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Abstract

Although certain drugs of abuse are known to disrupt brain glucose metabolism (BGluM), the effects of opiates on BGluM
are not well characterized. Moreover, preclinical positron emission tomography (PET) studies anesthetize animals during the
scan, which limits clinical applications. We investigated the effects of (i) isoflurane anesthesia and (ii) intravenous morphine
self-administration (MSA) on BGluM in rats. Jugular vein cannulated adult male Sprague-Dawley rats self-administered either
saline (SSA) or morphine (0.5 mg/kg/infusion, 4 h/day for 12 days). All animals were scanned twice with [18F]-fluoro-deoxy-
glucose (FDG)-PET/CT at a baseline and at 2-day withdrawal from self-administration. After the IV injection of FDG, one
batch of animals (n = 14) was anesthetized with isoflurane and the other batch (n = 16) was kept awake during the FDG
uptake (45 min). After FDG uptake, all animals were anesthetized in order to perform a PET/CT scan (30 min). Isoflurane
anesthesia, as compared to the awake condition, reduced BGluM in the olfactory, cortex, thalamus, and basal ganglia, while
increasing BGluM in the midbrain, hypothalamus, hippocampus, and cerebellum. Morphine self-administered animals exhibited
withdrawal signs (piloerection and increased defecation), drug seeking, and locomotor stimulation to morphine (0.5 mg/kg)
during the 2 day withdrawal. The BGluM in the striatum was increased in the MSA group as compared to the SSA group;
this effect was observed only in the isoflurane anesthesia, not the awake condition. These findings suggest that the choice
of the FDG uptake condition may be important in preclinical PET studies and increased BGluM in the striatum may be asso-
ciated with opiate seeking in withdrawal.

Introduction

Opiate addiction

Opioid medications are among the most widely used drugs for pain
management and continue to dominate the analgesic medication
market (Lever, 2007). However, chronic use of opioid medications
can lead to abuse, tolerance, physical dependence, and if stopped,
withdrawal, which can cause the user to exhibit drug seeking and
relapse (Cam�ı & Farr�e, 2003). Previous preclinical studies have used

the intravenous (IV) opioid self-administration paradigm to study
important aspects of opiate addiction in animals such as voluntary
drug intake, self-regulation, tolerance, withdrawal, and drug seeking
(Panlilio et al., 2000; Le et al., 2014; Sukhtankar et al., 2014;
Lucantonio et al., 2015; Nishida et al., 2016). Similar to other drugs
of abuse, opiates increase dopamine function, which is fundamental
to how these drugs facilitate the reward pathways in the brain (Wise
& Bozarth, 1987; Willuhn et al., 2010). It is thought that opiates act
on mainly mu-opioid receptors, which activate mesolimbic dopamin-
ergic pathways, thereby mediating the behavioral responses of drug
addiction (Al-Hasani & Bruchas, 2011). These receptors are heavily
distributed in specific regions of the brain including the striatum,
thalamus, cerebellum, and brainstem (Kuhar et al., 1973). However,
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in vivo brain mechanisms by which repeated opiate use modulates
addiction-like behaviors remain unclear.

Opiates on regional brain glucose metabolism (BGluM)

In the past, the 2-deoxyglucose (2-DG) autoradiography method
was used to study how cerebral glucose is metabolized in animals
(Sokoloff, 1981; Geary & Wooten, 1983, 1985, 1986; Fanelli
et al., 1987; Adams & Wooten, 1994; Orzi et al., 1996). Previous
2-DG autoradiography studies have reported the effects of mor-
phine administration on BGluM in rodents. For instance, an acute
morphine injection (15 mg/kg, IP) significantly increased BGluM
in the striatum of mice (Quelven et al., 2004). Additionally, intra-
venous morphine administration (0.2–0.4 mg/kg) increased BGluM
in the nucleus accumbens of rats (Orzi et al., 1996). However,
continuous morphine exposure by morphine pellets (225 mg over
7 days) reduced BGluM in the striatum of rats (Wooten et al.,
1982). Although previous studies reported altered BGluM follow-
ing passive administration of morphine, the effects of IV mor-
phine self-administration (MSA) on BGluM of rodents have not
been reported.

Small animal FDG-PET/CT

Positron emission tomography (PET), which quantifies the in vivo
distribution of radiolabeled compounds in the body, has been used
extensively to study how drugs of abuse affect cerebral energy uti-
lization in humans (Volkow et al., 2003). Over the years, there
has been an effort to improve the capabilities of PET imaging for
small animal studies, which would allow researchers to control for
many confounding variables that are unavoidable in clinical studies
(Matsumura et al., 2003; Jagoda et al., 2004; Shimoji et al., 2004;
Riemann et al., 2008; Dalley et al., 2009; Casteels et al., 2013).
One emerging point of concern in preclinical [18F]-fluoro-deoxy-
glucose (FDG)-PET studies is the use of anesthesia during the
PET scan. It has been reported that anesthesia can significantly
affect the BGluM of rodents (Alkire et al., 1997; Shimoji et al.,
2004; Mizuma et al., 2010; Prieto et al., 2011; Spangler-Bickell
et al., 2016). These studies found that isoflurane anesthesia gener-
ally reduces BGluM in cortical regions, but its effect on sub-corti-
cal regions is unclear. Thus, it is important to compare the effects
of isoflurane anesthesia on BGluM in the cortical and
sub-cortical regions of animals.

Rationale of the study

Although previous 2-DG studies reported altered BGluM with
passive administration of morphine, the effects of voluntary mor-
phine intake on in vivo BGluM have not been reported. Further-
more, it is not clear whether different FDG uptake conditions
(anesthesia vs. awake) may influence the pattern of BGluM in
morphine self-administered animals. We chose a 2-day withdrawal
time point because we were interested in chronic rather than
acute effects of morphine and to avoid any potential interaction
between residual morphine and isoflurane anesthesia during the
PET/CT scan. Therefore, the main goal of the study was to
investigate the effects of (i) isoflurane anesthesia during the FDG
uptake period and (ii) 2 day withdrawal from chronic MSA on
in vivo BGluM of rats. We hypothesized that spontaneous with-
drawal from chronic MSA may increase BGluM in the regions of
the mesolimbic dopamine pathway.

Materials and methods

Animals

Adult male Sprague-Dawley rats weighing between 250–275 g
(7 weeks old) were obtained from Taconic Farms (German Town,
NY, USA). The animals were housed two per standard rat cage
(42.5 9 20.5 9 20 cm) on hardwood chip bedding (Pine-Dri) with
free access to food (Harlan Teklad 4% Mouse/Rat Diet 7001) and
water in a temperature controlled room with 40% humidity and a
reversed 12 h light-dark cycle (lights off at 6:00 am). The experi-
mental protocol and treatment of the animals were approved and
conducted in full compliance with the USUHS Institutional Animal
Care and Use Committee (IACUC).

Catheter surgery

After 1 week of acclimation to the facilities, the animals were anes-
thetized with a cocktail of ketamine/xylazine (80 and 10 mg/kg, IP),
and a small portion of the animal’s back and neck was shaved. A
catheter was threaded subcutaneously over the animal’s shoulder
from its back to the neck and inserted into the right jugular vein as
described previously (Le et al., 2014). In order to maintain catheter
patency, it was flushed daily with a solution of sterile saline, heparin
(10 USP units/mL), and gentamycin (1 mg/mL). Afterwards, all ani-
mals were given a 1-week recovery period during which they were
single housed to maintain the integrity of the indwelling catheter.

Morphine self-administration

Each animal was placed in an individual operant conditioning cham-
ber (Med Associates Inc., St. Albans, VT, USA) and connected to a
Razel Model A infusion pump (Stamford, CT, USA) with a 10 mL
glass syringe via a fluid swivel and Teflon tubing. Each chamber
was equipped with two levers (a drug-paired and an inactive), a cue
light, house light, and two infrared photobeams, which quantified
the locomotor activity of the animals (Med Associates Inc., St.
Albans, VT, USA). The cue light turned on when the rat pressed
the drug-paired lever, followed by both lights turning off signifying
a 15 s time-out period in which the drug was not available. The
inactive lever did not have any programmed consequences. This
setup allowed the animals to self-administer morphine (0.5 mg/kg/
infusion, 0.1 mL across 5 s) on a one lever press/injection (Fixed
Ratio 1) reinforcement schedule in a daily 4 h session (5 days per
week) for 12 days. The animals were tested between 8:00 am and
12:00 pm during the weekdays. The maximum number of morphine
infusions was set at 30 (15 mg/kg) to prevent any accidental over-
dose of morphine. The number of active lever and inactive lever
presses, infusions, and locomotor activity were recorded, and after
the daily sessions, the number of fecal boli in the chambers was
counted. Morphine sulfate was obtained from Medisca Inc. (Platts-
burgh, NY) and dissolved in 0.9% sterile saline. All drug doses
were expressed as the weight of the salt.

PET/CT imaging

Two FDG-PET/CT scans were obtained for each animal at a base-
line and at 2 day withdrawal from the last self-administration. PET/
CT images were acquired using an Inveon multimodality preclinical
scanner (Siemens Medical Solutions, Malvern, PA, USA) in the
small animal PET/CT facility of the Translational Imaging Core,
Center for Neuroscience and Regenerative Medicine (CNRM) as

© 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
European Journal of Neuroscience, 45, 922–931

Chronic morphine effects on brain glucose metabolism 923



described previously (Brabazon et al., 2016; Selwyn et al., 2016).
Animals were anesthetized with isoflurane (4% induction; 1.5–2%
maintenance) and injected intravenously with 1–2 mCi (37–
74 MBq) FDG. After the IV injection of FDG, one batch of animals
(MSA: 8 and SSA: 6) was anesthetized with isoflurane (Experiment
1) and the other (MSA: 8 and SSA: 8) kept awake (Experiment 2)
during the FDG uptake period (45 min). For Experiment 2, the ani-
mals were kept awake in their home cages (single housed) in a quiet
room adjacent to the room with PET/CT scanners. They were undis-
turbed and exhibited minimum movement in the cages during the
FDG uptake. After FDG uptake, all animals were anesthetized with
isoflurane to perform a PET/CT scan (30 min). Physiologic monitor-
ing included measurements of temperature, respiration rate, heart
rate, and oxygen saturation. A three-bed CT scan was acquired for
attenuation correction and anatomical localization (80 kvP, 500 lAs,
420 msec, 195–220° rotation in 120–220 steps). CT data were
reconstructed in real time using a modified Feldkamp algorithm (bi-
linear interpolation, Shepp-Logan filter) and corrected for beam
hardening. The CT image dimensions were 384 9 384 9 594 with
a voxel size of 0.22 mm isotropic.
PET data were acquired with a coincidence-timing window (Dt)

of 3.432 ns and energy window (De) of 350–650 keV in list mode
for 30 min following the 45-min uptake period. PET sinograms
were reconstructed as a single, high resolution static frame using a
3D-OSEM/MAP algorithm (2 OSEM iterations, 18 MAP iterations,
requested resolution: 0.5 mm) with scatter, attenuation, and decay
corrections applied. The intrinsic resolution of the PET scanner is
~1.4 mm full width at half maximum (FWHM) at the center of the
field of view. PET image dimensions were 256 9 256 9 159 with
a voxel size of 0.39 9 0.39 9 0.80 mm.

Volume of interest (VOI) analysis

Image processing and analysis of the FDG-PET data were per-
formed using VivoQuant software (version 2.1, inviCRO; LLC Bos-
ton, MA, USA). FDG-PET data was resampled to match CT voxel
size (0.22 mm isotropic) and dimensions (384 9 384 9 594). The
PET data was converted to units of activity (lCi) and registered to
the CT image (six parameter, rigid-fast). Coregistered PET/CT
images were uniformly cropped to a region surrounding the brain
(170 9 170 9 240), which were manually reoriented (x, y, z rota-
tion) and automatically registered to a 13-region rat brain atlas using
an algorithm that combines a rigid transformation of the data and
scaling of the atlas. The 13 regions include basal ganglia, thalamus,
amygdala, cerebellum, cortex, hypothalamus, midbrain, corpus callo-
sum, olfactory, hippocampus, septal area, white matter, and other
(ventricles). All images were reviewed for quality assurance. The
uptake concentration for each VOI was normalized to the uptake
concentration of the entire atlas (whole-brain normalization) for
inter-subject comparison. A further analysis of the basal ganglia
including the nucleus accumbens, caudate putamen, globus pallidus,
and stria terminalis was performed using the brain atlas with 54
regions (VivoQuant, version 2.1; inviCRO, LLC Boston) as shown
in Fig. S2.

Voxel-based analysis (VBA)

The VBA was performed using the statistical parametric mapping
(SPM12) and the Small Animal Molecular Imaging Toolbox
(SAMIT) (Wellcome Department of Cognitive Neurology, Univer-
sity College London, UK) (Garcia et al., 2015). Initial preprocess-
ing (reorientation, registration, resampling, and cropping) of PET

data was performed in VivoQuant (ver 2.1; inviCRO). The tool-
box was used to create a study-specific FDG-PET template in
Paxinos space from baseline PET data. The template was evalu-
ated in terms of registration error and mean uptake. Spatial nor-
malization of the PET data for all time points to the template
was performed using an affine registration algorithm. The standard
uptake value (SUV) in each image was normalized to the mean
uptake of the whole brain (SUVw). Normalized PET images were
masked to remove extra-cerebral signal and smoothed with a
1.2 mm isotropic Gaussian kernel. For VBA, a flexible factorial
design was used to explore the mean effect of anesthesia and
time post treatment. A two-sample t-test analysis was used for
group comparisons (awake vs. anesthetized uptake and MSA vs.
SSA). For the interpretation of statistical differences, T-map data
was interrogated at P = 0.001 (uncorrected) and clusters were
defined with a threshold of k = 200 voxels. Only clusters with
P < 0.05 corrected for family wise error (FWE) were considered
significant. Brain regions were assigned to suprathreshold cluster
coordinates (medial-lateral, anterior-posterior, dorsal-ventral) using
the rat brain atlas (Paxinos and Watson, 4th Edition, Academic
Press, 1998).

Withdrawal signs and addiction-like behavior following MSA

The number of fecal boli in the home cages was counted in the
morning of self-administration day 12, and withdrawal day 1
and 2. Each animal was also observed in its home cage for
morphine withdrawal signs such as wet dog shakes, piloerection,
ptosis, diarrhea, teeth chatter, and salivation as described previ-
ously (Cobuzzi & Riley, 2011). In withdrawal day 2, drug seek-
ing behavior was measured in the self-administration chambers
by allowing animals to press levers for 2 h (8:00–10:00) while
morphine was not available (extinction condition). Open field
activity (OFA) following a bolus morphine (0.5 mg/kg, IV) was
measured using the Omnitech Electronics Digiscan infrared pho-
tocell system (Omnitech Electronics, Columbus, OH), located in
a dedicated room. Animals were individually placed in the clear
Plexiglas boxes (40 9 40 9 30 cm). A photocell array measured
horizontal locomotor activity using 16 pairs of infrared photo-
cells located front-to-back in a plane 2 cm above the floor of
the arena. Data were automatically gathered and transmitted to a
computer via an Omnitech Model DCM-I-BBU analyzer. Ani-
mals were habituated to the OFA boxes for 60 min and sponta-
neous locomotor activity was monitored following IV saline
(0.2 mL) and morphine (0.5 mg/kg) administration with a 60-
min interval (12:00–15:00).

Statistical analysis

All data were analyzed using SPSS (ver 21, Chicago, IL, USA) and
GRAPHPAD PRISM (ver 7.0, GraphPad Software, Inc.) with P val-
ues < 0.05 considered significant. Self-administration behavioral
data were analyzed with two-way analysis of variance (ANOVA) with
morphine and day as factors. FDG-PET data were analyzed with
two-way ANOVA with morphine and brain region as factors. Signifi-
cant interaction or main effect was followed up by Holm-Sidak’s
multiple comparisons tests to reveal statistically significant differ-
ences between the groups. Defecation during the self-administration
and piloerection during the withdrawal were analyzed with a Mann–
Whitney U test because those data were not normally distributed by
D’Agostino & Pearson normality test.
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Results

IV Morphine self-administration

An overall experimental design is illustrated in Fig. 1A. After the
IV injection of FDG, one batch of animals was isoflurane anes-
thetized (Experiment 1) and another batch kept awake (Experiment
2) during the FDG uptake period (45 min). After FDG uptake, all
animals were anesthetized with isoflurane in order to perform a
PET/CT scan (30 min). A third batch of animals was used to collect
behavioral data only during spontaneous withdrawal from self-
administration (Experiment 3). The self-administration data between
experiments 1 and 2 were comparable, and so the data was com-
bined and presented as the MSA and SSA groups in Fig. 1. The
MSA group maintained a stable morphine intake pattern across the
12-day period with an average amount of morphine intake of
6.75 mg/kg on the last day of self-administration. The number of
drug-paired lever presses was significantly higher in the MSA group
as compared to the SSA group (Fig. 1B). A two-way ANOVA indi-
cated a significant interaction between morphine and day
(F11,336 = 3.01, P = 0.001), and main effect of morphine
(F1,336 = 74.26, P < 0.0001). Post hoc tests revealed that self-
administration day 3, 4, 5, 7, 8, 9, 10, 11, and 12 were significantly
different between the MSA and SSA groups (P < 0.05). Moreover,
locomotor activity levels during the self-administration sessions were
significantly higher in the MSA group as compared to those of the
SSA group (Fig. 1C). A two-way ANOVA indicated significant main
effects of morphine (F1,336 = 307.1, P < 0.0001) and day
(F11,336 = 2.11, P = 0.019). Post hoc tests revealed that all self-
administration days were significantly different between the MSA
and SSA groups (P < 0.05). Morphine self-administered animals
exhibited constipation during the daily sessions. The number of

fecal boli was smaller in the MSA group as compared to that of the
SSA group (Fig. 1D). A Mann–Whitney U test revealed a signifi-
cant effect of morphine on defecation (U = 0, P < 0.0001). Interest-
ingly, there was no sign of tolerance to this morphine-induced
constipation over the 12 days of self-administration. Taken together,
these results indicate that the animals actively self-administered IV
morphine and experienced behavioral and physiological changes
over the 12 day period.

FDG-PET/CT imaging

FDG-PET and CT images were analyzed with a three-dimensional
rat brain atlas (VivoQuant ver.21) for the VOI analysis. A represen-
tative FDG-PET/CT image of a rat with an indwelling catheter
implanted in the jugular vein is shown in Fig. 2A. High FDG
uptake levels are prominent in the harderian gland of the eye and
the heart of the rat. Representative images of FDG-PET and CT of
the head (sagittal, horizontal and coronal sections) before (Fig. 2B)
and after the brain atlas registration (Fig. 2C) are shown. The
PET/CT images were co-registered to the rat brain atlas using the
VIVOQUANT software. The major brain regions quantified using the
brain atlas method are shown in Fig. 2D. These regions include 1:
Olfactory, 2: Cortex, 3: Basal ganglia, 4: Septal area, 5: Corpus Cal-
losum, 6: Hypothalamus, 7: Thalamus, 8: Amygdala, 9: Hippocam-
pus, 10: Midbrain, and 11: Cerebellum.

Isoflurane anesthesia on BGluM

Isoflurane anesthesia, as compared to the awake condition, induced
dramatic effects on the BGluM of rats (Fig. 3A). A two-way ANOVA

indicated a significant interaction between anesthesia and brain

Fig. 1. Chronic intravenous morphine self-administration in rats (0.5 mg/kg, 4 h/day). (A) An experimental design. In experiment 1, animals were anesthetized
with isoflurane during the FDG uptake (45 min) and PET/CT scan (30 min). In experiment 2, animals were kept awake during the FDG uptake (45 min) and
then anesthetized with isoflurane during the PET/CT scan (30 min). In experiment 3, animals were tested for behaviors in 2 day withdrawal from self-adminis-
tration. (B) The number of drug-paired lever presses during the daily self-administration sessions. (C) Locomotor activity levels during the daily self-administra-
tion sessions. (D) The number of fecal boli produced during the daily self-administration sessions. SSA: saline self-administration (n = 14), MSA: morphine
self-administration (n = 16). Data are presented as MEAN � SEM. *significantly different between the MSA and the SSA (P < 0.05).
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(A)

(B)

(C)

(D)

Fig. 2. A volume of interest analysis of FDG-PET/CT using the rat brain atlas (VivoQuant ver 2.1). (A) Representative FDG-PET/CT images of a rat with an
indwelling catheter implanted in the jugular vein. (B) Representative FDG-PET/CT images of a rat brain (sagittal, horizontal, and coronal sections). (C) Repre-
sentative FDG-PET/CT images registered to the rat brain atlas for the VOI analysis (VivoQuant ver 2.1). (D) Major brain regions quantified with the rat brain
atlas. 1: olfactory, 2: cortex, 3: basal ganglia, 4: septal area, 5: corpus callosum, 6: hypothalamus, 7: thalamus, 8: amygdala, 9: hippocampus, 10: midbrain, 11:
cerebellum.

Fig. 3. Effects of isoflurane anesthesia on BGluM of rats. (A) Regions with significant differences in BGluM between the isoflurane anesthesia and the awake
conditions. The BGluM is lower in the olfactory, cortex, basal ganglia, corpus callosum, and the thalamus, while higher in the hypothalamus, hippocampus,
white matter, midbrain, and the cerebellum in the isoflurane anesthesia condition. The median of each group is indicated by a dotted line. (B) Representative
SPM images of BGluM between the animals kept under isoflurane anesthesia or awake during the FDG uptake period. A single slice is shown in all three imag-
ing planes (sagittal, coronal, and horizontal). SPM T-map data is depicted using the Mango software (http://ric.uthscsa.edu/mango/index.html) as a multi-slice
coronal MRI T2 template (Schwarz et al., 2006). The color bar has been set to Min: 0 Max: 15 for increases in glucose uptake and Min: 0 Max: 20 for
decreases in glucose uptake for anesthetized subjects (n = 14) as compared to awake subjects (n = 16).
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region (F12,364 = 73.61, P < 0.0001) and main effects of brain
region (F12,364 = 150.5, P < 0.0001) and anesthesia (F1,364 = 32.05,
P < 0.0001). Post hoc tests revealed that isoflurane anesthesia
reduced BGluM in the olfactory, cortex, basal ganglia, corpus callo-
sum, and thalamus, while increasing BGluM in the hypothalamus,
hippocampus, white matter, other (ventricles), midbrain, and cerebel-
lum (P < 0.05). Representative images of the voxel-based SPM
analysis confirmed reduced BGluM in major cortical regions (upper
panel of Fig. 3B) and increased BGluM in major sub-cortical
regions (lower panel of Fig. 3B) in isoflurane anesthesia as com-
pared to the awake condition. A serial coronal slices from the SPM
analysis is shown in Fig. S1.
Consistent with the brain atlas-based VOI analysis, the voxel-

based SPM analysis revealed robust differences between the isoflu-
rane anesthesia and awake conditions. Table 1 shows that isoflurane
anesthesia reduced BGluM in cortical regions and increased BGluM
in the hypothalamus and brainstem. These regions were identified
based on the coordinates from the rat brain atlas (Paxinos &
Watson, 1998).

Withdrawal from chronic MSA on BGluM

The effects of 2 day withdrawal from chronic MSA on BGluM were
investigated in the isoflurane anesthesia and the awake condition. A
two-way ANOVA indicated significant main effects of morphine
(F1,156 = 8.29, P = 0.005) and brain region (F12,156 = 5.35,
P < 0.0001) in the isoflurane anesthetized condition (Fig. 4A and
B). Post hoc tests revealed that MSA increased BGluM in the basal
ganglia and corpus callosum as compared to the SSA group
(P < 0.05), shown in Fig. 4A. A further analysis of the sub-regions
of basal ganglia using the brain atlas with 54 regions (Fig. S2) indi-
cated that the caudate putamen and the nucleus accumbens were the
significant regions between the MSA and SSA groups (P < 0.05).
This indicates that 2 day withdrawal from chronic MSA selectively
increased BGluM in the striatum of rats. However, in the awake
FDG uptake condition, none of the regions were significant between
the MSA and SSA groups (Fig. 4C and D). A two-way ANOVA indi-
cated significant main effect of brain region (F12,182 = 13.58,
P < 0.0001), but not morphine (F1,182 = 3.27, P > 0.05).

Withdrawal signs and addiction-like behaviors

In the current study, morphine self-administered animals did not
exhibit severe signs of morphine withdrawal except piloerection
and increased defecation observed in the 2 day withdrawal. The
MSA group produced significantly greater number of feces on
withdrawal day 2 as compared to previous MSA day 12 and

withdrawal day 1 (Fig. 5A), indicating a rebound effect from mor-
phine-induced constipation during the self-administration period. A
one-way ANOVA on defecation indicated a significant effect of day
(F1.539,10.77 = 31.01, P < 0.0001). Newman-Keuls post hoc tests
revealed that withdrawal day 2 was significantly different from
both MSA day 12 and withdrawal day 1 (P < 0.05). The number
of daily feces in the SSA group was not significantly different
between these days. The MSA group exhibited piloerection as
compared to the SSA group when observed on withdrawal day 2
(Fig. 5B). A Mann–Whitney U test indicated significant effects of
morphine on piloerection (U = 4, P = 0.001). Despite mild with-
drawal signs, morphine self-administered animals showed robust
addiction-like behaviors when tested on withdrawal day 2. The
MSA group showed drug seeking as compared to the SSA group
under an extinction condition (Fig. 5C). A two-way ANOVA indi-
cated a significant interaction between morphine and lever presses
(F1,28 = 18.39, P < 0.001), and main effects of morphine
(F1,28 = 31.76, P < 0.0001) and lever presses (F1,28 = 18.01,
P < 0.001). Post hoc tests revealed significant differences between
the MSA and SSA groups on drug-paired lever presses. The MSA
group also exhibited increased locomotor activity to a bolus mor-
phine (0.5 mg/kg, IV) as compared to that of the SSA group
(Fig. 5D). A two-way ANOVA indicated a significant interaction
between morphine and dose (F1,28 = 14.58, P < 0.001), and main
effects of morphine (F1,28 = 27.88, P < 0.0001) and dose
(F1,28 = 12.43, P = 0.002). Post hoc tests revealed significant
differences between the MSA and SSA groups on morphine
(0.5 mg/kg). These results indicate that morphine self-administered
animals exhibited mild withdrawal symptoms and robust addiction-
like behaviors in the 2 day withdrawal from MSA.

Discussion

The current study presents two main findings: (i) isoflurane anesthe-
sia, as compared to the awake condition, induced opposite effects
on the BGluM between cortical and sub-cortical regions of rats, and
(ii) spontaneous withdrawal from MSA increased BGluM in the
striatum of rats, under the isoflurane anesthesia condition. To our
knowledge, this is the first study reporting the effects of chronic
MSA on BGluM of rodents using FDG-PET.
During the 12-day period of self-administration (4 h/day), the ani-

mals maintained a stable level of morphine intake with an average
intake of 6.75 mg/kg on the last day of self-administration. The ani-
mals experienced spontaneous withdrawal (20 h) in their home cages
following 4 h of daily MSA. This intermittent and limited access to
IV morphine induced robust locomotor hyperactivity and constipation
during the self-administration sessions as previously reported (Lee

Table 1. The voxel-based SPM analysis of glucose uptake between the isoflurane anesthetized and the awake 18F-FDG uptake conditions

Cluster level Peak level Paxinos coordinates

Region ChangePFWE kE PFWE T ML AP DV

< 0.0001 84 846 < 0.0001 21.02 �4.9 0.4 �3.0 S1DZ, Sensory Cortex Decreased
< 0.0001 17.09 4.5 1.4 �2.4 S1j, Sensory Cortex Decreased
< 0.0001 8.78 �2.7 �7.4 �1.2 V1M, Primary Visual Cortex Decreased

< 0.0001 83 835 < 0.0001 5.21 �0.1 �1.6 �9.2 AHC, Anterior Hypothalamus Increased
< 0.0001 12.41 �3.7 �11.2 �7.8 Icp, Brainstem Increased
< 0.0001 11.80 4.7 �10.2 �9.0 I8, Brainstem Increased

This table summarizes the clusters (kE) > 200 with voxels that are significant at P < 0.001 (uncorrected at voxel level). Height threshold: T = 3.42, P = 0.001,
PFWE, Family wise error; ML, medial-lateral; AP, anterior-posterior; DV, dorsal-ventral.
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et al., 2016). The morphine intake pattern also corresponds with a
previous study suggesting that the second week of drug self-adminis-
tration may be relevant to a transition from casual use to drug addic-
tion in humans (Ahmed & Koob, 2005). During 2-day withdrawal
from self-administration, the MSA group exhibited mild withdrawal
signs (increased defecation and piloerection) and robust addiction-like
behaviors (drug seeking and locomotor stimulation to morphine). In
the current study, severe withdrawal signs such as wet dog shakes,
teeth chattering, and diarrhea were not evident in the morphine self-
administered animals. This may be due to the nature of the IV drug
self-administration paradigm, which allows each animal to regulate its
own drug intake during the limited amount of time. Thus, the animals
are likely to experience the reinforcing effects of morphine rather than
its aversive and stressful effects by self-regulating morphine intake.
This was evident because the animals showed robust drug seeking
and locomotor stimulation to a bolus morphine despite the lack of sev-
ere withdrawal signs during 2 day withdrawal. Taken together, these
results indicate that the animals actively self-administered intermittent
morphine and exhibited behavioral and physiological changes over
the self-administration period.
It has been well established that the choice of anesthesia can have

a significant impact on BGluM in small animal FDG-PET studies.
In the current study, isoflurane was used because it allows for better
control over the length and depth of the anesthesia than injectable
anesthetics such as barbiturates, ketamine, and medetomidine. Isoflu-
rane is the most commonly used inhalation anesthesia with good

bioavailability and fast recovery from anesthesia for preclinical PET
studies [for a review see (Hildebrandt et al., 2008; Alstrup & Smith,
2013)]. However, because isoflurane anesthesia is known to sup-
press overall BGluM in many brain regions, it is necessary to com-
pare its effects with the awake condition. The current study found
that isoflurane anesthesia during the FDG uptake (45 min) decreased
BGluM in the olfactory, cortex, basal ganglia, and thalamus which
are mainly cortical areas of the brain. This appears to be a general
characteristic of isoflurane anesthesia, which has been reported when
comparing isoflurane anesthetized and conscious rats with FDG-PET
(Shimoji et al., 2004). Reduced BGluM in the basal ganglia and
thalamus are consistent with a previous FDG-PET study that
reported significantly reduced glucose metabolism in the cortex,
striatum, and thalamus of mice under isoflurane anesthesia (Mizuma
et al., 2010). Thus, these findings suggest that isoflurane anesthesia
reduces the neuronal activity of specific brain regions involved in
sensory and motor function, which are not as vital to maintain in
the unconscious state.
Interestingly, the current study also found that isoflurane anesthe-

sia increased BGluM in sub-cortical regions such as the hypothala-
mus, hippocampus, white matter, and midbrain. These regions are
generally related to learning and memory (hippocampus), and neces-
sary for basic physiological functions such as the breathing and ther-
moregulatory control (midbrain and hypothalamus). A 2-DG
autoradiography study investigated the effects of isoflurane on the
BGluM and found widespread decreases in the majority of regions

Fig. 4. Effects of two day withdrawal from MSA on BGluM of rats. (A) Increased BGluM in the basal ganglia and corpus callosum in the MSA group as
compared to those of the SSA group in isoflurane anesthesia. (B) No effects of MSA on BGluM in sub-cortical regions in isoflurane anesthesia. (C) No effects
of MSA on BGluM in cortical regions in the awake condition. (D) No effects of MSA on BGluM in sub-cortical regions in the awake condition. The median
of each group is indicated by a dotted line. Isoflurane anesthesia (MSA: 8 and SSA: 6) and awake condition (MSA: 8 and SSA: 8).
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(Maekawa et al., 1986). However, several sub-cortical regions such
as the hippocampus, interpeduncular nucleus, and substantia nigra
either resisted anesthetic depression or increased metabolic rate with
an increasing dosage of isoflurane. Moreover, another 2-DG study
found that BGluM was decreased in the cortex and thalamus, while
increased in the midbrain, hippocampus, and interpeduncular nucleus
of rats (Ori et al., 1986). A recent FDG-PET study reported that the
delivery of odorants during awake FDG uptake increased BGluM in
the posterior lobe of the cerebellum of rats (Litaudon et al., 2017).
This is interesting because the current study found that isoflurane
anesthesia increased BGluM in the anterior lobe of the cerebellum.
Thus, it is likely that different parts of the cerebellum are active
depending on the states such as under sensory stimulation or
anesthesia. These findings on the effects of isoflurane anesthesia in
sub-cortical regions parallel the results of electrophysiological stud-
ies, which point to the possibility of elevation, not depression, of
cerebral glucose metabolism in sub-cortical regions, such as the mid-
brain and hippocampus (MacIver & Roth, 1988; Becker et al.,
2012). Therefore, the choice of the FDG uptake condition (anesthesia
vs. awake condition) may be critical in small animal FDG-PET
studies because higher or lower basal levels of BGluM may
confound the biological effects that researchers are interested in.
Currently, there is a lack of information on how voluntary use of

opiates and its withdrawal affects in vivo BGluM in a controlled set-
ting. Thus, the current study investigated the effects of chronic
MSA on BGluM using FDG-PET. The BGluM was increased in the
basal ganglia of MSA animals as compared to SSA animals:
observed under the isoflurane anesthesia, not in the awake condition.
It is likely that basal BGluM levels in the basal ganglia were higher
in the awake condition as compared to the isoflurane anesthesia,
making it more difficult to detect MSA-induced increased BGluM in
the awake condition (ceiling effects). Therefore, it is important to

determine the FDG uptake condition (awake vs. anesthetized) in
small animal PET studies based on the regions of interest and the
hypothesis of the study.
Previous ex vivo 2-DG autoradiography studies reported increased

BGluM in the striatum of rodents following an acute morphine
injection (15 mg/kg, IP) (Quelven et al., 2004) or IV morphine
bolus administration (0.2–0.4 mg/kg) (Orzi et al., 1996). However,
high doses of continuous morphine exposure by morphine pellets
failed to alter BGluM in the striatum of rats (Wooten et al., 1982).
The current FDG-PET study also found increased BGluM in the
striatum of morphine self-administered animals. The importance of
the striatum in opiate addiction has been demonstrated previously.
For instance, electrical lesions in the striatum selectively reduced
intravenous morphine self-administration in rodents (Glick et al.,
1975). Another study showed that turnover rates of several neuro-
transmitters including dopamine, serotonin, noradrenaline, glutamate,
and GABA in the striatum were correlated with morphine self-
administration in rats (Smith et al., 1980). A recent study demon-
strated that the regulator of G-protein signaling 7 (RGS7) protein
regulates opiate reward by controlling mu-opioid receptors in the
striatum of mice (Sutton et al., 2016). The authors reported that
RGS7 in striatal neurons was selectively responsible for determining
the sensitivity of the reinforcing effects of morphine without affect-
ing its other effects such as analgesia, tolerance, and withdrawal.
Thus, the current study supports the previous findings suggesting
that the striatum plays a crucial role in modulating the reinforcing
effects of opiates.

Conclusions

The current study found that (i) isoflurane anesthesia suppressed
BGluM in cortical regions while increasing BGluM in sub-cortical

Fig. 5. Withdrawal signs and addiction-like behaviors in two day withdrawal from MSA. (A) Increased defecation on withdrawal day 2 as compared to MSA
day 12 and withdrawal day 1 in morphine self-administered animals. (B) Piloerection in the MSA group as compared to the SSA group observed on withdrawal
day 2. (C) Robust drug seeking behavior (active lever presses while morphine is not available) in the MSA group as compared to that of the SSA group. (D)
Increased morphine-induced locomotor activity (0.5 mg/kg, IV) in the MSA group as compared to that of the SSA group. The median of each group is indi-
cated by a dotted line. MSA: n = 8 and SSA: n = 8.
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regions and (ii) 2 day withdrawal from chronic MSA selectively
increased BGluM in the striatum of rats. These findings are significant
because the choice of the FDG uptake condition (anesthetized vs.
awake) may be critical in detecting drug-induced changes of BGluM in
preclinical PET studies. Moreover, increased neuronal activity in the
striatum during 2 day withdrawal from MSA may be associated with
craving and drug seeking in addicted individuals. The current study
demonstrated the utility of combining an IV morphine self-administra-
tion paradigm with non-invasive PET/CT imaging to enhance our
understanding of the in vivo brain mechanisms of opiate addiction.

Supporting Information

Additional supporting information can be found in the online ver-
sion of this article:
Fig. S1. Comparison of subjects at baseline (controls) with and
without the influence of anesthesia during uptake period.
Fig. S2. A brain atlas analysis of basal ganglia regions including
nucleus accumbens (NA), caudate putamen (CP), stria terminalis
(ST), and globus pallidus (GP).
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