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Applications of List Decoding to Tracing Traitors
Alice Silverberg, Jessica Staddon, Member, IEEEand Judy L. Walker, Member, IEEE

Abstract— We apply results from algebraic coding theory to
solve problems in cryptography, by using recent results on list
decoding of error-correcting codes to efficiently find traitors who
collude to create pirates. We produce schemes for which the TA
(traceability) traitor tracing algorithm is very fast. We compare
the TA and IPP (identifiable parent property) traitor tracing
algorithms, and give evidence that when using an algebraic
structure, the ability to trace traitors with the IPP algorithm
implies the ability to trace with the TA algorithm. We also
demonstrate that list decoding techniques can be used to find
all possible pirate coalitions. Finally, we raise some related open
questions about linear codes, and suggest uses for other decoding
techniques in the presence of additional information about traitor
behavior.

Index Terms— Algebraic geometry code, identifiable parent
property, list decoding, traceability code, traitor tracing, Reed-
Solomon code.

I. INTRODUCTION

An important problem in the protection of intellectual
property is how to deter piracy. This leads to the question
of how to efficiently trace traitors, i.e., legitimate users who
collude to create pirate software, pirate decoder boxes, etc.
Traceability schemes were introduced in 1994 in [6] and
have been extensively studied in the intervening years. We
focus on one of the few aspects of this area of work that
has received little attention: the complexity of the traitor
tracing algorithms. We show that powerful new techniques
for the list decoding of error-correcting codes enable us to
construct traceability schemes with very fast traitor tracing
algorithms. These schemes guarantee the identification of at
least one traitor. We also show that the same techniques can
be used to build an algorithm for finding all possible traitor
coalitions. Over time, this algorithm can be used to accumulate
convincing evidence against additional users. Further, we
discuss potential applications of other decoding methods to
the problem of tracing traitors, suggest alternative approaches
when additional information is known about the way the
traitors are operating, examine the relationship between two
important tracing algorithms, and raise some open questions
about linear codes.

An example where our schemes could be applied is a pay-
TV scenario where each subscriber is given a sequence of
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keys, one key for each broadcast segment, and traitors pool
their keys to create a pirate decoder. Another example, given
in [5], is a movie where different copies have segments filmed
from different camera angles. Our scheme would trace pirated
copies to colluding owners of copies of the movie.

Our approach takes advantage of recent powerful list decod-
ing methods, which originated with the work of Sudan [19]
and were refined in [11]. In list decoding the input is a received
word and the output is the list of all codewords within a given
Hamming distance of the received word. The results in [19] are
not strong enough to be applicable in the setting in which the
TA algorithm succeeds in finding traitors (as opposed to only
identifying probable traitors), since the decoding procedure in
[19] is not capable of correcting enough errors in the code.
However, the improvements in [11] are precisely sufficient to
be applicable to the setting where the TA algorithm succeeds.
An additional advantage of using list decoding is that the
associated traitor tracing algorithm gives a list containing one
or more traitors, rather than only one. Efficient list decoding
algorithms now exist for Reed-Solomon codes, more general
algebraic geometry codes, and some concatenated codes. List
decoding techniques are receiving wide attention in the coding
theory community, and improvements and generalizations are
being rapidly produced.

Although error-correcting techniques are used to attain
traceability in [3], our paper gives the first applications of
list decoding to the problem of traceability. List decoding is
applied to the related problem of watermarking in [21].

We note that algebraic geometry codes appear to have been
under-utilized in cryptological applications. For example, the
results of [17] can be used to give better explicit examples
of c-frameproof codes than those obtained in [5]. The codes
constructed in [17] are concatenated codes where the outer
code is an algebraic geometry code coming from a Hermitian
curve, while those used in [5] come from pseudo-random
graphs.

II. BACKGROUND ON CODES AND TRACEABILITY

A. Definitions and Notation

If C is a code of length r on a (finite) alphabet Q, we write
the codewords as x = (x(1), · · · , x(r)), where x(i) ∈ Q for
1 ≤ i ≤ r. Subsets of C will be called coalitions. For any
coalition C0 ⊆ C, we define the set of descendants of C0,
denoted desc(C0) by

desc(C0) = {w ∈ Qr : w(i) ∈ {x(i) : x ∈ C0}, 1 ≤ i ≤ r}.

The set desc(C0) consists of the r-tuples that could be
produced by the coalition C0. We define descc(C) to be the
set of all w ∈ Qr for which there exists a coalition C0 of size
at most c such that w ∈ desc(C0). In other words, descc(C)
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consists of the r-tuples that could be produced by a coalition of
size at most c. For x, y ∈ Qr, let I(x, y) = {i : x(i) = y(i)}.
The (Hamming) distance between x and y is r − |I(x, y)|.

Definition 1: A code C is a c-TA (traceability) code if for
all coalitions Ci of size at most c, if w ∈ desc(Ci) then there
exists x ∈ Ci such that |I(x, w)| > |I(z, w)| for all z ∈
C − Ci.

In other words, C is a c-TA code if, whenever a coalition of
size at most c produces a pirate word w, there is an element
of the coalition that is closer to w than any codeword not in
the coalition.

Codes with the identifiable parent property (IPP) are another
type of traceability code.

Definition 2: A code C is a c-IPP code if for all w ∈
descc(C), the intersection of the coalitions Ci of size at most
c such that w ∈ desc(Ci) is nonempty.

If C is a c-IPP code and w ∈ descc(C), then the traitors
that can produce the pirate w are the codewords that lie in all
coalitions Ci of size at most c such that w ∈ desc(Ci).

When implementing one of these traceability codes, the
users are given encrypted versions of their codewords, and not
the codewords themselves. Encrypting the codewords thwarts
algebraic attacks.

Suppose X is a smooth, absolutely irreducible curve of
genus g defined over a finite field Fq, P = {P1, . . . , Pr} is a
set of r distinct Fq-rational points on X , P0 is an Fq-rational
point on X that is not in the set P , and ` is an integer. Then the
one-point algebraic geometry (AG) code CX (P , `P0) consists
of the r-tuples (f(P1), . . . , f(Pr)), with f running over the
rational functions on X whose only pole is P0, where the
multiplicity is at most `. If 2g − 2 < ` < r, this code has
dimension ` + 1 − g and minimum distance at least r − `.
Reed-Solomon codes can be viewed as algebraic geometry
codes by taking X to be the projective line, P to be the set
of points corresponding to the r chosen field elements, P0 to
be the point at infinity, and ` = k − 1, where k is the code’s
dimension.

B. Background Traceability Results

Lemma 3: ([18], Lemma 1.3) Every c-TA code is a c-IPP
code.

As shown in [18], there are c-IPP codes that are not c-TA.
We give a simple example of a 2-IPP code that is not 2-TA.

Example 4: Let u1 = (0, 0, 1), u2 = (1, 0, 0), and u3 =
(2, 0, 0). The code {u1, u2, u3} is clearly 2-IPP, since the first
entry of a pirate determines a traitor. The coalition {u1, u2}
can produce the pirate w = (0, 0, 0). However, |I(u1, w)| =
|I(u2, w)| = |I(u3, w)| = 2, so the code is not 2-TA.

Note that for c-IPP codes, traitor tracing is roughly an
O(

(

N
c

)

) process, where N is the total number of codewords
in the code. A traitor tracing algorithm for a c-TA code takes
as input a w ∈ descc(C) and outputs a codeword x such that
|I(x, w)| is largest. Hence for c-TA codes, tracing is an O(N)
process, in general.

The next result, which is proved in [18] (see also [6] and
[7]), shows that for codes with large enough minimum distance
the TA algorithm suffices, and consists of finding codewords

within distance r − r
c from the pirate. Further, all codewords

within this distance will be traitors.
Theorem 5: ([18], Theorem 4.4) Suppose C is a code of

length r, c is a positive integer, and the minimum distance d
of C satisfies d > r − r

c2 . Then

(i) C is a c-TA code;
(ii) if C0 is a coalition of size at most c, and w ∈ desc(C0),

then:

a) there exists an element of C0 within distance r− r
c

of w, and
b) every codeword within distance r − r

c of w is in
the coalition C0.

Proof: Let C0 and w be as in the statement of the
theorem. By the pigeonhole principle, there exists x ∈ C0 such
that |I(x, w)| ≥ r

c , and so the distance from x to w is at most
r − r

c . Now suppose z ∈ C \ C0. Then since w ∈ desc(C0)
and any two distinct codewords of C share fewer than r

c2

coordinates, we have

|I(z, w)| ≤
∑

y∈C0

|I(z, y)| < c
r

c2
=

r

c
.

Thus z has distance greater than r − r
c from w, and by

definition, C is a c-TA code.

III. EFFICIENT TRACING ALGORITHMS VIA LIST

DECODING

In this section we show how the efficiency of the TA trac-
ing algorithm can be greatly improved when the traceability
scheme is based on certain error-correcting codes, and the
tracing algorithm uses fast list decoding methods. What is an
O(N) process in general becomes a process that runs in time
polynomial in c log N , where c is the maximum coalition size
and N is the number of users. These constructions match the
best previously known traceability schemes in this model in
terms of the alphabet size that is required to support a given
level of traceability and codeword length (roughly speaking,
the alphabet size is O(N

c
2

r )), and exceed all earlier schemes
in the speed with which they trace (at least) one traitor. The
following theorem describes constructions based on Reed-
Solomon, algebraic geometry, and concatenated codes. One
advantage of considering all three types of codes is that the
appropriate code choice for the traceability scheme depends
on the desired parameters.

Theorem 6: (i) Let C be a Reed-Solomon code of length
r and dimension k over a finite field Fq of size at most
2r. If c is an integer, c ≥ 2, and r > c2(k − 1), then C
is a c-TA code and there is a traitor tracing algorithm
that runs in time O(r15). If r = (1 + δ)c2(k − 1) then
the algorithm runs in time O( r3

δ6 ). For r = Θ(c2k), the
runtime is O(c30 log15

q N).
(ii) Let X be a nonsingular plane curve of genus g defined

over a finite field Fq , P a set of r distinct Fq-rational
points on X , P0 an Fq-rational point on X that is not
in P , and k an integer such that k > g − 1. Let c be an
integer such that c ≥ 2 and r > c2(k+g−1), assume that
q ≤ 2r, and assume the pre-processing described in [11]
has occurred. Then the one-point AG code CX(P , (k +
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g−1)P0) is a c-TA code with a traitor tracing algorithm
that runs in time polynomial in r.

(iii) If k and c are positive integers, q is a prime power,
q > c2 ≥ 4, and δ is a real number such that 0 < δ ≤
q/c2

−1
q−1 , then there exists an explicit linear c-TA code

over the field Fq of length r = O( k2

δ3 log(1/δ) ) (or length

r = O( k
δ2 log2(1/δ)

)) and dimension k with a polynomial
(in r) traitor tracing algorithm.

Proof:

(i) Since C is a Reed-Solomon code, the minimum distance
d satisfies d = r − k + 1. The condition r > c2(k − 1)
is then equivalent to the condition d > r − r/c2. By
Theorem 5, C is a c-TA code and traitor tracing amounts
to finding a codeword within distance r − r/c of the
pirate. Theorem 12 and Corollary 13 of [11] imply that
if t >

√

(k − 1)r then all codewords within distance
r − t of a given word can be listed in time O(r15),
and if t2 = (1 + δ)(k − 1)r then the runtime is O( r3

δ6 ).
Taking t = r/c gives the desired results. (Note that k =
logq N .)

(ii) The minimum distance d of the code satisfies d ≥ r −
k−g+1 (see, for example, Theorem 10.6.3 of [15]). By
our choice of c we have d ≥ r−k−g+1 > r−r/c2 and
r − r/c < r −

√

r(k + g − 1). By Theorem 27 of [11],
there exists an algorithm that runs in time polynomial
in r that outputs the list of codewords of distance less
than r−

√

r(k + g − 1) from a given word. Now apply
Theorem 5.

(iii) Theorems 7 and 8 and Corollaries 2 and 3 of [12] imply
that there exists an explicit concatenated code over Fq

of the correct length r and dimension k, with minimum
distance d ≥ (1 − 1

q )(1 − δ)r, with a polynomial time
list decoding algorithm for e errors, as long as e < (1−√

δ)(q − 1)r/q. The condition δ ≤ q/c2
−1

q−1 implies that
d > r − r/c2 and that the upper bound on the number
of errors is satisfied when e ≤ r − r/c. The result now
follows from Theorem 5.

We emphasize that further improvements in the runtime of
list decoding algorithms are being rapidly produced. It seems
that some of these results will bring the runtime down to
O(r log3 r) for Reed-Solomon codes, at least in certain cases
(see [9]). The list decoding algorithm in [11] for AG codes is
improved in [20] (see Theorem 4.1), where an explicit runtime
is also given.

In related work, a public-key traitor tracing scheme is
given in [3]. One of the nice properties of the scheme in
[3] is that it is possible to identify all traitors. We note that
although our algorithms in this section can only guarantee the
identification of one traitor, they do so in significantly faster
time (polynomial in c log N , versus polynomial in N , with
N the number of codewords and c the maximum coalition
size). In addition, we note that probabilistic tracing has been
shown to be possible on potentially shorter codewords in [5].
The tracing algorithm in [5] appears to have a longer expected
running time than those of Theorem 6.

IV. COMPARATIVE ANALYSIS OF TA AND IPP
TRACEABILITY

The results in this section justify a focus on TA (as opposed
to more general IPP) schemes. In this paper we have been
using linear codes to construct schemes for which the TA
tracing algorithm is efficient. We know by Lemma 3 that c-TA
codes are also c-IPP codes. However the converse fails ([18];
see also Example 4 above). If constructions of schemes for
which the IPP tracing algorithm is efficient (i.e., significantly
reduced from O(

(

N
c

)

) time) are possible, it is reasonable to
expect this to be accomplished by introducing an algebraic
or linear structure. Here we give evidence that doing so may
enable the inherently more efficient TA algorithm to be used
to identify traitors.

First, we prove a necessary condition on Reed-Solomon
codes, under which they yield c-TA set systems. This condition
is that the minimum distance is greater than r−r/c2, where r
is the length of the codewords. This result suggests a potential
method for generating examples of schemes that are c-IPP but
not c-TA, namely, decreasing the minimum distance. Next we
demonstrate through a family of counterexamples that in fact
this approach does not work in general; when the minimum
distance is r− r/c2 it is possible to find Reed-Solomon codes
for which both the IPP and TA tracing algorithms fail.

There is a natural way to produce unordered sets from the
ordered sets that constitute the code: to a codeword

x = (x(1), . . . , x(r)),

associate the set

x′ = {(1, x(1)), . . . , (r, x(r))}.

We define TA and IPP set systems (as opposed to TA and IPP
codes) in the natural way, with the noteworthy difference that
a pirate unordered set consists of r elements such that each
element is a member of some coalition member’s set. This
is a generalization of our earlier definition because it is not
necessary to have one element of the form (i, y(i)) for each
i = 1, . . . , r. The following theorem is a partial converse of
Theorem 5.

Theorem 7: If c ≥ 2 is an integer and C is a Reed-Solomon
code of length r with minimum distance d ≤ r − r

c2 , then the
set system corresponding to C is not a c-TA set system.

Proof: As above, if x ∈ C, write

x′ = {(1, x(1)), . . . , (r, x(r))}

for the associated element of the set system. Choose a code-
word v = (v(1), . . . , v(r)) in C. We will show that a coalition
of size at most c exists that does not contain v′, but that can
implicate v′. In other words, we will construct a pirate set w
which can be created by a coalition {u′

1, . . . , u
′

b} with b ≤ c
that does not contain v′, but which satisfies |v′∩w| ≥ |u′

i∩w|
for every i. Let δ = r − d = k − 1, where k is the dimension
of the code C. By assumption, δ ≥ r/c2.

First, assume cδ ≤ r. For i = 1, . . . , c, choose ui ∈ C,
distinct from v, but which agrees with v on the δ positions
(i−1)δ+1, . . . , iδ. (To do this, simply find a polynomial hi of
degree δ that vanishes on the δ field elements corresponding
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to these δ positions, and let ui be the codeword corresponding
to the polynomial f − hi, where f is the polynomial corre-
sponding to v.) Notice that, since two distinct codewords can
agree on at most δ positions, each u′

i contains at least r − cδ
elements that are not in v′ or in u′

j for any j 6= i. Since
r − cδ ≥ 0 and c ≥ 2, we have r − cδ ≥ d r−cδ

c e = d r
ce − δ.

We now form a pirate set w from the coalition {u′

1, . . . , u
′

c} as
follows: First, choose the elements ((i− 1)δ + l, ui

((i−1)δ+l))
from u′

i for 1 ≤ i ≤ c and 1 ≤ l ≤ δ. Next, choose d r
c e − δ

elements from each u′

i, that are not in any u′

j for j 6= i and
that are not in v′. This gives a total of c(δ + (d r

c e − δ)) ≥ r
elements of w. If the inequality is strict, simply throw away
as many of the c(d r

ce − δ) elements which were chosen
in the second step as necessary. We see that for every i,
|u′

i ∩ w| ≤ δ + (d r
ce − δ) = d r

ce and |v′ ∩ w| = cδ ≥ d r
ce.

Thus the TA algorithm will mark v′ as a traitor.
If on the other hand cδ > r, simply choose u1, . . . , uj as

above, where j = b r
δ c < c, and choose uj+1 6= v to agree with

v on the last r − jδ positions. The coalition {u′

1, . . . , u
′

j+1}
can create v′ as a pirate set.

Theorem 7 leaves open the question of whether Reed-
Solomon codes with minimum distance at most r − r

c2 might
still have traceability when the IPP algorithm is used even
though the TA algorithm may no longer correctly identify
traitors. The next theorem gives a family of counterexamples
illustrating that this is not generally the case by giving
examples of Reed-Solomon codes of length r and minimum
distance r − r/c2 which are not c-IPP.

Theorem 8: Let s and c be positive integers with c ≥ 2,
and let p be a prime number greater than c2. For i = 1, . . . , c,
let ai = (i − 1)c. For i = 1, . . . , c, if s is not divisible by p,
let gi(x) = xs − i; otherwise let gi(x) = xs + x − i. Let T
be the set of roots of all the c2 polynomials gi − aj . Let q
be a sufficiently high power of p so that T is a subset of the
finite field Fq. Then T consists of c2s distinct elements of Fq.
Let C be the Reed-Solomon code in which the codewords are
the evaluations at the elements of T of all polynomials over
Fq of degree at most s. Then the dimension of the code C is
s+1, the length r of the codewords is r = c2s, the minimum
distance of C is r − r/c2, and C is not c-IPP.

Proof: We first show that T consists of c2s distinct
elements. Let hij = gi − aj . Then hij(x) − hmn(x) =
−i−(j−1)c+m+(n−1)c. If hij(x)−hmn(x) = 0, then m−i
is divisible by c. Since m and i are both in the range 1, . . . , c,
they must be equal. Thus (j − 1)c = (n − 1)c, and so j = n.
Therefore the set {hij} consists of c2 distinct polynomials
of degree s, any two of which differ by a non-zero constant.
Therefore no two can have a root in common. Further, the
derivative of hij is sxs−1 if s is not divisible by p, and is 1
otherwise. In both cases this derivative is relatively prime to
hij (in the first case, note that hij is always of the form xs+(a
non-zero constant), so it never has 0 as a root). Therefore
all the roots of hij are simple. So T consists of c2s distinct
elements, and it makes sense to consider the Reed-Solomon
code defined by evaluating polynomials of degree at most s at
the elements of T . The code clearly has the stated parameters.
The two coalitions corresponding to the polynomials in the sets
{a1, . . . , ac} and {g1, . . . , gc} are disjoint, and each coalition

can produce the pirate word defined as follows: for each β in
T , the β-th entry of the pirate word is gi(β) = aj , for the
unique i and j such that the equality holds. It follows that the
code is not c-IPP.

By evaluating the polynomials at subsets of T of size at
least s + 1 (to ensure that k ≤ r), we can take the length r to
be anything between s + 1 and c2s. The resulting minimum
distance r − s is then at most r − r/c2.

We remark that if s is not divisible by p, then we can always
find a q that works and is a divisor of ps.

Example 9: The Reed-Solomon code obtained by evaluat-
ing constant and linear polynomials over F11 at all the points
(0 to 10) of F11 is not 4-IPP, since the disjoint coalitions cor-
responding to the polynomials {0, 1, 2, 3} and {x, x−4, x−8}
can create the pirate (0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2). For this code
we have d < r− r/c2, since d = r−k +1 = 11−2+1 = 10
and r − r/c2 = 165

16 .
Example 10: The Reed-Solomon code obtained by evaluat-

ing polynomials over F11 of degree at most 2 at 0, 1, 2, 3, 4,
5, 6, 7 is not 2-IPP, since the 3 disjoint coalitions:

{(7, 9, 0, 2, 4, 6, 8, 10), (0, 6, 2, 10, 8, 7, 7, 8)},
{(6, 7, 2, 2, 7, 6, 10, 8), (0, 9, 9, 0, 4, 10, 7, 6)},
{(5, 8, 7, 2, 4, 2, 7, 8), (0, 9, 2, 1, 6, 6, 1, 2)}

can create the pirate (0, 9, 2, 2, 4, 6, 7, 8). For this code we
have

d = r − k + 1 = 8− 3 + 1 = 6 = 8 − 8/4 = r − r/c2.
The results in this section lead to the following questions,

which are of independent interest.
Question 11: Is it the case that d > r − r/c2 for all c-IPP

Reed-Solomon codes of length r and minimum distance d?
It is easy to see that this would be false if “Reed-Solomon”

were replaced by “linear”. For example, one-dimensional
linear codes are always both c-IPP and c-TA, but can have
d ≤ r − r/c2 if they are not Reed-Solomon codes (for one-
dimensional codes, the minimum distance d is the number of
non-zero entries in the non-zero codewords; the codewords of
distance less than d from the pirate lie in every coalition that
can create the pirate).

If the answer to Question 11 were yes, combining it with
Theorem 5 would imply that all Reed-Solomon c-IPP codes
are c-TA. We raise as an open question:

Question 12: Is it the case that all linear c-IPP codes are
c-TA?

V. FINDING ALL POSSIBLE COALITIONS

A coding theoretic approach can be used to amass additional
piracy information: a list of all coalitions that are capable
of creating a given pirate. Such information is useful in two
respects. It clears all codewords not appearing in any of these
coalitions of involvement in constructing the pirate word,
and it constitutes useful audit information (circumstantial
evidence) that may be helpful in the prosecution of a traitor
later on. The algorithms of this section require only that the
code have minimum distance greater than r− r

c2 , and therefore
are applicable to the codes in Theorem 6. The algorithms are
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fast when fast list decoding techniques exist. In addition, for
every code meeting this minimum distance requirement and
having fast list decoding, the algorithms enable the IPP traitor
tracing algorithm [13], [2], [18] to run more efficiently (as that
algorithm works by intersecting all coalitions that are capable
of creating a given pirate word).

At a high level, the main algorithm builds a “tree” from
which all c-coalitions capable of constructing a pirate w
can be extracted. At the root of the tree lie all codewords
that we know must be in every such coalition. The children
are then candidate codewords for the next member of the
coalition. Branches of the tree are extended until the current
coalition “covers” w (i.e., is capable of constructing w), or
until it becomes clear that this is impossible (e.g., because the
coalition is already of size c and still cannot create w). In
the latter case that “dead-end” coalition is discarded and other
branches of the tree are explored.

Before describing the algorithm in detail, we need two
definitions. First, given a subset S of {1, . . . , r} of size s,
define the map fS : F

r
q → F

r−s
q to be the projection that

omits the entries in positions corresponding to elements of S.
Second, a minimal c-coalition for w is a subset U of C such
that |U | ≤ c, w ∈ desc(U), but w is not in desc(V ) for any
proper subset V of U . Since one may obtain all coalitions of
size at most c that can create w from the minimal ones by
appending arbitrary elements of the code, it is enough to find
all minimal c-coalitions.
Algorithm Sketch:
Input: Integer c > 1, code C of length r and minimum distance
greater than r − r

c2 , pirate word w ∈ descc(C).
Output: A list of coalitions of size at most c that can create
w, including all minimal c-coalitions for w.
Steps:

(i) Use list decoding to find all codewords u1, . . . , ua ∈ C
(a ≤ c) within distance r − r/c of w. Let S be the
subset of {1, . . . , r} on which w agrees with at least
one of {u1, . . . , ua}, and set s = |S|. Set r1 = r − s,
c1 = c − a, C1 = fS(C), and w1 = fS(w). If r1 = 0,
quit and output {u1, . . . , ua}. Set i = 1.

(ii) Use list decoding to find all codewords vi1, . . . , vibi
∈

Ci within distance ri − ri/ci of wi. If this outputs the
empty-set, exit to Step (iii). Otherwise, let Si be the
subset of {1, . . . , ri} on which wi agrees with vibi

, and
set si = |Si|. Set ri+1 = ri − si, ci+1 = ci − 1, Ci+1 =
fSi

(Ci), and wi+1 = fSi
(wi), and repeat this step.

(iii) Beginning with u1, . . . , ua, form coalitions to output by
adding (lifts to C of) v1b1 , v2b2 , and so on, until w is
a descendant of the list. When this process succeeds or
dead-ends (i.e., w is not a descendant of the current list
but there are no codewords within distance ri − ri/ci

of wi or the list already has c codewords), move back
through the vij’s to find the first unexplored branch and
repeat Step (ii) with a different vij in place of vibi

.
The algorithm terminates when all branches have been
explored.

Analysis of the Algorithm:
The output of the algorithm is clearly a list of coalitions of size
at most c that can create the pirate, and includes each minimal

c-coalition at least once. Note that in Step (iii), all lifts of each
vij should be considered. By Theorem 5, u1, . . . , ua are in
every coalition that can create w. In Step (ii), if di > ri−ri/c2

i

where di is the minimum distance of Ci, then every coalition
that can produce the original pirate w will contain some lift
to the original code of some vij . Moreover, if a lift to C of
vij is in some coalition that can create the original pirate w,
then there exists a codeword within ri − ri/ci of vij (by the
pigeonhole principle), and the algorithm will proceed. If Step
(ii) returns the empty-set, then the current path is a dead-end.
When C satisfies any of the sets of conditions in Theorem 6,
then Step (i) can be done efficiently (time polynomial in r).
Note that if C is a Reed-Solomon (resp., algebraic geometry)
code, then so is Ci.

The brute force method for finding all coalitions runs in
time O(crN c), where N is the total number of codewords in
the code and N � c (for each of the at most N c coalitions of
size at most c, compare each of the r entries of the pirate to
the corresponding entry of each member of the coalition). For
Reed-Solomon codes with r = Θ(c2k), this gives a runtime
of O(c3N c log N).

Variation:
A variation of the above algorithm is to list decode to find

all codewords u1, . . . , ua (1 ≤ a ≤ c) within distance r− r/c
of the pirate (as in Step (i) above), and then use brute force
to determine the remaining (at most) c − a members of the
coalitions. When C is a Reed-Solomon code satisfying the
conditions in Theorem 6(i) with r = Θ(c2k), the dominant
term in the runtime is O(c3N c−a log N). This is clearly an
improvement over brute force alone, since a ≥ 1.

VI. FUTURE DIRECTIONS: TRACING WITH EXTRA

INFORMATION

In this section, we describe how other coding theoretic
techniques may be applied to the traitor tracing problem when
additional information about traitor behavior is available.

One possible approach to tracing traitors is to try to second-
guess the traitors’ strategy. For example, if you believe that
one traitor has contributed more than the other members of
the coalition to the pirate, you can apply bounded-distance
decoding up to the error-correction bound to find such traitors
very quickly. This might involve a “ringleader” or “scapegoat”
scenario. If on the other hand you believe that all traitors
contributed roughly equal amounts, then list decoding should
be tried first. Traitors can be searched for in sequences of
expanding Hamming balls around the pirate. These searches
can be run in parallel or sequentially. The runtime of bounded-
distance decoding up to the error-correction bound for Reed-
Solomon codes is at most quadratic in the length of the
codewords. Note that [16] gives a fast algorithm for list
decoding Reed-Solomon codes beyond the error-correction
bound (also quadratic in the codeword length), but does not
go as far as the Guruswami-Sudan algorithm. It therefore will
not be guaranteed to find a traitor, but would quickly find a
ringleader.

In [11], list decoding is considered not just in the case
of errors, but also in the case of erasures and errors (and
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another potentially useful case that is referred to as “decoding
with uncertain receptions”). For concatenated codes, [12] also
deals with the problem of decoding from errors and erasures.
Building on [11], [14] presents a high-performance soft-
decision list decoding algorithm. We believe that these results
also have potential for use in traitor tracing problems, in cases
where some additional information is known about the traitors
or how they are operating.

If one has information about the traitors or their modes
of operation, one can build that information into a reliability
matrix, and apply soft-decision decoding algorithms to trace.
For example, suppose we know that a traitor who contributed
the first entry to the pirate contributed at least r/c entries to
the pirate. One can use this information to construct a skewed
reliability matrix. If the underlying code is a Reed-Solomon
code over a finite field of size q, one can then apply the soft-
decision algorithm in [14] to find such a “dominant” traitor.
The channel that models this situation is a q-ary symmetric
channel. The first column of the reliability matrix will have a
1 in the entry corresponding to the field element that occurs in
the first position of the pirate, and 0’s elsewhere. For j > 1,
the jth column of the reliability matrix will have 1− ε in the
entry corresponding to the field element in the jth entry of the
pirate, and the other entries will all be ε

q−1 , where ε < q−1
q is

chosen so as to optimize the soft-decision decoding algorithm
in [14]. If one does not know which entry was contributed
by the traitor who contributed the most, one possible search
method is to choose entries at random from the pirate and
apply the above strategy to search for traitors that contributed
that entry.

Erasure-and-error decoding may be useful in fingerprinting
or watermarking scenarios, such as those presented in [4],
[5], [10], [1]. In one model, a coalition creates a pirate copy
of the digital content by leaving fixed all codeword entries
where they all agree, and choosing the values of the remaining
positions from Q∪ {?}, where Q is the alphabet. The ?’s can
be viewed as erasures.

VII. CONCLUSION

We have demonstrated that traitor tracing algorithms can
be quite efficient when the construction of the traceability
scheme is based on error-correcting codes and the method
of tracing is based on fast list decoding algorithms. For the
TA algorithm, traitors can be identified in time polynomial in
r, where r is roughly c2 logq N , rather than in time O(N).
We also give evidence for a close relationship between the
TA and IPP properties, for linear codes, and raise some open
questions about this relationship. Finally, we suggest avenues
for future research, including explorations of applications of
soft-decision and erasure decoding techniques to traitor tracing
in scenarios where additional information has been obtained
about the traitors or their mode of operation.
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