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Abstract

Background: Although draft genomes are available for most agronomically important plant species, the majority are
incomplete, highly fragmented, and often riddled with assembly and scaffolding errors. These assembly issues hinder
advances in tool development for functional genomics and systems biology. Findings: Here we utilized a robust,
cost-effective approach to produce high-quality reference genomes. We report a near-complete genome of diploid woodland
strawberry (Fragaria vesca) using single-molecule real-time sequencing from Pacific Biosciences (PacBio). This assembly has
a contig N50 length of ∼7.9 million base pairs (Mb), representing a ∼300-fold improvement of the previous version. The vast
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majority (>99.8%) of the assembly was anchored to 7 pseudomolecules using 2 sets of optical maps from Bionano
Genomics. We obtained ∼24.96 Mb of sequence not present in the previous version of the F. vesca genome and produced an
improved annotation that includes 1496 new genes. Comparative syntenic analyses uncovered numerous, large-scale
scaffolding errors present in each chromosome in the previously published version of the F. vesca genome. Conclusions: Our
results highlight the need to improve existing short-read based reference genomes. Furthermore, we demonstrate how
genome quality impacts commonly used analyses for addressing both fundamental and applied biological questions.

Keywords: Fragaria vesca; strawberry; rosaceae; third-generation sequencing; optical map

Eukaryotic genomes, particularly plants, are notoriously difficult
to assemble because of issues related to high repeat content, a
history of gene and whole-genome duplications, and regions of
highly skewed nucleotide composition [1]. The short reads (50–
300 bp) generated by second-generation sequencing technolo-
gies are often insufficient to resolve complex genomic features
and regions. Short reads are unable to span large repetitive re-
gions, resulting in sequence gaps and ambiguities in the as-
sembly graph structures. Despite this known limitation, second-
generation sequencing platforms have been used for the major-
ity of genome sequencing projects over the past decade, result-
ing in a series of unfinished, fragmented draft genome assem-
blies [2]. For instance, the genome of woodland strawberry (Fra-
garia vesca “Hawaii-4”) was assembled using a mixture of differ-
ent short-read technologies and yielded 16 487 contigs in 3263
scaffolds with an N50 length of ∼27 kb [3]. Dense linkage maps
were later utilized to split multiple chimeric scaffolds and im-
prove anchoring to the 7 pseudomolecules [4]. However, the F.
vesca (version 2; V2) genome remains incomplete, with 6.99%
gaps, missing megabase-sized regions, and scaffolding errors.

Fragaria vesca serves as an important model system for ge-
netic studies for the Rosaceae community, due to its small
stature, short generation time, a simple and efficient system
for genetic transformation, and an increasing number of ge-
netic resources [5–7]. With more than 2500 described species,
Rosaceae is one of the most speciose eudicot families and in-
cludes a breadth of important crops (e.g., almonds, apples, apri-
cots, blackberries, cherries, peaches, pears, plums, raspberries,
roses, and strawberries) [8]. Furthermore, F. vesca is a valuable
genetic resource because it is the putative diploid progenitor
of the A subgenome of the cultivated octoploid strawberry (F.
x ananassa) [9]. Strawberries are of major economic importance
worldwide, with 373 435 hectares planted and 8 114 373 met-
ric tonnes of fruit produced in 2014 [10]. Previous versions of
the F. vesca genome (V1 and V2) have been used to uncover un-
derlying genetic factors regulating plant and fruit development,
seasonal flowering, sex determination, metabolite diversity, and
disease resistance [11–16]. A high-quality reference genome for
F. vesca would further enable family-wide comparative studies
and leverage the strengths offered by thismodel system for both
fundamental and applied research.

We aimed to improve the F. vesca “Hawaii-4” reference
genome using a long-read PacBio single-molecule real-time
(SMRT) sequencing approach. We generated 2.3 million PacBio
reads collectively, spanning 19.4 Gb (×80.8 coverage) with a sub-
read N50 length of 9.2 kb and average length of 8.3 kb (Supple-
mental Fig. S1; NCBI BioProject ID PRJNA383733). The minimum
and maximum read lengths were 3 kb and 72 kb, respectively.
The raw PacBio reads were error-corrected and assembled using
the Canu [17] assembler, followed by 2 rounds of polishing with
Quiver [18]. High-coverage (∼×40) Illumina data were aligned to
the PacBio assembly, and residual errors were corrected using
Pilon [19]. After removing the complete chloroplast and mito-

chondrial genomes, the final assembly spanned 219 Mb across
61 contigs with an N50 length of 7.9 Mb. Half of the assembly
is contained in the largest 9 contigs, including 5 that exceed 10
Mb. The assembly graph is relatively simple with few ambigui-
ties, excluding a small cluster of 5 contigs corresponding to rRNA
gene arrays from the nucleolar organizer region (Supplemental
Fig. S2). This represents a ∼300-fold improvement in contiguity
compared with the Illumina and 454-based F. vesca V1 assembly
[3].

The PacBio-based contigs were anchored into a
chromosome-scale assembly using a 2-enzyme BioNano
Genmomics optical map. Contigs were scaffolded first using the
BsqQI map, and this hybrid assembly was used as a reference
for the BssSI map. Incongruences between the genome as-
sembly and optical map were screened using a hybrid scaffold
algorithm from BioNano Genomics and manual curation, which
resulted in a total of 7 cuts made to input contigs and a single
cut made to the optical map. Furthermore, Structural Variation
detection between the BspQI assembly and the final output
detected no major conflicts within the optical map resolution
range. The combined BioNano and PacBio assembly spans
220.8 Mb across 31 scaffolds with an N50 length of 36.1 Mb, with
99.8% of the assembly captured in 9 scaffolds (Supplemental
Table S1). Five of the 7 F. vesca chromosomes are complete, and
2 chromosomes were assembled into chromosome arms. The 2
pairs of chromosome arms were anchored using support from
genetic maps [3]. The PacBio and BioNano assembly (hereafter
referred to as F. vesca V4) captures ∼24.96 Mb of additional
sequences with significant improvements in contiguity. The
average gap size in the V2 assembly is >1 kb. Nearly all of these
gaps, in total, ∼17 Mb of missing sequence (i.e., Ns), in the V2
assembly were filled. It’s difficult to assess the exact number of
gaps that were filled due to the drastic improvement of the V4
assembly. A total of 37 gaps remain in the V4 assembly after BNG
hybrid scaffolding, including 23 kb of missing sequence, with
an average gap size of 621 bp. These gaps likely correspond to
highly complex, repetitive regions that are difficult to assemble.
These gaps may also include unanchored sequences that had
no label sites in the BNG optical maps.

F. vesca V4 has 9 terminal telomere tracks with sequence and
genome map support (Fig. 1, Supplemental Fig. S3), suggesting
that the assembly is largely complete. Tandem arrays of cen-
tromeric repeats withmonomeric lengths of 140, 143, and 147 bp
were found in all 7 chromosomes, consistent with previous find-
ings [3]. F. vescaV4 contains 3 nucleolus organizer regions (NORs)
at the beginning of Fvb1 and Fvb7 and at the end of Fvb5, consis-
tent with previous cytological observations [20]. NOR rRNA ar-
rays are complete on Fvb1 and Fvb5, but fragmented on Fvb7,
based on sequence and genome map support. The 5S rRNA ar-
ray is located 5 Mb upstream of the NOR on Fvb7 (Supplemental
Fig. S4).

A whole-genome comparison of F. vesca V4 to V2 [4] un-
covered numerous, large-scale scaffolding errors made in each
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Figure 1: Chromosome landscapes of the F. vesca V4 genome. The distribution of
genes and long terminal repeat retrotransposons (LTR-RTs) are plotted for each
of the 7 chromosomes. Heatmaps reflect the distribution of elements, with blue
indicating the lowest abundance and red signifying high abundance. Plots were
generated with a sliding window of 50 kb, with a 10-kb shift across each chro-
mosome. Terminal telomeric repeat arrays are denoted in purple.

of the chromosomes in the previous version (Fig. 2). The over-
all quality of the F. vesca V4 assembly, compared with V2, is
also supported by the distribution pattern of DNA methylation
across chromosomes (Supplemental Fig. S5). These types of er-
rors considerably hinder various genomic analyses, including
fine-mapping genes underlying traits [21] and identifying struc-
tural variants via comparative genomics. Here we demonstrate
the superior quality of F. vesca V4 by making comparisons with
a high-density linkage map of Fragaria iinumae [22], which is an-
other putative diploid progenitor species of the cultivated octo-
ploid strawberry. The total number of collinear markers against
the F. iinumae genetic map increased by more than 10% using F.
vescaV4, comparedwith V2, and identified a distinctive chromo-

somal inversion between the 2 species near the pericentromeric
region on chromosome 3 (Supplemental Fig. S6, Supplemental
Table S2, Table S1).

Although the quality of previous annotations of the F. vesca
genome [3, 23] is comparable with other annotations of short-
read assemblies, they are, unavoidably, incomplete and frag-
mented, resulting in errors in gene identification and gene num-
ber predictions [24]. Thus, despite the increasing volume of
transcript and protein sequence information generated from
various experimental studies, the task of improving genome an-
notation of such genomes remains a major challenge. Using the
MAKER-P annotation pipeline (MAKER, RRID:SCR 005309) [25],
publicly available transcriptome data of F. vesca, and protein se-
quences from Arabidopsis thaliana and the UniprotKB database
as evidence, we identified 28 588 gene models in F. vesca V4, of
which 70% have a known Pfam domain and 27 491 are supported
by RNA-seq data. The mean length of the predicted genes is
1475 bp (Supplemental Table S3). Repetitive elements were an-
notated, including long terminal repeat retrotransposons (LTR-
RTs; e.g., gypsy and copia) (Fig. 1), non-LTR retrotransposons,
and DNA transposons, using RepeatModeler (RepeatModeler,
RRID:SCR 015027) [26], MITE Hunter [27], and LTR retriever [28].
Most repetitive elements are unassembled, incomplete, or col-
lapsed in short-read-based reference genomes, which results in
the underestimation of the repeat content of most eukaryotic
genomes [29]. The improvement in genome quality of F. vesca V4
permitted the identification of additional LTR-RTs (Supplemen-
tal Table S4). Furthermore, an analysis of the insertion times of
each LTR-RT indicates that there were 2 major LTR-RT bursts;
approximately 1.8 and 1.2 million years before present (Supple-
mental Fig. S7). Organellar genomes from the plastid and mi-
tochondrion were also annotated and verified for completeness
(Supplemental Figs S8 and S9).

The Benchmarking Universal Single-Copy Orthologs V2
(BUSCO, RRID:SCR 015008) [30] method was used to estimate
the completeness of genome assembly and quality of gene
annotation of F. vesca V4. The majority (95%) of the 1440 core
genes in the embryophyta dataset were identified in the an-
notation, which is supportive of a high-quality assembly and
annotation similar to other high-quality grade genomes [31–33].
The overall quality of the annotation is further supported by the
distribution of DNA methylation across the gene bodies (Fig. 3).
The F. vesca V4 annotation shows much sharper distribution
patterns, especially in the CG context, and lower CHG and
CHH (where H = A, T, or C) methylation in the gene bodies.
These patterns are expected for annotations that are more
accurate and contain fewer mis-annotations (e.g., pseudogenes,
transposons, etc.). Additionally, F. vesca V4 contains 1496 newly
predicted gene models, with a mean length of 1505 bp, that
were not present in all previous versions of the annotation
[3, 23]. The vast majority of these new genes (1463 total) are
expressed in different fruit tissues and developmental stages
(Fig. 4; Table S2). These newly identified genes either resided
within the gaps in the V2 assembly or were collapsed tan-
dem duplicates in the previous V1 assembly. Thus, previous
expression studies may have missed key genes controlling
fruit development and maturation in F. vesca [34, 35]. Of the
new genes in F. vesca V4, 810 genes did not show similarity
at the protein level (query length < 30%, E = 10−10) to any
paralogs in the V2 genome but exhibit unique expression
patterns (Fig. 4). We also identified significantly more tandemly
duplicated genes and larger tandem arrays in F. vesca V4
(Supplemental Fig. S10). Long-read single molecule sequencing
approaches have been shown to better resolve tandemly

https://scicrunch.org/resolver/RRID:SCR_005309
https://scicrunch.org/resolver/RRID:SCR_015027
https://scicrunch.org/resolver/RRID:SCR_015008


4 Edger et al.

Figure 2: Macrosyntenic comparison of the V2 and V4 F. vesca assemblies. Syntenic gene pairs between V4 (x-axis) and V2 (y-axis) of F. vesca were identified by
DAGChainer [44], sorted by chromosome (Fvb1-7), and colored based on their synonymous substitution rate, as calculated by CodeML [45] using SynMap within CoGe
[46]. Syntenic “orthologous” regions are colored in blue, and duplicated genes retained from awhole-genome triplication event (At-gamma [47]) in other colors. Regions
that were misassembled and incorrectly scaffolded in F. vesca V2 are identified by negatively sloped and repositioned lines.

repeated copies [36–38]. The identification of tandemly
duplicated genes is important as such genes are known to
be highly enriched for both abiotic and biotic stress-related
functions [39]. For example, many important plant defense
genes, including nucleotide-binding site leucine-rich repeat
(NBS-LRR) [40] and cytochrome p450s (CYPs) [41], are tandemly
duplicated and exhibit high levels of copy number variation
within a species.

Here we present one of the most complete and contigu-
ous plant genomes assembled to date. The average published
plant genome is highly fragmented, with a contig N50 length of
roughly 50 kb [2], compared with ∼7.9 Mb for F. vesca V4. The
F. vesca V4 genome has the third best contig N50 of any an-
giosperm sequenced to date, after only Arabidopsis thaliana [42]
and rice (Oryza sativa) [43]. It is important to note that the total
cost for a PacBio-sequenced and BioNano Genomics genome is

a very small fraction of the cost compared with these Sanger-
era genomes [31]. Our genomic analyses, which included direct
comparisons with previously published versions (V1 and V2) of
the same genotype [3, 4, 23], highlight the need to improve ex-
isting short-read-based reference genomes. The approach used
here, combining long-read sequencing and optical maps, cor-
rects mis-assembly and scaffolding errors commonly found in
short-read-based genomes, which dramatically impact the re-
sults in genetic mapping (Supplemental Fig. S6), methylation
(Fig. 3), and gene expression studies (Fig. 4).

Availability of supporting data

The genome assembly, annotations, and other supporting data
are available via the GigaScience database, GigaDB [48]. The F.
vesca V4 assembly and annotation will also be made publicly
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Figure 3: Distribution of gene body methylation in the V2 and V4 F. vesca assem-
blies. This plot shows the average DNA methylation patterns (CG = blue, CHG =
green, CHH = red; H = A, T, or C) across all genes in the V2 (darker colors) and V4
(lighter colors) assemblies. The x-axis shows the transcription start sites (TSS;
left dashed line) and the transcription termination sites (TTS; right dashed line),
plus +/- 2000 bp from each gene.

available on the Genome Database for Rosaceae [49] and the Cy-
Verse CoGe platform [50]. The raw sequence data have been de-
posited in the Short Read Archive under NCBI BioProject ID PR-
JNA383733.
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Figure 4: Expression patterns of newly annotated genes across diverse tissue types. Heatmap consists of a random subset of 100 genes from the unique 810 newly
identified genes in the F. vesca V4 assembly, across 22 tissue types at different developmental stages. Two biological replicates were sequenced per tissue, with the
exception of 6with only 1 biological replicate each (Table S2). Blue indicates the lowest expression, and red signifies the highest expression abundance. Gene expression
level was calculated based on reads per kilobase of transcript per million mapped reads (RPKM) and visualized through heatmap analysis using variance-stabilized
transformed values on a log2 scale.
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