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Cancer poses a significant global health challenge. With an estimated 20 million 

new cases diagnosed worldwide in 2022 and 9.7 million fatalities attributable to the 

disease, the economic burden of cancer is immense. It impacts healthcare systems and 

imposes substantial costs for its care on patients and their families. Despite advancements 

in early detection, prevention, and treatment that have reduced overall cancer mortality 

rates, the growing prevalence of cancer, particularly among younger individuals, remains 

a pressing issue. 

Recent advancements in medical imaging technology have progressed 

significantly with the help of emerging computer vision and artificial intelligence (AI) 

technology. Despite these advancements, medical imaging analysis in cancer research 

and clinical settings faces significant challenges. Analyzing data produced by 

sophisticated imaging technologies, such as CT or MRI, is still labor-intensive, limiting 

its usability and contributing to disparities in cancer care and data hungriness for 

researchers. AI-assisted analysis has the potential not only to reduce cost and turnover 

time but also to increase the accuracy of clinical applications. Furthermore, it provides 

opportunities to integrate various types of data and information for better prediction, 

benefiting both patients and physicians. 



 

 

The research described in this dissertation aims to improve cancer imaging 

analysis by presenting the design and implementation of novel AI architectures. In this 

dissertation, I developed AI-based algorithms focused on two primary objectives. (1) 

Develop feature extraction methods to improve model accuracy. I applied advanced 

techniques to extract and learn critical image features associated with cancer prognosis to 

improve diagnostic tool accuracy and reliability. (2) Develop advanced generative 

models to synthesize high-quality image data. I developed deep-learning-based 

methods to learn latent representations and synthesize high-quality 3D images of tumor 

sites, facilitating better visualization and assessment of cancerous tissues.  

This dissertation showcases the immense potential of AI in revolutionizing cancer 

diagnostics, providing a foundation for further research and development in this critical 

healthcare field. The proposed AI frameworks, incorporating innovative applications of 

machine learning and deep learning methods, will undoubtedly drive ongoing efforts to 

reduce cancer worldwide and tackle major challenges in this area. 
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CHAPTER 1.  INTRODUCTION 

1. Motivation 

Cancer significantly impacts human society both globally and within specific 

populations. In 2022, there were approximately 20 million new cancer cases diagnosed 

worldwide, leading to 9.7 million deaths [1]. The estimate is that new cases will reach 35 

million by 2050, with the increasing number and aging of people on the planet. Cancer 

places substantial economic burdens on healthcare systems and societies. The burden of 

care, treatment, and palliation among cancer patients is significant both within public 

health resources and among individual cancer patients and their families. Advances in 

early detection, prevention, and treatment have led to a decline in overall cancer mortality 

rates; for instance, reducing smoking and improving cancer screening have saved 

millions of lives over the past few decades. But a growing prevalence of cancer, 

especially among younger people, is a constant challenge. So, it is evident that preventive 

interventions and equitable service delivery should be increased. These points make the 

complexity and multi-faceted impact of the disease on society clear while pointing out 

that despite many advancements, the fight against the disease is still very much a work in 

progress. Especially, CT and MRI imaging plays a very important role in cancer 

prevention, diagnosis, and treatment; there is a need to further improve medical image 

analysis and modeling for cancer research and clinical practice. 

The current era is particularly exciting for biomedical research due to the 

convergence of big data generated by the advancement of experimental techniques. While 

vast amounts of complex data, including genomic, proteomic, and clinical datasets, have 



 

 

2 

become available, there is an urgent need to establish sophisticated analytical methods to 

extract insights. Recent advancements in medical imaging technology have progressed 

significantly with the help of emerging computer vision and artificial intelligence (AI) 

technology. Despite these advancements, data analysis in cancer research, and clinical 

settings still faces significant challenges. Therefore, it is important to develop AI models 

and data analytical methods. This synergy allows for the development of more research 

tools and a better understanding of cancer, which is this thesis's core objective. 

This chapter summarizes the background and current status of medical imaging 

for cancer and computer vision applications in medical imaging analysis. An overview of 

the AI technologies applied in medical imaging analysis, especially related to cancer 

research, diagnosis, and treatment, is also provided. There are gaps between the advances 

in AI method development and their applications in cancer imaging. This dissertation 

focuses on three major gaps in existing research. Firstly, the associations between 

quantitative image features and clinical events are largely unknown (e.g., patient outcome 

and prognosis). Secondly, the methods for synthesizing high-quality medical imaging 

data, particularly for 3D volumetric data, are not yet fully mature, highlighting the current 

limitations in the field. Last but not least, there is room for improvement in model 

accuracy by integrating multi-modal data. To solve these problems, the research 

described in this dissertation aims to develop a novel image feature extraction method to 

connect clinical events and improve model accuracy, as well as to develop an advanced 

generative model to synthesize high-quality image data. 



 

 

3 

2. Medical Imaging for Cancer 

2.1. Medical imaging in cancer research, diagnosis, and treatment 

Medical imaging has been a cornerstone in cancer research, diagnosis, and 

treatment. It is a fundamental tool in the diagnosis of cancer. It contains essential 

information for clinical processes to enhance decision-making results. Several imaging 

modalities are currently used to detect, characterize, and stage various cancers. Computed 

Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance 

Imaging (MRI) have become more popular because they provide the highest sensitivity or 

most detailed specificity. Medical imaging is vital for diagnosing diseases as well as 

treatment planning, targeting, and surveillance. Over the past decade, with the help of 

emerging computer vision and AI technology advancements, technologies for medical 

imaging have progressed significantly, contributing to improved detection, diagnosis, and 

treatment of cancer. 

The use of medical imaging is highly recommended in almost all steps related to 

the care of a person with cancer, from early detection to treatment planning and follow-

up. It is critical because it directly connects with the patient’s outcomes and the 

effectiveness of cancer therapies. With improvements in image quality and reduction in 

radiation exposure, combined with the development of improved AI technologies, better 

and even more personalized cancer care can be achieved. 

2.2. Existing challenges in medical imaging for cancer. 

Even though medical imaging has improved vastly, it still faces challenges. For 

example, sophisticated imaging technologies such as PET/MRI are also expensive to 
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establish in many health facilities, limiting access to most patients. The costs of such 

equipment and analysis services are disproportionately high in healthcare systems, 

contributing to disparities in cancer care outcomes [2]. 

With the increase in data generated from various imaging modalities—e.g., MRI, 

PET, and CT—integrating the data from multi-modal sources is essential for a holistic 

understanding of tumor biology and proper diagnosis and treatment planning [3]. 

However, it requires a complex process, and currently, some gaps need to be filled. 

While medical imaging is one area where AI is making giant steps in improving medical 

outcomes, it has been raising deep concerns about its ethics and operation. Significant 

problems are associated with data privacy and potential bias in AI algorithms. Clear 

standards and regulation of AI are needed for its safe and effective use in medical 

diagnostics [4]. 

Furthermore, radiologists from different institutions interpret imaging results 

differently, resulting in conflicting diagnoses and treatment plans. Standardizing 

interpretation protocols is necessary to reduce such variability. With the adaptation of AI 

technologies, especially for deep models, model explainability is also important in risk 

and quality control [5]. 

3. Computer Vision Application in Medical Imaging Analysis 

Computer vision is a field of AI that allows machines to interpret and make 

decisions based on visual data. It involves creating algorithms and models to process, 

analyze, and comprehend images and videos, replicating human vision [6]. This section 
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provides a broad overview of this field of research and sets the technical foundation of 

the following chapters. 

3.1. Image clustering 

Image clustering in medical imaging is a critical area of research that enhances 

diagnostic processes and supports clinical decision-making. Clustering techniques group 

similar images or image regions, aiding in identifying patterns and anomalies essential 

for diagnosing various medical conditions. Here are some key aspects of image clustering 

in medical imaging: 

Feature Extraction: Effective clustering starts with robust feature extraction. 

Typically, medical images are represented in a lower-dimensional space that is conducive 

to clustering using techniques such as texture analysis, edge detection, and shape-based 

features. 

Dimensionality Reduction: Given the high dimensionality of medical images, 

techniques such as Principal Component Analysis (PCA) [7] and autoencoders [8] are 

employed to reduce the dimensionality of feature spaces before clustering. 

Clustering Algorithms: The specific requirements and nature of the medical 

imaging data dictate the use of a variety of clustering algorithms. Hierarchical clustering 

and K-means clustering are prevalent algorithms. 

Clustering in medical imaging has been applied in numerous areas, such as tumor 

detection, brain imaging [9], and tumor segmentation [10]. 
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3.2. Image classification 

Image classification is a supervised learning technique in computer vision. A 

classification system learns to recognize and categorize images based on specific classes. 

This is the process of analyzing and tagging features within the image. Classifications are 

done in predefined categories, where images are placed based on the similarity of their 

content. Image classification is also essential for automated diagnosis systems where 

algorithms for detecting and classifying medical conditions are applied for X-ray, MRI, 

and CT images [11]. Automating the task of disease classification using medical images 

can assist in screening large populations quickly, consistently, and accurately. Image-

based disease classification enables the early detection of diseases, hence increasing the 

prognosis by early treatment. The main elements of image classification include: 

Training Data: A large dataset with labeled images is required to train an image 

classification model. Each image in this dataset is labeled with a single or multiple 

categories. Using these training datasets, the model learns how to identify patterns 

characteristic of each category. 

Positive Dataset: A positive dataset refers to data points representing the 

condition or class of interest. In medical imaging, this typically includes images or cases 

containing the pathology, feature, or condition that the model needs to learn to detect or 

diagnose. For example, in a study aimed at identifying tumors, the positive dataset would 

consist of images that contain tumors. 

Negative Dataset: Conversely, a negative dataset consists of data points that do 

not display the condition or class the model is targeting. These are essentially control 
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samples used to teach the model what does not constitute a positive case. In the tumor 

identification example, the negative dataset would comprise images without tumors. 

Model Types: Model types commonly used for image classification mainly come 

from traditional machine learning approaches, such as support vector machine (SVM), 

decision trees, random forests (RF), and k-nearest neighbors (KNN). In recent years, deep 

learning has revolutionized the field. Key models that have driven deep learning 

technologies are convolutional neural networks (CNNs), transformers, and autoencoders, 

all of which can achieve automated feature extraction and perform well on complex 

datasets. 

Feature Extraction: The typical first step of image classification is to extract 

relevant features from an image. The features might be related to shapes, textures, or 

intensity patterns characteristic of some medical conditions. 

Model Training: The extracted features are used to train a model, most typically 

through machine learning or deep learning algorithms. CNNs are extensively used in 

deep learning because they can learn hierarchical representation in images, which fits 

very well for image classification. 

Classification: After the training is done, the model classifies new images into 

various classes such as ‘normal’ or ‘abnormal’. It may further classify the images based 

on learned features into specific diseases such as pneumonia, multiple kinds of cancer, or 

other pathological conditions. 
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3.3. Object detection 

Object detection can be seen as one application of computer vision technologies 

in medical field. It is used to identify and localize several structures or abnormalities in 

the given medical images, such as X-rays, MRI scans, CT scans, and ultrasound images. 

This technology made it possible to diagnose diseases, schedule treatment, and evaluate 

patients’ progress much faster and more accurately. The key components are: 

Preprocessing: Images often require enhancement for quality and visibility. Some 

treatments that may need to be implemented include noise removal, enhancement for 

contrast, and standardization of dimensions and scales among all images. 

Object Detection Algorithms: These algorithms are dedicated to analyzing any 

presented medical images in detecting an object that carries some meaning for diagnosis 

and treatment. Standard algorithms include You Only Look Once (YOLO) [12], 

transformers, CNNs, and CNN variations. 

Annotation and Localization: The detected objects are mostly annotated with 

bounding boxes indicating the coordinates of an object within an image. This aids 

localization and indicates an anomaly’s exact location, size, and shape. 

Validation and Interpretation: Once objects have been detected, medical 

practitioners will analyze them for accurate interpretation. This is an important step that 

combines machine efficiency with human expertise to arrive at diagnostic decisions. 

3.4. Segmentation 

Segmentation in medical imaging is the process that allows the division of images 

into segments to simplify or change the representation of an image into something more 
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meaningful and more accessible for computational image analysis. It is also important to 

demarcate the regions of medical interests, such as organs or tumors, in medical images 

such as CT and MRI scans or ultrasounds. Segmentation plays a vital role in medical 

imaging by accurately representing and analyzing anatomical and pathological features. 

More precise segmentation would also provide better data quality for other CV tasks, 

such as image classification. Here is an overview of the process: 

Preprocessing: Noise reduction, contrast enhancement, and normalization are 

common preprocessing steps to improve the quality of images before segmentation. The 

preprocessing typically depends on the image modality and the anatomical characteristics 

of the object. 

Segmentation Techniques: Traditional segmentation techniques are signal 

processing methods such as thresholding, region growing, and watershed segmentation. 

In the past decade, machine learning and deep learning-based methods have started to be 

applied, with more advanced methods incorporating algorithms into practices such as U-

Nets or CNNs to ensure accuracy and automation during the segmentation processes. 

Postprocessing: Smoothing edges, eliminating small spurious objects, or filling 

holes in the segmented regions are standard postprocessing practices. 

Analysis and Interpretation: Analysis of the images to reflect on medical 

conditions is done by medical professionals or automated quantitative analysis tools. 

3.5. Image registration 

Image registration transforms images into the same reference coordinate system in 

medical imaging. It aligns two or more photos of the same scene taken at different times, 
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from various viewpoints, or by other sensors. Combining information from multiple 

images helps provide a more comprehensive analysis of the medical field [13]. Here is an 

overview of the process: 

Preprocessing: Images can be preprocessed to enhance quality, improve features, 

and standardize formats so that they can be more effectively registered. 

Feature Detection and Matching: Edge features, contours, or other anatomical landmarks 

are identified and used to match corresponding points between images. 

Transformation Model Estimation: The mathematical model that should be 

selected can be either rigid, affine, or non-rigid to best suit the nature of the alignment. 

The parameters should be adapted to align features between the images optimally. 

Resampling and Interpolation: Once aligned, the images are commonly 

resampled using interpolation techniques to build up the final image while preserving the 

actual pixel values from the original images. 

Validation: Registration quality is assessed using quantitative metrics or by expert 

inspection based on visualization to ensure correct alignment. 

3.6. Radiomic feature extraction 

Radiomics, which extracts quantitative features from the images, significantly 

increases the throughput of the quantifiable representation of each image screening, 

which ensures better differentiation with statistical analysis. Recent advances in 

radiomics make it possible to extract features from images [14]. Feature extraction 

calculates quantifiable characteristics of the signal level on segmented images. These 
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features can be broadly categorized into first-order statistics, shape-based features, 

texture features, and higher-order statistics (Figure 1.1) 

 

Figure 1.1 Schematic View of Radiomics [15]. 

An independent international collaboration called the Image Biomarker 

Standardization Initiative (IBSI) aims to standardize medical image feature extraction 

protocol and provide image biomarker nomenclature and definitions. IBSI guidelines are 

followed in the research in this dissertation. Studies that use quantifiable features 

extracted with radiomics techniques show promising capabilities in predicting cancer 

outcomes [16], [17]. Based on the guidelines of IBSI, hundreds of image features can be 

derived from one image [18]. For classification tasks, the number of features should be 

regulated according to the learning task's complexity. Since radiomic features could be 

derived with closely related operations, using all of the radiomic features directly may 

cause overfitting. Therefore, most radiomics studies require dedicated feature dimension 
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reduction to find the balance between specificity and generality. This causes low 

repeatability and low reproducibility of radiomic features. 

3.7. Challenges for application of computer vision in medical imaging tasks 

In the rapidly evolving field of medical imaging, technological advancements 

bring exciting prospects for improved diagnostic accuracy and patient outcomes. 

However, effectively implementing these technologies presents challenges that must be 

addressed to harness their full potential. Here is a summarized overview of existing 

challenges in medical imaging in terms of computer vision application [19]: 

Data Quality and Quantity: The effectiveness of image classification heavily 

depends on having access to high-quality and extensively annotated datasets. Obtaining 

such data can be expensive and hence, such data are often scarce [20]. 

Generalization: Models must be generalized appropriately, avoiding overfitting 

the specific characteristics of the training dataset, so that they can be applied effectively 

to new, unseen data. 

Data Variability: The diversity in medical imaging due to different modalities, 

settings, demographics, and disease manifestations often enhances the robustness of 

classification models. 

Data Privacy and Security: Secure handling of patient data is essential to protect 

privacy when training algorithms [21]. 

Model Accuracy: In medical contexts, accuracy and reliability are vital due to the 

severe implications of false positives and negatives. 

Integration into Clinical Workflows: Technologies must integrate seamlessly into 
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existing medical workflows without necessitating significant changes or extensive staff 

retraining. 

Computational Demand and Efficiency: Advanced techniques, particularly those 

involving deep learning, require substantial computational resources and expertise, and 

the process can be computationally intensive, especially with high-resolution images or 

complex models. 

Standardization and Reproducibility: The variability in results produced by 

different algorithms poses challenges for standardization and reproducibility in clinical 

settings. This is compounded by variability in imaging equipment and protocols across 

various institutions [22]. 

Integration into Clinical Practice: There is a significant challenge in translating 

research findings into practical clinical applications, necessitating standardized protocols 

for image acquisition, feature extraction, and analysis to ensure findings are generalizable 

and applicable across different studies. 

4. Association Study in Medical Imaging 

Association studies in medical imaging are a crucial research approach used to 

identify correlations between imaging features and various clinical outcomes, including 

disease characteristics, prognosis, and response to treatment. These studies help 

understand how certain visual markers or patterns observed in medical images relate to 

specific health conditions or genetic traits. Radiomics to extract quantitative image 

features combined with machine learning models are commonly used to draw the 
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association between specific image features and clinical variables or biological processes 

[23]. 

Association studies can help identify imaging biomarkers that predict disease 

severity, progression, and outcome. For example, certain features in lung CT images may 

be associated with faster disease progression in idiopathic pulmonary fibrosis [24]. 

Researchers may find associations between mutations in specific genes and radiographic 

features. Breast cancer MRI phenotypes could be related to their underlying molecular 

biology, revealed by using RNA sequencing, which can help understand the genetic 

drivers of disease. Moreover, the MRI features may be used as imaging biomarkers for 

drugs targeting the ribosome [25]. Image-based association studies, particularly in 

medical imaging and disease diagnosis, are a relatively young field within biomedical 

research, with numerous challenges that need to be addressed. For example, here are 

some of the current challenges: 

High Dimensionality: Medical images can involve high dimensions of data, 

resulting in complexity in statistical analysis and often calling for advanced 

dimensionality reduction techniques. 

Validation and Reproducibility: Ensuring validity in different populations and 

imaging settings is demanding yet essential for clinical implementation. 

Integration with Clinical Data: Combining imaging data with clinical data requires 

robust data integration platforms, and there are compatibility issues regarding data 

privacy. 

5. AI Techniques Used in Medical Imaging 
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AI techniques have become increasingly important in medical imaging analysis, 

offering transformative potential across various aspects of healthcare. Some essential AI 

techniques and their applications in medical imaging are described below: 

5.1. Support Vector Machine (SVM) 

SVM is a popular supervised learning algorithm for classification and regression 

tasks. It performs well in high-dimensional spaces and is particularly useful when the 

number of dimensions exceeds the number of samples. 

SVM operates on the principle of finding the optimal hyperplane to separate two 

different classes with maximum margin. This hyperplane is the decision boundary that 

separates one class of data points from another. Critical components of  SVM are as 

follows: 

Hyperplane: In SVM, a hyperplane is a flat affine subspace (affine subspace, 

which is one dimension less than the feature space) that divides the data points of 

different classes. In two-dimensional space, this is a line. 

Margin: The margin is the distance between the hyperplane and the nearest data points 

from each class. Maximizing this margin is crucial for improving the model’s 

generalization ability. 

Support Vectors: These are the data points closest to the hyperplane, influencing 

its position and orientation. Support vectors are vital as they define the margin. 

Linear SVM: In its simplest form, when the data is linearly separable (i.e., two classes 

can be separated by a straight line in two dimensions or a hyperplane in higher 
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dimensions), SVM finds the hyperplane that maximizes the distance between the classes. 

The optimization problem is typically solved with quadratic programming. 

Kernel Trick: The kernel trick uses a linear classifier to solve a non-linear 

problem by mapping the input space into a higher-dimensional feature space, computed 

beforehand, called kernels. The kernel function calculates the dot product of all data pairs 

in this higher-dimensional space. This allows SVM to fit the maximal margin hyperplane 

in the new, higher-dimensional feature space. For example, the radial basis function 

(RBF) kernel adds new features that measure the similarity (or distance) between data 

points and specific landmarks in the input space, leading to a smoother decision 

boundary. 

SVMs are widely used in medical imaging for tasks such as classifying tissue 

types, identifying disease states, and differentiating between benign and malignant 

tumors [26], [27]. Their ability to handle high-dimensional data makes them suitable for 

complex and multidimensional image data. 

5.2. Ensemble learning 

5.2.1. Random Forest (RF) 

RF is an ensemble technique where decision trees are built during training that 

outputs the class; the final output is the mode of the classes or mean prediction of the 

individual trees. This method is prevalent in the case of medical imaging as it can work 

well with large and complex datasets with a high-dimensional space, which is the case 

found in medical images. The key components are as follows: 



 

 

17 

Decision Trees: RF uses a large number of decision trees to make predictions. 

Each tree is a series of questions about the data that lead to a decision, predicting the 

outcome based on the data features. 

Bootstrap Aggregating (Bagging): RF uses the Bagging technique to improve 

model accuracy. This involves creating numerous bootstrap samples of the original 

dataset (resampling) to train each tree in the forest independently. This process helps 

reduce variance and avoid overfitting. 

Training Trees: From the training data, each decision tree in the forest is trained 

independently on a different bootstrap sample. The variety among the trees is achieved by 

using various samples and randomly selecting a subset of specified features for splitting 

at each node of the trees. 

Random Feature Sampling: During each decision tree training split, RF does not 

look for the best feature among all features but looks for the best feature among a random 

subset of features. This results in many trees, reducing the risk of overfitting and making 

the model less likely to memorize any specific part of the data. 

Ensemble of Predictions: Once all the trees are trained, RF makes a decision by 

combining the predictions of all the trees built. Classifications are usually done based on 

majority voting (the class commonly found among a larger number of trees is used). For 

regression, typically averaging of the predictions of all trees is used. 

RF algorithms are crucial in classifying medical images into different diagnostic 

categories. For instance, RF can be utilized to classify breast cancer biopsy from 

mammograms, which is a critical factor in assessing the risk of breast cancer [28]. 
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Additionally, RF is used for image segmentation, which involves dividing an image into 

segments representing different anatomical structures, such as brain tissues or tumors 

[29]. This segmentation is essential for more precise medical interventions. 

5.2.2. Gradient Boosting Machine (GBM) 

GBM is a sequential ensemble learning method for constructing a model step-

wise, where each new model corrects errors made by existing models. The key idea 

behind GBM is to build new base learners, which predict the residuals or errors of prior 

models, and then add those models to minimize the overall prediction error. The boosting 

algorithm constructs this model stage-wise, which differs from how RFs build the model. 

GBM adjusts the weights of incorrectly predicted cases, making the model sensitive to 

the more complex cases, thereby improving the model’s performance iteratively. This 

iterative improvement allows the model to focus more on the challenging cases, 

enhancing overall accuracy and robustness. By continuously refining the model’s 

predictions, GBM achieves better performance over time, but when the problem is 

simple, it is prone to overfitting. GBM has been applied to various tasks in medical 

imaging; with its tree-based decision-making, it is a favorable method for risk 

stratification analysis, such as using imaging data to predict breast cancer patient 

recurrence risk [30]. GBM also can be used to segment brain tumors from MRI scans. 

The approach involved using GBM to segment the brain scans into cancer or healthy 

tissue and provide refined tumor labels, providing finer granularity [31]. 
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5.3. Convolutional Neural Networks (CNNs) 

CNNs are a class of deep neural networks widely used in analyzing visual 

imagery. CNNs are particularly powerful for tasks involving image recognition, object 

detection, and similar applications due to their architecture, which mimics how the 

human visual cortex works. From the input image to the output, CNNs are built into 

layers (Figure 1.2): 

Figure 1.2 CNN Classifier [32]. 

Convolutional Layer: Convolutional layers employ multiple filters or kernels that 

perform matrix multiplication on the input image to extract features, transforming the 

image data from basic pixel-level information to higher-order features. These layers 

capture spatial hierarchies within images by utilizing several square matrices and 

generating feature maps. 

Pooling Layer: Pooling layers are designed to decrease computational costs by 

reducing the dimensions of feature maps from convolutional layers. They perform 

pooling operations independently on each feature map. Common types of pooling include 

max pooling and average pooling. Pooling helps summarize the features detected in 

previous layers. Max pooling takes the maximum value from each cluster of neurons at 
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the prior layer, effectively capturing the most prominent feature in a local patch of the 

feature map. Max pooling helps detect features that are invariant to small shifts and 

distortions. Contrary to max pooling, average pooling calculates the average values in 

each cluster of neurons. This method is less common as it tends to blur feature 

representations, diluting the presence of solid features but providing a more 

comprehensive summary of the features in the patch. 

Fully connected layer: A fully connected layer, also known as a dense layer, is 

essential in a CNN for synthesizing the features extracted from previous layers—

specifically, the convolutional and pooling layers. Positioned typically towards the end of 

the network, it consolidates these learned features into high-level reasoning about the 

input data, facilitating the network’s decision-making or classification tasks. The number 

of neurons in the dense layer equals the number of classes in the classification case. 

Activation Function: Activation functions in CNNs are vital to infuse non-linearity within 

the network, which is an absolute requirement for learning and performing complex tasks 

such as image recognition and classification. Detailed looks at some of the most 

commonly used activation functions in CNNs are as follows: 
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Rectified Linear Unit (ReLU): 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (1) 

Figure 1.3 ReLU Activation Function. 

As you can see in Figure 1.3, the function outputs 0 for all negative values and 

simply outputs the input variable 𝑥 for all non-negative values. This simple yet effective 

behavior helps maintain the non-linear properties needed for learning complex patterns in 

data.  
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Leaky ReLU: 

𝑓(𝑥) = max(𝛼𝑥, 𝑥) (2) 

where 𝛼 is a small constant. 

Figure 1.4 Leaky ReLU Activation Function. 

It is similar to ReLU but has a slight positive slope for negative values (α=0.1 is 

used in Figure 1.4). This modification helps to keep some gradient flow during the 

training process. When the input values are less than zero, it prevents neurons from dying 

out, a common issue with the standard ReLU function. 
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Sigmoid: 

𝑓(𝑥) = !
!"#!"

 （3） 

Figure 1.5 Sigmoid Activation Function. 

The Sigmoid function outputs values between 0 and 1, making it especially useful 

for models that need to predict probabilities as outputs. As shown in Figure 1.5, The 

function smoothly increases from 0 to 1 and is centered at 𝑥 = 0, where f(x) equals 0.5. 
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Tanh (Hyperbolic Tangent): 

𝑓(𝑥) = tanh(𝑥) = #"$#!"

#""#!"
 (4) 

Figure 1.6 Tanh Activation Function. 

The Tanh function outputs values between -1 and 1. As shown in Figure 1.6, it is 

an S-shaped curve similar to a sigmoid function but is zero-centered, which generally 

helps improve the convergence of the learning process during training. This function is 

especially beneficial when the model needs to differentiate between two symmetrically 

balanced classes around zero. 
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Softmax: 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)% =
##$

∑ ##%&
%'(

 (5) 

Figure 1.7 Softmax Activation Function. 

In Figure 1.7, we see a simplified Softmax scenario with a binary classification 

task. As the input for Class 1 increases, the probability that the input belongs to Class 1 

increases, illustrating how the Softmax function dynamically allocates probabilities 

between the two classes based on the input values. This visualization captures the essence 

of Softmax in a binary setting where the function ensures that the total probability for 

both classes sums to one. Softmax is primarily used in an output layer of a neural 

network to perform multi-class classifications, where it returns probabilities of each class, 

with the total summing to one. 



 

 

26 

5.4. U-Net 

U-Net is one of the CNN architectures that has emerged in different image 

segmentation tasks, especially in medical imaging [33]. The network has a symmetric U-

shaped architecture composed of a contracting path (encoder) and an expanding path 

(decoder) (Figure 1.8). The contracting path captures context and reduces the spatial 

dimensions of the image, while the expanding path enables precise localization and 

upscaling to the original image size. U-Net has become one of the most commonly used 

and effective architectures for performing semantic segmentation. The key features of U-

Net that are different from CNNs are as follows: 

Figure 1.8 U-Net Architecture [33]. 

Contracting Path (Encoder): The contracting path consists of convolutional 

layers, each followed by a ReLU activation and a max-pooling operation for down-
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sampling. Each down-sampling step doubles the number of feature channels, allowing the 

network to learn more complex representations. 

Bottleneck: The bottleneck is the deepest part of the network and connects the 

contracting and expanding paths. It consists of two convolutional layers followed by 

ReLU activations. This part of the network learns the most abstract features of the input 

image. 

Expanding Path (Decoder): The expanding path consists of up-convolutional 

layers (transposed convolutions) that increase the spatial dimensions. Each up-

convolution is followed by concatenation with the corresponding feature map from the 

contracting path (skip connections) and a set of convolutional layers with ReLU 

activations. 

Skip Connections: Skip connections between the contracting and expanding paths, 

allowing the network to reuse features from the down-sampling path, avoiding gradient 

decay, and improving the precision of the segmentation. These connections enable the 

network to combine high-resolution spatial information with the contextual information 

learned during down-sampling. 

Output Layer: The final layer is typically a 1 × 1 convolution that maps the 

feature representation to the desired number of output classes for segmentation. 

5.5. Generative Adversarial Networks (GANs) 

GANs [34] are a class of models comprising generator and discriminator models. 

They are trained simultaneously and optimally in a game-theoretic framework. The result 

is that the generator learns to produce data indistinguishable from accurate data, making 
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GANs exceedingly strong at generative tasks (Figure 1.9). Components of GANs are as 

follows: 

Figure 1.9 GAN Architecture [26]. 

Generator (G): The generator creates data that resembles the ground truth. It 

takes a random noise vector and transforms it into a data instance (e.g., an image). The 

generator aims to fool the discriminator into believing the generated data is accurate. 

Discriminator (D): The discriminator distinguishes between ground truth (from the 

training set) and synthetic data (produced by the generator). It outputs a probability value 

indicating whether the input data is real or fake. 

Training Process: The generator and discriminator are trained simultaneously but 

with opposing objectives. The generator tries to minimize the probability of the 

discriminator correctly identifying fake data while the discriminator tries to maximize its 

accuracy. 

Adversarial Training: The discriminator is trained on both real and fake data. It 

learns to assign a high probability to real data and a low likelihood to counterfeit data. 



 

 

29 

The generator is trained to produce data that maximizes the discriminator’s output 

probability for fake data. 

Optimization: The training process of GANs involves two loss functions: one for 

the discriminator loss and another for the generator loss. The discriminator loss tries to 

maximize the log probability of correctly classifying real and fake data, effectively 

learning to distinguish between authentic and generated samples. On the other hand, the 

generator loss is the log probability for which the discriminator correctly identifies the 

generated data as fake. Hence, it further pushes the generator to produce more realistic 

outputs. This is the adversarial process in which the generator and the discriminator are 

trained simultaneously but with opposing objectives. The generator keeps getting better at 

ways to make this hard—to produce data from some distribution that is indistinguishable 

from an actual data distribution. Mathematically, this can be expressed as: 

min
'
max
(

𝑉 (𝐷, 𝐺) = 𝐸)∼+)*+*())[log𝐷 (𝑥)] + 𝐸.∼+#(.) Blog C1 − 𝐷E𝐺(𝑧)FGH (6) 

where 𝑥 is real data, 𝑧 is random noise, 𝐺(𝑧) is generated data, and 𝐷(𝑥) and 𝐷(𝐺(𝑧)) 

are the discriminator’s outputs for real and generated data, respectively. 

5.6. Vision Transformer (ViT) 

The Vision Transformer (ViT) [35] is an adaptation of the transformer 

architecture [36], originally designed for natural language processing tasks for image 

recognition (Figure 1.10). ViT applies the transformer architecture to sequences of image 
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patches, demonstrating competitive performance with traditional CNNs on image 

classification tasks. The critical components of ViT are as follows: 

Figure 1.10 ViT Model Overview [35]. 

Image Patches: Instead of processing an entire image simultaneously, the ViT 

divides the image into fixed-size patches (e.g., 16 × 16 pixels). Each image is split 

into	𝑁 non-overlapping patches, which are then flattened into vectors. 

Patch Embedding: Each flattened patch is linearly embedded into a fixed-

dimension vector using a trainable linear projection. These embedded vectors are 

analogous to word embeddings in original transformers in natural language processing. 

Positional Encoding: Since transformers are permutation-invariant and do not 

inherently capture the spatial structure of images, positional encodings are added to the 

patch embeddings to retain information about the relative positions of patches. Positional 

encodings are learnable parameters added to the embeddings to provide spatial 

information. 



 

 

31 

Transformer Encoder: The sequence of patch embeddings with positional 

encodings is fed into a standard transformer encoder. The encoder consists of multiple 

layers of multi-head self-attention mechanisms and feed-forward neural networks. Each 

layer has layer normalization and residual connections, similar to the original 

transformer. 

Classification Token: A unique learnable classification token (CLS token) is 

prepended to the embedded patch sequence. The output corresponding to this token from 

the final transformer layer is used as the image representation for classification. 

Final Classification: The output of the CLS token is passed through a fully 

connected layer followed by a softmax activation to produce the class probabilities. 

5.7. Explainable AI (XAI) in medical imaging 

XAI in medical imaging is the development and application of AI models where 

decisions and processes are explainable to and trusted by human users, specifically 

medical professionals [37]. It is required because many advanced models of AI, including 

deep learning networks, are black boxes that may make perfect predictions but offer little 

insight into the reasoning behind those predictions. In medical imaging, XAI is crucial 

for the trust and adoption of emerging AI techniques and regulatory compliance. Some 

standard XAI techniques are listed below: 

Saliency Maps: The visual tools highlight the regions of an image that the AI 

model considers most important for its decision. Techniques such as Gradient-weighted 

Class Activation Mapping (Grad-CAM) [38] and Layer-wise Relevance Propagation 

(LRP) [39] are commonly used to generate these maps. 
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Attention: Models can be designed with attention mechanisms that indicate which 

parts of the input data the model focuses on. This can provide insights into how different 

regions of an image contribute to the final decision. 

Feature importance: Techniques such as Shapley additive explanations (SHAP) 

[40] and Local Interpretable Model-agnostic Explanations (LIME) [41] can identify the 

essential features in an image that influence the predictions by the models. This is 

commonly found in non-convoluted modeling practices like RF and GBM. 

6. Objectives and Contributions of the Research in this Dissertation 

Based on the current status of cancer image analysis and AI applications in this 

field, one can see there are some gaps. (1) The associations between quantitative image 

features and clinical events are largely unknown (e.g., patient outcome, prognosis). (2) At 

present, the methods for synthesizing high-quality medical imaging data, particularly for 

3D volumetric data, are not yet fully mature, highlighting the current limitations in the 

field. (3) There is room for improvement in model accuracy by integrating multi-modal 

data. 

To fill these gaps, two objectives are set for the research in this dissertation: 

Objective One: Develop feature extraction methods to improve model accuracy. 

Objective Two: Develop advanced generative models to synthesize high-quality 

image data. 

To realize my first objective, I conducted the association study using image 

radiomic features to connect the medication conditions of prostate cancer patients with a 

GBM model (Chapter 2). To improve the feature extraction methods for cancer imaging 
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data, I also developed an algorithm to deliver a memory-efficient ViT model with CT 

image data to predict pancreatic cancer patient prognosis (Chapter 5). 

For the second objective, I developed an encoding method to improve the 

generative model with GANs to synthesize high-quality medical images (Chapter 3). To 

extend the method to cancer imaging data, I developed a 3D UNet-based GAN 

architecture to synthesize high-quality pancreatic cancer tissue images on a CT modality 

(Chapter 4). 

Finally, in Chapter 6, I addressed my future work to address this objective in the 

long term. 
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CHAPTER 2.  ASSOCIATIONS BETWEEN STATIN/OMEGA3 USAGE 

AND MRI-BASED RADIOMICS SIGNATURES IN PROSTATE 

1. Introduction 

Approximately one in seven men in the US will be diagnosed with prostate cancer 

in their lives [1]. Prostate cancer is the most prevalent form of noncutaneous cancer and 

results in the second-highest number of cancer-related deaths behind only lung cancer. 

Since prostate cancer adversely affects so many people, it is essential to study and better 

understand the nature of its progression as well as patient prognosis after treatments, with 

the ultimate goal of improving treatment plans and their success. 

Interesting correlations have been reported between prostate cancer and the use of 

statins and omega-3 fatty acids. Statins are a common heart medication, and omega-3 

fatty acids are fish oil supplements. A study in 2018 found that there was a strong 

correlation between the use of statins and a reduced risk of prostate cancer metastasis, as 

well as a reduced risk of prostate cancer mortality [2]. Another study in 2018 focused on 

the effects of omega-3 fatty acids in the diet on prostate cancer tumor progression in mice 

and concluded that its use can inhibit the growth and development of tumor cells [3]. 

However, such associations have not been consistently observed among different studies, 

and a causative association was not fully established, nor was its mechanism uncovered 

[4-14]. These intriguing associations are complex and controversial, drawing active 

research for further elucidation. In this study, we explore the potential utility of radiomics 

along these efforts in analyzing the usage of these drugs among a prostate cancer patient 

population. 
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Radiomics is a new field of medicine that involves extracting large amounts of 

quantitative data from medical images such as CT scans or MRIs [15,16]. The data 

extracted are termed radiomic features, and they can be anything from the intensity of 

pixels in an image to the shape and texture of regions of interest (ROIs). These features 

can also be extracted from derived images after applying image processing filters. 

Radiomics, therefore, provides additional data that are often not visible to the naked eye. 

Furthermore, using modern big data analytics, these large amounts of quantitative data 

can be studied across many patients to provide a new dimension of epidemiological data 

that relates to medical imaging phenotypes and the underlying biological characteristics. 

In prostate cancer, like in many other cancer sites, radiomics has found success in 

detecting and diagnosing tumors, characterizing index lesions, predicting tumor 

aggressiveness, evaluating treatment response and prognosis, and associating with tumor 

genomics [17-27]. However, to the best of our knowledge, radiomics has never been 

explored as a potential tool to investigate the relationship between medication exposure 

and prostate cancer. If radiomics signatures that are associated with the use of these drugs 

can be identified, such radiomics tools can be utilized to further analyze the longitudinal 

trends between medication exposure and prostate cancer, both during and after cancer 

development, based on available medical images. Using radiomics to study the 

correlation of statins and omega-3 in prostate cancer management adds a noninvasive, 

low-cost tool to assess any potential longitudinal tissue changes related to the drugs. 

Additionally, the presence of a defined radiomics signature that could differentiate 

patients who have been exposed to these medications and those who have not could help 
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to validate the previous studies suggesting that these medications do indeed have tissue-

level effects on the prostate gland as a whole as well as in prostate malignancy 

specifically [28,29]. The purpose of this study was to investigate the potential of 

radiomics as an image feature extraction technique to bridge the gap between clinical 

events and imaging. This is the first objective of this dissertation. By identifying potential 

feature patterns that could provide more understanding of the relationship between 

prostate cancer development and the use of these drugs, using radiomics as a tool.  

2. Materials and Methods 

2.1. Patient selection and clinical data collection 

Male patients who developed prostate cancer and received radiation therapy 

treatment at our institution between 2007 and 2016 were retrospectively analyzed via 

electronic medical records for this study. To be included in the study, patients needed to 

have a definitive record of positive or negative use of statins and omega-3 supplements 

and a high-resolution T2-weighted MRI scan at the time of diagnosis. A total of 91 

patients met the criteria and were included in the study. In addition to the diagnostic high-

resolution T2-weighted MRI scan, other information collected for the study included age, 

ethnicity, family history, pretreatment PSA, tumor stage, NCCN risk group, and tumor 

grade. All data collection was approved by the IRB of our institution (Protocol: 398-17-

EP). The characteristics of the studied patient cohort are summarized in Table 2.1. The 

percentage of patients with certain clinical characteristics is also listed in Table 2.1 for 

each medication subgroup. Of the 91 patients, 42 used statins, and 28 used omega-3. 

Among them, 13 patients used both medications. 
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Table 2.1 Patient Demographics 

Parameters 

Medication Usage All 

Statin Omega-3   

Yes (%) No (%) Yes (%) No (%) N % 

Total Number of Patients 42 (46.2%) 49 (53.8%) 28 (30.8%)  63 (69.2%) 91 100% 
Age at Diagnosis 
(median(range)) 66 (54-83)y 67 (54-84)y 65 (57-82)y 68 (54–84)y 67 (54-84)y   

Race       

White 85.70% 85.70% 82.10% 87.30% 78 85.70% 

Non-White 14.30% 14.30% 17.90% 12.70% 13 14.30% 
Family History of Prostate 
Cancer 

      

No 78.60% 75.50% 75.00% 76.20% 70 76.90% 

Yes 21.40% 24.50% 25.00% 23.80% 21 23.10% 

NCCN Risk Group       

Low/Favorable Intermediate 14.30% 14.30% 17.90% 12.70% 13 14.30% 

Unfavorable Intermediate 21.40% 18.40% 17.90% 20.60% 18 19.80% 

High 21.40% 24.50% 21.50% 23.80% 21 23.10% 

Very High 42.90% 42.80% 42.90% 42.90% 39 42.90% 

Gleason Grade, Primary       

3 (4+3) 40.50% 38.80% 42.90% 38.10% 36 39.60% 

4 (8) 54.80% 53.10% 50.00% 55.60% 49 53.80% 

5 (9,10) 4.80% 8.20% 7.10% 6.30% 6 6.60% 

Gleason Grade, Secondary       

3 (4+3) 23.80% 22.40% 17.90% 25.40% 21 23.10% 

4 (8) 23.80% 24.50% 28.60% 22.20% 22 24.20% 

5 (9,10) 52.40% 53.10% 53.60% 52.40% 48 52.80% 

cT       

cT1c 26.20% 26.50% 21.40% 28.60% 24 26.40% 

cT2       

cT2a 16.70% 18.40% 21.50% 16.00% 16 17.60% 

cT2b 14.30% 8.20% 14.30% 9.50% 10 11.00% 

cT2c 7.10% 10.20% 10.70% 7.90% 8 8.80% 

cT3 21.40% 22.40% 17.90% 23.80% 20 22.00% 

cT3a 14.30% 14.30% 14.30% 14.30% 13 14.30% 

cT3b             

cN       

0 88.10% 85.70% 82.10% 88.90% 79 86.80% 

1 11.90% 14.30% 17.90% 11.10% 12 13.20% 
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PSA       

Pretreatment PSA 
(median(range)) 

9.69 (1.31-
52.19) 

10.00 (1.39-
59.99) 

10.73 (2.00-
52.19) 

9.59(1.31- 
59.99) 

9.69 (1.31-
59.99)   

 

2.2. ROI contouring and image processing 

All of the patients received a high-resolution T2-weighted MRI scan in the pelvic 

region at diagnosis. The images were taken using Philips Medical Systems Achieva 1.5 T 

MRI scanners with a 2 mm slice thickness. Using Velocity software (Varian Medical 

Systems, Palo Alto, CA, USA), each MRI scan was manually contoured on two separate 

ROIs: the prostate gland and the peripheral zone of the prostate. The whole prostate gland 

is the most common region reviewed by radiologists and is also easy to contour for future 

studies, while the peripheral zone is where over 90% of prostate cancers develop [30]. 

Figure 2.1 shows the created contours on two example patients, with the prostate gland 

outlined in blue and its peripheral region outlined in red. 

Figure 2.1 Example Contours of the Prostate ROI. Example contours of the prostate ROI 

(blue) and the peripheral zone ROI (red). 

All of the images and segmented ROIs were then sent to 3D-Slicer v4.10 for 

image processing and radiomic feature extraction [31, 32]. To avoid bias field distortions 
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and data heterogeneity bias, a bias field correction using N4 and an image normalization 

using histogram matching was performed on all images [33]. 

2.3. Radiomic feature extraction 

Radiomic feature extraction was performed using the radiomics module in 3D-

Slicer v4.10 [32]. Feature extraction used a resampled voxel size of 2 × 2 × 2 mm3 and a 

fixed bin width of 25. A kernel size of 5 was used for Laplacian of Gaussian (LoG) 

feature extraction. For each ROI, a total of 944 radiomic features were extracted. All of 

the features are defined in compliance with the feature definitions according to the 

Imaging Biomarker Standardization Initiative (IBSI) [34]. They are divided into the 

original features (107 features), LoG features (93 features), and wavelet features (744 

features). The original features contain 14 shape features, 18 first-order statistical 

features, 14 gray-level dependence matrix features, 24 gray-level co-occurrence matrix 

features, 16 gray-level run-length matrix features, 16 gray-level size zone matrix features, 

and 5 neighboring gray-tone difference matrix features. The LoG features are calculated 

on the derived images by applying a LoG filter. The wavelet features are calculated on 

the derived images by applying either a high or low pass wavelet filter in each of the 

three cardinal dimensions, creating a total of 8 different filter combinations (HHH, HHL, 

HLL, HLH, LLL, LLH, LHL, and LHH). Because the shape features do not change on 

the derived images, the LoG and wavelet features do not include shape features. The full 

list of radiomic features is provided in Appendix Table 7.1. 
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2.4. Data analysis 

Heatmaps were first generated based on each ROI to display the radiomic feature 

patterns for patients and their correlations with the use of statins or omega-3 supplements. 

Four combinations were made: Omega-3/Prostate, Omega-3/Peripheral, Statin/Prostate, 

and Statin/Peripheral. For each drug/ROI combination, a machine-learning model was 

created to select and analyze specific radiomic features that showed a correlation with 

drug usage. The model was trained and tested for its predictability with a workflow, 

depicted in Figure 2.2. 

Figure 2.2 A Schematic Drawing of the Data Analysis Workflow 

The four combinations of drug/ROI were studied independently in the data 

analysis workflow with the following steps. In the feature selection step, all patients were 
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randomly sampled without replacement for 1000 rounds to use two-thirds of the data for 

feature selection and training. A univariate ANOVA analysis was first conducted on all 

radiomic features using the selected patients in each round. Features with a false-

discovery-rate-adjusted value of p < 0.5 were kept for the next step. The selected features 

with Pearson’s correlation coefficient > 0.8 were then grouped in clusters, and only the 

feature with the lowest p-value was kept in each cluster to reduce the dimension further 

[35]. 

To determine the learner for the next step, AdaBoost, Gradient Boosting Machine 

(GBM) [36], RF, Isolation Forest, and bagging classifier were tested separately with 5-

fold cross-validation and parameter grid search. GBM achieved the best average AUC 

(Table 2.2). 

Table 2.2 Details of Model Selection 

Model Best parameter set AUC 

RF {'max_depth': 1, 'max_features': 0.7, 
'n_estimators': 10} 0.679 

GBM {'learning_rate': 0.1, 'max_depth': 1, 
'n_estimators': 10, 'subsample': 0.5} 0.686 

Bagging {'max_features': 0.7, 'max_samples': 
0.5, 'n_estimators': 5} 0.677 

AdaBoost  {'learning_rate': 1.0, 'n_estimators': 5} 0.652 

Isolation Forest {'max_features': 1.0, 'max_samples': 
0.5, 'n_estimators': 5} 0.562 

 

Consequently, GBM was selected for the final model training and the subsequent 

feature selection processes. A sequential floating-forward method was then utilized to 

select feature candidates, which gave the highest AUC value with a GBM. Only the 
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features that could improve the AUC by more than 0.01 in each round were kept. All 

features were ranked by the frequency of those features selected in all 1000 rounds of 

resampling and the top 10 feature candidates were selected. Details of the top 10 feature 

candidates for the four combinations of drug/ROI are provided in Appendix Table 7.2 – 

7.5, respectively. 

Model fitting and validation were applied to GBM using the default gradient-

boosting machine classifier integrated in mlr (v2.18.0) (R Foundation for Statistical 

Computing, Vienna, Austria) [37]. The best number of features in a model was balanced 

between high bias (an underfitted model) and high variance (an overfitted model). For 

each round of model fitting, the total search space is 8 × 4 × 3 × 3 × 3 × 3 = 2596, 

including the number of top features from 3 to 10 features (8), the number of trees (4), 

shrinkage (3), interaction depth (3), the minimum number of training set samples in a 

node to commence splitting (3), and bag fraction (3). A 500-round randomly sampled 3-

fold cross-validation was applied, yielding 1500 validation tests for each drug/ROI 

combination. For each test, a receiver operating characteristic (ROC) analysis was 

conducted with the AUC and precision-recall AUC (PRAUC) values calculated. All data 

analysis was performed using R (version 4.0.2). 
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3. Results 

In the heatmaps shown in Figure 2.3, the studied patients were clustered into 

similar radiomic expression patterns of the prostate gland and the peripheral region of the 

prostate. Information regarding statin and omega-3 use is also included. Two outlier 

patients were observed with extreme feature z-scores, but excluding them did not affect 

feature selection or model performance (data not shown), likely due to the robust 

resampling procedures performed in data analysis. 

Figure 2.3 Heatmaps on Radiomic Feature Pattern. Heatmaps showing the radiomic 

feature pattern across the patient population with the usage of omega-3 and statin for (A) 

the prostate ROI and (B) the peripheral ROI. 

Following the data analysis pipeline described in the Methods section, a model 

was then constructed and tested for each of the four drug/ROI combinations: omega-

3/prostate ROI (6 features), omega-3/peripheral ROI (6 features), statin/prostate ROI (6 

features), and statin/peripheral ROI (3 features). On the 1500 validation datasets from the 

500-round resampled 3-fold cross-validation, the models achieved an average (standard 
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deviation) AUCs of 0.70 (±0.08) for omega-3/prostate, 0.74 (±0.08) for omega-

3/peripheral, 0.78 (±0.07) for statin/prostate, and 0.72 (±0.09) for statin/peripheral. 

Figure 2.4 plots the average ROC curves from the validation analyses for these models. 

Figure 2.4 Average ROC Curves of the Radiomics Models. Average ROC curves of the 

radiomics model for (A) omega-3 usage prediction based on prostate ROI, (B) omega-3 

usage prediction based on peripheral ROI, (C) statin usage prediction based on prostate 

ROI, and (D) statin usage prediction based on peripheral ROI. The ROC curves are 

averaged from the 1500 validation test sets. 

To reveal the connection between radiomic features and drug usage, the top 6 

features were listed in Table 2.3 for each prediction. Identical radiomic features were 

found in two ROIs in Station prediction tasks. This finding could indicate that Statin 

usage may be associated with a change in the prostate's morphology and that a stable set 

of radiomic features could be identified. On the Omega-3 prediction tasks, no such 
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radiomic features were found. The possible cause could be the imbalance in the Omega-3 

usage data. 

Table 2.3 Top 6 Feature Comparison 

Prostate/Omega-3 

wavelet_HLL_glszm_LargeAreaHighGrayLevelEmphasis 

log_sigma_5_0_mm_3D_firstorder_Mean 

wavelet_HLH_ngtdm_Busyness 

wavelet_HLH_glcm_ClusterShade 

wavelet_HHL_glcm_Imc1 

log_sigma_5_0_mm_3D_glszm_SmallAreaLowGrayLevelEmphasis 
  

Prostate/Statin  

wavelet_HHH_glcm_Correlation 

wavelet_HHH_firstorder_Median 

wavelet_HLL_glcm_Correlation 

log_sigma_5_0_mm_3D_gldm_SmallDependenceLowGrayLevelEmphasis 

wavelet_HHL_firstorder_Skewness 

wavelet_HLH_glcm_Correlation 
  

Peripheral/Omega-
3 

wavelet_LLL_firstorder_Kurtosis 

wavelet_LHH_glszm_SmallAreaLowGrayLevelEmphasis 

wavelet_HLL_glszm_SmallAreaEmphasis 

wavelet_HLH_firstorder_Mean 

wavelet_HLH_firstorder_Median 

wavelet_LHH_glszm_LowGrayLevelZoneEmphasis 
  

Peripheral/Statin 

wavelet_HHH_glcm_Correlation 

wavelet_HHL_firstorder_Median 

log_sigma_5_0_mm_3D_glszm_SizeZoneNonUniformityNormalized 

log_sigma_5_0_mm_3D_gldm_DependenceNonUniformityNormalized 

wavelet_HHL_firstorder_Skewness 

log_sigma_5_0_mm_3D_glszm_SmallAreaEmphasis 

 
4. Discussion 

Radiomics is a novel quantitative imaging approach that involves extracting a 

large number of features from medical images and developing predictive models based 
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on high-dimensional data analysis across large groups of patients. The underlying 

assumption is that modern high-resolution cross-sectional medical images contain 

information on biology and physiology that is not fully extracted or utilized by the 

conventional qualitative, single-patient approach. Combined with machine learning on 

populations of patients to uncover the otherwise hidden information from medical 

images, radiomics has been shown to facilitate the detection, diagnosis, and prognosis of 

many diseases, especially cancer [15,16,34,35]. 

Prostate cancer is the most prevalent non-cutaneous male cancer and is the second 

most lethal form of cancer for men in the United States [1]. Intra-gland and intra-tumor 

heterogeneity has also been well observed for prostate cancer. Based on MRI used in the 

routine management of prostate cancer, radiomics is well posited to study these 

heterogeneities as well as to assess the heterogeneity among different patients. While still 

in an early stage of development as a discipline, radiomics has found success in prostate 

cancer diagnosis, risk characterization, genomic association, and prognosis prediction, 

offering a non-invasive and repeatable approach in these applications [18-

22,24,25,27,36]. With recent research, epidemiological, and clinical development in 

prostate cancer, risk stratification has become an increasingly central theme in prostate 

cancer management. Risk identification and prediction play a critical role in personalized 

clinician-patient decision-making. Radiomics, therefore, provides a potential tool for 

exploring the intricate interplays between medications and health supplements such as 

statin and omega-3 and prostate cancer that are currently active areas of risk 

investigations. 
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In this study, we explored the relationship between radiomics and the use of 

statins and omega-3 supplements for a cohort of 91 prostate cancer patients. This study 

used radiomic data based on high-resolution T2-weighted MRI, which is the most used 

type of medical imaging technique for prostate cancer diagnosis. Two different ROIs 

were investigated, including the prostate gland and the peripheral region of the prostate. 

Through this study, we identified specific radiomics signatures that correlated with the 

use of these drugs and presented machine learning models based on these signatures that 

were ultimately able to successfully predict the use of both medications for a given 

patient with prostate cancer. 

Between the two ROIs, the prostate gland showed a slightly lower AUC than the 

peripheral zone (0.70 vs. 0.74) for omega-3 prediction but a marginally higher AUC 

(0.78 vs. 0.72) for statins prediction. The finding on the identical features in the Statin 

usage prediction on both ROIs not only validates the previously found tissue-level effect 

of the medications on the prostate. However, it also preliminarily establishes radiomics 

signatures that could allow us to investigate the effects and dynamics of statins and 

omega-3 on prostate cancer development and growth further. 

There are some limitations to this work. The study was a single-institution, 

retrospective study, with a relatively small number of patients (91 patients) meeting the 

selection criteria. To maximize the available data and avoid overfitting, we utilized cross-

validation of a large number of random repetitions, and the number of radiomic features 

in the final models was also limited to 3–6 features. For omega-3, the data were more 

unbalanced, which could also lead to overfitting. To study its effect, we calculated both 
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the AUC and PRAUC for each model. As expected, bigger drops were observed in the 

PRAUCs for the omega-3 models. Figure 2.5 shows the validation of AUC and PRAUC 

achieved by each model. The selected radiomic features used in each model are also 

shown in Figure 2.5. The low performance of the Omega-3 prediction tasks may be 

caused by another factor. Omega-3 fatty acids are commonly found in food resources. 

Apart from the reported drug usage by the patients, each individual's diet could also 

contribute to additional variability that may not be captured in the clinical records. 
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Figure 2.5 AUC and PRAUC Score with Top Features. AUC and PRAUC achieved on 

the 1500 validation sets by the radiomics model for (A) omega-3 usage prediction based 

on prostate ROI, (B) omega-3 usage prediction based on peripheral ROI, (C) statin usage 
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prediction based on prostate ROI, and (D) statin usage prediction based on peripheral 

ROI. The radiomic features used in each model are also listed. 

To further assess the chance of overfitting despite the above mitigating measures, 

a control experiment with a third medication, angiotensin-converting enzyme inhibitors 

(ACEI) was performed. ACEI is a type of renin-angiotensin system (RAS) inhibitor and 

is commonly used to treat hypertension. A few studies have analyzed the association 

between ACEI and prostate cancer [41,42]. These studies tend to suggest that ACEI has 

no effect on prostate cancer development or progression. In our cohort, 35 patients 

(38.5%) reported using ACEIs. Applying our radiomics data analysis workflow through 

the ACEI usage data, we achieved an average AUC of 0.58 and an average PRAUC of 

0.49 with the ACEI/prostate model (four features) and 0.54 and 0.52 with the 

ACEI/peripheral model (six features). Top radiomic features are provided in the 

Appendix Table 7.6. The superior model performances by the statin and omega-3 

models compared with the models of the control medication, ACEI, further confirmed the 

validity of our radiomic findings on the two investigated medications. 

Additionally, most of the patients in the dataset had their primary care physicians 

outside of our institution, so we could not access the initial lipid profiles to assess the 

reasoning behind their use of these medications or any related medical care differences 

that these patients may have. In our study, we individually studied the four drug/ROI 

combinations. The medication overlap of the 13 patients who used both medications was 

not considered, assuming that the possible mechanisms of prostate cancer for the two 

medications are independent of each other. We also did not match the other patient 
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characteristics for each medication's positive and negative subgroups. These choices were 

made to maximize the sample size for the study. While biases could possibly be 

introduced, they are unlikely because there is currently no literature suggesting a 

correlation between the mechanisms of the two medications and prostate cancer, and the 

patient subgroups are largely balanced on other characteristics, as shown in Table 2.1. 

Furthermore, in this study, we analyzed radiomics based on imaging data only at a single 

time point; the time of diagnosis and the effect of varying lengths of medication usage 

before this time point was not investigated. While this could have acted as a confounding 

factor in this study, the promising findings of this preliminary study could guide future 

endeavors to use the radiomics tool for exploring the longitudinal tissue effects related to 

these medication uses in the course of prostate cancer development and progression. 

5. Conclusions 

For the first time, this preliminary study of two medications, statin and omega-3, 

in prostate cancer patients investigated the potential of radiomics in investigating 

drug/cancer interactions. It bridges the gap between clinical events and imaging and sets 

the foundation for the extraction of cancer imaging features to be utilized in downstream 

analytical computer vision tasks. This is an essential first step in realizing the first 

objective of this dissertation. 

While further large-scale studies and validations are needed, encouraging findings 

from this study indicate that radiomics supports the tissue-level effects of these 

medications and that radiomics can be a valuable tool for exploring the intricate 
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relationships between such drugs and the development and progression of prostate 

cancer. 

This initial study revealed that the quality and quantity of image data could hinder 

the potential to gain insights from cancer studies. The following two chapters will focus 

on addressing data hungriness in cancer imaging. 
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CHAPTER 3.  TISSUE-SPECIFIC COLOR ENCODING AND GAN 

SYNTHESIS FOR ENHANCED MEDICAL IMAGE GENERATION 

1. Introduction 

Medical imaging and analysis play a critical role in the realm of healthcare, 

especially for cancer. They are crucial in identifying diseases early [1], allowing timely 

interventions, and improving patient outcomes [2]. They are employed in precise 

diagnoses, understanding disease characteristics, and devising treatment plans. 

Furthermore, image analysis guides surgical processes and monitors treatment 

effectiveness, minimizing invasiveness and complications [3]. Medical images are also 

indispensable in education, enhancing diagnostic skills and deepening our understanding 

of diseases [4]. They are integral to medical research, clinical trials, and the advancement 

of healthcare technologies [5]. 

With the rapid progression in computer vision and deep learning techniques, there 

has been significant progress in medical image analysis. However, unlike the typical 

computer vision tasks involving natural images, medical images present greater diversity, 

are more costly to obtain, and raise additional ethical concerns, particularly regarding 

patient privacy and consent. Consequently, constrained data availability significantly 

hinders medical imaging research and education [6]. The availability of accessible 

datasets is crucial for the advancements in the medical domain. Generative Adversarial 

Networks (GANs) are a common deep-learning approach for generating synthetic 

images. GANs involve a generator and a discriminator engaged in a game-theoretic 

competition to produce authentic synthetic data [7]. GANs are well-suited for generating 
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artificial data as they can learn the data distribution and generate new samples that 

closely resemble the original data from a latent space. 

While GANs have achieved remarkable success in synthesizing natural images, 

their application to synthetic medical images presents a unique challenge. Even though 

synthetic medical images can often achieve top-tier scores in image quality metrics such 

as FID (Fréchet Inception Distance), there is a critical concern related to the presence of 

artifacts that violate fundamental anatomical features. These anomalies, which 

compromise the anatomical accuracy of the generated images, can significantly limit the 

usability and reliability of synthetic medical imagery in crucial applications such as 

diagnostics, treatment planning, medical research, and education. Addressing and 

mitigating these artifacts is critical for harnessing the full potential of GANs in 

generating medically relevant imagery, especially for cancer tumor imaging. 

This project presented a new strategy to enhance the synthesis of medical images 

using GANs. Rather than directly training GANs on traditional gray-scale medical 

images, I propose a tissue-specific GAN approach, which divides original gray-scale 

medical images into distinct tissue-specific representations. For example, tumor tissue 

will be distinguished from surrounding health tissues. These representations are then 

encoded into dedicated color channels of composite images, subsequently used to train 

GANs. Our premise is that this approach allows GANs to learn and replicate the specific 

characteristics of various tissues and their relationship more effectively. This tissue-

specific strategy is particularly useful for cancer image synthesis, as it can enhance the 

accuracy of the image by emphasizing the tumor tissue. Our experimental investigations 
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have shown that this method leverages the capabilities of GANs to generate synthetic 

images that can more accurately capture the subtle features of medical tissue. 

In recent years, significant progress has been made in optimizing GANs; there are 

variants of GANs that achieve significant improvements on general image synthesis tasks 

by varying the objective of discriminator [8], generator [9], [10] or architecture [11] from 

the vanilla GAN [7]. In the medical imaging domain, modalities like MRI, CT scan, 

ultrasound, and radiography have different natures in image acquisition; it is necessary to 

reevaluate the usability or potential of the deep generative models, which are usually 

developed with natural image datasets. 

Several works have demonstrated the generation of realistic synthetic medical 

imaging data. In brain MRI data generation, Shin et al. used a pix2pix conditional GAN 

[12] to generate brain tumor MRI images with segmentation masks [13]. The application 

of a PGGAN-based model was also explored in generating brain MRI images [14]. In 

lung cancer nodule generation, a DCGAN-based method demonstrated convincing results 

that were positively received by radiologists [15], [16]. Subsequently, a later model was 

developed to generate de-identified public radiography datasets [17]. D2FE-GAN [18] 

utilized decoupled dual feature representations to synthesize cross-modality MRI. 

FedMed-GAN [19] enhanced unsupervised cross-modality synthesis of brain images in a 

federated manner. 3DGAUnet [20] incorporated a 3D U-Net architecture into the 

generator, improving 3D shape and texture synthesis, particularly for pancreatic ductal 

adenocarcinoma (PDAC) tumors and pancreatic tissues. 
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StyleGAN [21] effectively managed features at diverse scales by incorporating 

modified latent vectors across various network layers at different resolutions. This 

approach significantly improved stability, visual fidelity, and maneuvering capabilities. 

Its successor, styleGAN2-ada, exhibited superior performance, especially when dealing 

with relatively small training datasets [22]. 

Despite the visual realism and high scores in image quality metrics, such as FID, 

synthetic medical images face challenges due to artifacts that deviate from fundamental 

anatomical features [23]. There's still a considerable way to go before artificially 

synthesized medical imaging data can be clinically usable. More than that, cancer 

imaging, especially 3D imaging synthesis, is an even further goal to fetch, with its 

heterogeneity and complex tissue composition. To achieve great things, start with small 

steps. This project sets the fundamentals for developing a successful, high-quality 3D 

cancer image generative model. Firstly, exploring a lower dimension domain, 2D X-ray 

images, could dramatically reduce computing needs and unforeseen technical challenges. 

Secondly, the experiences learned from training in 2D medical imaging data could be 

transferred to the development of 3D cancer imaging models. Hence, this project explores 

possible approaches that generate high-quality medical imaging in 2D, prioritizing 

anatomical integrity without drastically increasing computing overhead. This chapter 

proposes incorporating tissue-specific channels as an encoding mechanism for tissue-type 

details in the original training data as the preliminary attempt to Objective Two of this 

dissertation. 
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2. Methods 

The traditional method involves training a GAN model directly on the original 

medical images and using the trained GAN to generate synthetic images, where both the 

training and synthetic images are gray-scale medical images, as depicted in Figure 

3.1(a). In contrast, our approach enables precise manipulation of tissue-specific image 

attributes within the original gray-scale medical images, facilitating the stable 

construction of realistic images with the desired tissue characteristics, as illustrated in 

Figure 3.1(c). Specifically, our approach can be summarized into the following key 

steps: 
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Figure 3.1 A Schematic Comparison of GANs. Comparison of (a) a traditional GAN 

approach, (b) an alternative non-color encoding approach, and (c) our tissue-specific 

color encoding and GAN Approach. 

2.1. Data preprocessing  

Starting with a collection of grayscale medical images, for each image, different 

tissues or structures are segmented and isolated, each with its unique grayscale range. 

Separate grayscale images for these tissues are then generated based on their ranges. 

2.2. Tissue-specific color encoding 

Color images were created with red, green, and blue channels. Each channel is 

reserved for encoding one of the gray-scale tissue images. The gray-scale images of 
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different tissues are encoded into their respective channels, creating a multi-channel color 

image. 

2.3. GAN training 

The multi-channel color images are used as the training dataset for a GAN model. 

The GAN is trained to generate synthetic color images that capture the diversity of tissue 

features. 

2.4. Post-processing  

From the trained GAN model output, these gray-scale images represent the 

individual tissues or structures. These gray-scale images were blended to create a final 

synthetic gray-scale medical image and capture tissue features. 

My intuition is that the effectiveness of our approach can be attributed to tissue-

specific color encoding, which not only enhances the differentiation of various tissues but 

also improves the depiction of their spatial relationships within medical images. This 

approach enhances the representation of tissue features and generates more realistic 

synthetic medical images. An empirical study has been conducted to verify our 

hypothesis. 

3. Experimental Design 

I tested our approach using high-resolution breast coronal images. Our method 

enabled the generative model to create realistic breast coronal slices with the desired ratio 

of fatty tissue to glandular tissue. I evaluated the quality of the generated images using 

both qualitative assessment and quantitative metrics, comparing them to alternative 

approaches. 
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3.1. Dataset 

Our model is trained on the 2023 AAPM Grand Challenge on Deep Generative 

Modeling for Learning Medical Image Statistics dataset [24]. We adopted this well-

established image benchmark for training and testing, despite the absence of cancer 

tumor images, because it can provide an accurate evaluation of our methodology. The 

dataset contains 108,530 8-bit images with a size of 512 pixels × 512 pixels. Images are 

initially from VICTRE breast phantom creation software that emulates coronal slices from 

anthropomorphic breast phantoms. The data comprises four breast tissue composition 

categories: extremely dense, heterogeneously dense, fibrous and glandular density, and 

almost entirely fatty. Breast density is classified according to the BI-RADS system [25]. 

Figure 3.2 shows two images of coronal slices from this dataset. 

Figure 3.2 Ground Truth Image Slices. Two Ground Truth Breast Coronal Slices From 

the Dataset Used in Our Experiment. 

3.2. Tissue-specific channels 

The original gray-scale image was converted with a size of 512 pixels × 512 
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pixels into three channels based on its tissue-specific intensity range. The fat tissue 

channel includes all pixels in the range of [45, 120), the glandular tissue channel consists 

of all pixels in the range of [120, 226), and the dense tissue channel includes all pixels in 

the range of [226, 255). For each original image, a new color image with a size of 512 

pixels × 512 pixels is created, and the fat, glandular, and dense tissue channels are 

encoded into the red, green, and blue channels of the color image, respectively. The 

threshold of the range is based on X-ray attenuation coefficients assigned to the various 

tissues on existing breast computed tomography. Figure 3.3 shows examples of fat, 

glandular, and dense tissues separated from two ground truth coronal slices. 
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Figure 3.3 Tissue Separation. Examples of Fat, Glandular, and Dense Tissues (from the 

top to bottom rows) Separated From Two Ground Truth Breast Coronal Slices. 

3.3. Generative model 

To counter the constraint of the limited amount of data, augmentations are widely 

used; our generative model is based on the StyleGAN2-ada [22] since it has been 

reported to have top performance when dealing with limited data with a controllable 

augmentation pipeline. The training set has a total number of 108,530 images. The 

parameters are as follows: training duration = 25,000 kimg, R1-gamma = 6.6, batch size 
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= 8, learning rate = 0.0025. The augmentation factor = 0.6, with blit, geom, color, filter, 

noise, and cutout image augmentation available. The best model achieved at 7600 kimg. 

10,000 images were generated with the network weights for further tests. The original 

output of the images has three channels; each channel goes through a background noise 

reduction pipeline. Low-value pixels were removed, and the sum of three matrices was 

used to generate final gray-scale images. 

3.4. Alternative non-color encoding method 

In addition to the traditional GAN approach illustrated in Figure 3.1 (a), we have 

developed an alternative method, as depicted in Figure 3.1 (b), which does not utilize 

color encoding. In this alternative approach, tissues are segregated into distinct gray-scale 

images based on their unique intensity ranges, similar to our method. However, in 

contrast to our approach, these individual gray-scale tissue images are utilized to train 

separate GAN models. Subsequently, these GANs are applied to generate synthetic 

images for the respective tissues. The synthetic images of the individual tissues are then 

blended to produce a final image. 

4. Results 

Figure 3.4 shows two results produced by applying the traditional GAN 

approach, as depicted in Figure 3.1 (a), with the breast images serving as the training 

dataset. Generally, the conventional GAN technique can generate visually pleasing 

results, as shown in Figure 3.4 (a) and (b), that closely resemble ground truth images, 

e.g., Figure 3.2. However, upon closer examination, we can observe that these images 

have certain imperfections, failing to retain subtle tissue characteristics. For instance, 
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when we zoom in, we notice discrepancies such as the discontinuity within the dense 

tissue (Figure 3.4 (c)) and the presence of shadows within the glandular tissue (Figure 

3.4 (d)). These anomalies do not correspond with the expected anatomical features of 

these tissues. 

Figure 3.4 Defects of the Traditional Approach. Example results using the traditional 

GAN approach (top row) and their defects detected upon closer examination (bottom 

row). 

Figure 3.5 shows examples of synthetic images of fatty tissue, glandular tissue, 

and dense tissue that were generated by the alternative non-color encoding method. We 
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can see that these results exhibit a remarkable similarity to ground truth tissue images, 

such as the ones shown in Figure 3.3. Furthermore, this approach could reduce the 

imperfections the conventional GAN method produces. We hypothesize that this is 

because of the means of isolating and employing individual tissues for training specific 

GANs, yielding better synthetic outcomes for each tissue type. The rationale is that this 

reduced the complexity of each image by limiting the presented tissue type to only one. 

However, more than an overlay of these tissue images is required to produce high-quality 

final synthesized results. As revealed in Figure 3.6, the overly of three image layers fails 

to capture the coherent relationship among these tissues, as seen in the ground truth 

images, such as Figure 3.2. 
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Figure 3.5 Non-color Encoding Tissue Separation. The alternative non-color encoding 

method generates examples of synthetic fat, glandular, and dense tissue images (from the 

top to bottom rows). 
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Figure 3.6 Merged Breast Coronal Slices. Final breast coronal slice results, generated by 

blending fatty tissue, glandular tissue, and dense tissue images synthesized using the 

alternative non-color encoding method, fail to capture the cohesive relationship among 

these tissues. 

Figure 3.7 shows examples of synthetic fat, glandular, and dense tissue images 

generated by our method. We can see that these results also exhibit a remarkable 

similarity to ground truth tissue images, such as the ones shown in Figure 3.3, and 

effectively reduce the unwanted anomalies typically produced by the conventional GAN 

method. We postulate that this improvement is attributed to the separation of individual 

tissues and their encoding within distinct color channels, enabling the trained GANs to 

capture the unique characteristics of each tissue more precisely. In addition, a 

combination of these tissue images can produce high-quality final synthesized results. As 

revealed in Figure 3.8, the blended images can capture the coherent relationships 

among these tissues and are close to ground truth breast coronal slices, shown i n  

Figure 3 . 2 .  This suggests that our method can potentially preserve the spatial 

connections between different tissues, and encoding each tissue image into a separate 

color channel can help a trained GAN model capture and retain these inter-tissue spatial 
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relationships. Therefore, based on these qualitative experimental findings, we can see that 

our method can synthesize realistic fat, glandular, and dense tissue images and capture 

their anatomical relationship in the final photos by combining these individual tissue 

images. 

Figure 3.7 Synthetic Tissue Layers. Examples of synthetic fatty tissue, glandular tissue, 

and dense tissue images (from the top to bottom rows) generated by our method. 

We also utilize the FID metric [26] to quantitatively evaluate the results generated 

by the different approaches, as summarized in Table 3.1. The traditional GAN approach 
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can yield synthetic outcomes with a reasonable FID score of 13.04. However, it falls short 

of preserving anatomical details, as demonstrated in Figure 3.4. 

Table 3.1 FID Scores of the Results Generated by Different Methods 

Method 
Traditional 

GAN 
Non-color Encoding Approach Our Approach 

Synthetic 

Tissue 

Breast 

Coronal 

Slice 

Fat Glandular Dense 

Breast 

Coronal 

Slice 

Fat Glandular Dense 

Breast 

Coronal 

Slice 

FID 13.04 16.28 17.92 23.14 152.75 15.05 18.47 16.15 3.22 

 

The alternative non-encoding approach excels in faithfully synthesizing individual 

fat, glandular, and dense tissue images, achieved through training GANs with separate 

tissue representations extracted from the ground truth. However, when these synthetic 

tissue images are combined to produce final coronal slice results, they must attain a 

satisfactory FID score. The FID scores for this approach, as presented in Table 3.1, 

affirm the findings observed in Figure 3.5 and Figure 3.6. 

Figure 3.8 Mergerd Breast Coronal Slices from Our Method. Final breast coronal slice 

results, generated by blending fatty tissue, glandular tissue, and dense tissue images 
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synthesized using our method, can effectively capture the coherent relationships among 

these tissues. 

In contrast, our method delivers satisfactory FID scores for individual tissue 

images and high-quality final breath coronal slice images. Both the qualitative (Figure 

3.7 and Figure 3.8) and quantitative (Table 3.1) findings demonstrate the effectiveness 

and superiority of our approach compared to the alternative methods. 

My proposed encoding method verified that extending the 2D grey-scale image 

into 3D by storing each tissue type in one layer could improve the anatomical integrity 

and overall image quality. Additionally, it offers a more precise assessment of the 

computational demand and the manner in which the model would converge when 

processing 3D data. It has been a source of great inspiration for my future work on the 3D 

cancer imaging generative model. 

5. Conclusions 

We have presented a simple yet highly effective technique for medical image 

generation featuring tissue-specific color encoding and GAN-based synthesis. By 

incorporating gray-scale tissue images into the red, green, and blue channels of color 

images, our method significantly improves the representation of tissue characteristics and 

their anatomical relationships, producing synthetic medical images with enhanced 

realism. This innovative approach holds promise for various medical applications, 

offering access to high-quality, diverse, and easily interpretable synthetic medical data. 

Although our preliminary study focuses on encoding intensities of three tissues into the 

three channels of color images, it is feasible to expand our method to accommodate 
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multiple tissue images and encode them into multiple channels within high-dimensional 

vector representations for GAN training. This insight has the potential to enhance the 

cancer image synthesis task, as the complexity was derived from the intricate tissue 

composition, and tissue encoding could facilitate the learning tasks. 

This method can be applied to encompass a broader spectrum of tissues, 

especially for cancer images, to gain a more comprehensive understanding of 

mechanisms involved in tissue encoding. This will enable us to better capture the 

fundamental anatomical features and interrelationships among tissues in synthetic 

models, leading to more realistic medical images. In addition, we plan to engage domain 

experts in assessing synthesized outcomes, which will help us develop a deeper 

understanding of the practical implications of GAN models. 

This chapter provides valuable experience for the development of more complex 

3D models for cancer tumor image synthesis in the future. It serves as a simple 

implementation to achieve the objective two of this dissertation. This method provides a 

highly practical generative model encoding technique for medical imaging, bridging the 

gap that we described in Chapter 1. 
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CHAPTER 4.  3DGAUNET: 3D GENERATIVE ADVERSARIAL 

NETWORKS WITH A 3D U-NET BASED GENERATOR TO ACHIEVE THE 

ACCURATE AND EFFECTIVE SYNTHESIS OF CLINICAL TUMOR 

IMAGE DATA FOR PANCREATIC CANCER 

1. Introduction 

Pancreatic ductal adenocarcinoma (PDAC) represents a significant public health 

concern due to its delayed identification, the restricted efficacy of current 

chemotherapeutic treatments, and poor overall prognosis. It has the most elevated fatality 

rate among the primary types of solid malignancies. Despite extensive clinical and 

research endeavors spanning decades, the one-year survival rate is 20%. In comparison, 

the five-year survival rate remained in the single digits for a considerable time and only 

recently improved to 11% [1]. Despite the potential for a substantial increase in the 5-

year relative survival rate to 42% [2] if early detection at the localized stage is achieved, 

there is currently a lack of definitive screening methods for reliably identifying early-

stage pancreatic cancer in asymptomatic individuals. 

Computed tomography (CT) is one of the primary diagnostic imaging methods. In 

recent years, deep-learning-based methods have increasingly been perceived as versatile 

applications. They can directly integrate physical and semantic details into neural 

network architectures [3,4,5,6,7] and are employed to solve computer vision tasks in 

medical imaging, such as segmentation, registration, and classification of chest X-rays 

and tissue histopathology images [8,9]. For example, convolutional neural networks 

(CNNs) have shown high feasibility in image classification tasks, in both natural and 
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medical images, from 2D models to 3D models [10,11,12]. Some similar studies have 

been applied for pancreatic cancer classifiers to analyze and interpret features from 

medical imaging data [13,14]. 

While developing a deep learning model for image tasks, a substantial dataset 

(e.g., thousands of images) is typically needed to ensure the model converges without 

overfitting. Nevertheless, the availability of clinical information, particularly for PDAC, 

is frequently constrained by the small size of the cohorts, which presents obstacles to 

achieving optimal model training. Researchers have developed methods such as data 

augmentation, generative adversarial networks (GAN), cross-validation, and optimization 

approaches like sharp-aware minimization [15] to overcome the lack of training data. 

Generative models have demonstrated efficacy in medical image synthesis, particularly in 

2D imaging modalities. Recently, researchers have developed 2D-based GAN models to 

generate realistic CT images of pancreatic tumors [16,17]. 

Nevertheless, the utilization of 3D generative models in the context of PDAC is 

still constrained, and directly applying existing approaches (e.g., 3D-GAN [18]) may not 

lead to desirable results for synthesizing three-dimensional CT image data specific to 

PDAC. PDAC tumors often exhibit subtle imaging features because they can be iso-

attenuating or hypodense compared to the surrounding pancreatic tissue, making them 

difficult to distinguish visually. Additionally, PDAC tumors may lack well-defined 

margins, making differentiating them from normal pancreatic parenchyma challenging. 

Therefore, developing efficient techniques for enhancing 3D PDAC tumor datasets is 

crucial to facilitate the progress of deep learning models in addressing PDAC. 
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In this work, I developed a GAN-based tool capable of generating realistic 3D CT 

images depicting PDAC tumors and pancreas tissue. To overcome these challenges and 

make this 3D GAN model perform better, our innovation was to develop a 3D U-Net 

architecture for the generator to improve shape and texture learning for PDAC tumors 

and pancreatic tissue. The application of 3D U-Net in medical picture auto-segmentation 

showed appropriate and superior results. Notably, this is the first instance of its 

integration into GAN models. This 3D GAN model generates volumetric data of PDAC 

tumor tissue CT images and healthy pancreas tissue CT images separately, and a blending 

method was employed to create realistic final photos. Thorough examination and 

validation across many datasets were conducted on the developed 3D GAN model to 

ascertain the efficacy and applicability of the model in clinical contexts. We evaluated the 

effectiveness of our approach by training a 3D CNN model with synthetic image data to 

predict 3D tumor patches. A software package, 3DGAUnet, was developed to implement 

this 3D generative adversarial network with a 3D U-Net-based generator for tumor CT 

image synthesis. This package has the potential to be adapted to other types of solid 

tumors, hence making significant contributions to the field of medical imaging in terms 

of image processing models. This software package is available at 

https://github.com/yshi20/3DGAUnet. 

This chapter achieved Objective Two of this dissertation. Using the insight from 

the last chapter, Chapter 3, my developed method provided the first-ever 3D generative 

model to bridge the current gap in the high-quality PDAC 3D volume synthesis task. 
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2. Methods 

Figure 4.1 (a) illustrates the overall workflow of our proposed method. Given a 

set of PDAC CT images that can be acquired through different sources, we first conduct 

data preprocessing on these raw image data to tackle data heterogeneity and generate 

normalized and resampled volume data for tumor tissues and pancreas. These 

preprocessed datasets are then used as the training set and fed into 3DGAUnet; the new 

3D GAN model developed in this work for tumor CT image synthesis. The corresponding 

synthetic data can be generated after the tumor and pancreas types are learned 

independently via 3DGAUnet. 

Figure 4.1 A Schematic Overview of Our Method. The workflow components (a) and the 

architecture of our GAN-based model (b), 3DGAUnet, consisting of a 3D U-Net-based 

generator network and a 3D CNN-based discriminator network to generate synthetic data. 
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We evaluated three blending methods to combine these synthetic tissues 

effectively and identified the most suitable technique for PDAC tumor CT images. Given 

that the pancreas is a parenchymal organ, the relative location of the tumor tissue was 

found to be less significant. As a result, the focus was primarily on seamlessly and 

realistically blending the different tissue types to ensure accurate and reliable results for 

diagnosing PDAC tumors in CT images. 

We evaluated the usability of the synthetic data by applying it in a diagnosis task. 

For this purpose, we employed a 3D CNN classifier capable of taking 3D volumes as 

input, which improved the traditional classification tools that only use individual slices 

and overlook the inter-slice information. 

By integrating the synthetic data, we addressed common challenges encountered 

in real-world scenarios, such as the small size of the dataset and imbalanced data. The 

addition of synthetic samples helped to improve the model’s performance and mitigate 

issues related to imbalanced datasets. 

2.1. 3D CT image data preprocessing 

We used a training dataset for the GAN model, consisting of PDAC CT images 

from 174 patients from two sources. One was from the University of Nebraska Medical 

Center (UNMC) rapid autopsy program (RAP). This dataset has 71 de-identified patient 

data points, with the tumor contour labeled by clinical professionals (UNMC IRB 

PROTOCOL #127-18-EP). The other was the Medical Segmentation Decathlon pancreas 

training data [19], which has 103 volumetric images with a segmentation mask of tumors 
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and pancreas. In addition, the training dataset consisted of 80 healthy pancreas CT 

images from the Cancer Imaging Archive (TCIA) Pancreas-CT data [20]. 

Normalization and resampling were essential for these raw image data, as the 

images were obtained from various instruments with distinct configurations. By 

resampling all volumetric data to 1 mm isotropic voxel spacing, each pixel in an image 

represents the same physical distance along each axis. For normalization, the window 

level threshold is an important measurement. In CT imagery, the Hounsfield unit (HU) is 

a dimensionless unit to measure radio density and quantify tissues within the body. It is 

calculated based on a linear transformation of X-ray’s baseline linear attenuation 

coefficient, where distilled water is defined as zero HU and air is described as −1000 HU 

[21]. Similar HU values across different studies indicate the same type of tissue. 

However, calculating HU values for grayscale images with different window-level 

settings can lead to different visual appearances. In this study, the original images had 

HU values ranging from −408 to 1298. For normalization, we mapped HU values to the 

range of −100 to 170 for abdominal soft tissues based on the advice of an experienced 

radiologist. 

The original image data from UNMC had metal markers that caused extremely 

high HU values and deflected the X-ray beam, causing the sounding tissue to have a 

higher HU value. To counter this defect, pixels above 200 HU were replaced with the 

mean HU value of the entire pancreas captured in each CT scan. Since the pancreas has 

an irregular shape, the tumor region and surrounding pancreas tissues that filled a cube 

with 64×64×64 pixels were kept as the field of interest. This made the GAN model learn 
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the texture instead of learning the premier of the pancreas organ, which varies among 

different patients. After the data preprocessing step, the training volumetric data were 

32×32×32 for tumor tissue and 64×64×64 pancreas cubes in grayscale. 

2.2. 3DGAUnet: 3D U-Net based GAN model 

We devised a 3D U-Net-based GAN model, 3DGAUnet, to synthesize 3D 

pancreas tumor and tissue images. Figure 4.1(b) shows our model architecture. At a high 

level, our model follows a typical GAN model that comprises two primary components, a 

generator G and a discriminator D. The generator creates synthetic samples. In contrast, 

the discriminator differentiates between synthetic and natural samples. They compete in 

an adversarial game to improve the generator’s ability to generate genuine samples and 

the discriminator’s ability to identify them. The aim is to produce synthetic samples that 

closely approximate their natural counterparts. This process can be defined as a min-max 

optimization task: 

min'𝑚𝑎𝑥(𝐿'/0, (7) 

and 𝐿𝐺𝐴𝑁 is defined as: 

𝐿𝐺𝐴𝑁=𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎[log𝐷(𝑥)]+𝔼𝑧∼𝑝𝑧[log(1−𝐷(𝐺(𝑧)))] (8) 

where 𝔼	is the cross-entropy of the binary classifier of the discriminator. The task of 

generator G is to minimize the generator loss to generate synthesized images that cannot 

be distinguished by the discriminator D: 

𝑚𝑖𝑛𝐺𝐿𝐺𝐴𝑁=𝑚𝑖𝑛𝐺𝔼𝑍∼𝑝𝑍[log(1−𝐷(𝐺(𝑧)))] (9) 

The task of discriminator D is to separate authentic images and synthesized 

images better: 
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𝑚𝑎𝑥𝐷𝐿𝐺𝐴𝑁=𝑚𝑎𝑥𝐷{𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎[log𝐷(𝑥)]+𝔼𝑧∼𝑝𝑧[log(1−𝐷(𝐺(𝑧)))]} (10) 

Our 3D GAN model employs a 3D U-Net-based structure for the 3D GAN 

generator and a 3D CNN-based classifier as the discriminator. The 3D U-Net structure 

has proven advantages for effectively capturing global and local structures, such as CT 

image auto-segmentation for tissues like the pancreas [22]. We developed a 3D U-Net 

structure for 3D image synthesis. This is the first time a 3D U-Net structure has been 

used for a generator in a GAN model to tackle the challenging shape and texture learning 

for PDAC tumors and pancreatic tissue. Each convolution layer in this model has a kernel 

size of 3×3×3, a stride of 2, and a ReLU activation. The skip connections allow the low-

level information to be passed to the upsampling stacks to avoid the vanishing gradient 

problem. 

The discriminator is used to identify if the input image is synthesized images from 

the generator’s output. It has three 3D convolutional blocks, each starting with a 3D 

convolution with a kernel size of 2×2×2 and sides of 1. This is followed by a 3D max-

pooling layer with a pool size of 2 and batch normalization. After three 3D convolutional 

blocks, this is flattened to a fully connected dense layer, and binary output is generated 

by the sigmoid function. 

Our approach can be used to train 3D models of tumors and healthy pancreatic 

tissue separately. The training procedure concerning discriminator loss was optimized. A 

total of 500 3D tumor and pancreas volumes were synthesized. Inserting tumor tissue into 

the pancreas cube could generate a 3D volume of the tumor with surrounding pancreas 

tissues. 
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2.3. Blending to create PDAC tissues 

Because the tumor and pancreas tissue volumes were generated separately, it was 

essential to consider how to combine the tumor and pancreas volumes to create realistic 

tumorous pancreas tissue. We experimented with and compared three blending methods 

for merging a pancreas's tumor and tissue volumes. The first method (Blend I) was a 

straightforward copy-and-paste operation using the tumor voxels to replace the 

corresponding pancreas tissue voxels. Our second and third methods (Blend II and Blend 

III, respectively) were inspired by DeepImageBlending, a deep learning technique that 

improves Poisson image blending [23]. Deep image blending is a two-stage image 

blending algorithm. First, it generates a seamless boundary for the source region to 

eliminate visible seams. Then, it refines the source region by matching styles and textures 

with the target image. The algorithm uses a differentiable loss function based on the 

Poisson equation and can handle various image styles, including stylized paintings. It 

achieves visually consistent blending without relying on training data. Our Blend II and 

Blend III methods are the first and second stages of the tool, respectively. The motivation 

for comparing the two stages was because, in a natural image blending task, the object 

should look natural and share a similar style with the background image, but this might 

not be true for a CT image. Unlike natural images acquired from light reflection from 

objects, CT images are created by recording the X-ray beam attenuation from different 

directions. Therefore, a presumption of a similar style may not be valid. To find the best 

blending method, we used visual inspection and Fréchet inception distance (FID) values 

to compare the three blending methods. After synthetic tumors and healthy pancreas 
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tissues were directly output by our 3D GAN model, they were blended to generate 

synthetic PDAC tissues with the best blending method. A comparison of the blending 

methods will be provided in Section 3.2. 

2.4. Evaluation of synthesized images 

The performance of our developed 3DGAUnet model was evaluated both 

qualitatively and quantitatively. We visualized the generated volumes with 2D cross-

slices and 3D volume rendering for qualitative evaluation [24]. For quantitative 

evaluation, we used FID values on 2D slices [25]. 

We propose a 3D evaluation metric, called Fréchet 3D distance (F3D), for 

comparing the Fréchet distance of the activation layer from a 3D CNN network with the 

quality of the 3D GAN model. The distance d is calculated as 

𝑑2=||𝜇1−𝜇2||2+𝑇𝑟(𝐶1+𝐶2−2√𝐶1𝐶2) (11) 

where 𝜇1 and 𝜇2 are the feature-wise means of the real and synthesized images, 𝐶1 and 𝐶2 

are the covariance matrix of the feature vectors for the real and synthesized images, and 

𝑇𝑟	is the trace linear algebra operation that is the sum of the elements along the main 

diagonal of the square matrix. 

To calculate the 𝜇	and C, we needed the feature vector from the last pooling layer 

out of a pre-trained neural network. The original FID used a trained Inception V3 model 

[26]. Our approach, instead, used a 3D CNN with 17 layers, including four 3D 

convolutional blocks with a fixed random state 42, and the feature vector was the 

flattened layer after the last convolutional block, having a length of 512. Samples were 
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compared in batches, and then the 𝜇	and C could be calculated with the matrix 

comprising each sample's feature vector. 

In addition, the quality of the images generated by our developed 3DGAUnet 

model was evaluated using the squared maximum mean discrepancy (MMD2), which 

employs kernel functions in the reproducing kernel Hilbert space to quantify the disparity 

between two distributions [27]. In this study, we also used pair-wise multi-scale structural 

similarity (MS-SSIM) to assess the diversity of the images generated by our 3DGAUnet 

model. MS-SSIM is a metric that quantifies the perceptual diversity of generated images 

by calculating the mean of MS-SSIM scores for pairs of these images [28]. This 

measurement allowed us to evaluate the level of variation and dissimilarity among the 

generated samples, providing insights into the model’s ability to produce diverse and 

distinct images. 

2.5. 3D CNN PDAC classifier 

One of our objectives in creating synthetic data was to improve the performance 

of PDAC tumor identification. Currently, the limited available data are an obstacle. To 

test our developed 3D GAN model, we built and trained a 3D CNN classifier using the 

synthetic data generated by our 3DGAUnet model. 

We developed a 17-layer 3D CNN model [29] to test if a 3D volumetric input was 

healthy pancreas tissue or a tumor. The 3D CNN classifier has four 3D convoluted blocks 

(Conv 3D), with the first block consisting of 64 filters followed by 128, 256, and 512 

filters, all with a kernel size of 3×3×3. Each Conv3D layer is followed by a max-pooling 

(MaxPool) layer with a stride of 2, ReLU activation, and batch normalization layer 
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(Batch Norm). This 3D CNN model has four Con3D-MaxPool-BatchNorm blocks and is 

intended to capture visual features from coarse to fine. The final output first flattens the 

production of the last convolutional block and passes it to a fully dense layer with 512 

neurons. A dropout layer with a tunable dropout rate follows to prevent overfitting. The 

output is then passed to a 2-neuron dense layer with a sigmoid function for binary 

classification output. Because the input dimensions are 64×64×64, a relatively simple 

task, the architecture of the classifier was designed in a simple way to avoid the 

overparameterization problem, with 1,351,873 learnable parameters. 

The binary classification performance was calculated from the confusion matrix. 

Given that 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁	correspond to a true positive, true negative, false 

positive, and false negative, respectively, the results were measured using precision 

𝑇𝑃/(𝑇𝑃+𝐹𝑃), recall 𝑇𝑃/(𝑇𝑃+𝐹𝑁), true positive rates 𝑇𝑃𝑅=𝑇𝑃/(𝑇𝑃+𝐹𝑁), and the false 

positive rates 𝐹𝑃𝑅=𝐹𝑃/(𝐹𝑃+𝑇𝑁). The area under the curve (AUC) was calculated from 

the receiver operating characteristic (ROC) curve, which was plotted as true positive rates 

against the false positive rates under different cutoffs or as the precision against the 

recall. 

3. Results 

3.1. 3D volumetric tissue data generation 

We trained our 3DGAUnet model separately using PDAC tumor and healthy 

pancreas data. These are referred to as the tumor and pancreas models. The tumor model 

was trained using PDAC data, including 174 volumetric tumor data in Nifty format. The 

pancreas model was trained using healthy tissue data, including 200 volumetric data in 
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Nifty format. Both input datasets resulted from the preprocessing steps outlined in 

Section 2.1. 

Image augmentation, including image flipping and rotation, was performed on the 

training data. The augmented data for each volume were generated by rotating each 

volume on three axes in 12°, 24°, 36°, 48°, and 72° increments. All images for the tumor 

model were resampled to 1 mm isotropic resolution and trimmed to 32×32×32 size. All 

images for the pancreas model were resampled to 1 mm isotropic resolution and trimmed 

to 64×64×64 size, with pancreas tissue filling the entire cube. 

The training procedure of any GAN model is inherently unstable because of the 

dynamic of optimizing two competing losses. For each model in this study, the training 

process saved the model weights every 20 epochs, and the entire model was trained for 

2000 epochs. The best training duration before the model collapsed was decided by 

inspecting the generator loss curve and finding the epoch before the loss drastically 

increased. We trained our models with an NVIDIA RTX 3090 GPU. The optimal 

parameter set was searched within a parameter space consisting of batch size and learning 

rate, where the possible batch sizes included 4, 8, 16, and 32, and the possible learning 

rates included 0.1, 0.01, 0.001, 0.0001, and 0.00001. 

The tumor and pancreas models generated 500 synthetic volumetric data 

separately. We first conducted a qualitative comparison between the training image sets 

and the synthetic image sets. We used volume rendering to visualize these datasets and 

inspect the 3D results. Figure 4.2 shows examples of ground truth tumor volumes, 

synthetic tumors generated by the existing technique 3D-GAN [18], and synthetic tumors 
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generated by our 3DGAUnet. We can see that when we trained our 3DGAUnet based on 

the group truth inputs, our model could generate synthetic tumors with realistic 

anatomical structure and texture and capture overall shape and details. Nonetheless, 3D-

GAN produced unsuccessful data or failed to generate meaningful results in capturing the 

tumor’s geometry. By comparing the generated pancreas volumes with authentic medical 

images, we can see that our 3DGAUnet could effectively synthesize a 3D pancreas to 

resemble actual anatomical structures. However, it was hard for 3D-GAN to generate 

anatomically plausible results, and a certain ambient noise was perceived in the generated 

volumes. We further examined the interior structures of the volumes generated by our 

3DGAUnet. Figure 4.3 shows the 2D slices of the ground truth, 3D-GAN, and our 

3DGAUnet images from both tumor and pancreas models. The synthetic data produced 

by our 3DGAUnet model exhibited a high degree of fidelity to the ground truth in terms 

of internal anatomical structure and texture compared to 3D-GAN. In certain instances, 

3D-GAN failed to produce meaningful outcomes. 

However, we can also observe marginal defects in the pancreas generation, with 

tiny tissues surrounding the primary tissue generated in the center. These defects were 

likely due to the pancreas' irregular shape, different sizes, and direction, as well as the 

gradient learned from the input image batches at specific locations turning into noise. 



 

 

93 

Figure 4.2 Examples of 3D Volume Data. Examples of 3D volume data of tumor (top) 

and pancreas (bottom) from the different methods. In each set of examples, the left, 

middle, and right columns correspond to ground truth data, synthetic data generated by 

3D-GAN, and synthetic data generated by our 3DGAUnet, respectively. All 3D volumes 

are shown in volume rendering. 
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Figure 4.3 Example of 2D Slice in 3D Volume. Examples of 2D in 3D volumes of tumor 

(top) and pancreas (bottom) from the different resources. In each set of examples, the left, 

middle, and right columns correspond to ground truth data, synthetic data generated by 

3D-GAN, and synthetic data generated by our 3DGAUnet, respectively. 
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In addition, we conducted a quantitative assessment of the outcomes produced by 

3D-GAN and our 3DGAUnet models. A sample of 100 ground truth and 100 synthetic 

volumes was randomly selected. Specific 2D image metrics, such as slice-wise FID and 

PSNR, were computed to assess the quality of synthetic volumes. Besides the 2D metrics, 

3D metrics such as batch-wise F3D, MMD2, and SSIM were calculated on the randomly 

selected volumetric data. Table 4.1 shows the values of 2D image metrics, slice-wise 

FID, and slice-wise PSNR on the sagittal (Sag), axial (Ax), and coronal (Cor) planes to 

estimate the quality of the synthetic volumes, where scores were calculated using the 

center slice from 100 synthesized volumes and 100 ground truth volumes from the tumor 

model and pancreas model separately. Table 4.2 shows the values of the 3D volume 

metrics, batch-wise F3D, the MMD2, and the MS-SSIM. From the results, we can 

observe that our 3DGAUNet outperformed 3D-GAN in all metrics, suggesting that 

3DGAUNet excelled at capturing the 3D shape and texture characteristics for both tumor 

and pancreas compared to 3D-GAN. In addition, all the quantitative metrics in the 

pancreas model were better than the tumor model, especially on FID and F3D. This was 

probably caused by the difference in the training tasks, where the tumor model needed to 

learn both the texture and shape of the tumor, but the pancreas model was trained with 

pancreas-filled cubes to know the texture of the pancreas image mostly. 
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Table 4.1 Performance Based on 2D Image Quality Metrics 

Tissue Model 
FID-

Sag 

FID-

Ax 

FID-

Cor 

PSNR-

Sag 

PSNR-

Ax 

PSNR-

Cor 

Tumor 
3D-GAN 249.32 262.18 244.27 20.10 18.63 19.49 

3DGAUNet 198.23 202.44 188.66 16.52 17.76 17.16 

Pancreas 
3D-GAN 293.62 342.60 335.20 18.20 16.31 14.05 

3DGAUNet 287.75 435.72 327.41 12.73 7.21 9.42 

 

Table 4.2 Performance Based on 3D Image Quality Metrics 

Tissue Model F3D MMD2 MS-SSIM 

Tumor 
3DGAN 472.64 5571.90 0.86 

3DGAUNet 271.31 5327.32 0.81 

Pancreas 
3DGAN 889.40 8924.39 0.83 

3DGAUNet 872.33 9122.40 0.77 

 

3.2. 3D Volumetric data blending 

We selected 100 pairs of synthetic tumors and synthetic pancreas tissue volumes 

from the synthesized data. The paired data were used to evaluate three previously 

introduced blending methods. Quantitative evaluation was conducted by comparing the 

FID Score, while qualitative evaluation was conducted by visualizing the 2D slices. 100 
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random abdominal CT images were cropped into 64×64×64 cubes as a negative sample 

set and then used to compare the 3D metrics with the blended volumes. 

Figure 4.4 shows the 2D slices of the blended images using the three different 

blending methods. It is evident that the direct copy-and-paste approach consistently 

yielded the least favorable results. This was because the tumor object was extracted with 

a simple pixel value threshold; therefore, the tumor tissue boundary may not have been as 

precise as needed. One can spot black pixels randomly appearing around the boundary of 

the tumor and pancreas tissue. Meanwhile, Blend III was visually closer to the ground 

truth tumor site and, on average, had a lower slice-wise FID score. Therefore, we 

employed Blend III as the blending method for the developed 3D GAN model. Table 

4.3 compares the slice-wise FID values among the three blending methods and clearly 

shows that Blend III achieved the best slice-wise FID values. 

Figure 4.4 Blending Methods Comparison. The comparison of blending methods. The 

two left images show the details of the tumor site texture in the ground truth data as a 

visual reference. The rest of the images show the blend of a tumor into the healthy 

pancreas tissue with different blending methods. We can observe that Blend III has the 

best visual similarity. 
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Table 4.3 Slice-wise FID Values of Blending Methods 

Blending Methods FID-Sag FID-Ax FID-Cor 

Blend I 42.10 40.26 32.94 

Blend II 21.01 35.82 12.62 

Blend III 13.21 13.88 10.06 

 

3.3. Enhanced training dataset with synthesized data to improve 3D PDAC tumor 

classification 

We trained a 3D CNN classifier using two different dataset configurations, with 

or without adding the synthetic data and compared the performance of the binary 

classification of PDAC between them. Adding synthesized data to the training data 

enlarged the training data. It reduced the imbalance between positive and negative 

categories because, in practice, it is usually more challenging to access PDAC patient 

images than healthy pancreas images. We had 174 PDAC tumor images and 254 healthy 

pancreas tissue images (a combination of 80 TCIA pancreas CT data and a non-tumorous 

portion of 174 PDAC data), all from real-world CT scans. All the input images were 1 

mm isotropic resolution CT volume and trimmed to a size of 64×64×64. Of all the data, 

35 tumorous pancreas images and 51 healthy pancreas images, i.e., 20% of all data, were 

saved as the test dataset. We had two configurations for the training dataset. The first 

configuration (Config I) only contained real data for training, i.e., 139 tumorous pancreas 

images and 203 healthy pancreas images. The second configuration (Config II) included 

the training set from Config I and synthesized data, i.e., 114 synthetic PDAC images and 
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50 synthetic healthy pancreas images. Both training datasets had the same test dataset for 

comparison. Config I was a baseline for real-world imbalanced data having a smaller 

size, and Config II used synthetic data to balance the entire dataset. Table 4.4 

summarizes the training used in the two different configurations. For data augmentation, 

each CT scan underwent a random rotation along a single axis. The rotation angle was 

randomly selected from a set of options: 5°, 10°, 20°, and 40°. The direction of rotation, 

either clockwise or counterclockwise, was also randomly determined. The best 

parameters of each model were found with a grid search of a parameter space consisting 

of batch size and learning rate, where the batch sizes included 8, 12, and 16, and the 

learning rates included 0.001, 0.0001, and 0.00001. All the models were trained with an 

NVIDIA RTX 3090 GPU and validated using three-fold cross-validation. 

 

Table 4.4 Dataset Configurations for Classifier Experiments 

 Training Set 

Config I 
139 True PDAC 

203 True Healthy Pancreas 

Config II 
139 True + 114 synthesized PDAC 

203 True + 50 synthesized Healthy Pancreas 

 

Figure 4.5 shows the receiver operating characteristic (ROC) and precision-recall 

(PR) curves for the classification models. Config I had an ROC AUC (area under the 

curve) value of 0.67 and a PR AUC value of 0.80, while Config II had an ROC AUC 
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value of 0.79 and a PR AUC value of 0.87. Given that the model was trained on a limited 

dataset, we assessed the classifier’s accuracy using three-fold cross-validation. In 

Configuration I, the average accuracy was 0.57 with a standard deviation of 0.07, while 

in Configuration II, the average accuracy was 0.67 with a standard deviation of 0.13. The 

analysis of the results indicated that, as the training dataset was enlarged and the training 

data in the two classes became more balanced, there was an observable increase in the 

AUC and precision–recall metrics. This finding implies that including synthesized data to 

solve issues related to training data quantity and class imbalances had a beneficial effect 

on the performance of the PDAC classifier. It is worth acknowledging that, despite 

advancements in utilizing large quantities and balanced training data, there is 

considerable room for enhancing the classifier’s overall performance. This might be 

achieved using a purpose-built 3D CNN model or further refining the training 

methodology. By leveraging synthesized data, conducting extra research and analysis of 

the identification of supplementary components could improve the performance of 

classifiers and yield superior outcomes. 
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Figure 4.5 3D CNN Classifier Performance. ROC curves (top) and PR curves (bottom) 

with two configurations of training datasets. 

4. Discussion 

In this work, we developed a 3D GAN model, 3DGAUnet, for tumor CT image 

synthesis, compared different blending methods for CT image synthesis, and explored the 

impact of our synthesis method on a real-world 3D CNN classifier for tumor diagnosis. 
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3DGAUnet was explicitly designed to synthesize clinical CT images by combining the 

3D U-Net architecture with GAN principles to generate realistic 3D CT scans of clinical 

data. To ensure its accuracy, we trained the model using 3D image data of tumor and 

healthy pancreas tissue. The quality of the synthesized images was rigorously evaluated 

using both qualitative and quantitative methods. The generated images demonstrated a 

more realistic texture than the general 3D-GAN with a CNN-based generator and 

exhibited the advantage of preserving spatial coherence better than 2D methods. One 

notable feature of our 3DGAUnet model was its ability to learn the inter-slice gradient, 

contributing to the overall realism of the generated data. The model also showcased 

consistent 2D FID values across all three axes, further affirming its capability to produce 

high-quality 3D images. 

3DGAUnet uses preprocessed, fixed-size image cubes. Preprocessing still 

requires significant human labor and judgment, such as eliminating defects caused by 

high-density material markers and creating standardized volumes for each training 

dataset. Medical professionals must manually annotate all training datasets. More 

automatic methods would be desirable to reduce the significant cost of acquiring data for 

model training. The model-generated 3D volumes do not come with the metadata a 

standard DICOM file contains, which means the affine alignment information is still 

missing. This would limit the potential of downstream applications, such as using the 

synthesized 3D volumes to enlarge a dataset to improve the training of whole-body 

segmentation tasks. 
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The blending method used in this work can insert the tumor image into the 

background tissue image at a fixed location. For the use case involving mesenchymal 

organs, the various locations of the tumor have distinct anatomical meanings, and the 

model must also acquire this information. One possible extension would be to include a 

segmentation module that can extract the features of each tissue type or organ from the 

original CT scans. Adopting this approach might eliminate the necessity of considering 

the blending technique, potentially mitigating the occurrence of faults. 

The F3D score we implemented in this work for evaluation is a naive extension of 

the original FID metric. The activation vectors were extracted from an untrained, cold-

started 3D CNN model. The stability of the F3D score in different image domains still 

needs to be tested. In the future, a benchmark dataset and rigorous testing procedures will 

be necessary to establish a standardized measure. 

The 3D CNN classifier simplifies the clinical diagnosis issue into a binary 

classification challenge because only healthy normal pancreas images and pancreas 

images contain a tumor contrast. Multiple conditions, such as non-cancerous lesions, 

inflammatory or metastatic lesions, and vascular abnormalities, may coexist with the 

pancreas. Due to a lack of high-quality, well-annotated data, these obstacles still need to 

be considered and will increase the cost of building such a model. 

5. Conclusion 

The 3DGAUnet model represents a significant advancement in synthesizing 

clinical tumor CT images, providing realistic and spatially coherent 3D data, and it holds 

tremendous potential for improving medical image analysis and diagnosis. In the future, 
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we will continue to address problems associated with computer vision and cancer. We 

want to investigate reasonable usages of synthetic data and evaluations of data quality 

and usability in practice, for example, their effectiveness in training reliable classification 

models. We also plan to conduct reader studies involving domain experts (e.g., 

radiologists) to assess whether synthetic CTs can enhance diagnostic accuracy. This 

would offer additional clinical validation regarding the resemblance of synthesized CTs 

to real-world PDAC tumor characteristics. 

From the projects in Chapter 3 and this chapter, I have successfully achieved the 

second objective of this dissertation by creating an advanced model that generates high-

quality 3D cancer image data on PDAC. This development significantly bridges the gap 

in current research, providing valuable tools for furthering our understanding and 

improving diagnostic AI technique development. 
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CHAPTER 5.  EFFICIENT VISION TRANSFORMER-BASED FEATURE 

EXTRACTION MODEL WITH CONTOUR-GUIDED ATTENTION TO 

IMPROVE CLASSIFICATION MODEL ACCURACY 

1. Introduction 

Conventional radiology is ineffective in treatment response evaluation for 

pancreatic cancer; images and biopsies, however, can be used together as definitive 

diagnostic tools [1]. CT has been the most common cancer diagnostic imaging approach. 

Conventional radiology for pancreatic cancer has limited capability in early diagnosis and 

prognosis because images are typically used as a visual reference and provide limited 

insight into the pattern, texture, and intensity. Radiomics, which extracts quantitative 

features from the image, significantly increases the throughput of the quantifiable 

representation of each image screening, ensuring better differentiation with statistical 

analysis [2]. 

With the advancement of omics studies and the availability of large data storage 

and GPU computing, deep learning-based approaches have become feasible in diagnostic 

applications. Deep learning, as a subdiscipline within the field of AI, has now been 

considered a state-of-the-art approach for solving 2D computer vision (CV) tasks in 

medical imaging, such as segmentation, registration, or classification of chest X-rays and 

tissue histopathology images [3][4]. Images generated by CT, MRI, and their variant 

technologies are currently the dominant modality of medical imaging data. Both CT and 

MRI images are volumetric data, a 3D representation of the region of interest. The way 

the object is distributed in the 3D space is modeled by uniformly sized primitives called 
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voxels. The advantage of using volumetric information in CT or MRI data is that it 

preserves the context from adjacent slices that 2D models cannot learn efficiently. A 

better approach is needed for handling 3D imaging data. 

Vision transformer (ViT) is an architecture that effectively solves 2D CV tasks, 

with a trade-off on high computational demand due to its attention mechanism. 

Transformer attention architecture was initially proposed for language translation tasks 

by assigning weights to the vector representation of words. Meanwhile, a positional 

encoding shows the word’s position in the sequence [5]. The attention mechanism 

estimates the relative importance of the word. The language translation task will compare 

the keyword and the query word to discriminate if both words are equivalent in relative 

significance in a sequence. Vision transformer will use the image patch as input, as the 

word in a sentence, and position embedding is the coordinates of the patch. The original 

multi-head attention mechanism in ViT exhaustively compares neighboring pixels in the 

whole image. The smaller the size of the attention patch, the higher the resolution and 

more computational overhead. 

In a cancer CT image, when tumor volume was extracted from labeled contour as 

input data, neglecting the padded empty volume is favorable since the pixels in the 

padding are not related to the physical existence. Hence, sparse attention is favorable to 

identify key sampling points that reduce the training cost, leading to theoretical 

convergence. Recent studies in CV have reported promising approaches using either 

predefined local attention [6] to improve the performance or reduce the computation 

complexity in ViT applications. Still, none of them is suitable for CT images. This study 
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designed and embedded a novel sparse attention algorithm tailored to the CT image data 

in our transformer architecture.  

Machine learning models with radiomic features are typically used to predict 

pancreatic cancer outcomes since explainability is better than the black box of deep 

learning methods. The method introduced in this study utilizes deep hybrid learning, 

incorporating clinical demographical information, radiomic features, and image features 

extracted from transformer attention heads. All features are integrated into a GBM. GBM 

produces a prediction model from an ensemble of weak prediction models, typically 

decision trees. It builds the model in a stage-wise fashion and generalizes it by allowing 

optimization of an arbitrary differentiable loss function [7]. While it is flexible as it can 

be used with different loss functions and base models, it is relatively robust to overfitting, 

especially if the base models are decision trees. It can handle missing values and 

categorical variables. Most importantly, GBMs are more interpretable than neural 

networks. They are easier to understand how each weak model contributes to the final 

prediction. All these characteristics make them a favored practice in the clinical use case.  

In this chapter, I expanded upon my methodology for cancer imaging feature 

extraction by employing contour-guided attention to accommodate the properties of 

medical imaging modalities like CT or MRI. Furthermore, for a test, I used the novel 

features integrate with the radiomic features and clinical features to improve the classifier 

on the PDAC survival prediction, to address my first objective of this dissertation. 
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2. Materials and Methods 

2.1. Data collection and preprocessing 

Patient demographic, treatment, and outcome data were collected from the 

medical records of patients with PDAC who received stereotactic body radiotherapy 

(SBRT) between 2007 and 2016 under the UNMC rapid autopsy program. Seventy-three 

of the patients have clinical information paired with contrast-enhanced CT images. All 

these patients used the same protocol to receive the contrast-enhanced abdomen CT scan. 

The clinicians manually reviewed and adjusted each patient's tumor contour, following 

the same criteria to maintain consistency. The information includes the patient’s date of 

birth, date of diagnosis, gender, tumor location, Tumor-Nodes-Metastsis (TNM) stage at 

diagnosis, date of radiation delivery, and any chemotherapy or surgery delivered 

concurrently with the radiation treatment. All data collection was approved by the 

Institutional Review Board (IRB) of our institution (Protocols: 728-16-EP and 127-18-

EP). For the stereotactic body radiotherapy (SBRT), all patients received 25–40 Gy in 

five fractions with fiducial markers to localize and track the tumor. Overall survival was 

calculated from the time of the SBRT simulation CT scan to the date of death. The 

disease recurrences were registered with two consecutive follow-up CT scans and MRI 

scans after the delivery of radiation therapy. 

Among the 73 available CT image stacks, while the x-axis and y-axis are at 512 

pixels resolution, the slice thickness varies. Hence, all the CT images were resampled to 

the 2mm thickness of the slice, ensuring the volumes extracted from the CT image stacks 

were under the same scale on each axis. Each voxel is 2mm cubed with Slicer (Ver. 
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5.0.2). The 3D volume of the tumor in the NIfTI format was created with SimpleITK 

(Ver. 2.1) and NiBabel (Ver.4.0). Each tumor volume has a dimension of 128 pixels 

cubed with zero padding (Figure 5.1).  

Figure 5.1 3D Volume Extraction from Original DICOM Files. 

2.2. Contour-guided attention image feature extraction 

In the original ViT architecture, the input image is processed into non-overlap 

patches, each with a pixel dimension of 16 × 16. The size of each patch came from the 

decision to conserve the memory and computing power and the granularity that improves 

the performance. For instance, if the original input image has a pixel dimension of 

512 × 512, with the ViT, 1024 non-overlap patches will be generated, then flattened and 

linearly embedded with the location index. Each patch is treated as a token for the 

transformer. The transformer’s complexity comes from its self-attention mechanism, 

which computes interactions between all pairs of tokens. The computational complexity 
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is 𝑂(𝑛1 ∙ 𝑑), where 𝑛 is the number of patches and 𝑑 is the dimension of each token 

embedding. Therefore, increasing the number of patches increases the square of the 

computation required in self-attention layers, leading to higher computation overhead. 

For the performance of CV tasks, the bigger patch would limit the transformer 

recognizing fine details within each patch. The original ViT was introduced for natural 

image tasks; 16 × 16 patches are good enough to separate everyday objects (e.g., cars, 

humans, etc.). In the application of medical imaging, the diagnostic decision is made 

based on pixel-level observation from the clinician; the patch size needs to be changed to 

smaller, such as 4 × 4 or 1 × 1. In this case, the input image with a dimension of 

512 × 512 would generate 16,384 4 × 4 patches or 262,144 1 × 1 patches, making the 

computation too expensive. Therefore, a better approach should be taken to resolve the 

issue. 

In the original ViT, the attention mechanism has a high capacity by querying 

every token of the entire image (the size of the 𝑑 mentioned above), which has a high 

computation cost and is hard to converge. It requires longer training epochs and 

substantial data augmentation. However, since large medical image datasets are still 

barely available and expensive to generate, the advantage of using transformer attention 

architectures is reduced. ViT variants, such as Swin Transformer [8] or Deformable 

Attention (DAT) [9], use shifted windows and reference points to achieve sparse 

attention. These two approaches inspired my attention mechanism. 
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For a natural image (such as a picture of a dog sitting on the lawn), the depth of 

field is warped into a 2D projection. On the contrary, for a medical image (e.g., from CT 

or MRI scan), since every object in the 2D slide is on the same focal plane, a binary mask 

can easily find the object's contour. In our use case, tumor volume or any region of 

interest is extracted from the original scan and zero-padded. For each 2D slide, a binary 

contour mask can separate the zero-padded and tumor tissue areas. Patches containing 

only zero padding in the image will be dropped from the attention field (Figure 5.2). It 

reduces the sizes of 𝑛 and 𝑑, and decreases the computational complexity. In DAT, 

deformable points that interpolate from the reference points and offset value could lead to 

explainability loss. My approach circumvents this issue, and is more appropriate for the 

medical imaging applications. 

Figure 5.2 Schematic View of Contour-guided Attention. 

As shown in Figure 5.3, the input image with a pixel dimension of 128 × 128 is 

split into 16 × 16 patches with position embeddings, and the patches containing tissue 

images within the contour are kept for the attention module. In the second stage, the input 

image is divided into 8 × 8 patches; only the patches containing the tissue images are 

kept. The last stage will have the patches with a dimension of 4 × 4. Then, a linear 
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projection layer will transform all the kept patches into tokens. A multi-layer perception 

(MLP) network will take all the tokens and train on the regression loss of survival risk. 

When the loss converges, tokens with a top attention score will be selected as the output 

of this feature extraction method. The total number of image patches from one input 

image is 1344 (Table 5.1). 

Table 5.1 Image Token Dimensions in Each Stage 

  Patcth Size Feature Dim. No. of Features 

Input Image - - - 

Stage I 16 × 16 256 64 

Stage II 8 × 8 64 256 

Stage III 4 × 4 16 1024 

 

With contour-guided attention, it could be reduced to less than 750 tokens. Since 

the patches are acquired with a multi-scale scheme, it can extract features from larger 

areas and fine details without significantly increasing the computational demand. 
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Figure 5.3 ViT Feature Extractor with Contour-guided Attention. 

2.3. Hybrid model with GBM 

A GBM model is used to integrate multi-modal features and is designed to predict 

the survival risks. The feature set includes the top 100 image features with the highest 

attention scores from the ViT-based model, 170 radiomic features calculated from each 

CT image with low covariance, and demographic features collected from clinical records, 

including age, sex, tumor position, T-stage, and concurrent chemotherapy (Table 5.2).  
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Table 5.2 Features used for GBM 

Feature Source Data Type 

Top 100 Attention Tokens Vector 

170 Radiomic Features Numerical 

Gender Catagorical 

Age Numerical 

T Staging Catagorical 

N Staging Catagorical 

Chemotherapy Catagorical 

 

The GBM uses an objective function to estimate the survival risk in survival 

prediction. Since we must handle right-censored survival data, the Cox proportional 

hazard (CPH) model is used [10]. The partial likelihood is the product of the probability 

at each event time that the event has occurred to an individual i: 

∏ 234	(6,7(3-))
∑ 234	(6,783.9).∈ℜ(2-)

::<-=!  (12) 

where T: is the event time, E: is the event indicator with ‘0’ for censored patients and ‘1’ 

for patients at risk, and x: is the baseline data for i>6 observation. The product is defined 

over patients with an observable event E:=1. The risk set ℜ(t)= {i: T: 	≥ t} is the set of 

patients still at risk of failure at time t, and h?e(x:) is the linear function estimate the log-

risk. 
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To train a GBM for the Cox proportional hazards model, the objective function 

used is typically the negative partial log-likelihood of the Cox model. The partial log-

likelihood is defined as: 

𝑙(β) = ∑ δ%Eβ@𝑥% − log∑ expE𝛽@𝑥AFB
A=! FB

%=!  (13) 

where β is the vector of coefficients, 𝑥% is the vector of predictor variables for the 

𝑖CD	sample, and δ%is the event indicator for the 𝑖CD sample (1 if the event occurred, and 0 

otherwise). 

The objective function is then minimized during the training to find the optimal 

values for the coefficients β. The objective function's gradient concerning the coefficients 

is calculated using backpropagation and used to update the coefficients using gradient 

descent. 

2.4. 3D CNN model 

One of our objectives in developing ViT-based feature extraction is to improve 

the performance of PDAC survival prediction and tumor identification. To test our 

developed feature extraction method, we built a 3D CNN model. This 3D CNN is a 

baseline that only uses images without the ViT features, radiomic features, and clinical 

features to compare with the GBM hybrid model in survival prediction CI and AUC. 

We modified the 17-layer 3D CNN model [11] used in the last chapter to suit 

survival prediction needs by swapping the output layer from classification to a Cox 

regression layer, with the same loss as the GBM model. In this manner, we would be able 

to get both 1-year survival AUC and CI from the same CNN architecture. 
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The 3D CNN classifier has four 3D convoluted blocks (Conv 3D), with the first 

block consisting of 64 filters followed by 128, 256, and 512 filters, all with a kernel size 

of 3×3×3. Each Conv3D layer is followed by a max-pooling (MaxPool) layer with a 

stride of 2, ReLU activation, and batch normalization layer (Batch Norm). This 3D CNN 

model has four Con3D-MaxPool-BatchNorm blocks and is intended to capture visual 

features from coarse to fine. The final output first flattens the production of the last 

convolutional block and passes it to a fully dense layer with 512 neurons. A dropout layer 

with a tunable dropout rate follows to prevent overfitting.  

2.5. Experimental design 

The 73-patient dataset was divided into a training set including 51-patient data 

(70%) and a testing set including 22-patient data (30%). The testing set was withheld for 

the training/boosting. The contour-guided attention ViT feature extractor was configured 

to train on a maximum of 50 epochs with early stopping; the optimal batch size was 

tested on 5, 10, and 20, and the optimal learning rate was evaluated from 0.00001 to 0.01. 

For the GBM, the optimal learning rate was tested from 0.0001 to 0.1; the optimal 

number of trees was tested on 20, 50, 100, and 500; the optimal tree depth was tested on 

3, 5, 7, and 9. Both training tasks were done with 500 rounds of 3-fold cross-validation. 

Data augmentation was done with random rotations in each training round. 

Since the PDAC has a low 5-year survival rate, in our dataset, no patient has a 

survival time longer than 3 years. One way to create the prediction model is to make it a 

binary classification task, with patients having over 1-year survival labeled ‘positive’ and 

less than 1-year as ‘negative’. 
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The binary classification performance was calculated from the confusion matrix. 

Given that 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁	correspond to a true positive, true negative, false 

positive, and false negative, respectively, the results were measured using precision 

𝑇𝑃/(𝑇𝑃+𝐹𝑃), recall 𝑇𝑃/(𝑇𝑃+𝐹𝑁), true positive rates 𝑇𝑃𝑅=𝑇𝑃/(𝑇𝑃+𝐹𝑁), and the false 

positive rates 𝐹𝑃𝑅=𝐹𝑃/(𝐹𝑃+𝑇𝑁). The area under the curve (AUC) was calculated from 

the receiver operating characteristic (ROC) curve, which was plotted as true positive rates 

against the false positive rates under different cutoffs or as the precision against the 

recall. 

The AUC on 1-year survival and concordance index (CI) were reported as the 

performance metrics. The CI measures the predictive accuracy of a survival model [12]. 

It is defined as the probability that the predicted survival probabilities of a random pair of 

subjects with different survival times are correctly ranked and calculated as follows: 

C = E"F
E"G"F

  (14) 

𝐻 is the number of pairs of subjects where the predicted survival probabilities are 

correctly ranked. 𝐷 is the number of pairs where the expected survival probabilities are 

not ranked correctly. S is the number of pairs where the survival times are the same. 

A CI of 1 indicates perfect predictive accuracy, while a value of 0.5 indicates that 

the predictions are no better than random. Values of CI above 0.5 indicate that the model 

is making valuable predictions, while values below 0.5 indicate that the model is not 

performing well. CI and AUC are both metrics used to evaluate the performance of 

predictive models, but CI is a measure of the discriminatory power of a risk prediction 

model. It is commonly used in survival analysis to evaluate how well the model can 
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discriminate between different outcomes over time. Often used in survival analysis to 

evaluate prognostic models, such as Cox proportional hazards models. 

3. Results 

3.1. Contour-guided attention ViT feature extraction 

With contour-guided attention, image tokens (features) were extracted in each 

stage (Figure 5.3), linear projected, and concatenated. The tokens with the top 100 

attention scores were kept as features for the GBM classifier. One benefit of the ViT 

feature is that the top-scored attention can be mapped back to the original CT images. 

This provides the model explainability and demonstrates the relationship between model 

decision and anatomy. 

Figure 5.4 visualizes the tokens with high attention scores with a heatmap. The 

yellow color highlights that location is important to the model when making survival 

predictions. 
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Figure 5.4 Heatmap of Attentions for Three Patients. The top 100 tokens with high 

attention scores are visualized in the Heatmap 

3.2. GBM model on survival prediction 

In total, 275 features were fed into the GBM model. The CI values were used to 

compare the prediction performance of the GBM model against the 3D CNN model that 

only used the CT volumetric data as predictors. As shown in Table 5.3, the GBM model 

has better performance than baseline 3D CNN model. From the comparison of the AUC 
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on 1-year survival prediction (Figure 5.5), the GBM model with multi-modal features 

showed a consistent performance advantage over the 3D CNN model. 

Table 5.3 C-Index Comparison 

Model C-Index 

GBM 0.673 

3D CNN 0.592 

 

Figure 5.5 AUC on 1-year Survival Predictions. 

4. Discussion 

This study explores the development of a ViT-based feature extraction module 

combined with radiomic features and clinical information to predict survival in PDAC. 

PDAC presents significant diagnostic challenges due to its asymptomatic early stages and 

high fatality rates. Conventional imaging techniques often fail to detect early-stage 

cancer, highlighting the need for advanced methodologies. This study introduced a first-

ever contour-guided attention mechanism to the ViT architecture to tailor it for CT image 

data. The model reduced computational complexity and improved learning efficiency by 

focusing “attention” on relevant image patches (tumor regions) and ignoring non-
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informative areas (padding). This approach mimics the clinical review process, where 

attention is directed toward specific anatomical structures. By integrating radiomic 

features and clinical demographic features, this hybrid model showed promising accuracy 

results with our small dataset. However, it needs to be further tested for its 

generalizability with larger datasets, although such datasets are not yet available. 

Another aspect worth looking into is how to use the attention score on image 

tokens better and enhance model explainability since the visualized attention is supposed 

to connect the model decision and the anatomy. From the attention map presented in the 

result, the heatmap seems to display a greater area than the actual contour with high 

attention scores. When it is close to the edge of the contour, how to interpret the 

connection between morphology and model decision is still questionable. A more 

sophisticated visualization technique could be designed incorporating advice from 

experienced clinicians. 

5. Conclusion 

Key findings from this study are as follows. The contour-guided attention 

mechanism efficiently extracted features from ViT architecture without increasing 

computational overhead. The hybrid model integrating ViT-extracted features, radiomic 

features, and clinical features provides a robust framework for predicting PDAC 

outcomes despite the limited dataset size, emphasizing its potential for clinical 

application.  

To guarantee the model's generalizability and investigate its value in the 

visualization of attention maps, future research should validate the model on larger 
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datasets. This study lays the groundwork for advanced, reliable early detection methods 

in pancreatic cancer, potentially improving patient outcomes through timely intervention. 

This work is related to the Objective One of this dissertation. 
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CHAPTER 6.  CONCLUSION, IMPACTS, AND FUTURE DIRECTIONS 

In this dissertation, significant progress was made in bridging the gaps identified 

in the research by conducting comprehensive studies and integrating clinical data. The 

associations between quantitative image features and clinical events were elucidated for 

the first time with the study on prostate cancer and exposure to Omega-3 and statin 

(Chapter 2). The synthesis of high-quality 2D medical imaging and cancer volumetric 

data was advanced by implementing cutting-edge generative models (Chapters 3 and 4). 

Furthermore, a new variety of image features were extracted by leveraging the Vision 

Transformer (ViT) architecture with noval contour-guided attention (Chapter 5). The 

integration of multi-modal data, including radiomic features, ViT features, and clinical 

information, resulted in improved model accuracy, demonstrating the benefits of a 

holistic approach to medical image analysis. 

Through these contributions, my research aimed to significantly enhance the tools 

available for cancer imaging feature extraction and synthesis. This potent improvement 

can enhance cancer diagnosis, prognosis predictions, and overall radiotherapy image 

analysis. Ultimately, it has the potential to enhance patient outcomes and advance the 

field of medical imaging analysis.   

Despite these achievements, there are still challenges and limitations to be 

addressed. For instance, while the models developed have shown promising results, their 

scalability to larger datasets and generalization to different types of medical imaging data 

need further validation. Other architectures could potentially enhance the quality of 
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synthesized cancer images. Furthermore, the potentials and limitations of prediction 

models with multi-modal features need more rigorous investigation. 

In forthcoming research, I intend to keep improving the ViT feature extraction 

method and the integration of features from other modalities. Enhancement of the 

explainbility with the multi-modal data will be explored. This endeavor will facilitate the 

identification of oncogenic genes and the detection of biomarkers, significantly 

advancing our understanding of cancer pathogenesis. 
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CHAPTER 7.  APPENDIX 

Table 7.1 Radiomic Feature List 

Feature Class Feature Name 
shape VoxelVolume 
shape Maximum3DDiameter 
shape MeshVolume 
shape MajorAxisLength 
shape Sphericity 
shape LeastAxisLength 
shape Elongation 
shape SurfaceVolumeRatio 
shape Maximum2DDiameterSlice 
shape Flatness 
shape SurfaceArea 
shape MinorAxisLength 
shape Maximum2DDiameterColumn 
shape Maximum2DDiameterRow 
gldm GrayLevelVariance 
gldm HighGrayLevelEmphasis 
gldm DependenceEntropy 
gldm DependenceNonUniformity 
gldm GrayLevelNonUniformity 
gldm SmallDependenceEmphasis 
gldm SmallDependenceHighGrayLevelEmphasis 
gldm DependenceNonUniformityNormalized 
gldm LargeDependenceEmphasis 
gldm LargeDependenceLowGrayLevelEmphasis 
gldm DependenceVariance 
gldm LargeDependenceHighGrayLevelEmphasis 
gldm SmallDependenceLowGrayLevelEmphasis 
gldm LowGrayLevelEmphasis 
glcm JointAverage 
glcm SumAverage 
glcm JointEntropy 
glcm ClusterShade 
glcm MaximumProbability 
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glcm Idmn 
glcm JointEnergy 
glcm Contrast 
glcm DifferenceEntropy 
glcm InverseVariance 
glcm DifferenceVariance 
glcm Idn 
glcm Idm 
glcm Correlation 
glcm Autocorrelation 
glcm SumEntropy 
glcm MCC 
glcm SumSquares 
glcm ClusterProminence 
glcm Imc2 
glcm Imc1 
glcm DifferenceAverage 
glcm Id 
glcm ClusterTendency 
firstorder InterquartileRange 
firstorder Skewness 
firstorder Uniformity 
firstorder Median 
firstorder Energy 
firstorder RobustMeanAbsoluteDeviation 
firstorder MeanAbsoluteDeviation 
firstorder TotalEnergy 
firstorder Maximum 
firstorder RootMeanSquared 
firstorder 90Percentile 
firstorder Minimum 
firstorder Entropy 
firstorder Range 
firstorder Variance 
firstorder 10Percentile 
firstorder Kurtosis 
firstorder Mean 
glrlm ShortRunLowGrayLevelEmphasis 
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glrlm GrayLevelVariance 
glrlm LowGrayLevelRunEmphasis 
glrlm GrayLevelNonUniformityNormalized 
glrlm RunVariance 
glrlm GrayLevelNonUniformity 
glrlm LongRunEmphasis 
glrlm ShortRunHighGrayLevelEmphasis 
glrlm RunLengthNonUniformity 
glrlm ShortRunEmphasis 
glrlm LongRunHighGrayLevelEmphasis 
glrlm RunPercentage 
glrlm LongRunLowGrayLevelEmphasis 
glrlm RunEntropy 
glrlm HighGrayLevelRunEmphasis 
glrlm RunLengthNonUniformityNormalized 
glszm GrayLevelVariance 
glszm ZoneVariance 
glszm GrayLevelNonUniformityNormalized 
glszm SizeZoneNonUniformityNormalized 
glszm SizeZoneNonUniformity 
glszm GrayLevelNonUniformity 
glszm LargeAreaEmphasis 
glszm SmallAreaHighGrayLevelEmphasis 
glszm ZonePercentage 
glszm LargeAreaLowGrayLevelEmphasis 
glszm LargeAreaHighGrayLevelEmphasis 
glszm HighGrayLevelZoneEmphasis 
glszm SmallAreaEmphasis 
glszm LowGrayLevelZoneEmphasis 
glszm ZoneEntropy 
glszm SmallAreaLowGrayLevelEmphasis 
ngtdm Coarseness 
ngtdm Complexity 
ngtdm Strength 
ngtdm Contrast 
ngtdm Busyness 
gldm GrayLevelVariance 
gldm HighGrayLevelEmphasis 
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gldm DependenceEntropy 
gldm DependenceNonUniformity 
gldm GrayLevelNonUniformity 
gldm SmallDependenceEmphasis 
gldm SmallDependenceHighGrayLevelEmphasis 
gldm DependenceNonUniformityNormalized 
gldm LargeDependenceEmphasis 
gldm LargeDependenceLowGrayLevelEmphasis 
gldm DependenceVariance 
gldm LargeDependenceHighGrayLevelEmphasis 
gldm SmallDependenceLowGrayLevelEmphasis 
gldm LowGrayLevelEmphasis 
glcm JointAverage 
glcm SumAverage 
glcm JointEntropy 
glcm ClusterShade 
glcm MaximumProbability 
glcm Idmn 
glcm JointEnergy 
glcm Contrast 
glcm DifferenceEntropy 
glcm InverseVariance 
glcm DifferenceVariance 
glcm Idn 
glcm Idm 
glcm Correlation 
glcm Autocorrelation 
glcm SumEntropy 
glcm MCC 
glcm SumSquares 
glcm ClusterProminence 
glcm Imc2 
glcm Imc1 
glcm DifferenceAverage 
glcm Id 
glcm ClusterTendency 
firstorder InterquartileRange 
firstorder Skewness 
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firstorder Uniformity 
firstorder Median 
firstorder Energy 
firstorder RobustMeanAbsoluteDeviation 
firstorder MeanAbsoluteDeviation 
firstorder TotalEnergy 
firstorder Maximum 
firstorder RootMeanSquared 
firstorder 90Percentile 
firstorder Minimum 
firstorder Entropy 
firstorder Range 
firstorder Variance 
firstorder 10Percentile 
firstorder Kurtosis 
firstorder Mean 
glrlm ShortRunLowGrayLevelEmphasis 
glrlm GrayLevelVariance 
glrlm LowGrayLevelRunEmphasis 
glrlm GrayLevelNonUniformityNormalized 
glrlm RunVariance 
glrlm GrayLevelNonUniformity 
glrlm LongRunEmphasis 
glrlm ShortRunHighGrayLevelEmphasis 
glrlm RunLengthNonUniformity 
glrlm ShortRunEmphasis 
glrlm LongRunHighGrayLevelEmphasis 
glrlm RunPercentage 
glrlm LongRunLowGrayLevelEmphasis 
glrlm RunEntropy 
glrlm HighGrayLevelRunEmphasis 
glrlm RunLengthNonUniformityNormalized 
glszm GrayLevelVariance 
glszm ZoneVariance 
glszm GrayLevelNonUniformityNormalized 
glszm SizeZoneNonUniformityNormalized 
glszm SizeZoneNonUniformity 
glszm GrayLevelNonUniformity 
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glszm LargeAreaEmphasis 
glszm SmallAreaHighGrayLevelEmphasis 
glszm ZonePercentage 
glszm LargeAreaLowGrayLevelEmphasis 
glszm LargeAreaHighGrayLevelEmphasis 
glszm HighGrayLevelZoneEmphasis 
glszm SmallAreaEmphasis 
glszm LowGrayLevelZoneEmphasis 
glszm ZoneEntropy 
glszm SmallAreaLowGrayLevelEmphasis 
ngtdm Coarseness 
ngtdm Complexity 
ngtdm Strength 
ngtdm Contrast 
ngtdm Busyness 
gldm GrayLevelVariance 
gldm HighGrayLevelEmphasis 
gldm DependenceEntropy 
gldm DependenceNonUniformity 
gldm GrayLevelNonUniformity 
gldm SmallDependenceEmphasis 
gldm SmallDependenceHighGrayLevelEmphasis 
gldm DependenceNonUniformityNormalized 
gldm LargeDependenceEmphasis 
gldm LargeDependenceLowGrayLevelEmphasis 
gldm DependenceVariance 
gldm LargeDependenceHighGrayLevelEmphasis 
gldm SmallDependenceLowGrayLevelEmphasis 
gldm LowGrayLevelEmphasis 
glcm JointAverage 
glcm SumAverage 
glcm JointEntropy 
glcm ClusterShade 
glcm MaximumProbability 
glcm Idmn 
glcm JointEnergy 
glcm Contrast 
glcm DifferenceEntropy 
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glcm InverseVariance 
glcm DifferenceVariance 
glcm Idn 
glcm Idm 
glcm Correlation 
glcm Autocorrelation 
glcm SumEntropy 
glcm MCC 
glcm SumSquares 
glcm ClusterProminence 
glcm Imc2 
glcm Imc1 
glcm DifferenceAverage 
glcm Id 
glcm ClusterTendency 
firstorder InterquartileRange 
firstorder Skewness 
firstorder Uniformity 
firstorder Median 
firstorder Energy 
firstorder RobustMeanAbsoluteDeviation 
firstorder MeanAbsoluteDeviation 
firstorder TotalEnergy 
firstorder Maximum 
firstorder RootMeanSquared 
firstorder 90Percentile 
firstorder Minimum 
firstorder Entropy 
firstorder Range 
firstorder Variance 
firstorder 10Percentile 
firstorder Kurtosis 
firstorder Mean 
glrlm ShortRunLowGrayLevelEmphasis 
glrlm GrayLevelVariance 
glrlm LowGrayLevelRunEmphasis 
glrlm GrayLevelNonUniformityNormalized 
glrlm RunVariance 
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glrlm GrayLevelNonUniformity 
glrlm LongRunEmphasis 
glrlm ShortRunHighGrayLevelEmphasis 
glrlm RunLengthNonUniformity 
glrlm ShortRunEmphasis 
glrlm LongRunHighGrayLevelEmphasis 
glrlm RunPercentage 
glrlm LongRunLowGrayLevelEmphasis 
glrlm RunEntropy 
glrlm HighGrayLevelRunEmphasis 
glrlm RunLengthNonUniformityNormalized 
glszm GrayLevelVariance 
glszm ZoneVariance 
glszm GrayLevelNonUniformityNormalized 
glszm SizeZoneNonUniformityNormalized 
glszm SizeZoneNonUniformity 
glszm GrayLevelNonUniformity 
glszm LargeAreaEmphasis 
glszm SmallAreaHighGrayLevelEmphasis 
glszm ZonePercentage 
glszm LargeAreaLowGrayLevelEmphasis 
glszm LargeAreaHighGrayLevelEmphasis 
glszm HighGrayLevelZoneEmphasis 
glszm SmallAreaEmphasis 
glszm LowGrayLevelZoneEmphasis 
glszm ZoneEntropy 
glszm SmallAreaLowGrayLevelEmphasis 
ngtdm Coarseness 
ngtdm Complexity 
ngtdm Strength 
ngtdm Contrast 
ngtdm Busyness 
gldm GrayLevelVariance 
gldm HighGrayLevelEmphasis 
gldm DependenceEntropy 
gldm DependenceNonUniformity 
gldm GrayLevelNonUniformity 
gldm SmallDependenceEmphasis 



 

 

135 

gldm SmallDependenceHighGrayLevelEmphasis 
gldm DependenceNonUniformityNormalized 
gldm LargeDependenceEmphasis 
gldm LargeDependenceLowGrayLevelEmphasis 
gldm DependenceVariance 
gldm LargeDependenceHighGrayLevelEmphasis 
gldm SmallDependenceLowGrayLevelEmphasis 
gldm LowGrayLevelEmphasis 
glcm JointAverage 
glcm SumAverage 
glcm JointEntropy 
glcm ClusterShade 
glcm MaximumProbability 
glcm Idmn 
glcm JointEnergy 
glcm Contrast 
glcm DifferenceEntropy 
glcm InverseVariance 
glcm DifferenceVariance 
glcm Idn 
glcm Idm 
glcm Correlation 
glcm Autocorrelation 
glcm SumEntropy 
glcm MCC 
glcm SumSquares 
glcm ClusterProminence 
glcm Imc2 
glcm Imc1 
glcm DifferenceAverage 
glcm Id 
glcm ClusterTendency 
firstorder InterquartileRange 
firstorder Skewness 
firstorder Uniformity 
firstorder Median 
firstorder Energy 
firstorder RobustMeanAbsoluteDeviation 
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firstorder MeanAbsoluteDeviation 
firstorder TotalEnergy 
firstorder Maximum 
firstorder RootMeanSquared 
firstorder 90Percentile 
firstorder Minimum 
firstorder Entropy 
firstorder Range 
firstorder Variance 
firstorder 10Percentile 
firstorder Kurtosis 
firstorder Mean 
glrlm ShortRunLowGrayLevelEmphasis 
glrlm GrayLevelVariance 
glrlm LowGrayLevelRunEmphasis 
glrlm GrayLevelNonUniformityNormalized 
glrlm RunVariance 
glrlm GrayLevelNonUniformity 
glrlm LongRunEmphasis 
glrlm ShortRunHighGrayLevelEmphasis 
glrlm RunLengthNonUniformity 
glrlm ShortRunEmphasis 
glrlm LongRunHighGrayLevelEmphasis 
glrlm RunPercentage 
glrlm LongRunLowGrayLevelEmphasis 
glrlm RunEntropy 
glrlm HighGrayLevelRunEmphasis 
glrlm RunLengthNonUniformityNormalized 
glszm GrayLevelVariance 
glszm ZoneVariance 
glszm GrayLevelNonUniformityNormalized 
glszm SizeZoneNonUniformityNormalized 
glszm SizeZoneNonUniformity 
glszm GrayLevelNonUniformity 
glszm LargeAreaEmphasis 
glszm SmallAreaHighGrayLevelEmphasis 
glszm ZonePercentage 
glszm LargeAreaLowGrayLevelEmphasis 
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glszm LargeAreaHighGrayLevelEmphasis 
glszm HighGrayLevelZoneEmphasis 
glszm SmallAreaEmphasis 
glszm LowGrayLevelZoneEmphasis 
glszm ZoneEntropy 
glszm SmallAreaLowGrayLevelEmphasis 
ngtdm Coarseness 
ngtdm Complexity 
ngtdm Strength 
ngtdm Contrast 
ngtdm Busyness 
gldm GrayLevelVariance 
gldm HighGrayLevelEmphasis 
gldm DependenceEntropy 
gldm DependenceNonUniformity 
gldm GrayLevelNonUniformity 
gldm SmallDependenceEmphasis 
gldm SmallDependenceHighGrayLevelEmphasis 
gldm DependenceNonUniformityNormalized 
gldm LargeDependenceEmphasis 
gldm LargeDependenceLowGrayLevelEmphasis 
gldm DependenceVariance 
gldm LargeDependenceHighGrayLevelEmphasis 
gldm SmallDependenceLowGrayLevelEmphasis 
gldm LowGrayLevelEmphasis 
glcm JointAverage 
glcm SumAverage 
glcm JointEntropy 
glcm ClusterShade 
glcm MaximumProbability 
glcm Idmn 
glcm JointEnergy 
glcm Contrast 
glcm DifferenceEntropy 
glcm InverseVariance 
glcm DifferenceVariance 
glcm Idn 
glcm Idm 
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glcm Correlation 
glcm Autocorrelation 
glcm SumEntropy 
glcm MCC 
glcm SumSquares 
glcm ClusterProminence 
glcm Imc2 
glcm Imc1 
glcm DifferenceAverage 
glcm Id 
glcm ClusterTendency 
firstorder InterquartileRange 
firstorder Skewness 
firstorder Uniformity 
firstorder Median 
firstorder Energy 
firstorder RobustMeanAbsoluteDeviation 
firstorder MeanAbsoluteDeviation 
firstorder TotalEnergy 
firstorder Maximum 
firstorder RootMeanSquared 
firstorder 90Percentile 
firstorder Minimum 
firstorder Entropy 
firstorder Range 
firstorder Variance 
firstorder 10Percentile 
firstorder Kurtosis 
firstorder Mean 
glrlm ShortRunLowGrayLevelEmphasis 
glrlm GrayLevelVariance 
glrlm LowGrayLevelRunEmphasis 
glrlm GrayLevelNonUniformityNormalized 
glrlm RunVariance 
glrlm GrayLevelNonUniformity 
glrlm LongRunEmphasis 
glrlm ShortRunHighGrayLevelEmphasis 
glrlm RunLengthNonUniformity 
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glrlm ShortRunEmphasis 
glrlm LongRunHighGrayLevelEmphasis 
glrlm RunPercentage 
glrlm LongRunLowGrayLevelEmphasis 
glrlm RunEntropy 
glrlm HighGrayLevelRunEmphasis 
glrlm RunLengthNonUniformityNormalized 
glszm GrayLevelVariance 
glszm ZoneVariance 
glszm GrayLevelNonUniformityNormalized 
glszm SizeZoneNonUniformityNormalized 
glszm SizeZoneNonUniformity 
glszm GrayLevelNonUniformity 
glszm LargeAreaEmphasis 
glszm SmallAreaHighGrayLevelEmphasis 
glszm ZonePercentage 
glszm LargeAreaLowGrayLevelEmphasis 
glszm LargeAreaHighGrayLevelEmphasis 
glszm HighGrayLevelZoneEmphasis 
glszm SmallAreaEmphasis 
glszm LowGrayLevelZoneEmphasis 
glszm ZoneEntropy 
glszm SmallAreaLowGrayLevelEmphasis 
ngtdm Coarseness 
ngtdm Complexity 
ngtdm Strength 
ngtdm Contrast 
ngtdm Busyness 
gldm GrayLevelVariance 
gldm HighGrayLevelEmphasis 
gldm DependenceEntropy 
gldm DependenceNonUniformity 
gldm GrayLevelNonUniformity 
gldm SmallDependenceEmphasis 
gldm SmallDependenceHighGrayLevelEmphasis 
gldm DependenceNonUniformityNormalized 
gldm LargeDependenceEmphasis 
gldm LargeDependenceLowGrayLevelEmphasis 
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gldm DependenceVariance 
gldm LargeDependenceHighGrayLevelEmphasis 
gldm SmallDependenceLowGrayLevelEmphasis 
gldm LowGrayLevelEmphasis 
glcm JointAverage 
glcm SumAverage 
glcm JointEntropy 
glcm ClusterShade 
glcm MaximumProbability 
glcm Idmn 
glcm JointEnergy 
glcm Contrast 
glcm DifferenceEntropy 
glcm InverseVariance 
glcm DifferenceVariance 
glcm Idn 
glcm Idm 
glcm Correlation 
glcm Autocorrelation 
glcm SumEntropy 
glcm MCC 
glcm SumSquares 
glcm ClusterProminence 
glcm Imc2 
glcm Imc1 
glcm DifferenceAverage 
glcm Id 
glcm ClusterTendency 
firstorder InterquartileRange 
firstorder Skewness 
firstorder Uniformity 
firstorder Median 
firstorder Energy 
firstorder RobustMeanAbsoluteDeviation 
firstorder MeanAbsoluteDeviation 
firstorder TotalEnergy 
firstorder Maximum 
firstorder RootMeanSquared 
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firstorder 90Percentile 
firstorder Minimum 
firstorder Entropy 
firstorder Range 
firstorder Variance 
firstorder 10Percentile 
firstorder Kurtosis 
firstorder Mean 
glrlm ShortRunLowGrayLevelEmphasis 
glrlm GrayLevelVariance 
glrlm LowGrayLevelRunEmphasis 
glrlm GrayLevelNonUniformityNormalized 
glrlm RunVariance 
glrlm GrayLevelNonUniformity 
glrlm LongRunEmphasis 
glrlm ShortRunHighGrayLevelEmphasis 
glrlm RunLengthNonUniformity 
glrlm ShortRunEmphasis 
glrlm LongRunHighGrayLevelEmphasis 
glrlm RunPercentage 
glrlm LongRunLowGrayLevelEmphasis 
glrlm RunEntropy 
glrlm HighGrayLevelRunEmphasis 
glrlm RunLengthNonUniformityNormalized 
glszm GrayLevelVariance 
glszm ZoneVariance 
glszm GrayLevelNonUniformityNormalized 
glszm SizeZoneNonUniformityNormalized 
glszm SizeZoneNonUniformity 
glszm GrayLevelNonUniformity 
glszm LargeAreaEmphasis 
glszm SmallAreaHighGrayLevelEmphasis 
glszm ZonePercentage 
glszm LargeAreaLowGrayLevelEmphasis 
glszm LargeAreaHighGrayLevelEmphasis 
glszm HighGrayLevelZoneEmphasis 
glszm SmallAreaEmphasis 
glszm LowGrayLevelZoneEmphasis 
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glszm ZoneEntropy 
glszm SmallAreaLowGrayLevelEmphasis 
ngtdm Coarseness 
ngtdm Complexity 
ngtdm Strength 
ngtdm Contrast 
ngtdm Busyness 
gldm GrayLevelVariance 
gldm HighGrayLevelEmphasis 
gldm DependenceEntropy 
gldm DependenceNonUniformity 
gldm GrayLevelNonUniformity 
gldm SmallDependenceEmphasis 
gldm SmallDependenceHighGrayLevelEmphasis 
gldm DependenceNonUniformityNormalized 
gldm LargeDependenceEmphasis 
gldm LargeDependenceLowGrayLevelEmphasis 
gldm DependenceVariance 
gldm LargeDependenceHighGrayLevelEmphasis 
gldm SmallDependenceLowGrayLevelEmphasis 
gldm LowGrayLevelEmphasis 
glcm JointAverage 
glcm SumAverage 
glcm JointEntropy 
glcm ClusterShade 
glcm MaximumProbability 
glcm Idmn 
glcm JointEnergy 
glcm Contrast 
glcm DifferenceEntropy 
glcm InverseVariance 
glcm DifferenceVariance 
glcm Idn 
glcm Idm 
glcm Correlation 
glcm Autocorrelation 
glcm SumEntropy 
glcm MCC 
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glcm SumSquares 
glcm ClusterProminence 
glcm Imc2 
glcm Imc1 
glcm DifferenceAverage 
glcm Id 
glcm ClusterTendency 
firstorder InterquartileRange 
firstorder Skewness 
firstorder Uniformity 
firstorder Median 
firstorder Energy 
firstorder RobustMeanAbsoluteDeviation 
firstorder MeanAbsoluteDeviation 
firstorder TotalEnergy 
firstorder Maximum 
firstorder RootMeanSquared 
firstorder 90Percentile 
firstorder Minimum 
firstorder Entropy 
firstorder Range 
firstorder Variance 
firstorder 10Percentile 
firstorder Kurtosis 
firstorder Mean 
glrlm ShortRunLowGrayLevelEmphasis 
glrlm GrayLevelVariance 
glrlm LowGrayLevelRunEmphasis 
glrlm GrayLevelNonUniformityNormalized 
glrlm RunVariance 
glrlm GrayLevelNonUniformity 
glrlm LongRunEmphasis 
glrlm ShortRunHighGrayLevelEmphasis 
glrlm RunLengthNonUniformity 
glrlm ShortRunEmphasis 
glrlm LongRunHighGrayLevelEmphasis 
glrlm RunPercentage 
glrlm LongRunLowGrayLevelEmphasis 
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glrlm RunEntropy 
glrlm HighGrayLevelRunEmphasis 
glrlm RunLengthNonUniformityNormalized 
glszm GrayLevelVariance 
glszm ZoneVariance 
glszm GrayLevelNonUniformityNormalized 
glszm SizeZoneNonUniformityNormalized 
glszm SizeZoneNonUniformity 
glszm GrayLevelNonUniformity 
glszm LargeAreaEmphasis 
glszm SmallAreaHighGrayLevelEmphasis 
glszm ZonePercentage 
glszm LargeAreaLowGrayLevelEmphasis 
glszm LargeAreaHighGrayLevelEmphasis 
glszm HighGrayLevelZoneEmphasis 
glszm SmallAreaEmphasis 
glszm LowGrayLevelZoneEmphasis 
glszm ZoneEntropy 
glszm SmallAreaLowGrayLevelEmphasis 
ngtdm Coarseness 
ngtdm Complexity 
ngtdm Strength 
ngtdm Contrast 
ngtdm Busyness 
gldm GrayLevelVariance 
gldm HighGrayLevelEmphasis 
gldm DependenceEntropy 
gldm DependenceNonUniformity 
gldm GrayLevelNonUniformity 
gldm SmallDependenceEmphasis 
gldm SmallDependenceHighGrayLevelEmphasis 
gldm DependenceNonUniformityNormalized 
gldm LargeDependenceEmphasis 
gldm LargeDependenceLowGrayLevelEmphasis 
gldm DependenceVariance 
gldm LargeDependenceHighGrayLevelEmphasis 
gldm SmallDependenceLowGrayLevelEmphasis 
gldm LowGrayLevelEmphasis 
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glcm JointAverage 
glcm SumAverage 
glcm JointEntropy 
glcm ClusterShade 
glcm MaximumProbability 
glcm Idmn 
glcm JointEnergy 
glcm Contrast 
glcm DifferenceEntropy 
glcm InverseVariance 
glcm DifferenceVariance 
glcm Idn 
glcm Idm 
glcm Correlation 
glcm Autocorrelation 
glcm SumEntropy 
glcm MCC 
glcm SumSquares 
glcm ClusterProminence 
glcm Imc2 
glcm Imc1 
glcm DifferenceAverage 
glcm Id 
glcm ClusterTendency 
firstorder InterquartileRange 
firstorder Skewness 
firstorder Uniformity 
firstorder Median 
firstorder Energy 
firstorder RobustMeanAbsoluteDeviation 
firstorder MeanAbsoluteDeviation 
firstorder TotalEnergy 
firstorder Maximum 
firstorder RootMeanSquared 
firstorder 90Percentile 
firstorder Minimum 
firstorder Entropy 
firstorder Range 
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firstorder Variance 
firstorder 10Percentile 
firstorder Kurtosis 
firstorder Mean 
glrlm ShortRunLowGrayLevelEmphasis 
glrlm GrayLevelVariance 
glrlm LowGrayLevelRunEmphasis 
glrlm GrayLevelNonUniformityNormalized 
glrlm RunVariance 
glrlm GrayLevelNonUniformity 
glrlm LongRunEmphasis 
glrlm ShortRunHighGrayLevelEmphasis 
glrlm RunLengthNonUniformity 
glrlm ShortRunEmphasis 
glrlm LongRunHighGrayLevelEmphasis 
glrlm RunPercentage 
glrlm LongRunLowGrayLevelEmphasis 
glrlm RunEntropy 
glrlm HighGrayLevelRunEmphasis 
glrlm RunLengthNonUniformityNormalized 
glszm GrayLevelVariance 
glszm ZoneVariance 
glszm GrayLevelNonUniformityNormalized 
glszm SizeZoneNonUniformityNormalized 
glszm SizeZoneNonUniformity 
glszm GrayLevelNonUniformity 
glszm LargeAreaEmphasis 
glszm SmallAreaHighGrayLevelEmphasis 
glszm ZonePercentage 
glszm LargeAreaLowGrayLevelEmphasis 
glszm LargeAreaHighGrayLevelEmphasis 
glszm HighGrayLevelZoneEmphasis 
glszm SmallAreaEmphasis 
glszm LowGrayLevelZoneEmphasis 
glszm ZoneEntropy 
glszm SmallAreaLowGrayLevelEmphasis 
ngtdm Coarseness 
ngtdm Complexity 
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ngtdm Strength 
ngtdm Contrast 
ngtdm Busyness 
gldm GrayLevelVariance 
gldm HighGrayLevelEmphasis 
gldm DependenceEntropy 
gldm DependenceNonUniformity 
gldm GrayLevelNonUniformity 
gldm SmallDependenceEmphasis 
gldm SmallDependenceHighGrayLevelEmphasis 
gldm DependenceNonUniformityNormalized 
gldm LargeDependenceEmphasis 
gldm LargeDependenceLowGrayLevelEmphasis 
gldm DependenceVariance 
gldm LargeDependenceHighGrayLevelEmphasis 
gldm SmallDependenceLowGrayLevelEmphasis 
gldm LowGrayLevelEmphasis 
glcm JointAverage 
glcm SumAverage 
glcm JointEntropy 
glcm ClusterShade 
glcm MaximumProbability 
glcm Idmn 
glcm JointEnergy 
glcm Contrast 
glcm DifferenceEntropy 
glcm InverseVariance 
glcm DifferenceVariance 
glcm Idn 
glcm Idm 
glcm Correlation 
glcm Autocorrelation 
glcm SumEntropy 
glcm MCC 
glcm SumSquares 
glcm ClusterProminence 
glcm Imc2 
glcm Imc1 
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glcm DifferenceAverage 
glcm Id 
glcm ClusterTendency 
firstorder InterquartileRange 
firstorder Skewness 
firstorder Uniformity 
firstorder Median 
firstorder Energy 
firstorder RobustMeanAbsoluteDeviation 
firstorder MeanAbsoluteDeviation 
firstorder TotalEnergy 
firstorder Maximum 
firstorder RootMeanSquared 
firstorder 90Percentile 
firstorder Minimum 
firstorder Entropy 
firstorder Range 
firstorder Variance 
firstorder 10Percentile 
firstorder Kurtosis 
firstorder Mean 
glrlm ShortRunLowGrayLevelEmphasis 
glrlm GrayLevelVariance 
glrlm LowGrayLevelRunEmphasis 
glrlm GrayLevelNonUniformityNormalized 
glrlm RunVariance 
glrlm GrayLevelNonUniformity 
glrlm LongRunEmphasis 
glrlm ShortRunHighGrayLevelEmphasis 
glrlm RunLengthNonUniformity 
glrlm ShortRunEmphasis 
glrlm LongRunHighGrayLevelEmphasis 
glrlm RunPercentage 
glrlm LongRunLowGrayLevelEmphasis 
glrlm RunEntropy 
glrlm HighGrayLevelRunEmphasis 
glrlm RunLengthNonUniformityNormalized 
glszm GrayLevelVariance 
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glszm ZoneVariance 
glszm GrayLevelNonUniformityNormalized 
glszm SizeZoneNonUniformityNormalized 
glszm SizeZoneNonUniformity 
glszm GrayLevelNonUniformity 
glszm LargeAreaEmphasis 
glszm SmallAreaHighGrayLevelEmphasis 
glszm ZonePercentage 
glszm LargeAreaLowGrayLevelEmphasis 
glszm LargeAreaHighGrayLevelEmphasis 
glszm HighGrayLevelZoneEmphasis 
glszm SmallAreaEmphasis 
glszm LowGrayLevelZoneEmphasis 
glszm ZoneEntropy 
glszm SmallAreaLowGrayLevelEmphasis 
ngtdm Coarseness 
ngtdm Complexity 
ngtdm Strength 
ngtdm Contrast 
ngtdm Busyness 
gldm GrayLevelVariance 
gldm HighGrayLevelEmphasis 
gldm DependenceEntropy 
gldm DependenceNonUniformity 
gldm GrayLevelNonUniformity 
gldm SmallDependenceEmphasis 
gldm SmallDependenceHighGrayLevelEmphasis 
gldm DependenceNonUniformityNormalized 
gldm LargeDependenceEmphasis 
gldm LargeDependenceLowGrayLevelEmphasis 
gldm DependenceVariance 
gldm LargeDependenceHighGrayLevelEmphasis 
gldm SmallDependenceLowGrayLevelEmphasis 
gldm LowGrayLevelEmphasis 
glcm JointAverage 
glcm SumAverage 
glcm JointEntropy 
glcm ClusterShade 
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glcm MaximumProbability 
glcm Idmn 
glcm JointEnergy 
glcm Contrast 
glcm DifferenceEntropy 
glcm InverseVariance 
glcm DifferenceVariance 
glcm Idn 
glcm Idm 
glcm Correlation 
glcm Autocorrelation 
glcm SumEntropy 
glcm MCC 
glcm SumSquares 
glcm ClusterProminence 
glcm Imc2 
glcm Imc1 
glcm DifferenceAverage 
glcm Id 
glcm ClusterTendency 
firstorder InterquartileRange 
firstorder Skewness 
firstorder Uniformity 
firstorder Median 
firstorder Energy 
firstorder RobustMeanAbsoluteDeviation 
firstorder MeanAbsoluteDeviation 
firstorder TotalEnergy 
firstorder Maximum 
firstorder RootMeanSquared 
firstorder 90Percentile 
firstorder Minimum 
firstorder Entropy 
firstorder Range 
firstorder Variance 
firstorder 10Percentile 
firstorder Kurtosis 
firstorder Mean 
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glrlm ShortRunLowGrayLevelEmphasis 
glrlm GrayLevelVariance 
glrlm LowGrayLevelRunEmphasis 
glrlm GrayLevelNonUniformityNormalized 
glrlm RunVariance 
glrlm GrayLevelNonUniformity 
glrlm LongRunEmphasis 
glrlm ShortRunHighGrayLevelEmphasis 
glrlm RunLengthNonUniformity 
glrlm ShortRunEmphasis 
glrlm LongRunHighGrayLevelEmphasis 
glrlm RunPercentage 
glrlm LongRunLowGrayLevelEmphasis 
glrlm RunEntropy 
glrlm HighGrayLevelRunEmphasis 
glrlm RunLengthNonUniformityNormalized 
glszm GrayLevelVariance 
glszm ZoneVariance 
glszm GrayLevelNonUniformityNormalized 
glszm SizeZoneNonUniformityNormalized 
glszm SizeZoneNonUniformity 
glszm GrayLevelNonUniformity 
glszm LargeAreaEmphasis 
glszm SmallAreaHighGrayLevelEmphasis 
glszm ZonePercentage 
glszm LargeAreaLowGrayLevelEmphasis 
glszm LargeAreaHighGrayLevelEmphasis 
glszm HighGrayLevelZoneEmphasis 
glszm SmallAreaEmphasis 
glszm LowGrayLevelZoneEmphasis 
glszm ZoneEntropy 
glszm SmallAreaLowGrayLevelEmphasis 
ngtdm Coarseness 
ngtdm Complexity 
ngtdm Strength 
ngtdm Contrast 
ngtdm Busyness 
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Table 7.2 Prostate/Omega-3 Feature Candidates 

Top 10 most used features within 1000 rounds of resampling Times 
wavelet_HLL_glszm_LargeAreaHighGrayLevelEmphasis 143 
log_sigma_5_0_mm_3D_firstorder_Mean 127 
wavelet_HLH_ngtdm_Busyness 102 
wavelet_HLH_glcm_ClusterShade 88 
wavelet_HHL_glcm_Imc1 87 
log_sigma_5_0_mm_3D_glszm_SmallAreaLowGrayLevelEmphasis 82 
wavelet_LLH_glszm_GrayLevelNonUniformityNormalized 74 
log_sigma_5_0_mm_3D_glcm_Idmn 73 
log_sigma_5_0_mm_3D_glszm_SizeZoneNonUniformityNormalized 68 
log_sigma_5_0_mm_3D_glszm_SmallAreaEmphasis 65 

 

Table 7.3 Prostate/Statin Feature Candidates 

Top 10 most used features within 1000 rounds of resampling Times 
wavelet_HHH_glcm_Correlation 181 
wavelet_HHH_firstorder_Median 170 
wavelet_HLL_glcm_Correlation 156 
log_sigma_5_0_mm_3D_gldm_SmallDependenceLowGrayLevelEmphasis 135 
wavelet_HHL_firstorder_Skewness 133 
wavelet_HLH_glcm_Correlation 95 
wavelet_LHL_glcm_Idmn 92 
log_sigma_5_0_mm_3D_glszm_SmallAreaEmphasis 74 
wavelet_LHL_glszm_SmallAreaLowGrayLevelEmphasis 74 
wavelet_LLH_firstorder_Skewness 58 

 

Table 7.4 Peripheral/Omega-3 Feature Candidates 

Top 10 most used features within 1000 rounds of resampling Times 
wavelet_LLL_firstorder_Kurtosis 191 
wavelet_LHH_glszm_SmallAreaLowGrayLevelEmphasis 172 
wavelet_HLL_glszm_SmallAreaEmphasis 163 
wavelet_HLH_firstorder_Mean 144 
wavelet_HLH_firstorder_Median 140 
wavelet_LHH_glszm_LowGrayLevelZoneEmphasis 131 
log_sigma_5_0_mm_3D_firstorder_Skewness 85 
wavelet_HHH_firstorder_Mean 67 
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wavelet_LLH_glszm_SmallAreaEmphasis 62 
wavelet_HHH_glszm_GrayLevelNonUniformityNormalized 58 

 

Table 7.5 Peripheral/Statin Feature Candidates 

Top 10 most used features within 1000 rounds of resampling Times 
wavelet_HHH_glcm_Correlation 269 
wavelet_HHL_firstorder_Median 188 
log_sigma_5_0_mm_3D_glszm_SizeZoneNonUniformityNormalized 131 
log_sigma_5_0_mm_3D_gldm_DependenceNonUniformityNormalized 128 
wavelet_HHL_firstorder_Skewness 113 
log_sigma_5_0_mm_3D_glszm_SmallAreaEmphasis 112 
log_sigma_5_0_mm_3D_glszm_LargeAreaEmphasis 88 
wavelet_HHL_glcm_Idmn 81 
wavelet_HHH_firstorder_Median 79 
wavelet_HLH_firstorder_Skewness 78 
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Table 7.6 Top Radiomic Features in ACEi Predictions 

  ACEi Top 10 Features Times 

Prostate 

wavelet_HLH_firstorder_Skewness  187 
log_sigma_5_0_mm_3D_glszm_LargeAreaLowGrayLevelEm
phasis  166 
wavelet_HLL_glcm_Imc1  152 
wavelet_LLH_glszm_SmallAreaLowGrayLevelEmphasis  113 
wavelet_HLL_firstorder_Skewness  108 
wavelet_HLH_glcm_ClusterShade  59 
wavelet_HLH_glszm_SmallAreaEmphasis  44 
log_sigma_5_0_mm_3D_glcm_Imc1  32 
 wavelet_HLL_glcm_MCC  22 
log_sigma_5_0_mm_3D_glcm_Imc2  21 

   

Peripheral 

wavelet_HHH_gldm_DependenceNonUniformityNormalized  290 
wavelet_HLL_glcm_Imc1  200 
log_sigma_5_0_mm_3D_glszm_SmallAreaLowGrayLevelEm
phasis  151 
wavelet_LLH_glszm_SmallAreaEmphasis  130 
wavelet_HLH_firstorder_Skewness  112 
log_sigma_5_0_mm_3D_ngtdm_Coarseness  80 
wavelet_LHH_firstorder_Skewness  42 
log_sigma_5_0_mm_3D_glszm_SmallAreaEmphasis  41 
wavelet_LHL_glcm_Imc2  25 
wavelet_HLL_glcm_MCC  20 

 


	Development of Feature Extraction Models to Improve Image Analysis Applications in Cancer
	Recommended Citation

	tmp.1724096523.pdf.gz_Xb

