also, the TX12M4063 x 

LCH13NEDH_11_24 reciprocal hybrids and the TX12M4063 x NE09517_1 reciprocal 

hybrid appear to have large differences in their mix peak times, with the hybrid reflecting 

the mix peak time of the female parent (Table 6). This would indicate that the reciprocal 

effect caused by higher levels of self-pollination were only detectable when there was a 

large difference in the mix peak time (min) of the parents, as was the case with both the 

LCH13NEDH_11_24 and NE09517_1 parent. As suggested earlier, this concept could 

potentially be tested by artificially making blends of parental seed to determine the effect 

that self-pollinated female seed can have on the Mixograph profile.  

Next, we evaluated the reciprocal hybrids with NE07531 designated as the P1 

parent, which performed in the top 25 % in the 2017 year of our analysis and Easterly 

(2017) reported had a mean seed count of four seeds per spike per self-bag, meaning 

there was higher confidence that NE07531 was sterilized and produced true hybrids. 

Determining if the dough strength of the P1xP2 hybrids reflected the mid-parent value of 

the parents or NE07531 would help elucidate the nature of the relationship between the 
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quality of the parents and the quality of the hybrids. The 2017 Mixograph strength x 

tolerance analysis for the reciprocal hybrids with NE07531 designated as the P1 parent 

showed that the P1xP2 hybrids (blue) tended to fall between the P1 and P2 parent, 

reflecting the mid-parent performance (Fig. 14). This was especially apparent with the 

hybrids between parents of opposing strength, i.e. the NE07531 x Goodstreak, NE07531 

x Overland, NE07531 x TX09D1172, NE07531 x TX11D3129, and NE07531 x 

TX12M4063 hybrids. These results suggest that the purer hybrids had dough strength that 

reflected the mid-parent value, which is what we predicted and what previous research 

has indicated (McNeal et al., 1968, Morojele and Labuschagne, 2013).  

To further our analysis, a paired t-test was set up between the average Mixograph 

mix peak time (min) of the P1xP2 and the P2xP1 hybrids with NE07531 designated as 

the P1 parent (α = .05). The average mix peak time (min) of the P1xP2 hybrids was 5.09 

min with the average of the reciprocal P2xP1 hybrids being 4.35 min on average, 

indicating the difference between the groups was significantly different with a p-value = 

.000864 (Table 7). The NE07531 x Goodstreak hybrid had a mix peak time close to the 

mid-parent value, indicating that it was a true hybrid, while its reciprocal Goodstreak x 

NE07531 had a mix peak time (min) mirroring Goodstreak, indicating it may not have 

been a pure hybrid. Furthermore, NE07531 x Freeman, NE07531 x Harry, NE07531 x 

Overland, and NE07531 x Settler_CL had very similar mix peak time values to their 

reciprocal hybrids, and they that were close to the mid-parent value, suggesting the 

crosses may have been made successfully. NE07531 x Robidoux had a mix peak time 

that was a roughly a minute longer than either of the parents, indicating there may have 

been some heterosis in the cross. The mix peak time (min) of the hybrids NE07531 x 
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TX09D1172, NE07531 x TX11D3129, and NE07531 x TX12M4063 tended to reflect the 

mix peak time of NE07531, while the reciprocal crosses had mix peak time (min) values 

that reflected the mix peak time (min) of the respective female parent used. It is possible 

that the mean seed count of NE07531 underestimated the amount of unsterilized female 

in the hybrids. Alternatively, NE07531 could have been successfully sterilized and the 

maternal effect detected by our analysis could be due to the triploid endosperm, which is 

composed of 2N maternal and 1N paternal genetic material. Lastly, other agronomic 

characteristics may have caused the hybridization to be unsuccessful such as different 

maturity rates. Considering that the TX cultivars and the NE07531 cultivar were 

developed in different growing regions adapted to different maturity rates, it is reasonable 

to hypothesize that the hybridization between these cultivars may have failed because 

they did not nick. The results imply the Mixograph analyses are valuable in making 

observations about the relationship between the dough strength, tolerance, and mix peak 

times of hybrids and their parents.  

Using the Mixograph strength x tolerance analysis and mix peak time (min) to Evaluate 

General Inheritance Pattern of Dough Quality for a Yield Trial  

Using the guidelines developed by evaluating the TX12M4063 and NE07531 

reciprocal hybrids, our next step was to apply the same analytical technique to all the 

hybrids to get a general idea of how the Mixograph quality indicators were inherited 

among the hybrids. The hybrids were put into four categories based on the visual 

performance of the male and female Mixographs; hybrids with two weak parents 

(weak/weak - coded as red), hybrids with two strong parents (strong/strong - coded as 

green), hybrids crossed strong female to weak male (strong/weak – coded as blue), and 
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hybrids crossed weak female to strong male (weak/strong – coded as orange). We 

hypothesized that the strong/strong hybrids (green) should perform strongly on the 

analyses and the weak/weak (red) hybrids should perform poorly on the analyses. We 

also hypothesized the reciprocal hybrids composed of parents with opposing dough 

strength (strong/weak – blue and weak/strong – orange) should perform similarly. 

However, the TX12M4063 and NE07531 analyses suggested the hybrid Mixographs 

could reflect the female parent, indicating either failure to sterilize the female or a 

maternal influence due to the triploid endosperm.   

Using the color-coding system as described, the Mixograph strength x tolerance 

analysis was performed on the 2016 hybrids by graphing the hybrids with the strength 

{(%TQ*Min)/grams of protein} on the Y-axis and tolerance to overmixing on the X-axis 

(unitless). To visualize the relationship between the hybrids and the parents, the parents 

were included in the analysis with the strong parents coded as purple and the weak parent 

coded as yellow. The results show the strong/strong hybrids had relatively strong dough 

strength and tolerance (similar to the strong parents) while the weak/weak hybrids had 

relatively poor dough strength and tolerance (similar to the weak parents, Fig 15.1 and 

Fig 15.2). This supported our hypothesis that crossing parents with strong dough strength 

together would result in strong hybrids and crossing parents with weak dough strength 

results in weak hybrids. Contrary to the hypothesis, the results also indicated the 

strong/weak hybrids and reciprocal weak/strong hybrids did not appear to perform 

similarly and did not overlap, instead, the hybrid quality appeared to be more influenced 

by the quality of the female parent used in the cross (Fig 15.1 and Fig 15.2). Specifically, 

the strong/weak hybrids appeared to have relatively strong quality while the weak/strong 
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hybrids appeared to have relatively weak quality. The 2017 hybrid Mixograph strength x 

tolerance analysis had similar results; the strong/strong hybrids appeared to have 

relatively strong quality while the weak/weak hybrids appeared to have relatively weak 

quality (Fig 16.1 and Fig 16.2). Additionally, the strong/weak and the reciprocal 

weak/strong hybrids did not appear to overlap, instead the performance of the hybrid 

tended to reflect the performance of the female parent (Fig 16.1 and Fig 16.2). This 

suggests there could have been higher levels of self-pollination among the female parents 

than detected, or the maternal effect on dough strength detected by the Mixograph 

strength x tolerance analysis could be due to the triploid endosperm. However, it 

appeared in some cases a single high quality parent can potentially mask end-use quality 

deficiencies of the other parent in the performance of the hybrid. 

Paired t-tests were performed on the 2016 and 2017 hybrids to determine if there 

was a reciprocal effect on dough strength {(%TQ*Min)/g} and tolerance (α = .05). In 

2016, hybrids of nine of the 13 cultivars showed a reciprocal effect for dough strength 

{(%TQ*Min)/g}; including Freeman, Goodstreak, LCH13NEDH-11-24, NE09517_1, 

Settler_CL, TX10D2063, TX10D2230, TX11D3129, TX12M4063 (Table 8). 

Additionally, hybrids from four of the 13 cultivars did not show a significant reciprocal 

effect on dough strength; including NE10589, Overland, TX12M4065, and Wesley 

(Table 8). In 2017, hybrids from ten of the 14 cultivars showed a reciprocal effect for 

dough strength {(%TQ*Min)/g}; including Goodstreak, Harry, LCH13NEDH-11-24, 

NE07531, NE09517_1, Overland, Settler_CL, TX09D1172, TX10D2063, TX11D3129 

(Table 9). Also, hybrids from four of the 14 cultivars did not show a significant 

reciprocal effect in mean dough strength, and those included; Freeman, Robidoux, 



42 
 

TX10D2363, and TX12M4063 (Table 9). A significant reciprocal effect for dough 

strength {(%TQ*Min)/g} was detected among the hybrids from Goodstreak, 

LCH13NEDH-11-24, NE09517_1, Settler_CL, TX10D2063, and TX11D3129 in both 

2016 and 2017. Hybrids from Robidoux and TX10D2363 were not analyzed in the 2016 

year, but hybrids from both Freeman and TX12M4063 showed a significant reciprocal 

effect in 2016 but not in 2017. In terms of tolerance, only hybrids of TX10D2230 and 

TX12M4063 from 2016 and hybrids from Goodstreak and TX12M4063 from 2017 

appeared to have a significant a reciprocal effect (Table 10 – 2016, Table 11 – 2017). 

The small amount of significance is likely due to the large variation in tolerance between 

the samples. The tolerance is a necessary part of the analysis because it quantifies a 

critical quality indicator, however, further work must be done to improve the tolerance 

parameter so more powerful comparisons can be made. Lastly, for each significant 

difference that was detected, the mean of the P1xP2 hybrids reflected the P1 variety, 

while the mean of the P2xP1 parents reflected the mean of the P2 parents, indicating that 

the female influenced the quality of the hybrid more than the male. This has the same 

implications as the Mixograph strength x tolerance analysis; the maternal effect on 

quality detected by our analysis could be due to higher levels of self-pollination or it 

could be the effect of the triploid endosperm.  

The paired t-tests of the 2016 and 2017 hybrid Mixograph strength x tolerance 

analysis verifies the observations that the hybrid quality, when composed of parents with 

differing quality, tends to be more heavily influenced by the quality of the female than 

the quality of the male. It appears that the Mixograph strength x tolerance analysis may 

be a sensitive analytical tool in detecting reciprocal effects in hybrid wheat quality. This 
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reciprocal effect could be the result of high levels of female self-pollination, either due to 

some sterilization issues or other agronomic or genetic factors (plant height, nicking, 

etc.). To the interest of hybrid wheat breeders, this data also indicates that female quality 

may be more important in determining the quality of the hybrid than male quality, 

assuming our results aren’t solely due to high levels of female self-pollination. In a 

hybrid wheat breeding program, there are typically many fewer potential male parents 

than female parents because a good male, in terms of making a hybrid, requires complex 

floral architecture that is difficult to select for. This belief has led to the philosophy that 

the program can’t afford to have poor quality male parents, restricting the number of 

potential male cultivars. These results imply that it is possible to hide the poor quality of 

a cultivar by crossing it as a male to a female with strong quality, giving the breeder more 

options in parental selection.   

Continuing our analysis of the hybrid Mixograph data, the Mixograph mix peak 

time (min) analysis was also performed on the 2016 and 2017 hybrids to help validate the 

findings made by the Mixograph strength x tolerance analysis. Hybrids with two strong 

quality parents were coded as green (strong/strong), hybrids with two weak quality 

parents were coded as red (weak/weak), hybrids composed of a strong quality female 

crossed to a weak quality male were coded as blue (strong/weak), and the reciprocal 

hybrid composed of a weak quality female crossed with a strong quality male were coded 

as orange (weak/strong). The mix peak time (min) of the hybrids was plotted on the Y-

axis against the flour protein (%) on the X-axis. This would allow us to make 

comparisons between the quality of the hybrids and the parents to be made based on the 

functionality of the protein.  
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The results of the 2016 hybrid mix peak time (min) analysis showed that the 

strong/strong hybrids and the strong/weak hybrids appeared to perform similarly to the 

strong quality parents, with all but 1 of the hybrids having mix peak times ranging from 3 

minutes to 6.24 minutes (Fig. 17). The strong/strong hybrids performed as we 

hypothesized and appeared to have similar mix peak times (min) to the strong parents, 

while the strong/weak hybrids appeared to outperform the weak/strong reciprocal 

hybrids. The weak/strong hybrids and the weak/weak hybrids were also grouped together 

with mix peak times ranging from 1.87 minutes to 3.7 minutes, indicating that the hybrids 

had similar peak times to the weak parents and performed relatively poorly (Fig. 17). In 

general, the 2016 strong/strong hybrids and strong/weak hybrids had higher mix peak 

times than the weak/weak hybrids and the weak/strong hybrids. This supports the 

observations made by the Mixograph strength x tolerance analysis, indicating the female 

parent had more of an influence over mix peak time (min) than the male parent. The 

single strong/strong hybrid with poor performance was NE09517_1 x Wesley, indicating 

a human error may have occurred in the harvesting, processing, sampling, or testing of 

the seed because both NE09517_1 and Wesley had strong quality with mix peak times of 

4.99 minutes and 4.76 minutes, respectively. It is unlikely that the hybrid of two parents 

with strong quality would inherit relatively poor quality, especially considering the 

reciprocal Wesley x NE09517_1 reciprocal had a mix peak time of 4.55 minutes.  

Paired t-tests were set up between the mean mix peak time (min) of the P1xP2 

and P2xP1 reciprocals with respect to each variety (P1) to determine if the reciprocal 

effect that we observed on the 2016 hybrids was significant (α = .05, Table 12). The 

results indicated a significant difference in the mix peak time (min) of the reciprocal 
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hybrids of 8 of 13 cultivars; including Freeman, Goodstreak, LCH13NEDH-11-24, 

NE09517-1, Overland, Settler_CL, TX10D2063, and TX12M4063. Additionally, 5 of 13 

cultivars showed no significant difference or reciprocal effect between the hybrids; 

including NE10589, TX10D2230, TX11D3129, TX12M4065, and Wesley (Table 12). 

Of the 8 cultivars that a reciprocal effect was detected, the mean of the P1xP2 hybrids 

tended to reflect the P1 parent more than the P2 parent, indicating that the mix peak time 

of the hybrid was more influenced by the female parent used in the cross. 

It was then important to see if the 2017 hybrid mix peak time (Min) results 

supported the findings made in the 2016 hybrids because the sterility data collected by 

Easterly (2017) indicated that mean seed count per self-bag was 5.7 seeds for the 2016 

hybrids and 2.6 seeds per head in 2017 hybrids. The 2017 hybrid Mixograph mix peak 

time (min) analysis showed similar result to the 2016 hybrids; the strong/strong hybrids 

and strong/weak hybrids appear to be grouped together and have similar mix peak times 

(min) to the strong parents, ranging from 3.78 minutes to 8.03 minutes. The weak/weak 

hybrids and weak/strong hybrids also appear to be grouped together and have similar mix 

peak times (min) to the weak parents, ranging from 2.47 minutes to 4.79 minutes (Fig. 

18). The paired t-test results for the 2017 hybrid mix peak times indicated that all the 

cultivars except for Harry, Robidoux, TX10D2363, and TX12M4063 exhibited a 

significant reciprocal effect (Table 13). Additionally, of the cultivars that did have a 

significant reciprocal effect, the mean of the P1xP2 hybrids tended to reflect the P1 

parent while the mean of the P2xP1 hybrids tended to reflect the mean of the P2 parents. 

The Mixograph mix peak time analysis and the strength x tolerance analysis both 

indicated that hybrids composed of strong parents will have strong quality and hybrids 
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composed of weak parents will have weak quality, which we hypothesized. Contrary to 

our hypothesis, there appeared to be a reciprocal effect in some of the hybrids composed 

of parents with opposing quality, with the quality of the hybrid being more influenced by 

the quality of the female parent. 

Lastly, it was important to identify specific reciprocal pairs that exhibited a 

significant (α = .05) reciprocal effect for Mixograph strength {(%TQ*Min)/grams of 

protein}, tolerance, and mix peak time. In 2016 the results indicated there was an eight 

percent reciprocal effect for Mixograph strength {(%TQ*Min)/grams of protein}, a one 

percent reciprocal effect for tolerance, and an 11 % reciprocal effect for mix peak time 

(Min, Table 14). Specifically, six of 71 reciprocal pairs exhibited a significant (α = .05) 

reciprocal effect for Mixograph strength [{(%TQ*Min)/grams of protein}, Table 15], 1 

of 71 reciprocal pairs exhibited a reciprocal effect for Mixograph tolerance (Table 16), 

and 8 of 71 reciprocal pairs exhibited a reciprocal effect for Mixograph mix peak time 

(Min, Table 17). The 2017 results indicated there was an eight percent reciprocal effect 

for Mixograph strength {(%TQ*Min)/grams of protein}, a one percent reciprocal effect 

for tolerance, and a six percent reciprocal effect for mix peak time (Min, Table 18). 

Specifically, six of 79 reciprocal pairs exhibited a reciprocal effect for Mixograph 

strength [{(%TQ*Min)/grams of protein} Table 19], one of 79 reciprocal pairs for 

Mixograph tolerance (Table 20), and five of 79 reciprocal pairs for Mixograph mix peak 

time (Min, Table 21). 

These results support the implications that the Mixograph analyses used in this 

study may be sensitive analytical tools in detecting reciprocal effects in hybrid wheat 

quality. These analyses include the Mixograph strength {(%TQ*Min)/grams of protein} x 



47 
 

tolerance analysis and the Mixograph mix peak time (min) analysis. This data also 

indicates a parent with poor quality could potentially be masked if it is crossed as a male 

to a female with strong quality, but this requires further study. The reciprocal effect 

detected by our analyses could be the result of high levels of self-pollination among the 

females, or it could be due to the triploid endosperm composed of 2N maternal and 1N 

paternal genetic material considering it was a maternal reciprocal effect.  

Using the Mixograph Analyses to Identify Cultivars that Appeared to be Successfully 

Sterilized but Exhibited Reciprocal Effect  

 The next step of our analysis was to isolate the hybrids from cultivars that 

appeared to be sterilized but still exhibited a reciprocal effect, specifically, hybrids that 

reflected the quality of female parent regardless of what male parent was used in the 

cross. Hybrids from Goodstreak were reviewed first because there was a clear pattern 

when visually assessing the Mixographs that indicated when Goodstreak was used as the 

female parent, the hybrid Mixograph was nearly identical to the unsterilized parent 

Goodstreak’s Mixograph. This result was interesting because Easterly (2017) indicated 

that Goodstreak had a mean seed count of 4 seeds per self-bag, showing the CHA was 

successful. The Mixograph strength x tolerance analysis of the Goodstreak (P1) 

reciprocals showed that the performance of the P1xP2 hybrids were tightly associated to 

the Goodstreak parent, indicating all the P1xP2 hybrids had similar, poor quality (Fig. 

19). This would suggest that even though the CHA sterilization of Goodstreak was 

successful, there was some other characteristic that made Goodstreak fail as a female 

parent. Interestingly, the performance of the P2xP1 reciprocal hybrids appear to perform 

close to the mid-parent value, particularly among the hybrids with a strong quality female 
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parent (Fig. 19). Additionally, the Mixograph strength x tolerance analysis of the 2017 

Goodstreak (P1) reciprocals had similar results; the P1xP2 hybrids performed almost 

identically to Goodstreak while the P2xP1 hybrids appeared to have quality that reflected 

the mid-parent value, especially in the hybrids where the female parent had strong quality 

(Fig. 20).  

A paired t-test between the mean mix peak time (min) of the 2016 and 2017 

Goodstreak (P1) reciprocals was conducted to see if the perceived reciprocal effect was 

significant (α = .05). The 2016 results showed that the average mix peak time (min) of 

the P1xP2 hybrids was 2.05 minutes with a variance of .0090, while the average mix peak 

time (min) of the P2xP1 hybrids was 3.18 minutes with a variance of .50 (p-value = 

.000221) , indicating the reciprocal effect detected was significant (Table 22). In general, 

the P1xP2 hybrid Mixographs mix peak times ranged from 1.87 minutes to 2.17 minutes, 

similar to Goodstreak which had a mix peak time of 1.97 minutes. Focusing on the P2xP1 

results, the hybrids where Goodstreak was crossed to a strong quality female resulted in a 

hybrid that performed near the mid-parent value, indicating that Goodstreak had a 

negative impact on quality. The results of the paired t-test of the 2017 Goodstreak (P1) 

reciprocals show the P1xP2 hybrid mean mix peak time was 2.61 minutes with a variance 

of .0084, and the P2xP1 hybrid mean mix peak time was 3.65 minutes with a variance of 

.50 (p-value - .00032), indicating a significant effect (Table 23). As the variance of the 

P1xP2 hybrids indicates the performance of these hybrids was almost identical, 

supporting the observations that hybrids with Goodstreak as the female parent have 

quality similar to Goodstreak. However, similar to the 2016 results, the 2017 P2xP1 
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hybrids appeared to perform close to the mid-parent value, particularly when the female 

parent had strong quality  

These Mixograph analyses indicated that in the pool of hybrids analyzed, 

Goodstreak appeared to nick more effectively when used as the male parent in the hybrid 

than when it was used as the female parent, even though evidence measured the CHA 

sterilization of Goodstreak was successful (Easterly, 2017). There must be some other 

agronomic factor that inhibited hybridization when Goodstreak was used as the female 

parent, but also made it a good male parent. Speculating, this could be due to the 

relatively tall plant height of Goodstreak; the pollen from the other male parents did not 

overcome the height gap to pollinate Goodstreak, resulting in P1xP2 hybrids with a high 

composition of self-pollinated Goodstreak seed. Alternatively, when used as the male, the 

tall plant height would put Goodstreak in an advantageous position to pollinate the 

female parent, resulting in true hybrids. This emphasizes the importance of carefully 

considering all the physical characteristics of a cultivar when deciding whether to use it 

as a female or a male, and that the Mixograph strength x tolerance and mix peak time 

analyses may be able to assist hybrid breeders in making selection decisions. In addition, 

the results imply that the true hybrid quality performance should lie somewhere between 

the two parents, while the P1xP2 hybrids indicate that unsuccessful hybrids will tend to 

reflect the quality of the female parent and exhibit a reciprocal effect.   

Reciprocal hybrids from LCH13NEDH_11_24 were also studied because the 

visual Mixograph of the LCH13NEDH_11_24 parent was very strong and distinctive, 

which would make its effect on the hybrid easy to observe. Easterly (2017) reported the 

cultivar had a mean seed count of 3 seeds, indicating the CHA was successful in 
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sterilizing the hybrids when it was used as a female parent. However, many of the P1xP2 

hybrid Mixographs appeared to have a strong resemblance to LCH13NEDH_11_24 (P1). 

Applying the Mixograph strength x tolerance analysis to the 2016 and 2017 

LCH13NEDH_11_24 (P1) reciprocal hybrids helped us objectively make comparisons of 

the quality of the hybrids to the parents. In general, the P1xP2 hybrids had strong quality 

and displayed relatively high strength {(%TQ*Min)/grams of protein} values (similar to 

LCH13NEDH_11_24), but had reduced tolerance in all P1xP2 hybrids, suggesting 

hybrids were made but the tolerance was more affected than the strength 

{(%TQ*Min)/grams of protein (Fig. 21). Additionally, the P2xP1 reciprocal hybrids 

where LCH13NEDH_11_24 was crossed to a weak quality female appeared to all have 

poor quality and did not perform near the P1xP2 reciprocal, indicating that 

LCH13NEDH_11_24 may have been a poor male parent. The 2017 Mixograph strength x 

tolerance analysis of the LCH13NEDH_11_24 (P1) reciprocals showed that in general, 

the P1xP2 hybrids had strong quality performance relative to the P2xP1 hybrids, 

especially the P2xP1 hybrids where the P2 parent had weak quality (Fig. 22). The 

LCH13NEDH_11_24 x Goodstreak was a notable hybrid in the 2017 year because it 

appeared to perform at the mid-parent value for both the tolerance and strength 

{(%TQ*Min)/grams of protein} and provides strong evidence this was a true hybrid. 

However, the P1xP2 hybrids appear to have stronger quality than the P2xP1 hybrids, 

suggesting there was a reciprocal effect.   

To supplement our analysis, we used the Mixograph mix peak time (min) of the 

2016 and 2017 LCH13NEDH_11_24 reciprocal hybrids to set up a paired t-test between 

the P1xP2 and P2xP1 reciprocals to determine if there was a significant effect (α = .05). 
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The 2016 results show the mean mix peak time of the P1xP2 hybrids was 5.40 minutes 

with a variance of .39, and the mean mix peak time of the P2xP1 hybrids was 3.68 

minutes with a variance of 1.12 (p-value =0.0028, Table 24). This suggests that among 

the hybrids we analyzed, when LCH13NEDH_11_24 (P1) was used as the female parent, 

the P1xP2 had significantly longer mix peak times on average than the P2xP1 reciprocals. 

The 2017 analysis showed the P1xP2 hybrids had a mean mix peak time of 5.91 minutes 

with a variance of 1.53, and the P2xP1 hybrids had a mean mix peak time of 3.90 minutes 

with a variance of 1.60 (p-value = .013, Table 25). The notable LCH13NEDH_11_24 x 

Goodstreak hybrid in 2017 had a mix peak time of 3.78 minutes, a mid-parent value that 

fell closer to Goodstreak (2.43 minutes) than LCH13NEDH_11_24 (8.13 minutes), 

further indicating this was a purer hybrid.  

The Mixograph analyses of the Goodstreak and LCH13NEDH_11_24 reciprocals 

helped us understand why there appeared to be a reciprocal effect on the quality of our 

hybrids in the general analysis of all the hybrids. If the Mixograph analyses are sensitive 

to detecting higher levels of self-pollination, our observations could indicate that 

similarly to Goodstreak, there was some other factor such as late fertile tillers that biased 

the results. Additionally, we have provided evidence that our analysis can detect what we 

believe to be purer hybrids by evaluating the quality performance of the hybrid with 

respect to the two parents, but these findings will require further work.  

Evaluating Reciprocal Hybrids Using the SDS Sedimentation Assay, SDS-SRC Hybrid 

Assay, and Kernel Hardness 

 During the SDS sedimentation assay, insoluble glutenin proteins form a gel-like 

network that settle at various rates determined by the functionality and quantity of protein 
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in the sample. In that sense, not all sedimentation values are created equal. Consider two 

samples (A and B) that both have a sedimentation value of 15 mL, but sample A has 11% 

protein content and sample B has 15% protein content. We would conclude that the gel-

like mesh of glutenins formed by sample A was stronger than that formed by sample B, 

indicating better quality protein. The SDS-SRC hybrid assay is like the SDS 

sedimentation assay in that it uses the same reagents (minus the dye) to form an insoluble 

glutenin network, but it differs in that an additional centrifugation step is added to force 

those glutenins into a pellet. The moisture value % is determined by the amount of 

moisture retained by the pellet and was shown by Seabourn et al. (2012) to be positively 

correlated with loaf volume. They also concluded that poor protein quality could be 

masked with high protein quantity, so to avoid this, all our sedimentation values and 

weight values were also considered with protein content  

Although it was determined that the Mixograph analyses were more representative than 

the SDS sedimentation, the SDS-SRC hybrid assay, and the SKCS, it was still important 

to see if the same observations of quality inheritance can be made using these other 

assays. The hybrids were color-coded using the same system described in the Mixograph 

analyses. The SDS sedimentation assay results are graphed with the sedimentation value 

(mL) on the Y-axis and the grain protein % on the X-axis. Samples that are at or above 

the green dotted line are considered strong, while samples at or below the red dotted line 

are considered weak, and samples in the middle are neither. The 2016 hybrids SDS 

sedimentation data showed that nearly all of the strong/strong and strong/weak hybrids 

are at or above the green dotted line, which reflected the quality of the strong parents 

(Fig. 23). Also, most of the weak/weak and weak/strong hybrids fell at or below the red 
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dotted line, with only a handful of samples falling in the space between the dotted lines. 

These results supported our previous observations on the Mixograph data in that the 

strength of the hybrids appears to reflect or be influenced more by the quality of the 

female parent than the male parent.  

 Paired t-tests were conducted on the 2016 hybrids to determine if there was a 

significant reciprocal effect (α = .05). These results showed that the reciprocals from 

eight of the 13 parents; including Freeman, LCH13NEDH-11-24, NE09517-1, Settler CL, 

TX10D2230, TX11D3129, TX12M4063, and TX12M4065 exhibited a significant 

reciprocal effect in the SDS sedimentation ratio (Table 26). In every case there was a 

significant p-value, the mean of the hybrids were always closer to the female parent 

indicating that the female parent was having a greater impact on end-use quality than the 

male parent. Also, hybrids from five (Goodstreak, NE10589, Overland, TX10D2063, and 

Wesley) of the 13 parents did not show a significant reciprocal effect (Table 26). It was 

notable that there was not a detectable difference in the SDS sedimentation data for 

Goodstreak, even though there were major reciprocal effects detected by the Mixograph. 

 When evaluating the 2017 hybrids SDS sedimentation results, the strength of the 

hybrids appeared to be stronger compared to the 2016 hybrids, similar to the parent 

analyses (Fig. 24). While the quality in general seems better in 2017, there is still a clear 

grouping between the strong/strong and the strong/weak hybrids and the strong parents, 

as well an association between the weak/weak and weak/strong hybrids and the weak 

parents. These results were similar to the 2016 hybrid SDS sedimentation analysis results 

and the 2016 and 2017 hybrid Mixograph data, again suggesting there was a female 

impact on the hybrid quality. It is also important to mention that the strong/weak (blue) 
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and weak/strong (orange) hybrids appear to overlap more in the 2017 analysis than in the 

2016 analysis, supporting the observations for grain yield made by Easterly (2017).  

 The paired t-tests of the 2017 hybrids were set up to detect a difference between 

the means of the reciprocal hybrids (α = .05) and determined that hybrids from seven 

(Goodstreak, LCH13NEDH-11-24, NE07531, NE09517_1, TX09D1172, TX11D3129, 

and TX12M4063) of the 14 parents showed a significant reciprocal effect (Table 27). 

The hybrids from the seven other parents (Freeman, Harry, Overland, Robidoux, Settler-

_CL, TX10D2063, and TX10D2363), did not show any reciprocal effect on the SDS 

sedimentation assay (Table 27). Considering both years, hybrids from LCH13NEDH-11-

24, NE09517-1, TX11D3129, and TX12M4063 showed a significant reciprocal effect for 

the sedimentation ratio. Additionally, in every case there was a significant reciprocal 

effect, the mean of the sedimentation ratio of the hybrids was always closer to the female 

parent indicating a maternal influence on hybrid quality. These results supported the 

previous findings made using the Mixograph analyses. 

 The graphical analysis of the SDS-SRC hybrid assay for the 2016 hybrids showed 

that the hybrids with strong female parents were grouped together and generally reflected 

the quality of the strong parents (Fig. 25). In contrast, the hybrids with weak female 

parents were grouped together and reflected the quality of the weak parents (Fig. 25). The 

blue and orange dots were reciprocal hybrids that should be overlapping if there were no 

maternal effects, but the graph appears to be showing a reciprocal effect where the female 

parent is having a greater influence on quality than the male parent. This supports the 

findings of the mixograph and the SDS sedimentation assays. The paired t-tests (α = .05) 

for reciprocal hybrids found that hybrids from four (LCH13NEDH_11_24, NE09517_1, 
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TX12M4063, and TX12M4065) of the 13 parents had significant reciprocal effects 

(Table 28). Hybrids from the remaining nine (Freeman, Goodstreak, NE10589, 

Overland, Settler _CL, TX10D2063, TX10D2230, TX11D3129, and Wesley) of 13 

parents did not show significant reciprocal effect.   

 In 2017, the graphical analysis shows that the hybrids are more integrated and 

overlapping than the 2016 hybrids, which was expected based on previous observations 

(Figure 26). Again, paired t-tests (α = .05) were set up to determine if there was 

reciprocal effect between mean weight value of the hybrids for each variety. The results 

showed that hybrids from five (LCH13NEDH-11-24, Overland, TX10D2363, 

TX12M4063, and TX11D3129) of the 14 parents had a reciprocal effect (Table 29). 

Hybrids from the other nine (Freeman, Goodstreak, Harry, NE07531, NE09517-1, 

Robidoux, Settler-CL, TX09D1172, TX10D2063, and TX11D3129) parents did not 

exhibit a reciprocal effect among the hybrids of these cultivars. Interestingly, a significant 

reciprocal effect was detected in the hybrids from both LCH13NEDH-11-24 and 

TX12M4063 in both 2016 and 2017.  

 We also investigated how the physical kernel traits of the hybrids related to the 

parents, specifically to see if there was a reciprocal effect on any of the kernel traits. 

Paired t-tests (α = .05) were set up on the 2016 hybrids to determine if there was a 

reciprocal effect on the hardness. The results showed that there was a significant 

difference between the hybrids of six (Freeman, Goodstreak, Overland, TX10D2230, 

TX11D3129, TX12M4065) of the 13 cultivars analyzed (Table 30), indicating a potential 

reciprocal effect. Alternatively, the reciprocal hybrids from the other seven 

(LCH13NEDH-11-24, NE09517-1, NE10589, Settler-CL, and TX10D2063, 
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TX12M4063, and Wesley) of the 13 parents were not significantly different (Table 30). 

Additionally, the hybrids that exhibited a reciprocal effect tended to reflect the hardness 

of the female parent. This is especially apparent between the hybrids when the softest 

(TX11D3129 and Freeman) and hardest (TX10D2230 and TX12M4065) cultivars were 

used as the female parent in the cross. For example, the average kernel hardness between 

the hybrids where TX11D3129 (HI = 59.59) was used as the female parent was 62.92, but 

the average hardness between the hybrids when it was used as the male parent was 79.38 

(Table 31).  

Identical paired t-tests (α = .05) were performed on the 2017 hybrids to determine 

if there was a reciprocal effect detected on kernel hardness. The results showed that 

hybrids from four (Freeman, TX09D1172, TX11D3129, and TX12M4063) of the 14 

cultivars evaluated showed a reciprocal effect (Table 23). The hybrids from the 

remaining ten cultivars (Goodstreak, Harry, LCH13NEDH-11-24, NE07531, NE09517-1, 

Overland, Robidoux, Settler-CL, TX10D2063, and TX10D2363) were not significantly 

different (Table 23). Interestingly, Freeman and TX11D3129 were the softest parent 

cultivars of both years, and in both years our results showed that there was a significant 

reciprocal difference between hardness of their hybrids. Furthermore, the average kernel 

hardness of the hybrids when Freeman and TX11D3129 were used as the female parent 

in the cross were significantly softer, suggesting that the female parent could have a 

greater impact on kernel hardness. These results support the previous findings of the 

Mixograph analyses that that the reciprocal effect could be due to high levels of self-

pollination or could be the result of the genetic composition of the triploid endosperm. 

The SKCS calculates hardness based on an average of 100 kernels, and if there are more 
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self-pollinated female kernels in the hybrid, then this would cause the average hardness 

of the hybrid to reflect the hardness of the female.  
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CONCLUSION 

The goal of this project was to analyze hybrid wheat cultivars produced by 

Easterly (2017) to determine how the quality of those hybrids compared to the parents, 

i.e. if the quality of the hybrid was better than (high parent heterosis), worse than (low 

parent heterosis), similar to the parents or intermediate between the parent used in the 

cross. We hypothesized that hybrids produced by two strong quality parents would be 

strong, hybrids produced by two weak quality parents would be weak, and hybrids 

produced by a weak and strong parent would have intermediate quality if the additive 

gene model was correct. Additionally, we hypothesized that there should be no difference 

in quality performance between reciprocal hybrids (P1xP2 = P2xP1). 

First, the top performing 25 % and bottom performing 25 % of parents based on 

quality were determined by visually assessing the parent Mixographs for dough strength 

and tolerance to overmixing. Then, we developed objective analytical tools to evaluate 

the Mixographs by comparing our visual assessment to important quality indicators 

provided by the Mixsmart ® data collection software. These Mixograph analyses were 

called the strength x tolerance analysis and the mix peak time analysis and were critical 

in allowing us to make important, objective comparisons between the quality of the 

parents and the quality of the reciprocals. We initially evaluated the reciprocals of 

TX12M4063 (mean seed count = 27) and NE07531 (mean seed count = 4) using the 

Mixograph analyses to get a better understanding of how quality is inherited when CHA 

sterilization is not or is effective. In the case of TX12M4063, the results of the 

Mixograph analyses indicated that when CHA sterilization is ineffective, the quality of 

the P1xP2 hybrid will reflect the P1 (female) parent. In contrast, the Mixograph analyses 
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of the NE07531 reciprocals indicated the quality of the P1xP2 hybrid should reflect the 

mid-parent quality performance, although a reciprocal effect was still detected among the 

NE07531 reciprocals.   

 Using the guidelines developed evaluating the TX12M4063 and NE07531 

reciprocal hybrids, the general performance of the hybrids were evaluated using the same 

Mixograph analyses. The results supported our hypothesis that hybrids with two strong 

quality parents will have strong quality, and hybrids with two weak quality parents will 

have weak quality. However, some of the hybrids composed of parents with opposing 

quality exhibited a reciprocal effect, resulting in hybrids whose quality reflected the 

quality of the female parent used in the cross. In 2016, 6 of 71 reciprocal pairs exhibited a 

significant (α = .05) reciprocal effect for Mixograph strength {(%TQ*Min)/grams of 

protein}, 1 of 71 reciprocal pairs exhibited a reciprocal effect for Mixograph tolerance, 

and 8 of 71 reciprocal pairs exhibited a reciprocal effect for Mixograph mix peak time 

(min). In 2017, 6 of 79 reciprocal pairs exhibited a reciprocal effect for Mixograph 

strength {(%TQ*Min)/grams of protein}, 1 of 79 reciprocal pairs for Mixograph 

tolerance, and 5 of 79 reciprocal pairs for Mixograph mix peak time (min). These results 

were contrary to what we hypothesized and indicated that there were some reciprocal 

effects, although, they were detected at a low frequency. The maternal effects detected by 

the Mixograph analyses could be due to higher rates of self-pollination than initially 

thought, or it could be due to the genetic composition of the triploid endosperm.Also, it 

appeared in some cases a single high quality parent can potentially mask end-use quality 

deficiencies of the other parent in the performance of the hybrid, but this need further 

work to determine. This indicates that although these analyses have potential to be 
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powerful analytical tools in evaluating Mixographs, they require further experimentation 

to make better comparisons about the quality inheritance in hybrid wheat.  

 Although the Mixograph analyses were not sensitive enough to make significant 

statements about hybrids with similar quality, the Mixograph analyses of the reciprocals 

from the strongest (LCH13NEDH_11_24) and weakest (Goodstreak) helped us make 

valuable observations. The Mixograph analyses of the Goodstreak reciprocals indicated 

that when Goodstreak was used as the female (P1), the hybrids were very similar in 

quality to Goodstreak, even Easterly (2017) concluded Goodstreak was successfully 

sterilized with the CHA. This suggests that Goodstreak may have other agronomic 

characteristics that make it a difficult to use as a female parent but also indicated it 

produced true hybrids when used as a male parent. The LCH13NEDH_11_24 reciprocal 

hybrids also provided us with an example of a variety that appeared to be sterilized by the 

CHA but still exhibited a reciprocal effect. The analyses were likely able to detect this 

effect with these parents more easily because they were at the most extreme ends of 

quality, and these effects would not have been detectable with the majority of hybrids 

whose parents were of similar quality.    
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Figures and Tables 

Table 1. Parent Cultivars Used to Produce F1 Hybrids.  

Cultivars were selected by Easterly (2017) to provide a diverse range of genetics to 

achieve maximum heterosis. All cultivars except NE10589 and Harry were grown each 

year, which were only included in the 2015 and 2016 year, respectively.  

Parent 

Years Used as 

Parent 

Breeding Program 

Origin 

FREEMAN 15, 16 UNL 

GOODSTREAK 15, 16 UNL 

LCH13NEDH-

11-24 15, 16 UNL 

NE07531 15, 16 UNL 

NE09517-1 15, 16 UNL 

NE10683 15, 16 UNL 

OVERLAND 15, 16 UNL 

PANHANDLE 15, 16 UNL 

PSB13NEDH-15-

58W 15, 16 UNL 

ROBIDOUX 15, 16 UNL 

SETTLER CL 15, 16 UNL 

TX09D1172 15, 16 Texas A&M 

TX10D2063 15, 16 Texas A&M 

TX10D2230 15, 16 Texas A&M 

TX10D2363 15, 16 Texas A&M 

TX11D3008 15, 16 Texas A&M 

TX11D3026 15, 16 Texas A&M 

TX11D3049 15, 16 Texas A&M 

TX11D3112 15, 16 Texas A&M 

TX11D3129 15, 16 Texas A&M 

TX12M4004 15, 16 Texas A&M 

TX12M4063 15, 16 Texas A&M 

TX12M4065 15, 16 Texas A&M 

WESLEY 15, 16 UNL 

NE10589 15 UNL 

HARRY 16 UNL 
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Figure 1. Freeman Mixograph (2017) - Example of Strong Performing Cultivar. 

Digital picture of Freeman parent mixogram from 2017 captured by MIXSMART® 

software. The Y-axis represents % torque (rotational force of dough across pins) and the 

X-axis represents time (min). Important parameters include midline peak time (MPT), 

which represents the time it takes to achieve maximum mixing resistance. The height and 

the width of the line at peak time (midline peak height and midline peak width, or MPH 

and MPW) are also important because they indicate the strength of the gluten network at 

that point. The midline peak integral or MPI (%TQ*min) is the area under the green line 

from the beginning of the curve until the midline peak time and represents the amount of 

work put into mixing the dough up to that point.  

 

 

Figure 2. Goodstreak Mixograph (2017) - Example of Weak Performing Cultivar. 

Digital picture of Goodstreak parent mixogram from 2017 captured by MIXSMART® 

software. Currently visually scoring the mixograms is currently the most widely used 

scoring system, but the advancement in digital analysis has enabled us to explore more 

objective scoring methods, such as using the tolerance and strength equations (equations 

2 and 3). 
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Table 2. Parental Quality Evaluation Results: Strongest and Weakest Parents.  

Shows the strongest and weakest parents in terms of end-use quality from the 2016 and 

2017 trials and represent the parents of the hybrids selected for analysis. They were 

evaluated using the procedures described in the Analytical Methods and Instruments 

section. Parents highlighted yellow were identified as strong or weak in both years and 

include four strong parents and five weak parents.  

2016 2017 

Strong Parents Weak Parents Strong Parents Weak Parents 

FREEMAN GOODSTREAK FREEMAN GOODSTREAK 

LCH13NEDH-11-

24 OVERLAND LCH13NEDH_11_24 OVERLAND 

NE09517-1 TX10D2063 NE07531 TX09D1172 

SETTLER CL TX10D2230 NE09517_1 TX10D2063 

WESLEY TX11D3129 ROBIDOUX TX10D2363 

NE10589 TX12M4063 SETTLER_CL TX11D3129 

 TX12M4065 HARRY TX12M4063 
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Figure 3. 2016 Parent Cultivar SDS Sedimentation Assay Results. 

Represents the 2016 parent samples that were analyzed using the SDS sedimentation 

assay. The Y-axis is the sedimentation value (mL) and the X-axis is the grain protein %. 

Samples that are at or above the green dotted line are considered desirable, samples that 

are at or below the red dotted line are considered undesirable, while samples in the 

middle are neither. The parents determined to be the strongest via visual assessment of 

the Mixographs are shown in green and the weakest parents are shown in red, while the 

intermediate parents are shown in yellow.   
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Figure 4. 2017 Parent Cultivar SDS Sedimentation Assay Results. 

Represents the 2017 parent samples that were selected and analyzed using the SDS 

sedimentation assay. The Y-axis is the sedimentation value (mL) and the X-axis is the 

grain protein %. Samples that are at or above the green dotted line are considered 

desirable, samples that are at or below the red dotted line are considered undesirable, 

while samples in the middle are neither. The parents determined to be the strongest via 

visual assessment of the Mixographs are shown in green and the weakest parents are 

shown in red, while the intermediate parents are shown in yellow.   
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Table 3. 2016 Parent Performance Comparisons by Mixograph, SDS Sedimentation, 

and SDS-SRC Hybrid Assays. 

Displays ranking of cultivars based on end-use quality as measured by each assay, 

including the visual Mixograph assessment, SDS sedimentation rank, and SDS-SRC 

rank. Green cells indicate top six performing cultivars while red cells indicate bottom 

seven performing cultivars.  

Variety 

Mixograph 

Visual 

Assessment 

SDS 

Ratio 

SDS Sed. 

Rank 

Weight 

Value Ratio 

SDS-SRC 

Rank 

WESLEY Strong 1.151 2 21.21 3 

SETTLER CL Strong 1.079 6 21.23 2 

FREEMAN Strong 1.148 3 21.04 4 

NE09517-1 Strong 1.173 1 22.83 1 

NE10589 Strong 1.069 7 20.61 6 

LCH13NEDH-11-24 Strong 0.982 10 20.84 5 

ROBIDOUX Intermediate 1.116 4 20.28 8 

NE07531 Intermediate 1.110 5 20.11 9 

TX11D3049 Intermediate 1.021 8 19.86 10 

TX12M4004 Intermediate 0.979 11 19.67 12 

NE10683 Intermediate 0.927 17 19.74 11 

TX11D3112 Intermediate 0.957 16 18.88 13 

TX09D1172 Intermediate 0.973 12 18.75 15 

PSB13NEDH-15-58W Intermediate 1.000 9 20.39 7 

TX11D3008 Intermediate 0.879 21 17.83 18 

TX11D3026 Intermediate 0.960 15 18.82 14 

PANHANDLE Intermediate 0.971 14 18.41 16 

TX10D2363 Intermediate 0.972 13 17.13 22 

OVERLAND Weak 0.901 20 17.28 21 

TX12M4065 Weak 0.804 23 14.85 24 

TX10D2063 Weak 0.905 18 17.95 17 

TX12M4063 Weak 0.755 25 14.41 25 

TX10D2230 Weak 0.810 22 15.26 23 

GOODSTREAK Weak 0.903 19 17.36 20 

TX11D3129 Weak 0.804 24 17.51 19 
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Figure 5. 2016 Parent Cultivar SDS-SRC Hybrid Assay Results. 

Represents the SDS-SRC hybrid assay of the 2016 parents. The Y-axis represents the 

weight value % as calculated by equation 1, and the X-axis represents grain protein %. 

The parents determined to be the strongest via visual assessment of the Mixographs are 

shown in green and the weakest parents are shown in red, while the intermediate parents 

are shown in yellow.   
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Figure 6. 2017 Parent Cultivar SDS-SRC Hybrid Assay Results.  

Represents the 2017 parents SDS-SRC hybrid assay results. The Y-axis represents the 

weight value % as calculated by equation 1, and the X-axis represents grain protein %. 

The parents determined to be the strongest via visual assessment of the Mixographs are 

shown in green and the weakest parents are shown in red, while the intermediate parents 

are shown in yellow.   
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Table 4. 2017 Parent Performance Comparisons by Mixograph, SDS Sedimentation, 

and SDS-SRC Hybrid Assays. 

Displays ranking of cultivars based on end-use quality as measured by each assay, 

including the visual Mixograph assessment, SDS sedimentation rank, and SDS-SRC 

rank. Green cells indicate top seven performing cultivars while red cells indicate bottom 

seven performing cultivars.   

Variety 

Mixograph 

Visual 

Score 

SDS 

Ratio 

SDS 

Sed. 

Rank 

Weight 

Value 

Ratio 

SDS-SRC 

Rank 

FREEMAN Strong 1.110 7 24.08 4 

NE09517_1 Strong 1.213 2 24.86 3 

NE07531 Strong 1.125 5 23.58 7 

HARRY Strong 1.101 9 24.92 2 

LCH13NEDH_11_24 Strong 1.276 1 26.31 1 

ROBIDOUX Strong 1.124 6 23.20 9 

SETTLER_CL Strong 1.109 8 23.40 8 

RUTH Intermediate 1.184 3 24.02 5 

WESLEY Intermediate 1.066 12 21.92 16 

NE10683 Intermediate 0.990 19 23.75 6 

TX12M4004 Intermediate 1.130 4 21.89 17 

TX11D3049 Intermediate 1.041 15 22.70 12 

TX11D3026 Intermediate 1.025 16 21.42 18 

TX11D3112 Intermediate 1.067 11 22.41 14 

PANHANDLE Intermediate 1.089 10 22.81 11 

PSB13NEDH_15_58W Intermediate 1.052 14 22.62 13 

TX10D2230 Intermediate 0.951 21 20.96 21 

TX12M4065 Intermediate 0.844 26 19.11 25 

TX11D3008 Intermediate 0.891 23 20.44 23 

TX09D1172 Weak 0.978 20 21.24 19 

OVERLAND Weak 0.903 22 21.05 20 

TX12M4063 Weak 0.864 24 18.79 26 

TX10D2363 Weak 1.061 13 22.35 15 

TX10D2063 Weak 1.003 18 20.85 22 

TX11D3129 Weak 0.853 25 20.37 24 

GOODSTREAK Weak 1.021 17 23.04 10 
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Figure 7. 2016 Parent Cultivar Mixograph Mix Peak Development Times. 

Displays the Mixograph mix peak time (min) of the 25 parent cultivars used in the 2016 

analysis. The parents determined to be the strongest via visual assessment of the 

Mixographs are shown in green and the weakest parents are shown in red, while the 

intermediate parents are shown in yellow.  
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Figure 8. 2017 Parent Cultivar Mixograph Mix Peak Development Times.  

Displays the Mixograph mix peak time (min) of the 26 parent cultivars used in the 2017 

analysis. The parents determined to be the strongest via visual assessment of the 

Mixographs are shown in green and the weakest parents are shown in red, while the 

intermediate parents are shown in yellow.  
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Figure 9.1 2016 Parent Cultivar Mixograph Strength x Tolerance Analysis – 

Excluding LCH13NEDH_11_24. 

The Y-axis represents the strength and is calculated using equation 3, the units for 

strength are {(%torque*minutes)/g}. The X-axis represents the tolerance to overmixing 

and was calculated using equation 2, it is a unitless measurement. The parents 

determined to be the strongest via visual assessment of the Mixographs are shown in 

green and the weakest parents are shown in red, while the intermediate parents are shown 

in yellow. Cultivars that are higher and towards the right of the graph are more desirable 

than cultivars that appear lower and to the left. The parent variety LCH13NEDH_11_24 

was excluded from this graph. Figure 9.2 includes LCH13NEDH_11_24 and shows how 

it compares to the other parents.   
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Figure 9.2 2016 Parent Cultivar Mixograph Strength x Tolerance Analysis. 

The parent variety LCH13NEDH_11_24 lost no strength after mix peak time, and 

therefore had a significantly higher tolerance than the other parents. 

LCH13NEDH_11_24 was the strongest and most tolerant parent with a tolerance of 26.7 

and a strength value of 45.7 {(%TQ*min)/g}. The worst parent in terms of strength and 

tolerance was Goodstreak, with scores of 13.6 ({%TQ*min)/g} and 1.2, respectively. The 

parents determined to be the strongest via visual assessment of the Mixographs are shown 

in green and the weakest parents are shown in red, while the intermediate parents are 

shown in yellow. Cultivars that are higher and towards the right of the graph are more 

desirable than cultivars that appear lower and to the left.  
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Figure 10. 2017 Parent Cultivar Mixograph Strength x Tolerance Analysis. 

The Y-axis represents the strength, or the amount of work put into the dough to develop it 

to peak time, per gram of protein, and is calculated using equation 3. The units for 

strength are {(%torque*minutes)/g}. The X-axis represents the tolerance to overmixing 

and is a unitless ratio calculated using equation 2. The parents determined to be the 

strongest via visual assessment of the Mixographs are shown in green and the weakest 

parents are shown in red, while the intermediate parents are shown in yellow Cultivars 

that are higher and towards the right of the graph are more desirable than cultivars that 

appear lower and to the left.  
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Figure 11. Comparing Cultivars with  

Similar Dough Strength as Measured 

by the Mixograph Strength x 

Tolerance Analysis.  

Displayed is the 2017 Harry Mixograph  

(right, strong) compared to the 

TX12M4004, TX11M4065, NE10683, 

and Ruth Mixographs (left, 

intermediate). These Mixographs were 

scored similarly by the Mixograph 

strength x tolerance analysis, and they 

all appear to be visually similar, 

emphasizing the sensitivity of the 

strength x tolerance assay.   
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Figure 12. Mixograph Strength x Tolerance Analysis evaluating 2016 TX12M4063 

(P1) reciprocal hybrids.  

TX12M4063 as the P1 parent was coded in red, P1xP2 hybrids with TX12M4063 as the 

female parent were coded blue, P2xP1 reciprocals with TX12M4063 as male parent were 

coded green, P2 parents used in the crosses are coded in black. TX12M4063 was 

sterilized poorly and appears to have P1xP2 hybrids that reflect the unsterilized 

TX12M4063 parent.    
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Figure 13. Mixograph Strength x Tolerance Analysis evaluating 2017 TX12M4063 

(P1) reciprocal hybrids. 

TX12M4063 as the P1 parent was coded in red, P1xP2 hybrids with TX12M4063 as the 

female parent were coded blue, P2xP1 reciprocals with TX12M4063 as male parent were 

coded green, P2 parents used in the crosses are coded in black. TX12M4063 was 

sterilized poorly and appears to have P1xP2 hybrids that reflect the unsterilized 

TX12M4063 parent.    
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Table 5. Mixograph Mix Peak Time Analysis of the 2016 TX12M4063 Reciprocal 

Hybrids. 

Displays the mix peak time (Min) of TX12M4063 (P1), the P2 parents, and the P1xP2 

and P2xP1 reciprocals to investigate how the parents and the hybrids compare. Paired t-

test indicates a significant difference (α = .05) between the mean mix peak time of the 

P1xP2 and P2xP1 reciprocals, indicating a maternal effect possibly due to self-

fertilization of female.  

TX12M4063 

(P1) P2 

TX12M4063 

(P1) Mix 

Peak Time 

(Min) 

P1xP2 Mix 

Peak Time 

(Min) 

P2xP1 

Mix Peak 

Time 

(Min) 

P2 Mix 

Peak 

Time 

(Min) 

TX12M4063 SETTLER CL 2.72 3.18 4.48 5.04 

TX12M4063 TX11D3129 2.72 2.59 2.79 2.58 

TX12M4063 TX10D2230 2.72 2.74 2.88 3 

TX12M4063 GOODSTREAK 2.72 2.49 2.12 1.97 

TX12M4063 

LCH13NEDH-

11-24 2.72 2.73 5.32 5.9 

TX12M4063 OVERLAND 2.72 2.54 2.73 2.62 

TX12M4063 TX12M4065 2.72 2.75 2.98 3.06 

TX12M4063 NE10589 2.72 2.62 3.46 3.5 

TX12M4063 WESLEY 2.72 2.78 4.15 4.55 

TX12M4063 FREEMAN 2.72 3.03 4.35 4.39 

  Mean 2.745 3.526  

  Variance 0.046517 1.007649  

  Observations 10 10  

  t Stat -2.81883   

  

P(T<=t) two-

tail 0.020085   

  

t Critical 

two-tail 2.262157  
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Table 6. Mixograph Mix Peak Time Analysis of the 2017 TX12M4063 Reciprocal 

Hybrids. 

Displays the mix peak time (Min) of TX12M4063 (P1), the P2 parents, and the P1xP2 

and P2xP1 reciprocals to investigate how the parents and the hybrids compare. Paired t-

test indicates no significant difference (α = .05) between the mean mix peak times of the 

P1xP2 and P2xP1 reciprocals. Indicates hybrids could have been made better in 2017 or 

that the quality of the parents were too similar to detect a difference between the 

reciprocals.   

TX12M4063 

(P1) P2 

TX12M4063 

(P1) Mix 

Peak Time 

(Min) 

P1xP2 

Mix Peak 

Time 

(Min) 

P2xP1 

Mix Peak 

Time 

(Min) 

P2 Mix 

Peak 

Time 

(Min) 

TX12M4063 FREEMAN 3.87 4.68 5.49 5.51 

TX12M4063 GOODSTREAK 3.87 3.09 2.71 2.43 

TX12M4063 HARRY 3.87 4.76 5.14 4.34 

TX12M4063 LCH13NEDH_11_24 3.87 4.69 6.77 8.13 

TX12M4063 NE07531 3.87 4.32 5.36 5.65 

TX12M4063 NE09517_1 3.87 4.79 5.92 6.91 

TX12M4063 OVERLAND 3.87 3.71 2.92 2.59 

TX12M4063 ROBIDOUX 3.87 4.58 4.39 5.66 

TX12M4063 SETTLER_CL 3.87 4.38 5.06 5.66 

TX12M4063 TX09D1172 3.87 3.88 3.37 2.92 

TX12M4063 TX10D2063 3.87 4.18 2.95 3.01 

TX12M4063 TX10D2363 3.87 4.25 3.22 3.2 

TX12M4063 TX11D3129 3.87 4 3.42 3.24 

  Mean 4.254615 4.363077  

  Variance 0.241844 1.797106  

  Observations 13 13  

  t Stat -0.39487   

  

P(T<=t) 

two-tail 0.699868   

  

t Critical 

two-tail 2.178813   
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Figure 14. Mixograph Strength x Tolerance Analysis evaluating 2017 NE07531 (P1) 

reciprocal hybrids. 

 Displays the mix peak time (Min) of NE07531 (P1), the P2 parents, and the P1xP2 and 

P2xP1 reciprocals to investigate how the parents and the hybrids compare. NE07531 was 

sterilized well and P1xP2 hybrids appear to be performing near mid-parent value, 

especially hybrids with P2 parents eight, nine, ten, 13, and 14.  
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Table 7. Mixograph Mix Peak Time Analysis of the 2017 NE07531 Reciprocal 

Hybrids.  

Displays the mix peak time (Min) of NE07531 (P1), the P2 parents, and the P1xP2 and 

P2xP1 reciprocals to investigate how the parents and the hybrids compare. Paired t-test 

indicates a significant difference (α = .05) between the mean mix peak times of the 

P1xP2 and P2xP1 reciprocals. 

NE07531 

(P1) P2 

NE07531 (P1) 

Mix Peak 

Time (Min) 

P1xP2 Mix 

Peak Time 

(Min) 

P2xP1 Mix 

Peak Time 

(Min) 

P2 Mix 

Peak 

Time 

(Min) 

NE07531 FREEMAN 5.65 5.51 4.89 5.51 

NE07531 GOODSTREAK 5.65 3.9 2.77 2.43 

NE07531 HARRY 5.65 4.87 5.03 4.34 

NE07531 OVERLAND 5.65 4.13 3.66 2.59 

NE07531 ROBIDOUX 5.65 6.56 5.5 5.66 

NE07531 SETTLER_CL 5.65 5.76 5.27 5.66 

NE07531 TX09D1172 5.65 4.69 3.77 2.92 

NE07531 TX11D3129 5.65 5.07 3.91 3.24 

NE07531 TX12M4063 5.65 5.36 4.32 3.87 

  Mean 5.094444 4.346667  

  Variance 0.675678 0.803275  

  Observations 9 9  

  t Stat 5.159209   

  

P(T<=t) two-

tail 0.000864   

  

t Critical two-

tail 2.306004   
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Figure 15.1 Mixograph Strength vs. Tolerance Analysis of 2016 Hybrids – Tolerance 

range from 1 – 6.  

These graphs show the relationship between the strength and tolerance variables as 

calculated by equation 2 and equation 3. The Y-axis represents the strength, or the 

amount of work put into the dough to develop it to peak time, per gram of protein. The 

units for strength are {(%torque*minutes)/g}. The X-axis represents tolerance to 

overmixing and is unitless. Strong parents are shown in purple while weak parents are 

shown in yellow to help show the relationship between the hybrids and the parents. Only 

samples that fell within the tolerance range of 1 to 6 are shown here, Figure 9.2 shows 

the results of all the hybrid samples (includes the outlier) 
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Figure 15.2 Mixograph Strength vs. Tolerance Analysis of 2016 Hybrids – All 

Samples 

These graphs show the relationship between the strength and tolerance variables as 

calculated by equation 2 and equation 3. The Y-axis represents the strength, or the 

amount of work put into the dough to develop it to peak time, per gram of protein. The 

units for strength are {(%torque*minutes)/g}. The X-axis represents the tolerance to 

overmixing and is unitless. Strong parents are shown in purple while weak parents are 

shown in yellow to help show the relationship between the hybrids and the parents. All 

samples are included in this graph.  
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Figure 16.1 2017 Hybrids Mixograph Strength vs. Tolerance Analysis of 2017 

Hybrids - Tolerance range 1-7. 

These graphs show the relationship between the strength and tolerance variables as 

calculated by equation 2 and equation 3. The Y-axis represents the strength, or the 

amount of work put into the dough to develop it to peak time, per gram of protein. The 

units for strength are {(%torque*minutes)/g}. The X-axis represents the tolerance to 

overmixing and is a unitless ratio. Cultivars that are higher and towards the right of the 

graph are more desirable than cultivars that appear lower and to the left. The strong 

parents are shown in purple and the weak parents are shown in yellow to show the 

relationship between the quality of the parents and the hybrids. This graph is omitting the 

samples that have a tolerance above 7. 
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Figure 16.2 Mixograph Strength vs. Tolerance Analysis of 2017 Hybrids - All 

Samples. 

Figure 19.2 shows the strength vs. tolerance analysis results for all the hybrid samples, 

including the outliers. Because the tolerance equation takes the reciprocal of the amount 

of strength lost, samples that lose very little or no strength result in tolerance values that 

approach infinity. The strong parents are shown in purple and the weak parents are shown 

in yellow to show the relationship between the quality of the parents and the hybrids.  
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Table 8. Paired t-test Results for Mixograph Strength of the 2016 Hybrids. 

Paired t-tests (α = .05) between mean strength {(%TQ*min)/grams of protein} of 

reciprocal hybrids for each parent cultivar used in the 2016 analysis. P1 indicates the 

female reference parent, P1xP2 are hybrids with P1 as the female parent, and P2xP1 are 

the reciprocals with P1 as the male parent. In addition to the difference in mean, the 

difference in variance also suggests large maternal effect.  

Variety (P1) 

P1 Strength 

{(%TQ)*Min/ 

grams of 

protein} 

Mean 

P1xP2 

Hybrids 

Mean 

P2xP1 

Hybrids 

Variance 

P1xP2 

Variance 

P2xP1 P-Value 

FREEMAN 37.7 36.0 29.0 2.3 79.6 0.02161 

GOODSTREAK 13.6 15.5 25.9 0.6 47.6 0.00041 

LCH13NEDH-

11-24 45.7 43.8 30.2 22.3 96.3 0.00385 

NE09517-1 35.9 37.3 26.5 18.0 51.5 0.00009 

NE10589 29.7 29.6 27.3 5.5 76.0 0.33859 

OVERLAND 21.7 23.4 28.4 1.4 80.9 0.09990 

SETTLER CL 42.4 35.2 27.1 8.2 51.0 0.00102 

TX10D2063 18.5 20.7 30.0 1.2 93.0 0.01158 

TX10D2230 21.9 21.5 27.4 3.9 64.0 0.01975 

TX11D3129 18.0 21.9 27.0 1.6 50.9 0.03286 

TX12M4063 19.8 21.1 28.6 4.9 85.5 0.01260 

TX12M4065 21.4 24.7 28.5 2.2 100.0 0.19081 

WESLEY 34.7 31.7 28.1 21.0 98.1 0.22587 
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Table 9. Paired t-test Results for Mixograph Strength of the 2017 Hybrids. 

Paired t-tests (α = .05) between mean strength of reciprocal hybrids for each parent 

cultivar used in the 2017 analysis. P1 indicates the female reference parent, P1xP2 are 

hybrids with P1 as the female parent, and P2xP1 are the reciprocals with P1 as the male 

parent. In addition to the difference in mean, the difference in variance also suggests 

large maternal effect. 

Variety (P1) 

P1 Strength 

{(%TQ*Min)/ 

grams of 

protein} 

Mean – 

P1xP2 

Hybrids 

Mean – 

P2xP1 

Hybrids 

Variance 

(P1xP2) 

Variance 

(P2xP1) 

P-

Value 

FREEMAN 44.1 40.5 36.0 35.19 107.85 0.1153 

GOODSTREAK 16.6 19.0 27.7 0.80 39.23 0.0005 

HARRY 36.0 39.3 31.3 19.37 91.84 0.0269 

LCH13NEDH-

11-24 54.3 44.8 30.3 78.84 110.50 0.0195 

NE07531 44.7 39.8 33.3 48.59 60.47 0.0032 

NE09517_1 51.7 43.3 30.9 38.26 93.65 0.0029 

OVERLAND 20.8 25.8 31.8 14.72 64.97 0.0176 

ROBIDOUX 42.1 37.6 35.7 21.28 99.96 0.4425 

SETTLER_CL 42.5 38.9 31.6 20.67 79.26 0.0068 

TX09D1172 20.0 25.6 31.6 6.68 70.46 0.0205 

TX10D2063 24.0 23.9 32.6 1.45 123.94 0.0291 

TX10D2363 22.4 25.4 32.2 1.87 117.48 0.0674 

TX11D3129 22.8 25.6 32.6 3.05 75.14 0.0109 

TX12M4063 28.8 31.5 33.5 16.72 90.56 0.3092 
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Table 10. Paired t-test Results for Mixograph Tolerance of the 2016 Hybrids. 

Paired t-tests (α = .05) between mean tolerance of reciprocal hybrids for each parent 

cultivar used in the 2016 analysis. P1 indicates the female reference parent, P1xP2 are 

hybrids with P1 as the female parent, and P2xP1 are the reciprocals with P1 as the male 

parent. In addition to the difference in mean, the difference in variance also suggests 

large maternal effect, although LCH13NEDH_11_24 had P1xP2 hybrids with widely 

varying tolerance values. 

Variety (P1) 

P1 

Tolerance 

Mean – 

P1xP2 

Hybrids 

Mean – 

P2xP1 

Hybrids 

Variance 

(P1xP2) 

Variance 

(P2xP1) 

P-

Value 

FREEMAN 1.71 1.97 1.86 0.125 0.763 0.69581 

GOODSTREAK 1.18 1.21 1.57 0.000 0.341 0.06517 

LCH13NEDH-

11-24 26.69 7.62 1.83 150.101 0.201 0.17090 

NE09517-1 1.80 1.80 1.57 0.086 0.157 0.10671 

NE10589 1.62 1.64 1.82 0.077 0.619 0.28774 

OVERLAND 1.41 1.56 5.62 0.018 166.793 0.34426 

SETTLER CL 1.83 1.84 1.72 0.058 0.575 0.48996 

TX10D2063 1.22 1.29 1.96 0.004 1.711 0.13782 

TX10D2230 1.35 1.33 1.62 0.007 0.081 0.00337 

TX11D3129 1.41 1.41 1.49 0.004 0.028 0.21321 

TX12M4063 1.30 1.35 1.80 0.005 0.294 0.02042 

TX12M4065 1.46 1.55 1.67 0.018 0.604 0.61601 

WESLEY 2.01 1.75 1.74 0.150 0.603 0.93933 
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Table 11. Paired t-test Results for Mixograph Tolerance of the 2017 Hybrids. 

Paired t-tests (α = .05) between mean tolerance of reciprocal hybrids for each parent 

cultivar used in the 2017 analysis. P1 indicates the female reference parent, P1xP2 are 

hybrids with P1 as the female parent, and P2xP1 are the reciprocals with P1 as the male 

parent. The tolerance values had a very wide range, resulting in unusually high mean and 

variance estimates in some varieties, including LCH13NEDH_11_24 and Freeman.  

Variety (P1) P1 Tolerance 

Mean – 

P1xP2 

Hybrids 

Mean 

P2xP1 

Hybrids 

Variance 

(P1xP2) 

Variance 

(P2xP1) 

P-

Value 

FREEMAN 7.13 6.95 3.52 90.504 15.538 0.2620 

GOODSTREAK 1.60 1.51 1.99 0.017 0.242 0.0073 

HARRY 3.52 4.82 2.67 38.413 2.217 0.2806 

LCH13NEDH-

11-24 4.34 92.80 3.32 55392.970 11.747 0.3546 

NE07531 6.19 2.72 3.18 0.186 3.913 0.4905 

NE09517_1 5.12 2.96 5.39 0.652 118.957 0.5008 

OVERLAND 1.62 1.75 3.93 0.021 38.135 0.2281 

ROBIDOUX 3.32 4.62 3.42 5.573 10.297 0.3720 

SETTLER_CL 4.45 4.35 2.44 17.064 1.728 0.1940 

TX09D1172 1.88 1.85 50.11 0.067 29995.870 0.3349 

TX10D2063 1.27 1.52 2.65 0.018 3.179 0.0683 

TX10D2363 1.54 1.53 3.08 0.014 6.018 0.0721 

TX11D3129 1.63 1.85 2.29 0.032 0.642 0.0569 
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Figure 17. Mixograph Mix Peak Time Analysis of 2016 Hybrids. 

This graph shows the peak mix development time for the 2016 hybrid selections as 

plotted against flour protein %. The mix peak time (min) is displayed on the Y-axis while 

the flour protein % is plotted X-axis. The strong parents are shown in purple and the 

weak parents are shown in yellow and help show the relationship between the quality of 

the parents and the hybrid.  
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Table 12. Paired t-test Results for Mixograph Mix Peak Time of the 2016 Hybrids. 

Paired t-tests (α = .05) between mean Mixograph mix peak time (Min) of reciprocal 

hybrids for each parent cultivar used in the 2016 analysis. P1 indicates the female 

reference parent, P1xP2 are hybrids with P1 as the female parent, and P2xP1 are the 

reciprocals with P1 as the male parent. In addition to the difference in mean, the 

difference in variance also suggests large maternal effect.  

Variety (P1) 

P1 

Mix 

Peak 

Time 

(Min) 

Mean – 

P1xP2 

Hybrids 

Mean – 

P2xP1 

Hybrids 

Variance 

(P1xP2) 

Variance 

(P2xP1) df 

P-

Value 

FREEMAN 4.39 4.13 3.51 0.048 1.045 11 0.04667 

GOODSTREAK 1.97 2.05 3.18 0.009 0.502 10 0.00022 

LCH13NEDH-

11-24 5.90 5.40 3.68 0.390 1.115 9 0.00284 

NE09517-1 4.76 4.52 3.23 0.248 0.549 10 0.00009 

NE10589 3.50 3.48 3.40 0.047 1.074 11 0.78791 

OVERLAND 2.62 2.68 3.51 0.010 1.011 9 0.02200 

SETTLER CL 5.04 4.21 3.37 0.117 0.724 11 0.00136 

TX10D2063 2.47 2.59 3.67 0.015 1.374 9 0.01275 

TX10D2230 3.00 2.86 3.34 0.051 0.823 10 0.08547 

TX11D3129 2.58 2.85 3.27 0.023 0.597 9 0.07806 

TX12M4063 2.72 2.75 3.53 0.047 1.008 9 0.02009 

TX12M4065 3.06 3.19 3.53 0.064 1.325 10 0.28295 

WESLEY 4.55 3.82 3.49 0.192 1.238 11 0.34977 

 

 



102 
 

 
Figure 18. Mixograph Mix Peak Time Analysis of 2017 Hybrids 

This graph shows the peak mix development time for the 2016 hybrid selections as 

plotted against flour protein %. The mix peak time (min) is displayed on the Y-axis while 

the flour protein % is plotted X-axis. The strong parents are shown in purple and the 

weak parents are shown in yellow to show the relationship between the quality of the 

parents and the hybrids.  
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Table 13. Paired t-test Results for Mixograph Mix Peak Time of the 2017 Hybrids. 

Paired t-tests (α = .05) between mean strength of reciprocal hybrids for each parent 

cultivar used in the 2016 analysis. P1 indicates the female reference parent, P1xP2 are 

hybrids with P1 as the female parent, and P2xP1 are the reciprocals with P1 as the male 

parent. In addition to the difference in mean, the difference in variance also suggests 

large maternal effect.  

 

Variety (P1) 

P1 Mix 

Peak 

Time 

(Min) 

Mean – 

P1xP2 

Hybrids 

Mean – 

P2xP1 

Hybrids 

Variance 

(P1xP2) 

Variance 

(P2xP1) 

P-

Value 

FREEMAN 5.51 5.06 4.49 0.482 1.629 0.0364 

GOODSTREAK 2.43 2.61 3.65 0.008 0.503 0.0002 

HARRY 4.34 4.94 4.11 0.191 1.487 0.0531 

LCH13NEDH_11_24 8.13 5.91 3.90 1.534 1.604 0.0128 

NE07531 5.65 5.09 4.35 0.676 0.803 0.0009 

NE09517_1 6.91 5.70 4.07 0.616 1.506 0.0011 

OVERLAND 2.59 3.07 4.02 0.136 0.935 0.0041 

ROBIDOUX 5.66 4.85 4.56 0.280 1.550 0.3230 

SETTLER_CL 5.66 4.92 4.10 0.266 1.443 0.0207 

TX09D1172 2.92 3.39 4.12 0.070 1.035 0.0150 

TX10D2063 3.01 3.06 4.22 0.017 2.104 0.0242 

TX10D2363 3.20 3.32 4.09 0.033 1.590 0.0665 

TX11D3129 3.24 3.45 4.25 0.084 1.206 0.0164 

TX12M4063 3.87 4.25 4.36 0.242 1.797 0.6999 
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Table 14. 2016 Overall Summary of Hybrid Pairs that Exhibited Reciprocal Effect 

as Determined by the Mixograph Strength, Tolerance, and Mix Peak Time.  

Provides an overall summary of the number of hybrid pairs that exhibited significant (α = 

.05) reciprocal effect detected using the Mixograph strength {(%TQ*Min)/grams of 

protein}, tolerance, and mix peak time (Min) in the 2016 hybrid analysis.   

Variety 

Reciprocal 

Hybrids 

Tested 

Strength 

({%TQ*Min}/ 

grams of protein) Tolerance 

Mix Peak 

Time (Min) 

FREEMAN 12 0 0 0 

GOODSTREAK 11 1 0 1 

LCH13NEDH-11-24 10 5 1 5 

NE09517-1 11 1 0 3 

NE10589 12 0 0 0 

OVERLAND 10 1 1 1 

SETTLER CL 12 0 0 0 

TX10D2063 10 1 0 2 

TX10D2230 11 0 0 1 

TX11D3129 10 0 0 0 

TX12M4063 10 1 0 1 

TX12M4065 11 1 0 1 

WESLEY 12 1 0 1 

Hybrids With Reciprocal Effect 12 2 16 

Total Hybrids 142 142 142 

Reciprocal Effect % 8% 1% 11% 
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Table 15. 2016 Hybrids Exhibiting Reciprocal Effect for Mixograph Strength. 

Listed are the 12 hybrids from the 2016 Mixograph strength {(%TQ*Min/grams of 

protein} analysis that exhibited a significant (α = .05) reciprocal effect. P1 is the female 

parent, P1xP2 is hybrid with P1 as the female parent and P2 as the male parent, and 

P2xP1 is the reciprocal, and P2 is the male parent. 

F. Parent (P1) M. Parent (P2) 

Female (P1) 

Strength  

Hybrid 

(P1xP2) 

Strength 

Reciprocal 

(P2xP1) 

Strength  

Male 

(P2) 

Strength 

GOODSTREAK 

LCH13NEDH-

11-24 13.6 16.0 38.8 45.7 

LCH13NEDH-

11-24 TX10D2063 45.7 46.1 19.7 18.5 

LCH13NEDH-

11-24 TX12M4063 45.7 43.8 21.6 19.8 

LCH13NEDH-

11-24 GOODSTREAK 45.7 38.8 16.0 13.6 

LCH13NEDH-

11-24 OVERLAND 45.7 42.0 24.8 21.7 

LCH13NEDH-

11-24 TX12M4065 45.7 49.9 25.7 21.4 

NE09517-1 WESLEY 35.9 38.4 21.5 34.7 

OVERLAND 

LCH13NEDH-

11-24 21.7 24.8 42.0 45.7 

TX10D2063 

LCH13NEDH-

11-24 18.5 19.7 46.1 45.7 

TX12M4063 

LCH13NEDH-

11-24 19.8 21.6 43.8 45.7 

TX12M4065 

LCH13NEDH-

11-24 21.4 25.7 49.9 45.7 

WESLEY NE09517-1 34.7 21.5 38.4 35.9 

 

 

Table 16. 2016 Hybrids Exhibiting Reciprocal Effect for Mixograph Tolerance. 

Listed are the two hybrids from the 2016 Mixograph tolerance analysis that exhibited a 

significant (α = .05) reciprocal effect. P1 is the female parent, P1xP2 is hybrid with P1 as 

the female parent and P2 as the male parent, and P2xP1 is the reciprocal, and P2 is the 

male parent. 

 

F. Parent (P1) M. Parent (P2) 

Female (P1) 

Tolerance 

Hybrid 

(P1xP2) 

Tolerance 

Reciprocal 

(P2xP1) 

Tolerance 

Male 

(P2) 

Tolerance 

LCH13NEDH-

11-24 OVERLAND 26.68944 42.37288 1.680983 1.414261 

OVERLAND 

LCH13NEDH-

11-24 1.414261 1.680983 42.37288 26.68944 
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Table 17. 2016 Hybrids Exhibiting Reciprocal Effect for Mix Peak Time.  

Listed are the 16 hybrids from the 2016 Mixograph mix peak time (min) analysis that 

exhibited a significant (α = .05) reciprocal effect. P1 is the female parent, P1xP2 is hybrid 

with P1 as the female parent and P2 as the male parent, and P2xP1 is the reciprocal, and 

P2 is the male parent. 

F. Parent (P1) M. Parent (P2) 

Female 

(P1) 

Mix 

Peak 

Time 

Hybrid 

(P1xP2) 

Mix Peak 

Time 

Reciprocal 

(P2xP1) 

Mix Peak 

Time 

Male 

(P2) Mix 

Peak 

Time 

      

GOODSTREAK 

LCH13NEDH-

11-24 1.97 2.16 4.62 5.9 

LCH13NEDH-

11-24 TX10D2063 5.9 6.1 2.71 2.47 

LCH13NEDH-

11-24 TX12M4063 5.9 5.32 2.73 2.72 

LCH13NEDH-

11-24 GOODSTREAK 5.9 4.62 2.16 1.97 

LCH13NEDH-

11-24 OVERLAND 5.9 5.4 2.86 2.62 

LCH13NEDH-

11-24 TX12M4065 5.9 6.24 3.36 3.06 

NE09517-1 TX10D2230 4.76 4.96 2.9 3 

NE09517-1 TX10D2063 4.76 4.63 2.68 2.47 

NE09517-1 WESLEY 4.76 4.99 2.74 4.55 

OVERLAND 

LCH13NEDH-

11-24 2.62 2.86 5.4 5.9 

TX10D2063 NE09517-1 2.47 2.68 4.63 4.76 

TX10D2063 

LCH13NEDH-

11-24 2.47 2.71 6.1 5.9 

TX10D2230 NE09517-1 3 2.9 4.96 4.76 

TX12M4063 

LCH13NEDH-

11-24 2.72 2.73 5.32 5.9 

TX12M4065 

LCH13NEDH-

11-24 3.06 3.36 6.24 5.9 

WESLEY NE09517-1 4.55 2.74 4.99 4.76 
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Table 18. 2017 Overall Summary of Hybrid Pairs that Exhibited Reciprocal Effect 

as Determined by the Mixograph Strength, Tolerance, and Mix Peak Time.  

Provides an overall summary of the number of hybrid pairs that exhibited significant (α = 

.05) reciprocal effect detected using the Mixograph strength {(%TQ*Min)/grams of 

protein}, tolerance, and mix peak time (Min) in the 2017 hybrid analysis.   

Variety 

Reciprocal 

Hybrids 

Tested 

Strength 

({%TQ*Min}/ 

grams of 

protein) Tolerance 

Mix Peak 

Time 

(Min) 

FREEMAN 13 1 0 0 

GOODSTREAK 13 1 0 0 

HARRY 12 2 0 1 

LCH13NEDH_11_24 7 2 1 3 

NE07531 9 0 0 0 

NE09517_1 10 2 0 2 

OVERLAND 13 1 0 1 

ROBIDOUX 11 0 0 0 

SETTLER_CL 11 0 0 0 

TX09D1172 13 0 1 1 

TX10D2063 11 1 0 1 

TX10D2363 10 2 0 1 

TX11D3129 12 0 0 0 

TX12M4063 13 0 0 0 

Hybrids With 

Reciprocal Effect 12 2 10 

Total Hybrids 158 158 158 

Reciprocal Effect % 8% 1% 6% 
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Table 19. 2017 Hybrids Exhibiting Reciprocal Effect for Mixograph Strength. 

Listed are the 12 hybrids from the 2017 Mixograph strength {(%TQ*Min/grams of 

protein} analysis that exhibited a significant (α = .05) reciprocal effect. P1 is the female 

parent, P1xP2 is hybrid with P1 as the female parent and P2 as the male parent, and 

P2xP1 is the reciprocal, and P2 is the male parent. 

F. Parent (P1) M. Parent (P2) 

Female 

(P1) 

Strength  

Hybrid 

(P1xP2) 

Strength 

Reciprocal 

(P2xP1) 

Strength  

Male 

(P2) 

Strength 

FREEMAN TX10D2363 44.1 45.5 26.1 22.4 

GOODSTREAK HARRY 16.6 18.8 42.3 36.0 

HARRY GOODSTREAK 36.0 42.3 18.8 16.6 

HARRY NE09517_1 36.0 30.1 50.6 51.7 

LCH13NEDH_11_24 OVERLAND 54.3 44.1 23.4 20.8 

LCH13NEDH_11_24 TX10D2063 54.3 57.6 23.3 24.0 

NE09517_1 HARRY 51.7 50.6 30.1 36.0 

NE09517_1 TX10D2363 51.7 52.8 25.0 22.4 

OVERLAND 

LCH13NEDH-

11-24 20.8 23.4 44.1 54.3 

TX10D2063 

LCH13NEDH-

11-24 24.0 23.3 57.6 54.3 

TX10D2363 FREEMAN 22.4 26.1 45.5 44.1 

TX10D2363 NE09517_1 22.4 25.0 52.8 51.7 

 

 

Table 20. 2017 Hybrids Exhibiting Reciprocal Effect for Mixograph Tolerance. 

Listed are the two hybrids from the 2017 Mixograph tolerance analysis that exhibited a 

significant (α = .05) reciprocal effect. P1 is the female parent, P1xP2 is hybrid with P1 as 

the female parent and P2 as the male parent, and P2xP1 is the reciprocal, and P2 is the 

male parent. 

F. Parent (P1) M. Parent (P2) 

Female (P1) 

Tolerance 

Hybrid 

(P1xP2) 

Tolerance 

Reciprocal 

(P2xP1) 

Tolerance 

Male 

(P2) 

Tolerance 

LCH13NEDH-

11-24 TX09D1172 4.33 626 1.84 1.87 

TX09D1172 

LCH13NEDH-

11-24 1.87 1.84 626 4.33 

 

 

 

 

 

 

 

 

 

 



109 
 

Table 21. 2017 Hybrids Exhibiting Reciprocal Effect for Mix Peak Time. 

Listed are the ten hybrids from the 2017 Mixograph mix peak time (min) analysis that 

exhibited a significant (α = .05) reciprocal effect. P1 is the female parent, P1xP2 is hybrid 

with P1 as the female parent and P2 as the male parent, and P2xP1 is the reciprocal, and 

P2 is the male parent. 

F. Parent (P1) M. Parent (P2) 

Female 

(P1) Mix 

Peak Time 

Hybrid 

(P1xP2) 

Mix Peak 

Time 

Reciprocal 

(P2xP1) 

Mix Peak 

Time 

Male (P2) 

Mix Peak 

Time 

HARRY NE09517_1 4.34 4.02 6.65 6.91 

LCH13NEDH-

11-24 OVERLAND 8.13 5.56 2.77 2.59 

LCH13NEDH-

11-24 TX09D1172 8.13 5.91 3.43 2.92 

LCH13NEDH-

11-24 TX10D2063 8.13 7.68 3.03 3.01 

NE09517_1 HARRY 6.91 6.65 4.02 4.34 

NE09517_1 TX10D2363 6.91 6.63 3.47 3.2 

OVERLAND 

LCH13NEDH-

11-24 2.59 2.77 5.56 8.13 

TX09D1172 

LCH13NEDH-

11-24 2.92 3.43 5.91 8.13 

TX10D2063 

LCH13NEDH-

11-24 3.01 3.03 7.68 8.13 

TX10D2363 NE09517_1 3.2 3.47 6.63 6.91 
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Figure 19. Mixograph strength x tolerance analysis evaluating 2016 Goodstreak (P1)  

reciprocal hybrids.  

The Mixograph strength x tolerance analysis of the Goodstreak reciprocal hybrids from 

2016 with the strength {(%TQ*Min)/grams of protein} graphed on the Y-axis and the 

tolerance graphed on the X-axis. P1 represents Goodstreak (coded in red), P1xP2 are 

hybrids with Goodstreak as the female parent (coded in blue), P2xP1 are the reciprocals 

with Goodstreak as the male parent (coded in green), and the P2 parents are coded in 

black.  
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Table 22. Mixograph Mix Peak Time Analysis of the 2016 Goodstreak Reciprocal 

Hybrids.  

Shows the Mixograph mix peak time (Min.) of the Goodstreak reciprocal hybrids from 

the 2016 analysis. P1 is Goodstreak, P1xP2 are the hybrids with Goodstreak as the female 

parent and P2 as the male parent, P2xP1 is the reciprocal, and P2 is the male parent. P-

value of paired t-test (α = .05) indicates significant reciprocal difference between the 

mean mix peak time (Min) of the P1xP2 hybrids and the P2xP1 reciprocals.  

P1 (female) P2 (male) 

Goodstreak 

(P1) 

P1xP2 

hybrid mix 

peak time 

(min) 

P2xP1 

hybrid 

mix peak 

time (min) 

P2 mix 

peak 

time 

(min) 

GOODSTREAK TX10D2230 1.97 2.04 2.44 3 

GOODSTREAK FREEMAN 1.97 2.17 3.69 4.39 

GOODSTREAK NE09517-1 1.97 2.03 3.42 4.76 

GOODSTREAK SETTLER CL 1.97 2.04 3.64 5.04 

GOODSTREAK WESLEY 1.97 2.12 3.66 4.55 

GOODSTREAK TX10D2063 1.97 1.93 2.37 2.47 

GOODSTREAK TX12M4063 1.97 2.12 2.49 2.72 

GOODSTREAK 

LCH13NEDH-

11-24 1.97 2.16 4.62 5.9 

GOODSTREAK TX12M4065 1.97 2.08 2.82 3.06 

GOODSTREAK NE10589 1.97 1.87 3.3 3.5 

GOODSTREAK OVERLAND 1.97 1.98 2.58 2.62 

  Mean 2.049091 3.184545  

  Variance 0.008949 0.501687  

  t Stat -5.62204   

  

P(T<=t) 

two-tail 0.000221   
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Figure 20. Mixograph strength x tolerance analysis evaluating 2017 Goodstreak (P1)  

reciprocal hybrids.  

 

The Mixograph strength x tolerance analysis of the Goodstreak reciprocal hybrids from 

2017 with the strength {(%TQ*Min)/grams of protein} graphed on the Y-axis and the 

tolerance graphed on the X-axis. P1 represents Goodstreak (coded in red), P1xP2 are 

hybrids with Goodstreak as the female parent (coded in blue), P2xP1 are the reciprocals 

with Goodstreak as the male parent (coded in green), and the P2 parents are coded in 

black.  
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Table 23. Mixograph Mix Peak Time Analysis of the 2017 Goodstreak Reciprocal 

Hybrids.  

Shows the Mixograph mix peak time (Min.) of the Goodstreak reciprocal hybrids from 

the 2017 analysis. P1 is Goodstreak, P1xP2 are the hybrids with Goodstreak as the female 

parent and P2 as the male parent, P2xP1 is the reciprocal, and P2 is the male parent. P-

value of paired t-test (α = .05) indicates significant reciprocal difference between the 

mean mix peak time (Min) of the P1xP2 hybrids and the P2xP1 reciprocals.  

P1 (female) P2 (male) 

Goodstreak 

(P1) mix 

peak time 

(min) 

P1xP2 

hybrid mix 

peak time 

(min) 

P2xP1 

hybrid 

mix peak 

time (min) 

P2 mix 

peak 

time 

(min) 

GOODSTREAK FREEMAN 2.43 2.55 3.92 5.51 

GOODSTREAK HARRY 2.43 2.68 4.92 4.34 

GOODSTREAK 

LCH13NEDH-

11-24 2.43 2.5 3.78 8.13 

GOODSTREAK NE07531 2.43 2.77 3.9 5.65 

GOODSTREAK NE09517_1 2.43 2.47 4.73 6.91 

GOODSTREAK OVERLAND 2.43 2.66 2.55 2.59 

GOODSTREAK ROBIDOUX 2.43 2.54 4.04 5.66 

GOODSTREAK SETTLER_CL 2.43 2.51 4.07 5.66 

GOODSTREAK TX09D1172 2.43 2.68 3.01 2.92 

GOODSTREAK TX10D2063 2.43 2.61 2.95 3.01 

GOODSTREAK TX10D2363 2.43 2.63 3.19 3.2 

GOODSTREAK TX11D3129 2.43 2.66 3.28 3.24 

GOODSTREAK TX12M4063 2.43 2.71 3.09 3.87 

  Mean 2.613077 3.648462  

  Variance 0.008406 0.502647  

  t Stat -4.97983   

  

P(T<=t) 

two-tail 0.00032   
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Figure 21. Mixograph Strength x Tolerance Analysis Evaluating 2016 

LCH13NEDH_11_24 (P1) Reciprocal Hybrids. 

The Mixograph strength x tolerance analysis of the LCH13NEDH_11_24 reciprocal 

hybrids from 2016 with the strength {(%TQ*Min)/grams of protein} graphed on the Y-

axis and the tolerance graphed on the X-axis. P1 represents LCH13NEDH_11_24 (coded 

in red), P1xP2 are hybrids with LCH13NEDH_11_24 as the female parent (coded in 

blue), P2xP1 are the reciprocals with LCH13NEDH_11_24 as the male parent (coded in 

green), and the P2 parents are coded in black.  
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Table 24. Mixograph Mix Peak Time Analysis of the 2016 LCH13NEDH_11_24 

Reciprocal Hybrids.  

 Mixograph mix peak time (Min.) of the LCH13NEDH_11_24 reciprocal hybrids from 

the 2016 analysis. P1 is LCH13NEDH_11_24, P1xP2 are the hybrids with 

LCH13NEDH_11_24 as the female parent and P2 as the male parent, P2xP1 is the 

reciprocal, and P2 is the male parent. P-value of paired t-test (α = .05) indicates 

significant reciprocal difference between the mean mix peak time (Min) of the P1xP2 

hybrids and the P2xP1 reciprocals. Highlighted hybrid was not included in paired t-test.  

P1 (female) P2 (male) 

LCH13NEDH-

11-24 (P1) 

P1xP2 

hybrid 

mix peak 

time 

(min) 

P2xP1 

hybrid 

mix peak 

time 

(min) 

P2 

mix 

peak 

time 

(min) 

LCH13NEDH-

11-24 SETTLER CL 5.9 5.09 5 5.04 

LCH13NEDH-

11-24 TX10D2063 5.9 6.1 2.71 2.47 

LCH13NEDH-

11-24 TX12M4063 5.9 5.32 2.73 2.72 

LCH13NEDH-

11-24 NE10589 5.9 5.55 4.02 3.5 

LCH13NEDH-

11-24 WESLEY 5.9 5.92 4.34 4.55 

LCH13NEDH-

11-24 NE09517-1 5.9 4.26 5.19 4.76 

LCH13NEDH-

11-24 GOODSTREAK 5.9 4.62 2.16 1.97 

LCH13NEDH-

11-24 FREEMAN 5.9 5.52 4.41 4.39 

LCH13NEDH-

11-24 OVERLAND 5.9 5.4 2.86 2.62 

LCH13NEDH-

11-24 TX12M4065 5.9 6.24 3.36 3.06 

LCH13NEDH-

11-24 TX10D2230 5.9 5.41 #N/A 3 

  Mean 5.402 3.678  

  Variance 0.390373 1.115018  

  t Stat 4.061196   

  

P(T<=t) two-

tail 0.002837   
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Figure 22. Mixograph Strength x Tolerance Analysis Evaluating 2017 

LCH13NEDH_11_24 (P1) Reciprocal Hybrids. 

The Mixograph strength x tolerance analysis of the LCH13NEDH_11_24 reciprocal 

hybrids from 2017 with the strength {(%TQ*Min)/grams of protein} graphed on the Y-

axis and the tolerance graphed on the X-axis. P1 represents LCH13NEDH_11_24 (coded 

in red), P1xP2 are hybrids with LCH13NEDH_11_24 as the female parent (coded in 

blue), P2xP1 are the reciprocals with LCH13NEDH_11_24 as the male parent (coded in 

green), and the P2 parents are coded in black.  
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Table 25. Mixograph Mix Peak Time Analysis of the 2017 LCH13NEDH_11_24 

Reciprocal Hybrids.   

Mixograph mix peak time (Min.) of the LCH13NEDH_11_24 reciprocal hybrids from the 

2017 analysis. P1 is LCH13NEDH_11_24, P1xP2 are the hybrids with 

LCH13NEDH_11_24 as the female parent and P2 as the male parent, P2xP1 is the 

reciprocal, and P2 is the male parent. P-value of paired t-test (α = .05) indicates 

significant reciprocal difference between the mean mix peak time (Min) of the P1xP2 

hybrids and the P2xP1 reciprocals. Highlighted hybrid was not included in paired t-test. 

Highlighted hybrids were not included in paired t-test (α = .05). 

P1 (female) P2 (male) 

LCH13NEDH_11_24 

(P1) mix peak time 

(min) 

P1xP2 

hybrid 

mix peak 

time (min) 

P2xP1 

hybrid 

mix 

peak 

time 

(min) 

P2 mix 

peak 

time 

(min) 

LCH13NEDH-

11-24 FREEMAN 8.13 6.42 5.58 5.51 

LCH13NEDH-

11-24 GOODSTREAK 8.13 3.78 2.5 2.43 

LCH13NEDH-

11-24 HARRY 8.13 6.56 #N/A 4.34 

LCH13NEDH-

11-24 NE07531 8.13 6.53 #N/A 5.65 

LCH13NEDH-

11-24 OVERLAND 8.13 5.56 2.77 2.59 

LCH13NEDH-

11-24 ROBIDOUX 8.13 6.48 #N/A 5.66 

LCH13NEDH-

11-24 SETTLER_CL 8.13 5.27 5.3 5.66 

LCH13NEDH-

11-24 TX09D1172 8.13 5.91 3.43 2.92 

LCH13NEDH-

11-24 TX10D2063 8.13 7.68 3.03 3.01 

LCH13NEDH-

11-24 TX11D3129 8.13 8.03 #N/A 3.24 

LCH13NEDH-

11-24 TX12M4063 8.13 6.77 4.69 3.87 

  Mean 5.912857 3.9  

  Variance 1.53359 1.603533  

  t Stat 3.503032   

  

P(T<=t) two-

tail 0.012779   
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Figure 23. SDS Sedimentation Assay Results of 2016 Hybrids.  

Represents the 2016 hybrid samples that were selected and analyzed using the SDS 

sedimentation assay. The Y-axis is the sedimentation value (mL) and the X-axis is the 

grain protein %. The legend is written in traditional pedigree notation with the left side 

representing the quality of female and right side represents quality of male. Samples that 

are at or above the green dotted line are considered desirable, samples that are at or below 

the red dotted line are considered undesirable, while samples in the middle are neither. 
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Table 26. Paired t-test Results for SDS Sedimentation Ratio of 2016 Hybrids. 

Paired t-tests for the 2016 SDS sedimentation assay results, including the sedimentation 

ratio (mL/% protein) of each parent (P1), the mean sedimentation ratio of the hybrids 

crossed P1xP2, the reciprocal sedimentation ratio, the variance among those means, the 

degrees of freedom, and the p-value (α = .05). 

Cultivar (P1) 

P1 SDS  

Sed. Ratio 

(mL/%)  

Mean – 

P1xP2 

Hybrids 

Mean – 

P2xP1 

Reciprocals 

Variance 

(P1xP2) 

Variance 

(P2xP1) 

P-

Value 

FREEMAN 1.15 1.08 0.97 0.0009 0.0172 0.01243 

GOODSTREAK 0.90 0.89 0.94 0.0010 0.0134 0.14351 

LCH13NEDH-

11-24 0.98 1.07 0.99 0.0025 0.0168 0.03802 

NE09517-1 1.17 1.14 0.94 0.0017 0.0146 0.00018 

NE10589 1.07 1.03 0.95 0.0011 0.0220 0.08707 

OVERLAND 0.90 0.90 0.97 0.0013 0.0237 0.22249 

SETTLER CL 1.08 1.04 0.94 0.0013 0.0161 0.00515 

TX10D2063 0.91 0.92 0.96 0.0008 0.0225 0.37734 

TX10D2230 0.81 0.79 0.95 0.0014 0.0224 0.00304 

TX11D3129 0.80 0.78 0.90 0.0020 0.0192 0.00647 

TX12M4063 0.76 0.79 0.93 0.0019 0.0202 0.01082 

TX12M4065 0.80 0.78 0.93 0.0009 0.0174 0.00110 

WESLEY 1.15 1.06 0.93 0.0025 0.0222 0.02246 
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Figure 24. SDS Sedimentation Assay Results of 2017 Hybrids.  

Represents the 2017 hybrid samples that were selected and analyzed using the SDS 

sedimentation assay. The Y-axis is the sedimentation value (mL) and the X-axis is the 

grain protein %. The legend is written in traditional pedigree notation with the left side 

representing the quality of female and right side represents quality of male. Samples that 

are at or above the green dotted line are considered desirable, samples that are at or below 

the red dotted line are considered undesirable, while samples in the middle are neither. 

The strong parents are shown in purple and the weak parents are shown in yellow to show 

the relationship between the quality of the parents and the hybrids.  
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Table 27. Paired t-test Results for SDS Sedimentation Ratio of 2017 Hybrids. 

Paired t-tests for the 2017 SDS sedimentation assay results, including the sedimentation 

ratio (mL/% protein) of each parent (P1), the mean sedimentation ratio of the hybrids 

crossed P1xP2, the reciprocal sedimentation ratio, the variance among those means, the 

degrees of freedom, and the p-value (α = .05). 

Cultivar (P1) 

P1 SDS  

Sed. 

Ratio 

(mL/%)  

Mean – 

P1xP2 

Hybrids 

Mean – 

P2xP1 

Reciprocals 

Variance 

(P1xP2) 

Variance 

(P2xP1) P-Value 

FREEMAN 1.11 1.09 1.07 0.0021 0.0081 0.4371 

GOODSTREAK 1.02     1.03 1.09 0.0010 0.0066 0.0228 

HARRY 1.10 1.14 1.08 0.0025 0.0113 0.1000 

LCH13NEDH-

11-24 1.28 1.21 1.01 0.0013 0.0025 0.0005 

NE07531 1.12 1.14 1.08 0.0022 0.0069 0.0272 

NE09517_1 1.21 1.18 1.03 0.0036 0.0063 0.0003 

OVERLAND 0.90 0.99 1.05 0.0020 0.0109 0.0733 

ROBIDOUX 1.12 1.11 1.08 0.0015 0.0109 0.2937 

SETTLER_CL 1.11 1.09 1.04 0.0011 0.0167 0.1894 

TX09D1172 0.98 1.01 1.07 0.0019 0.0103 0.0308 

TX10D2063 1.00 1.01 1.03 0.0010 0.0072 0.3556 

TX10D2363 1.06 1.10 1.03 0.0016 0.0103 0.0933 

TX11D3129 0.85 0.89 1.05 0.0029 0.0095 0.0002 

TX12M4063 0.86 0.94 1.05 0.0021 0.0118 0.0019 
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Figure 25. SDS-SRC Hybrid Assay Results of 2016 Hybrids. 

Represents the SDS-SRC hybrid assay that was described by Seabourn et al. (2012) and 

the USDA in Manhattan, KS. The purpose of this assay is to measure the same protein 

functionality that the SDS assay measures but is faster and more closely correlated to loaf 

volume. The Y-axis represents the weight value % as calculated by equation 1, and the 

X-axis represents grain protein %. The strong parents are shown in purple and the weak 

parents are shown in yellow and help show the relationship between the end-use quality 

of the parents and the hybrid.  
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Table 28. Paired t-test Results for the SDS-SRC Hybrid Assay of 2016 Hybrids. 

Paired t-tests for the 2016 SDS-SRC hybrid assay results, including the weight value % 

of each parent (P1), the mean weight value % of the hybrids crossed P1xP2, the 

reciprocal mean weight value %, the variance among those means, the degrees of 

freedom, and the p-value (α = .05). 

Cultivar (P1) 

P1 

Weight 

Value % 

Mean – 

P1xP2 

Hybrids 

Mean – 

P2xP1 

Reciprocals 

Variance 

(P1xP2) 

Variance 

(P2xP1) P-Value 

FREEMAN 282.1 286.8 276.7 47.5 311.6 0.10356 

GOODSTREAK 276.4 277.1 275.3 154.7 252.0 0.64249 

LCH13NEDH-

11-24 284.9 292.6 278.2 83.6 320.0 0.02651 

NE09517-1 338.3 312.5 272.0 159.5 422.9 0.00007 

NE10589 281.5 270.2 282.3 131.5 789.6 0.22615 

OVERLAND 253.7 253.5 273.6 124.0 576.8 0.05812 

SETTLER CL 287.0 281.7 271.4 220.7 526.9 0.15597 

TX10D2063 276.6 273.1 277.2 104.4 525.4 0.55766 

TX10D2230 254.8 262.5 266.7 71.1 677.1 0.55797 

TX11D3129 274.6 254.3 265.5 90.2 513.8 0.14723 

TX12M4063 228.8 249.8 270.9 235.7 531.1 0.04218 

TX12M4065 236.2 246.8 270.5 105.7 333.6 0.00255 

WESLEY 309.6 292.1 275.7 223.0 790.4 0.10019 
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Figure 26. SDS-SRC Hybrid Assay Results of 2017 Hybrids. 

Represents the SDS-SRC hybrid assay that was described by Seabourn et al. (2012) and 

the USDA in Manhattan, KS. The Y-axis represents the weight value % as calculated by 

equation 1, and the X-axis represents grain protein %. The strong parents are shown in 

purple and the weak parents are shown in yellow to show the relationship between the 

quality of the parents and the hybrids.  
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Table 29. Paired t-test Results for the SDS-SRC Hybrid Assay of 2017 Hybrids. 

Paired t-tests for the 2017 SDS-SRC hybrid assay results, including the weight value % 

of each parent (P1), the mean weight value % of the hybrids crossed P1xP2, the 

reciprocal mean weight value %, the variance among those means, the degrees of 

freedom, and the p-value (α = .05). 

Cultivar (P1) 

Cultivar 

Weight 

Value % 

Mean  

P1xP2 

Hybrids 

Mean – 

P2xP1 

Reciprocals 

Variance 

(P1xP2) 

Variance 

(P2xP1) 

P-

Value 

FREEMAN 333.7 339.3 339.8 456.2 208.8 0.9486 

GOODSTREAK 356.7 361.0 350.9 249.1 171.4 0.0722 

HARRY 339.4 356.1 338.1 402.1 607.7 0.1014 

LCH13NEDH_11_24 369.1 353.4 327.5 161.3 466.6 0.0172 

NE07531 322.8 347.9 348.8 490.0 1133.0 0.9490 

NE09517_1 336.2 348.1 338.4 116.5 556.8 0.1730 

OVERLAND 285.0 311.4 328.9 280.9 531.9 0.0020 

ROBIDOUX 317.9 340.1 337.9 836.0 419.6 0.8462 

SETTLER_CL 308.1 324.7 337.8 187.2 977.7 0.2270 

TX09D1172 318.2 334.0 341.6 165.5 820.1 0.2545 

TX10D2063 307.8 330.2 319.5 129.8 783.0 0.1985 

TX10D2363 353.9 354.6 323.8 125.9 475.4 0.0023 

TX11D3129 296.6 312.7 334.8 212.5 718.2 0.0217 

TX12M4063 278.3 301.3 326.5 277.9 472.9 0.0037 
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Table 30. Paired t-test Results for Kernel Hardness of 2016 Hybrids. 

The 2016 hybrids kernel hardness (HI) paired t-test results (α = .05), including the mean 

hardness of each parent variety (P1), the mean hardness of the hybrids crossed P1xP2, the 

reciprocal mean hardness, the variance among those means, the degrees of freedom, and 

the p-value. Means were taken over 100 seeds.  

Cultivar (P1) 

Variety 

Hardness 

(HI) 

Mean – 

P1xP2 

Hybrids 

Mean – 

P2xP1 

Reciprocal 

Variance 

(P1xP2) 

Variance 

(P2xP1) 

P-

Value 

FREEMAN 63.88 67.95 76.34 23.17 52.76 0.00292 

GOODSTREAK 75.65 72.08 76.66 5.70 32.18 0.01435 

LCH13NEDH-

11-24 77.35 79.59 78.81 10.13 58.54 0.74680 

NE09517-1 77.07 75.18 76.43 2.54 51.57 0.52142 

NE10589 82.63 82.49 78.91 9.98 81.77 0.13383 

OVERLAND 87.66 83.68 75.98 9.84 46.57 0.00346 

SETTLER CL 81.10 78.05 78.05 13.52 58.49 0.99754 

TX10D2063 80.44 80.00 77.65 3.97 78.13 0.40251 

TX10D2230 90.22 83.55 77.20 14.95 66.86 0.04714 

TX11D3129 59.56 62.92 79.38 0.88 49.80 0.00003 

TX12M4063 82.99 78.36 76.62 3.71 66.22 0.47846 

TX12M4065 92.04 88.15 76.98 5.33 40.16 0.00040 

WESLEY 77.42 74.51 77.77 17.26 43.82 0.15749 
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Table 31. Paired t-test Results for Kernel Hardness of 2017 Hybrids. 

The 2017 hybrids kernel hardness (HI) paired t-test results (α = .05), including the mean 

hardness of each parent variety (P1), the mean hardness of the hybrids crossed P1xP2, the 

reciprocal mean hardness, the variance among those means, the degrees of freedom, and 

the p-value. Means were taken over 100 seeds.  

Cultivar (P1) 

Variety 

Hardness 

(HI) 

Mean – 

P1xP2 

Hybrids 

Mean – 

P2xP1 

Reciprocal 

Variance 

(P1xP2) 

Variance 

(P2xP1) 

P-

Value 

FREEMAN 43.86 49.49 53.45 6.87 31.14 0.0342 

GOODSTREAK 52.18 54.52 54.35 6.29 31.92 0.9261 

HARRY 52.07 54.68 58.15 17.61 29.07 0.0718 

LCH13NEDH-

11-24 61.06 60.11 59.88 6.17 79.18 0.9418 

NE07531 47.73 53.59 54.73 27.73 29.96 0.5537 

NE09517_1 53.57 56.94 57.03 15.42 43.59 0.9671 

OVERLAND 61.86 61.08 57.78 9.75 34.37 0.0535 

ROBIDOUX 57.81 57.53 56.25 9.77 30.88 0.4291 

SETTLER_CL 58.29 57.84 57.93 10.07 52.34 0.9628 

TX09D1172 60.37 61.43 56.02 19.40 27.42 0.0050 

TX10D2063 60.83 59.28 57.23 5.82 44.59 0.3173 

TX10D2363 50.36 56.13 58.18 11.65 37.43 0.2455 

TX11D3129 44.12 46.74 55.75 13.09 18.06 0.0000 

TX12M4063 63.01 65.38 59.83 25.13 30.43 0.0013 
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Appendix A 

Hybrid Selections from 2016.  

Table 3 represents the hybrids harvested in 2016 that were selected for analysis. Hybrids 

fell into 1 of 4 categories; Category 1 - both parents exhibited strong quality traits 

(green), Category 2 - both parents exhibited weak quality traits (red), Category 3 - the 

male parent exhibited strong quality traits and the female parent exhibited weak quality 

traits (orange), and lastly, Category 4 - the male parent exhibited weak quality traits and 

the female parent exhibited strong quality traits (blue). Also identifies if reciprocal cross 

was included in analysis. 

Short Pedigree 

Female 

Quality 

Male 

Quality Category 

Reciprocal 

Included? 

FREEMAN/LCH13NEDH-11-24 Strong Strong 1 Yes 

FREEMAN/NE09517-1 Strong Strong 1 Yes 

FREEMAN/NE10589 Strong Strong 1 Yes 

FREEMAN/SETTLER CL Strong Strong 1 Yes 

FREEMAN/WESLEY Strong Strong 1 Yes 

LCH13NEDH-11-24/FREEMAN Strong Strong 1 Yes 

LCH13NEDH-11-24/NE09517-1 Strong Strong 1 Yes 

LCH13NEDH-11-24/NE10589 Strong Strong 1 Yes 

LCH13NEDH-11-24/SETTLER CL Strong Strong 1 Yes 

LCH13NEDH-11-24/WESLEY Strong Strong 1 Yes 

NE09517-1/FREEMAN Strong Strong 1 Yes 

NE09517-1/LCH13NEDH-11-24 Strong Strong 1 Yes 

NE09517-1/NE10589 Strong Strong 1 Yes 

NE09517-1/SETTLER CL Strong Strong 1 Yes 

NE09517-1/WESLEY Strong Strong 1 Yes 

NE10589/FREEMAN Strong Strong 1 Yes 

NE10589/LCH13NEDH-11-24 Strong Strong 1 Yes 

NE10589/NE09517-1 Strong Strong 1 Yes 

NE10589/SETTLER CL Strong Strong 1 Yes 

NE10589/WESLEY Strong Strong 1 Yes 

SETTLER CL/FREEMAN Strong Strong 1 Yes 

SETTLER CL/LCH13NEDH-11-24 Strong Strong 1 Yes 

SETTLER CL/NE09517-1 Strong Strong 1 Yes 

SETTLER CL/NE10589 Strong Strong 1 Yes 

SETTLER CL/WESLEY Strong Strong 1 Yes 

WESLEY/FREEMAN Strong Strong 1 Yes 

WESLEY/LCH13NEDH-11-24 Strong Strong 1 Yes 

WESLEY/NE09517-1 Strong Strong 1 Yes 

WESLEY/NE10589 Strong Strong 1 Yes 

WESLEY/SETTLER CL Strong Strong 1 Yes 

GOODSTREAK/OVERLAND Weak Weak 2 Yes 
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GOODSTREAK/TX10D2063 Weak Weak 2 Yes 

GOODSTREAK/TX10D2230 Weak Weak 2 Yes 

Short Pedigree 

Female 

Quality 

Male 

Quality Category 

Reciprocal 

Included? 

GOODSTREAK/TX12M4063 Weak Weak 2 Yes 

GOODSTREAK/TX12M4065 Weak Weak 2 Yes 

OVERLAND/GOODSTREAK Weak Weak 2 Yes 

OVERLAND/TX10D2063 Weak Weak 2 No 

OVERLAND/TX10D2230 Weak Weak 2 Yes 

OVERLAND/TX11D3129 Weak Weak 2 Yes 

OVERLAND/TX12M4063 Weak Weak 2 Yes 

TX10D2063/GOODSTREAK Weak Weak 2 Yes 

TX10D2063/TX10D2230 Weak Weak 2 Yes 

TX10D2063/TX11D3129 Weak Weak 2 Yes 

TX10D2063/TX12M4063 Weak Weak 2 Yes 

TX10D2063/TX12M4065 Weak Weak 2 Yes 

TX10D2230/GOODSTREAK Weak Weak 2 Yes 

TX10D2230/OVERLAND Weak Weak 2 Yes 

TX10D2230/TX10D2063 Weak Weak 2 Yes 

TX10D2230/TX11D3129 Weak Weak 2 Yes 

TX10D2230/TX12M4063 Weak Weak 2 Yes 

TX10D2230/TX12M4065 Weak Weak 2 Yes 

TX11D3129/GOODSTREAK Weak Weak 2 No 

TX11D3129/OVERLAND Weak Weak 2 Yes 

TX11D3129/TX10D2063 Weak Weak 2 Yes 

TX11D3129/TX10D2230 Weak Weak 2 Yes 

TX11D3129/TX12M4063 Weak Weak 2 Yes 

TX11D3129/TX12M4065 Weak Weak 2 Yes 

TX12M4063/GOODSTREAK Weak Weak 2 Yes 

TX12M4063/OVERLAND Weak Weak 2 Yes 

TX12M4063/TX10D2063 Weak Weak 2 Yes 

TX12M4063/TX10D2230 Weak Weak 2 Yes 

TX12M4063/TX11D3129 Weak Weak 2 Yes 

TX12M4063/TX12M4065 Weak Weak 2 Yes 

TX12M4065/GOODSTREAK Weak Weak 2 Yes 

TX12M4065/OVERLAND Weak Weak 2 No 

TX12M4065/TX10D2063 Weak Weak 2 Yes 

TX12M4065/TX10D2230 Weak Weak 2 Yes 

TX12M4065/TX11D3129 Weak Weak 2 Yes 

TX12M4065/TX12M4063 Weak Weak 2 Yes 

GOODSTREAK/FREEMAN Weak Strong 3 Yes 

GOODSTREAK/LCH13NEDH-11-24 Weak Strong 3 Yes 

GOODSTREAK/NE09517-1 Weak Strong 3 Yes 
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GOODSTREAK/NE10589 Weak Strong 3 Yes 

GOODSTREAK/SETTLER CL Weak Strong 3 Yes 

Short Pedigree 

Female 

Quality 

Male 

Quality Category 

Reciprocal 

Included? 

GOODSTREAK/WESLEY Weak Strong 3 Yes 

OVERLAND/FREEMAN Weak Strong 3 Yes 

OVERLAND/LCH13NEDH-11-24 Weak Strong 3 Yes 

OVERLAND/NE09517-1 Weak Strong 3 Yes 

OVERLAND/NE10589 Weak Strong 3 Yes 

OVERLAND/SETTLER CL Weak Strong 3 Yes 

OVERLAND/WESLEY Weak Strong 3 Yes 

TX10D2063/FREEMAN Weak Strong 3 Yes 

TX10D2063/LCH13NEDH-11-24 Weak Strong 3 Yes 

TX10D2063/NE09517-1 Weak Strong 3 Yes 

TX10D2063/NE10589 Weak Strong 3 Yes 

TX10D2063/SETTLER CL Weak Strong 3 Yes 

TX10D2063/WESLEY Weak Strong 3 Yes 

TX10D2230/FREEMAN Weak Strong 3 Yes 

TX10D2230/NE09517-1 Weak Strong 3 Yes 

TX10D2230/NE10589 Weak Strong 3 Yes 

TX10D2230/SETTLER CL Weak Strong 3 Yes 

TX10D2230/WESLEY Weak Strong 3 Yes 

TX11D3129/FREEMAN Weak Strong 3 Yes 

TX11D3129/LCH13NEDH-11-24 Weak Strong 3 No 

TX11D3129/NE09517-1 Weak Strong 3 Yes 

TX11D3129/NE10589 Weak Strong 3 Yes 

TX11D3129/SETTLER CL Weak Strong 3 Yes 

TX11D3129/WESLEY Weak Strong 3 Yes 

TX12M4063/FREEMAN Weak Strong 3 Yes 

TX12M4063/LCH13NEDH-11-24 Weak Strong 3 Yes 

TX12M4063/NE10589 Weak Strong 3 Yes 

TX12M4063/SETTLER CL Weak Strong 3 Yes 

TX12M4063/WESLEY Weak Strong 3 Yes 

TX12M4065/FREEMAN Weak Strong 3 Yes 

TX12M4065/LCH13NEDH-11-24 Weak Strong 3 Yes 

TX12M4065/NE09517-1 Weak Strong 3 Yes 

TX12M4065/NE10589 Weak Strong 3 Yes 

TX12M4065/SETTLER CL Weak Strong 3 Yes 

TX12M4065/WESLEY Weak Strong 3 Yes 

FREEMAN/GOODSTREAK Strong Weak 4 Yes 

FREEMAN/OVERLAND Strong Weak 4 Yes 

FREEMAN/TX10D2063 Strong Weak 4 Yes 

FREEMAN/TX10D2230 Strong Weak 4 Yes 
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FREEMAN/TX11D3129 Strong Weak 4 Yes 

FREEMAN/TX12M4063 Strong Weak 4 Yes 

Short Pedigree 

Female 

Quality 

Male 

Quality Category 

Reciprocal 

Included? 

FREEMAN/TX12M4065 Strong Weak 4 Yes 

LCH13NEDH-11-24/GOODSTREAK Strong Weak 4 Yes 

LCH13NEDH-11-24/OVERLAND Strong Weak 4 Yes 

LCH13NEDH-11-24/TX10D2063 Strong Weak 4 Yes 

LCH13NEDH-11-24/TX10D2230 Strong Weak 4 No 

LCH13NEDH-11-24/TX12M4063 Strong Weak 4 Yes 

LCH13NEDH-11-24/TX12M4065 Strong Weak 4 Yes 

NE09517-1/GOODSTREAK Strong Weak 4 Yes 

NE09517-1/OVERLAND Strong Weak 4 Yes 

NE09517-1/TX10D2063 Strong Weak 4 Yes 

NE09517-1/TX10D2230 Strong Weak 4 Yes 

NE09517-1/TX11D3129 Strong Weak 4 Yes 

NE09517-1/TX12M4065 Strong Weak 4 Yes 

NE10589/GOODSTREAK Strong Weak 4 Yes 

NE10589/OVERLAND Strong Weak 4 Yes 

NE10589/TX10D2063 Strong Weak 4 Yes 

NE10589/TX10D2230 Strong Weak 4 Yes 

NE10589/TX11D3129 Strong Weak 4 Yes 

NE10589/TX12M4063 Strong Weak 4 Yes 

NE10589/TX12M4065 Strong Weak 4 Yes 

SETTLER CL/GOODSTREAK Strong Weak 4 Yes 

SETTLER CL/OVERLAND Strong Weak 4 Yes 

SETTLER CL/TX10D2063 Strong Weak 4 Yes 

SETTLER CL/TX10D2230 Strong Weak 4 Yes 

SETTLER CL/TX11D3129 Strong Weak 4 Yes 

SETTLER CL/TX12M4063 Strong Weak 4 Yes 

SETTLER CL/TX12M4065 Strong Weak 4 Yes 

WESLEY/GOODSTREAK Strong Weak 4 Yes 

WESLEY/OVERLAND Strong Weak 4 Yes 

WESLEY/TX10D2063 Strong Weak 4 Yes 

WESLEY/TX10D2230 Strong Weak 4 Yes 

WESLEY/TX11D3129 Strong Weak 4 Yes 

WESLEY/TX12M4063 Strong Weak 4 Yes 

WESLEY/TX12M4065 Strong Weak 4 Yes 
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Appendix B 

Hybrid Selections from 2017. 

Table 4 represents hybrids harvested in 2017 that were selected for analysis. Hybrids fell 

into 1 of 4 categories; Category 1 - both parents exhibited strong quality traits (green), 

Category 2 - both parents exhibited weak quality traits (red), Category 3 - the male parent 

exhibited strong quality traits and the female parent exhibited weak quality traits 

(orange), and lastly, Category 4 - the male parent exhibited weak quality traits and the 

female parent exhibited strong quality traits (blue). Also identifies if reciprocal cross was 

included in analysis. 

Short Pedigree 

Female 

Quality 

Male 

Quality Category 

Reciprocal 

Included? 

FREEMAN/HARRY Strong Strong 1 Yes 

FREEMAN/LCH13NEDH_11_24 Strong Strong 1 Yes 

FREEMAN/NE07531 Strong Strong 1 Yes 

FREEMAN/NE09517_1 Strong Strong 1 Yes 

FREEMAN/ROBIDOUX Strong Strong 1 Yes 

FREEMAN/SETTLER_CL Strong Strong 1 Yes 

HARRY/FREEMAN Strong Strong 1 Yes 

HARRY/NE07531 Strong Strong 1 Yes 

HARRY/NE09517_1 Strong Strong 1 Yes 

HARRY/ROBIDOUX Strong Strong 1 Yes 

HARRY/SETTLER_CL Strong Strong 1 Yes 

LCH13NEDH_11_24/FREEMAN Strong Strong 1 Yes 

LCH13NEDH_11_24/HARRY Strong Strong 1 No 

LCH13NEDH_11_24/NE07531 Strong Strong 1 No 

LCH13NEDH_11_24/ROBIDOUX Strong Strong 1 No 

LCH13NEDH_11_24/SETTLER_CL Strong Strong 1 Yes 

NE07531/FREEMAN Strong Strong 1 Yes 

NE07531/HARRY Strong Strong 1 Yes 

NE07531/ROBIDOUX Strong Strong 1 Yes 

NE07531/SETTLER_CL Strong Strong 1 Yes 

NE09517_1/FREEMAN Strong Strong 1 Yes 

NE09517_1/HARRY Strong Strong 1 Yes 

NE09517_1/ROBIDOUX Strong Strong 1 Yes 

NE09517_1/SETTLER_CL Strong Strong 1 No 

ROBIDOUX/FREEMAN Strong Strong 1 Yes 

ROBIDOUX/HARRY Strong Strong 1 Yes 

ROBIDOUX/NE07531 Strong Strong 1 Yes 

ROBIDOUX/NE09517_1 Strong Strong 1 Yes 

ROBIDOUX/SETTLER_CL Strong Strong 1 Yes 

SETTLER_CL/FREEMAN Strong Strong 1 Yes 

SETTLER_CL/HARRY Strong Strong 1 Yes 
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SETTLER_CL/LCH13NEDH_11_24 Strong Strong 1 Yes 

SETTLER_CL/NE07531 Strong Strong 1 Yes 

Short Pedigree 

Female 

Quality 

Male 

Quality Category 

Reciprocal 

Included? 

SETTLER_CL/ROBIDOUX Strong Strong 1 Yes 

GOODSTREAK/OVERLAND Weak Weak 2 Yes 

GOODSTREAK/TX09D1172 Weak Weak 2 Yes 

GOODSTREAK/TX10D2063 Weak Weak 2 Yes 

GOODSTREAK/TX10D2363 Weak Weak 2 Yes 

GOODSTREAK/TX11D3129 Weak Weak 2 Yes 

GOODSTREAK/TX12M4063 Weak Weak 2 Yes 

OVERLAND/GOODSTREAK Weak Weak 2 Yes 

OVERLAND/TX09D1172 Weak Weak 2 Yes 

OVERLAND/TX10D2063 Weak Weak 2 Yes 

OVERLAND/TX10D2363 Weak Weak 2 Yes 

OVERLAND/TX11D3129 Weak Weak 2 Yes 

OVERLAND/TX12M4063 Weak Weak 2 Yes 

TX09D1172/GOODSTREAK Weak Weak 2 Yes 

TX09D1172/OVERLAND Weak Weak 2 Yes 

TX09D1172/TX10D2063 Weak Weak 2 Yes 

TX09D1172/TX10D2363 Weak Weak 2 Yes 

TX09D1172/TX11D3129 Weak Weak 2 Yes 

TX09D1172/TX12M4063 Weak Weak 2 Yes 

TX10D2063/GOODSTREAK Weak Weak 2 Yes 

TX10D2063/OVERLAND Weak Weak 2 Yes 

TX10D2063/TX09D1172 Weak Weak 2 Yes 

TX10D2063/TX10D2363 Weak Weak 2 Yes 

TX10D2063/TX11D3129 Weak Weak 2 Yes 

TX10D2063/TX12M4063 Weak Weak 2 Yes 

TX10D2363/GOODSTREAK Weak Weak 2 Yes 

TX10D2363/OVERLAND Weak Weak 2 Yes 

TX10D2363/TX09D1172 Weak Weak 2 Yes 

TX10D2363/TX10D2063 Weak Weak 2 Yes 

TX10D2363/TX11D3129 Weak Weak 2 Yes 

TX10D2363/TX12M4063 Weak Weak 2 Yes 

TX11D3129/GOODSTREAK Weak Weak 2 Yes 

TX11D3129/OVERLAND Weak Weak 2 Yes 

TX11D3129/TX09D1172 Weak Weak 2 Yes 

TX11D3129/TX10D2063 Weak Weak 2 Yes 

TX11D3129/TX10D2363 Weak Weak 2 Yes 

TX11D3129/TX12M4063 Weak Weak 2 Yes 

TX12M4063/GOODSTREAK Weak Weak 2 Yes 

TX12M4063/OVERLAND Weak Weak 2 Yes 
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TX12M4063/TX09D1172 Weak Weak 2 Yes 

TX12M4063/TX10D2063 Weak Weak 2 Yes 

Short Pedigree 

Female 

Quality 

Male 

Quality Category 

Reciprocal 

Included? 

TX12M4063/TX10D2363 Weak Weak 2 Yes 

TX12M4063/TX11D3129 Weak Weak 2 Yes 

GOODSTREAK/FREEMAN Weak Strong 3 Yes 

GOODSTREAK/HARRY Weak Strong 3 Yes 

GOODSTREAK/LCH13NEDH_11_24 Weak Strong 3 Yes 

GOODSTREAK/NE07531 Weak Strong 3 Yes 

GOODSTREAK/NE09517_1 Weak Strong 3 Yes 

GOODSTREAK/ROBIDOUX Weak Strong 3 Yes 

GOODSTREAK/SETTLER_CL Weak Strong 3 Yes 

OVERLAND/FREEMAN Weak Strong 3 Yes 

OVERLAND/HARRY Weak Strong 3 Yes 

OVERLAND/LCH13NEDH_11_24 Weak Strong 3 Yes 

OVERLAND/NE07531 Weak Strong 3 Yes 

OVERLAND/NE09517_1 Weak Strong 3 Yes 

OVERLAND/ROBIDOUX Weak Strong 3 Yes 

OVERLAND/SETTLER_CL Weak Strong 3 Yes 

TX09D1172/FREEMAN Weak Strong 3 Yes 

TX09D1172/HARRY Weak Strong 3 Yes 

TX09D1172/LCH13NEDH_11_24 Weak Strong 3 Yes 

TX09D1172/NE07531 Weak Strong 3 Yes 

TX09D1172/NE09517_1 Weak Strong 3 Yes 

TX09D1172/ROBIDOUX Weak Strong 3 Yes 

TX09D1172/SETTLER_CL Weak Strong 3 Yes 

TX10D2063/FREEMAN Weak Strong 3 Yes 

TX10D2063/HARRY Weak Strong 3 Yes 

TX10D2063/LCH13NEDH_11_24 Weak Strong 3 Yes 

TX10D2063/NE07531 Weak Strong 3 No 

TX10D2063/NE09517_1 Weak Strong 3 Yes 

TX10D2063/ROBIDOUX Weak Strong 3 No 

TX10D2063/SETTLER_CL Weak Strong 3 Yes 

TX10D2363/FREEMAN Weak Strong 3 Yes 

TX10D2363/HARRY Weak Strong 3 Yes 

TX10D2363/NE07531 Weak Strong 3 No 

TX10D2363/NE09517_1 Weak Strong 3 Yes 

TX10D2363/ROBIDOUX Weak Strong 3 Yes 

TX10D2363/SETTLER_CL Weak Strong 3 No 

TX11D3129/FREEMAN Weak Strong 3 Yes 

TX11D3129/HARRY Weak Strong 3 Yes 

TX11D3129/NE07531 Weak Strong 3 Yes 
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TX11D3129/NE09517_1 Weak Strong 3 Yes 

TX11D3129/ROBIDOUX Weak Strong 3 Yes 

Short Pedigree 

Female 

Quality 

Male 

Quality Category 

Reciprocal 

Included? 

TX11D3129/SETTLER_CL Weak Strong 3 Yes 

TX12M4063/FREEMAN Weak Strong 3 Yes 

TX12M4063/HARRY Weak Strong 3 Yes 

TX12M4063/LCH13NEDH_11_24 Weak Strong 3 Yes 

TX12M4063/NE07531 Weak Strong 3 Yes 

TX12M4063/NE09517_1 Weak Strong 3 Yes 

TX12M4063/ROBIDOUX Weak Strong 3 Yes 

TX12M4063/SETTLER_CL Weak Strong 3 Yes 

FREEMAN/GOODSTREAK Strong Weak 4 Yes 

FREEMAN/OVERLAND Strong Weak 4 Yes 

FREEMAN/TX09D1172 Strong Weak 4 Yes 

FREEMAN/TX10D2063 Strong Weak 4 Yes 

FREEMAN/TX10D2363 Strong Weak 4 Yes 

FREEMAN/TX11D3129 Strong Weak 4 Yes 

FREEMAN/TX12M4063 Strong Weak 4 Yes 

HARRY/GOODSTREAK Strong Weak 4 Yes 

HARRY/OVERLAND Strong Weak 4 Yes 

HARRY/TX09D1172 Strong Weak 4 Yes 

HARRY/TX10D2063 Strong Weak 4 Yes 

HARRY/TX10D2363 Strong Weak 4 Yes 

HARRY/TX11D3129 Strong Weak 4 Yes 

HARRY/TX12M4063 Strong Weak 4 Yes 

LCH13NEDH_11_24/GOODSTREAK Strong Weak 4 Yes 

LCH13NEDH_11_24/OVERLAND Strong Weak 4 Yes 

LCH13NEDH_11_24/TX09D1172 Strong Weak 4 Yes 

LCH13NEDH_11_24/TX10D2063 Strong Weak 4 Yes 

LCH13NEDH_11_24/TX11D3129 Strong Weak 4 No 

LCH13NEDH_11_24/TX12M4063 Strong Weak 4 Yes 

NE07531/GOODSTREAK Strong Weak 4 Yes 

NE07531/OVERLAND Strong Weak 4 Yes 

NE07531/TX09D1172 Strong Weak 4 Yes 

NE07531/TX11D3129 Strong Weak 4 Yes 

NE07531/TX12M4063 Strong Weak 4 Yes 

NE09517_1/GOODSTREAK Strong Weak 4 Yes 

NE09517_1/OVERLAND Strong Weak 4 Yes 

NE09517_1/TX09D1172 Strong Weak 4 Yes 

NE09517_1/TX10D2063 Strong Weak 4 Yes 

NE09517_1/TX10D2363 Strong Weak 4 Yes 

NE09517_1/TX11D3129 Strong Weak 4 Yes 
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NE09517_1/TX12M4063 Strong Weak 4 Yes 

ROBIDOUX/GOODSTREAK Strong Weak 4 Yes 

Short Pedigree 

Female 

Quality 

Male 

Quality Category 

Reciprocal 

Included? 

ROBIDOUX/OVERLAND Strong Weak 4 Yes 

ROBIDOUX/TX09D1172 Strong Weak 4 yes 

ROBIDOUX/TX10D2363 Strong Weak 4 Yes 

ROBIDOUX/TX11D3129 Strong Weak 4 Yes 

ROBIDOUX/TX12M4063 Strong Weak 4 Yes 

SETTLER_CL/GOODSTREAK Strong Weak 4 Yes 

SETTLER_CL/OVERLAND Strong Weak 4 Yes 

SETTLER_CL/TX09D1172 Strong Weak 4 Yes 

SETTLER_CL/TX10D2063 Strong Weak 4 Yes 

SETTLER_CL/TX11D3129 Strong Weak 4 Yes 

SETTLER_CL/TX12M4063 Strong Weak 4 Yes 
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Appendix C 

2016 Parent Grain Protein and SKCS data. 

Table 5 shows the grain protein % (moisture fixed at 12%), mean kernel hardness index 

(HI), mean kernel diameter (mm), and mean kernel weight (mg) of the 2016 parents. The 

kernel data represents the average of 100 seeds. The average, max, min, and standard 

deviations of protein, hardness, diameter, and weight are displayed below the table.  

Sample Name 

Protein % 

(Fixed @ 

12% 

Moisture) 

Hardness 

Index 

(HI) 

kernel 

diameter 

(mm) 

kernel 

weight 

(mg) 

S.D. 

kernel 

weight 

FREEMAN 13.4 63.9 2.7 33.4 10.3 

GOODSTREAK 15.9 75.6 2.7 29.7 8.7 

LCH13NEDH-

11-24 13.7 77.3 2.6 29.7 7.6 

NE07531 14.2 73.9 2.7 31.2 10.7 

NE09517-1 14.8 77.1 2.8 32.7 9.6 

NE10589 13.7 82.6 2.8 31.1 9.0 

NE10683 13.6 64.1 2.7 32.1 10.1 

OVERLAND 14.7 87.7 2.6 26.6 9.2 

PANHANDLE 15.7 74.3 2.7 32.5 9.3 

PSB13NEDH-

15-58W 13.6 74.5 2.7 32.1 13.1 

ROBIDOUX 13.9 76.9 2.7 30.4 10.3 

SETTLER CL 13.5 81.1 2.8 32.9 10.2 

TX09D1172 15.9 86.6 2.8 32.1 10.1 

TX10D2063 15.4 80.4 2.6 28.5 7.9 

TX10D2230 16.7 90.2 2.8 34.1 10.9 

TX10D2363 16.4 72.8 2.8 31.3 8.8 

TX11D3008 15.4 95.2 2.6 28.8 9.6 

TX11D3026 14.3 93.7 2.8 31.6 8.1 

TX11D3049 15.9 79.0 2.7 29.5 10.0 

TX11D3112 14.6 87.8 2.8 31.9 9.4 

TX11D3129 15.7 59.6 2.8 32.7 8.9 

TX12M4004 14.5 72.1 2.9 35.3 9.6 

TX12M4063 15.9 83.0 2.7 31.5 11.2 

TX12M4065 15.9 92.0 2.8 34.7 8.8 

WESLEY 14.6 77.4 2.6 29.8 10.4 

Average 14.9 79.2 2.7 31.4  

Max 16.7 95.2 2.9 35.3  

Min 13.4 59.6 2.6 26.3  

S.D. 1.02 9.19 .07 2.02  
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Appendix D 

2017 Parent Grain Protein and SKCS data. 

Physical characteristics of parents including; grain protein % (with grain moisture fixed 

at 12%), mean kernel hardness index (HI), mean kernel diameter (mm), and mean kernel 

weight (mg). Under the graph the average, max, min, and standard deviation of protein, 

hardness, diameter, and weight are listed. 

Sample Name 

Protein % 

(Fixed @ 12% 

Moisture) 

Hardness 

Index 

(HI) 

kernel 

diameter 

(mm) 

kernel 

weight 

(mg) 

TX11D3008 15.3 83.0 2.6 27.4 

WESLEY 15.4 54.0 2.9 35.9 

TX12M4004 14.1 60.3 2.8 33.6 

FREEMAN 13.9 43.9 2.7 30.5 

TX10D2230 15.1 70.3 2.9 35.6 

TX12M4065 14.8 78.1 2.6 27.3 

TX09D1172 15.0 60.4 2.8 35.0 

OVERLAND 13.5 61.9 2.6 29.8 

NE09517_1 13.5 53.6 2.7 31.7 

RUTH 13.9 64.6 2.8 31.4 

NE07531 13.7 47.7 2.8 33.0 

TX12M4063 14.8 63.0 2.9 35.0 

HARRY 13.6 52.1 2.6 29.4 

TX10D2363 15.8 50.4 2.9 34.6 

TX11D3049 15.8 61.3 2.7 30.1 

TX11D3026 14.4 76.8 2.7 31.2 

LCH13NEDH-

11-24 14.0 61.1 2.5 26.3 

TX10D2063 14.8 60.8 2.8 30.9 

ROBIDOUX 13.7 57.8 2.7 28.8 

TX11D3112 14.3 69.3 2.8 32.7 

PANHANDLE 14.7 56.9 2.7 32.1 

SETTLER_CL 13.2 58.3 2.7 30.9 

TX11D3129 14.6 44.1 2.6 28.8 

PSB13NEDH-

15-58W 13.9 61.3 2.8 31.7 

GOODSTREAK 15.5 52.2 2.8 31.8 

NE10683 13.5 43.1 2.8 33.9 

Average 14.4 59.5 2.7 31.5 

Max 15.8 83.0 2.9 35.9 

Min 13.2 43.1 2.5 26.3 

S.D. 0.77 10.24 .11 2.62 
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Appendix E 

SDS Sedimentation and SDS-SRC Hybrid Assay Control Compilation. 

These two tables represent a compilation of the SDS-SRC and SDS sedimentation results 

of the control variety. The low CV values for both assays (SDS-SRC – 2.42, SDS 

sedimentation – 1.70) indicates that both assays are highly repeatable and justifies our 

decision not to perform duplicates in our assays.  

SDS-SRC Hybrid Assay Control Compilation 

ID Weight Value % 

QL control 315.8362 

QL control 328.0245 

QL control 322.7049 

QL control 310.6239 

QL control 305.6304 

QL control 312.4452 

QL control 327.6450 

QL control 319.5693 

QL control 311.1345 

QL control 323.3741 

Average 317.6988 

St. Dev. 7.718490981 

CV 2.42949957 

SDS Sedimentation Assay Control Compilation 

ID Sedimentation Volume (mL) 

QL control 13.38 

QL control 13.25 

QL control 13.59 

QL control 13.18 

QL control 13 

QL control 13.43 

QL control 13.2 

QL control 13.5 

QL control 13.6 

QL control 13.62 

QL control 13 

QL control 13.55 

Average 13.35833333 

St. Dev. 0.227309694 

CV 1.701632144 
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Appendix F 

Numbers assigned to parent cultivars used for hybrid analyses and comparisons. 

Listed are the numbers assigned to the parents categorized in the 2016 and 2017 analyses. 

This was used to make comparisons between reciprocals and parent cultivars. 

2016  
Cultivar Number 

Freeman 1 

NE10589 2 

LCH13NEDH_11_24 3 

Wesley 4 

NE09517_1 5 

Settler_CL 7 

Goodstreak 8 

Overland 9 

 TX10D2230 10 

 TX10D2063 11 

 TX12M4065 12 

 TX11D3129 13 

TX12M4063 14 

  

2017  
Cultivar Number 

Freeman 1 

 Harry 2 

 LCH13NEDH_11_24 3 

 NE07531 4 

 NE09517_1 5 

 Robidoux 6 

 Settler_CL 7 

 Goodstreak 8 

 Overland 9 

 TX09D1172 10 

 TX10D2063 11 

 TX10D2363 12 

 TX11D3129 13 

 TX12M4063 14 
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