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The adverse consequences of herbicide drift towards sensitive crops have been 

extensively reported in the literature. However, no information is available on the 

consequences of herbicide drift onto weed species inhabiting boundaries of agricultural 

fields. Exposure to herbicide drift could be detrimental to long-term weed management as 

several weed species have evolved herbicide resistance after recurrent selection with low 

herbicide rates. Despite the herbicide drift exposure and its potential implications on 

resistance evolution and weed management, resistance prone weed species such as 

Palmer amaranth (Amaranthus palmeri) and waterhemp (Amaranthus tuberculatus) are 

often neglected and not properly managed in agricultural field margins. 

The first study of this research investigated the frequency and distribution of 

glyphosate-resistant Amaranthus spp. in Nebraska. The study also investigated how 

agronomic practices influenced the occurrence of glyphosate resistance in Amaranthus 

spp. in Nebraska. While glyphosate resistance was widespread in waterhemp, few 

glyphosate-resistant Palmer amaranth populations were reported in Nebraska. Weed 

species, geographic region within the state, and current crop were the most important 

factors predicting the occurrence of glyphosate resistance in fields infested with 

Amaranthus spp. in Nebraska. Moreover, glyphosate resistance was widespread in 

waterhemp populations collected on field borders and ditches. 



 
 

  

The second study investigated the near-field deposition of glyphosate, 2,4-D,  and 

dicamba spray drift from applications with two different nozzles in a low-speed wind 

tunnel, and their impact on Palmer amaranth and waterhemp growth and development. 

Herbicide drift was influenced by nozzle design and resulted in Amaranthus spp. biomass 

reduction or complete plant mortality. Herbicide drift can expose weeds inhabiting field 

margins to herbicide rates previously reported to select for herbicide-resistant biotypes. 

The third study investigated if recurrent selection with glyphosate, 2,4-D, and 

dicamba spray drift could select for Amaranthus spp. biotypes with reduced herbicide-

susceptibility over two generations. The study results confirmed that herbicide drift 

towards field margins can rapidly select for weed biotypes with reduced herbicide 

sensitivity. Preventing the establishment of resistance prone weeds on field margins is an 

important management strategy to delay herbicide resistance. Weed management 

programs should consider strategies to mitigate near-field spray drift, and suppress weed 

populations on field borders. 
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CHAPTER 1: LITERATURE REVIEW 

 

Palmer amaranth and waterhemp 

Palmer amaranth (Amaranthus palmeri S. Wats.) and waterhemp [Amaranthus 

tuberculatus (Moq.) J. D. Sauer] are major weeds occurring in fields throughout 

Nebraska. The two Amaranths are C4 summer annual weed species members of the 

Amaranthaceae family and native to North America 1–3. The Amaranthus species have a 

fast growth habitat and are prolific seed producers, contributing to their success as 

troublesome weeds in cropping systems 4. Seed production ranges from 400,000 to 

1,000,000 seeds per plant in Palmer amaranth 5 and waterhemp 6 under favorable 

environmental conditions. Palmer amaranth and waterhemp are dioecious species with 

cross-pollination which confers a high genetic plasticity to both species 1. The two 

Amaranthus species have an extended emergence window, which poses a challenge to 

their management 6–8. Bensch et al. reported 79 and 56% yield losses in soybean with 

Palmer amaranth and waterhemp interference, respectively 9. Corn yield losses up to 91% 

10 and 74% 7 were reported with Palmer amaranth and waterhemp interference, 

respectively. Several Palmer amaranth and waterhemp populations have evolved 

resistance to herbicides that target 5-enolpyruvylshikimate-3-phosphate synthase 

(EPSPS), acetolacte synthase (ALS), photosystem II, protoporphyrinogen oxidase (PPO), 

auxin receptors, microtubule assembly, and 4-hydroxyphenylpyruvate dioxygenase 

(HPPD) in the US 11. Bell et al. reported a waterhemp population from Illinois with 

multiple resistance to herbicides that target EPSPS, ALS, PPO, and photosystem II 12. 

Schultz et al. reported waterhemp populations from Missouri with resistance to 
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glyphosate, ALS, PPO, photosystem II, and HPPD inhibitors 13. Murphy et al. reported 

glyphosate-, atrazine-, and PPO-resistant waterhemp populations in Ohio 14. Waterhemp 

populations with resistance to herbicides that target ALS, HPPD, photosystem II, EPSP, 

PPO and auxin receptors were reported in Nebraska 15–19. Acetolacte synthase, HPPD, 

photosystem II, PPO, and EPSPS-resistant biotypes of Palmer amaranth were also 

reported in Nebraska 17,20–22. Jhala et al. reported a Palmer amaranth population with 

multiple resistance to herbicides that target HPPD and photosystem II in Nebraska 23. 

Glyphosate-resistant Palmer amaranth was also reported in Arkansas 24, Tennessee25, 

Mississippi 26, North Carolina 27, New Mexico 28, and other states 11. Intraspecific and 

Interspecific hybridization with herbicide resistance trait transfer has been reported in 

waterhemp and Palmer amaranth 29. Pollen-mediated gene flow is a major factor 

contributing to the widespread occurrence of herbicide-resistant waterhemp in the 

Midwest. Sarangi et al. reported that the glyphosate-resistant trait in waterhemp from 

Nebraska was highly mobile and its pollen-mediated dispersal was influenced by distance 

and wind.30. Oliveira et al. reported intraspecific and interspecific transference of HPPD 

resistant alleles between waterhemp and Palmer amaranth through pollen-mediated gene 

flow 31. 

Herbicide drift 

The introduction of glyphosate, 2,4-D, and dicamba tolerant crops provided 

growers new herbicide options and flexibility to manage troublesome weed species 32–34. 

However, the widespread adoption of these herbicides in weed management programs 

increased the risk of off-target movement associated with glyphosate, 2,4-D, and dicamba 

applications. Spray drift is the part of the application (droplets and vapor) deflected away 
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from the target area during or following pesticide applications and is one of the most 

common routes for herbicide off-target movement 35. Glyphosate, 2,4-D, and dicamba 

drift have been reported to cause severe injury and yield loss on sensitive vegetation and 

crops, especially when best practices are not adopted during applications 36–43. Many 

environmental factors and application techniques influence spray particle drift potential, 

including wind speed and direction, spray droplet size, equipment boom height, and 

others 40,44.  Spray droplet size has been the primary management factor focused on for 

reducing particle drift and is directly influenced by nozzle design, operating pressure, and 

physicochemical properties of the spray solution 45–48. Different pesticide formulations 

can affect the application droplet size distribution by influencing the physicochemical 

properties of the spray solution such as surface tension and viscosity, or by affecting the 

solution atomization process depending on the nozzles (emulsified oils for example) 47. 

Most of the current glyphosate, 2,4-D, and dicamba applications are performed with 

venturi nozzles having air-inclusion and preorifice components to reduce the solution 

pressure during atomization, thereby increasing spray droplet size and reducing particle 

drift potential 45,49. Creech et al. reported an interaction among nozzle type, nozzle orifice 

size, herbicide, operating pressure, and carrier volume influencing spray droplet size 45. 

In addition to this, the authors reported that nozzle type had the greatest effect on spray 

droplet spectra, followed by operating pressure, herbicide, orifice size, and carrier 

volume, respectively. Etheridge et al. reported similar results, where the interaction of 

nozzle type, herbicide, orifice size, and pressure influenced spray droplet size 50. 

Bueno et al. reported in a field study investigating spray particle drift that 

applications (water with a fluorescent tracer) with air inclusion nozzles resulted in less 
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particle drift when compared to applications with conventional flat fan nozzles 51. In 

another field study, Johnson et al. reported that glyphosate applications with an air 

inclusion nozzle reduced the downwind distance where sorghum plants were lethally 

injured by 34% when compared to conventional flat fan nozzles 52. Similar results were 

reported by Alves et al. in a wind tunnel study, where glyphosate and dicamba 

applications with air inclusion nozzles resulted in less herbicide particle drift when 

compared to applications with conventional flat fan nozzles 53. In another wind tunnel 

study, Ferguson et al. reported that air inclusion nozzles greatly reduced particle drift 

potential of insecticide applications, regardless of whether or not drift reduction adjuvants 

were in the tank solution, when compared to conventional flat fan nozzles 54. 

Despite the advances in application technology with nozzle design 45,49, herbicide 

formulations and adjuvants 42,47,55–57, spraying techniques 58,59, and strategies to mitigate 

spray drift 60–62, herbicide drift remains associated with crop injury complaints 38,43,63. 

Sublethal rates of herbicides and resistance evolution 

It has been reported in the literature that recurrent weed selection under sublethal 

rates of herbicides may result in herbicide resistance evolution. Sublethal rates of 

herbicide may be a result of application drift, reduced rates, and non-uniform herbicide 

deposition on weeds 64,65. Busi and Powles reported that progenies of an initially 

susceptible population of  Lolium rigidum shifted towards glyphosate resistance (up to 

2.1-fold in the LD50) after being recurrently selected with sublethal rates of glyphosate 66. 

These authors exposed three generations of Lolium rigidum plants to sublethal rates of 

glyphosate ranging from 150 g ae ha-1 to 350 g ae ha-1 (17 to 40% of the 867 g ae ha-1 

commonly adopted field rate in glyphosate tolerant crops). In a similar study, Norsworthy 
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reported that a glyphosate-susceptible Palmer amaranth population evolved glyphosate 

resistance (2.2-fold in the LD50) after being recurrently selected under sublethal rates of 

glyphosate for four generations 67. Norsworthy reported that glyphosate doses of 105, 

126, 210, and 420 g ae ha-1 (12, 15, 24, and 48% of the 867 g ae ha-1 commonly adopted 

field rate in glyphosate tolerant crops, respectively) were used as generations progressed 

during the recurrent selection study. Ashworth et al. reported that a Raphanus 

raphanistrum L. population evolved 2,4-D resistance (8.6-fold in the LD50) after being 

recurrently selected during four generations 68. These authors exposed plants to 125, 250, 

and 750 g 2,4-D ae ha-1 (12, 24, and 73% of the 1065 g ae ha-1 recommended rate for 2,4-

D-tolerant soybean) as generations progressed. Tehranchian et al. reported that a 2,4-D 

and dicamba-susceptible Palmer amaranth population had its susceptibility reduced to 

both herbicides (2.8 and 2.0-fold in the LD50 for dicamba and 2,4-D, respectively) after 

recurrent selection with sublethal rates of dicamba for three selection generations 69. 

These authors exposed plants to 140, 280, and 420 g dicamba ae ha-1 (25, 50, and 75% of 

the 560 g ae ha-1 recommended rate for dicamba-tolerant soybean) during the selection 

generations. Recurrent selection studies with sublethal rates of pyroxasulfone and 

diclofop-methyl were also associated with resistance evolution in weeds in previous 

studies 65,70–73. 

Recurrent selection with low doses of herbicides progressively selects for 

metabolism alleles present within the standing genetic variation of the population, which 

additively leads to non-target-site herbicide resistance 74,75. Recurrent selection with low 

rates of diclofop selected for non-target-site resistance with enhanced diclofop 

metabolism, likely mediated by cytochrome P450 monooxygenases (P450) 76. A RNA-



6 

  

Seq transcriptome study with this population confirmed that not only P450 genes, but 

nitronate monooxygenase (NMO), glutathione transferase (GST), and glucosyltransferase 

(GT) genes were upregulated in diclofop-resistant plants 77. Another study also reported 

upregulation of metabolic genes (GST) in a pyroxasulfone-resistant annual ryegrass 

population recurrently selected with low rates of the herbicide 70,78.  

The reproductive system of weed species influences herbicide resistance 

evolution in weeds selected with low rates of herbicides. For instance, when plants are 

recurrently selected with sublethal rates of herbicides, recombination and accumulation 

of minor resistance genes can occur at a faster rate in cross-pollinated species such as 

waterhemp and Palmer amaranth 71,79. In most recurrent selection studies, weed 

populations selected with sublethal rates of a given herbicide also evolved resistance to 

other modes of action 68,69,72,73. This highlights the nature of non-target-site resistance 

(NTSR) and influence of metabolic alleles which could be selected in weed populations 

upon recurrent selection with sublethal herbicides rates 76,77,80. 

Gressel 64 suggested that recurrent selection with sublethal doses of herbicides not 

only selects polygenic alleles within the standing genetic variation of the population, but 

also could induce new stress-related mutations within surviving individuals. Dyer 81 

indicated that sublethal herbicide rates could act as stress agents inducing DNA 

mutations, epigenetic alterations, transcriptional remodeling, protein modifications, and 

other events that could ultimately confer levels of herbicide resistance. Markus et al. 82 

highlighted that stress-induced epigenetic changes (DNA methylation, histone 

modifications, and others) are normally reverted soon after stress exposure, although they 

could be carried over multiple generations in specific cases. A study where over 70 
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million Amaranthus hypochondriacus L. seedlings were screened did not find evidences 

suggesting that herbicide stress increased mutation rates conferring ALS resistance, 

although authors mentioned they were not able to robustly test this hypothesis 83.  

Herbicide resistance alleles may be originally present within the standing genetic 

variation of the population or may immigrate via pollen or seeds from other populations 

83. Waterhemp populations with herbicide metabolic resistance have been widely reported 

in Nebraska. A 2,4-D-resistant waterhemp population previously reported in Nebraska 

had rapid 2,4-D metabolism mediated by P450 enzymes 84. Enhanced herbicide 

metabolism via P450 enzymes was also reported in a waterhemp population resistant to 

HPPD-inhibitor herbicides in Nebraska 85,86. Atrazine resistance with rapid herbicide 

metabolism via enhanced GST conjugation was widespread in waterhemp populations in 

eastern Nebraska 19. With the rampant pollen-mediated gene flow transferring herbicide 

resistant alleles across waterhemp populations in Nebraska, it can be inferred that 

herbicide metabolism alleles could already be present within the standing genetic 

variation of waterhemp populations in Nebraska 30,31. 

Herbicide drift towards field margins 

While the consequences of herbicide drift towards sensitive crops are well 

reported in the literature, little information is available on the consequences of herbicide 

drift towards other plant communities surrounding agricultural landscapes. Troublesome 

weed species such as waterhemp and Palmer amaranth are often abundant in field 

margins and ditches surrounding agricultural landscapes 87,88. Exposure to herbicide drift 

could be detrimental to long-term weed management as numerous weed species evolved 

herbicide resistance after recurrent selection with low rates of herbicides 65–74,89.  
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Despite the herbicide drift exposure and its potential implications on resistance 

evolution and weed management, near-field weed populations are often neglected and not 

properly managed in agricultural landscapes 87,88,90. In fact, herbicide resistance has been 

reported in weed populations inhabiting field margins and ditches surrounding 

agricultural landscapes 87,90,91. Unmanaged field margins with resistant-prone weeds can 

exacerbate the risk of resistance, especially when outcrossing occurs with resistant 

populations near field 88. Having plants under selection pressure for herbicide resistance 

on field borders could be detrimental for in-field weed management as pollen-mediated 

gene flow plays an important role in dispersing herbicide resistance alleles in cross-

pollinated species such as waterhemp and Palmer amaranth 29–31. Preventing resistance-

prone weeds on field margins is an important best management practice (BMP) to delay 

herbicide resistance, although the additional management costs and time constraints pose 

a challenge for growers 88,92. 

Objectives 

The objectives of this research were (1) to investigate the distribution of 

glyphosate-resistant Palmer amaranth, waterhemp, and redroot pigweed in Nebraska, and 

understand the impact of agronomic practices on the likelihood of glyphosate resistance 

in Amaranthus species; (2) to investigate the near-field deposition of glyphosate, 2,4-D,  

and dicamba spray particle drift from applications with two different nozzles (different 

droplet spectrum resulting in low and high drift potentials) in a low speed wind tunnel, 

and their impact on waterhemp and Palmer amaranth growth and development under 

controlled environment; and (3) to evaluate if glyphosate, 2,4-D, and dicamba application 



9 

  

drift could recurrently select for Amaranthus spp. reduced susceptibility to herbicides in a 

wind tunnel drift study over two generations. 
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CHAPTER 2. DISTRIBUTION OF GLYPHOSATE-RESISTANT AMARANTHUS 

SPP. IN NEBRASKA 

 

Introduction 

Palmer amaranth (Amaranthus palmeri S. Wats.), waterhemp [Amaranthus 

tuberculatus (Moq.) J. D. Sauer], and redroot pigweed (Amaranthus retroflexus L.) are 

major weeds occurring in fields throughout Nebraska. The three Amaranths are C4 

summer annual weed species members of the Amaranthaceae family and native to North 

America. 1–3 The Amaranthus species have a fast growth habitat and are prolific seed 

producers, contributing to their success as troublesome weeds in cropping systems 4. Seed 

production ranges from 400,000 to 1,000,000 seeds per plant in Palmer amaranth 5, 

redroot pigweed 6, and waterhemp 7 under favorable environmental conditions. Redroot 

pigweed is a monoecious species, whereas Palmer amaranth and waterhemp are dioecious 

1. The three Amaranthus species have an extended emergence window, which poses a 

challenge to their management 7–9. Bensch et al. reported 79, 56, and 38% yield losses in 

soybean with Palmer amaranth, waterhemp, and redroot pigweed interference, 

respectively 10. Corn yield losses up to 91% 11, 43% 8, and 34 12 were reported with 

Palmer amaranth, waterhemp, and redroot pigweed interference, respectively. 

Glyphosate became a standard chemical option for management of Amaranths 

and other weed species in US row crop production since 1996 due to the advent of 

genetically modified glyphosate-resistant (GR) crops 13. Glyphosate is one of the most 

adopted herbicides worldwide because of its high efficacy, low toxicity to animals, and 

relatively low environmental impact 14. Glyphosate is toxic to plants because it inhibits 
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the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in the shikimate 

pathway 15, which is a biochemical pathway for the synthesis of the aromatic amino acids 

tyrosine, phenylalanine, and tryptophan 16. In a field study, Krausz et al. reported that 

glyphosate was effective at controlling Amaranths, especially when plants were treated at 

early growth stages 17. In 1995, prior to the advent of GR crops, glyphosate was applied 

in 6% of corn fields and in 20% of soybean fields in the US, whereas in 2015, treated 

areas increased to 77% and 97%, respectively 18. The excessive reliance on glyphosate 

for weed control favored occurrence of herbicide resistance 19. According to Heap 20, 44 

GR weed species have been reported worldwide. Several Palmer amaranth and 

waterhemp populations have evolved resistance not only to EPSP synthase inhibitors, but 

also to herbicides that target acetolacte synthase (ALS), photosystem II, 

protoporphyrinogen oxidase (PPO), auxin receptors, microtubule assembly, and 4-

hydroxyphenylpyruvate dioxygenase (HPPD) in the US 20. Redroot pigweed populations 

resistant to ALS and photosystem II inhibitors have also been reported in the US 20. The 

first cases of glyphosate resistance in Palmer amaranth and waterhemp were identified in 

2004 in Georgia 21 and Missouri 22, respectively, whereas no case of GR redroot pigweed 

has been reported 20. Interspecific hybridization with glyphosate resistance trait transfer 

has been reported in some Amaranthus species but not in redroot pigweed 23. Bell et al. 

reported a waterhemp population from Illinois with multiple resistance to herbicides that 

target EPSP synthase, ALS, PPO, and photosystem II 24. Schultz et al. identified 

waterhemp populations from Missouri showing resistance to glyphosate, ALS, PPO, 

photosystem II, and HPPD inhibitors 25. Waterhemp populations with resistance to 

herbicides that target ALS, HPPD, photosystem II, EPSP, and auxin receptors were 
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reported in Nebraska 26–28. Acetolacte synthase, HPPD, photosystem II, and GR biotypes 

of Palmer amaranth were also reported in Nebraska 27,29. Jhala et al. reported a Palmer 

amaranth population with multiple resistance to herbicides that target HPPD and 

photosystem II in Nebraska 30. GR Palmer amaranth was also reported in Arkansas 31, 

Tennessee 32, Mississippi 33, North Carolina 34, New Mexico 35, and other states 20. 

Glyphosate resistance mechanisms in weeds include target-site resistance with 

mutations in the EPSPS gene, target-site gene amplification, and non-target-site 

resistance with active vacuolar sequestration, herbicide metabolism, and limited cellular 

uptake and translocation 36,37. EPSPS gene amplification is the main glyphosate resistance 

mechanism in Palmer amaranth 38 in which resistant biotypes produce high levels of 

EPSPS due to the extra EPSPS gene copies, which act as a molecular “sponge” by 

binding glyphosate molecules 19. The same resistance mechanism was reported in GR 

Palmer amaranth from Nebraska 29. Glyphosate resistance mechanisms reported in 

waterhemp populations include EPSPS gene amplification 25,39–41, EPSPS target site 

mutation 24,25,33, and non-target-site resistance mechanisms with reduced glyphosate 

uptake and translocation 42. EPSPS target site mutation and non-target-site resistance 

mechanisms with reduced glyphosate uptake and translocation were also reported in 

Palmer amaranth 43, albeit with less frequency when compared to waterhemp. According 

to Sammons and Gaines, accumulation of multiple resistance mechanisms under 

glyphosate selection pressure, especially in cross-pollinated species, leads to enhanced 

glyphosate resistance levels 37.  

GR weeds such as Palmer amaranth and waterhemp represent a challenge to 

cropping systems that rely on glyphosate for weed control 44. Glyphosate-control failures 
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on Palmer amaranth and waterhemp are becoming a recurrent complaint among growers 

in Nebraska 28,29, although it is not clear if the majority of the reports are due to 

glyphosate resistance or poor management practices, such as wrong application timing, 

inadequate dose, or improper application technique. A better understanding of the 

distribution of GR Palmer amaranth, waterhemp, and redroot pigweed in Nebraska 

provides growers important information on how to effectively manage the Amaranthus 

species in the state. Therefore, the objective of this study was to investigate the 

distribution of GR Palmer amaranth, waterhemp, and redroot pigweed in Nebraska. 

Furthermore, the study aimed to investigate the impact of agronomic practices on the 

likelihood of glyphosate resistance in Amaranthus species. 

Material and Methods 

Plant material 

Palmer amaranth, waterhemp, and redroot pigweed seed samples were arbitrarily 

collected from 10-20 plants in 218 Nebraska fields in the fall of 2013, 2014, and 2015. 

Seeds from within a single field were identified as a population and agronomic variables 

(weed species, geographical region within the state, field current crop, irrigation, tillage 

practices, and location of sampled weeds in the field) were recorded along with GPS 

coordinates for each population (Table 2.1). Seeds were stored at -20 °C for a minimum 

of three months to overcome dormancy. Seeds from each population were sowed into 

plastic tubes (1 L) containing commercial potting mix, supplied with water and fertilizer 

as needed (UNL 5-1-4 at 0.2% v.v-1; Wilbur-Ellis Agribusiness, 3300 South Parker Road, 

Suite 500, Aurora, CO 80014), and maintained in greenhouse with controlled temperature 

and light conditions (30/20 °C day/night with a 16 h photoperiod). 
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Glyphosate dose-response study 

This study was conducted in the Pesticide Application Technology Laboratory, 

University of Nebraska-Lincoln West Central Research and Extension Center, in North 

Platte, NE. The Amaranth populations were subjected to a glyphosate (Roundup 

PowerMAX®, Monsanto Company, St. Louis, MO, 63167) dose-response study, in 

which different rates of glyphosate (0, 39, 217, 434, 868, 1736, 3472, and 6935 g ae ha-1) 

were applied to 10 to 12 cm tall plants using a research spray chamber calibrated to 

deliver 93.5 L ha-1 with an AI95015EVS nozzle (Teejet Spraying Systems, Wheaton, IL) 

at 414 kPa. The experiment was conducted as a complete randomized design with four 

replications per treatment in which a single plant was considered as an experimental unit. 

Plant above ground biomass was harvested at 21 d after treatment (DAT) and oven dried 

at 65 ºC to constant weight. The biomass data were converted into percentage of biomass 

reduction as compared to the untreated control 28. A non-linear regression model was 

fitted to the dry weight data using the DRC package in R software (R Foundation for 

Statistical Computing, Wien, Austria) 45. The effective-dose to reduce 50% and 90% of 

plant biomass (GR50 and GR90) were estimated for each population using a four parameter 

log logistic equation: y = c + {d – c/1 + exp[b(log x – log e)]}; in which y corresponds to 

the biomass reduction (%), b is the slope at the inflection point, c is the lower limit of the 

model (fixed to 0%), d is the upper limit (fixed to 100%), and e is the inflection point 

(GR50) 
46

. Resistance levels were calculated between the ratios of the GR90 of each 

population and the glyphosate recommended label rate (868 g ae ha-1). The experiment 

was replicated for waterhemp and Palmer amaranth populations that were identified as 
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putative GR in the first experimental run. Data from both experimental runs were 

combined. 

Resistance map 

Palmer amaranth and waterhemp resistance level data were displayed in an 

interpolated map format created in Esri® ArcMap™ version 10.1 software. A new 

geostatistical data base was created and population GPS coordinates were added and 

plotted using Geographic Coordinate System (World Geodetic System 1984).  Map 

shapefiles of Nebraska state boundary and county boundaries were added and a new layer 

was created with counties and collected populations combined (US Department of 

Commerce 2007).  Counties where collections took place, and nearest adjacent counties, 

were selected and exported into a new data layer so that only collected counties would 

show interpolation data.  Geostatistical analysis was done through geostatistical wizard 

and the inverse distance weighting function. The source dataset was the collected 

population and the data field was the corresponding resistance level.  Power was set to 

two and a standard neighborhood type was used with a maximum number of neighbors 

set at five and a minimum number of neighbors set at three. Inverse distance weighing 

was exported to a vector with a filled contour.  A new layer was then exported by 

clipping the filled contour vector as the input features and the collected counties layer as 

the clipped features.  Color classes were used in the filled contour to show an estimation 

of the resistance level of populations. 

Random Forest Analysis 

The Random Forest algorithm is an ensemble classifier based on multiple 

classification and regression trees (CARTs), in which each tree is built using a randomly 



25 

  

selected subset of training samples and variables 47,48. By creating a large number of trees 

on bootstrap samples and averaging the outputs, the Random Forest algorithm yields a 

reliable variable importance classification 48,49. The number of decision trees to be 

generated (ntree) and the number of variables to be selected and tested for the best tree 

node divisions (mtry) need to be specified in the model 47. Approximately 66% of the 

samples (in bag) are used to train the trees, whereas the remaining samples (out of the 

bag) are used in an internal cross-validation technique to estimate the model performance 

error 47,48. To evaluate the importance of a variable, the random forest measures the 

decrease in accuracy by means of the out of the bag (OOB) error and the Gini Index 

decrease when that variable is permuted while the others are kept constant 50,51. The OOB 

error can also be used to estimate the model performance accuracy 52. 

The Random forest analysis was performed with the randomForest package 50 in 

R software to identify the agronomic variables (weed species, geographic region within 

the state, crop, irrigation, tillage practices, and if weeds were located at field borders or 

inside fields) that contributed most to glyphosate resistance presence in fields infested 

with Amaranths in Nebraska. The Nebraska’s Agricultural Statistical Districts map 18 was 

utilized to define each population region (Southeast, East Central, Northeast, South 

Central, Central, North Central, Southwest, and Northwest). Populations with the upper 

limit of the 95% confidence interval of their estimated GR90 greater than 868 g ae ha-1 (a 

commonly used label rate) were classified as having “practical” glyphosate resistance 53. 

The ntree parameter (number of regression trees) was set to 5000, whereas the mtry 

(number of different predictors tested at each node) and the nodesize (minimal size of the 

terminal node) parameters were set to default values. Variable importance was measured 
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with the Gini coefficient and a variable importance plot was constructed as described by 

Langemeier et al. 49. 

Results and Discussion 

Glyphosate rates tested herein were lethal to plants from redroot pigweed 

populations screened in this study (data not shown); therefore, no GR redroot pigweed 

populations were identified in Nebraska (Figure 2.1). 

Palmer amaranth glyphosate dose-response 

Palmer amaranth is predominant in central and south-western Nebraska, and 

62.1% of the populations were collected in corn fields (Figure 2.2). The region has lower 

precipitation indices when contrasted with the eastern part of the state 54. Ehleringer 

defined Palmer amaranth as a Sonoran desert weed species with efficient photosynthetic 

capacity and effective drought tolerance mechanism 55, which explains the predominance 

of this species over other Amaranths in the region. In contrast to grower complaints, only 

6% of the Palmer amaranth populations screened in this study exhibited “practical” 

resistance to glyphosate (Figure 2.3). However, the authors recognize that this study 

represents a snapshot of what was occurring between 2013 and 2015 in Nebraska.  

Tabashnik et al. defines practical resistance as “field-evolved resistance that 

reduces pesticide efficacy and has practical consequences for pest control” 53. Some 

populations in this study had reduced sensitivity to glyphosate with GR90 ratios ranging 

from 18 to 27-fold difference in relation to the most susceptible population (highly 

sensitive to glyphosate), but with GR90 estimates (upper limit of the 95% confidence 

interval) less than 868 g ae ha-1. Although the authors recognize that these populations 

may have individuals with genetically-heritable reduced sensitivity to glyphosate and that 
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intermediate levels of resistance may have continuum effects on weed management 53, 

these populations were not classified as having “practical resistance”. In addition, since 

EPSPS gene amplification is the most common glyphosate resistance mechanism in 

Palmer amaranth, and resistance levels correlate with EPSPS gene copy number 38, the 

authors hypothesize that the populations with reduced sensitivity to glyphosate could 

have individuals with relatively low EPSPS copy numbers when compared to populations 

with higher resistance levels. Further studies with molecular characterization of the 

glyphosate resistance mechanisms of the populations with reduced sensitivity to 

glyphosate are required. Resistance ratios relative to the dose of 868 g ae ha-1 ranged 

from 0.01 to 5.44-fold (Table 2.2). Culpepper et al. reported that 52% of Palmer 

amaranth populations collected in Georgia in 2005 and 2006 were resistant to glyphosate, 

whereas 17% of the populations collected in North Carolina had resistance to glyphosate 

56. Palmer amaranth escapes following glyphosate applications could be associated with 

the species biology, especially the extended germination period that poses a challenge for 

glyphosate application timing 57. It has been reported that glyphosate control is reduced 

when plants are sprayed at later growth stages 58,59. The environmental conditions of 

Central and southwestern Nebraska (predominant Palmer amaranth area) could also 

influence glyphosate performance. Glyphosate efficacy is reduced in several weeds under 

water-stress and low humidity conditions 60–63. Adkins et al. reported that glyphosate 

efficacy on Avena fatua and Urochloa panicoides was reduced under water-stress 

combined with high temperatures 64, typical conditions found in central and southwestern 

Nebraska.  

Waterhemp glyphosate dose-response 
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Waterhemp is predominantly in eastern Nebraska, whereas no populations were 

found in the western part of the state (Figure 2.4). The majority of the waterhemp 

populations were sampled in soybean fields (84%). The results indicate that GR 

waterhemp is widespread in eastern Nebraska (Figure 2.5). Eighty-one percent of the 

waterhemp populations screened in this study expressed “practical” resistance to 

glyphosate (Table 2.3). Similar results were reported in Missouri, where 58% of the 

screened waterhemp populations survived the glyphosate label rate 25. Chatham et al. 

reported that 28% of the waterhemp populations screened throughout Illinois in 2010 

were GR 39. They indicated that the relatively low percentage of glyphosate resistance in 

waterhemp despite major complaints from growers could be attributed to poor 

management practices and not to glyphosate resistance. 

Twelve percent of the populations had GR90 ratios ranging from 2 to 3-fold 

difference in relation to the most susceptible population, but with the upper limit of the 

95% confidence interval of their estimated GR90 less than 868 g ae ha-1
. As previously 

described for the Palmer Amaranth results, populations with reduced sensitivity to 

glyphosate were not classified as having “practical resistance” in this study. The authors 

hypothesize that these populations may have individuals with genetically-heritable 

reduced sensitivity to glyphosate with relatively low EPSPS copy number in relation to 

populations with higher resistance levels. Moreover, waterhemp populations with 

reduced sensitivity to glyphosate could have different glyphosate resistance mechanisms, 

such as EPSPS target site mutation (Pro106Ser) and/or non-target-site resistance which 

results in reduced glyphosate uptake and translocation. The Pro106Ser EPSPS mutation 

has been reported in several waterhemp populations throughout the US 24,25,39,42. It has 
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been suggested that this mutation is usually associated with low levels of glyphosate 

resistance, where even though plants have reduced sensitivity to glyphosate, they do not 

survive higher rates of the herbicide 24. Further studies with molecular characterization of 

the glyphosate resistance mechanisms of these waterhemp populations with reduced 

sensitivity to glyphosate are required. 

Random Forest analysis 

Random forest is considered a powerful machine learning classifier because of 

their non-parametric nature, high classification accuracy, and capability of estimating 

variable importance 51. The OOB error of this random forest model corresponded to 

11.47%, which means that over 88% of the OOB samples were correctly classified by the 

model. Weed species was the best predictor for the presence of glyphosate resistance in 

Amaranthus species in Nebraska, followed by geographic region within the state and 

current crop. This however, is just a snapshot of where things were in between 2013 and 

2015. Follow up surveys are needed to further determine the current distribution and 

frequency of glyphosate resistance within the state. The least important factors were 

tillage practice and weed location within the field (Figure 2.6). Six percent of the Palmer 

amaranth populations were confirmed GR, 81% of the waterhemp populations were GR, 

whereas no GR redroot resistant populations were identified. The dioecious reproduction 

characteristic of Palmer amaranth and waterhemp combined with the high potential of 

pollen-mediated gene flow are considered major factors in the spread of glyphosate 

resistance for these species 65. The multiple glyphosate resistance mechanisms reported in 

waterhemp, such as EPSPS target site mutation (Pro106Ser) and non-target-site 

resistance mechanisms with reduced glyphosate uptake and translocation, could 
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contribute to the higher frequency of glyphosate resistance in waterhemp when compared 

to Palmer amaranth. Although both glyphosate resistance mechanisms were also reported 

in a Palmer amaranth population from Mexico 43, literature suggest that both mechanisms 

are more frequent in waterhemp. 

The majority of the GR waterhemp populations were collected in eastern 

Nebraska, whereas approximately 85% of these were collected in soybean fields. 

Interestingly, 2 of the 6 GR Palmer amaranth populations identified in the study were 

also collected in eastern Nebraska, whereas 4 populations were collected in central and 

southcentral Nebraska, regions with waterhemp presence. Glyphosate resistance in 

waterhemp is also widespread in Missouri and Iowa 20, states with borders with eastern 

Nebraska.  

It was estimated that 13 million ha of soybean fields were planted in Nebraska in 

2016, with 76% located in eastern Nebraska 18. The planted area for corn in the same year 

corresponded to 24 million ha, whereas 56.5% was located in the eastern / southeastern / 

northeastern part of the state, 27.1% in the central / north central / south central part, and 

16.4% in the southwestern / northwestern part (Table 2.4). USDA-NASS estimated that a 

total of 3,408 tons of herbicide active ingredients were applied in soybean in Nebraska 

during 2016, and 75% of the total amount was glyphosate 66. Conversely, it was 

estimated that a total of 12,567 tons of herbicide active ingredients were applied in corn 

in Nebraska in the same year, and 38% of this amount was glyphosate. These herbicide 

use statistics highlight the over-reliance on glyphosate and the intensive glyphosate-

selection pressure exerted on weeds in eastern Nebraska, especially in soybean fields. It 

is also possible to infer that although growers rely on glyphosate for weed control in corn, 
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they are also utilizing different modes of action such as atrazine (22% of total applied 

herbicide active ingredients) and other pre-emergent herbicides such as chloroacetamides 

(29% of the total applied herbicide active ingredients). Evans et al. reported in a 

classification and regression tree analysis that glyphosate resistance was more likely in 

waterhemp populations from fields in Illinois with frequent glyphosate applications and 

fewer modes of action per year 67. The data provided by USDA-NASS help clarify why 

glyphosate resistance is not widespread in western Nebraska (e.g., majority of the planted 

area in this region corresponds to corn, a crop in which producers adopt more diverse 

herbicide programs). Moreover, the region has a predominance of Palmer amaranth and 

little to no presence of waterhemp.  

Pollen-mediated gene flow could be a major factor contributing to the widespread 

occurrence of glyphosate resistance in eastern Nebraska. Sarangi et al. reported that the 

GR trait in waterhemp from Nebraska was highly mobile and its pollen-mediated 

dispersal was influenced by distance and wind 68. The authors reported up to 9% gene 

flow occurring in plants at 50 m from the pollen source, whereas the variability in gene 

flow increased with increasing distances from the source. Several other factors could also 

influence pollen dispersal, such as isolation distance, geographical barriers, crop canopy, 

recipient plant size, environmental conditions, and pollen competition 65,69. Additional 

studies are required to understand how these factors could influence pollen-mediated 

gene flow with glyphosate resistance dispersal in Amaranthus ssp. Sarangi et al. 

highlighted that management strategies adopted by growers are focused in on delaying 

herbicide resistance evolution over a small area, but they lack efficiency in preventing 

large-scale movement of herbicide resistance through pollen-mediated gene flow 68.  
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This observation could also address why tillage practices were not considered 

important in predicting glyphosate resistance in the random forest model, since only 31% 

of the surveyed soybean fields in eastern Nebraska had tillage practices. Tillage can be 

considered as an additional weed management tool to control GR weeds 14, but may only 

be effective for certain weed species. Some studies suggest that tillage practices 

combined with herbicide programs could potentially delay herbicide resistance evolution 

in specific situations 70. However, it seems unlikely that tillage practices would mitigate 

glyphosate resistance evolution in waterhemp from eastern Nebraska since the GR trait is 

widespread and highly mobile through pollen-mediated gene flow in the species. 

Although pollen-mediated glyphosate resistance transfer from Palmer amaranth to 

waterhemp 23, and gene introgression from waterhemp to Palmer amaranth were reported 

71, the relatively low frequencies of the interspecific hybridization between species 

combined with their geographical distribution in the state seem to contribute to the delay 

in the glyphosate resistance evolution in Palmer amaranth in Nebraska. It is important to 

mention that the few GR Palmer amaranth populations reported in the study were present 

in areas with GR waterhemp presence. This observation may indicate that glyphosate 

resistance in Palmer amaranth in Nebraska could be associated with pollen-mediated 

glyphosate resistance transfer from waterhemp. Further studies are necessary to better 

understand this hypothesis. 

The random forest analysis detected a minor importance of irrigation practices in 

the prediction of glyphosate resistance presence in fields with Amaranths in Nebraska. 

This observation is probably a result of a confounding factor regarding the irrigation 

distribution in the state, whereas the majority of the irrigated fields are located in western 
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Nebraska due to the reduced precipitation in this region. Only 25% of the surveyed 

irrigated fields were present in eastern Nebraska, the region with widespread glyphosate 

resistance.  

Interestingly, the random forest analysis indicated that the location of weeds 

within each site (field borders or inside fields) did not have importance in the prediction 

of glyphosate resistance in Amaranths from Nebraska. The results indicate that the 

glyphosate resistance was also identified in plants that were collected in field-borders and 

roadsides. This corroborates the results reported by Bagavathiannan and Norsworthy, 

who found only 3% of a total of 215 Palmer amaranth populations that were collected 

from roadsides in Arkansas to be susceptible to glyphosate 72. The authors suggested that 

growers should implement appropriate control strategies to manage roadside populations, 

especially if they are close to agricultural fields. 

The results reported in this study help clarify the glyphosate resistance status of 

Amaranthus species in Nebraska. It can be concluded that the intensive glyphosate 

selection pressure exerted in eastern Nebraska, especially in soybean fields, is the major 

factor responsible for the widespread occurrence of glyphosate resistance in waterhemp 

in the state. It can be inferred that pollen-mediated gene flow may play an important role 

in the dispersal of glyphosate resistance in waterhemp in eastern Nebraska. The relative 

low frequency of GR Palmer amaranth in the state highlights the importance of using 

multiple modes of action for weed management practices, as the majority of the corn 

fields in western Nebraska had glyphosate-susceptible Palmer amaranth biotypes and 

were likely treated with multiple effective modes of action. The recurrent complaints 

regarding Palmer amaranth glyphosate-control in the state were likely associated with 
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delayed applications and the extended germination window of the species. Furthermore, 

the presence of GR Palmer amaranth populations in areas with waterhemp presence, 

mainly in southern Nebraska, may indicate the potential risk of glyphosate resistance 

dissemination to Palmer amaranth populations in western Nebraska through pollen-

mediated gene flow, although this hypothesis needs to be further investigated. 
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Tables 

Table 2.1. Amaranth populations collected from 218 fields in Nebraska in 2013, 2014 and 2015. 

  
Palmer amaranth 

 (95 populations) 

Waterhemp (100 

populations) 

Redroot pigweed 

(23 populations) 

 
_____________________ Populations (%)†_______________________ 

Crops    

Alfalfa 2.1%   

Corn 62.1% 16.0% 66.7% 

Sorghum 5.3%  4.8% 

Soybean 24.2% 84.0% 23.8% 

Wheat 3.2%  4.8% 

Tillage    

No-Till 42.1% 60.0% 28.6% 

Till 51.6% 35.0% 71.4% 

Irrigation    

Rainfed 44.2% 84.0% 28.6% 

Irrigated 50.5% 12.0% 71.4% 

Weed location within field    

Field borders 41.1% 23.0% 19.0% 

Inside fields 53.7% 76.0% 76.2% 

Nebraska geographic region    

Central 24.2%  38.1% 

East Central 5.3% 42.0% 4.8% 

North Central 1.1% 1.0% 9.5% 

Northeast  15.0% 28.6% 

Northwest 4.2%  19.0% 

South Central 15.8% 1.0%  

Southeast 8.4% 41.0% 4.8% 

Southwest 41.1%  4.8% 

†Populations percentage (%) that do not add to 100% are due to missing data. 
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Table 2.2. Agronomic variables, estimation of GR50 and GR90, and resistance levels for select Palmer amaranth populations from Nebraska. 

Resistance levels were calculated by the ratio of the GR90 of each population and the glyphosate recommended label rate (868 g ae ha-1). 

Population County Crop Tillage Irrigation 
Weeds  

location 
GR50 ± SE GR90 ± SE 

Resistance 

level 

      ______________ g ae ha-1 ______________  

Per15-2 Perkins Wheat No No Field 2.3 ± 1.9 10.4 ± 1.6 0.01 

Hay15-2 Hayes Sorghum Yes No Field 9.7 ± 0.6 16.3 ± 4.0 0.02 

Kei99 Keith Corn No Yes Edges 3.9 ± 0.2 17.0 ± 3.2 0.02 

Daw226 Dawson Corn No Yes Edges 5.2 ± 0.6 20.4 ± 10.1 0.02 

Per15-3 Perkins Corn No No Field 10.6 ± 0.8 25.1 ± 4.9 0.03 

Cust45 Custer Soybean Yes Yes Field 6.7 ± 0.6 27.4 ± 4.2 0.03 

Lin60 Lincoln Corn Yes Yes Edges 7.7 ± 0.7 28.8 ± 6.4 0.03 

Red157 R. Willow Corn No Yes Field 9.3 ± 0.9 35.3 ± 7.2 0.04 

Cha28 Chase Corn No No Edges 5.6 ± 1.0 36.3 ± 7.2 0.04 

Per33 Perkins Soybean No Yes Edges 6.2 ± 0.5 52.7 ± 13.9 0.06 

Paw6 Pawnee Soybean No No Edges 12.7 ± 1.4 60.4 ± 13.2 0.07 

Red163 R. Willow Corn No No Field 10.8 ± 1.9 62.3 ± 20.3 0.07 

Lin15-8 Lincoln Sorghum Yes No Field 13.2 ± 3.8 188.7 ± 90.4 0.22 

Hall13 Hall Soybean Yes No Edges 51.5 ± 12.1 287.6 ± 158.3 0.33 

Tha15-2 Thayer Alfalfa No No Field 80.3 ± 19.0 982.8 ± 451.7 1.13 

Buf15-1 Buffalo Soybean Yes Yes Field 122.64 ± 26.3 2591.3 ± 1168.3 2.99 

Frank4 Franklin Wheat No No Field 337.5 ± 65.5 2623.0 ± 1291.2 3.02 

Ric2 Richardson Soybean No No Edges 917.5 ± 89.6 4021.2 ± 1025.9 4.63 

Hal6 Hall Soybean Yes No Field 602.2 ± 95.1 4724.9 ± 1759.6 5.44 
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Table 2.3. Agronomic variables, estimation of GR50 and GR90, and resistance levels for select waterhemp populations from Nebraska. Resistance 

levels were calculated by the ratio of the GR90 of each population and the glyphosate recommended label rate (868 g ae ha-1). 

Population County Crop Tillage Irrigation 
Weeds  

location 
GR50 ± SE GR90 ± SE 

Resistance 

level 

      ________________ g ae ha-1 ________________  

Dix12 Dixon Corn No No Field 60.4 ± 6.1 190.8 ± 56.0 0.22 

But1 Butler Soybean No No Field 79.8 ± 5.1 360.4 ± 50.7 0.42 

Sal3 Jefferson Soybean No No Field 70.2 ± 6.7 383.7 ± 86.1 0.44 

Ric9 Richardson Soybean No No Field 89.9 ± 14.7 505.6 ± 169.8 0.58 

Sau10 Saunders Soybean Yes No Edges 133.1 ± 14.8 747.6 ± 130.4 0.86 

Ric11 Richardson Soybean Yes No Field 131.1 ± 16.7 890.3 ± 167.1 1.03 

Cedar3 Cedar Corn Yes Yes Edges 185.8 ± 45.5 924.5 ± 357.6 1.07 

Lan9 Lancaster Corn No No Edges 81.8 ± 18.7 1008.9 ± 435.8 1.16 

Jef12 Saline Soybean No No Field 161.7 ± 30.2 1176.0 ± 321.7 1.35 

Dod1 Dodge Corn Yes No Field 152.4 ± 33.9 1282.5 ± 422.0 1.48 

Gag8 Gage Corn No No Field 65.2 ± 18.1 1609.8 ± 667.5 1.85 

Cum7 Cuming Soybean No No Field 198.5 ± 26.1 1789.4 ± 349.3 2.06 

Dod13 Dodge Corn Yes No Field 182.6 ± 47.2 2345.7 ± 783.5 2.70 

Sew1 Seward Soybean Yes Yes Field 590.5 ± 58.4 2853.9 ± 608.2 3.29 

Polk1 Polk Soybean No Yes Field 869.1 ± 68.4 4230.3 ± 836.4 4.87 

Joh13 Johnson Soybean No No Field 459.9 ± 78.0 5820.8 ± 1763.5 6.71 

Cas9 Cass Soybean No No Edges 375.2 ± 96.1 > 6935 >8.0 

Cas4 Cass Soybean Yes No Field 653.1 ± 153.7 > 6935 >8.0 

Oto11 Otoe Soybean No No Field 994.7 ± 277.7 > 6935 >8.0 
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Table 2.4. Soybean and Corn planted area in Nebraska in 2016†. 

Nebraska region Soybean Corn 

Central 8.2% 11.9% 

East Central 28.9% 21.9% 

North Central 3.5% 4.4% 

Northeast 24.9% 18.4% 

Northwest 0.1% 4.6% 

South Central 9.1% 10.8% 

Southeast 22.4% 16.2% 

Southwest 2.9% 11.8% 

Total area (million ha) 12.85 24.34 

†USDA National Agricultural Statistics Services, 2017 (https://quickstats.nass.usda.gov/) 
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Figures 

 
Figure 2.1. Distribution of glyphosate-susceptible redroot pigweed populations in Nebraska. A 

population was considered susceptible when the upper limit of the 95% confidence interval of its 

estimated GR90 was less than the recommended glyphosate label rate (868 g ae ha-1). 
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Figure 2.2. Distribution and glyphosate resistance level of Palmer amaranth populations in 

Nebraska. Resistance ratios were calculated by the ratio of the GR90 of each population and the 

glyphosate label rate (868 g ae ha-1). 
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Figure 2.3. Biomass reduction of glyphosate-resistant (Ric2) and susceptible (Kei99) Palmer 

amaranth populations from Nebraska at 21 d after treatment in glyphosate dose-response bioassay 

conducted at the Pesticide Application Technology Laboratory, University of Nebraska-Lincoln 

West Central Research and Extension Center. 
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Figure 2.4. Distribution and glyphosate resistance level of waterhemp populations in Nebraska. 

Resistance ratios were calculated by the ratio of the GR90 of each population and the glyphosate 

label rate (868 g ae ha-1). 
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Figure 2.5. Biomass reduction of glyphosate-resistant (Cas4) and susceptible (Sal7) waterhemp 

populations from Nebraska at 21 d after treatment in glyphosate dose-response bioassay 

conducted at the Pesticide Application Technology Laboratory, University of Nebraska-Lincoln 

West Central Research and Extension Center. 

 

  



50 

  

 
Figure 2.6. Random Forest analysis of likelihood of glyphosate resistance in Amaranthus species 

in response to agronomic strategies and geographical location within Nebraska. Variables are 

ordered by importance measured by the Gini coefficient. 
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CHAPTER 3. RESPONSE OF AMARANTHUS SPP. FOLLOWING EXPOSURE 

TO SUBLETHAL HERBICIDE RATES VIA SPRAY PARTICLE DRIFT 

 

Introduction 

Spray drift is defined as the part of the application (particles or vapors) that is 

deflected away from the target during or following applications 1. Many environmental 

and application technique factors influence spray particle drift, such as wind speed and 

direction, sprayer boom height, and spray droplet size 2–4. Spray droplet size which is 

directly influenced by nozzle design, nozzle orifice size, operating pressure, and 

physicochemical properties of the solution, is often the focal point of particle drift 

mitigation efforts 5–7. 

Risk assessment of herbicide drift includes the surrounding vegetation 

characterization, as non-target sensitive vegetation coexist with agricultural fields 8,9. The 

adverse consequences of herbicide drift towards sensitive crops have been extensively 

reported in the literature 10–13. However, little to no information is available on the 

consequences of herbicide drift on agricultural weed species. Weed species including 

horseweed (Erigeron canadensis L.), waterhemp [Amaranthus tuberculatus (Moq.) J. D. 

Sauer], Palmer amaranth (Amaranthus palmeri S. Wats.), velvetleaf (Abutilon theophrasti 

Medik), giant ragweed (Ambrosia trifida L. AMBTR ), and others are often abundant in 

field boundaries and ditches surrounding agricultural lands in the US Midwest 14–17 

(Figure 3.1). 

Exposure to herbicide drift could be detrimental to long-term weed management 

as several weed species have evolved resistance after recurrent selection with sublethal 
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herbicide rates 18–27. Previous research reported that recurrent selection with low rates of 

herbicides progressively selected for herbicide metabolism alleles present within the 

standing genetic variation of the population, additively leading to herbicide resistance 28–

30. In most recurrent selection studies, weed populations selected with sublethal rates of a 

given herbicide also evolved resistance to other herbicide sites of action 18,22,23,26. This 

highlights the nature of non-target-site resistance (NTSR) and influence of metabolic 

alleles selected in weed populations upon recurrent selection with low herbicides rates 

29,31,32. It has been suggested that recurrent selection with sublethal doses of herbicides 

not only select polygenic alleles within the standing genetic variation of the population, 

but also could induce new stress-related mutations within surviving individuals 33. 

Furthermore, it has been suggested that sublethal herbicide rates could act as stress agents 

inducing DNA mutations, epigenetic alterations, transcriptional remodeling, protein 

modifications, and other events that could ultimately confer levels of herbicide resistance 

34. Stress-induced epigenetic changes (DNA methylation, histone modifications, and 

others) are normally reverted soon after stress exposure, although in specific cases they 

can be carried over for multiple generations 35. The reproductive system of weed species 

influences herbicide resistance evolution. For instance, when plants are recurrently 

selected with sublethal rates of herbicides, recombination and accumulation of minor 

resistance genes can occur at a faster rate in cross-pollinated species such as waterhemp 

and Palmer amaranth 20,36. 

Despite the potential adverse implications towards resistance evolution from 

sublethal rate exposure via herbicide drift, near-field weed populations are often ignored 

and not managed in agricultural landscapes 14,15,17,37. Therefore, the objectives of this 
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study were to investigate the near-field deposition of glyphosate, 2,4-D,  and dicamba 

spray particle drift from applications with two different nozzles (different droplet 

spectrum resulting in low and high drift potentials) in a low speed wind tunnel, and their 

impact on waterhemp and Palmer amaranth growth and development under controlled 

environment. 

Material and Methods 

Plant Material 

A waterhemp population collected from a corn field (Zea mays L.) in northeastern 

Nebraska (Cuming County) in the fall of 2014, and a Palmer amaranth population 

collected from a sorghum (Sorghum bicolor L.) field in southwestern Nebraska (Hayes 

County) in the fall of 2015 were used in this study. No specific permissions were required 

for field seed collections, and field collections did not involve endangered or protected 

species. Both waterhemp and Palmer amaranth populations were previously confirmed 

susceptible to glyphosate, 2,4-D, and dicamba with dose-response bioassays (unpublished 

data). Waterhemp and Palmer amaranth seeds were sown into plastic tubes (1 L) 

containing commercial potting mix (Berger BM7 Bark Mix, Saint Modeste, QC, Canada) 

and maintained under greenhouse conditions (30/20 C [day/night] with a 16 h 

photoperiod) at the Pesticide Application Technology Laboratory (University of 

Nebraska-Lincoln, West Central Research and Extension Center, North Platte, NE). LED 

growth lights (520 μmol s−1, Philips Lighting, Somerset, NJ, USA) provided 

supplemental lighting to ensure a 16-h photoperiod. Plants were supplied with water 

including fertilizer solution (0.2% v/v) as needed (UNL 5-1-4, Wilbur-Ellis Agribusiness, 

Aurora, CO, USA). 
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Droplet size study 

A droplet size study was conducted in the low speed wind tunnel at the Pesticide 

Application Technology Laboratory. Droplet size distribution data were collected using a 

Sympatec Helos/Vario KR laser diffraction system (Sympatec Inc., Clausthal, Germany) 

measuring at a distance of 0.3 m from the nozzle tip. The diffraction system was 

equipped with a R7 lens which detects droplets ranging from 9 to 3700 μm in diameter. 

Nozzles were attached to an actuator and traversed vertically at constant speed (0.2 m s-1) 

to ensure the entire spray plume crossed the laser diffraction system 38. Applications were 

performed with two even (banding) nozzles; a conventional flat-fan nozzle 

(TP95015EVS) and an air-inclusion (AI) nozzle (AI95015EVS) (TeeJet Technologies 

Spraying Systems Co., Glendale Heights, IL, USA); and three herbicide solutions: 

glyphosate, 2,4-D, and dicamba (Table 3.1). The glyphosate treatment had the addition of 

ammonium sulfate solution at 5% v/v to overcome antagonistic effects of cationic salts in 

hard water (Bronc®, Wilbur-Ellis Agribusiness, Aurora, CO, USA). Solutions were 

prepared at 140 L ha-1 carrier volume. Applications were performed at 230 kPa with 

constant wind speed of 6.71 m s-1. The DV0.1, DV0.5, and DV0.9 (droplet diameters which 

10, 50, and 90% of the spray volume are contained in droplets of smaller diameter, 

respectively), and the percentage of the spray volume in droplets smaller than 150 µm 

(driftable fines) were recorded. The relative span (RS), a dimensionless parameter that 

estimates the distribution spread and its homogeneity was calculated: [(DV0.9 – DV0.1) / 

DV0.5] 
39

.  

The treatment design was a factorial arrangement with herbicide solution and 

nozzle as factors in a complete randomized experimental design with three replications 
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and repeated. Droplet size data were subjected to analysis of variance in SAS (SAS v9.4, 

SAS Institute Inc., Cary, NC, USA) and comparisons among treatments were performed 

using Fisher’s Protected LSD test (P ≤ 0.05). 

Wind tunnel particle drift study 

A spray particle drift deposition study was conducted in the low speed wind 

tunnel at the Pesticide Application Technology Laboratory. Glyphosate, 2,4-D, and 

dicamba solutions were prepared as previously described (Table 3.1) with the addition of 

1,3,6,8-pyrene tetra sulfonic acid tetra sodium salt (PTSA) as a fluorescent tracer 

(Spectra Colors Corporation, Kearny, NJ, USA) at 1000 ppm concentration 40. Herbicide 

solutions were sprayed at 140 L ha-1 using two different even nozzles (banding) at 230 

kPa (AI95015EVS and TP95015EVS) under a 4.47 m s-1 wind speed. The average air 

temperature and relative humidity during this study were 25 C and 45%, respectively. 

Mylar cards (100 mm x 100 mm) (Grafix Plastics, Cleveland, OH) were used to collect 

particle drift deposition at different downwind distances: 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 

7.0, and 12.0 m from the nozzle. Simultaneously, waterhemp and Palmer amaranth plants 

(15-20 cm-tall) were also positioned at the same downwind distances (Figure 3.2). 

Applications were performed at 51 cm height in relation to Mylar cards and plants. 

After applications, Mylar cards were collected and placed into pre-labeled plastic 

zip-top bags and were immediately transferred to a dark container to avoid PTSA 

photodegradation. Spray particle drift deposition was determined for each Mylar card by 

fluorometric analysis at the Pesticide Application Technology Laboratory. Mylar cards 

were washed using 40 ml of a 9:1 solution of distilled water and 91% isopropyl alcohol. 

With the tracer completely suspended, a 1.5 ml aliquot was transferred to glass cuvette 
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and analyzed using a Trilogy® fluorimeter with a PTSA module (Turner Designs, 

Sunnyvale, CA, USA). Relative fluorescence units (RFU) data were converted into mg L-

1 using a calibration curve for the tracer, and posteriorly to deposition percentage as 

compared to the theoretical application rate of 140 L ha-1. The deposition data for each 

nozzle by herbicide solution combination (nozzle*herbicide) was estimated with a four-

parameter symmetric log-logistic model using the drc package in R software (R 

Foundation for Statistical Computing, Vienna, Austria): y = c + (d – c/1 + exp (b (log x – 

log e))) ; where y represents deposition (% from applied rate), b is the slope at the 

inflection point, c is the lower limit of the model (fixed to 0%), d is the upper limit 

(applied rate fixed to 100%), and e is the inflection point (distance to 50% spray drift 

deposition) 41. The distance to 5% application rate deposition (D5) was estimated for each 

nozzle*herbicide combination. 

After applications, waterhemp and Palmer Amaranth plants were maintained 

under greenhouse conditions as previously described. Above ground plant biomass was 

harvested 28 days after treatment (DAT) and oven dried at 65 ºC to constant weight. The 

biomass data were converted into percentage of biomass reduction as compared to the 

untreated control. The symmetric four-parameter log-logistic model was used to describe 

biomass reduction using the drc package in R statistical software, where y represents 

biomass reduction (%), b is the slope at the inflection point, c is the lower limit of the 

model (fixed to 0%), d is the upper limit, and e is the inflection point (distance to 50% 

biomass reduction). 

In swath (0 m distance) plant biomass reduction for each nozzle*herbicide 

treatment was estimated with herbicide applications using a research spray chamber 
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calibrated to deliver 140 L ha-1 with the same nozzles, herbicide solutions, and spraying 

parameters used in the wind tunnel study. 

Results and Discussion 

Droplet size 

A significant interaction between nozzle design and herbicide solution was 

detected for the DV0.1 (p = 0.0002), DV0.5 (p < 0.0001), DV0.9 (p < 0.0001), RS (p < 

0.0001), and driftable fines (p < 0.0001). Nozzle design had the greatest influence on 

droplet size, whereas herbicide solution had minor impact as previously reported 5,42,43 

(Table 3.2). The preorifice component of the AI nozzle is designed to reduce the solution 

pressure as it exits the nozzle, thereby increasing the droplet size of the spray 5,42. 

Wind tunnel particle drift deposition 

The nozzle treatments selected herein created two scenarios: a low drift potential 

(AI nozzle producing Ultra Coarse droplets with less than 1% of driftable fines) and a 

high drift potential (flat-fan nozzle producing Fine droplets with more than 25% of 

driftable fines). The estimated particle drift potential of treatments included in this wind 

tunnel study are consistent with previously reported field scale particle drift potential, 

where similar nozzle designs, droplet size classifications, and study methods were used. 

A study reported that 5% of applications of water with PTSA solution (93.5 L ha-1) using 

an AI nozzle at an average wind speed of 5.7 m s-1 deposited at 2.3 m downwind, 

whereas this distance corresponded to 4.5 m for applications with a flat-fan nozzle 43. In 

this wind tunnel study, applications with the AI nozzle had 5% of the applied rate being 

deposited at 1.9 m downwind when herbicides were pooled, whereas this distance 

corresponded to 6.5 m for applications with the flat-fan nozzle. This indicates that the 



58 

  

wind tunnel drift simulation method reproduced near-field spray drift conditions (Figures 

3.3 and 3.4). Herbicide applications with the AI nozzle had smaller e parameter (distance 

to 50% spray drift deposition), ranging from 0.16 to 0.33 m across herbicides, when 

compared to applications with the flat-fan nozzle (0.44 to 0.65 m) (Table 3.3). The same 

trend was observed in the D5 parameter, where applications with the AI nozzle had 5% of 

the total applied rate being deposited from 1.57 to 2.27 m across herbicides, whereas 

these distances are increased to 6.11 and 6.97 m with the flat-fan nozzle. These results 

indicate the greater spray particle drift potential of the flat-fan nozzle. The greater b 

parameter (slope at the inflection point) of applications with the AI nozzle (ranging from 

1.28 to 1.52 across herbicides) when compared to the flat-fan nozzle (1.10 to 1.24) 

indicates a faster decay rate of spray deposits resulting in less spray deposition at further 

downwind distances. 

These findings corroborate the results from a field study investigating spray 

particle drift 44, where applications (water plus fluorescent tracer) with AI nozzles 

resulted in less particle drift compared to applications with conventional flat-fan nozzles. 

It has been reported that the distance where sorghum plants were lethally injured by 

glyphosate drift decreased 34% for applications with AI nozzles compared to 

conventional flat-fan nozzles 45. Similar wind tunnel study results were reported, where 

applications of dicamba alone and in tank mixtures with glyphosate using AI nozzles 

resulted in less herbicide particle drift compared to conventional flat-fan nozzles 46,47. 

Plants response to herbicide drift 

Herbicide drift exposure subjected waterhemp and Palmer amaranth plants to 

either physiological stress (biomass reduction) or mortality (Table 3.4). The parameter 
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estimates for the log-logistic biomass reduction model for waterhemp and Palmer 

amaranth are presented in Tables 3.5 and 3.6, respectively. The estimated d parameters 

(in-swath biomass reduction or upper limit) were greater than 84% biomass reduction for 

all nozzle*herbicide treatments, confirming that waterhemp and Palmer amaranth 

populations used in this study were susceptible to glyphosate, 2,4-D, and dicamba. Plants 

had greater biomass reduction when exposed to herbicide drift from applications with the 

flat-fan nozzle (greater drift potential). 

Across the herbicides tested, Palmer amaranth had higher biomass reduction 

compared to waterhemp. The susceptibility differences between waterhemp and Palmer 

amaranth were more evident with glyphosate, corroborating a previous report 17. Palmer 

amaranth was extremely susceptible to glyphosate drift from both nozzles, in which the 

biomass reduction curve as influenced by downwind distances did not even reach the e 

parameter (distance to 50% biomass reduction) for applications with the flat-fan nozzle 

(Figures 3.5 and 3.6). In scenarios where the weed biotypes are extremely susceptible to a 

given herbicide, selection pressure will take place in extended downwind distances from 

the sprayed area as further distance is required to plants reach the no observable effect 

level (NOEL). 

Glyphosate was more active at higher exposure rates compared to 2,4-D and 

dicamba. The e parameters (distance to 50% biomass reduction) also support this 

observation. Glyphosate applications had greater e parameter when compared to 2,4-D 

and dicamba, especially in applications with the flat-fan nozzle where plants are exposed 

to higher herbicide rates. Conversely, 2,4-D and dicamba were more active than 

glyphosate under lower exposure rates. This is more evident in the biomass reduction 
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curves for waterhemp and Palmer amaranth exposed to herbicide drift from the AI nozzle 

(Figures 3.7 and 3.8). In fact, glyphosate applications had greater b parameter (slope at 

the inflection point) in general, indicating that biomass reduction curves had faster decay 

rate as the downwind distance was increased when compared to 2,4-D and dicamba. This 

indicates that glyphosate would reach no observable effect level at shorter downwind 

distances when compared to 2,4-D and dicamba. This corroborates previous reports 

relating low rates of 2,4-D and dicamba to high crop injury potential on soybean (Glycine 

max (L.) Merr.), cotton (Gossypium hirsutum L.), tomato (Solanum lycopersicum L.), and 

other broadleaf species 48–50. 

Herbicide drift and plant exposure to sublethal rates  

Estimations of spray drift deposition as influenced by downwind distance and 

nozzle type (pooled across herbicides) are provided in Table 3.7. Applications with the 

flat-fan nozzle resulted in near-field spray drift ranging from 32.3 (1.0 m) to 11.5% (3.0 

m) of the applied rate. The use of the AI nozzle decreased the dose exposure in the same 

distance range, with drift deposition estimations ranging from 11.4 (1.0 m) to 2.7% (3 m) 

of the applied rate. It has been reported that progenies of an initially susceptible 

population of annual ryegrass (Lolium rigidum Gaudin) shifted towards glyphosate 

resistance (up to 2.1-fold in the LD50) after being recurrently selected with sublethal rates 

of glyphosate 21. These authors exposed three generations of Lolium rigidum plants to 

sublethal rates of glyphosate ranging from 150 g ae ha-1 to 350 g ae ha-1 (17 to 40% of the 

867 g ae ha-1 commonly adopted field rate in glyphosate tolerant crops). In a similar 

study, it was reported that a glyphosate-susceptible Palmer amaranth population evolved 

glyphosate resistance (2.2-fold in the LD50) after being recurrently selected under 
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sublethal rates of glyphosate for four generations 25. The author reported that glyphosate 

doses of 105, 126, 210, and 420 g ae ha-1 (12, 15, 24, and 48% of the 867 g ae ha-1 

commonly adopted field rate in glyphosate tolerant crops, respectively) were used as 

generations progressed during the recurrent selection study. In a Raphanus raphanistrum 

L. population, the plants evolved 2,4-D resistance (8.6-fold in the LD50) after being 

recurrently selected during four generations 18. The authors exposed plants to 125, 250, 

and 750 g 2,4-D ae ha-1 (12, 24, and 73% of the 1065 g ae ha-1 recommended rate for 2,4-

D-tolerant soybean) as generations progressed. Another study reported that a 2,4-D and 

dicamba-susceptible Palmer amaranth population had its susceptibility reduced to both 

herbicides (2.8 and 2.0-fold in the LD50 for dicamba and 2,4-D, respectively) after 

recurrent selection with sublethal rates of dicamba for three selection generations 26. The 

authors exposed plants to 140, 280, and 420 g dicamba ae ha-1 (25, 50, and 75% of the 

560 g ae ha-1 recommended rate for dicamba-tolerant soybean) during the selection 

generations. Recurrent selection studies with sublethal rates of pyroxasulfone and 

diclofop-methyl were also associated with resistance evolution in weeds in previous 

studies 19,20,22,23,27. 

Despite similar dose ranges, herbicide drift exposure differs from previously 

reported sublethal rate studies in terms of spray deposition pattern on plants and herbicide 

concentration within spray droplets. Unlike an intentional sublethal rate application with 

a constant carrier volume (usually ranging from 94 to 188 L ha-1), spray drift deposition 

is not consistent across field edges, which could influence plant response to the herbicide 

exposure. The higher herbicide concentration of spray drift droplets at lower carrier 

volumes could also influence plant response to herbicide exposure. Previous research 
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indicated that glyphosate was more active at lower carrier volumes (more concentrated 

droplets) on oat (Avena sativa L.), wheat (Triticum aestivum L.), and several annual grass 

weed species such as Echinochloa crusgalli L., Panicum dichotomiflorum Michx., 

Setaria viridis (L.) Beauv., Setaria pumila (Poir.) Roem. et Schult, and Digitaria 

sanguinalis (L.) Scop., especially when lower glyphosate rates were compared 51,52. 

Another study reported that carrier volume also influenced glyphosate activity on corn, 

whereas  soybean was not affected 53,54. It has also been reported that carrier volume 

influenced low rates of 2,4-D activity on cotton plants with lower carrier volumes (more 

concentrated droplets) resulting in more herbicide injury 53. Similarly, lower rates of 2,4-

D and dicamba were more active on cotton when lower carrier volumes with more 

concentrated droplets were used 50. A study highlighted that the active ingredient 

concentration within droplets could influence the diffusion process of herbicide foliar 

uptake 55. However, the authors mentioned that glyphosate foliar uptake has been 

investigated more than other herbicides. Additionally, it has been suggested that carrier 

volume could influence glyphosate activity because of water hardness, surfactant 

concentration, and spray droplet dynamics 52. Herbicides tested in this study (glyphosate, 

2,4-D, and dicamba) have systemic activity and can still be effective at lower carrier 

volumes and coverage, whereas contact herbicides usually require higher carrier volumes 

and adequate coverage 56–58. Therefore, spray drift and injury potential from contact 

herbicides needs to be further investigated. 

The results of this study indicate that herbicide drift towards field edges expose 

weeds to a range of herbicide rates reported to select for herbicide resistance. A previous 

study reported that only 3% of a total of 215 Palmer amaranth populations collected from 
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roadsides, ditches, and field borders in eastern Arkansas were completely susceptible to 

glyphosate 14. Glyphosate resistance was also confirmed in waterhemp and Palmer 

amaranth populations located on field borders and ditches in Nebraska 17. Similarly, the 

presence of herbicide-resistant giant ragweed (Ambrosia trifida L.) in crop fields 

throughout the U.S. Corn Belt and Ontario (Canada) was strongly correlated to the 

species presence on crop field edges such as railroad sidings, ditch banks, and fencerows 

15. 

This study confirmed that nozzle selection influenced spray drift and consequent 

herbicide dose exposure on field edges, although spray drift could also be influenced by 

other parameters not tested, such as wind speed and boom height. The distance range 

with herbicide exposure and selection pressure is further increased for applications with 

the flat-fan nozzle (higher drift potential). It has been suggested that plants exposed to 

low doses of herbicides experience physiological stress, whereas plants exposed to even 

lower rates (hormetic doses) could also be subjected to stress 34. Therefore, further 

studies are necessary to investigate if weeds could evolve herbicide resistance after 

recurrent selection with different exposure ranges of herbicide drift.  

Despite the herbicide drift exposure and its potential implications on resistance 

evolution and weed management, near-field weed populations are often neglected and not 

properly managed in agricultural landscapes 14,15,17,37. It has been reported that 

unmanaged field margins with resistant-prone weeds can exacerbate the risk of 

resistance, especially when outcrossing occurs with resistant populations near field 37. 

Having plants under selection pressure for herbicide resistance on field borders could be 

detrimental for in-field weed management as pollen-mediated gene flow plays an 
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important role in dispersing herbicide resistance alleles in cross-pollinated species such 

as waterhemp and Palmer amaranth 59–61. Preventing resistance-prone weeds on field 

margins is an important best management practice (BMP) to delay herbicide resistance, 

although the additional management costs and time constraints pose a challenge for 

growers 18,62. Growers should consider additional strategies to mitigate near-field spray 

drift 43,63, and implement appropriate control strategies to manage weed populations on 

field borders,  such as mowing, using boomless nozzles for weed control in areas of 

difficult access (fencerows, electrical lines), or planting and maintaining field borders to a 

less-weedy and easier to manage species 37. 
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Tables 

Table 3.1. Herbicide solutions, rates, and product manufacturers for solutions tested in the 

droplet size and spray particle drift studies.a 

Herbicide Active ingredient Product manufacturer Rate 

Clarity® 
Dicamba diglycolamine 

salt 

BASF Corporation, Research, 

Triangle Park, NC, USA 
280 g ae ha-1 

Roundup 

PowerMax® 

Glyphosate potassium 

salt 

Bayer CropScience, Research, 

Triangle Park, NC, USA 
867 g ae ha-1 

Weedar® 64 
2,4-D dimethylamine 

salt 
Nufarm Inc, Alsip, IL, USA 532 g ae ha-1 

aGlyphosate solution had the addition of ammonium sulfate solution at 5% v/v (Bronc®, Wilbur-

Ellis Agribusiness, Aurora, CO, USA). 
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Table 3.2. Droplet size distribution and spray classification for the two nozzles and three 

herbicide solutions tested in the droplet size and spray particle drift study at 230 kPa.a 

Nozzleb Herbicidec 

Droplet size characteristicsd 
Spray 

classificatione DV0.1 DV0.5 DV0.9 RS 
Driftable 

fines 

  _____________ μm ____________  %  

TP95015EVS Glyphosate 89 D 201 D 348 E 1.29 A 30.7 A F 
 2,4-D 98 C 212 C 360 D 1.23 B 26.2 C F 
 Dicamba 96 C 209 C 355 DE 1.24 B 26.9 B F 
        

AI95015EVS Glyphosate 392 B 805 A 1212 B 1.02 C 0.6 D UC 
 2,4-D 408 A 801 A 1223 A 1.02 C 0.4 D UC 

  Dicamba 411 A 789 B 1166 C 0.96 D 0.4 D UC 
aMeans within a column followed by the same letter are not significantly different based on the 

LSD test (P ≤ 0.05). 
bTeeJet Technologies, Spraying Systems Co., Glendale Heights, IL, USA. 

cGlyphosate solution had the addition of ammonium sulfate solution at 5% v/v (Bronc®, Wilbur-

Ellis Agribusiness, Aurora, CO, USA). 

dAbbreviations:  DV0.1, DV0.5, and DV0.9: Parameters which represent the droplet size such that 

10, 50, and 90% of the spray volume is contained in droplets of lesser values, respectively; 

Driftable fines: Percent of spray volume that contains droplets less than 150 µm diameter; 

RS: Relative span, a dimensionless parameter that estimates the spread of a distribution. 
eThe spray classifications for this study were based on reference curves created from reference 

nozzle data at the Pesticide Application Technology Laboratory as described by ASABE S572.1 

where F = Fine, and UC = Ultra Coarse. 
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Table 3.3. Log-logistic model parameters estimates, standard errors, and distance to 5% 

application rate deposition (D5) as influenced by downwind distance for each nozzle*herbicide 

treatment combination tested in the spray particle drift study.a 

Nozzleb Herbicide 
Log-logistic model parametersc 

b e D5 
   _______________ m _______________ 

TP95015EVS Glyphosate 1.10 ± 0.07 0.44 ± 0.04 6.28 ± 0.60  
 2,4-D 1.24 ± 0.07 0.65 ± 0.04 6.97 ± 0.56 
 Dicamba 1.19 ± 0.07 0.52 ± 0.04 6.11 ± 0.53 
     

AI95015EVS Glyphosate 1.36 ± 0.19 0.20 ± 0.05 1.77 ± 0.12 
 2,4-D 1.52 ± 0.15 0.33 ± 0.05 2.27 ± 0.14 

  Dicamba 1.28 ± 0.21 0.16 ± 0.06 1.57 ± 0.11 
aGlyphosate solution had the addition of ammonium sulfate solution at 5% v/v (Bronc®, Wilbur-

Ellis Agribusiness, Aurora, CO, USA). 

bTeeJet Technologies, Spraying Systems Co., Glendale Heights, IL. 

cb parameter corresponds to the slope at the inflection point; e parameter corresponds to the 

distance to 50% application deposition; c parameter (lower limit) fixed to 0%; d parameter (upper 

limit) fixed to 100%; D5 corresponds to the distance to 5% application rate deposition. 
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Table 3.4. Waterhemp and Palmer amaranth mortality and estimations of biomass reduction 

using a log-logistic model as influenced by downwind distances for each nozzle*herbicide 

combination tested in the spray particle drift study.ab 

Nozzlec  Distance 
Waterhemp mortality  

(biomass reduction) 

Palmer amaranth mortality 

(biomass reduction) 

TP95015EVS  Glyphosate 2,4-D Dicamba Glyphosate 2,4-D Dicamba 

 m _________________________________________ % ____________________________________ 

 1.0 100 (89) 83 (83) 83 (74) 100 (93) 0 (75) 67 (86) 

 1.5 83 (87) 83 (75) 50 (67) 100 (93) 0 (72) 83 (83) 

 2.0 17 (85) 0 (69) 17 (62) 100 (93) 0 (69) 17 (79) 

 2.5 17 (82) 17 (63) 0 (57) 83 (92) 0 (66) 17 (77) 

 3.0 0 (78) 0 (57) 0 (53) 83 (92) 0 (64) 0 (74) 

 4.0 17 (71) 0 (49) 0 (46) 83 (91) 0 (60) 0 (69) 

 5.0 0 (63) 0 (42) 0 (40) 67 (89) 0 (56) 0 (65) 

 7.0 0 (50) 0 (32) 0 (33) 33 (83) 0 (50) 0 (58) 

  12.0 0 (27) 0 (19) 0 (22) 0 (64) 0 (41) 0 (47) 

AI95015EVS 1.0 100 (91) 0 (60) 17 (54) 100 (94) 0 (59) 0 (59) 

 1.5 67 (80) 17 (53) 0 (49) 83 (91) 0 (55) 0 (56) 

 2.0 0 (67) 0 (48) 0 (45) 100 (87) 0 (53) 0 (54) 

 2.5 0 (55) 0 (44) 0 (42) 33 (83) 0 (50) 0 (52) 

 3.0 0 (44) 0 (41) 0 (39) 33 (79) 0 (49) 0 (50) 

 4.0 0 (28) 0 (35) 0 (35) 17 (71) 0 (46) 0 (48) 

 5.0 0 (19) 0 (32) 0 (33) 0 (64) 0 (44) 0 (46) 

 7.0 0 (9) 0 (26) 0 (28) 0 (52) 0 (40) 0 (43) 

 12.0 0 (3) 0 (19) 0 (22) 0 (32) 0 (35) 0 (39) 
aGlyphosate solution had the addition of ammonium sulfate solution at 5% v/v (Bronc®, Wilbur-

Ellis Agribusiness, Aurora, CO, USA). 
bBiomass reduction as compared to the untreated control. 

cTeeJet Technologies, Spraying Systems Co., Glendale Heights, IL. 
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Table 3.5. Log-logistic model parameters estimates and standard errors for waterhemp biomass 

reduction as influenced by downwind distance for each nozzle*herbicide combinations tested in 

the spray particle drift study.ab 

 Nozzlec Herbicide 
Log-logistic model parametersd 

b d (%) e (m) 

TP95015EVS Glyphosate 1.92 ± 0.38 91.04 ± 4.00 7.71 ± 0.69 

 2,4-D 1.28 ± 0.17 96.79 ± 4.58 4.04 ± 0.45 

 Dicamba 1.07 ± 0.16 90.32 ± 4.87 4.10 ± 0.59 

     
AI95015EVS Glyphosate 2.44 ± 0.33 98.18 ± 4.24 2.75 ± 0.16 

 2,4-D 0.83 ± 0.14 87.96 ± 4.93 2.48 ± 0.43 

  Dicamba 0.61 ± 0.12 90.80 ± 5.04 1.91 ± 0.46 
aGlyphosate solution had the addition of ammonium sulfate solution at 5% v/v (Bronc®, Wilbur-

Ellis Agribusiness, Aurora, CO, USA). 

bBiomass reduction as compared to the untreated control. 

cTeeJet Technologies, Spraying Systems Co., Glendale Heights, IL. 

dc parameter (lower limit) fixed to 0%; b parameter corresponds to the slope at the inflection 

point; d parameter corresponds to the upper limit, e parameter corresponds to the distance to 50% 

biomass reduction. 
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Table 3.6. Log-logistic model parameters estimates and standard errors for Palmer amaranth 

biomass reduction as influenced by downwind distance for each nozzle*herbicide combinations 

tested in the spray particle drift study.ab 

Nozzlec  Herbicide 
Log-logistic model parametersd 

b d (%) e (m) 

TP95015EVS Glyphosate 2.55 ± 0.83 93.13 ± 1.92 16.31 ± 2.24 

 2,4-D 0.86 ± 0.14 84.76 ± 3.55 10.91 ± 1.98 

 Dicamba 0.91 ± 0.14 95.59 ± 3.75 11.50 ± 1.82 

     
AI95015EVS Glyphosate 1.53 ± 0.19 98.28 ± 3.09 7.55 ± 0.63 

 2,4-D 0.46 ± 0.10 85.85 ± 4.27 5.38 ± 1.53 

  Dicamba 0.37 ± 0.09 90.98 ± 4.28 5.37 ± 1.80 
aGlyphosate solution had the addition of ammonium sulfate solution at 5% v/v (Bronc®, Wilbur-

Ellis Agribusiness, Aurora, CO, USA). 
bBiomass reduction as compared to the untreated control. 
cTeeJet Technologies, Spraying Systems Co., Glendale Heights, IL. 

dc parameter (lower limit) fixed to 0%; b parameter corresponds to the slope at the inflection 

point; d parameter corresponds to the upper limit, e parameter corresponds to the distance to 50% 

biomass reduction; D5 corresponds to the distance with 5% application rate deposition. 
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Table 3.7. Spray drift deposition estimations with 95% confidence intervals (CI 95%) as 

influenced by downwind distance and nozzle type (pooled herbicides) using a log-logistic non-

linear regression model in the spray particle drift study. 

Nozzlea Distance Spray depositionb CI 95% 
 m _________________________ % _________________________ 

TP95015EVS 1.0 32.3 (31.1 - 33.5) 
 1.5 22.8 (22.1 - 23.5) 
 2.0 17.4 (16.8 - 18.0) 
 2.5 13.9 (13.3 - 14.5) 
 3.0 11.5 (10.9 - 12.1) 
 4.0 8.5 (7.9 - 9.1) 
 5.0 6.7 (6.1 - 7.2) 
 7.0 4.6 (4.1 - 5.1) 
 12.0 2.5 (2.1 - 2.8) 

AI95015EVS 1.0 11.4 (10.1 - 12.8) 
 1.5 6.8 (6.1 - 7.5) 
 2.0 4.7 (4.0 - 5.3) 
 2.5 3.4 (2.8 - 4.1) 
 3.0 2.7 (2.1 - 3.3) 
 4.0 1.8 (1.3 - 2.4) 
 5.0 1.3 (0.9 - 1.8) 
 7.0 0.8 (0.5 - 1.2) 
 12.0 0.4 (0.2 - 0.6) 

aTeeJet Technologies, Spraying Systems Co., Glendale Heights, IL. 
bSpray drift deposition (%) in relation to the applied rate of 140.3 L ha-1. 
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Figures 

 
Figure 3.1. Waterhemp (Amaranthus tuberculatus) population located on field border in eastern 

Nebraska. 
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Figure 3.2. Herbicide particle drift study conducted in the low speed wind tunnel with waterhemp 

(Amaranthus tuberculatus), Palmer amaranth (Amaranthus palmeri), and drift collectors (Mylar 

cards) positioned at different downwind distances from the nozzle. 

 

  



80 

  

 
Figure 3.3. Glyphosate, 2,4-D, and dicamba particle drift study using an air-inclusion nozzle 

(AI95015EVS) conducted in a low speed wind tunnel. Shaded area indicates the 95% confidence 

limits. Glyphosate solution had the addition of ammonium sulfate solution at 5% v/v (Bronc®, 

Wilbur-Ellis Agribusiness, Aurora, CO, USA). 
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Figure 3.4. Glyphosate, 2,4-D, and dicamba particle drift study using a flat-fan nozzle 

(TP95015EVS) conducted at a low speed wind tunnel. Shaded area indicates the 95% confidence 

limits. Glyphosate solution had the addition of ammonium sulfate solution at 5% v/v (Bronc®, 

Wilbur-Ellis Agribusiness, Aurora, CO, USA). 
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Figure 3.5. Waterhemp (Amaranthus tuberculatus) biomass reduction as influenced by 

glyphosate, 2,4-D, and dicamba particle drift using a flat-fan nozzle (TP95015EVS) in a low 

speed wind tunnel. Glyphosate solution had the addition of ammonium sulfate solution at 5% v/v 

(Bronc®, Wilbur-Ellis Agribusiness, Aurora, CO, USA). 
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Figure 3.6. Palmer amaranth (Amaranthus palmeri) biomass reduction as influenced by 

glyphosate, 2,4-D, and dicamba particle drift using a flat-fan nozzle (TP95015EVS) in a low 

speed wind tunnel. Glyphosate solution had the addition of ammonium sulfate solution at 5% v/v 

(Bronc®, Wilbur-Ellis Agribusiness, Aurora, CO, USA). 
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Figure 3.7. Waterhemp (Amaranthus tuberculatus) biomass reduction as influenced by 

glyphosate, 2,4-D, and dicamba particle drift using an air-inclusion nozzle (AI95015EVS) in a 

low speed wind tunnel. Glyphosate solution had the addition of ammonium sulfate solution at 5% 

v/v (Bronc®, Wilbur-Ellis Agribusiness, Aurora, CO, USA). 
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Figure 3.8. Palmer amaranth (Amaranthus palmeri) biomass reduction as influenced by 

glyphosate, 2,4-D, and dicamba particle drift using an air-inclusion nozzle (AI95015EVS) in a 

low speed wind tunnel. Glyphosate solution had the addition of ammonium sulfate solution at 5% 

v/v (Bronc®, Wilbur-Ellis Agribusiness, Aurora, CO, USA). 
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CHAPTER 4. HERBICIDE DRIFT EXPOSURE LEADS TO REDUCED 

HERBICIDE SENSITIVITY IN AMARANTHUS SPP. 

 

Introduction 

The introduction of glyphosate, 2,4-D, and dicamba tolerant crops provided 

growers new herbicide options and flexibility to manage troublesome weed species 1–3. 

However, the widespread adoption of these herbicides in weed management programs 

increased the risk of off-target movement associated with glyphosate, 2,4-D, and dicamba 

applications. Spray drift is the part of the application (droplets and vapor) deflected away 

from the target area during or following pesticide applications 4. Glyphosate, 2,4-D, and 

dicamba drift have been reported to cause severe injury and yield loss on sensitive 

vegetation and crops, especially when best practices are not adopted during applications 

5–12. 

While the consequences of herbicide drift towards sensitive crops are well 

reported in the literature, little information is available on the consequences of herbicide 

drift towards other plant communities surrounding agricultural landscapes. Troublesome 

weed species such as waterhemp [Amaranthus tuberculatus (Moq.) J. D. Sauer] and 

Palmer amaranth (Amaranthus palmeri S. Wats.) are often abundant in field margins and 

ditches surrounding agricultural landscapes throughout the US 13–15. Exposure to 

herbicide drift could be detrimental to long-term weed management as numerous weed 

species evolved herbicide resistance after recurrent selection with low rates of herbicides 

16–26. Spray drift can expose weeds to herbicide doses previously reported to select for 
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herbicide resistance 27. In fact, herbicide resistance has been reported in weed populations 

inhabiting field margins and ditches surrounding agricultural landscapes 13,15,28. 

Recurrent selection with low doses of herbicides progressively selects for 

metabolism alleles present within the standing genetic variation of the population, which 

additively leads to herbicide resistance 18,29–31. Some researchers also suggest that low 

rates of herbicides could act as stress agents inducing new stress-related mutations and 

epigenetic alterations that could ultimately lead to reduced herbicide sensitivity 32–34.  

Recombination and accumulation of minor resistance genes during recurrent 

selection with low rates of herbicides occur at faster rate in cross-pollinated species such 

Palmer amaranth and waterhemp 19,20,35.  Palmer amaranth and waterhemp are among the 

most troublesome weed species occurring in the US 36. Both are C4 summer annual 

obligate outcrossing dioecious weed species with a fast growth habitat, extended 

emergence window, and prolific seed production with high genetic plasticity that pose a 

challenge to their management 36–43. Numerous Palmer amaranth and waterhemp 

populations evolved resistance to herbicides that target 5-enolpyruvylshikimate-3-

phosphate synthase (EPSPS), 4-hydroxyphenylpyruvate dioxygenase (HPPD), 

photosystem II, protoporphyrinogen oxidase (PPO), auxin receptors, microtubule 

assembly, and acetolacte synthase (ALS)  in the US 13,27,44–51. Moreover, pollen mediated 

gene flow has been reported as a major contributor to herbicide resistance dissemination 

in Palmer amaranth and waterhemp in the Midwest 52,53. 

Although the management of weed populations on field margins and ditches is 

considered a best management practice (BMP) to delay herbicide resistance evolution, 

these weed populations are often neglected in agricultural landscapes 13–15,28. Therefore, 
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the objective of this study was to evaluate if glyphosate, 2,4-D, and dicamba application 

drift could recurrently select for Amaranthus spp. reduced susceptibility to herbicides in a 

wind tunnel drift study over two generations. 

Material and Methods 

Plant material 

Palmer amaranth and waterhemp seeds were arbitrarily collected from 10-20 

plants in wheat (Triticum aestivum L.) and corn (Zea mays L.) fields in Nebraska (Table 

4.1). Seeds from within a single field were identified as a population (Chase and Perkins 

for Palmer amaranth, and Thayer and Stanton for waterhemp) and stored at -20 °C for a 

minimum of three months to overcome dormancy. Seedlings were transplanted into 

plastic tubes (1 L) containing commercial potting mix (Berger BM7 Bark Mix, Saint 

Modeste, QC, Canada) and maintained under greenhouse conditions (30/20 C [day/night] 

with a 16 h photoperiod) at the Pesticide Application Technology Laboratory (University 

of Nebraska-Lincoln, West Central Research and Extension Center, North Platte, NE). 

LED growth lights (520 μmol s−1, Philips Lighting, Somerset, NJ, USA) provided 

supplemental lighting to ensure a 16-h photoperiod. Plants were supplied with water 

including fertilizer solution (0.2% v/v) as needed (UNL 5-1-4, Wilbur-Ellis Agribusiness, 

Aurora, CO, USA). 

Herbicide drift recurrent selection 

Herbicide drift simulations were conducted in the low speed wind tunnel at the 

Pesticide Application Technology Laboratory. Glyphosate, 2,4-D, and dicamba solutions 

were prepared at 140 L ha-1 carrier volume (Table 4.2). The glyphosate solution had the 

addition of ammonium sulfate at 5% v/v to overcome antagonistic effects of cationic salts 
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in hard water (Bronc®, Wilbur-Ellis Agribusiness, Aurora, CO, USA). Herbicide 

applications were performed at 140 L ha-1 with two even nozzle, a conventional flat-fan 

nozzle (TP95015EVS) and an air-inclusion (AI) nozzle (AI95015EVS) (TeeJet 

Technologies Spraying Systems Co., Glendale Heights, IL, USA) at 230 kPa with 

constant wind speed of 4.47 m s-1 as previously described elsewhere 27. Nozzles were 

selected to provide high (Fine spray classification) and low (Ultra Coarse spray 

classification) drift potentials. The average air temperature and relative humidity during 

this study were 25 C and 45%, respectively. Palmer amaranth and waterhemp plants (15-

20 cm-tall) were positioned at four downwind distances: 1.0, 1.5, 2.0, 2.5 m from the 

nozzle to simulate plants inhabiting field margins. Eighty plants of each population were 

exposed to herbicide*nozzle drift treatments, with 20 plants per distance. Applications 

were performed at 51 cm height in relation to plants. After herbicide drift exposure, 

plants were transferred and kept under greenhouse conditions as previously described. 

Plant mortality was evaluated at 35 days after treatment (DAT).  

Survivors of each herbicide*nozzle*population treatment were enclosed within 

tents (plants from different distances were pooled) constructed with 213-cm by 152-cm 

pollination bags (Vilutis & Co., Frankfort, IL, USA) to ensure cross-pollination 

exclusively among specific treatments (Figure 4.1). Pollination tents were shaken 

periodically to facilitate pollination. All seeds produced by plants within each treatment 

were collected at maturity, pooled and termed P1 seeds. Seeds were dried at greenhouse 

room temperature and stored at -20 C for 15 days. P1 seeds of each 

herbicide*nozzle*population treatment served for the subsequent round of herbicide drift 

selection. Plant material, herbicide drift treatments, and isolation on pollination tents 
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were conducted as previously described, and survivors from the second herbicide drift 

selection were grown to seed following identical methods previously described to 

establish the P2 progeny for each treatment. During each herbicide drift selection (P1 and 

P2 selection), a group of 40 untreated plants per population was maintained and isolated 

on pollination tents using the same procedure previously described to establish P1 and P2 

unselected controls. Plant mortality data were subjected to analysis of variance in SAS 

(SAS v9.4, SAS Institute Inc., Cary, NC, USA) and comparisons among treatments were 

performed using Fisher’s Protected LSD test (p ≤ 0.05). 

Herbicide dose response 

Palmer amaranth and waterhemp P2
 progenies (herbicide*population*nozzle 

treatments) were subjected to herbicide dose-response study in the Pesticide Application 

Technology Laboratory. Seedlings from P2 progenies were transplanted into plastic tubes 

containing commercial potting mix and maintained under greenhouse conditions as 

previously described. Herbicide drift selected P2 plants (10- to 12-cm tall) were sprayed 

with different glyphosate, 2,4-D, and dicamba rates (Table 4.3) using a research spray 

chamber (DeVries, Hollandale, MN, USA) calibrated to deliver 93.5 L ha-1 using an 

AI95015EVS nozzle  at 414 kPa. 

The experiment was conducted in a randomized complete design with four 

replications per treatment in which a single plant was considered as an experimental unit. 

Plant above ground biomass was harvested at 30 DAT and oven dried at 65 ºC to constant 

weight. Biomass data were converted into percentage of biomass reduction as compared 

to the untreated control. A non-linear regression model was fitted to dry weight data 

using the drc package in R software (R Foundation for Statistical Computing, Wien, 
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Austria) 54. The effective-dose to reduce 90% of plant biomass (GR90) was estimated for 

each P2 population using a four-parameter log-logistic model: y = c + {d – c/1 + 

exp[b(log x – log e)]}; in which y corresponds to the biomass reduction (%), b is the 

slope at the inflection point, c is the lower limit of the model (fixed to 0%), d is the upper 

limit (fixed to 100%), and e is the inflection point (effective dose to reduce plant biomass 

in 50%). Resistance ratios were calculated as the ratio of the GR90 for each selected P2 

population to the respective P2 unselected population. The experiment was replicated in 

two experimental runs and data were combined. 

Results and Discussion 

Herbicide drift exposure 

Glyphosate, 2,4-D, and dicamba drift exposure resulted in Palmer amaranth and 

waterhemp mortality (Tables 4.4 and 4.5). Amaranthus spp. mortality was influenced by 

nozzle type (p = 0.04) and herbicide (p = 0.04), whereas weed species (p = 0.91) and 

progeny (p = 0.18) had no influence on plant mortality. It is important to highlight that 

the progenies compared were just one selection round apart (P0 and P1). Herbicide drift 

from the flat fan nozzle resulted in 41% overall mortality when the other variables were 

pooled, whereas the air inclusion nozzle resulted in 25%. A previous study reported that 

herbicide applications with the flat fan nozzle resulted in 32, 23, 17, and 14% of 

herbicide drift (in relation to volume sprayed) at 1, 1.5, 2.0, and 2.5 m from the nozzle, 

respectively, whereas applications with the air inclusion nozzle resulted in 11, 7, 5, and 

3% herbicide drift in the same downwind distances 27. This study results corroborate 

previous field and wind tunnel results where applications with air inclusion nozzles 

resulted in less particle drift compared to flat fan nozzles 55–59. The preorifice component 
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of air inclusion nozzles is designed to reduce the solution pressure as it exits the nozzle, 

thereby increasing the droplet size of the spray and consequently reducing the drift 

potential 60,61. Overall, glyphosate drift resulted in increased plant mortality (50%) 

compared to 2,4-D (22%) and dicamba (27%). This corroborates previous results 

reporting that glyphosate was more active on Amaranthus spp. at higher exposure rates 

compared to 2,4-D and dicamba 27. Palmer amaranth was very susceptible to glyphosate 

drift, especially with applications using the flat fan nozzle. As a result, P1 and P2 

progenies were not established for both Palmer amaranth populations (Perkins and 

Chase) exposed to glyphosate drift with the flat fan nozzle. Although a P1 progeny was 

established for the Chase population exposed to glyphosate drift using the air inclusion 

nozzle, a P2 progeny was not established as plants did not survive the second round of 

herbicide drift exposure.  

A previously susceptible Palmer amaranth population evolved levels of 

glyphosate resistance following four selection rounds with low rates of glyphosate, with 

58, 43, 0, and 79% mortality during selection rounds 24. Similar resistance shift results 

were found on annual ryegrass (Lolium rigidum Gaudin) population recurrently selected 

with low rates of glyphosate in field conditions, although increased plant mortality 

ranging from 71 to 90% during four selection rounds were observed 20. A wild radish 

(Raphanus raphanistrum L.) population evolved levels of 2,4-D resistance after four 

rounds of selection with 2,4-D sublethal rates, with 71, 88, 77, and 76% mortality during 

selection rounds 16. Similarly, a Palmer amaranth population evolved levels of dicamba 

resistance after recurrent selection with low dicamba rates, with 47, 68, 29, and 79% 

mortality during four selection rounds 25. 
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Herbicide drift recurrent selection 

The Palmer amaranth population from Perkins County evolved glyphosate 

resistance (54.7-fold in the GR90) after being recurrently selected with glyphosate drift 

with the air inclusion nozzle (Figure 4.2). The Perkins population also had its sensitivity 

to 2,4-D reduced after recurrent selection to 2,4-D drift using both air inclusion and flat 

fan nozzles (Table 4.6). The Perkins population selected with 2,4-D drift with the air 

inclusion nozzle had 2.5-fold shift in the GR90 after two selection rounds, whereas the 

progeny selected with the flat fan nozzle had a 1.8-fold shift (Figure 4.3). On the other 

hand, the Palmer amaranth population from Chase County had no resistance shift after 

being recurrently selected with 2,4-D drift with both flat fan and air inclusion nozzles. 

Moreover, both Palmer amaranth populations had no sensitivity shift following dicamba 

drift selection with both flat fan and air inclusion nozzles (Figure 4.4). 

The waterhemp population from Stanton County had a 2-fold resistance shift 

when recurrently selected with glyphosate drift with the flat fan nozzle, whereas plants 

selected with the air inclusion nozzle had no evident resistance shift (Table 4.7). Thayer 

population had a 2.4 and 3.3-fold glyphosate resistance shift after being recurrently 

selected with glyphosate drift with the air inclusion and the flat fan nozzles, respectively 

(Figure 4.5). Thayer population also had its 2,4-D sensitivity reduced after selection with 

2,4-D drift using the air inclusion (2.2-fold) and the flat fan nozzle (1.7-fold),  whereas 

no shifts were observed for the Stanton population (Figure 4.6). Recurrent selection with 

dicamba drift with the air inclusion and the flat fan nozzles resulted in dicamba 

sensitivity shifts in the Thayer population (1.5 and 2.2-fold shift, respectively). The 
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Stanton population also had its sensitivity to dicamba increased, but only for progenies 

selected with dicamba drift with the flat fan nozzle (2.4-fold). 

Generally, the reduced herbicide sensitivity shifts reported in this study were 

consistent with resistance shifts previously reported in recurrent selection studies with 

low rates of herbicides. Glyphosate sensitivity shift (2.15-fold in the LD95) was reported 

in a Palmer amaranth population recurrently selected for four generations with low rates 

of glyphosate 24. Similar results were reported in an annual ryegrass population, where 

resistance ratios in the GR50 ranged from 1.68 to 1.87 in progenies recurrently selected 

with low rates of glyphosate 20. The 54.7-fold shift in the Palmer amaranth progeny 

recurrently selected with glyphosate drift for two generations is unprecedented in the 

literature. However, most of the Palmer amaranth P2 plants selected with glyphosate drift 

did not survive the 985.1 g ae ha-1 glyphosate rate in the dose response study 

(approximately the recommended field label rate). This large resistance shift indicates 

that although the population was glyphosate-susceptible, biotypes with genetically 

heritable reduced sensitivity to glyphosate were already present within the population 

prior to glyphosate drift selection. In fact, 2% (194 plants were sprayed) of the initial 

unselected Perkins population (P0) survived a diagnostic glyphosate rate of 197 g ae ha-1 

in an additional screening (data not shown). A wild radish population had its 2,4-D 

sensitivity reduced 3.4-fold (LD50) after recurrent selection with low rates of 2,4-D 

following two selection rounds 16. Moreover, authors reported a resistance shift of 8.6-

fold as recurrent selection continued during two additional selection rounds. A similar 

trend was reported for a Palmer amaranth population recurrently selected with low rates 

of dicamba, where a 2.6-fold dicamba sensitivity shift (LD90) was reported following two 
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rounds of selection 25. Additionally, the authors reported a 3.9-fold dicamba resistance 

shift in the third selection round. 

Herbicide sensitivity reduction in this study was influenced by weed species, 

weed population, spray drift potential (nozzle), and herbicide active ingredient. 

Waterhemp was more prone to herbicide sensitivity shifts following herbicide drift 

selection compared to Palmer amaranth. Moreover, the waterhemp population from 

Thayer County had more herbicide sensitivity shifts following herbicide drift selection 

compared to the Stanton County population. A similar trend was observed for Palmer 

amaranth, where the Perkins population was more prone to herbicide sensitivity reduction 

following herbicide drift selection compared to the Chase population. Across Amaranthus 

spp. populations tested herein, glyphosate sensitivity reduction was predominant over 

2,4-D and dicamba following drift selection with the respective herbicides. Herbicide 

drift potential (nozzle type) influenced resistance shifts following herbicide drift selection 

with glyphosate and dicamba, where progenies selected with the flat fan nozzle had 

greater selection intensity (mortality), and consequently larger resistance shifts. 

Interestingly, this trend was not observed for 2,4-D drift, where recurrent selection with 

the air inclusion nozzle resulted in slightly larger resistance shifts compared to the flat fan 

nozzle despite differences in selection intensity between nozzles. 

Recurrent selection with low doses of herbicides progressively selects for 

metabolism alleles present within the standing genetic variation of the population, which 

additively leads to non-target-site herbicide resistance 18,31. A study reported that a 

previous susceptible annual ryegrass population evolved diclofop resistance following 

recurrent selection with low rates of diclofop 22. Further investigations revealed that the 
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recurrent selection with low rates of diclofop selected for non-target-site resistance with 

enhanced diclofop metabolism, likely mediated by cytochrome P450 monooxygenases 

(P450) 62. A RNA-Seq transcriptome study with this population confirmed that not only 

P450 genes, but nitronate monooxygenase (NMO), glutathione transferase (GST), and 

glucosyltransferase (GT) genes were upregulated in diclofop-resistant plants 30. Another 

study also reported upregulation of metabolic genes (GST) in a pyroxasulfone-resistant 

annual ryegrass population recurrently selected with low rates of the herbicide 17,29. 

Waterhemp populations with herbicide metabolic resistance have been widely reported in 

Nebraska. A 2,4-D-resistant waterhemp population previously reported in Nebraska had 

rapid 2,4-D metabolism mediated by P450 enzymes 63. Enhanced herbicide metabolism 

via P450 enzymes was also reported in a waterhemp population resistant to HPPD-

inhibitor herbicides in Nebraska 64,65. Atrazine resistance with rapid herbicide metabolism 

via enhanced GST conjugation was widespread in waterhemp populations in Nebraska 66. 

Although non-target-site glyphosate resistance with metabolism in plants is relatively rare 

67, non-target-site resistance with reduced glyphosate translocation was identified in 

waterhemp biotypes in Mississippi 68. Waterhemp biotypes with non-target-site resistance 

to glyphosate were also reported in Missouri 69. 

Herbicide resistance alleles may be originally present within the standing genetic 

variation of the population or may immigrate via pollen or seeds from other populations 

70. As populations were collected in commercial cropping fields, and considering the 

rampant pollen-mediated gene flow and seeds transferring herbicide resistant alleles 

across waterhemp populations in Nebraska, it can be inferred that minor herbicide 

resistance alleles could already be present within the standing genetic variation of the 
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Amaranthus spp. populations tested herein 52,53. This could explain the differences in 

herbicide sensitivity shift between waterhemp and Palmer amaranth, and even the 

differences among populations following recurrent selection with herbicide drift. The 

influence of selection intensity (nozzle type), weed species, and weed population on 

glyphosate and dicamba sensitivity shifts following drift selection suggest that minor 

resistance alleles present within the standing genetic variability of populations were 

progressively selected during selection rounds. Some researchers suggest that low rates of 

herbicides could also act as stress agents inducing new stress-related mutations and 

epigenetic alterations that could ultimately lead to reduced herbicide sensitivity 32–34. 

However, a study where over 70 million Amaranthus hypochondriacus L. seedlings were 

screened did not find evidences suggesting that herbicide stress increased mutation rates 

conferring ALS resistance, although authors mentioned they were not able to robustly test 

this hypothesis 70. Both Perkins and Chase Palmer amaranth plants were physiologically 

stressed following dicamba drift and did not evolve levels of dicamba resistance 

following two rounds of drift selection, although we recognize that more selection rounds 

would be necessary for further discussion. Interestingly, the 2,4-D sensitivity shifts in 

Palmer amaranth (Perkins) and waterhemp (Thayer) following drift selection were 

independent of selection intensity (nozzle type). Further studies are necessary to 

investigate the molecular basis of the sensitivity shifts found in the Amaranthus spp. 

following recurrent herbicide drift selection in this study.  

Unmanaged field borders and ditches with resistance prone weeds can exacerbate 

the risk of resistance evolution in adjacent crop production fields, especially for cross-

pollinated weed species such as Palmer amaranth and waterhemp 14. Furthermore, non-
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target-site resistance with enhanced herbicide metabolism poses a challenge for 

Amaranthus spp. management because of the potential for multiple-resistance to other 

herbicide modes of action 16,21,22,25,45,66,71. This study results confirm that herbicide drift 

towards field margins can rapidly select for biotypes with reduced herbicide sensitivity. 

Preventing the establishment of resistance prone weeds on field margins is an important 

management strategy to delay herbicide resistance 14,72. Weed management programs 

should consider strategies to mitigate near-field spray drift, and suppress weed 

populations on field borders 14,59,72,73. 
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Tables 

Table 4.1. Palmer amaranth and waterhemp populations from Nebraska used in the herbicide 

spray drift selection study. 

Species Population County Crop Latitude Longitude Year 

Palmer amaranth Chase Chase corn 40.535598 -101.910662 2014 

Palmer amaranth Perkins Perkins wheat 40.819217 -101.252483 2015 

Waterhemp Thayer Thayer corn 40.224945 -97.575356 2014 

Waterhemp Stanton Stanton corn 42.060000 -97.010000 2014 
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Table 4.2. Herbicide solutions, rates, and product manufacturers for solutions used in the 

herbicide spray drift study.a 

Herbicide Active ingredient Product manufacturer Rate 

Clarity® 
Dicamba diglycolamine 

salt 

BASF Corporation, Research, 

Triangle Park, NC, USA 
560 g ae ha-1 

Roundup 

PowerMax® 
Glyphosate potassium salt 

Bayer CropScience, Research, 

Triangle Park, NC, USA 
867 g ae ha-1 

Weedar® 64 2,4-D dimethylamine salt Nufarm Inc, Alsip, IL, USA 1064 g ae ha-1 
aGlyphosate solution had the addition of ammonium sulfate solution at 5% v/v (Bronc®, Wilbur-

Ellis Agribusiness, Aurora, CO, USA). 
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Table 4.3. Herbicide rates used in the dose response study with P2 Palmer amaranth and 

waterhemp plants.a 

Herbicide 
Doses (g ae ha-1) 

Palmer amaranth waterhemp 

glyphosate 
3.9, 9.9, 19.7, 39.4, 197, 394.0, 985.1, 

and 1970.2 

3.9, 9.9, 19.7, 39.4, 394.0, 985.1, and 

1970.2 

2,4-D 166.4, 332.8, 831.9, and 1663.8 
33.3, 83.2, 166.4, 332.8, 831.9, and 

1663.8 

dicamba 3.5, 8.8, 17.5, 350.3, 875.7, and 1751.3 
35, 87.6, 175.1, 350.3, 875.7, and 

1751.3 
aGlyphosate solution had the addition of ammonium sulfate solution at 5% v/v (Bronc®, Wilbur-

Ellis Agribusiness, Aurora, CO, USA). 
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Table 4.4. Mortality of Palmer amaranth progenies following herbicide drift exposure (n = 80). 

Population Progeny Nozzle 
Distance 

(m) 

Herbicide drift 

glyphosate 2,4-D dicamba 

Perkins 

P0 

air 

inclusion 

 ____________ Mortality (%) ____________ 

1.0 90 20 65 

1.5 65 5 10 

2.0 65 15 0 

2.5 50 5 0 

Total 67.5 11.3 18.8 

flat fan 

1.0 100 60 95 

1.5 95 50 75 

2.0 90 35 35 

2.5 90 25 45 

Total 93.75 42.5 62.5 

P1 

air 

inclusion 

1.0 37 10 37 

1.5 17 0 5 

2.0 20 10 0 

2.5 20 0 0 

Total 23.5 5.0 10.5 

flat fan 

1.0 * 47 50 

1.5 * 35 53 

2.0 * 10 42 

2.5 * 15 33 

Total * 26.75 44.5 

Chase 

P0 

air 

inclusion 

1.0 95 30 58 

1.5 95 10 25 

2.0 70 10 5 

2.5 45 5 5 

Total 76.25 13.75 23.25 

flat fan 

1.0 100 85 80 

1.5 95 70 60 

2.0 90 40 60 

2.5 100 50 45 

Total 96.25 61.25 61.25 

P1 

air 

inclusion 

1.0 100 33 11 

1.5 100 17 0 

2.0 100 0 0 

2.5 100 0 0 

Total 100 12.5 2.75 

flat fan 

1.0 * 50 65 

1.5 * 15 65 

2.0 * 10 50 

2.5 * 10 40 

Total * 21.25 55 

*Progenies were not established. 
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Table 4.5. Mortality of waterhemp progenies following herbicide drift exposure (n = 80). 

Population Progeny Nozzle 
Distance 

(m) 

Herbicide drift 

glyphosate 2,4-D dicamba 

Thayer 

P0 

air 

inclusion 

 ____________ Mortality (%) ____________ 

1.0 55 45 50 

1.5 45 20 10 

2.0 15 10 0 

2.5 10 10 0 

Total 31.3 21.3 15.0 

flat fan 

1.0 60 55 75 

1.5 55 75 45 

2.0 45 45 60 

2.5 40 55 20 

Total 50 57.5 50 

P1 

air 

inclusion 

1.0 65 95 10 

1.5 25 25 0 

2.0 5 10 0 

2.5 20 5 0 

Total 28.8 33.8 2.5 

flat fan 

1.0 40 100 85 

1.5 20 95 50 

2.0 25 75 40 

2.5 25 60 20 

Total 27.5 82.5 48.75 

Stanton 

P0 

air 

inclusion 

1.0 35 25 15 

1.5 0 5 0 

2.0 0 0 0 

2.5 0 0 0 

Total 8.75 7.5 3.75 

flat fan 

1.0 60 100 75 

1.5 35 80 25 

2.0 10 75 5 

2.5 15 65 0 

Total 30 80 26.25 

P1 

air 

inclusion 

1.0 60 65 30 

1.5 0 10 5 

2.0 0 15 0 

2.5 0 10 0 

Total 15 25 8.75 

flat fan 

1.0 70 100 90 

1.5 26 95 45 

2.0 45 85 40 

2.5 15 65 45 

Total 39 86.25 55 
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Table 4.6. Log-logistic model parameters estimates, standard errors, dose to 90% biomass 

reduction (GR90), and resistance ratio (R/S) for each P2 population of Palmer amaranth.a 

Population Herbicide Progeny b e GR90 R/S 

Perkins 

Glyphosate 
Unselected -1.7 ± 0.4 11.2 ± 0.4 24.6 ± 2.3 - 

Air inclusion -2.8 ± 0.3 376.0 ± 45.4 1346.0 ± 376.5 54.7 

2,4-D 

Unselected -1.4 ± 0.3 128.8 ± 20.0 603.8 ± 143.4 - 

Air inclusion -1.1 ± 0.2 190.0 ± 24.2 1506.6 ± 440.1 2.5 

Flat Fan -0.8 ± 0.2 67.3 ± 25.5 1073.3 ± 372.1 1.8 

Dicamba 

Unselected -0.7 ± 0.1 25.0 ± 2.9 558.9 ± 154.2 - 

Air inclusion -0.7 ± 0.1 19.4 ± 2.1 393.9 ± 117.0 0.7 

Flat Fan -0.6 ± 0.1 12.4 ± 1.5 427.2 ± 126.7 0.8 

Chase 

2,4-D 

Unselected -1.2 ± 0.2 131.5 ± 16.4 781.0 ± 150.1 - 

Air inclusion -1.3 ± 0.2 126.8 ± 16.9 657.2 ± 140.0 0.8 

Flat Fan -1.1 ± 0.2 135.9 ± 17.2 932.1 ± 189.8 1.2 

Dicamba 

Unselected -0.6 ± 0.1 12.1 ± 1.4 470.4 ± 139.8 - 

Air inclusion -0.7 ± 0.1 17.8 ± 2.0 394.8 ± 112.7 0.8 

Flat Fan -0.7 ± 0.1 18.4 ± 2.0 457.6 ± 124.4 1.0 
ab parameter corresponds to the slope at the inflection point; e parameter corresponds to the 

inflection point; GR90 corresponds to the effective dose to reduce plant biomass by 90%; 

resistance ratios (R/S) were calculated as the ratio of the GR90 for each P2 population to the 

respective P2 unselected population.   
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Table 4.7. Log-logistic model parameters estimates, standard errors, dose to 90% biomass 

reduction (GR90), and resistance ratios (R/S) for each P2 population of waterhemp.a 

Population Herbicide Progeny b e GR90 R/S 

Stanton 

Glyphosate 

Unselected -1.8 ± 0.3 101.4 ± 17.8 349.0 ± 109.2 - 

Air inclusion -1.1 ± 0.1 56.1 ± 7.7 412.2 ± 129.1 1.2 

Flat Fan -0.8 ± 0.1 46.6 ± 7.0 684.5 ± 262.3 2.0 

2,4-D 

Unselected -1.2 ± 0.1 71.9 ± 6.8 468.7 ± 83.5 - 

Air inclusion -1.1 ± 0.1 78.4 ± 7.3 578.1 ± 114.4 1.2 

Flat Fan -1.1 ± 0.1 85.5 ± 8.0 614.0 ± 116.1 1.3 

Dicamba 

Unselected -1.0 ± 0.1 29.9 ± 4.5 286.7 ± 63.0 - 

Air inclusion -1.2 ± 0.2 37.4 ± 4.0 235.3 ± 46.5 0.8 

Flat Fan -0.7 ± 0.1 33.8 ± 6.0 696.4 ± 181.5 2.4 

Thayer 

Glyphosate 

Unselected -1.4 ± 0.2 81.7 ± 12.5 402.8 ± 133.9 - 

Air inclusion -0.8 ± 0.1 56.4 ± 9.1 984.6 ± 359.4 2.4 

Flat Fan -1.0 ± 0.1 133.3 ± 22.5 1326.8 ± 374.3 3.3 

2,4-D 

Unselected -1.5 ± 0.2 78.3 ± 6.4 344.4 ± 56.2 - 

Air inclusion -1.4 ± 0.2 156.0 ± 12.0 759.8 ± 131.4 2.2 

Flat Fan -1.3 ± 0.1 101.3 ± 8.8 584.6 ± 106.2 1.7 

Dicamba 

Unselected -0.8 ± 0.2 19.7 ± 5.5 294.3 ± 93.2 - 

Air inclusion -0.8 ± 0.1 27.8 ± 5.8 432.7 ± 121.5 1.5 

Flat Fan -0.9 ± 0.1 62.6 ± 7.3 648.1 ± 147.5 2.2 
ab parameter corresponds to the slope at the inflection point; e parameter corresponds to the 

inflection point; GR90 corresponds to the effective dose to reduce plant biomass by 90%; 

resistance ratios (R/S) were calculated as the ratio of the GR90 for each P2 population to the 

respective P2 unselected population. 
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Figures 

 
Figure 4.1. Pollination tents with Palmer amaranth and waterhemp progenies following herbicide 

drift selection. 

  



114 

  

 
Figure 4.2. Biomass reduction for Palmer amaranth population (P2) from Perkins County (NE) 

following recurrent selection to glyphosate spray drift at 30 days after treatment in a glyphosate 

dose response study. 
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Figure 4.3. Biomass reduction for Palmer amaranth population (P2) from Perkins County (NE) 

following recurrent selection to 2,4-D spray drift at 30 days after treatment in a 2,4-D dose 

response study. 
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Figure 4.4. Biomass reduction for Palmer amaranth population (P2) from Chase County (NE) 

following recurrent selection to dicamba spray drift at 30 days after treatment in a dicamba dose 

response study. 
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Figure 4.5. Biomass reduction for waterhemp population (P2) from Thayer County (NE) 

following recurrent selection to glyphosate spray drift at 30 days after treatment in a glyphosate 

dose response study. 
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Figure 4.6. Biomass reduction for waterhemp population (P2) from Thayer County (NE) 

following recurrent selection to 2,4-D spray drift at 30 days after treatment in a 2,4-D dose 

response study. 
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Figure 4.7. Biomass reduction for waterhemp population (P2) from Stanton County (NE) 

following recurrent selection to dicamba spray drift at 30 days after treatment in a dicamba dose 

response study. 
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