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A Critical Look at Self-Dual Codes∗

Judy L. Walker

Department of Mathematics and Statistics
University of Nebraska
Lincoln, NE 68588-0323
jwalker@math.unl.edu

Abstract

We investigate self-dual codes from a structural point of view. In particular, we
study properties of critical indecomposable codes which appear in the spectrum of
a self-dual code. As an application of the results we obtain, we revisit the study of
self-dual codes of dimension at most 10.

1 Introduction

In the late 1950’s, Slepian [4] became the first to take an abstract approach to the
study of error-correcting codes. He introduced a structure theory for binary linear codes,
developing in particular the idea of an indecomposable code; that is, a code which is not
isomorphic to a nontrivial direct sum of two other codes. He proved two important results
in this direction: First, every code is isomorphic to a unique sum of indecomposable codes.
Second, for a given length and dimension, there is an indecomposable code which achieves
the highest possible minimum distance.

The problem with indecomposable codes is that there are simply too many of them.
A code is indecomposable of and only if it is not equivalent to a code which has a
generator matrix which is block diagonal with at least two blocks. Thus, if C is any
indecomposable code, then adding any column onto C yields a new indecomposable code
of the same dimension but length one more than the length of C.

The major breakthrough in this area came in the late 1990’s when Assmus ([1])
introduced the notion of critical indecomposable codes. The idea is that these codes
are indecomposable codes with no “extra” columns tacked on. The notion of critical
indecomposable codes appears to be very promising. In fact, Assmus shows that there is
a “quasi-canonical” form for the generator matrix of such a code. Further, Assmus gives
a recursive construction for all critical indecomposable codes.

A critical indecomposable code which can be obtained by puncturing an indecompos-
able code at one or more columns is said to be in the spectrum of that indecomposable
code. In this paper, we investigate self-dual codes by considering properties of critical in-
decomposable codes which appear in the spectrum of a self-dual code. Recall that a code
C ⊂ F

n
q is called self-dual if C = C⊥, where C⊥ := {x ∈ F

n
q |x · c = 0 for every c ∈ C}.

These codes are known to have many remarkable properties, and much work has been
done toward understanding them. In particular, considerable effort has been devoted to
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finding a complete enumeration of self-dual binary codes. Though the enumeration is
now known through dimensions at least 16, the first paper on the subject ([3]) dealt with
self-dual codes of dimension at most 10, a topic we revisit in this paper.

2 Critical Indecomposable Codes

We begin by recalling some definitions and results from [1] and [5]. In what follows, all
codes are assumed to be binary, and we will write F to mean the field with two elements.

Definition 2.1. Let C ′ and C ′′ be linear codes of lengths m and n respectively. The
direct sum of C ′ and C ′′ is the set C := C ′ ⊕ C ′′ of all vectors c = (c1, . . . , cm+n ∈ F

m+n

such that (c1, . . . , cm) ∈ C ′ and (cm+1, . . . , cm+n) ∈ C ′′. Two codes are isomorphic if one
can be obtained from the other through a permutation of coordinates. A code C is called
indecomposable if it is not isomorphic to C ′⊕C ′′ for any nonzero linear codes C ′ and C ′′.
A code which is not indecomposable is called decomposable.

Let C be an indecomposable code of length n and dimension k and let G be a generator
matrix for C. For 1 ≤ i ≤ n, define φi(C) to be the code which is generated by the rows
of the matrix obtained from G by omitting the ith column. (This process is known as
puncturing C at the ith column and is clearly independent of the choice of the generator
matrix for C.) Then φi(C) will be a code of length n−1 and dimension either k or k−1,
and it may or may not be indecomposable.

Definition 2.2. Let C be an indecomposable code of length n. We say the ith column of
C is a critical column of C if either φi(C) has dimension k− 1 or φi(C) is decomposable.
We say C is a critical indecomposable code if every column of C is critical.

It is plain to see that F is the only critical indecomposable code of dimension 1.
Further, for k ≥ 2, there is only one code of dimension k and length k + 1, and it is
critical indecomposable. We will call this code Ck+1,k. There is also (see [5]) a unique
critical indecomposable code C2k−2,k of length 2k − 2 and dimension k for each k ≥ 4,
and this is the longest critical indecomposable code of dimension k. Moreover, Assmus
gives a recursive construction for all critical indecomposable codes.

The construction takes as input a partition π = (x1, . . . , xr, x
′) of the intended length

n of the code and an auxiliary code A, which is indecomposable of length s := r + x′ and
minimum distance at least 3. We require that xi ≥ 2 for i = 1, . . . , r, and we assume
without loss of generality that it is ordered so that x1 ≥ x2,≥ · · · ≥ xr. Further, we
require that the last x′ columns of A be critical. Then a generator matrix for a critical
indecomposable code can be constructed from π and A as follows:

• For 1 ≤ i ≤ r, let Gi be the (xi − 1) × xi matrix which consists of a column of
1’s followed by the identity matrix of size xi − 1. Note that if xi = 2, then Gi is
a generator matrix for the code whose only nonzero element is the vector (1, 1);
otherwise Gi generates the code Cxi,xi−1 described above.

• Let l = dim A and fix a generator matrix GA for A. For 1 ≤ i ≤ r, let Li be the
l × xi matrix whose first column is the ith column of GA and whose other entries
are all 0. Also let Lr+1, . . . , Lr+x′ be the last x′ columns of GA.



• Set

G :=

⎛
⎜⎜⎜⎝

G1

. . .

Gr

L1 . . . Lr Lr+1 . . . Lr+x′

⎞
⎟⎟⎟⎠ , (∗)

where all blank spaces are assumed to be filled in with zeros.

The matrix G is a generator matrix for a critical indecomposable code of length n and
dimension k := n−s+ l. The relatively straight-forward proof is given in [1], and we will
not reproduce it here. A generator matrix of this form is called quasi-canonical because
the first k − l rows are uniquely determined by π and the last l are determined by A.

It is also true (see [1] or [5]) that every critical indecomposable code is equivalent to
a code with a generator matrix of the form (∗), and from this generator matrix, we may
recover a partition and auxiliary code. Thus, given any critical indecomposable code C,
it makes sense to refer to the partition and auxiliary code used to construct C.

In [5], we give a complete enumeration of critical indecomposable codes of dimension
at most 10. This enumeration is given in terms of the partitions and auxiliary codes used
in the constructions.

Finally, we present some notational conventions used in the remainder of the paper.
For a matrix M , we will write M t for the transpose of M . We will write (w1|w2) to mean
the vector formed by concatenating the vectors w1 and w2. If D is an indecomposable
code, we will write Spec(D) for the spectrum of D, i.e., the set of critical indecomposable
codes which can be obtained by puncturing D at one or more columns. Also, we will
often blur the distinction between equivalent codes. For example, when C ∈ Spec(D), we
will say that D has a generator matrix of the form [G|M ] where G is a generator matrix
for C, rather than that D is equivalent to a code with a generator matrix of this form.

3 Applications to Self-Dual Codes

We begin with some results about critical indecomposable codes with lengths at the two
extremes of the range of possibilities.

Theorem 3.1. For each k ≥ 4, the unique critical indecomposable code C2k−2,k of length
2k − 2 and dimension k is in the spectrum of a self-dual code if and only if k is even.
Further, when k is even, there is a unique self-dual code D with C2k−2,k ∈ Spec(D) and
D is doubly-even (i.e., all words in D have weight divisible by 4) if and only if k ≡ 0
(mod 4).

Proof. The quasi-canonical generator matrix for the code C2k−2,k is

G :=

⎛
⎜⎜⎜⎝

11
. . .

11
10 . . . 10

⎞
⎟⎟⎟⎠ ,

so if D is a self-dual code with C2k−2,k ∈ Spec(D), then D must have a generator matrix
of the form [G|M ], where M is a k × 2 matrix with rows m1, . . . , mk. If k is odd,



then all rows of G have even weight; thus all rows of M must have even weight, but we
also must have mi · mk = 1 for 1 ≤ i ≤ k − 1 and this is impossible. If k is even, the
only possibility for the rows of M is mi = (1, 1) for 1 ≤ i ≤ k − 1 and (without loss of
generality) mk = (1, 0). Finally, we see that the rows of [G|M ] all have weight divisible
by 4 if and only if k ≡ 0 (mod 4), which completes the proof of the theorem.

Our next task is to show that no critical indecomposable code of dimension k and
length k + 1 can appear in the spectrum of a self-dual code. First we prove a lemma
which will be used both in the proof of this statement and later in the paper.

Lemma 3.2. Let M be a r × c matrix and set S := MM t. Then the rank of S is at
most c. Further, if every row of M has even weight, then then rank of S is at most c−1.

Proof. The matrix S represents the composition F
r → F

c → F
r, where the map F

r → F
c

is given by M t and the map F c → F
r is given by M . Therefore, the rank of S is at

most the column rank of M , which is at most c. If every row of M has even weight, then
(1, . . . , 1)t is in the null space of M . Thus, in this case the column rank of M is at most
c − 1.

Theorem 3.3. For any k ≥ 2, the unique critical indecomposable code Ck+1,k of length
k + 1 and dimension k is not in the spectrum of any self-dual code.

Proof. Suppose Ck+1,k ∈ Spec(D) for some self-dual code D. Then D has a generator
matrix of the form [1|I|M ], where every row of the k× (k−1) matrix M has even weight
and the inner product of any two distinct rows of M is 1. The matrix MM t is then the
k × k matrix which has 0’s on the diagonal and 1’s elsewhere. Such a matrix has rank
either k or k − 1 depending on whether k is even or odd. However, by Lemma 3.2, the
rank of MM t is at most k − 2. This shows that M , and hence D, cannot exist.

In studying which of the other critical indecomposable codes can appear in the spec-
trum of a self-dual code, we will find the next definition useful.

Definition 3.4. Let π := (x1, . . . , xr, x
′) be a partition of the integer n and set s :=

r + x′. The maps iπ : F
s → F

n and jπ : F
s → F

n are defined by iπ(a1, . . . , as) :=
(ax1

1 , . . . , axr
r , ar+1, . . . , as) and jπ(a1, . . . , as) := (a1, 0

x1−1, . . . , ar, 0
xr , ar+1, . . . , as), where

ax is the vector of length x all of whose entries are a.

Lemma 3.5. [1] Let C be a critical indecomposable code. Let π be the partition and let
A be the auxiliary code used in the construction of C. Then C⊥ = iπ(A⊥).

Proof. Let n be the length of C, k the dimension of C, s the length of A, and l the dimen-
sion of A. Then n − k = s − l, which means that dim(C⊥) = dim(A⊥) = dim(iπ(A⊥)).
Thus, it is enough to show that iπ(b) · f = 0 for every b ∈ A⊥ and every row f in a
quasi-canonical generator matrix for C. Let b = (b1, . . . , bs) ∈ A⊥. If f is one of the
first k − l rows of a quasi-canonical generator matrix for C, then f has weight 2 and
support contained entirely within the block corresponding to some xi, 1 ≤ i ≤ r, where
π = (x1, . . . , xr, x

′). Thus iπ(b) · f = bi + bi = 0. On the other hand, if f is one of the
last l rows, then f = jπ(a) for some a ∈ A. Thus iπ(b) · f = 0 since b ∈ A⊥.

Theorem 3.6. Let C be a critical indecomposable code and suppose that C is in the
spectrum of some self-dual code. Then C⊥ ⊆ C.



Proof. Let D be a self-dual code with C ∈ Spec(D). Let n and k be the length and
dimension of C so that D has length 2k. We may assume that C is obtained by puncturing
D at the last 2k − n columns. Let z = (z1, . . . , zn) ∈ C⊥ and let y = (y1, . . . , y2k) be
the vector of length 2k such that yi = zi for 1 ≤ i ≤ n and yi = 0 for n + 1 ≤ i ≤ 2k.
Let d = (d1, . . . , d2k) be any codeword in D. Then y · d =

∑
yidi =

∑
zidi = 0 since

(d1, . . . , dn) ∈ C. Hence y ∈ D⊥ = D, and so z ∈ C.

This theorem turns out to be quite powerful and will severely restrict which critical
indecomposable codes can appear in the spectrum of a self-dual code. The crucial step
in obtaining this restriction is given by the next lemma.

Lemma 3.7. Let C be the critical indecomposable code constructed from the partition
π = (x1, . . . , xr, x

′) and the auxiliary code A, and suppose C is in the spectrum of some
self-dual code. Let b be any codeword of A⊥. If the only codeword of A with support
contained in supp(b) is 0, then supp(b) ⊂ {1, . . . , r} and xi is even for every i ∈ supp(b).
If supp(b) �⊂ {1, . . . , r}, then there is a codeword a ∈ A with supp(b) \ {1, . . . , r} ⊂
supp(a) ⊂ supp(b).

Proof. Let b ∈ A⊥. Then iπ(b) ∈ C, and so iπ(b) = e+jπ(a) for some e := (e1| . . . |er) ∈
E1⊕· · ·⊕Er and some a := (a1, . . . , ar, ar+1 . . . , ar+x′) ∈ A. For r+1 ≤ i ≤ r+x′, we see
that bi = ai, so the supports of b and a are identical in the last x′ columns. For 1 ≤ i ≤ r,
if ai = 1, then bi = 1 since Ei has minimum distance 2. Thus, supp(a) ⊂ supp(b). In
particular, if 0 is the only codeword of A with support contained in supp(b), then the
last x′ coordinates of b must be zero. Further, in that case, we must have the all-one
vector contained in Ei for each i ∈ supp(b), which implies that xi must be even for all
i ∈ supp(b).

We now use this lemma to find necessary conditions on the ingredients used to con-
struct a critical indecomposable code which appears in the spectrum of a self-dual code.

Theorem 3.8. Let C = C(π, A) be the critical indecomposable code constructed using
the partition π = (x1, . . . , xr, x

′) and the auxiliary code A, where the dimension of C is
at most 10. If C is in the spectrum of a self-dual code, then x′ = 0 and each xi is even.

Proof. All critical indecomposable codes of dimension at most 10 are listed in [5] accord-
ing to the partitions and auxiliary codes used to construct them. The idea of this proof
is to consider each auxiliary code in turn. To set up notation, let s := r + x′ and l be
the length and dimension of the auxiliary code A.

If l = 1, then A = As,1 for some s and A⊥ = Cs,s−1. Since A has no critical columns,
we already have x′ = 0 and r = s. Further, since iπ(A⊥) = C⊥ ⊆ C by Lemma 3.5 and
Theorem 3.6, we have that iπ(fi) ∈ C where fi is the ith row of the generator matrix
[I|1] for Cs,s−1. But supp(iπ(fi)) is the set of coordinates in the blocks corresponding
to xi and xs. This means that xi and xs are even by Lemma 3.7. Since fi ∈ Cs,s−1 for
1 ≤ i ≤ s − 1, we have that xj is even for all j.

Now suppose l = 2. The shortest admissible code of dimension 2 has length 5, and
so we have s ≥ 5. Without loss of generality we may assume that the three nonzero
codewords of A are (1u, 0v, 1w), (0u, 1v, 1w), and (1u, 1v, 0w) where u, v, and w satisfy
u ≥ 2, v ≥ 2, and u + v + w = s. Let u0 = 2�u/2, so that u0 is the largest even
integer which is not larger than u. Then (1u0 , 0u−u0 , 0v, 0w) ∈ A⊥ and by Lemma 3.7, x1,
. . . , xu0 must all be even. Since the vector (0u−2, 12, 0v, 02) is also in A⊥, we get that
xu−1 and xu are both even. Likewise, we can show that xu+1, . . . , xu+v are all even. If



x′ = 0, a similar argument (using the vector (1, 0u−1, 1, 0v−1, 1w) if w is odd, or the vectors
(1, 0u−1, 1, 0v−1, 1w−1, 0) and (1, 0u−1, 1, 0v−1, 0, 1w−1) if w is even) shows that xu+v+1, . . . ,
xu+v+w are all even. In summary, when l = 2 and x′ = 0, each xi must be even.

If l = 2 and x′ = 1, then A must have a critical column, which we may assume is
the last column of A. This means, in particular, that w = 1 in this situation. Then
(1, 0u−1, 1, 0v−1, 1) ∈ A⊥, and so by Lemma 3.7, we must have a vector a ∈ A with
1 ∈ supp(a) ⊂ {1, u + 1, s}. Such an a does not exist, and so x′ must be 0.

Next, suppose l = 3. There is no nice general description of the nonzero codewords
in admissible codes of dimension 3. However, we still use the basic idea of finding
explicit codewords in the dual code and applying Lemma 3.7. For example, consider
the admissible code A7,3;1, which has quasi-canonical generator matrix

⎛
⎝

1 1 0 0 0 0 1
0 0 1 1 0 0 1
0 0 0 0 1 1 1

⎞
⎠ .

One sees immediately that (1, 1, 0, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0), and (0, 0, 0, 0, 1, 1, 0) are
all in A⊥

7,3;1, and applying Lemma 3.7, we find that any partition used with A7,3;1 must
have xi even for 1 ≤ i ≤ 6. Taking any word of A⊥

7,3;1 supported on the last column (for
example, (1, 0, 1, 0, 0, 1, 1)), we find that x′ must be 0 and x7 must be even as well.

The arguments for the rest of the admissible codes are the same, using the codewords
in the dual codes supplied by the following table.

A relevant words in A⊥

A6,3;0 (0, 1, 0, 1, 1, 0), (1, 1, 0, 0, 0, 1), and (0, 0, 1, 1, 0, 1)
A1

7,3;0 (0, 1, 0, 1, 1, 0, 0), (1, 1, 0, 0, 0, 1, 0), (0, 0, 1, 1, 0, 1, 0), and (1, 0, 0, 0, 0, 0, 1)

A2
7,3;0 (0, 1, 0, 1, 1, 0, 0), (1, 1, 0, 0, 0, 1, 0), (0, 0, 1, 1, 0, 1, 0), and (1, 0, 0, 1, 0, 0, 1)

A1
8,3;1 (1, 1, 0, 0, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 1, 0, 0, 0),

(0, 0, 0, 0, 0, 1, 1, 0), and (1, 0, 0, 0, 1, 0, 1, 1)
A2

8,3;1 (1, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 1, 0, 0),
(1, 0, 0, 0, 0, 1, 1, 0), and (0, 0, 1, 0, 0, 0, 1, 1)

A7,3;2 (1, 1, 0, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0), (0, 0, 0, 1, 1, 1, 0), and (1, 0, 0, 0, 1, 0, 1)
A1

8,3;2 (1, 1, 0, 0, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 1, 0, 0, 0),
(0, 0, 0, 1, 0, 1, 0, 1), and (1, 0, 0, 0, 0, 1, 1, 0)

A2
8,3;2 (1, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0, 0),

(0, 0, 0, 0, 1, 1, 0, 0), and (0, 1, 1, 0, 0, 0, 1, 1)
A1

9,3;2 (1, 1, 0, 0, 0, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0, 0, 0), (0, 0, 0, 0, 1, 1, 0, 0),
(1, 0, 0, 0, 0, 0, 1, 1, 0), and (0, 0, 0, 0, 1, 0, 1, 0, 1)

A2
9,3;2 (1, 1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 1, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 1, 1, 0, 0, 0), (1, 0, 0, 0, 0, 0, 1, 1, 0), and (0, 0, 0, 1, 0, 0, 1, 0, 1)
A3

9,3;2 (1, 1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 1, 1, 0, 0), and (0, 0, 1, 1, 0, 0, 0, 1, 1)

A4
9,3;2 (1, 1, 0, 0, 0, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0, 0, 0),(0, 0, 0, 0, 1, 1, 0, 0, 0),

(0, 0, 0, 0, 0, 1, 1, 0, 0), and (0, 1, 1, 0, 0, 0, 0, 1, 1)
A1

9,4;3 (1, 1, 0, 0, 0, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 1, 1, 0, 1, 0), and (0, 1, 1, 0, 0, 0, 1, 1, 1)

A2
9,4;3 (1, 1, 0, 0, 0, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 1, 1, 0, 0, 0), and (0, 0, 0, 0, 0, 0, 1, 1, 1)



4 Self-Dual Codes of Dimension At Most 10

In this section, we apply the results obtained above to revisit the enumeration of self-dual
codes of dimension at most 10 given by Pless ([3]). It is hoped that these examples will
demonstrate how one might hope to obtain new results in larger dimensions using these
techniques. As before, we refer to auxiliary codes using the notations of [5].

We treat each dimension k ≤ 10 in turn. The first five dimensions are easy: When
k = 1, the code D2 with generator matrix [1, 1] is the unique self-dual code of dimension
1. When k = 2 or 3, the only critical indecomposable code is Ck+1,k, and so there are
no indecomposable self-dual codes in these dimensions by Theorem 3.3. When k = 4,
there are two critical indecomposable codes: C5,4 and C6,4. We know C5,4 is not in the
spectrum of any indecomposable self-dual code by Theorem 3.3, and by Theorem 3.1,
C6,4 is in the spectrum of a unique indecomposable self-dual code which we will call D8.
By the same theorem, we know that D8 is in fact doubly-even. By Theorems 3.3, 3.7,
and 3.1, we see that none of the three critical indecomposable codes of dimension 5 can
be in the spectrum of any self-dual code, and so there are no indecomposable self-dual
codes of dimension 5.

The case where k = 6 requires a bit more thought. By Theorem 3.8, the only critical
indecomposable codes which might appear in the spectrum of an indecomposable code of
dimension 6 are C((4, 22), A3,1) and C((25), A5,1), and by Theorem 3.1, this latter code
is in the spectrum of a unique self-dual code which we can call D12. In fact, this is the
only indecomposable self-dual code of dimension 6. Indeed, any other one must have
C((4, 22), A3,1) in its spectrum. This means it would have a generator matrix of the form
[G|M ] where G is the quasi-canonical generator matrix for C((4, 22), A3,1) and M is a
6 × 4 matrix, chosen carefully so that each pair of rows of [G|M ] has inner product 0.
Without loss of generality, then, M must be either

⎛
⎜⎜⎝

1 1 1 1 1 1
1 0 0 1 1 0
0 1 0 1 1 0
0 0 1 1 1 0

⎞
⎟⎟⎠

t

or

⎛
⎜⎜⎝

1 1 1 1 1 0
1 0 0 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1

⎞
⎟⎟⎠

t

.

In either case, one gets a code equivalent to D12.
For k = 7, we have that the only critical indecomposable codes which might appear

in the spectrum of a self-dual code are C1 := C((4, 23), A4,1) and C2 := C((25), A5,2;1)
by Theorems 3.8 and 3.1. Suppose first that C1 is in the spectrum of a self-dual code.
Then that self-dual code has a generator matrix of the form [G|M ] where G is the quasi-
canonical generator matrix for C1 and M is a 7 × 4 matrix satisfying

MM t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0 1
1 0 1 0 0 0 1
1 1 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
1 1 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By Lemma 3.2, the matrix MM t must have rank at most 3, but a quick check shows
that this matrix has rank 4. Thus C1 cannot appear in the spectrum of any self-dual
code. On the other hand, it is not hard to see that C2 is in the spectrum of a unique



self-dual code: any such code must have a generator matrix of the form [G|M ], where G
is the quasi-canonical generator matrix for C2 and the only possible choice for M (up to
equivalence) is

M =

⎛
⎜⎜⎝

1 1 0 0 1 1 0
1 1 0 0 1 0 1
0 0 1 1 1 1 0
0 0 1 1 1 0 0

⎞
⎟⎟⎠

t

.

We write D14 for this unique indecomposable self-dual code of dimension 7.
Things are only slightly more complicated for k = 8. Theorem 3.8 shows that the only

critical indecomposable codes which might appear in the spectrum of a self-dual code are
C1 := C((6, 22), A3,1), C2 := C((42, 2), A3,1), C3 := C((4, 24), A5,1), C4 := C((26), A6,2;0),
C5 := C((26), A6,2;1), and C6 := C((27), A7,1). Further, Theorem 3.1 shows that C6 is in
the spectrum of a unique (doubly-even) self-dual code D1

16. We can rule out C4 using
Lemma 3.2 since the generator matrix of a self-dual code having C4 in its spectrum would
be [G|M ] where G is a quasi-canonical generator matrix for C4 and M is a 8 × 4 matrix
all of whose rows have even weight and satisfying

MM t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and this matrix has rank 4. It is easy to see that there is a unique self-dual code with
C3 in its spectrum: the generator matrix must be [G|M ] where G is the quasi-canonical
generator matrix for C3 and M is

⎛
⎜⎜⎝

1 1 1 1 1 1 1 1
1 0 0 1 1 1 1 0
0 1 0 1 1 1 1 0
0 0 1 1 1 1 1 0

⎞
⎟⎟⎠

t

.

Further, this code is not equivalent to our code D1
16, and so we call it D2

16. At this point,
one can use a brute force approach to show that these are the only two indecomposable
self-dual codes of dimension 8 by constructing all the different ways that C1, C2, and
C5 could be extended to self-dual codes. Along the way, we discover that Spec(D1

16) =
{C1, C6} and Spec(D2

16) = {C1, C2, C3, C5}.
For k = 9, we can proceed in a similar fashion. Using Theorems 3.7 and 3.1, we

find that C1 := C((6, 23), A4,1), C2 := C((42, 22), A4,1), C3 := C((4, 24), A5,2;1), C4 :=
C((4, 24), (A5,2;1)

(1,5)), C5 := C((26), A6,3;0), C6 := C((4, 25), A6,1), C7 := C((27), A7,2;0),
C8 := C((27), A1

7,2;1), and C9 := C((27), A2
7,2;1) are the only critical indecomposable codes

which could possibly appear in the spectrum of a self-dual code. Using Lemma 3.2, we
can rule out C1, C2, C6, and C9. We can construct two inequivalent indecomposable



self-dual codes D1
18 and D2

18 by appending
⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0 0
0 0 1 1 0 0 1 0 0
0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

t

and

⎛
⎜⎜⎝

1 1 1 1 1 0 0 1 1
1 1 1 1 1 0 0 0 1
1 1 1 0 0 1 1 0 1
1 1 1 0 0 1 1 0 0

⎞
⎟⎟⎠

t

to the quasi-canonical generator matrices of C3 and C7, respectively. By using brute
force to see what ways the various remaining critical indecomposable codes can extend,
one finds that these are the only indecomposable self-dual codes of dimension 9. Along
the way, we find that Spec(D1

18) = {C3, C4, C8} and Spec(D2
18) = {C3, C4, C5, C7}.

Finally, there are 16 critical indecomposable codes of dimension 10 that could occur
in the spectrum of a self-dual code by Theorems 3.8 and 3.2. They are:

Name Partition Auxiliary Code Name Partition Auxiliary Code
C1 (8, 22) A3,1 C2 (6, 4, 2) A3,1

C3 (43) A3,1 C4 (6, 24) A5,1

C5 (42, 23) A5,1 C6 (4, 25) A6,2;1

C7 (4, 25) (A6,2;1)
(1,4) C8 (4, 25) (A6,2;1)

(1,6)

C9 (27) A1
7,3;0 C10 (27) A7,3;1

C11 (27) A7,3;2 C12 (4, 26) A7,1

C13 (28) A1
8,2;0 C14 (28) A1

8,2;1

C15 (28) A2
8,2;1 C16 (28) A9,1

From Theorem 3.1, we know that C16 is in the spectrum of a unique indecomposable
(and doubly-even) self-dual code, D1

20. One could use a brute force approach with the
other 15 codes, but this seems rather lengthy. Alternatively, one can do a random
attack, producing new self-dual codes and checking to see if the mass formula (see,
for example, [3]) is satisfied after each one. Further, one can compute (by hand or
using the computer algebra system MAGMA ([2]), for example) the spectrum of each
indecomposable self-dual code constructed. We follow this latter approach. We see that
Spec(D1

20) = {C1, C16}. Next, we notice that the only way for [G|M ] to be a generator
matrix for a self-dual code, if G is the quasi-canonical generator matrix for C12, is if M
is the matrix ⎛

⎜⎜⎝
1 1 1 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 1 0
0 1 0 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 1 0

⎞
⎟⎟⎠

t

.

The self-dual code D2
20 produced in this way is obviously not equivalent to D1

20 since C12 �∈
Spec(D1

20). Further, we can compute Spec(D2
20) = {C1, C2, C4, C8, C12, C14}. Trying twice

more, we find that C5 and C15 each extend uniquely, using the matrices
⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 1 1 1 1
1 1 1 0 1 0 1 1 1 1
1 1 1 0 0 1 1 1 1 1
1 0 0 1 1 1 1 1 1 0
0 1 0 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

t

and

⎛
⎜⎜⎝

1 1 1 1 0 0 0 1 1 0
1 1 1 1 0 0 0 1 0 1
1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 0 1 0

⎞
⎟⎟⎠

t

,



respectively. Calling the self-dual codes we get D3
20 and D4

20, we compute their spectra to
be {C1, C2, C3, C5, C6, C7, C8, C9, C10, C11} and {C1, C2, C3, C4, C7, C8, C10, C11, C13, C15}
respectively. By the mass formula, there are still more indecomposable self-dual codes
of dimension 10. At this point, we must use brute force on one of our longer critical
indecomposable codes. Trying C11, we see that the only possible ways to extend this
code to a self-dual code are to add one of the following matrices:

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0 1 x̄ x + y
1 1 1 1 1 0 0 0 x x + y
0 0 1 1 0 1 0 x 1 y + z
0 0 1 1 0 1 0 x 0 y + z
0 0 0 0 1 1 1 y z 1
0 0 0 0 1 1 1 y z 0

⎞
⎟⎟⎟⎟⎟⎟⎠

t

,

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 1 1 x z
1 1 0 0 0 0 1 0 x̄ z̄
0 0 1 1 0 1 0 1 y x̄
0 0 1 1 0 1 0 0 y x̄
0 0 0 0 1 1 1 1 x + y x + z
0 0 0 0 1 1 1 0 x + y x + z

⎞
⎟⎟⎟⎟⎟⎟⎠

t

,

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0 1 x + y x
1 1 1 1 1 0 0 0 x + y x̄
1 1 0 0 0 0 1 x 1 z
1 1 0 0 0 0 1 x 0 z̄
0 0 0 0 1 1 1 y 1 z
0 0 0 0 1 1 1 y 0 z

⎞
⎟⎟⎟⎟⎟⎟⎠

t

, or

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0 1 ȳ x
1 1 1 1 1 0 0 0 y x
1 1 0 0 0 0 1 x z 1
1 1 0 0 0 0 1 x z 0
0 0 1 1 0 1 0 y 1 z
0 0 1 1 0 1 0 y 0 x + z

⎞
⎟⎟⎟⎟⎟⎟⎠

t

,

where x, y, and z can be 0 or 1, and ā means 1 + a. With the first or third of these
matrices, we get D3

20 no matter what choices we make for x, y, and z. We also get D3
20

when x = 0 with the second matrix (independent of y and z), and we get D4
20 when x = z

(independent of y) with the fourth matrix. However, when we use the second matrix with
x = 1, we get a new code which we call D5

20, and when we use the fourth matrix with
x �= z, we get another one, which we call D6

20. We can now use the mass formula to
show that these are all the possibilities. Finally, we compute Spec(D5

20) = {C10, C11} and
Spec(D6

20) = {C1, C2, C3, C6, C9, C11}.
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