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 Maintaining effective preload in bolted joints is critical for ensuring long-term 

performance and safety throughout the operation of any assembled structure. The loosening 

of bolted joints has been studied since the Industrial Revolution, but modeling approaches 

have only emerged over the past three decades. Although existing approaches are capable 

of simulating or predicting loosening in a single joint consisting of a single bolt, they are 

too computationally expensive to be used to model loosening in large structures consisting 

of many bolts. The objective of this thesis is to construct and employ a reduced-order 

modeling (ROM) approach that treats the internal tension or the torque applied to the joint 

as a degree-of-freedom (DOF) that evolves dynamically with the structure. In this thesis, 

the approach is applied to threaded joints coupling axial rods and the torque applied to each 

joint treated as the new DOF. The method is first applied to predict the loss of torque in a 

system consisting of two axial rods connected by a single threaded joint and the simulated 

results are compared to experimental measurements. The method is then used to investigate 

the dynamic interactions between two threaded joints coupling three axial rods together. 

The idea is that by understanding these interactions, they can be exploited to nullify 

loosening or even heal joints that have already loosened. The results demonstrate that the 

behavior of the three-rod system can be divided into five regimes based on loading: first, a 

low-amplitude regime where each joint is independent of the other; second, a regime where 



 
 

the joints exhibit weak dependence on each other; third, a regime of strong dependence; 

fourth, a regime where bands of mitigation arise corresponding to only one joint loosening; 

and fifth, a regime corresponding to complete rapid loosening of the first joint. The third 

and fourth regimes reveal that when the joints are torqued to the same initial preload, 

regardless of the actual value, both joints will always loosen. However, when the joints are 

tightened to different amounts, there exist combinations where only one joint loosens, such 

that the other joint maintains some of the initial preload. 
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CHAPTER 1- INTRODUCTION TO THE LOOSENING OF BOLTED 

JOINTS   

1.1 Background 

Industries such as automotive, aerospace, biomedical, defense, construction, and many 

others are all affected by the loosening of bolts in their structures.  In all of these fields, 

structures typically contain dozens if not hundreds to thousands of bolted joints and the 

loss of preload in these joints can result in catastrophic failure. For example, an EQ-4B 

Global Hawk, one of the United States’ most advanced and expensive unmanned aerial 

vehicles, lost stability and crashed in 2011 because a single screw loosened (Lozier 

2012). The loosening of screws and bolts during operation often results in catastrophic 

failure, as evidenced by the 2013 Brétigny-sur-Orge train crash in Paris that resulted in 

seven deaths and 32 injuries, which was caused by the loosening of the bolts on the 

fishplate (rail joint) that connects the rails together (French Land Transport Accident 

Investigation Bureau 2015). Damage, injuries, and fatalities due to the loosening of 

bolted joints are not limited to such dramatic events. A 2017 survey of 103 public 

playgrounds by Olsen and Kennedy (2018,2020) found that 29.1% of playgrounds 

surveyed contained loose fasteners and presented a danger to children. In the health 

technology field, the Emergency Care Research Institute (2020) found that loosening of 

bolts cause so many injuries that they ranked among the top 10 health technology hazards 

in 2020. Furthermore, loosening of screws in biomedical implants is notoriously 

common: Becker and Becker (1995) reported that 43% of dental retaining screws loosen 

in the first year of service, and Wu et al. (2019) found that 33% of spinal screws loosen 



2 
 

within two years of service. Kaminskaya and Lipov (1990) reported that loosening of 

threaded fasteners causes 20% of all failures in machine tools and that the time to fix 

these failures is often on the order of 10% of the operating life of the machine. In the 

automotive industry, Holmes (1988) found that 23% of all automobile service issues 

resulted from loose bolts and that 12% of all new cars surveyed contained loose bolts. 

These metrics are reinforced by recent recalls due to loosening bolts, including 1.38 

million Ford vehicles recalled in 2018 and fourteen recalls in 2021 alone as stated by the 

National Highway Traffic Safety and Administration (Ford Motor Company 2018; 2020; 

National Highway Traffic Safety and Administration 2020; 2021; NHTSA 2021). 

To prevent these failures, a deeper understanding of both the mechanics of 

loosening and the interactions between multiple joints due their effect on the global 

dynamics of the structure is needed. Previous work has focused on understanding the 

mechanics of loosening using high-fidelity finite element models that try to create as 

close to real conditions as possible by including thread geometry and contact mechanics 

into the models. Although the results of such models are insightful, their high 

computational cost limits their applicability to simulating loosening in only a single joint 

containing one bolt, such that it is not possible to investigate interactions between 

multiple bolts and joints.  The current way to model and simulate joints loosening is 

limited to a singular joint. In place of hyper-realistic modeling approaches, this thesis 

implements a recently developed reduced-order model (ROM) for loosening as 

investigated by (Moore et al. 2017) to investigate the interactions between multiple joints 

that arise due to the effect of the joints on the global dynamics of the structure. 
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1.2 Objective of the Present Research 

The objective of this research is to determine how the loosening of one joint affects the 

behavior and evolution of a second joint in a system of three axial rods subjected to 

varying shock loads and coupled together using two axially aligned, threaded joints. 

Specifically, it is hypothesized that because the loosening of either joint alters the global 

dynamics of the system, the loosening of one joint will affect the behavior of the other 

joint and may even prevent the second joint from loosening. Confirmation of this 

hypothesis implies that it is possible to manipulate the design and behavior of bolted 

joints to passively mitigate loosening in some or all fasteners. Additionally, confirmation 

would also imply that one could incorporate dummy bolts that serve as a warning system 

by loosening prematurely and signaling the need for maintenance in the structure. Thus, 

the focus of this thesis is on testing this hypothesis using a computational model that 

incorporates a validated ROM for loosening in axially aligned, threaded joints. 

 

1.3 Scope of this Thesis 

This thesis is divided into 1) explaining the approach used to construct the proposed 

ROM and the validation of the ROM using previous experimental results; 2) the 

implementation of the ROM to model loosening of two joints in the system of three axial 

rods modeled using the spectral element method and associated convergence studies; and 

3) an exploration of the behavior of the system with a focus on the interactions between 

the two joints based on their respective loss of torque and the analysis of the behavior 

using estimated total energies. 
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CHAPTER 2-LITERATURE REVIEW 

2.1 Joint Loosening  

Maintaining appropriate preload in bolted joints is critical for safe and efficient operation 

of nearly all built-up structures. Loss of preload during operation can be classified into 

two categories: non-rotational and rotational loss (Riveros, et al. 2016). The first category 

can further separated into embedding loss (local plastic deformation on the molecular 

scale), creep in gaskets (Nassar and Alkelani 2005; Nechache and Bouzid 2007; Alkelani, 

Housari, and Nassar 2008) or surface coatings (Yang Jun and DeWolf John T. 1999; Nah 

et al. 2012; Nah, Lee, and Choi 2014), stress relaxation (Tendo, Yamada, and Shimura 

2000), thermal expansion (Sears and King 2004), wear of the threads or the clamped parts 

(Mingyuan Zhang et al. 2018; Ibrahim and Pettit 2005), and yielding caused by loading. 

Since the focus of this research is on the loss of tension caused by rotational loosening, 

non-rotational loosening will not be considered further in this thesis. The second category 

concerns the loss of preload that arises when the threads experience large relative 

rotations resulting in a release of the elastic energy stored in the joint. Moreover, this 

category is the most concerning as it can result in sudden and catastrophic failures during 

operation, and is widely recognized as one of the worst failure mechanism across many 

industries (Riveros, Mahmoud, and Rodriguez Lopez 2016).  

Although loosening has been studied since the industrial revolution, our current 

understanding has only evolved over the past five decades. This understanding began 

with the seminal work by Junker (Junker 1969; 1972) where he showed that transverse 

motion, not axial motion, is the primary cause of rotational loosening in bolted joints. His 
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machine has since become the standard equipment for testing the self-loosening behavior 

of a single bolt ( Junker 2008) However, because the machine applies the loading directly 

to the joint and does not mimic the dynamical behavior of the actual structure where the 

bolt will be used, the resulting measurements may not represent the actual behavior of the 

bolt during operation (Dominik 2015; Pichoff, Kummel, and Schiff 2018; Schiff 2019). 

The rotational loss of preload is dynamic and may occur over fractions of a second in the 

case of extreme shock loading (Foley et al. 2010; Dodson et al. 2012; 2014) or over 

relatively long periods of sustained vibrations (Junker 1969; 1972; Pai and Hess 2002a; 

Dinger and Friedrich 2011; Yokoyama et al. 2012). Note that the time periods considered 

in the latter case are still significantly shorter than those observed in non-rotational 

loosening. In his seminal works (Junker 1969; 1972), Junker demonstrated that the 

primary mechanism for rotational loosening was a sufficiently high shear force to induce 

slip of the bolt head. Further studies by Pai and Hess (2002a) demonstrated that loosening 

can occur even if the shear force is not large enough to cause the bolt head to slip. In this 

case, they determined that the loss of preload resulted from localized slip between the 

threads of the joint in addition to slip of the bolt head. Significant work was performed by 

Hess and his students (Hess and Davis 1996; Hess 1996; Hess and Sudhirkashyap 1997; 

Basava and Hess 1998) to investigate the effects of axial vibration on joint loosening and 

he introduced a reduced-order model (ROM) for axial joint loosening in his work (Hess 

and Sudhirkashyap 1997). This ROM is limited in that it assumes Coulomb friction and 

neglects transverse and bending motion of the bolt and effects of multiple threads. 

Additionally, the relative displacement across the joint is assumed to be a simple sinusoid 

with a constant frequency. Nassar and Housari (2005; 2006; 2007) introduced a 
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mathematical model and an accompanying experimental procedure to analytically model 

the loosening of a threaded joint subjected to transverse vibration. This work was later 

improved by Nassar and Yang (2009), who introduced integral equations for the cyclic 

shear forces and the bearing and thread friction torque components. Other approaches 

include investigations into the effects of interfacial pressure distributions on loosening, 

such as the work by Marshall, et al. (2010). 

2.2 Current Modeling & Simulation  

Dynamic modeling and prediction of self-loosening has only arisen in the past 

three decades through analytical methods and numerical studies using high-fidelity finite 

element models. On the analytical front, Hess and his students constructed a reduced-

order model for the self-loosening under axial vibration by modeling the bolt threads as a 

free mass trapped between two inclines [45–48](Hess and Davis 1996; Hess 1996). The 

model was extended in (Hess and Sudhirkashyap 1996; 1997) to represent the dynamics 

of the entire bolt and used to study the effect of the location of a bolted joint in a 

cantilever beam (Rashquinha and Hess 1997). Zadoks and Yu (1997) showed that either 

slip at the threads or the bolt head is necessary for loosening, but neither are sufficient. 

However, they assumed that friction drops to zero once the bolt begins to slip, which has 

been shown to be an invalid assumption (Nassar and Housari 2006; Housari and Nassar 

2007). Nassar and Yang (2007; 2008; 2009; Yang and Nassar 2011a; 2011b; 2013; Yang, 

Nassar, and Wu 2011) derived integral equations for different friction forces in a bolted 

joint and the bolt tension, Nassar and Abboud (2009) derived an improved stiffness for a 

bolted joint, and Yang et al. (2012) incorporated effects of plasticity into their models. 
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Fort et al. (2018; 2019) proposed a new criteria for self-loosening that relates the 

transverse deflection of the bolt to the relative transverse displacement across the joint.  

With the rise of high-speed computing, many researchers have turned to the 

prominent finite element (FE) method for modeling loosening in the threaded joints. The 

effect of the rotation of the nut on bolt loosening was investigated by Shoji and Sawa 

(2005). They found that even if the nut rotates only a small amount each cycle, over 

many cycles, this summation of all rotations ultimately results in the complete loss of 

preload in the bolt.  

Finite element models for studying the loosening of bolted joints typically require 

extremely fine meshes to accurately capture the thread geometry and contact conditions 

and only model an isolated bolted joint. Pai and Hess (2002b) developed one of the first 

FE models (6,126 nodes) and managed to reproduce different loosening motions 

observed experimentally. Jiang et al. (2003) incorporated both elastic and plastic effects, 

but the helical geometry of threads was excluded to simplify the problem. The FE models 

created by Izumi et al. (2007) (23,946 nodes) and by Zhang (22,387 nodes) (2006) 

improved upon these results, but the meshes were not fine enough to study local contact 

states. Dinger and Friedrich (2011) characterized the local slip states in the threads and 

bolt head during self-loosening using an FE model with 82,434 elements. Dinger later 

used a similar model with 167,900 elements to predict screw forming behavior (Dinger 

2015). The effect of rotational and axial excitation have been investigated separately in 

(Yokoyama et al. 2012; J. Liu et al. 2017b) using models around 200,000 nodes. The 

effects of thread wear have also been predicted by Zhang et al. (2018; 2019) with models 

consisting of 80,546 and 432,529 nodes, respectively. Liu et al. (2019) managed to 
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predict the effects of self-loosening in a L-stub connection, but the model required 

458,448 elements to accurately reproduce experimental measurements. Recently, studies 

on anti-loosening performance have been performed using models with around 500,000 

elements in (Noda et al. 2016; Zhu, Hong, and Jiang 2016; Gong, Liu, and Ding 2018; 

Mo et al. 2020; Noda et al. 2020; Gong, Liu, and Ding 2021). Finally, Liu et al. (2021) 

studied the effects of torsional excitation on self-loosening using an FE model consisting 

of 1,385,142 elements. While these works and many others not cited often produce FE 

models capable of reproducing experimental observations, the FE models usually only 

capture the response of a single bolt. The reason is that, due to their geometry, the threads 

of a bolt are notoriously difficult to mesh and typically require extremely small elements, 

often introducing convergence issues in standard FE solvers. When convergence issues 

do not arise, the extremely low size of the elements results in a significant number of 

degrees-of-freedoms and, as a result, the simulations take considerable time. 

Consequently, high-fidelity simulations of bolt loosening in entire structures, which may 

possess dozens if not hundreds or thousands of joints, is simply not possible with current 

computing speeds.  

Dynamic modeling and prediction of self-loosening has only arisen in the past 

three decades through analytical methods and numerical studies using high-fidelity finite 

element models. On the analytical front, Hess and his students constructed a reduced-

order model for the self-loosening under axial vibration by modeling the bolt threads as a 

free mass trapped between two inclines (Hess and Davis 1996; Hess 1996). The model 

was extended in (Hess and Sudhirkashyap 1996; 1997) to represent the dynamics of the 

entire bolt and used to study the effect of the location of a bolted joint in a cantilever 
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beam (Rashquinha and Hess 1997). Zadoks and Yu (1997) showed that either slip at the 

threads or the bolt head is necessary for loosening, but neither are sufficient. However, 

they assumed that friction drops to zero once the bolt begins to slip, which has been 

shown to be an invalid assumption (Nassar and Housari 2006; Housari and Nassar 2007). 

Nassar and Yang (2007; 2008; 2009; Yang and Nassar 2011a; 2011b; 2013; Yang, 

Nassar, and Wu 2011) derived integral equations for different friction forces in a bolted 

joint and the bolt tension, Nassar and Abboud (2009) derived an improved stiffness for a 

bolted joint, and Yang et al. (2012) incorporated effects of plasticity into their models. 

Fort et al. (2018; 2019) proposed a new criteria for self-loosening that relates the 

transverse deflection of the bolt to the relative transverse displacement across the joint.  

2.3 Background of the Proposed Modeling Approach 

Given the cost of existing modeling methods, there is a need for reduced-order models 

(ROMs) that reproduce the dominant structural and dynamical effects of loosening joints 

at a fraction of the computational cost. This research develops a phenomenological ROM 

for the mechanics of loosening in bolted joints subjected to axial shock excitation. 

Specifically, the model introduces a mathematical relationship between the stiffness and 

torque of the joint and treats the torque as a new, dynamic internal variable governed by a 

first-order, ordinary differential equation. The model is applied to model the loosening of 

a threaded joint in a split-Hopkinson pressure bar (SHPB) (Hopkinson 1914; Kolsky 

1949; Gray 2000; Chen and Song 2011) previously studied in (Moore et al. 2017) and 

others in (Foley et al. 2010; Dodson et al. 2012; 2014). In (Moore et al. 2017), the 

interface was modeled using an adjusted-Iwan element (Song et al. 2004), which 



10 
 

introduces a hysteric stiffness-displacement relationship to account for micro- and macro-

slip of the joint and, consequently, incorporates nonlinear damping affects arising from 

friction. While this model was shown to reproduce the early-time response (i.e., before 

loosening occurs in the joint), it is unable to reproduce the loss of stiffness that arises 

during loosening of the joint at later times. As such, a primary goal of the present work is 

to reproduce the long-term dynamic response resulting from the loosening of the threaded 

joint. 
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CHAPTER 3-MODELING APPROACHES 

3.1. Experimental Measurements and Results 

3.1.1. Experimental Setup 

This work considers the experimentally measured strain response of a split-Hopkinson 

pressure bar composed of two hardened AISI 1566 steel rods connected by a threaded 

interface (a representative schematic is presented in Figure 3.1) as discussed by (Dodson 

et al. 2014; Moore et al. 2017). The nominal material properties of the rods are 𝜌 =

7800 kg/m3, 𝐸 = 210 GPa, and 𝜈 = 0.29, and the length and diameter of each rod are 

1.22 m and 0.038 m, respectively. The incident and transmission rods were machined 

with 1”-8 UNC male and female threads, respectively. Prior to the experimental 

measurements, the threaded interface is tightened using a DMC handle-less strap wrench 

(model BT-BS-618WT) and the resulting torque is measured 0.051 m from the interface 

using a Multitorq digital torque transducer (model 2503-F-MT) produced by CDI Torque 

Products. Following the tightening of the joint, a 0.152 m long striker is fired by a gas 

gun into the free end of the incident rod. The resulting impact introduces a transient stress 

wave into the incident rod, which propagates linearly through the incident rod until it is 

scattered nonlinearly by the threaded interface. The resulting strain waves were measured 

using semiconductor strain gages placed at two locations before (locations A and B) and 

two after the interface (C and D) and the analog measurements were conditioned using a 

Precision Filter 28000 chassis with a 28144A Quad-Channel Wideband Transducer 

Conditioner. The analog data were digitized using a National Instruments chassis and 

PXI-6133 multifunction input/output cards at a sampling rate of 2.5 MHz for a duration 
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of approximately 0.07s. Note that the strain gages were measured individually (without a 

Wheatstone bridge) and bending cancellation normally accomplished using a Wheatstone 

bridge (Chen and Song 2011) is performed during post-processing after the measurement. 

Following the measurement of the strain waves, the remaining torque in the interface was 

measured using the same torque transducer used to measure the torque prior to the striker 

impact. Additionally, the rotation of the joint was determined using a rotation index as 

shown in Figure 2. Further details of the experimental measurements can be found in 

(Dodson et al. 2014; Moore et al. 2017). 

 

 

Figure 3.1 Schematic of the SHPB experiments showing the layout of the sensors and 

details of the threaded interface. Low-friction linear bearings support the system and both 

ends are free to move (modified with permission from (Dodson et al. 2014)). 

 

3.1.2. Experiment Results 

The response of the system was measured for combinations of five torque preloads (13.6, 

30.5, 33.9, 41.5, and 54 Nm) and three impact velocities (7, 10.8, and 13.5 m/s). At each  
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Figure 3.2 Longitudinal strain measurements, wavelet transform, and FFT at location C 

for torque preload of 54 Nm and impact velocities of (a) 7 m/s and (b) 13.5 m/s. 

preload, at least three measurements were taken for each of the impact velocities, except 

for the case of a preload of 54 Nm and impact velocity of 13.5 m/s where just one 

measurement was realized due to the physical failure of the torque wrench. As discussed 

in (Moore et al. 2017), the response of the system is divided into three regimes based on 

the stored elastic energy in the joint (which corresponds to the input torque). First, at low 

torque, the joint is relatively loose, the coupling is weak, and the system behaves as if the 

two rods are not coupled at all. Second, for high torque, the joint acts as a rigid coupling 

between the two rods and the system behaves approximately as a single, linear rod. 

Finally, a strongly nonlinear transition regime connects the low- and high-torque regimes 

and all experiments discussed in this work measured the response of the system in this 

Stage A Stage B Stage C

Stage A Stage B Stage C

(a) (b)
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regime. The reader is referred to (Moore et al. 2017) for further details regarding these 

regimes. 

 

 

Figure 3.3 Dispersion-corrected incident pulse for impact velocities of (a) 7 m/s, (b) 10.8 

m/s, and (c) 13.5 m/s. The black, red, and blue curves correspond to the experimentally 

measured pulses, the corrected pulses, and the difference of the experimentally measured 

pulses and the corrected pulses, respectively. 

 

Due to the nonlinearity introduced by the joint, the response of the system not 

only depends on the stored elastic energy in the joint (i.e., the instantaneous torque), but 

also the type and amplitude of the excitation. More precisely, the dynamics are dependent 

on the total mechanical energy in the system and the energy content introduced by the 

excitation plays a vital role in the response of the system. To illustrate this dependence, 

Figure 3.2 compares the measured response of location C for a preload torque of 54 Nm 

and impact velocities of (a) 7 m/s and (b) 13.5 m/s. Comparing the time series of the two 

cases reveals a significant difference in dissipation rates and overall pattern of the 

response. Moreover, the increased dissipation in the second case (13.5 m/s) cannot be 

attributed to viscous damping alone and, thus, must arise from the loosening of the joint. 

Looking at the wavelet transform (WT) spectra, we find a drastic difference in the 
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harmonic content governing each of the responses (where lighter and darker shading 

correspond to low and high energy content, respectively). The WT of the first cast reveals 

that the response is primarily linear (at least up to 8 kHz) and this is confirmed by the fast 

Fourier transform (FFT) below the WT. In contrast, the WT (and the corresponding FFT) 

of the second case, show that the odd harmonics change significantly throughout the 

measurement, either abruptly exiting the dynamics or undergoing a significant reduction 

in frequency before exiting the response. Additionally, we find that the even harmonics 

are unaffected throughout the entire response, which implies that the joint only affects the 

odd harmonics. This is due to the geometry of the system; specifically, that the two rods 

are identical except for the threads. These effects can only be attributed to the significant 

nonlinearity introduced by the loosening of the joint. Except for a torque preload of 54 

Nm and impact velocity of 7 m/s, the results of the second are reproduced in all other 

configurations of the system studied in this work.  Furthermore, the response depicted in 

Figure 2(b) is divided into three different stages representing tight, loosening, and fully 

loose states of the joint. The reader is referred to (Moore et al. 2017) for further 

discussion of these stages. 

Finally, the torsional motion induced by the loosening of the joint and the applied 

excitations were not measured in the original study. Since significant loosening and 

rotation was observed in the joint, there must be a conversion of axial waves to torsional 

waves. As pointed out by a reviewer of this work, the torsional waves must reverberate 

back and forth in an undoubtedly complex manner and could potentially contribute to the 

loosening of the joint. Moreover, it is hypothesized that the torsional waves interact 

parasitically with the axial waves; that is, the some of the energy carried by the axial 
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waves is irreversibly transformed into torsional waves. As such, the torsional waves 

represent an additional source of energy loss for the axial motion that is not accounted for 

in this work directly. However, this additional loss is approximately accounted for by the 

estimation of the linear damping parameters (which are likely  overestimated due 

excluding this phenomenon). To investigate this hypothesis and the effects of torsional 

waves, future measurements of the torsional motion are necessary for this system or a 

similar one. The applied excitations are estimated from the incident pulses measured at 

location A. Since some dispersion was observed in the incident stress waves (Moore et al. 

2017) these cannot be used directly as the excitation pulses. Instead, the incident pulses 

are numerically corrected for dispersion by phase-shifting each component of the FFT of 

the incident pulse as described by Gorham in (Gorham 1983). This method requires that 

the propagation velocities be known at each frequency and these were interpolated from 

the table provided by Bancroft in (Bancroft 1941). The representative incident pulse for 

each impact velocity are presented in Figure 3.3 (reproduced with permission from 

(Moore et al. 2017)), which shows that, after numerical correction, the incident pulses are 

approximately square. Thus, the numerically corrected impulses are representative of the 

actual impulses and will be used as inputs to the models of the system. 

 

3.2.  Finite Element Model 

3.2.1.  Linear Finite Element Model Identification 

The rods are assumed to be continuous, homogeneous, and uniform with density of 𝜌 =

7800 kg/m3 and elastic modulus of 𝐸 = 210 GPa. Each rod is modeled by discretizing 
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the linear, one-dimensional wave equation using the finite element (FE) method with 150 

nodes, resulting in a total of 300 degrees of freedom. The resulting FE models for each 

rod (identical due to geometry and material) are coupled at the interface nodes using a 

linear elastic spring (to be replaced by the proposed model later). The stiffness of the 

spring corresponds to the initial stiffness of the joint. The initial stiffnesses of the joint 

were determined in (Moore et al. 2017) by matching the natural frequencies of the FE 

model with those measured experimentally in the early time response (before loosening 

occurs in the joint). This identification was accomplished by minimizing the error norm 

𝜀𝑘 =
1

6
∑

1

2𝑛 + 1
|
𝜔2𝑛+1

𝑒𝑥𝑝 − 𝜔2𝑛+1
𝐹𝐸

𝜔2𝑛+1
𝑒𝑥𝑝 | ,

6

𝑛=1

(3.1) 

using the patternsearch algorithm from the Global Optimization Toolbox for  

MATLAB® version 2020a.. The error norm considers only the first six odd modes and 

is weighted such that the lower modes take precedence over the higher ones. Only the 

odd modes are considered because the even ones are entirely unaffected by the coupling 

between the two rods. Furthermore, the rigid-body mode that results from the free-free 

boundary conditions used in the FE model is neglected in the minimization as the joint 

stiffness has no effect on it and it does not appear in the strain measurements (as 

expected). The initial guess for the stiffness was set to  N/m, which is 10% of 

the stiffness of the interface region if it were a solid connection instead of a jointed 

connection. The default tolerances for patternsearch were used except for the mesh 

tolerance, which was set to 10-6 The resulting stiffnesses are independent of the excitation 

velocity (as expected) and are listed Table 3.1 for the five torque preloads considered. 

e
k

9.098´108
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Table 3.1 The identified interface stiffnesses for the five torque preloads measured 

Torque Preload 

[Nm] 

Identified Stiffness 

[GN/m] 

13.6 4.12 

30.5 6.41 

33.9 7.07 

41.5 7.73 

54 8.53 

 

 The linear damping of the rods is modeled as viscous and proportional. While 

numerous methods exist for identifying viscous damping for linear response data (Silva 

1999; Ewins 2000; Kim Saang Bum, Spencer B. F., and Yun Chung-Bang 2005), these 

typically require frequency-response functions constructed from the measured force and 

displacement or acceleration response. Due to the nature of the experiments, the input 

force can only be estimated numerically as described previously; however, no 

displacement or acceleration measurements were captured during the experiments and 

only the measured strains at the four locations are available to identify the linear damping 

of the system. As such, the damping is identified using a time-series optimization 

approach using the 54 Nm and 7 m/s cases (since this case corresponds to primarily linear 

response). First, the damping is assumed to be directly proportional to the mass and 

stiffness matrices of the uncoupled system, such that 

𝐷 = 𝛼𝑀 + 𝑏𝐾, (3.2) 

where 𝐷 is the damping matrix, 𝐾  is the stiffness matrix, 𝑀 is the mass matrix, and 𝑎 

and 𝑏 are the proportionality constants to be determined with units of s-1 and s, 

respectively. The stiffness matrices without coupling are used to avoid introducing a 
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damping term that couples the two rods. Naturally, there must be damping in the joint 

that couples the two rods, but the objective of this work is to capture such effects using 

the proposed model and not the linear viscous damping. The values for  and  are 

identified by maximizing the R-squared value between the measured response and that 

predicted by the FE model simulation. Note that a similar approach was employed in 

(Kurt et al. 2015; Moore et al. 2018; Bunyan et al. 2018) for coupled oscillators. 

Additionally, the optimization is constrained such that the maximum absolute amplitude 

of the last 20% of the predicted response  is at least 80% and no 

more than 120% of the amplitude of the measured response in that same period. This 

constraint is added to prevent the estimated damping from being too large or too small 

(resulting in too much and too little dissipation, respectively). Due to this constraint, the 

objective function is non-smooth and gradient-based approaches cannot be used. Instead, 

the patternsearch algorithm in MATLAB®, which is a direct-search method, is used to 

maximize the R-squared value between the measured and predicted responses. The 

default tolerances are used and the initial guess is set to 𝑎 = 15s-1 and 𝑏 = 10−8 s. The 

optimization routine resulted in 𝑎 = 15.4196 s-1 and 𝑏 = 2.0355 × 10−8 s. 

The accuracy of the identified FE model is verified by comparing the numerically 

predicted response with that measured experimentally. Specifically, Figure 3.4(a) 

presents the comparison for the 54 Nm and 7 m/s case, which was used in the 

identification. The time series show that the FE model prediction agrees well with the 

measured response and that the identified damping model is reasonable. Furthermore, the 

WT spectra also show strong agreements between the model and the experiment. The 

a b

(0.0564 £ t £ 0.0705 s)
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worst agreement occurs in the fifth mode, which indicates that the damping is too low for 

this mode. The strong agreement in the WT spectra is also observed in the corresponding 

FFTs. Overall, the identified FE model is able to reproduce the linear response.  

However, the identified FE model is unable to reproduce the measured response 

whenever significant loosening occurs in the joint. For example, Figure 3.4(b) compares 

the measured response with that predicted by the linear FE model for a torque of 54 Nm 

and an impact velocity of 13.5 m/s. In this case, there is significant disagreement in not 

only the amplitude of the time series (corresponding to incorrect damping), but also in the 

overall pattern of the response (corresponding to the lack of loosening in the model). The 

WT spectra also reveal significant disagreement between the model and the experiment, 

which further highlights the nonlinear effects of the loosening joint. While the resonant 

peaks in the FFT of the predicted response are sharp and distinct, those of the experiment 

are blunt and indistinct. In fact, numerous peaks appear around the linear resonant peaks 

for the odd harmonics, further illustrating the nonlinear effects of the loosening joint. 

 We conclude this section by noting that even though the 54 Nm and 7 m/s case 

behaves linearly in the frequency range studied in Figure 3.4(a), the joint does undergo 

some loosening during the response. Indeed, Dodson et al reported in (Dodson et al. 

2014) that the breaking torque of the joint after the measurement was approximately 20 

Nm, resulting in a loss of around 63% of the initial torque. Despite such a large torque 

loss, the loosening of the ,joint in this case does not affect the first five odd harmonics of 

the response, which permits the identification of the linear FE model discussed 

previously. 
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Figure 3.4 Comparison of the linear FE model with the experimental measurements. 

Specifically, a comparison of the time histories, WT, and FFTs of the longitudinal strain at 

location C for a preload torque of 54 Nm and velocities of (a) 7 m/s and (b) 13.5 m/s. 
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3.3. Modeling of the Bolted Joints 

3.3.1. Proposed Modeling Approach 

In this work, we investigate the loosening mechanics of bolted joints due to axial 

vibrations by considering a system composed of two elastic parts joined by a bolted joint 

and subjected to axial shock excitation. Although the threaded interface introduces both 

nonlinear stiffness and damping effects, the focus of this research is on a reduced-order 

model for the loss of stiffness that occurs as the joint loosens. As such, any nonlinear 

damping effects that arise due to sliding or slip of the threads in the joint are neglected 

and left open for future research. With this in mind, we consider the system presented in 

Figure 3.5 where the threaded interface is represented by a nonlinear force that depends 

on the relative displacement across the interface, 𝑧(𝑡), which is defined as  

 𝑧(𝑡) = 𝑢2(0, 𝑡) − 𝑢1(𝐿, 𝑡). (3.3) 

Since the axial stiffness obviously depends on the torque applied to the bolt, we model 

the interface force using a nonlinear stiffness coefficient that depends on the torque 

multiplied by the relative displacement across the interface.  

A suitable form for 𝑘(𝑇) can be determined based on some physical observations. 

First, if the joint is in a low-torque state then increasing the torque should result in a 

larger increase in stiffness than if the joint is in a high-torque state (i.e., diminishing 

returns). The physical reasoning is that, when the joint is relatively loose, friction is weak 

and the majority of the work done on the joint results in an increase of stiffness. In 

contrast, when the joint is tight, friction is strong, the majority of the work is spent 

overcoming friction, and only a minority actually increases the stiffness of the joint. As 
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such, for any torque-stiffness model to be physically representative of a threaded joint, its 

slope must be large near the origin and small at large torques. Furthermore, there is an 

upper limit that the stiffness of the joint can achieve, and this is equivalent to the axial 

stiffness of a solid rod of equivalent dimensions and material as the joint, which we 

represent as  The value of depends on the geometry and material of the joint and 

can be calculated using basic linear elasticity theory. In reality, this stiffness is only 

realized if the applied force on the joint is so large that the components cold weld and 

become inseparable. Mathematically, these observations are  

𝑑𝑘

𝑑𝑇
> 0 as 𝑇 → 0, (3.4) 

and 

𝑑𝑘

𝑑𝑇
→ 0 as 𝑇 → 𝑇𝑚, (3.5) 

where 𝑇𝑚 is the maximum possible torque at which the stiffness of the joint is equal to 

the theoretical maximum stiffness, 𝑘𝑎, described previously. Note that for 𝑇 >

𝑇𝑚, 𝑘(𝑇) = 𝑘𝑎. 

 

 

Figure 3.5 The proposed model for the stiffness of the bolted joint 

 

k
a
. k

a
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One model that can capture these observations is  

𝑘(𝑇) = 𝑘𝑎 [1 − (1 − (
𝑇

𝑇𝑚
)

𝛼

)

𝛽

] , (3.6) 

where 𝑘(𝑇𝑚) = 𝑘𝑎 and the dimensionless parameters 𝛼 and 𝛽 control the shape of the 

curve near the origin and 𝑇𝑚 respectively. Taking the first derivative of Equation 3.6 

results in  

𝑑𝑘

𝑑𝑇
=

𝛼𝛽𝑘𝑎

𝑇𝑚
(

𝑇

𝑇𝑚
)

𝛼−1

(1 − (
𝑇

𝑇𝑚
)

𝛼

)

𝛽−1

. (3.7) 

Then for 𝑇 → 0, 

𝑑𝑘

𝑑𝑇
→

𝛼𝛽𝑘𝑎

𝑇𝑚
(

𝑇

𝑇𝑚
)

𝛼−1

, (3.8) 

and if 𝛼 > 1 then 
𝑑𝑘

𝑑𝑇
→ 0. Thus, we require that 𝛼 ≤ 1. For 𝑇 → 𝑇𝑚, 

𝑑𝑘

𝑑𝑇
→

𝛼𝛽𝑘𝑎

𝑇𝑚
(1 − (

𝑇

𝑇𝑚
)

𝛼

)

𝛽−1

. (3.9) 

If 𝛽 < 1then 
𝑑𝑘

𝑑𝑇
→ ∞ and if 𝛽 = 1, then 

𝑑𝑘

𝑑𝑇
→ 𝛼𝑘𝑎𝑇𝑚

−1 ≠ 0. Thus, we find that  

𝛼 ≤ 1 and 𝛽 > 1. (3.10) 

As will be discussed in Section 3.3.2, values for 𝛼, 𝛽, and 𝑇𝑚 can be determined directly 

from experimental measurements of the torque and estimates of the interface stiffness. 

Note that the value of 𝑇𝑚 may be verified experimentally, but this is not possible without 

permanently bonding the interface. 

 Although the initial torque can be measured, under large enough excitation, the 

torque changes dynamically and may experience either a net loosening or net tightening 

effect (Hess and Davis 1996). In the case of net loosening, experiments described in 
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(Kasei 2007) showed that loosening occurs during loading of the joint and tightening 

occurs during unloading, with the loosening dominating the tightening to produce a net 

loss of torque. To reproduce the net loosening effect observed experimentally, the torque 

is modeled using a first-order, homogeneous ordinary differential equation (ODE): 

𝑇̇ + 𝑓(𝑇) = 0. (3.11) 

Note that the ODE governing the torque is homogeneous because there should be no 

external influence operating on it. In other words, no external work is done on the joint to 

increase or decrease the torque. A functional form for 𝑓(𝑇) can be determined by 

recognizing that the torque will only change if there is significant relative motion in the 

interface. Thus, 𝑓(𝑇) must depend on the relative motion of the joint, or 𝑓(𝑇) =

𝑓(𝑇, 𝑧, 𝑧̇), and a simple model that captures this is 

𝑓(𝑇, 𝑧, 𝑧̇) = 𝑞(𝑧, 𝑧̇)𝑇. (3.12) 

Further simplification comes from recognizing that the joint will not rotate when 

subjected to a monotonic tensile load. In such cases, any apparent loosening results from 

permanent plastic deformation of the joint and not rotation. Thus, the author hypothesizes 

that the rate of loss of torque due to rotation is dependent solely on the relative velocity 

of the interface, giving 𝑓(𝑇) = 𝑞(𝑧̇)𝑇 Furthermore, since the model is intended to 

reproduce only a net loosening effect, the rate of loss of torque, 𝑞(𝑧̇), must be 

independent of the sign of the relative velocity. A simple model that satisfies these 

conditions is 

𝑓(𝑇) = 𝛾𝑧̇2𝑇, (3.13) 

where 𝛾 is a constant that scales the rate of loss of torque and the resulting ODE is 
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𝑇̇ + 𝛾𝑧̇2𝑇 = 0, (3.14) 

Equation 3.14 which is a linear, homogeneous, first-order ODE, with the following solution 

𝑇(𝑡) = 𝑇(0) exp [−𝛾 ∫ 𝑧̇2𝑑𝜏
𝑡

0

] , (3.15) 

which implies that could be directly determined from experimental measurements of 

the interface velocity and the instantaneous torque in the joint. 

3.3.2. Identification of Parameters of the Proposed Model 

With the linear FE model identified and validated, we now proceed with the identification 

of the parameters of the proposed model (𝛼, 𝛽, 𝑇𝑚, and 𝛾). We start with the identification 

of 𝛼, 𝛽, and 𝑇𝑚 which correspond to the proposed torque-stiffness relationship 

𝑘(𝑇) = 𝑘𝑎 [1 − (1 − (
𝑇

𝑇𝑚
)

𝛼

)

𝛽

] , (3.16) 

where 𝑇𝑚is the maximum torque possible at which 𝑘(𝑇𝑚) = 𝑘𝑎, 𝑘𝑎 is the maximum 

possible stiffness (i.e., the stiffness of the joint if it were a solid connection instead of 

jointed), and 𝛼 and 𝛽 control the curvature near the origin and 𝑇𝑚, respectively. As 

discussed previously, the identification of these parameters relies on knowing the 

stiffness of the joint prior to loosening and the corresponding torque preload. The 

stiffness for the five preloads considered in this work were identified in (Moore et al. 

2017) (briefly discussed in the previous section) and are provided in Table 3.1. Using 

these values, the unknown parameters governing the torque-stiffness relationship are 

identified by employing a curve-fitting procedure to maximize the R-squared value 

between the data from the experiments and the predicted model. This identification was 

performed using patternsearch with default tolerances except for the mesh tolerance, 

g
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maximum iterations, maximum number of function evaluations, and the termination 

tolerance on the function value, which were set to 10-12, 106, 106, 10-12, and 10-12, 

respectively. The initial guesses, lower bounds, upper bounds, and the identified values 

are presented in Table 3.2.  

 

Table 3.2 The initial guess, lower and upper bounds, and identified values for α, β and Tm 

Parameter Initial Guess Lower Bound Upper Bound  Identified Value 

α 0.5 0 1 0.7635 

β 1.5 1 10 1.9543 

Tm [Nm] 60 54 200 77.418 

 
 

The resulting model is presented in Figure 3.6 and the R-squared value is 0.9999, 

indicating a near perfect agreement between the model and the data. This near perfect 

agreement results from the fact that only five data points are used to identify the model. 

Note that the lower and upper bounds reflect the limitations placed on 𝛼and 𝛽, and that 

the lower bound for 𝑇𝑚 is set to the highest torque preload obtained in the experiments. 

The initial guesses and the upper bounds of 𝛽 and 𝑇𝑚 were chosen arbitrarily. Note that 

one benefit of patternsearch is that it is insensitive to initial guesses so long as the 

tolerances are adjusted to allow patternsearch to explore the entire domain of the 

problem. With the torque-stiffness model identified, the FE model is updated such that 

the interface coupling is entirely governed by the identified model. We will refer to this 

model as the “updated FE model” in the upcoming discussion. 
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Figure 3.6 Comparison of the identified torque-stiffness ROM with the experimentally 

measured torques and identified interface stiffnesses. The upper limit of the axial joint 

stiffness is represented by the dashed, black line. 

 With the first three parameters identified, we now focus on the identification of 𝛾, 

which controls the rate at which torque is lost in the joint. Recall from the discussion in 

Section 3.3.1, that the torque in the joint is modelled using the following first-order ODE 

𝑇̇ + 𝛾𝑧̇2𝑇 = 0, 𝑇(0) = 𝑇0, (3.17) 

where is the relative velocity across the interface and is the torque preload applied to 

the joint. As described in Section 3.3.1, the value of 𝛾 can be directly identified from 

experimental measurement of the torque in the joint and the interface velocity, which can 

prove challenging for a typical bolted joint. For the axial joint studied, a reviewer 

suggested that, at least theoretically, the instantaneous torque and interface velocity could 

be obtained by applying a wave-separation method to the measured time series provided 

that the torsional motion is also measured. However, the torsional motion was not 

T
0
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measured in the original study (Dodson et al. 2014) and, instead, we identify 𝛾 by 

recognizing that complete loosening corresponds to the loss of half of the harmonics 

participating in the response. This loss is captured by the WT of the measured strain 

responses and, more importantly, by the IMA of the WT for the frequency range 

considered in this work. Thus, we identify 𝛾 by employing the procedure described in 

Section 3.2.1, where the R-squared value between the IMA of the WT of the 

experimental measurements is predicted by the updated FE model. Note that this 

procedure numerically integrates the updated FE model and Equation 3.17 for each value 

of 𝛾. Given that 𝛾 is proposed as a scaling constant, it should be a joint-specific property 

that is independent of the impact velocity and the torque preload (this assumption will be 

evaluated in the next section). As such, the identification is performed using only the 

response from the first measurement of a torque preload of 54 Nm and an impact velocity 

of 10.8 m/s. Again, patternsearch was employed to perform the identification and default 

tolerances were used. The initial guess, lower bound, and upper bound were set to 2,400 , 

0, and 104 s/m2, which were determined based on initial simulations of the updated FE 

model. The procedure resulted in an identified value of 𝛾 = 2,695.2 s/m2 and a 

corresponding R-squared value of 0.9453, indicating a strong agreement between the 

model and the experiment. The WT and the corresponding IMA of the measured and 

predicted strain responses at location C are presented in Figures 3.7(a) and (b), 

respectively. Figure 3.7(c) presents a comparison of the IMA of the WT of the measured 

and predicted strain responses at location C. The strong agreement observed in the WTs 

and the IMAs verifies the accuracy of the procedures employed to identify the unknown 
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parameters of the proposed model for the joint. We will refer to the final model, 

containing the linear FE model and the identified proposed model, as the “identified 

model” from here on. 

 

Figure 3.7 The WT of the strain at location C and the corresponding IMA for (a) the 

experiment and (b) the identified model. (c) Comparison of the IMA of the WT for the 

experiment and identified model. 
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3.4. Model Validation 

To validate the identified model for the joint, we focus on comparing the numerical 

predictions with the experimental measurements for multiple torque preloads and impact 

velocities. First, we consider the case of 54 Nm torque preload and 10.8 m/s impact 

velocity (the case used for the identification of 𝛾) and plot the measured and predicted 

time series, WTs, and FFTs of the strain response at location C in Figure 3.8. The 

comparison of the time series shows that both the dissipation and overall pattern of the 

measured response is reproduced by the identified model. This agreement indicates that 

the proposed model does capture the dominant effects of the loosening joint including 

both the loss of stiffness and additional dissipation. The comparison of the WTs shows 

further agreement between the experiment and the model. In particular, we note that the 

odd harmonics exit the predicted response at a similar time as they do in the experimental 

response. Moreover, the first four even harmonics persist throughout the entire response, 

which indicates that the proposed model does not influence them and that the identified 

damping is reasonable. Note that both of the WTs are normalized such that they appear 

on the same scale from 0 to 1, which was accomplished by dividing the amplitudes of 

both WTs by the largest amplitude between the two. Overall agreement is observed in the 

comparison of the FFTs; however, the predicted FFT deviates from the experiment FFT 

below the first odd harmonic. This disagreement occurs because the proposed model 

completely decouples the two rods when the torque is equal to zero (i.e., the interface 

stiffness is exactly zero when the torque is zero in the model). Naturally, there must be 

some weak, but non-zero, coupling between the two rods when the torque is zero in the 
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experimental system, which arises from the contact between the threads. The additional 

stiffness corresponding to zero torque in the joint is not considered in this work. The 

instantaneous torque in the joint predicted by the model is presented as the dark gray 

curve in Figure 3.9(a), and we find that the predicted torque rapidly decreases and 

appears to reach zero torque at approximately 0.022s. However, the torque appears to 

reach zero at this time due to the linear scale of the figure. Plotting the instantaneous 

torque on a logscale (the dark gray curve in Figure 3.9(b)) reveals that the torque 

continues to decay well past 0.022 s. For reference, when the torque in the joint is 0.1 

Nm, the predicted stiffness of the joint is  N/m, which is large enough that the 

odd harmonics still participate in the response.  

 

 

Figure 3.8 Comparison of the time series, WT spectra, and FFTs of measured and 

predicted strain responses at location C for impact velocity of 10.8 m/s and torque 

preload 54 Nm 

1.1´108
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While the previous comparison does validate the identified model, a stronger 

validation comes from applying the identified model to measurement cases not used in 

the identification of the joint parameters. First, we consider the case of a torque preload 

of 54 Nm and an impact velocity of 7 m/s, which was the case used to identify the linear 

viscous damping model for the rods earlier. Since this response was reproduced by the 

linear FE model, the resulting prediction from the identified model should also be linear 

and not deviate strongly from the predictions of the linear FE model. Figure 3.10 presents 

the time series, WTs, and FFTs for the responses measured experimentally and predicted 

numerically using the identified model. Comparison of the time series show strong 

agreement between the numerical prediction and the measured response in both the 

pattern of the response and the dissipation. This agreement is reflected in the WTs where 

none of the odd harmonics except the eleventh exit the response before the final 

measurement time. Finally, the FFTs also show agreement between the measured and 

predicted responses, and both responses appear linear below 9000 Hz. This indicates that 

either no loosening occurs in the joint at this torque preload and impact velocity or the 

loss of torque induced by loosening is too low to affect the lower harmonics of the 

system. Indeed, looking at the instantaneous torque predicted by the model (depicted as 

the black curves in Figures 3.9(a) and (b)), we find that the joint does indeed loosen, but 

total loss of torque is not realized as in the previous case (the dark gray curves in Figures 

3.9(a) and (b)). Instead, the torque decays gradually throughout the response and 

approaches a constant level indicating the end of loosening in the joint. Overall, the 

identified model predicts that 61.1% of the initial torque preload is lost (approximately 33 
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Nm), which agrees well with the experimentally observed loss of 63% of the initial 

torque preload (approximately 34 Nm) (Dodson et al. 2014). The predicted loss of torque 

was determined by simulating the identified model for 0.5 s and the strain predictions 

from this simulation are omitted for brevity.  

 

Figure 3.9 Comparison of the predicted instantaneous torques for a torque preload of 54 

Nm plotted on (a) linear scale and (b) logscale. 

 

 As a second validation, we consider the case of a preload torque of 54 Nm and an 

impact velocity of 13.5 m/s, the highest impact velocity studied and the resulting time 

series, WTs, and FFTs are presented in Figure 3.11. From the comparison of the time 

series, we see that the identified model is able to capture the overall pattern and 

dissipation of the response. However, there is some small disagreement in amplitude 

between 0.01 and 0.02 s, which hints that the model slightly overpredicts the rate of 

loosening of the joint. This disagreement indicates that 𝛾 is a little too large for this 

specific measurement case, which hints that the assumption that 𝛾 is independent of the 

impact velocity is incorrect. Nevertheless, the strong correlation between the model and 
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the experiment implies that the proposed model serves as a suitable as a reduced-order 

model for the mechanics of loosening axial joints. Another disagreement appears in the 

amplitude of the predicted response towards the end of the response. Specifically, the 

predicated amplitude is larger than that of the experimentally measured response, which 

points to a disagreement between the dissipation in the identified and actual systems. This 

disagreement is expected because the proposed model does not incorporate any frictional 

effects and, thus, does not account for all sources of dissipation. However, the strong 

agreement in the overall pattern of the response indicates that the majority of the 

dissipation is captured using linear viscous damping and the identified model for the joint 

stiffness. Note that, since the loss of stiffness is dynamic and occurs when the 

displacement across the interface is non-zero, it is hysteretic and introduces additional 

dissipation into the model. Thus, the strong agreement between the time series indicates 

that the proposed model captures the majority of the energy dissipated by the joint. 

Comparison of the WTs shows that, despite predicting that complete loss of stiffness 

occurs at a slightly earlier time than in the experiment, the identified model reproduces 

the dominant effects of loosening in the joint. The agreement is also observed in the FFTs 

except for the frequency content below the first harmonic, but, as explained earlier, the 

model is not intended to capture the stiffness introduced by loose contact of the threads in 

the joint. The resulting instantaneous torque predicted by the model is depicted as the 

light gray curves in Figures 3.9(a) and (b), which shows the rapid loss of torque that 

occurs compared to the other two cases considered. 
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Figure 3.10 Comparison of the time series, WT spectra, and FFTs of measured and 

predicted strain responses at location C for impact velocity of 7 m/s and torque preload 

54 Nm 

 

To investigate the assumption that 𝛾 is independent of the initial torque preload, 

we apply the identified model to predict the strain response at a location C for an impact 

velocity of 10.8 m/s and torque preloads of 14 Nm and 34 Nm. The predicted and 

measured time series, WT spectra, and FFTs are presented for torque preloads of 14 Nm 

and 34 Nm in Figures 3.12(a) and (b), respectively. Comparing the responses for a torque 

preload of 14 Nm, we find that the identified model reproduces the overall pattern and 

dissipation profile of the measured response. However, there is some difference at early 

times, which indicates that there is a disagreement between the model and experiment in 

rate of loosening in the joint. Indeed, comparing the WT spectra, the loosening of the 

joint occurs more rapidly in the identified system than in the actual system. Comparison 
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of the responses for the 34 Nm case show that the rate of joint loosening is also slightly 

higher in the model than in the experiment, but the overall response is reproduced by the 

identified model. Based on the observations of these two cases, we conclude that the 

assumption that is independent (or at most weakly dependent) of the torque preload and 

that the identified model is suitable for predicting the response of the system at torque 

preloads and impact velocities that are not directly used in the identification. 

 

 

Figure 3.11 Comparison of the time series, WT spectra, and FFTs of measured and 

predicted strain responses at location C for impact velocity of 13.5 m/s and torque 

preload 54 Nm 

g
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Figure 3.12 Comparison of the time series, WT spectra, and FFTs of measured and 

predicted strain responses at location C for impact velocity of 10.8 m/s and torque 

preloads of (a) 14 Nm and (b) 34 Nm 
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CHAPTER 4. DYNAMICS OF A MULTI-JOINTED SYSTEM OF 

THREE AXIAL RODS 

This chapter concerns the dynamical behavior of a system composed of three identical 

axial rods coupled together using two axially aligned threaded joints. The theoretical 

system and its governing equations of motion are first presented and discussed followed 

by an investigation of the effect of the torque in each joint on the natural frequencies and 

mode shapes of the assembled system. This is followed by a preliminary investigation of 

the effect of loosening in one joint on the evolution of the other joint before performing a 

thorough analysis of the behavior of the system throughout different regimes based on the 

applied force.  

4.1. The Theoretical System and Computational Model 

The system investigated in this research is composed of three identical axial rods coupled 

together using two axially aligned threaded joints. The system is similar to the system 

studied in Chapter 3, except that a second joint and third rod are added to the previous 

system. A schematic of the system is presented in Figure 4.1 where the dynamics of the 

joints are represented by two nonlinear springs with stiffness that depends on the 

instantaneous torque in their respective joints. The instantaneous displacement of each 

rod is 𝑢𝑖(𝑥, 𝑡), 𝑖 = 1,2,3 and the rods are assumed to have a length of 𝐿 = 1.22 m, 

diameter of 0.038 m resulting in an area of 𝐴 = 0.00113 m2, an elastic modulus of 𝐸 =

210 × 109 Pa, and a density of 𝜌 = 7800 kg/m3. Employing the proposed reduced-order 

modeling approach discussed in Chapter 3, the dynamics of the threaded joints are 

represented using linear springs with torque-dependent stiffness and are defined as  
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𝐾1(𝑇1(𝑧̇1, 𝑡)) = 𝑘𝑎 (1 − (1 − (
𝑇1(𝑧̇1, 𝑡)

𝑇𝑚
)

𝛼

) 𝛽) , (4.1) 

for the first joint and  

𝐾2(𝑇2(𝑧̇2, 𝑡)) = 𝑘𝑎 (1 − (1 − (
𝑇2(𝑧̇2, 𝑡)

𝑇𝑚
)

𝛼

) 𝛽) , (4.2) 

for second joint. Here 𝑇1(𝑧̇1, 𝑡) and 𝑇2(𝑧̇2, 𝑡) are the instantaneous torques in first and 

second joint, respectively, 𝑧1(𝑡) = 𝑢2(0, 𝑡) − 𝑢1(𝐿, 𝑡) is the relative displacement across 

the first and second rods, 𝑧2(𝑡) = 𝑢3(0, 𝑡) − 𝑢2(𝐿, 𝑡) is the relative displacement across 

the second and third rods, 𝛼 = 0.7635, 𝛽 = 1.9543, and 𝑇𝑚 = 77.418 Nm. Note that the 

same model and parameters are used to model the torque-dependent stiffness of each 

joint. Although in practice every joint will differ slightly from another, the focus of this 

research is on how multiple joints can interact with each other through the global 

dynamics of the structure during loosening. Thus, using the same parameters for each 

joint eliminates the possibility that any observed interactions result from differences in 

parameters. 

 

Figure 4.1 Schematic of the theoretical system consisting of three axial rods coupled by 

two axially aligned, threaded joints. The joints are modeled using the proposed reduced-

order model and represented by nonlinear springs with stiffnesses that depend on the 

instantaneous torque in the joint and the relative velocity across the interface.   
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4.2. Spectral Element Model and Convergence Study 

Each rod is modeled using the spectral element method (SEM) (Fichtner 2011) with 10 

elements with Gauss-Labatto-Legendre (GLL) nodes corresponding to a Lagrange 

polynomial of degree 6 (Ampuero 2021). The appropriate number of elements was 

determined using convergence study that compared the behavior of a single rod meshed 

using 5, 10, 20, 50, and 100 elements with 31, 61, 121, 301, and 601 GLL nodes, 

respectively. The convergence study is performed by first comparing the natural 

frequencies of each model, by comparing the velocity response of the rod to an externally 

applied impulsive force, and by comparing the chosen SE model response with that 

predicted by the FE model used in Chapter 3.  

 The first part of the convergence study considers the natural frequencies for each 

model, and these are presented in Table 4.1 for the first 31 modes. The first 31 modes are 

reported because the model with 5 elements has 31 degrees-of-freedom and, thus, only 31 

linear modes of vibration. The model with 100 elements is used as the baseline for 

determining the accuracy of the other models and the relative percent error for the natural 

frequencies of each model is computed as  

𝜀𝑛
𝑚 = 100 (

𝜔𝑛
100 − 𝜔𝑛

𝑚

𝜔𝑛
100 ) %, 𝑛 = 1,2,3, … , (4.3) 

where 𝑚 represents the total number of elements (i.e., 𝑚 = 5,10,20, or 50) for the 𝑛th 

mode. The percent errors are reported in Table 4.1 for only the five- and ten-element 

models because the first 31 natural frequencies of 20- and 50- element models match 

those of the 100-element model exactly.  
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Table 4.1 The natural frequencies of the first 31 modes for the different numbers of 

elements. 

Mode 

No. 

5 Elements 10 Elements 20 50 100 

Nat. Freq. 

[Hz] 

Error 

[%] 

Nat. Freq. 

[Hz] 

Error 

[%] 

Nat. 

Freq. 

[Hz] 

Nat. 

Freq. 

[Hz] 

Nat. 

Freq. 

[Hz] 

1 0 0 0 0 0 0 0 

2 2127.9 0 2127.9 0 2127.9 2127.9 2127.9 

3 4255.9 0 4255.9 0 4255.9 4255.9 4255.9 

4 6383.8 0 6383.8 0 6383.8 6383.8 6383.8 

5 8511.7 0 8511.7 0 8511.7 8511.7 8511.7 

6 10640 0 10640 0 10640 10640 10640 

7 12768 0 12768 0 12768 12768 12768 

8 14896 0 14896 0 14896 14896 14896 

9 17023 0 17023 0 17023 17023 17023 

10 19151 0 19151 0 19151 19151 19151 

11 21271 0.04 21279 0 21279 21279 21279 

12 23405 0.01 23407 0 23407 23407 23407 

13 25527 0.03 25535 0 25535 25535 25535 

14 27641 0.08 27663 0 27663 27663 27663 

15 29725 0.22 29791 0 29791 29791 29791 

16 32347 -1.34 31919 0 31919 31919 31919 

17 33957 0.26 34047 0 34047 34047 34047 

18 35860 0.87 36175 0 36175 36175 36175 

19 37567 1.92 38302 0.00 38303 38303 38303 

20 38848 3.92 40430 0.00 40431 40431 40431 

21 39349 7.54 42543 0.04 42559 42559 42559 

22 48295 -8.07 44684 0.01 44687 44687 44687 

23 49078 -4.84 46809 0.01 46814 46814 46814 

24 49905 -1.97 48933 0.02 48942 48942 48942 

25 50501 1.11 51054 0.03 51070 51070 51070 

26 92060 -73.05 53171 0.05 53198 53198 53198 

27 92124 -66.51 55281 0.08 55326 55326 55326 

28 92292 -60.64 57378 0.13 57454 57454 57454 

29 92496 -55.24 59449 0.22 59582 59582 59582 

30 92659 -50.15 61442 0.43 61710 61710 61710 

31 92721 -45.24 64694 -1.34 63838 63838 63838 
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 The second part of the convergence study is performed by simulating the response 

of the rod to an impulsive force applied to the left boundary for 1 second with a time step 

of Δ𝑡 = 10−6 s. The applied impulsive loading is presented in Figure 4.2. and is 

expressed mathematically as   

𝐹(𝑡) = {
𝑃 sin2 (

𝜋

𝜏
𝑡) 0 ≤ 𝑡 ≤ 𝑇

0 𝑡 > 𝑇
, (4.4) 

where 𝜏 = 7.32 × 10−5 s is the duration of the force and 𝑃 = 160000 N is the amplitude 

of the applied force. The duration of the force is chosen based on the initial pulse 

observed in the experimental measurements in Chapter 3. Due to the linearity of the 

single rod system, only one applied force is considered in this work. The response is 

simulated using the ode45 function in MATLAB® with relative and absolute tolerances of 

10-8 and 10-9, respectively. Due to the tolerances chosen and the fact that ode45 uses a 

variable time step when integrating the response, no study is performed on the effect of 

the time step on the convergence of the model. 

 Since the boundary conditions are free-free, the rod possesses a rigid-body mode, 

which limits the use of the displacement response for determining the suitable number of 

elements. Instead, the velocities of the left and right boundaries are used to identify the 

optimal number of elements for modeling the rods. A comparison of the velocities for the 

1-second simulation is presented in Figures. 4.3(a) and (b) for the left and right 

boundaries, respectively. The comparison shows that the velocities for all five models 

agree well in terms of the overall response; however, greater insight is gained by 

zooming into the response at the beginning of the response, around 0.1 s, and at the end 

of the response. The zoomed-in views at the beginning and around 0.1 seconds are shown  



44 
 

 

Figure 4.2 The impulsive force applied to the left boundary of the rod. 

 

for the left boundary in Figures 4.4(a) and (b), respectively. These views show that in the 

beginning only the five- and ten-element models differ significantly from the other 

models with the 5-element model showing the greatest difference. The difference in the 

early-time response is attributed to the differences in the errors of the higher modes of the 

five- and ten-element models. By 0.1 seconds all of the models have converged to the 

same response with only a small difference observed in the 5-element model. At the end 

of the simulation (1 second), all of the response of all models are the same, indicating 

long-term convergence of the models as shown in Figures 4.5(a) and (b). Based on the 

results of this convergence study, the ten-element model was selected and all results 

following this section are created using this model. Lastly, the ten-element model is 
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compared with the FE model from Chapter 3 for 0.1 seconds in Figure 4.6., which shows 

good agreement between the two models. 

 

 

Figure 4.3 The comparison of the velocities of the (a) left boundary and (b) right boundary 

for the SE models consisting of 5, 10, 20, 50, and 100 elements.  

 

 

 

Figure 4.4 The comparison of the velocity of the left boundary at (a) the beginning of the 

simulation and (b) around 0.1 seconds for the SE models consisting of 5, 10, 20, 50, and 

100 elements. 
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Figure 4.5 The comparison of the velocity at the end of the simulation for (a) the left 

boundary and (b) the right boundary for the SE models consisting of 5, 10, 20, 50, and 

100 elements. 

 

 

Figure 4.6 Comparison of the SE model with the FE model used in Section 3 for the 

applied force depicted in Figure 4.2. for (a) the velocity of the left boundary and (b) the 

velocity of the right boundary. 

 

4.3. Natural Frequency and Mode Shape Transitions for Varying Torques 

Since the stiffness of each joint depends on the corresponding torque, the resulting 

natural frequencies and mode shapes of the assembled system also depend on the torques. 
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Thus, the dynamics of the structure transitions from a fully coupled system to three 

uncoupled rods as the joints loosen. Although these transitions are nonlinear due to the 

model used for the instantaneous torque, at any instant in time the joint can be 

approximated by a linear spring and, thus, the system be modeled using linear modes of 

vibration. Thus, to explore these transitions prior to simulating the actual response of the 

structure, the natural frequencies and mode shapes are computed as the torque in each 

joint varies. Figure 4.7(a) presents the natural frequency transitions as the torque in each 

joint is varied equally and Fig. 4.7(b) presents the transitions for the case where the 

torque in the first joint is fixed at the theoretical maximum torque of 77.42 Nm and the 

torque in the second joint is varied. The natural frequency transitions reveal that the 

dynamics can be  

 

Figure 4.7 Transitions of the natural frequencies of the system as (a) the torque in both 

joints are varied equally and (b) the torque in the first joint is fixed at the theoretical 

maximum torque of 77.42 Nm and the torque in the second joint is varied. 

 

divided into three different regimes: (1) a linear regime at low torque where the rods are 

effectively uncoupled, (2) a transition regime where the natural frequency depends 
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strongly on the torque inside each joint, and (3) a second linear regime at high torque 

where the rods are strongly coupled and act as a single rod of length 3𝐿. In the low-torque 

linear regime, the rods are effectively uncoupled and, thus, each natural frequencies is 

repeated three times such that 𝜔3𝑛+1 = 𝜔3𝑛+2 = 𝜔3𝑛+3 for 𝑛 = 0,1,2, … . As the joints 

are torqued, the natural frequencies 𝜔3𝑛+2 and 𝜔3𝑛+3 increase and transition away from 

𝜔3𝑛+1, which remains unaffected by the change in torque of the joints. Note that if only 

one of the joints is torqued, then only one of the three repeated natural frequencies 

transitions. Finally, in the high torque regime (both joints tightened), all of the natural 

frequencies are distinct and are comparable to the natural frequencies of a solid rod with 

length 3𝐿. Comparing the transitions depicted in Figure 4.7(a) with those in 4.7(b) 

reveals that the transitions depend on the torque in each joint, such that there are an 

infinite number of possible transitions and that the actual transition taken during dynamic 

loosening will depend on the initial torques of each joint.  

Throughout all three regimes, the natural frequency of 3𝑛 + 1 mode remains 

unchanged as the torques of the joints are increased. One might hypothesize that the 

reason the 3𝑛 + 1 mode remains unchanged is because it exhibits a node at each interface 

and, thus, changes in the joints do not alter it. To investigate this hypothesis, the mode 

shape transitions are presented for second through fourth modes in Figures 4.8(a) and (b) 

for the case of equally varied torque in each joint and the case of fixed torque in the first 

joint and the torque in the second joint varied, respectively. The first mode is neglected 

because it is unaffected by the change in torques and is a rigid body mode with amplitude 
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of unity at all positions for all torques. The mode shapes reveal, in both cases, that the 

second and third modes begin as rigid body modes at low torques  

 

Figure 4.8 Transitions of the second, third, and fourth mode shapes as (a) the torques in 

both joints are varied equally and (b) the torque in the second joint is varied while the 

torque in the first joint remains fixed at the theoretical maximum torque of 77.42 Nm.  

 

(a) (b)
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and transition into flexible modes as the torques of the joints is increased. The fourth 

mode corresponds to one of the repeated modes whose natural frequency is not affected 

by changes in the torques. As seen in Figure 4.8, the mode shape of the fourth mode is 

also unaffected by the changes in the torque, but, more importantly, it exhibits anti-nodes 

at the locations of each joint. A deeper investigation revealed that the fourth mode is only 

affected by torques that are less than 10-15 Nm; however, such a torque is not physically 

realistic and are an artifact of the assumptions made in the proposed modeling approach.  

 

4.4. Investigation of the Behavior of the Theoretical System 

To investigate how the two joints interact with each other through the global dynamics of 

the structure, the response to a square pulse is simulated for 0.5 seconds for three sets of 

initial torques: Case 1 – 𝑇1(0) = 𝑇2(0) = 54 Nm; Case 2 – 𝑇1(0) = 54 Nm, 𝑇2 = 27 

Nm; and Case 3 – 𝑇1(0) = 27 Nm, 𝑇2(0) = 54 Nm. The applied square pulse has the 

form of  

𝐹(𝑡) = {
𝑃 0 ≤ 𝑡 ≤ 𝑡𝑓

0 𝑡 > 𝑡𝑓
, (4.5) 

where 𝑃 is the amplitude of the pulse and 𝑡𝑓 is the duration. In the initial set of simulations, 

we consider the behavior of the system for 𝑃 = 120 kN and 𝑡𝑓 = 73.2 𝜇s, which 

corresponds to the duration of the experiments discussed in Chapter 3 and an impact 

velocity of approximately 12 m/s.  

We consider the strain at the center of each rod and plot the time series and 

corresponding wavelet spectra in Figure 4.9 for each set of initial conditions. Note that 

the left and right columns of Figure 4.9 depict the comparison of the strains in the first 
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and second rods and the first and third rods, respectively. Considering Case 1 (i.e., 

𝑇1(0) = 𝑇2(0) = 54 Nm), we find that the strains in each rod are similar for first 0.06 

seconds of the response. However, after 0.06 seconds all of the strains abruptly diverge 

from each other and settle into responses with different amplitude but similar frequency 

content. Specifically, the wavelet spectra for each rod reveal rich responses with many 

different harmonics participating before 0.06 seconds, but afterwards this rich behavior 

transitions into motion at only one or two frequencies. Furthermore, the fifth and sixth 

harmonics clearly decrease in frequency after 0.06 seconds and ultimately merge with the 

fourth harmonics, which mirrors the transitions of the linear natural frequencies discussed 

in the previous section. Thus, the transitions clearly result from the loosening of the 

joints, which will be investigated in detail after the next paragraph. Furthermore, these 

transitions could give rise to strongly nonlinear resonances in the dynamics, and this is 

further suggested by the beating pattern that can be observed between the strains of 

second and third rods around 0.07 seconds. This line of research is not investigated here 

and is left open for future work.  

 Considering the other two cases, the responses of all three rods are similar for the 

first 0.01 seconds, after which they abruptly change. However, unlike Case 1, the 

responses of only two of the rods are similar and are substantially different than the 

response of the remaining rod. Specifically, in Case 2, the responses of the first and 

second rods are comparable (nearly mirror images) after the transition whereas in Case 3 

the strains of the second and third rods are similar. The fact that the strains of the first and 
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second rods are similar in Case 2 and the second and third rods in Case 3 correlates with 

the second and first joints having lower initial torques in each case, respectively. This  

 

 

Figure 4. 9 Comparisons of the strain time series and corresponding wavelet spectra predicted at the 

centers of the rods for initial torques of (a) 𝑇1(0) = 𝑇2(0) = 54 Nm, (b) 𝑇1(0) = 54 Nm, 𝑇2 = 27 Nm, 

and (c) 𝑇1(0) = 27 Nm, 𝑇2(0) = 54 Nm. 
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indicates that, in Case 2, only the second joint loosens completely, such that the 

remaining torque in the first joint is high enough to couple the first and second rods 

together. Likewise, in Case 3, only the first joint loosens completely and the remaining 

torque in the second joint is large enough to couple the second and third rods together for 

the remainder of the response. We investigate these observations in detail in the next 

paragraph, but before doing so we now consider the frequency content as observed in the 

wavelet spectra. Similar to Case 1, the wavelet spectra of each rod reveal rich, multi-

harmonic frequency content before the transition. However, unlike Case 1, only the third 

rod in Case 2 and the first rod in Case 3 transition into motion at only a relatively few 

frequencies. The first and second rods in Case 2 and the second and third rods in Case 3 

transition to a multi-harmonic response at frequencies that correspond to the natural 

frequencies of a two-rod system coupled by a single joint like that studied in Chapter 3. 

These transitions provide further evidence that only the second and first joints loosen 

fully in Cases 2 and 3, respectively, unlike Case 1 where both joints loosen completely.  

 To substantiate the observations made previously, we depict the instantaneous 

torque in each joint for all three cases in Figure 4.10. Considering Case 1 first, the loss of 

torque in each joint is comparable with only a small deviation arising at as the torques 

approach zero. Considering Case 2, the two torques follow a similar trend initially, but 

diverge significantly after the second joint approaches zero. Specifically, the rate of loss 

of torque in the first joint abruptly changes as soon as the second joint loosens 

completely, which prevents the first joint from loosening fully. The remaining torque in 

the first joint at the end of the simulated response is 14.45 Nm, which corresponds to a 
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stiffness of 4.47 × 109 N/m. This confirms the observations made previously that only 

the second joint loosens completely in Case 2. Considering Case 3 now, the instantaneous 

torques in each joint again follow similar trends initially but diverge significantly after 

the first joint loosens completely. Specifically, similar to Case 2, the rate of loss of torque 

of the second joint abruptly changes after the first joint loosens completely, which 

corresponds to a change in the dynamics of the system and prevents the second joint from 

loosening fully. The remaining torque in the second joint at the end of the simulated 

response is 20.19 Nm and the corresponding stiffness is 5.28 × 109 N/m. This confirms 

the observations that only the first joint loosens entirely in Case 3. Interestingly, even 

though Case 3 is effectively the opposite of Case 2, the remaining torque in the second 

joint in Case 3 is higher than that in the first joint in the second case. This suggests that 

the remaining torque in each joint depends on the behavior and loosening of the other 

joint, which forms the basis of the investigation of the next section.  
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Figure 4.10 Comparisons of the instantaneous torque in each joint for the three different 

sets of initial conditions. 
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4.4. Overview of the Effect of the Loosening of One Joint on the Other 

We investigate the effect of the initial torques of one joint on the loosening of the other 

joint by simulating the response of the system to the square pulse given in Eq. 4.5 for 

different forcing amplitudes and different combinations of initial torques. Specifically, 

we simulate the response for 1 second for 10,000 combinations of initial torques by 

considering 100 initial torques for each joint in the range of [14,54] Nm and for forcing 

amplitudes of 𝑃 ∈ [10,1000] kN. The forcing amplitude is considered in increments of 

10 kN from 10 to 100 kN, increments of 5 kN from 100 to 200 kN, increments of 10 kN 

from 200 to 500 kN, and increments of 50 kN from 500 to 1000 kN. Based on the results 

of these simulations, we define the following five regimes of behavior: Regime I: 

Independence, 0 ≤ 𝑃 ≤ 50 kN; Regime II: Weak Dependence, 50 < 𝑃 ≤ 80 kN; 

Regime III: Strong Dependence, 80 < 𝑃 ≤ 120 kN; Regime IV: Bands of mitigation, 

120 < 𝑃 ≤ 380 kN; and Regime V: Complete Rapid Loosening of the First Joint, 𝑃 >

380 kN. Note that forcing ranges reported for each regime represent the general range of 

forces as the transitions from one regime to another are smooth and do not correspond to 

a discrete forcing value. These results are discussed in detail for each regime separately 

in the coming subsections. 

4.5. Regime I: Independence, 𝟎 ≤ 𝑷 ≤ 𝟓𝟎 kN 

To investigate the first regime, we depict the remaining torque in each joint after 1 

second of response in Figures 4.11(a) and (b) for forces of 20 kN and 50 kN, 

respectively. Considering both cases simultaneously, we find that the remaining torque in 

the first joint is characterized by vertical bands of constant torque, which indicates that 
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the loosening of the first joint is independent of the initial torque in the second joint. The 

remaining torque in the second is exhibits similar behavior with horizontal bands of 

constant torque indicating that the loosening of the second joint is independent of the 

initial torque in the first joint. Moreover, the remaining torque in one joint is the mirror 

image of the other joint, which implies that the evolution of each joint is unaffected by 

changes in the global dynamics of the structure resulting from the loss of stiffness. Note 

that in this work we have assumed that as the force decreases, the loss of torque in each 

joint also decreases and no dependence will arise between the joints at forces lower than 

20 kN. However, if other regimes do exist, then these are likely to be overshadowed by a 

minimal loss of torque in each joint, such that the dependence may not be important from 

a design perspective for single shock loading events. Considering now Table 4.2 for the 

case where 𝑇1(0) = 41.88 Nm and 𝑇2(0) is varied, we find that the remaining torques in 

the first joint, 𝑇1(1), is equal to 40.18 for all three initial torques chosen for the second 

joint. Likewise, considering Table 4.2 for the case where 𝑇2(0) = 41.88 Nm and 𝑇1(0) is 

varied, the remaining torques in the second joint, 𝑇2(1), are all close to 40.20 Nm. Thus, 

the remaining torques in each case confirm that the two joints behave independently of 

each other in this regime.  
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Figure 4.11 The remaining torques in each joint for excitation forces of (a) 20 kN and (b) 

50 kN, corresponding to inside and the upper limit of Regime I: Independence, 

respectively. 

Table 4.2 The remaining torques in each joint for cases where the initial torque in one 

joint is fixed and the other varies for Regime I. 

Case 𝑇1(0) [Nm] 𝑇2(0) [Nm] 𝑇1(1) [Nm] 𝑇2(1) [Nm] 

Torque in 

Joint 1 

Fixed 

41.88 49.96 40.18 48.22 

41.88 35.82 40.18 34.17 

41.88 21.68 40.18 19.97 

Torque in 

Joint 2 

Fixed 

49.96 41.88 48.19 40.20 

35.82 41.88 34.15 40.21 

21.68 41.88 19.97 40.24 
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4.6. Regime II: Weak Dependence, 𝟓𝟎 < 𝑷 ≤ 𝟖𝟎 kN  

To investigate the second regime, we depict the remaining torque in each joint for 

excitation forces of 55 kN and 80 kN in Figures 4.12(a) and (b), respectively. 

Considering the case of 55 kN first, which is near the lower limit of this regime, we find 

that the remaining torque in the first and second joints are primarily characterized by 

vertical and horizontal bands just as in the previous regime, which indicates 

independence. However, when both joints have initial torques below 20 Nm, 

corresponding to the bottom left corner of each plot, the remaining torque of one joint 

shows weak dependence on the initial torque of the other one. As mention previously, the 

transitions between each regime are smooth and cannot be attributed to a discrete value of 

excitation force, such that the case of 55 kN could be considered either weak dependence 

or independent. However, from a design perspective, the 55 kN case could be treated as 

independent without much consequence for single shock loading conditions.  

 Considering now the case of 80 kN, we find that when the initial torque of one 

joint is less than or equal to 31 Nm, its remaining torque is dependent on the initial torque 

in the other joint. When the initial torques of both joints are above 31 Nm, then the 

remaining torque of one joint is weakly dependent on the other one. Thus, this regime can 

be separated into initial conditions where the evolution of the joints depend on each other 

and initial conditions where their evolutions are independent of each other. To illustrate 

this point further, consider the cases presented in Table 4.3 where 𝑇1(0) = 41.88 Nm and 

three different initial torques in the second joint: 𝑇2(0) = 49.96 Nm, 𝑇2(0) = 35.82 Nm, 

and 𝑇2(0) = 21.67 Nm. These initial conditions result in the following remaining torques  
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in the first joint: 𝑇1(1) = 14.86; 𝑇1(1) = 15.17 Nm; and 𝑇1(0) = 20.39 Nm. For the 

two cases where 𝑇2(0) > 31 Nm, the remaining torques in the first joint are comparable 

indicating a weak dependence on the initial torque in the second joint. However, for the 

case where 𝑇2(0) < 31 Nm, the remaining torque in the first joint is about 33% larger 

 

Figure 4.12 The remaining torques in each joint for excitation forces of (a) 55 kN and (b) 

80 kN, near the lower limit and at the upper limit of Regime II: Weak Dependence, 

respectively. 
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than the other two cases even though the initial torque is the same in all three cases. 

Considering the data in Table 4.3where 𝑇2(0) is fixed at 41.88 Nm and 𝑇1(0) is varied at 

the same values as 𝑇2(0) in the previous case, we find that the remaining torques in the 

second joint are 15.17, 15.65, and 22.06 Nm, which illustrates a similar behavior as that 

observed for the first joint in Table 4.3. Thus, this analysis demonstrates that the 

evolution of one joint depends on the initial torque in the other joint.  

 

Table 4.3 The remaining torques in each joint for cases where the initial torque in one 

joint is fixed and the other varies for Regime II. 

Case 𝑇1(0) [Nm] 𝑇2(0) [Nm] 𝑇1(1) [Nm] 𝑇2(1) [Nm] 

Torque in 

Joint 1 

Fixed 

41.88 49.96 14.86 23.53 

41.88 35.82 15.17 8.321 

41.88 21.67 20.39 0 

Torque in 

Joint 2 

Fixed 

49.96 41.88 23.10 15.17 

35.82 41.88 7.967 15.65 

21.68 41.88 0 22.06 

 

4.7. Regime III: Strong Dependence, 𝟖𝟎 < 𝑷 ≤ 𝟏𝟐𝟎 kN   

We investigate the third regime by depicting the remaining torque for forces of 80 kN 

and 120 kN in Figure 4.13(a) and (b), respectively. Considering first the case of 90 kN, 

we find that the remaining torques are comparable to those from the 80 kN case, except 

that now the joints exhibit only weak dependence when they start with an initial torque of 

40 Nm or greater. Thus, the joints are dependent on each other for the majority of the 

initial torques selected in this study (which correspond to the range of torques 

investigated in previous experiments as discussed in Chapter 3). Interestingly, the 

maximum remaining torque in either joint occurs when that joint starts with an initial 



62 
 

torque of 54 Nm and the other one starts with an initial torque of 14 Nm. Moreover, when 

both joints begin with initial torques of 54 Nm, they both loosen to around 19 Nm of 

torque (specifically, 𝑇1(1) = 19.10 Nm and 𝑇2(1) = 19.56 Nm). Thus, when the initial 

torques in both joints are relatively large, the system will not completely loosen and 

remains coupled although at lower stiffnesses. These results suggests that the complete 

loosening of one joint may be prevented by manipulating the initial torque of the other 

joint, and we will explore this idea further in the next regime.  

 Considering the case of 120 kN shown in Fig. 4.13(b), we find that the remaining 

torques differ significantly compared to the case of 80 kN. One of the biggest differences 

is that there is no longer a set of initial torques where the joints exhibit only weak 

dependence, such that each joint depends on the other regardless of its own initial torque. 

Furthermore, the maximum remaining torque in either joint no longer occurs when the 

other joint begins with a torque of 54 Nm. Instead, the maximum remaining torque in the 

first and second joints occur when the second and first joints begin with torques of 16.02 

Nm and 15.21 Nm, respectively. Moreover, the maximum remaining torque in the first 

joint is only 23.35 Nm whereas it is 30.52 Nm for the second joint, indicating that the 

evolutions of the joints are different unlike the previous regimes. Furthermore, bands 

where each joint does not loosen appear to be forming and this observation will be further 

developed in the next section. One of most interesting features is that whenever the joints 

have comparable initial torques (the diagonal band from the bottom left to top right), they 

both loosen completely regardless of the actual numerical values of the initial torques. 

This result contradicts the common idea that all the joints must be tightened to the same 
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level of preload to prevent them all from loosening and provides further support for the 

idea of manipulating the initial torque of one joint to control the loosening of the other 

joint. 

 

 

Figure 4.13 The remaining torques in each joint for excitation forces of (a) 90 kN and (b) 

120 kN, near the lower limit and at the upper limit of Regime III: Strong Dependence, 

respectively. 
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4.8. Regime IV: Bands of Mitigation, 𝟏𝟐𝟎 < 𝑷 ≤ 𝟑𝟖𝟎 kN  

4.8.1. High-level Analysis of Regime IV 

We explore the fourth regime by depicting the remaining torque in each joint for forces 

of 130 kN and 140 kN in Figure 4.14(a) and (b), respectively, and for forces of 160 kN 

and 350 kN in Figure 4.15(a) and (b), respectively. All four cases result in distinct bands 

in the remaining torque where the one of the joints does not loosen completely. In all 

cases, the bands for the first joint only occur when it starts with a relatively higher 

preload than the second joint and, similarly, the bands for the second joint only occur 

when its initial torque is much higher than that of the first joint. Furthermore, in all cases, 

there is a diagonal band of complete loosening in both joints corresponding to the cases 

where the joints begin with comparable torques. This result is the same as the observation 

made for the 120 kN case in the previous subsection and indicates a contradiction with 

the common idea that all joints should be preloaded to the same amount to prevent 

loosening. Note that there may be bands that appear below initial torques of 14 Nm (the 

lowest initial torque considered here); however, those torques are below what can be 

achieved by just tightening the joint by hand alone and are not investigated in this 

research. Moreover, a band of mitigation should always appear in the second joint if the 

first joint starts with a torque of zero or close to zero; however, this is a trivial case as the 

second and third rods are uncoupled to the first rod and, thus, the second joint will not be 

excited by the applied pulse. We divide the bands into strong and weak bands of 

mitigation, where a strong band is defined as being relatively long and maintains a torque 

greater than hand-tight (14 Nm) in the innermost region of the band. Conversely, a weak 
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band of mitigation corresponds to a band that is relatively short and has a remaining 

torque lower than hand-tight in its innermost region. Overall, there are six primary 

observations that can be made for this regime:  

1) The number of bands of mitigation for each joint decreases as the applied force 

increases. 

2) The torques for which the bands of mitigation occur change as the applied force 

changes. 

3) The bands of mitigation for the first joint are distinct from those for the second 

joint in that they occur at different torques and have different lengths and 

bandwidths.  

4) The bands of mitigation for the second joint are stronger than those of the first 

joint. 

5) The widths of the bandgaps where both joints loosen completely increase as the 

applied force increases.  

6) Whenever both joints begin with similar torques, they both loosen completely 

regardless of the actual numerical value of the initial torques.  

We explore these observations in greater detail by examining each case individually and 

comparing the bands across different cases.  

Considering the case of 130 kN, although the bands are distinct at lower 

torques, they are not fully developed at higher torques, which is indicated by the blending 

of the bands at higher torques. Interestingly, the bands for the second joint show an 

overall higher remaining torque than the bands for the first joint, which is most likely 

because the applied pulse reaches the first joint at nearly the maximum amplitude  
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Figure 4.14 The remaining torques in each joint for excitation forces of (a) 160 kN and 

(b) 380 kN, inside and near the upper limit of Regime IV: Bands of Mitigation, 

respectively. 

 

whereas the transmitted pulse that reaches the second joint is weakened due to reflections 

at the first joint. This idea is further supported by a comparison of the maximum 

remaining torque in each joint, which is 22.98 Nm for the first joint and 28.92 Nm for the 

second. The maximum remaining torque in the first joint occurs at 𝑇1(0) = 54 Nm and 

𝑇2(0) = 14.4 Nm and the maximum for the second joint occurs at 𝑇1(0) = 17.23 Nm 
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and 𝑇2(0) = 54 Nm. Moreover, the total number of bands for the second joint is higher 

than that of the first joint. Specifically, the first joint exhibits 13 bands and the second 

joint contains 14 bands of mitigation. Of these, the first six bands of the first joint, 

counted from the bottom up, are strong bands of mitigation whereas the first eight bands 

of the second joint, counted from left to right, are strong.  

 

 

Figure 4.15 The remaining torques in each joint for excitation forces of (a) 130 kN and 

(b) 140 kN, near the lower limit and inside of Regime IV: Bands of Mitigation, 

respectively. 
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Considering now the case of 140 kN, it is seen that the bands are much more 

distinct compared to the 130 kN case with narrow gaps of complete losing arising 

between each band. Similar to the previous case, the bands for the second joint have a 

higher remaining torque than the bands observed for the first joint. The maximum 

remaining torque in the first joint is 22.8 Nm, slightly lower than in the previous case, 

which occurs for initial torques of 𝑇1(0) = 54 Nm and 𝑇2(0) = 16.42 Nm, with the 

latter initial condition being higher than in the case of 130 kN force. The maximum 

remaining torque in the second joint is 32.35 Nm, higher than in the previous case, and 

occurs for initial conditions of 𝑇1(0) = 15.21 Nm and 𝑇2(0) = 54 Nm, with the former 

initial condition being lower than in the previous case. Given that the initial conditions 

give rise to the maximum remaining torque for this forcing amplitude compared to 

previous forcing verified the second observation. Compared to the previous case, there 

are only 9 and 10 distinct bands for the first and second joints, respectively, which 

supports the first observation discussed earlier.  

 Now consider the case of 160 kN, depicted in Figure 4.15(a), which reveals that 

there are 6 and 7 distinct bands for the first and second joint, respectively, which 

validates the first observation stated previously. Compared to the case of 140 kN, the 

gaps between the bands are now much wider and both joints always completely loosen 

within the bandgaps, which verifies the fifth observation stated earlier. The maximum 

remaining torque of the first joint is 27.02 Nm and occurs at initial torques of 𝑇1(0) =

54 Nm and 𝑇2(0) = 14.81 Nm. The maximum remaining torque for the second joint is 

32.48 Nm and occurs for initial torques of 𝑇1(0) = 19.25 Nm and 𝑇2(0) = 54 Nm. The 
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investigation into the underlying mechanisms that give rise to the bands of mitigation is 

left for the next section after the discussion of the final regime in the next subsection. 

 Finally, we consider the case of 380 kN depicted in Figure 4.15(b) where the 

remaining torques of both joints each show only a single band of mitigation unlike the 

previous cases. Note that the band of mitigation for the first joint is quite weak and 

corresponds to initial conditions of 𝑇1(0) ∈ [49.96, 54] Nm and 𝑇2(0) ∈ [29.76, 35.41] 

Nm. Within this band, the maximum remaining torque in the first joint is 3.334 Nm and 

corresponds to initial conditions of 𝑇1(0) = 54 Nm and 𝑇2(0) = 32.18 Nm. In contrast a 

single large band of mitigation appears for the second joints and corresponds to initial 

conditions of 𝑇1(0) ∈ [14, 26.93] Nm and 𝑇2(0) ∈ [14, 54] Nm. The maximum 

remaining torque for the second joint is 43.87 Nm and occurs for initial conditions of 

𝑇1(0) = 14 Nm and 𝑇2(0) = 54 Nm. The fact that the maximum remaining torques in 

the first and second joints are so small and so large, respectively, implies that the force is 

so strong that it overwhelms the first joint and causes it to loosen completely within the 

first few passes of the stress wave. To verify this observation, we present the 

instantaneous torques for each joint for initial torques of 14, 54, and 54 Nm for the first 

joint and 54, 54, and 14 Nm for the second joint in Figure 4.16. The instantaneous 

torques reveal that when the first joint loosens completely within the first few passes of 

the stress wave regardless of its starting torque, which confirms the observations made 

earlier.  
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Figure 4.16 The instantaneous torques of each joint for a forcing amplitude of 380 kN for 

initial torques of 14, 54, and 54 Nm for the first joint and 54, 54, and 14 Nm for the 

second joint. 

 

 

4.8.2. Investigation of into the Underlying Reasons for the Bands of Mitigation 

To determine the reason for the bands of mitigation in Regime IV, we consider the 

remaining torques for an applied force of 160 kN and investigate the behavior of the 

system for twelve different initial conditions (a-l) as depicted on Figure 4.16. These cases 

correspond to combinations of initial torques of 17.64, 19.66, and 22.08 Nm for the first 

joint and 54, 43.49, 30.97, and 20.06 for the second joint. The initial and final torques for 

the twelve cases are provided in Table 4.4. Note that the numerical solution of the 
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differential equations governing the torque in each joint asymptotically approach zero 

and be less than the machine epsilon value; however, we report values below machine 

epsilon as zero and give the actual values above in Table 4.4.  

 

Figure 4.17 The remaining torque in the second joint for a force of 160 kN and the twelve 

cases selected to investigate the mechanisms governing the formation of the band of 

mitigation. 

 

 The instantaneous torques for each joint are depicted in Figure 4.18(a) for the 

entire simulation time of 1 second and 4.18(b) for the first 0.01 seconds. Considering first 

4.18(a), little insight is gained from the instantaneous torque in the first joint because it 

loosens too quickly; however, the instantaneous torques of second joint reveal that each 

case results in a different rate of loosening and that the second joint stops loosening in  
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Table 4.4 The initial and final torques for each joint for the twelve cases a-l. 

Case 
First Joint [Nm] Second Joint [Nm] 

𝑇1(0) 𝑇1(1) 𝑇2(0) 𝑇2(1) 

a 17.64 0 54 3.68 × 10−5 

b 19.66 0 54 31.77 

c 22.08 0 54 8.25 × 10−11 

d 17.64 0 43.49 1.80 × 10−12 

e 19.66 0 43.49 21.82 

f 22.08 0 43.49 0 

g 17.64 0 30.97 6.55 × 10−13 

h 19.66 0 30.97 6.539 

i 22.08 0 30.97 0 

j 17.64 0 20.06 6.612 × 10−7 

k 19.66 0 20.06 0 

l 22.08 0 20.06 0 

 

cases b, e, and h after 0.25 seconds and well before the total simulation time. Considering 

now the zoomed-in views of the instantaneous torques in Figure 4.18(b), the 

instantaneous torques for the first joint show that all cases with the same initial torques 

the loss of torque is the same for the first 0.001 seconds where the loss of torque differs 

as the wave passes. However, despite the fact the actual losses of torque differ in each 

case, all of the cases except for case l loosen completely by 0.004 seconds. Case l loosens 

completely by 0.008 seconds. Considering the instantaneous torques of the second joint, 

we find that all of the cases that start with the same initial torque decay at the similar 

rates until around 0.0025 seconds at which point the torques diverge from each other. 

Specifically, cases b, e, h, and j all suddenly diverge from their original trajectories and 

begin loosening at comparable rates that are all significantly different than the other 
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cases. Of these four, case j is the only one not on the band of mitigation observed in 

Figure 4.17 and also corresponds to a different initial torque in the first joint (𝑇1(0) =

17.64 Nm for case j), which reflects that there is some curvature observed for the band in 

Figure 4.17. Interestingly, the second joint loosens before the first joint in case l, which 

causes the decay in the first joint to abruptly change compared to the others. The reason 

for this is that the first joint begins with a higher torque than the second joint in case l, so 

it is more akin to cases where the first joint does not loosen but the second one does.  

 

 

Figure 4.18 The instantaneous torques for each joint for cases a-l for (a) the entire 

simulation time of 1 second and (b) the first 0.01 seconds. 
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Figure 4.19 The sum of the instantaneous mechanical energy in the second and third rods 

neglecting any energy stored in the second joint. The perturbations or drops in the 

energies that look like spikes correspond to the neglected energy stored in the second 

joint. 

 

 To understand why the rates of loss of torque abruptly change for cases b, e, h, 

and j, we consider the summation of the total mechanical energy in the second and third 

rods and depict these in Fig. 4.19 for the four different initial torques in the second joint. 

The reason for summing the energy in the second and third rods is that when the first 

joint loosens completely, the result is that the system partitions itself into two separate 

systems of the first rod by itself and the second and third rods together. Prior to the first 

joint loosening, the total mechanical energy in the system is exchanged between all three 

rods; however, as soon as the first joint loosens, the energy is suddenly partitioned into a 
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portion that remains in the first rod for all time and a portion that gets exchanged between 

the second and third rods. Thus, by summing the total mechanical energy in the second 

and third rods, we can gain insight into how much energy is being exchanged between the 

rods and how this affects the loosening of the second joint. Note that, due to the way the 

coupling between the rods is implemented, the loosening of a joint results in a hysteresis 

effect and dissipates energy. As such, it is not clear how to calculate the potential energy 

that is stored inside the joint during the motion or how to separate it from the energy 

dissipated due to the hysteresis effects. However, whenever the relative displacement 

between the two rods is zero, then the total mechanical energy resides entirely in the two 

rods and can be determined by summing up the energy in each rod. To this end, we 

neglect any energy stored in the second joint and consider only the summation of the 

mechanical energy in the second and third rods and recognize that any oscillations or 

sudden drops in the resulting curves correspond to the missing energy stored in the joint.  

 As can be seen in Figure 4.19, the instantaneous mechanical energies of all cases 

follow similar trends for approximately the first 0.025 seconds after which the cases 

diverge from each other another 0.01 seconds and then follow similar decay trends. Of 

key importance is the energy stored in the two rods at the time where the original system 

partitions into the two separate subsystems described before. The partitioning of the 

system occurs at the time where the sum of the instantaneous mechanical energy in the 

second and third rods begins to decrease monotonically (ignoring the abrupt drops due to 

the neglected energy stored in the second joint). Note that, as discussed before, the 

second joint actually loosens before the first joint in case l, such that the third rod is 

separated from the first and second and represents its own subsystem whereas the first 



76 
 

and second rods remain coupled together. Additionally, both joints loosen completely 

before 0.01 seconds in case k, implying that the system further partitions itself into three 

separate subsystems. Thus, the following analysis does not apply to cases k or l but does 

apply to the remaining cases. The exact time of partitioning is different for each case; 

however, in all cases the first joint loosens completely by 0.004 seconds, such that this 

time provides a fair basis for comparing the instantaneous mechanical energy in each 

case. The energies for each case at a time of 0.004 seconds are provided in Table 4.5, 

which shows that the energies in all cases where the second joint does not loosen are all 

less than the cases where it does loosen. Thus, we conclude that one factor that 

determines whether or not a joint loosens after the other one loosens is the amount of 

energy in the two rods that remain coupled after the partitioning of the system.  

 

Table 4.5 The mechanical energy shared between the second and third rods at 0.004 

seconds. 

Case Energy [J] 

a 14.39 

b 11.37 

c 19.26 

d 13.92 

e 11.36 

f 19.98 

g 13.13 

h 11.58 

i 21.44 

j 11.98 

k 14.67 

l 14.06 
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4.9. Regime V: Complete Rapid Loosening of the First Joint, 𝑷 > 𝟑𝟖𝟎 kN  

The final regime corresponds to forcing cases where the applied force is so strong that the 

first joint loosens completely regardless of its initial starting torque or that of the second 

joint. Refer to Figure 4.20 to see the two cases in this regime (a) where it starts showing 

this behavior and (b) a very large force to showcase how this regime evolves. Thus, in 

this regime, the behavior of the first joint is independent of the evolution of the second 

joint; however, the second joint continues to be dependent on the initial torque in the first 

joint. This dependence is likely due to the amount of energy that remains in the second 

and third rods after the first joint completely loosens, similar to the behavior in the 

previous regime. The regime is characterized by strong dependence of the second joint on 

the first joint for forces below 600 kN and weak dependence above 600 kN. We 

hypothesize that the weak dependence eventually gives way to total independence around 

1200 kN, but this force was not directly investigated given its unrealistic amplitude – it is 

unlikely that such a force could be realized without permanently deforming the rods in an 

experiment. Furthermore, we hypothesize that for sufficiently high enough forces, the 

second joint will not loosen regardless of its initial torque, but such forces are also 

physically unrealistic and were not investigated in this research.  
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Figure 4.20 The remaining torques in each joint for excitation forces of (a) 390 kN and (b) 

1000 kN inside Regime V: Complete Rapid Loosening of the First Joint. 
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CHAPTER 5-CONCLUSION AND FUTURE WORK 

5.1. Concluding Remarks 

This thesis investigated the behavior of rods coupled together with axially aligned 

threaded joints using computational models based on previous split-Hopkinson pressure 

bar experiments of similar systems. The third chapter introduced the previous 

experiments and the proposed model for capturing the loosening of axially aligned joints.  

In each case, the system was excited using a shock excitation with a duration based on 

previous experiments and variable amplitude. The joints were modeled by treating the 

instantaneous torques as a new dynamic degrees-of-freedom governed by a first-order 

differential equation where the rate of loosening depends explicitly on the squared 

relative velocity across the joint. The coupling stiffness between the rods was modeled as 

dependent on the torque in the joint using a monotonically increasing function with large 

slope near zero torque and slope that converges to zero at a theoretical maximum torque. 

The theoretical maximum torque corresponds to the theoretical maximum possible 

stiffness which was chosen to be the stiffness of a comparable solid section. The model 

for the torque-dependent stiffness and the rate of torque loss were identified based on 

previous experimental measurements and were set equal for every joint considered. The 

proposed model was applied to a system consisting of two rods and a single joint and the 

results demonstrated that the proposed model is capable of reproducing experimental 

measurements in both the instantaneous strains and the amount of total torque lost for 

each measurement case. It is important to note that the parameters and model used is 
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found from physical experimentation so for other similar studies to be done on other 

types of joints or system the parameters will need to be found and verified. 

The fourth chapter considered a theoretical system composed of three rods with 

two joints and investigated the effect of loosening in one joint on the evolution of the 

other joint. Early simulations of the system revealed that for some combinations of initial 

torques and forcing amplitude only one of the two joints would loosen completely. To 

this end, computational simulations for 10000 initial torque combinations were 

performed for 72 different forcing amplitudes ranging from 5 kN to 1000 kN. These 

simulations revealed that the behavior of the system can be separated into five different 

regimes: Regime I: Independence, 0 ≤ 𝑃 ≤ 50 kN; Regime II: Weak Dependence, 50 <

𝑃 ≤ 80 kN; Regime III: Strong Dependence, 80 < 𝑃 ≤ 120 kN; Regime IV: Bands of 

mitigation, 120 < 𝑃 ≤ 380 kN; and Regime V: Complete Rapid Loosening of the First 

Joint, 𝑃 > 380 kN. Each of these regimes was investigated in detail and a deeper 

investigation of the fourth regime revealed that the bands of mitigation resulted from 

different amounts of energy remaining in the two rods that remain coupled after the one 

of the joints loosens completely. We hypothesize that the distribution of the energy 

among the modes governing the remaining coupled rods also plays a role in whether or 

not the remaining joint loosens completely. However, this line of research is left open for 

further investigation. The results of this research indicate that for certain sets of initial 

torques and forces, only one of the joints will completely loosen whereas the other joint 

maintains some level of preload. This result hints at the possibility of incorporating 

“dummy” joints into the structure to prevent a vital joint from loosening under a single 
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shock loading event. We hypothesize that similar behavior could be designed into 

assembled structures that use lap-type joints instead of axially aligned threaded joints, but 

this is left open for future work.  

 

5.2. Future Work 

As a continuation of this research, physical experiment of comparable three-rod-two-joint 

systems should be performed in a similar way as the split-Hopkinson pressure bar 

experiments that were discussed in Chapter 3. These experiments would serve to verify 

and validate the predictions made in this research and could provide further insight into 

the underlying mechanisms governing the different regimes observed in Chapter 4. 

Specifically, it is of key importance to recreate the bands of mitigation as well as the 

bands of loosening that were observed in the fourth regime as discussed in Chapter 4. 

Based on the findings of experiments, a similar computational model will need to be 

created to reproduce the experimental measurements. This will likely lead to additional 

sets of parameters for the joints instead of only a single set as was used in this research. 

Moreover, additional experiments should be performed to construct a better identification 

for the rate of loosening and the torque-dependent stiffness of each joint.  

Although it was concluded that the amount of energy remaining in the partitioned 

systems after one joint loosens is the underlying reason for why the other joint does or 

does not loosen, further studies are needed to confirm that this is the only underlying 

mechanism. For example, it is likely that the distribution of the energy across the 

harmonics (or modes) of the partitioned system also plays a strong role in whether the 
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joint loosens or does not. As such, the energy distribution across the modes should be 

investigated using either modal energy obtained by calculating a new stiffness matrix as 

the joint loosens or using advanced signal decomposition techniques. This would allow 

one to investigate how energy is distributed across the modes and determine the effect of 

the distribution on the remaining torque in each joint. 

Finally, this research focused entirely on the loosening of axially aligned threaded 

joints, but it is likely that at least some of the underlying behavior and mechanisms arise 

for other types of joints, such as bolted lap joints. Future investigations into the loosening 

of such joints would need to consider the direction of the applied motion as well as the 

orientation of the bolted joint and how it couples to the rest of the structure. Furthermore, 

it is likely that the evolution of a single bolt couples to the evolution of all other bolts 

through changes in the global dynamics of the parent structure. Such interactions should 

be investigated thoroughly as it is likely that they can be exploited to mitigate loosening 

This joint is also widely used and has the same issues so understanding this joint would 

be beneficial. As a continuation of the research on axial joints the next step could be to 

look at the manipulation of the wave transfer in rods that are in the configuration of a “Y” 

joint rather than what was discussed in this thesis. The benefit of starting a discussion like 

the one that this thesis brings up is that the future possibilities could be very impactful in 

many different scenarios whether it be more computational work or experimental.  
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