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Pathogens at the livestock-wildlife interface in
Western Alberta: does transmission route matter?
Mathieu Pruvot1*, Susan Kutz1, Frank van der Meer1, Marco Musiani2, Herman W Barkema1 and Karin Orsel1

Abstract

In southwestern Alberta, interactions between beef cattle and free-ranging elk (Cervus elaphus) may provide
opportunities for pathogen transmission. To assess the importance of the transmission route on the potential for
interspecies transmission, we conducted a cross-sectional study on four endemic livestock pathogens with three
different transmission routes: Bovine Viral Diarrhea Virus and Bovine Herpesvirus 1 (predominantly direct
transmission), Mycobacterium avium subsp. paratuberculosis (MAP) (indirect fecal-oral transmission), Neospora
caninum (indirect transmission with definitive host). We assessed the occurrence of these pathogens in 28 cow-calf
operations exposed or non-exposed to elk, and in 10 elk herds exposed or not to cattle. We characterized the effect
of species commingling as a risk factor of pathogen exposure and documented the perceived risk of pathogen
transmission at this wildlife-livestock interface in the rural community. Herpesviruses found in elk were elk-specific
gamma-herpesviruses unrelated to cattle viruses. Pestivirus exposure in elk could not be ascertained to be of
livestock origin. Evidence of MAP circulation was found in both elk and cattle, but there was no statistical effect of
the species commingling. Finally, N. caninum was more frequently detected in elk exposed to cattle and this
association was still significant after adjustment for herd and sampling year clustering, and individual elk age and
sex. Only indirectly transmitted pathogens co-occurred in cattle and elk, indicating the potential importance of the
transmission route in assessing the risk of pathogen transmission in multi-species grazing systems.

Introduction
The foothills of the Canadian Rocky Mountains in
southwestern Alberta, Canada are extensively grazed by
cow-calf herds and free-ranging North American elk
(Cervus elaphus). With similar grazing patterns [1] and
diet [2-4], cattle and elk have multiple opportunities for
interspecies pathogen transmission, as observed with
Brucella abortus and Mycobacterium bovis elsewhere in
North America [5-8]. In multi-host systems, wildlife or
domestic species may act as reservoir or spillover hosts
[9-12], or be part of the maintenance community [13],
for a number of livestock pathogens.
Among factors influencing the potential for interspecies

pathogen transmission (related to pathogen biology, wild-
life behavior and ecology, and livestock management), the
transmission route of the pathogen is of particular interest,
and has previously been discussed as a factor related to
the emergence of zoonotic pathogens [14-16]. However,

there is still much to learn about the relevance of trans-
mission pathways in multi-host systems in general [17].
Because pathogens with different transmission pathways
may require very different prevention and control strat-
egies, understanding the relative importance of transmis-
sion routes in multi-host systems is essential [17].
The influence of the transmission route on the poten-

tial for inter-species transmission can be either intrinsic
or extrinsic to the pathogen. Intrinsic factors are related
to the biological ability of a pathogen to infect different
host species (host specificity, environmental persistence)
and the evolutionary relationships between transmission
route, taxonomic class, and host-range. Some authors
have indeed suggested that there may be evolutionary
advantages for indirectly transmitted pathogens to be
generalists and therefore have a wider host range [18]. It
has also been previously observed that indirectly trans-
mitted and vector-borne pathogens are more likely to be
zoonotic (a particular case of multi-host) pathogens [19].
Nevertheless, multi-species pathogens can be found with
any type of transmission route and in any taxonomic
group.
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Extrinsic factors influencing inter-species transmission
are related to the spatio-temporal constraints imposed by
a given transmission route. Transmission of a pathogen
between two species is only possible if the inter-species
contact patterns meet the conditions required for the
pathogen’s transmission route. The spatio-temporal con-
tact structure of two species is influenced by behavioral,
ecological and management factors. But with a given inter-
action pattern, it is the transmission route of a pathogen
that will likely influence the number of transmission
events occurring between the two species. Following
this hypothesis, we would expect indirectly transmitted
pathogens to be more easily shared between species than
directly transmitted ones, because they do not require a
strict temporal and/or spatial sympatry.
In this study, we selected different cattle production-

limiting diseases [20] as models for different transmission
routes at the interface between beef cattle and elk. Bovine
Viral Diarrhea Virus (BVDV) and Bovine Herpesvirus 1
(BHV1) were chosen as examples of pathogens transmit-
ted by direct contact. Mycobacterium avium subspecies
paratuberculosis (MAP) would most likely be indirectly
transmitted between cattle and elk through environ-
mental fecal contamination. Finally, Neospora caninum
has a more complex lifecycle with vertical transmission
from dam to calf and horizontal transmission involving
carnivores as definitive hosts. Presence of these four
pathogens was previously reported in beef cattle in the
study area [21-23] and there is substantial evidence that
elk (or closely related red deer [Cervus elaphus]) are
susceptible to these same pathogens [24-31].
In this study, we determined the presence of, or evi-

dence of exposure to, these four pathogens in cattle and
elk. We then characterized the importance of inter-species
commingling (broadly defined throughout this manuscript
as habitat overlap) as a risk factor for the circulation of
these pathogens in both species. Finally, human dimension
considerations in wildlife health studies are important
to get a better understanding of people’s perception of
disease risk and monitor their attitude toward wildlife
management in general [32]. We therefore interviewed
ranchers to document their perception of the risk of
inter-species pathogen transmission.

Materials and methods
Elk herd description and sampling
Ten elk herds from the foothills of central and southern
Alberta were classified to 2 groups: five with a high level
of interaction with cattle (exposed elk), and five with lim-
ited to no contact with cattle (non-exposed elk) (Figure 1).
Exposed elk were from herds whose winter home-range
completely overlapped private land used for cattle grazing,
based on telemetry data from collared elk and provincial
ungulate winter surveys. The home-range of non-exposed

herds did not significantly overlap private land and were
mainly located in national parks or other protected public
land. Herd names, sizes and additional information rele-
vant to their classification as exposed or non-exposed are
detailed in Table 1. Two hundred ninety-nine serum sam-
ples and individual data were collected from captured elk
from these 10 herds, 86 fecal samples were collected at
capture from a subset of the elk from 7 herds (Table 1).
Additional fresh fecal samples were collected from all

herds except Banff National Park (BNP) in the winter of
2010. To collect fresh samples from distinct individuals
from the different sub-groups of the 9 herds, we took
into account the ecology and behavior of elk and applied
the following sampling strategy. An observation phase
aimed at identifying sub-groups of a herd, and observing
their connections, dynamics, and movement patterns.
The known home range of each herd was searched with
the help of information from local observers, GPS collar
data, and localization by radio frequency triangulation.
Since sub-group structure can change quickly, sub-groups
in close proximity and highly connected were sampled the
same day and never revisited to avoid the re-sampling of
individuals. Sampling pellet piles left in resting areas sig-
nificantly reduced the risk of sampling the same individual
twice (distinct track in snow). If individuals were far apart,
the observer would identify landmarks to collect pellets
from distinct individuals. On site, only the top of struc-
tured fresh pellet piles (based on consistency and color)
were sampled to avoid cross-contamination between
samples and with the soil. A total of 616 additional fecal
samples were collected in this manner from the 9 elk
herds between March and May 2010 (Table 1). Fecal
samples from BNP were opportunistically obtained from
Parks Canada wildlife officers during collaring operations,
culling of nuisance animals, or road kill removal.

Cattle herd selection and sampling
We recruited 30 ranches, 15 exposed to elk and 15 having
no contact with elk. Our inclusion criteria for ranch se-
lection were cow-calf operations larger than 100 adult
cattle, situated in the municipal districts of Pincher
Creek, Crowsnest Pass, Willow Creek or Cardston. The
classification regarding the exposure to elk was performed
using: delimitation of elk home range, elk telemetry
data, and discussion with local ranchers, veterinarians,
and biologists.
Initial groups of 24 exposed and 30 unexposed ranches

were identified by local veterinarians, thorough explor-
ation of the study area, and preliminary ranch visits.
Four and six of these herds, respectively, did not meet
the eligibility criteria. In each group, 15 ranches agreed
to be part of the study.
Thirty cows from each ranch were randomly selected

among cows at their second calving (> 2 years old) and
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older by systematic sampling (1 sample every N/30 cows,
with N the total herd size meeting this criteria, the first
cow being randomly picked), allowing for the detection
of a proportion of positive individuals of 10% with 95%
confidence. MAP has a long incubation period and sam-
pling older cows increases the probability of detection in
the herd. A fecal sample was collected from the rectum
and a blood sample from the coccygeal vein on each
cow. Individual data included: animal ID, sex, age, breed,
origin (born on ranch or purchased), pregnancy status,
parity, and known past health history. To increase the

probability of detecting BVDV circulation or presence of
persistently infected animals in the different herds, we
additionally collected serum samples from weak, sick or
poor growing calves [40].

Ranch management and risk perception data collection
A self-administered questionnaire and a follow-up one-
on-one interview collected information on ranch charac-
teristics, including herd size, average number of cows per
bull, conception rate, weaning rate, and calf morbidity.
This allowed comparison of the surveyed ranches with

Figure 1 Schematic winter home ranges of ten elk herds in Alberta, Canada. Map indicating the approximate extent and location of ten elk
herds in western Alberta. Main Alberta cities and administrative borders are represented. The map background represents the elevation.
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published benchmark data for cow-calf operation charac-
teristics in Alberta [41]. We also documented the percep-
tion of interspecies disease transmission risk by the
interviewed ranchers. In particular, the perceived likeli-
hood of cattle-elk disease transmission (with no reference
to a specific pathogen) and the level of agreement with the
statement “Elk diseases should be monitored” were mea-
sured on a continuous scales (very unlikely to very likely,
and strongly disagree to strongly agree, respectively). These
continuous scales were transformed into discrete scores
between 0 and 4 in the data analysis.
Questionnaire and interview documents were internally

and externally reviewed, tested in the field prior to the
study start, and approved by the University of Calgary
Conjoint Faculties Research Ethics Board (file no. 6598).
Questionnaire and interview materials are available upon
request.

Laboratory procedures
Pestivirus
We used the Pourquier® ELISA BVD/MD/BD P80
Antibodies Kit (competitive ELISA; Institut Pourquier,
Montpellier, France), according to manufacturer in-
structions on both cattle and elk sera. This test detects
antibodies against BVDV and Border Disease Virus
(BDV), and possibly other pestiviruses since the P80
protein (NS3) is highly conserved among pestiviruses
[42]. BVDV-positive and -negative elk sera were pro-
vided by the Lethbridge Animal Health Laboratory [27]
and included in each plate.

Virus cross-neutralization was conducted at the
National Animal Disease Center, USDA as described
previously [43] on all seropositive elk samples, 10 sero-
negative individuals from matching herds, and 4 experi-
mentally infected elk: 2 with the strain BVDV1 Singer
and 2 with the strain BVDV2 24514. Comparison of
neutralizing titers were made between 6 known pestivirus
strains: CoosBay5c (BDV), BVDV2-296c, BVDV1a-Singer,
BVDV1b-TGAC, Pronghorn pestivirus [44] and “HoBi”-
like pestivirus [45].
Total nucleic acid was extracted with the E.Z.N.A.

Mag-Bind Viral DNA/RNA Kit (Omega Bio-tek, Norcross,
GA, USA). The Vet-MAX Gold BVDV Detection Kit
(Applied Biosystems, Foster City, CA, USA) was used
for the BVDV qRT-PCR. Cattle samples were pooled in
groups of 10. Elk samples were pooled by 5 for sero-
negative samples. Seropositive samples were processed
individually.

Herpesvirus
We used the Pourquier® ELISA IBR-IPV Serum gB Block-
ing kit (Institut Pourquier, Montpellier, France) according
to manufacturer instructions on both cattle and elk sera.
This test identifies exposure to herpesviruses in general, as
there are close genetic and antigenic relationships between
BHV1, Cervid Herpesviruses (CerHV), Elk Herpesviruses
(ElkHV) and other herpesviruses, particularly within the
very conserved glycoprotein B [25,46].
E.Z.N.A. Blood DNA Kit (Omega Biotek Inc., Norcross,

GA, USA) was used to extract DNA from the elk
serum samples. Seropositive elk samples were processed

Table 1 Description of elk samples obtained from ten herds across Western Alberta

Herd (abbreviation) Exposure
to cattle

Estimated
herd size

Captured elk Additional
fecal sample
collection

Herd
description
literature

Project Serum
samples

Fecal samples
at capture

Beauvais lake (BL) Exposed 150-250e Montane Elk Research Program 9 8 69 [33-36]

Castle-carbondale (CC) 500-700e Montane Elk Research Program 72 34 80

Livingstone (L) 340e Montane Elk Research Program 16 12 74

Porcupine hills (PH) 450-700e Montane Elk Research Program 8 3 69

Whaleback (WH) 700-1000e Montane Elk Research Program 30 12 93

Waterton (W)a Non-exposed 900e Montane Elk Research Program 16 10 64

Crowsnest pass (CP)b 200e Montane Elk Research Program 17 7 38

Jasper National Park (JNP)c 1300f Parks Canada 31 0 55 [37]

Banff National Park (BNP)c 215f Parks Canada 20 0 NA [38]

Yaha Tinda (YHT)d 1000f University of Alberta - University
of Montana

80 0 70 [39]

aThe elk herd only partially spread outside the park boundaries during calving season.
bCattle are only present for summer public grazing.
cJNP and BNP are resident herds of the national parks and have no interaction with cattle.
dAlthough the herd has recently been observed to extend its home range eastward toward ranched areas (Merrill, personal communication), this herd has had
very limited contact with cattle over the last several years.
eSource: Alberta Conservation Association Winter Survey 2001-2002 and 2006.
fSource: Parks Canada.
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individually, while seronegative samples were pooled by 5
before extraction. Cattle sera were pooled by 10 before ex-
traction. The polymerase chain reaction (PCR) protocol
was modified from Chmielewicz et al. [47], using the
primers DFA, ILK, KG1, TGV, IYG. PCR-positive samples
were extracted with E.Z.N.A.® Gel Extraction Kit (Omega
Bioservices, Norcross, GA, USA) and cloned into a
pGEM®-T Easy Vector system (Promega Corporation,
Madison, WI, USA) before sequencing (see details in
Additional file 1).

Mycobacterium avium subsp. paratuberculosis (MAP)
Serum samples from cattle were processed with the
IDEXX® Mycobacterium paratuberculosis Antibody Test
Kit (IDEXX, Westbrook, Maine, USA). To test elk sam-
ples, this commercial kit was modified and validated as
described in Pruvot et al. [48].
Fecal samples from both species were cultured in our

USDA accredited Johne’s disease laboratory using
TREK ESP® Culture System (TREK diagnostic systems,
Cleveland, OH, USA), as previously described by Forde
et al. [49]. MAP culture for the cattle fecal samples was
performed in pools of five samples grouped by age and
ranch number (150 pools). All samples from positive
pools were processed individually [50]. A subset of 30
fecal samples per elk herd were randomly selected and
processed individually, allowing for the detection of a
prevalence level of at least 10% with 95% confidence. A
DNA extraction procedure was performed on the
broth of all the fecal cultures before PCR of the target
sequence IS900 as described in [51].
Additionally, DNA was extracted directly from the 86

fecal samples from captured elk, using the MagMAX™
Total Nucleic Acid Isolation Kit (Applied Biosystems,
Carlsbad, CA, USA). Negative extraction controls were
included in each run. The qPCR protocola was adapted
from [52]. Details of the protocol modifications can be
found in the Additional file 1.

Neospora caninum
Cattle and elk serum samples were tested in duplicate
with a commercial N. caninum competitive ELISA kit
(Neospora caninum Antibody Test Kit, cELISA, VMRD
Inc., Pullman, WA, USA) according to the manufacturer’s
recommendations and with the kit control samples. ELISA
optic density (OD) results were expressed as a percentage
of inhibition (%I) of the negative control (%I =Mean OD
sample/mean OD negative).
In the absence of N. caninum-positive and -negative elk

sera, the use of mixture distribution models as described
in [53] and a comparison with the VMRD Neospora
caninum Indirect Immunofluorescence assay kit (VMRD
Inc., Pullman, WA, USA) in a Bayesian latent class model
(available online [54]) confirmed that the competitive

ELISA kit could be applied to elk with the same procedure
as described by the manufacturer for cattle (Pruvot,
unpublished observations).

Statistical analyses
Univariate and multivariate analyses were conducted with
STATA 11.2 (StataCorp, 2009. Stata Statistical Software:
Release 11. College Station, TX, USA). Fisher exact or
Pearson Χ2 tests were used to assess the association be-
tween species commingling and pathogen occurrence.
We used the Wilcoxon-Mann-Whitney (W-M-W) test
to compare the values of non-normally distributed vari-
ables across groups.
We used multivariate mixed-effect linear or logistic

regressions with herd/ranch as random effect (grouping
variable) to further test the associations between herpes-
virus seropositivity and elk body condition and the asso-
ciations between inter-species commingling and the
occurrences of N. caninum in cattle and elk.

Results
Ranch characteristics
Two of the ranches without exposure to elk dropped out
after the start of the sampling period and could not be
replaced. From the 28 remaining ranches, we obtained
serum and fecal samples from 848 cows, and 18 additional
sera from weak calves from 6 ranches.
To ensure that our sample of cow-calf operations was

representative of operations in Alberta, ranch character-
istics were compared to provincial averages (Table 2).

Risk perception documented by the interview
On a scale from 0 to 4, the average perceived likelihood
of disease transmission between cattle and elk was 2.1
(95% CI: 1.2 – 3.0) for non-exposed ranches and 1.5
(95% CI: 0.9 - 2.2) for elk-exposed ranches; this differ-
ence was not statistically significant. There was also no
significant difference between the two rancher groups in
the degree of agreement with the statement “elk disease
should be monitored”. Among the 15 ranches exposed

Table 2 Comparison of surveyed ranch characteristics and
provincial average values

Surveyed ranch mean
(95% confidence interval)

Alberta
averagea

Number of wintered cows 174 (135-212) 157

Number of cows per bull 22 (16-28) 26

Conception rate 93% (92-95)b 89%

Weaning rate 97% (96-98) 98%

Calf mortality rate 0.9% (0.5-1.2)c 2.0%
afrom [41].
bcalculated from questionnaire-reported values; 90% (95% CI = 87-92%) if
calculated from the subgroup of cows that were checked for pregnancy.
ccalculated from questionnaire-reported calf mortality over 4 years.
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to elk, 11 (73%, 95% CI: 48 - 99%) observed occasional
direct contact between cattle and elk (as defined by the
presence of both species within 2 or 3 meters of one-
another); however, in an open question about ranchers’
main concerns regarding the presence of elk on their land,
only three cited the possibility of disease transmission.
The most commonly reported concern was the consump-
tion of grass on pasture, hay and crops, by 12 of the 15
ranchers, while the second most reported issue was related
to damages to fences (by seven ranchers). Eleven out of
15 elk-exposed ranchers took measures to mitigate
these concerns, the most common being fencing of
haystacks, chasing and hunting. One rancher estimated
the annual cost of damages caused by elk up to 10 000
CAD, and a common perception is that ranchers
should not bear these costs without compensation.

Pathogen occurrence in cattle and elk
Pestivirus
Eight out of 278 elk sera tested positive on the pestivirus
antibody ELISA. These 8 individuals were from 4 herds
exposed to cattle (CC, L, WH and PH), resulting in a
significant effect of the exposure to cattle (Fisher’s exact
p = 0.002). However, the virus neutralization (VN) test
indicated that higher neutralizing titers were obtained
for the BDV strain (CoosBay5c) and BVDV1b. When
inspected by herd, titers were higher for BDV strains, ex-
cept for one herd (WH) where both seropositive individ-
uals had marginally higher titers for BVDV1b (Figure 2).
In comparison to these ELISA-positive elk, ELISA-

negative individuals from the WH and PH herds were
negative by VN against all strains, and 2 samples close
to the ELISA cutoff were positive in VN and had higher
titers against BDV (N1 and N2 in Figure 2). Finally, sera
from 4 experimentally infected elk with the strains
BVDV1 Singer and BVDV2 24514 had higher VN titers
for the homologous strain in two individuals (Figure 2)
but high cross-reactivity with BDV strains in 2 other
infected elk (data not shown).
None of the elk sera tested positive for pestivirus in

the qRT-PCR.
In cattle, 92.6% of all animals were seropositive for

antibodies against BVDV (810/875). The seroprevalence
was 95.0% (95% CI: 94 – 97%) in vaccinated ranches. In
one ranch without routine vaccination strategy against
BVDV, 2 cows were seropositive but none of calves
tested positive in BVDV qRT-PCR. In vaccinated herds,
the proportion of cows with no detectable antibodies
ranged from 0 to 23%. BVDV vaccination coverage was
significantly lower for individuals below 2 years of age
(47%; 95% CI: 23 - 72, Pearson Χ2: p < 0.001). None of
the qRT-PCR for BVDV was positive in cows or weak
calves.

Herpesvirus
Sixty-four percent (101/277) of the captured elk had evi-
dence of exposure to herpesvirus. Seroprevalence was
significantly higher in elk with no cattle contact (71.0 ±
7.5%) compared to exposed elk (55.3 ± 8.6%, Pearson Χ2:
p = 0.007), although this association was only significant

Figure 2 Virus neutralization test results for 12 elk sera against 6 pestivirus strains. The y axis indicates the virus neutralization titers in log
2 scale. The x axis indicates the elk sample number: 8 ELISA-positive elk (P1 to P8) and 2 ELISA-negative elk (N1 and N2) captured in herds PH,
CC, L and WH; and 2 experimentally infected elk with the BVDV strains BVDV2 24515 and BVDV1a Singer. The second row of the x axis indicate
the grouping of the elk samples by origin (herd or experimental infection). For each elk sample, each bar of the graph indicates the neutralization
titer for each of the 6 pestivirus strain.

Pruvot et al. Veterinary Research 2014, 45:18 Page 6 of 12
http://www.veterinaryresearch.org/content/45/1/18



for females in 2008 when stratified by year of capture
and sex. Females were more likely seropositive than
males (p = 0.001) and positive animals were significantly
older than negative animals (Wilcoxon-Mann-Whitney
(W-M-W) test: p < 0.001). On a subset of individuals
(n = 33) for which body weight measurement was avail-
able, weights were significantly lower in seropositive
animals (235 ± 23 kg) compared to seronegative ani-
mals (267 ± 41 kg). This association was still significant
(p = 0.01) after adjusting for age, sex and girth meas-
urement (used as proxy for body size) in a multivariate
linear regression. Four elk samples tested positive by
PCR and the sequenced viruses had a close homology
(96 to 98%) to a type 2 ruminant rhadinovirus of elk
(GenBank: AY237365.1). Elk testing results are sum-
marized by herd in Table 3.
Cows had an overall herpesvirus seroprevalence of

98% (95% CI: 97 - 99%) in vaccinated ranches. In 19 cattle
herds, 100% of the sampled cows were seropositive, while
it ranged from 83 to 97% in the 9 remaining herds. Five
ranches did not report any vaccination protocol for
calves, and 4 ranches did not have exact knowledge on
the vaccination strategy they used for their cows. Seven
cows were seropositive cows in one ranch with no routine
vaccination strategy, but the PCR tests were all negative
for herpesvirus in cows and calves.

Mycobacterium avium subsp. paratuberculosis (MAP)
None of the 386 elk fecal samples collected from free-
ranging elk was culture-positive and all culture broth ex-
tractions were negative by PCR. From the 86 fecal samples
collected from captured animals, 4 fecal samples were
positive by direct IS900-qPCR. Of 284 elk sera, 4 were
ELISA-positive using the original kit cut-off value, while
6 were positive using the newly-defined elk-specific cut-off
value [48] (Table 2). There was no association between
the presence of beef cattle on the elk home range and
the risk of elk being seropositive.
Among the 840 cows tested, 7 were ELISA-positive

(95% CI: 0.2-1.4%) from 6 different ranches (21% of par-
ticipating ranches), 4 exposed and 2 non-exposed to elk.
Two cows from the same ranch, unexposed to elk, were
fecal culture-positive (confirmed by positive IS900-PCR
of the extracted culture broth).

Neospora caninum
Serology results for N. caninum in elk are summarized
by herd in Table 3. Elk exposed to cattle had higher per-
centage of inhibition (%I) than unexposed elk (W-M-W
test: p < 0.001). In a mixed effect model with the herd
and capture year as random effects and adjusted for age
and sex, the effect of the exposure to cattle was signifi-
cantly positively associated with the log-transformed
N. caninum cELISA%I (p = 0.04).

Overall N. caninum seroprevalence in cattle adjusted
for herd size was 7.1% (95% CI: 5.2-9.1%), while herd-level
prevalence (15/28 ranches) was 54% (95% CI: 35 - 72%).
In univariate analysis, herds that had no elk on their land
had significantly higher prevalence (Pearson Χ2 = 4.5,
p = 0.035), but this association was no longer significant
after adjusting for herd clustering in a random-effect
logistic regression.

Discussion
In this study, we determined the presence of production
limiting pathogens with various transmission routes in
cattle and elk populations from the same geographical
area and assessed the association between species com-
mingling and pathogen co-occurrences. To appropriately
include the human dimension of this study, we also evalu-
ated the risk perception of inter-species pathogen trans-
mission by the rancher community.

Risk perception of diseases at the wildlife-livestock
interface
Despite the high proportion of elk-exposed ranchers
reporting the observation of direct contact between
cattle and elk, the perceived risk of inter-species disease
transmission was low, and similar between ranches ex-
posed to elk or not. The three ranchers who cited in-
fectious disease transmission as a significant concern
associated with elk presence on their land had either
previous health issues in their livestock that they at-
tributed to elk, or showed greater overall knowledge
on infectious diseases. This may suggest a habituation
of ranchers to elk: most of them have been able to co-
habit without any major health events that they could
attribute to elk and therefore perceive the risk as low.
This observation differs from what was described by
Brook and McLachlan in a context of bovine tubercu-
losis transmission between elk and cattle, where the
level of risk perception was best predicted by the fre-
quency of elk observation by farmers [55]. This may
suggest a shift in the risk perception mechanisms in
the context of an immediate threat: the perceived like-
lihood of inter-species transmission only increases
with the intensity of elk presence when a threat is
current and clearly identifiable. During the recruitment
phase, a few ranchers expressed concerns regarding the
consequences our study could have on their activity. One
rancher clearly referred to a recent case of a false-positive
result in cattle tested for anaplasmosis (resulting in expen-
sive quarantine and testing procedures [56]) and indicated
he feared participation in the study. This attitude is also
quite prevalent regarding infectious diseases in general,
with concerns expressed regarding the legal consequences
of detecting pathogens in their livestock (leading some to
decline participation). Working with endemic pathogens
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Table 3 Test results for four livestock pathogens in elk, by herd

Herd (abbreviation) Pestivirus Herpesvirus Mycobacterim avium subsp. Paratuberculosis Neospora
caninum

cELISA RT-PCR on serum samples cELISA RT-PCR on serum samples Modified ELISA Fecal culture qPCR on MERP fecal
samples (captured elk)

cELISA

Beauvais lake (BL) 0/9 0/9 5/9 (56 ± 34%) 0/9 0/9 0/30 1/8 1/9 (11 ± 22%)

Castle-carbondale (CC) 3/71 (4 ± 5%) 0/71 39/71 (55 ± 12%) 1/71 1/71 (1 ± 3%) 0/30 1/34 3/71 (4 ± 5%)

Livingstone (L) 2/15 (13 ± 18%) 0/15 10/15 (67 ± 25%) 0/15 0/15 0/30 0/12 3/15 (20 ± 21%)

Porcupine hills (PH) 1/8 (13 ± 25%) 0/8 4/8 (50 ± 37%) 1/8 0/8 0/30 0/3 0/8

Whaleback (WH) 2/29 (7 ± 9%) 0/29 15/29 (52 ± 19%) 0/29 0/29 0/30 1/12 1/29 (3 ± 7%)

Waterton (W) 0/16 0/16 10/16 (63 ± 25%) 0/16 0/16 0/30 1/10 1/16 (6 ± 12%)

Crowsnest pass (CP) 0/17 0/17 11/17 (65 ± 23%) 2/17 0/17 0/30 0/7 0/17

Jasper National Park (JNP) 0/31 0/31 20/31 (65 ± 17%) 0/31 1/31 (3 ± 6%) 0/30 NA 2/30 (7 ± 9%)

Banff National Park (BNP) 0/20 0/20 12/20 (60 ± 22%) 0/20 0/20 0/30 NA 0/20

Yaha Tinda (YHT) 0/61 0/61 50/61 (82 ± 10%) 0/61 4/77 (5 ± 5%) 0/30 NA 2/63 (3 ± 4%)

Fractions indicate the number of positive samples/total tested in the herd, parentheses indicates the apparent prevalence ± standard error.
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that do not legally require any reporting or control
measure, was a particularly efficient way to decrease this
type of concern and ensured a level of trust conducive to
successful collaboration with the rural community. Thus,
planning studies in a non-emergency context may be par-
ticularly beneficial to the advancement of our understand-
ing of multi-host systems.
Perceived risk may not be well correlated to objective

risk [57], but is an important factor to consider in study
planning, risk communication, and implementation of
control measures [58].

Co-occurrence of production limiting diseases in cattle
and elk
Evidence of exposure to the two pathogens with indirect
transmission routes, MAP and N. caninum, was found in
both species. Consistent with previous reports [21], there
was a low prevalence of MAP in the sampled cow-calf
operations, but we observed high intra-herd prevalence in
infected herds. Live bacteria could not be isolated from
any of the elk samples, but DNA was detected by qPCR
and antibodies by ELISA, suggesting that MAP circulates
in some of these wild elk populations. Although the ELISA
includes steps to decrease cross-reaction with other Myco-
bacteria [59] and IS900 is fairly specific for MAP [60], it is
still possible that these reactions were due to cross-
reacting mycobacteria. Findings for N. caninum were also
consistent with previous evidence of exposure to this para-
site of elk [61] and beef cattle [21].
We showed evidence of pestivirus circulation in elk,

and most individuals had the highest neutralizing titers
for the BDV strain (CoosBay5c) or BVDV1 strain. How-
ever, the difference of titer between strains was not large
and could be due to cross-reactivity with a pestivirus
strain that was not included in the panel. Serum samples
are not optimal for the detection of viral nucleic acid for
pestivirus, which may have hindered our ability to detect
viremic individuals by qRT-PCR in cattle and elk.
Seropositivity of elk for herpesvirus may be partly due

to serological cross-reactivity of elk-specific gammaher-
pesvirus from the non-MCF (Malignant Catarrhal Fever)
subgroup (or type 2 Ruminant Rhadinovirus) [62,63] as
indicated by the PCR/sequencing results, or from other
elk alphaherpesviruses (e.g. ElkHV1) [25]. Although no
clinical disease has ever been reported, the significant
lower body weight of infected individuals may suggest
subclinical manifestations with possible consequences on
elk population dynamics. The observed difference of sero-
prevalence in females and males might be in part due to
differences in herd structure and behavior, where females
tend to stay in bigger herds at higher densities, which may
increase viral transmission.
The sampling and laboratory procedures did not allow

us to assess viral circulation in the cattle herds, in

particular due to the cross-reaction between vaccination
and serological tests and the limitations in using serum
samples for virus detection. However, vaccination is an
important ranch management practice altering cattle
susceptibility to pathogens, within herd transmission,
and consequently the risk of cross-species spillover and
spillback. Our survey revealed a high vaccination cover-
age against BHV1 but significantly lower against BVDV,
particularly in young stock, consistent with vaccination
coverage in calves entering feedlots (B. Wolfger, per-
sonal communication). This may be due to an inad-
equate vaccination protocol for calves in some ranches,
conditions in which it is performed, or interaction of
the vaccine strain with maternal antibodies. The level
of knowledge on vaccination protocols was highly vari-
able, with many ranchers unable to report confidently
their vaccination strategy, which may also contribute
to lowering vaccination coverage. Due to the possibility
of BVDV-persistently infected (PI) animals shedding
large amount of virus for extended period of time, it is
recommended that the proportion of vaccinated indi-
viduals reach 100% [64]. Furthermore, vaccine-induced
antibodies may not always be protective against field
strains, it is therefore likely that the level of herd im-
munity observed in our study still allows BVDV circu-
lation and production of PI calves. The high proportion of
immunologically naive calves may increase their risk of
infection particularly in periods where these calves are
exposed to other susceptible animal species infected
with pestiviruses or other cattle herds, for example
during summer grazing on public land or community
pasture.
Sample collection in wildlife presents some challenges

due to the absence of exact census data, the inability to
identify individuals and, for wild cervids, the distribution
of individuals into unstable sub-groups moving across a
large territory. Our application of a systematic sampling
strategy for fecal sample collection overcame some of
the challenges associated with non-random sampling of
wildlife populations [65] and ensured the collection of
fresh samples from distinct individuals in nine elk herds.
Some more remotely located sub-groups may not have
been sampled, which may bias our sample toward the
most visible resident herds, but conversely provides better
knowledge of their level of exposure to cattle.
Similarly, with elk serum samples collected through the

various projects, a word of caution is necessary regarding
inferences in these elk populations, as protocol variations
between projects and year-to-year variations in sample
selection (in adaptation to primary objectives of these
projects) may have biased our sample. In particular, male
elk were under-represented in the samples and were often
young, thereby possibly underestimating prevalence in this
sex group.
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Effect of inter-species commingling on pathogen
occurrence
An interesting result from our study was the apparent
effect of cattle on the prevalence of N. caninum in elk,
as elk in contact with cattle had a higher risk of being
seropositive. Conversely, the effect of elk exposure on the
occurrence of N. caninum in cattle was not significant in
multivariate analysis. This may indicate a predominant
vertical transmission in beef cattle (from dam to calf),
therefore little influenced by the density of susceptible
host, while horizontal transmission between cattle, carni-
vores and elk may increase the risk for elk in areas used by
infected cattle [66]. The distribution of MAP in elk was
not associated with their exposure to cattle, which may
suggest circulation in elk independently of contact with
cattle. This has been previously reported in wild [29] and
farmed [31] elk. However, the absence of statistical effect
of species commingling on MAP occurrence does not rule
the possibility of MAP inter-species transmission out, and
a previous study in Norway found an OR = 4 (3-5) for
the presence of red deer on cattle pasture in a MAP
case-control study in dairy herds [67]. Finally, regarding
the directly transmitted viruses: gammaherpesvirus found
in elk were unrelated to cattle BHV1; and only elk in
contact with cattle had evidence of pestivirus circulation
although these pestiviruses could not be definitely ascer-
tained to be of livestock origin.
For the purpose of this manuscript, elk herds and

ranches were assumed to be independent and their expos-
ure to be constant and broadly defined as a binary variable
to constitute two groups. Despite the uncertainty related
to elk winter survey data and telemetry data from a limited
number of collared elk used for the classification, and
some seasonal and year-to-year variability, these patterns
can reasonably be assumed to be stable enough to define a
long-term steady exposure for each ranch and elk herd.
However, some elk herds have overlapping home ranges,
exchange dispersal individuals and adapt their movement
based on environmental and climatic conditions over time
which challenges a simple dichotomous measure of expos-
ure and most classical statistical approaches. Also, both
cow-calf operations and elk herds have particular habitat
preferences: there may therefore be a number of other en-
vironmental factors confounding the relationship between
interspecies contact and disease occurrence.
The ranch selection was also subject to biases due to the

initial method of recruitment and thereafter, ranchers’
interest in the study and acceptance to participate; no
cow-calf operation census listing was available due to priv-
acy protection reasons. Although the ranch characteristics
were consistent with previous Alberta cow-calf operation
benchmark data [41], interpretations and generalization
should be made cautiously, particularly regarding aspects
of risk perception.

The importance of the transmission route
Consistent with the hypothesis that pathogens with in-
direct transmission routes may be more likely shared
in a multi-species system, we found N. caninum to be
more prevalent in elk in contact with cattle, and evi-
dence of MAP circulation in elk; whereas evidence of
pathogen sharing for directly transmitted herpesvi-
ruses and pestiviruses was equivocal. While a tight
spatio-temporal overlap at defined periods would be
required for the direct (or close indirect) transmission
of BVDV and BHV1 (possibly facilitated by winter
feeding, summer grazing in forestry areas, hay stacks,
mineral blocks, water sources, natural licks, open
feeders), the long persistence of MAP in the environ-
ment [68,69] may relax the temporal constraints. The
transmission of N. caninum involves more complex
ecological processes due to the existence of vertical
and horizontal transmission, and domestic and sylvatic
cycles. When horizontal transmission is predominant,
the spatio-temporal proximity may not be as critical as
for directly transmitted pathogens, due to the mobility
of wild and domestic carnivores and the persistence of
the infection in these definitive hosts.
Our selection of endemic livestock diseases did not

fully allow controlling for the pathogen intrinsic factors
influencing the potential for inter-species transmission,
in particular due to the difference of host susceptibility
for herpesviruses and pestiviruses between cattle and
elk. Cattle vaccination has also limited our ability to as-
sess intra and inter-species virus circulation. The low
prevalence and slow development of MAP infection
may also be shortcomings for MAP as a model for envir-
onmental transmission. Highly prevalent and environmen-
tally persistent pathogens such as Cryptosporidium sp.,
Giardia sp. or Escherichia coli [70] may be interesting
models to consider for future research. Additional
qualitative and quantitative measurements of cattle/elk
interactions may also help to further disentangle intrin-
sic and extrinsic factors linking transmission route and
inter-species transmission. With the spatio-temporal con-
tact structure between species clearly identified, transmis-
sion routes may be an efficient way to locally prioritize
pathogen surveillance in a multi-species grazing system. A
clear understanding of the perceptions and attitudes of
the different stakeholders toward wildlife, livestock and
the risk of inter-species pathogen transmission, is essen-
tial to ensure effective communication and successful
collaboration.

Endnotes
aOur laboratory has received certification through the

USDA National Veterinary Services Laboratories (NVSL)
Johne’s disease direct PCR proficiency test.
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