
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Fall 11-30-2018

Controller Evolution and Divergence: A Software
Perspective
Balaji Balasubramaniam
University of Nebraska - Lincoln, balaji@huskers.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Aerospace Engineering Commons, Computer Engineering Commons, and the
Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Balasubramaniam, Balaji, "Controller Evolution and Divergence: A Software Perspective" (2018). Computer Science and Engineering:
Theses, Dissertations, and Student Research. 165.
http://digitalcommons.unl.edu/computerscidiss/165

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/165?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages

CONTROLLER EVOLUTION AND DIVERGENCE: A SOFTWARE PERSPECTIVE

by

Balaji Balasubramaniam

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Justin Bradley and Professor Sebastian Elbaum

Lincoln, Nebraska

30 November, 2018

CONTROLLER EVOLUTION AND DIVERGENCE: A SOFTWARE PERSPECTIVE

Balaji Balasubramaniam, M.S.

University of Nebraska, 2018

Advisers: Justin Bradley and Sebastian Elbaum

Successful controllers evolve as they are refined, extended, and adapted to new systems

and contexts. This evolution occurs in the controller design and also in its software

implementation. Model-based design and controller synthesis can help to synchronize

this evolution of design and software, but such synchronization is rarely complete as

software tends to also evolve in response to elements rarely present in a control model,

leading to mismatches between the control design and the software.

In this thesis, we perform a first-of-its-kind study on the evolution of two popular

open-source safety-critical autopilot control software – ArduPilot, and Paparazzi, to better

understand how controllers evolve and the space of potential mismatches between control

design and their software implementation. We then use that understanding to prototype

a technique, called mutation tool, that can generate mutated versions of code to mimic

evolution to assess its impact on a controller’s behavior.

We report on three major findings. First, control software evolves quickly and con-

trollers are rewritten in their entirety, many times over through the controller’s lifetime,

which implies that the design, synthesis, and implementation of controllers must support

not just the initial baseline system but also their incremental evolution. Second, many

software changes stem from an inherent mismatch between the continuous time/space

physical model and its corresponding discrete software implementation, but also from the

mishandling of exceptional conditions, and limitations and distinct data representation of

the underlying computing architecture. Third, using our mutation tool that we developed,

we show that small code changes can have a dramatic effect in a controller’s behavior,

which implies that further support is needed to bridge these mismatches as carefully

verified model properties may not necessarily translate to its software implementation.

iv

COPYRIGHT

© 2018, Balaji Balasubramaniam

v

DEDICATION

To my parents Balsubramaniam and Valarmathy. Thank you, you are my inspiration

and my foundation. To my wife Ramya. I thank you for being so supportive.

vi

ACKNOWLEDGMENTS

I would like to express my special appreciation and thanks to my advisors, Dr. Justin

Bradley and Dr. Sebastian Elbaum, for their supervision and support towards the

completion of this work. I would also like to thank Dr. Thanh Vu Nguyen for agreeing to

be a part of my committee. I would like to acknowledge the valued assistance from the

members of NIMBUS Lab.

A special thanks to my family for their constant support and encouragement. Finally,

I would like to thank my friends for helping me get through the last two years.

Thank You!

vii

GRANT INFORMATION

This work was partially supported by National Science Foundation under awards

#1638099. Any opinions, findings, conclusions, or recommendations expressed in this

material are those of the authors and do not necessarily reflect the views of these agencies.

viii

Table of Contents

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Innovations . 6

2 Related work 7

2.1 Software development and control design . 7

2.2 Control software validation and verification 8

2.2.1 Software evolution . 9

2.2.2 Mutation testing . 9

3 Controller evolution: an empirical study 11

3.1 Study . 11

3.1.1 Analysis Artifacts . 12

3.1.2 Analysis Process . 17

3.1.3 Threats to validity . 21

3.2 Results . 22

ix

3.2.1 Answers to RQ1 - How Much do Controllers Evolve? 22

3.2.2 Answers to RQ2 - What Evolution Results from Model and Software

Mismatches? . 26

3.3 Conclusions . 30

4 Impact of Software Changes on Control Performance 32

4.1 Mutation testing process . 32

4.2 Mutation tool overview . 34

4.3 Methodolgy . 36

4.3.1 Phase I . 36

4.3.1.1 Template creation . 37

4.3.2 Phase II . 39

4.3.2.1 Matlab specific mutation . 40

4.3.3 Phase III . 41

4.4 Results . 42

4.4.1 Analysis I . 43

4.4.2 Analysis II . 45

5 Conclusions and Future Work 50

Bibliography 53

x

List of Figures

1.1 Evolution at the design and software implementation levels. 1

3.1 Overview of Study Analysis Process . 11

4.1 Mutation testing process overview. 33

4.2 Mutation Tool Architecture. 35

4.3 Cruise control system divergence for speed step quantity 47

4.4 Helicopter system divergence for pitch angle step quantity 48

4.5 Helicopter system divergence for roll angle step quantity 48

4.6 Boeing747 system divergence for airspeed step quantity 49

4.7 Boeing747 system divergence for altitude step quantity 49

xi

List of Tables

3.1 ArduPilot Files Examined . 12

3.2 Paparazzi Files Examined . 12

3.3 Definitions of Categories for Mismatches Between Models and Software 13

3.4 Examples of Categories for ArduPilot Mismatches Between Models and Soft-

ware in ArduPilot . 15

3.5 Examples of Categories for Paparazzi UAV Mismatches Between Models and

Software in Paparazzi UAV . 18

3.6 Overview of ArduPilot Control Software Evolution 23

3.7 Overview of Paparazzi UAV Control Software Evolution 24

3.8 Classification Results of ArduPilot Mismatches Between Models and Software 26

3.9 Classification Results of Paparazzi UAV Mismatches Between Models and

Software . 26

4.1 5 top most changes from Precision and Accuracy category grouped by similar-

ity . 38

4.2 5 top most changes from Exception Handling category grouped by similarity 38

4.3 5 top most changes from Time and Space Model category grouped by similarity 39

4.4 Mutation output details for Precision and Accuracy category in all three systems 41

4.5 Mutation output details for Exception handling category in all three systems . 42

4.6 Mutation output details for Time and Space Model category in all three systems 42

xii

4.7 Summary of the mutation output details for all three systems 42

4.8 Summary of mutation results for all three systems 43

1

Chapter 1

Introduction

Successful systems evolve, and so do their controllers. Conceptually, this evolution occurs

at two distinct levels as shown in Figure 1.1. At the control design level, that evolution

may occur on the mathematical representations or higher level models in the chosen

representation (e.g., Simulink, Matlab, Octave). At this level it is common to observe

model changes meant to refine the control law as the logical conditions under which a

system should operate are realized, as the assumptions or levels of abstraction of the

model are refined, or the model is revised to fit another system.

Figure 1.1: Evolution at the design and software implementation levels.

2

At the software level of the controller we observe at least three types of changes. First,

software changes that directly map to the same changes in the control design. These

changes constitute the primary target for tools supporting model-based design [61, 35]

or controller synthesis [11]. Second, software changes that are meant to complete pieces

of the implementation that were not defined in the design, either because of the level of

modeling abstraction employed, or because it was not cost-effective to define them at the

design level. Third, changes driven by the need to integrate the software with a larger

software ecosystem that goes beyond the controller itself, or by software maintenance

needs.

1.1 Motivation

In this section, we discuss the need for understanding the controller code evolution and

the need to analyse the impact in safety-critical systems. The frequency of each type

of software change varies significantly across systems. For a selected number of safety-

critical software with large development resources, most changes can occur at the design

level and be automatically verified and transfered to code with high fidelity (as shown

by the arrow in Figure 1.1 going from the design model to the partial implementation

of that model in software). For most projects, however, many changes occur just in the

software as the controller design concentrates on the key building blocks providing a

partial model of the system. Furthermore, the design necessarily abstracts many of the

computing elements and context that must then be implemented in software. Sometimes

these software changes make it back to the model through some mechanism like a bug

tracker. Most often, however, implementation changes do not make it back or cannot be

incorporated into the model. This causes a challenging divergence as the implementation

of those abstractions in the software can have significant effects on the performance of the

3

control system, potentially invalidating the properties so carefully proven at the design

level.

In spite of the prevalence and potential impact of this evolution, we, as a community,

know very little about how the controllers that we so carefully craft change during

their evolution, particularly at the software level. Our courses on control design, our

textbooks, the tools we use, and the most promising research efforts largely ignore the

evolution of controllers. We are distinctly aware of the inherent mismatches between the

physical and software worlds (e.g., continuous vs. discrete, infinite vs. finite), but lack an

understanding of how those mismatches manifest as the software changes.

1.2 Contributions

In this thesis, we propose processes and tools that would help control engineers to

understand the controller evolution and divergence from a software perspective. It is

particularly relevant to safety-critical systems that explicitly rely on model properties

or implicitly rely on their assumptions. In this work we shed light on this evolution by

performing a first-of-its-kind case study exclusively on control software to show how and

in what way it evolves. To do this we examine 964 commits to 10 controller system files

from ArduPilot and Paparazzi UAV - popular autopilot control software systems used

on a wide range of Unmanned Air Systems (UAS) [2, 55]. First, to provide a baseline for

how much a controller evolves, we report metrics capturing how much controller-related

evolution happens in these controllers. Our results show that controllers system files

changed up to 30 times a year and with enough lines of code changes to rewrite the

original controller over 9 times over their lifetime. Implication. This means as control

software matures it may have little code in common with the original, and as a result,

unless a tight correspondence between model and software is enforced the evolved model

4

and control software may diverge drastically. This suggests that techniques such as control

synthesis and model-based design techniques and tools must focus on accommodating

this type of incremental process and evolution.

We then identify 4 categories that capture the evolutionary changes resulting from

inherent mismatches between system models and controllers, and their software im-

plemented counterparts. Our results show that although some changes stem from an

inherent mismatch between the continuous time/space physical model and its corre-

sponding discrete software implementation, the majority of the changes were associated

with handling exceptional conditions, and with the limitations and distinct data rep-

resentation of the underlying computing architecture. Implication. This points to an

unexplored opportunity for automated synthesis and software development techniques

that can bridge these mismatches appearing during software evolution that may render

carefully verified model properties invalid at the control software level.

Last, we explore the effects of software evolution in the performance of 3 controllers

designed with Simulink. To do that, we leverage static code analysis techniques from the

software engineering discipline. Using this analysis, we created a process that would allow

creation of generic templates to mimic the controller code evolution. Our analysis on 3

Simulink controllers resulted in 21 unique templates to represent the mismatches between

system models and controllers, and their software implemented counterparts. This opens

up opportunities for control engineers to create templates that are specific to their own

controllers code evolution environment. In other words, control engineers can provide

their carefully crafted mathematical model restrictions and expected fault-behavior in

these templates.

In addition to this, we prototyped a tool that understands these templates and

generates versions of the original code with mutated regions reflecting the categorized

changes we observed in ArduPilot and Paparazzi UAV. The tool is written at a compiler

5

level that is capable of analyzing C family programming languages (C, C++, Objective

C/C++, OpenCL, CUDA, and RenderScript). It takes as input the controller code (this is

automatically generated by the Simulink toolset from carefully crafted control models)

and can be configured to generate different type and different number of mutated

programs. Executing the mutated programs (it is commonly referred as mutants) and

observing the output results demonstrate how small and typical software changes can

dramatically impact control performance.

We report on three major findings. First, control software evolves quickly and con-

trollers are rewritten in their entirety, many times over through the controller’s lifetime,

which implies that the design, synthesis, and implementation of controllers must support

not just the initial baseline system but also their incremental evolution. Second, many

software changes stem from an inherent mismatch between the continuous time/space

physical model and its corresponding discrete software implementation, but also from the

mishandling of exceptional conditions, and limitations and distinct data representation of

the underlying computing architecture. Third, using our mutation tool that we developed,

we show that small code changes can have a dramatic effect in a controller’s behavior,

which implies that further support is needed to bridge these mismatches as carefully

verified model properties may not necessarily translate to its software implementation. In

summary, our contributions are:

• A novel approach capturing the controller evolution in software, an aspect over-

looked by control community.

• Developed four categories to capture controller evolution in software: Precision and

Accuracy, Exception Handling, Time and Space Model, and Resource Attributes.

• Developed a controller-specific mutation tool that mutates code generated from

a model-based control design paradigm. The tool also compares outputs of the

6

mutated code to the original to assess the impact of software changes on control

performance.

We also present possible future directions for the work presented in this thesis.

1.3 Innovations

In this thesis, we perform a first-of-its-kind study to understand the evolution of controller

from a software perspective. The study is designed to highlight the mismatches between

the control design and software. We also invent four mismatch categories, explain them

with definition and examples. In addition to this, we make the first attempt to study the

controller impact analysis using the proposed mismatch categories. We achieve this using

our generic templates, mutation tool and step response characteristics. For this purpose,

we created 21 unique template mutators for the three categories: Precision and Accuracy,

Exception Handling, and Time and Space Model. The Resource Attributes category is

excluded due to the tight dependence on specific hardware configurations. Lastly, we

use a new validation technique to analyse the impact of our mutated code using step

response characteristics.

7

Chapter 2

Related work

This chapter presents the prior work that is relevant to understand the mismatches

between control design and software. Most work at the intersection of software and

control has examined the impacts of the disparity between the continuous mathematical

models representing physical systems and controllers and the fundamentally discrete

nature of computing [68]. Such research focuses on the effects of computation (e.g.,

quantization, delay) on the controller and seeks to find ways to incorporate them into

controller design [67]. This is the substance of digital control theory [23].

2.1 Software development and control design

The control community does not generally examine the role the software development

process plays in impacting control design. But examining control software and its

evolution could have far reaching impacts. For example, in the process of software

maintenance, a year after the controller design, if a key calculation alters the precision by

changing fabs() to fabsf()1 does this impact system stability? Does a software change

to limit memory stack size, a limitation of the computer architecture, cause a function call

chain to fail, impacting controller performance? A study of control software evolution
1fabs operates on type double while fabsf operates on type float

8

can provide insight into how these effects could be mitigated either in the control model

or in the software evolution process.

This motivation has led to some work focusing on software and control systems. Feron

has examined how to integrate proofs of important control system properties, such as

stability, directly into software [19]. This can alert the software developer when sensitive

code is being modified, and provide a mechanism for verification processes to assess

correctness. But unless the annotation process is less costly, the sources of unsoundness

controlled, and the tools well integrated into the developer’s environment and workflow,

such strategies will struggle to gain mainstream acceptance [32, 9].

In safety-critical systems, model-based design strategies ideally create a 1:1 correspon-

dence between the model and the software [58, 18, 68]. This strategy has been included

in the most recent revisions of DO-178C “Software Considerations in Airborne Systems

and Equipment Certification” [59] and its supplements [10]. This is done by building

models in Matlab, Simulink, Stateflow, or other tools, verifying these models, and then

autogenerating corresponding code. In this paradigm the code autogeneration tool must

be certified to produce provably correct results. While this strategy links the model and

software it may only exist in domain-specific applications [35], and may not link 3rd-party

software libraries, drivers, or other specialized pieces of code used in development of the

system, or may be incomplete.

2.2 Control software validation and verification

The software engineering community has developed techniques to cope with the vali-

dation and verification of systems that includes control software (e.g., [6, 47, 26, 37]), or

their sound application to assist in self-adaptation [22]. Unfortunately, outside of highly

regulated safety-critical systems, development use of these strategies is limited due to

9

high costs. This is particularly noticeable in the emerging UAS industry where open

source autopilots (e.g., ArduPilot [2], Paparazzi UAV [55], PX4 [57]) are used extensively

on various types of hardware with contrastingly very light regulations and rigor in design

and test processes.

2.2.1 Software evolution

Software evolution has been an active research topic for decades, and the realization that

successful systems evolve and how it evolves has led to laws of software evolution [41],

and a rich suite of techniques to understand, handle, and support changes associated with

all the entities involved in the software development process [49]. The focus of the study

in this thesis is on analyzing the evolution of control software developed independently

of model-based design[18], synthesis [63], or domain-specific annotations in code [19].

Following established practices [12], we analyzed two bodies of small, open-source,

unregulated, safety-critical control software for which there are hundreds of available code

changes recorded with commit level granularity. We have chosen these bodies of software

for two key reasons. First, a large and increasing portion of critical software development

with wide-reaching impacts is being developed in lightly controlled development and

largely unregulated environments - such as the UAS industry. Second, understanding

how the software evolves and reasoning about where mismatches with the model are

likely to occur can pinpoint areas that future studies and techniques must target.

2.2.2 Mutation testing

Mutation testing introduces faults in a target software and checks if it can find errors.

It is a type of software testing technique used in the verification process of a software.

Existing test cases and data from unaltered software can help to find out errors after

mutation testing introduces faults. Since the invention of mutation testing in 1971 [42], it

10

has been applied in different application domains and different programming languages.

In [30], Jia and Harman provides a comprehensive survey on mutation testing. Mutation

testing is a fault-based testing technique, Baker and Habli [4] applied this technique

on safety-critical systems to show that the code coverage is not adequate as a criteria

for DO-178B certification authorities sufficiency testing. DO-178B purpose is ”to provide

guidelines for the production of software for airborne systems and equipment that performs its

intended function with a level of confidence in safety that complies with airworthiness requirements”

[15]. In addition to this, in reference to safety-critical systems, mutation testing is applied

in a civil nuclear software program [13].

Our mutation tool also builds on a large body of work in software engineering, and

more specifically on mutation testing. Mutation testing aims to evaluate the strength

of a test suite in terms of the percentage of code versions with seeded code changes it

can detect. Those versions are called mutants; it is said to be alive or dead based on the

presence of a change detected by the test suite between the output of the original program

and the mutated program. There is a large number of mutation approaches available,

as well as several analyses to improve the effectiveness and efficiency of the mutation

process. For more information on the topic we refer the reader to [30]. In our setting, we

utilize mutation as a way to mimic the evolution we observed in ArduPilot and Paparazzi

UAV, and then to assess the impact of those mutations on simple controller operations.

11

Chapter 3

Controller evolution: an empirical study

In this chapter, we propose an analysis process to study the software code changes of

a controller. The primary objective of this process is to answer research questions that

help to understand the evolution of controller development. The approach is performed

manually on two popular control software: ArduPilot and Paparazzi UAV.

3.1 Study

The following research questions will provide a foundation for understanding and

characterization of control software evolution, and will underscore future tools that

incorporate this knowledge into a framework for controller development:

RQ1: How does the software implementing a control system evolve? We seek to quantify

the degree and nature of changes in control software in the absence of an explicit control

model.

Figure 3.1: Overview of Study Analysis Process

12

Table 3.1: ArduPilot Files Examined

File Type
libraries/AC PID/AC PID.cpp Controller
libraries/AC AttitudeControl/AC PosControl.cpp Controller & Es-

timator
libraries/AC AttitudeControl/AC AttitudeControl.cpp Controller & Es-

timator
libraries/AC WPNav/AC WPNav.cpp Waypoint & Nav-

igation
libraries/AP Baro/AP Baro.cpp Sensing

Table 3.2: Paparazzi Files Examined

sw/airborne/firmwares/fixedwing/stabilization/stabilization attitude.c Controller & Es-
timator

sw/airborne/firmwares/rotorcraft/stabilization/stabilization attitude eule-

r int.c

Controller & Es-
timator

sw/airborne/firmwares/rotorcraft/stabilization/stabilization rate.c Controller & Es-
timator

sw/airborne/firmwares/rotorcraft/guidance/guidance h.c Waypoint & Nav-
igation

sw/airborne/boards/lisa l/baro board.c Sensing

RQ2: To what degree can the changes in the control software be captured by a control

model or constitute mismatches between the model and the software? We focus on

characterizing the space of software changes that are rarely part of the control model.

3.1.1 Analysis Artifacts

For the purpose of our empirical study, we required artifacts that included significant

control software systems with many available versions reflecting their evolution.

The first artifact is the popular ArduPilot [2]1. ArduPilot has over five years of

well maintained history that provides, among other subsystems, a sophisticated control

system for autopilot support that can operate on a variety of vehicles including airplanes,

multirotors, helicopters, and boats. The code is accessible through a git repository

(https://github.com/ArduPilot/ardupilot) that stores the code changes committed by
1The ArduPilot website reports that over one million vehicles use this code base, including companies

like 3DR, PrecisionHawk, AgEagle, Insitu Boeing, Kespry, branches of the US military, and NASA among
others.

https://github.com/ArduPilot/ardupilot

13

the developers since 2010. As of January 2018, the repository includes 347 contributors

that have committed almost 30,000 changes. The latest version of ArduPilot contains

approximately 200k lines of code (LOC)2 in C/C++. We focus our analysis on the

evolution of a handful of ArduPilot files written in the C/C++ programming language

that are part of the core control library. We selected the core control files (see Table 3.1)

that provide coverage of functionality associated with position and attitude control. We

analyzed 585 commits3, the primary unit of change we consider, where each commit

included changes to at least one of the target files.

The second artifact is Paparazzi UAV [55] which has over 11 years of development

history. Paparazzi UAV provides autopilot capabilities for fixed-wing, rotorcraft, and

a few hybrid vehicles. The code is accessible through a git repository https://github.

com/paparazzi/paparazzi. As of January 2018, the repository includes 97 contributors

and ~15,000 changes. The latest version of Paparazzi UAV contains approximately 190k

LOC in C/C++. We again selected control files (see Table 3.2) central to position and

attitude control and analysed 379 commits.

Table 3.3: Definitions of Categories for Mismatches Between Models and Software

Category Definition

Resource Attributes

A software change resulting from features or limitations of

the computing architecture, including software and hard-

ware. Such changes are often intended to better fit or utilize

existing resources such as memory, energy, or bandwidth.

2LOC - Lines of Code - is a count of lines in the text of source code excluding comment lines [51].
3In the version control system git, a commit consists of one or more changed files identified as a single

change unit by the developer and assigned a single identification number by git.

https://github.com/paparazzi/paparazzi
https://github.com/paparazzi/paparazzi

14

Precision and Accuracy

A software change that modifies a measured value or a

numerical calculation in order to more closely mimic contin-

uous mathematics. Such changes often consist of utilizing

improved functions in advanced math libraries or newer

sensor devices, and simply using types with more bits for

representation.

Time and Space Model

A software change resulting from the intrinsic discrete na-

ture of the computing system in representing time and

space. Such changes often consist of handling the inherent

mismatch between continuous and discrete paradigms in

representing and manipulating time in the calculations of

derivatives and integrals, in the manipulation of variables

associated with the vehicle location or motion, or in gov-

erning the periodic execution of certain pieces of code (e.g.,

tasks).

Exception Handling

A software change resulting from the handling of anom-

alous conditions that would otherwise result in computa-

tional failures. Such changes often consist in additional

support for conditions to adhere to either mathematical

laws (e.g., dividing by zero), or computational laws (e.g.,

unexpected input, seg fault, etc.).

Neither ArduPilot nor Paparazzi UAV have formal models of the controller, and as a

result do not practice complete model-based design. These controllers are maintained

and modified primarily in software. This is common practice among small companies,

15

researchers, and hobbyists in areas not subject to strict regulation and certification

requirements. Because ArduPilot and Paparazzi UAV provide safety-critical software to

unmanned systems without a rigorous certification/verification process their software is

an excellent example of control software development that may be (at best) weakly linked

to a mathematical model with provable guarantees.

Table 3.4: Examples of Categories for ArduPilot Mismatches Between Models and Soft-
ware in ArduPilot

Category Examples

Resource Attributes

This change stores variables in flash memory

instead of static random access memory.

Commit id: 452749149 fd4d3e910e6ed22a6f861d5862a4b0

Committers comment: convert AC_PID library to AP_Param

...

+const AP_Param :: GroupInfo AC_PID :: var_info [] PROGMEM ={

+ AP_GROUPINFO ("P", AC_PID , _kp),

+ AP_GROUPINFO ("I", AC_PID , _ki),

+ AP_GROUPINFO ("D", AC_PID , _kd),

...

16

Precision and Accuracy

Replaces fast atan with atanf to improve

accuracy and precision for calculating the tar-

get pitch angle.

Commit id:

↪→ 872583 f4412ade16a31e8b7bd0363c294a20d301

Committers

↪→ comment:AC_AttitudeControl

↪→ removed fast_atan

...

-_pitch_target = constrain_float(fast_atan(

↪→ -accel_forward /(GRAVITY_MSS * 100))*

↪→ (18000/ M_PI_F),-lean_angle_max ,lean_angle_max);

+_pitch_target = constrain_float(atanf(

↪→ -accel_ forward /(GRAVITY_MSS * 100))*

↪→ (18000/ M_PI_F),-lean_angle_max ,lean_angle_max);

...

Time and Space Model

This change alters the time representation

from seconds to milliseconds to more fre-

quently check the position controller activity.

Commit id: 88 ec13b10d913d72cdb0b24ba2e1244e6ed37734

Committers comment: fix build

...

- if (dt > POSCONTROL_ACTIVE_TIMEOUT_SEC) {

+ if (dt > POSCONTROL_ACTIVE_TIMEOUT_MS *1.0e-3f) {

...

17

Exception Handling

This change checks whether the input variable

to the PID controller is infinite or undefined

before using it to calculate the PID terms of

the controller.

Commit id: ae77c18a1933dcb00eb9fc838872119b2250915c

Committers comment: Input to the PID controller is

protect against NaN and INF.

...

+ // don ’t pass in inf or NaN

+ if (isfinite(input)){

...

3.1.2 Analysis Process

The process is summarized in Figure 3.1 and consists of a set of filtering and analysis

steps for each of the questions. The process to answer RQ1 starts by systematically

querying the git repositories to quantify the degree of change on the target files in terms

of size, frequency, and people involved. To do this we downloaded the latest repositories

and developed a set of scripts, in combination with the git client management tool Giteye,

to collect the data.

To better understand the nature of the changes we also devised a procedure to

identify commits that are most likely associated with changes that will impact the

control system. This procedure focused on the developers’ comments and code changes,

and was partially automated through a syntactic file search using common control

keywords (e.g., control, derivative, error, feedforward, filter, frame, frequency, gain,

integral, kalman, proportional) and also keywords specific to the target autopilot controller

(e.g., acceleration, altitude, distance, pitch, roll, yaw, waypoint, speed, velocity). This

process also took into consideration the online documentation explaining the roles of key

18

configurable parameters and variable naming practices.

Table 3.5: Examples of Categories for Paparazzi UAV Mismatches Between Models and
Software in Paparazzi UAV

Category Examples

Resource Attributes

The horizontal feedforward gain is defined

as 0. This is later used for multiplication bit

operation to determine the control command

for horizontal guidance navigation. Bit rep-

resentations of control variables cannot be

represented in the control model.

Commit id: 5de51d35588fa0080db7b8416924a900b405b4e9

Committers comment: [guidance] fix IGAIN precision and

add VGAIN based on #682 this may introduce too large

horizontal guidance IGAIN in rotorcraft airframe files

...

+#ifndef GUIDANCE_H_VGAIN

+#define GUIDANCE_H_VGAIN 0

+#endif

...

guidance_h_cmd_earth.x = pd_x +

((guidance_h_vgain * guidance_h_speed_ref.x) >> 17) +

((guidance_h_again * guidance_h_accel_ref.x) >> 8);

...

19

Precision and Accuracy

Replaces int32 with float to improve accu-

racy and precision for calculating the angular

rate set point.

Commit id: 0c95b9e26edaba085f210b41d0a8325b607d9ada

Committers comment: [rotorcraft] converted PI rate

controller to floating point closes #1624

...

- struct Int32Rates stabilization_rate_sp;

+ struct FloatRates stabilization_rate_sp;

...

Time and Space Model

This change alters the execution frequency of

the navigation task from 10 Hz to 16 Hz.

Commit id: 624 ce9eea923bff55e3c913363e9b42fe9cd6aab

Committers comment: navigation function in guidance;

frequency set at 16 Hz

...

- RunOnceEvery (50, nav_periodic_task_10Hz ());

+ RunOnceEvery (32, nav_periodic_task ());

...

20

Exception Handling

This change prevents a divide by zero error

by ensuring the variable is greater than zero

before being used to calculate the navigation

ratio for the vehicle controller.

Commit id:

↪→ 7f91efa2854fee702a6601256dea5ff195e58f80

Committers comment: Fixed Error

↪→ preventing AGR climb

from working. Navigation would

↪→ not blend.

...

+if (AGR_BLEND_START > AGR_BLEND_END &&

↪→ AGR_BLEND_END > 0){

...

+nav_ratio = AGR_CLIMB_NAV_RATIO + (1 -

↪→ AGR_CLIMB_NAV_RATIO)*(1 -

↪→ (fabs (altitude_error) - GR_BLEND_END) /

↪→ (AGR_BLEND_START - AGR_BLEND_END));

...

The resulting commits (489 for ArduPilot and 275 for Paparazzi UAV) were further

analyzed to discriminate between changes deemed semantically equivalent such as those

caused by documentation, refactoring, or abstraction meant to ease the maintenance of

the software without directly impacting the functionality. For example, code found to be

repeated may be extracted into a function call. This, theoretically, has no impact on the

controller as it is purely a software maintenance change. This filtering left 396 ArduPilot

and 154 Paparazzi UAV commits/changes impacting the controller directly.

The process to answer RQ2 (see Figure 3.1) filtered the remaining commits by making

a qualitative analysis to determine whether the change could have been handled in a

typical control model. Again we note that neither ArduPilot nor Paparazzi UAV have

21

formal control models, so our assessment consists of a conservative judgement of whether,

if a mathematical model of the control system would be available, such a model could

accommodate a given change. It is conservative in that, when in doubt, we assume

that a control model could handle such a change. More specifically, unless the changes

that are: 1) tightly associated with the computing architecture, 2) the representations

of data in that architecture, 3) the discretization of time and space to function in that

architecture, or 4) the handling of anomalies due to that software functions, we assume it

could be represented in a control model. When we determine that a control model would

not typically include such a change because it is tightly associated with the computing

software context, we assume it constitutes a mismatch between model and code that

could have an impact on the system behavior. We then proceed to classify each change

into one of four categories that emerged as we analyzed these mismatches and grouped

them according to their characteristics, defined in Table 3.3 and examples are provided in

Table 3.4 & 3.5. This classification procedure was costly, with some changes requiring

minutes and others requiring hours and the participation of all authors. Furthermore,

this classification process was iterative as new mismatches emerged that either did not fit

existing categories or fit multiple ones.

3.1.3 Threats to validity

This study has shortcomings that may impact the validity of the findings. First, the

scope of the study is limited to the software side of controller evolution. This choice was

intentional and allowed us to quickly leverage readily available data while decoupling

the evolution occuring in software from that which would occur in a model. This is the

first step in this line of work, and studies of controller design evolution, controller design

coupled with control software, and impact on system performance will provide a broader

understanding of the topic.

22

Second, our study is focused on a subset of files of two control software systems. This

choice was opportunistic in that Ardupilot and Paparazzi have been widely deployed,

so findings in these code bases can still be valid for similar systems (e.g., LibrePilot [56],

PX4 [57]). Likewise, even though the cost of analyzing hundreds of commits limited us

to study ten files, those files perform different controller tasks and were designed by

different groups of developers. As a result, we anticipate these findings will also apply

to other files designed by other developers. We also ackowledge that the granularity of

change we studied, commits, may not expose all code changes made by developers.

Third, our analysis had a quantitative aspect that is partially automated and higly

reproducible, and a qualitative aspect that in many instances required us to make

judgement calls. Such judgement calls are subject to many biases, which we tried to

reduce by defining clear criteria for filtering and classification, by having multiple authors

check different parts of the results, and by iterating and revisiting the results as anomalies

emerged. We have prepared a package with the detailed data for others to review our

choices4.

3.2 Results

We now present the results for our study, answering RQ1 and RQ2 described in Sec-

tion 3.1.

3.2.1 Answers to RQ1 - How Much do Controllers Evolve?

We quantify the evolution of the selected ArduPilot and Paparazzi UAV control files in

Table 3.1. Results are captured in Table 3.6 & 3.7 showing the evolution of the software.

It reports on initial and final LOC, # of commits, LOC changed, and people involved for
4https://nimbus.unl.edu/CE/controllerevolution.html

https://nimbus.unl.edu/CE/controllerevolution.html

23

Table 3.6: Overview of ArduPilot Control Software Evolution

Filename(→) A
C
P
I
D
.
c
-

p
p

A
C
P
o
s
C
o
-

n
t
r
o
l
.
c
p
-

p A
C
A
t
t
i
t
-

u
d
e
C
o
n
t
r
-

o
l
.
c
p
p

A
C
W
P
N
a
v
-

.
c
p
p

A
P
B
a
r
o
.
-

c
p
p

Total

Date of earli-
est commit

1/28/2012 2/14/2014 2/14/2014 4/13/2013 6/27/2012

Date of
the latest
commit

2/18/2017 4/27/2017 6/22/2017 7/9/2017 7/7/2017

LOC in the
earliest com-
mit

54 601 152 166 55 1028

LOC in
the latest
commit

141 661 440 754 382 2378

Commits in-
volving that
file

37 134 127 185 102 585

LOC
changed
in those
commits -
code churn

463 1672 3350 3252 1043 9780

People
involved

6 3 3 4 6 8

Growth (%) 161.11 9.98 189.47 354.22 594.55 131.32

Rewrite Rate 8.57 2.78 22.04 19.59 18.96 9.51

each of the files of interest. Changes to these key files were made by 28 developers who

changed 15,066 LOC over 964 commits throughout the lifetime of the files. The guiding

principle in this analysis is to examine the evolution of control software, and as a result,

throughout the presented results we focus on changes to the software which excludes the

first commit representing the initial implementation.

The metric in row 8 of Table 3.6 & 3.7 assesses how much the software grows over

its lifetime. Growth is computed as (X−Y)
Y % where X is the number of lines of code,

excluding comments, in the latest commit (row 4 in Table 3.6 & 3.7) and Y is the number

of lines of code (excluding comments) in the earliest commit (row 3 in Table 3.6 & 3.7).

Growth captures the net lines of code changed including changes stemming from model

24

Table 3.7: Overview of Paparazzi UAV Control Software Evolution

Filename(→) s
t
a
b
i
l
i
z
-

a
t
i
o
n
a
t
-

t
i
t
u
d
e
.
c

s
t
a
b
i
l
i
z
-

a
t
i
o
n
a
t
-

t
i
t
u
d
e
e
-

u
l
e
r
i
n
t
-

.
c

s
t
a
b
i
l
i
z
-

a
t
i
o
n
r
a
-

t
e
.
c

g
u
i
d
a
n
c
e
-

h
.
c

b
a
r
o
b
o
a
-

r
d
.
c

Total

Date of earli-
est commit

10/19/06 07/26/09 02/10/09 02/10/09 08/21/10

Date of
the latest
commit

02/19/17 03/22/16 04/27/16 12/23/17 12/27/17

LOC in the
earliest com-
mit

135 89 36 126 77 463

LOC in
the latest
commit

323 195 150 546 168 1382

Commits in-
volving that
file

72 52 60 159 36 379

LOC
changed
in those
commits -
code churn

707 636 757 2859 327 5286

People
involved

10 5 5 12 5 20

Growth (%) 139.26 119.1 316.67 333.33 118.18 198.49

Rewrite Rate 5.24 7.15 21.03 22.69 4.25 11.42

clarifications, new features, bug fixes, and software maintenance. As an example for

this metric, AC PID.cpp had 54 lines of code initially, and in the latest commit has 141

lines of code, a growth of 161%. The ArduPilot files have an average growth rate of

131% while the Paparazzi UAV files average growth rate is 198%, implying that the initial

implementations required significant changes to complete them and refine them, and

more generally that these control files, like any successful software, grow in complexity as

they evolve. In some cases, like for AP Baro.cpp, we notice a dramatic growth of almost

~600% to abstract common features, support more devices, and improve calibration.

Other files like AC PosControl.cpp exhibit a more stable development from the start with

only ~10% growth.

25

Growth does not, however, capture the amount of change occurring in a file. To

measure this, code churn is defined as the total number of lines of code changed (row

6 in Table 3.6 & 3.7) [24]. For example, the code churn for AC AttitudeControl.cp-

p is 3350 lines of code with an average of over 26 lines changed per each of its 127

commits. To further emphasize the seriousness of code churn for control software we

use a metric we call “Rewrite Rate” that captures how many times the original controller

has been essentially rewritten from a software perspective. We use Z
Y , where Z is the

total number of LOC changed in row 6 in Table 3.6 & 3.7. However, high growth

does not necessarily mean high churn. AP Baro.cpp, for example, exhibits the highest

growth of all files, but AC AttitudeControl.cpp shows the highest code churn. Of the

ten files, five have Rewrite Rates ~20 indicating those control files have almost nothing

in common with the original versions. To give perspective, even the file with the lowest

rate, AC PosControl.cpp, has been rewritten almost three times.

For software engineers this evolution is not necessarily surprising as it mimics what is

seen in other evolving system files. For control designers, however, this implies that a

controller implemented in software may significantly diverge from the original design

without a correspondence to the model unless those ties are continuously enforced. It

also means that if a tight correspondence between the model and software is not enforced,

a large amount of time must be spent updating the controller to correspond with the

software (dashed arrow in Figure 1.1) or most likely the model will become obsolete

along with its proven guarantees.

Finally, we observed a high concentration of changes in a smaller group of files.

Two thirds of the code churn in ArduPilot occur in two files, and a similar change

concentration is found in a single Paparazzi UAV file. We conjecture that files like

AC PID.cpp containing some key abstractions may “settle” into a steady state as other

software modules come to depend on core functionality. Such functionality with higher

26

Table 3.8: Classification Results of ArduPilot Mismatches Between Models and Software

Category(↓) / Filename (→) A
C
P
I
D
.
c
-

p
p

A
C
P
o
s
C
o
-

n
t
r
o
l
.
c
p
-

p A
C
A
t
t
i
t
-

u
d
e
C
o
n
t
r
-

o
l
.
c
p
p

A
C
W
P
N
a
v
-

.
c
p
p

A
P
B
a
r
o
.
-

c
p
p

Total

Resource Attributes 1 2 0 1 0 4

Precision and Accuracy 7 15 7 13 9 49

Time and Space Model 2 15 3 11 8 37

Exception Handling 4 6 2 12 5 29

Total Commits With Mis-
matches

12 29 11 32 18 102

Table 3.9: Classification Results of Paparazzi UAV Mismatches Between Models and
Software

Category(↓) / Filename (→) s
t
a
b
i
l
i
z
-

a
t
i
o
n
a
t
-

t
i
t
u
d
e
.
c

s
t
a
b
i
l
i
z
-

a
t
i
o
n
a
t
-

t
i
t
u
d
e
e
-

u
l
e
r
i
n
t
-

.
c

s
t
a
b
i
l
i
z
-

a
t
i
o
n
r
a
-

t
e
.
c

g
u
i
d
a
n
c
e
-

h
.
c

b
a
r
o
b
o
a
-

r
d
.
c

Total

Resource Attributes 0 0 0 3 0 3

Precision and Accuracy 0 1 2 5 0 8

Time and Space Model 0 0 0 1 1 2

Exception Handling 1 1 0 5 0 7

Total Commits With Mis-
matches

1 2 2 11 1 17

stability may constitute more cost-effective targets for modeling and verifying more

extensively at design time, before transferring them into software.

3.2.2 Answers to RQ2 - What Evolution Results from Model and Software Mis-

matches?

If control models and software evolve independently then it is critical to understand

what kind of changes prevent a 1:1 correspondence between them. We classified the 102

ArduPilot commits and the 17 Paparazzi UAV commits from the last stage of Figure 3.1

into the four categories defined in Table 3.3. These categories represent the primary

mismatches resulting from the incongruences between control models of the physical

system and the computational paradigm of software implementation. In the right hand

27

column are examples to clarify the types of changes in these categories.

The mismatched commits and classifications are tallied in Table 3.8 & 3.9. Each

commit could have an arbitrary number of LOC changed, and hence a single commit may

have multiple mismatches and be classified into more than one category.

Overall, the distribution of mismatches is similar across ArduPilot and Paparazzi

UAV (see “Total” columns in Table 3.8 & 3.9) However, the number of mismatches in

ArduPilot is five times larger than Paparazzi UAV despite having smaller growth, rewrite

rate, and fewer developers involved (from Table 3.6 & 3.7). This is due, in part, to the

larger number of commits that affect the control model in ArduPilot. Further explanations

may be that, in Paparazzi UAV, some control elements were externalized into a separate

configuration file to isolate potential changes to the system. The analysis of such files are

left for future work.

We also observe that the number of mismatches per file is correlated with code churn

exhibited by the file, with AC AttitudeControl.cpp and guidance h.c being the most

affected. Still, AC AttitudeControl.cpp seems to be the exception, suggesting that other

software engineering factors (e.g., abstractions, refactoring) likely contributed to the

evolution changes for AC AttitudeControl.cpp. Generally, however, mismatch changes

tracks proportionally with total number of changes.

A comparison between AC AttitudeControl.cpp and AC WPNav.cpp in ArduPilot re-

veals that despite having roughly similar starting code size and total LOC changed in their

lifetime, AC AttitudeControl.cpp has only 30% as many mismatch changes. AC PosCon-

trol.cpp and AC WPNav.cpp have similar mismatch changes even though AC WPNav.cpp

was initially much smaller but grew to be twice as large and have much higher code

churn. This is not surprising as AC WPNav.cpp is the navigation code library that calculates

the desired velocity, and acceleration to reach the destination. When the user provides

the destination origin, AC WPNav.cpp creates a flight path using spline waypoints and

28

ensures the vehicle operates within the set range of acceleration, velocity, and speed. It

also determines whether the vehicle has reached its target to within a certain radius.

Such a software module is critical and difficult to develop correctly due in part to the

many calculations requiring many vehicle and environmental parameters. Supporting

this conclusion is a similar observation for guidance h.c in Paparazzi UAV given its high

relative mismatches, churn, and growth compared with other Paparazzi UAV files. This

is perhaps the apex of joint model and software integration.

Observing the categories, “Precision & Accuracy” was the biggest source of mis-

matches between model and software (see “Total” column in Table 3.8 & 3.9), accounting

for 48% of the ArduPilot and 47% of the Paparazzi UAV mismatches. This implies devel-

opers prioritized improvements to the precision and accuracy of calculations to either

1) more closely mimic continuous mathematical assumptions of infinite precision, or, 2)

prioritize improvement in computational system performance while sacrifing precision

and accuracy. We observe that some of these changes were not particulary complex

(changing an int to float), while others involved utilizing special functions from a math

software library. Still others, like switching fabs to fabsf, seem to sacrifice precision pre-

sumably to be consistent in the use of float to represent decimals and avoid unnecessary

conversions potentially saving unnecessary computations at runtime. These mismatches

were pervasive throughout the evolution of all files.

“Time and Space Model” mismatches are concerned with accounting for and tracking

discrete time in control software. While we considered discretized space in the same

category, which would be more prominent in control software incorporating, for example,

a computer vision component, we did not observe any discretized space mismatches

in this set of files. Ensuring consistency between periodic execution of a controller

and associated computation of discrete derivative and integral equivalents is critical for

correct control performance. We observed many changes that focused on improving this

29

consistency in a programming language (C/C++) that does not natively provide semantic

support for timing [39]. Most of these mismatches occur in the navigation/guidance

(AC WPNav.cpp and guidance h.c), and position controller (AC PosControl.cpp) portions

of the controller software. Our results reporting on the number of changes involving

timing provide further support for Lee’s claims that timing in computation is a major

obstacle to the development of combined cyber-physical models in which determinism

is preserved [39]. Although many of these mismatches could be incorporated into the

model by using Matlab toolboxes such as “TrueTime” [25] or checked using other

timing verification strategies like UPPAAL [38], these are often costly and continue to be

underutilized in many development environments like the one we have studied.

Often overlooked by control designers are the undefined mathematical operations

in engineered systems such as dividing by zero, or multiplying by ∞. In mathematical

models these exceptions are built into the assumptions of continuous mathematics and

are implicitly avoided. In software they must be explicitly avoided with lines of code

protecting potentially undefined operations from causing the program to end prematurely

or perform incorrectly. This exception handling also extends to software and computing

architectural rules that must be obeyed (e.g., handling NULL pointers). The combined 36

total mismatches in this category (row 4 of Table 3.8 & 3.9) suggest that even software

developers may take implicit assumptions about exception handling for granted. As the

code evolves these exceptions are dealt with possibly in response to failed test cases or

bug reports.

Finally, computing architectural issues result in some mismatches we classified as

“Resource Attribute.” Modern programming language abstractions have helped reduce

these mismatches as compilers and libraries allow flexibility and optimizations without

special programmer knowledge, and operating systems provide virtual memory and

thread handling for executing processes. The small number of mismatches in this category

30

(row 1 of Table 3.8 & 3.9) is likely a result of the non-specialized hardware platform that

ArduPilot and Paparazzi UAV run on. Had the control software required a specialized

Digital Signal Processing (DSP) chip, or Graphical Processing Unit (GPU) we would have

expected to see more mismatches in this category to accommodate those special-purpose

computing architectures. Nevertheless, this category represents an important side-effect

of software implementations of controllers - unless the control model explicitly captures

the details of each target hardware architecture, programming language, 3rd-party library

or hardware driver, and operating system there will likely be mismatches between the

model and implementation.

3.3 Conclusions

In this chapter, we studied and presented the controller evolution, through 964 commits

with 15,066 control software lines changed, of two dominant open-source control software

suites, ArduPilot and Paparazzi UAV. We found that control software evolves quickly;

we observed an average growth of 131% in ArduPilot files and 198% in Paparazzi UAV

files. We also found that amount of change occurring in a file through code churn metric,

half of the files have rewrite rates of ~20 indicating control files have almost nothing in

common with original versions.

In addition to this, we categorized the controller evolution into four categories. These

categories represent the incongruences between control models of the physical system

and the computational paradigm of software implementation. The evolution in terms of

these categories revealed that ”Precision and Accuracy” category was the biggest source

of mismatches. ”Time and Space Model” had the next highest source of mismatches

”Exception Handling” category followed it. These are categories that are often underuti-

31

lized or overlooked. ”Resource Attribute” category represented very few but significant

changes that deals with computing architectural mismatch issues.

32

Chapter 4

Impact of Software Changes on Control Performance

In this chapter, we introduce a tool developed to help mimic and analyze the software

controller evolution and its impacts. For this purpose, we designed a tool based on

mutation testing. We first define the process of mutation testing, then explain the

architecture of our proposed mutation tool followed by the methodology, and discuss the

divergence result impacting the controller performance.

4.1 Mutation testing process

Mutation of software is a practice used in the software engineering community to test the

robustness of software and tests to small, isolated changes in the software [30]. Figure 4.1

illustrates the genericprocess ofmutation analysis, in the context ofcontroller software.

In mutation analysis, from an original source program C (in our case, it is the software

program of a controller), an altered program M called mutant is generated by altering

the code. For example, consider a software system that has a line of code performing

an arithmetic operation, a change could involve altering an addition operation of two

variables into a subtraction operation of two variables. Here, the original program is

performing the addition operation whereas the mutated program is performing the

subtraction operation.

33

In the next step, we design a test oracle, the dashed rectangle represents this in Figure

4.1. A test oracle is a mechanism that would execute a test on the program to determine

if they pass or fail the test. Following our example of an arithmetic operation, an oracle

would provide two numerical numbers to both the programs, original and mutant. To

check if they pass or fail the test, the oracle has to compare the output values from the

original program and the mutated program. If the values are same, then it passes the test

otherwise failed.

Figure 4.1: Mutation testing process overview.

Lastly, we call a mutant as live if it passes the oracle’s output comparison test otherwise

we call the mutant as dead. This process is repeated for all the mutants generated. The

test oracle usually comprises a set of test cases such that it will test all the components

of a software, in our case, the test oracle tests the behavior of the program using step

response characteristics.

In traditional mutation testing [30], a live mutant is one in which the test oracle

successfully did not catch a difference in the output. A dead mutant or a mutant is said to

34

be killed if the test oracle was able to detect a difference in the output. In this scenario, a

dead mutant implies the test case is sufficient to catch errors or vulnerabilities. A perfect

test suite will kill all mutants. A live mutant indicates the test was insufficient to catch

the errors. We adopt this convention with the exception that we assume our test suite

is ideal, and hence ‘live’ mutants (i.e., output of mutated code is equivalent to original

code) are desirable as they imply that the controller is robust to software changes. ‘Dead’

mutants, in our scenario, suggest the controller was vulnerable to small software changes

since the output of the mutated control code was different than the original.

4.2 Mutation tool overview

The proposed mutation tool, an overview of which is in Figure 4.2, generates code from

Simulink models, mutates the code, compiles it, executes a test suite, and compares the

output to the output of the original design. In the Figure 4.2, the dotted line represents

our contribution, it comprises software functionality developed for this thesis. The first

step is to compile and execute a Simulink model to get the output, this we will refer

as original output. Next, we generate C code from the same model and make very few

changes in this C code. This is called the mutated code. We repeat this process with

different changes each in different locations of the C code to get different versions of

mutated code. Lastly, each mutated code is executed to get output that is compared with

the original output.

Our test suite for each mutant is a step response characterized by key control design

quantities. The tool mutates the generated code according to our categories shown in

Table 3.3. We are primarily concerned with studying the mismatches that occur between

control models and control software. As a result, the tool is focused on mutating code

generated from Simulink because: i) model-based design is an increasingly important,

35

but relatively little studied methodology, and ii) model-based design should maintain a

1:1 correspondence between the design and generated code, but many changes that could

be made in the code may not be represented in the design.

Figure 4.2: Mutation Tool Architecture.

The mutation tool can understand C family programming languages. It uses the

abstract syntax tree (AST) [50] of the respective programming language to construct a

tree model of the source code. AST captures the abstract syntactic structure (i.e., abstract

syntax consists of a structure of data) of source code, in a tree representation, written in a

software programming language. For example, consider an if-condition-then statement

from a source code, the syntactic construct will be represented as a single node with three

branches in the tree model. We use Clang 3.8.2 and LLVM 4.0 for this purpose and use

the MatchFinder class of Clang to process the AST. To support repeatability, we have built

this software infrastructure inside a operating-system-level virtualization, called docker

36

(version 1.13.1).

To study the effects of the mutated software code, we used three different, increasingly

complex system design models developed in Simulink - an automotive cruise control, a

helicopter, and a Boeing 747. The automotive cruise controller contains 14 Matlab blocks,

is publicly provided and made available by the University of Michigan, Carnegie Mellon

University and University of Detroit Mercy [52]. The helicopter system contains 40 blocks,

and is provided by Matlab [45]. It simulates hovering conditions of a helicopter model.

The third system is an airspeed and altitude controller for a Boeing 747 containing 465

blocks. This model is maintained by Michael S. Selig, Rob Deters, and Glen Dimock at

the University of Illinois Urbana-Champaign [8].

4.3 Methodolgy

In this section, we discuss the methodology to create the software mutation tool using the

knowledge from our previous study and the knowledge of control theory. The mutation

tool has three phases and the implementation details are depicted in Figure 4.2.

4.3.1 Phase I

In the first phase, C code is generated from the Simulink model and an AST is generated

from the code. The AST is parsed to identify the locations where the code could be

mutated. Mutation templates, software abstractions of our mismatch categories in Table

3.3, are used to identify where code can be mutated. The templates are constructed such

that many locations in the code can be mutated by a single template in a variety of ways.

The tool randomly chooses a location and applies the mutation.

37

4.3.1.1 Template creation

Template creation is a manual process to create generic abstractions from code changes.

The goal is to create generic templates that could inject code changes in any software

control system. A template could inject more than one similar code variations in more

than one code location. For example template d*→ d.0f, will make code changes of

2→ 2.0f and also 100→ 100.0f that is present in different code locations. For each of these

code change we can then observe the impact on the controller performance. In our case,

we create generic templates, for the purpose of application we the Matlab environment.

For creating the templates, we first identified the top most changes in each category.

Some software code changes occurred very frequently and was repeated across files,

while some other code changes were less frequent. So in our template creation process,

we first tried to capture this high frequency changes. After gathering these changes,

we wanted to create templates that are generic. For abstracting out these changes we

grouped similar code changes and started creating template for them. We list these

top changes and abstractions that are grouped by similarity for Precision and Accuracy,

Exception Handling, and Time and Space in table 4.1, 4.2, and 4.3 respectively. This process

worked well for three categories: Precision and Accuracy, Exception Handling, and Time

and Space Model.

This process did not construct templates for Resource Attributes category because

the software code changes were specific to hardware dependencies. For example, the

software evolutionary code changes with a tightly coupled microprocessor configuration

capabilities like processing power (8-bit or 16-bit) and memory access was a difficult

challenge while constructing templates. To reproduce this in Matlab, Matlab provides

an option to run the Simulink with different hardware specific platforms. We identified

the resource attribute blocks manually. We used the Matlab option to generate C code

38

Before code change After code change Number of occurrences
#include<AP Math.h > 4

hal.scheduler ->millis () AP HAL:: millis () 3

AP Math::is zero(filt hz) is zero (filt hz) 3

!is zero(ki) ! AP Math :: is zero (ki) 3

0 0.0f 6

200 0.2f 2

2 2.0f 2

fabs fabsf 4

abs fabs 1

Int32 t float 3

int16 t float 2

atan2 atan2f 1

atan2f fast atan2 1

fast atan2 atan2f 1

fast atan atanf 1

Table 4.1: 5 top most changes from Precision and Accuracy category grouped by similarity

Before code change After code change Number of occurrences
Added !is zero condition in IF 3

accel z cms <= 0.0f 3

wp accel cms <= 0 2

isnan 2

isinf 2

isfinite !isfinite 1

is zero isnan 1

is zero isinf 1

remove <=0.0f 2

if (track length == 0.0f) 1

Table 4.2: 5 top most changes from Exception Handling category grouped by similarity

for 32 bit and 64 bits systems. The resulted code was very similar to each other and

hence we could not create Resource Attributes category templates. We are working towards

getting these things done as future work. In total, we have implemented 21 unique

39

Before code change After code change Number of occurrences
uint32 t now =
hal.scheduler->millis();

11

void AC PosControl::set dt xy
(float dt xy)

5

dt >= 1.0 dt >= 1.0f 1

dt >= 1.0 dt >= 0.2f 1

if (fabsf(alt offset -
alt offset active) >0.1f) {

if (fabsf(alt offset -
alt offset active) >0.01f) { 1

POSCONTROL ACTIV-
E TIMEOUT MS

POSCONTROL ACTIV-
E TIMEOUT MS*1.0e-
3f

1

float dt = (now -
last update xy ms)

/ 1000.0f;

float dt = (now -
last update xy ms)

* 0.001f;
1

Table 4.3: 5 top most changes from Time and Space Model category grouped by similarity

template mutators for the three categories: Precision and Accuracy, Exception Handling,

and Time and Space Model as given in Table 4.4, 4.5, and 4.6 respectively. The Resource

Attributes category in Table 3.3 is excluded due to the tight dependence on specific

hardware configurations.

4.3.2 Phase II

In the second phase the tool compiles and executes the mutated code to obtain a step input

response from the mutated code to compare against the original model. We quantify the

control performance via 8 traditional control step response quantities: rise time, settling

time, settling min, settling max, overshoot, undershoot, peak, and peak time [54]. For

compilation process, the tool requires us to make two configuration settings. First, the tool

needs to understand the software environment and software dependencies. It requires

this because the compiler requires this information to generate abstract syntax tree for the

40

targeted software code. Second, modify the control input values in your control software.

The tool compiles and executes the target control software assuming that the control

input values are changed, as needed my the user. Currently, the tool lacks a placeholder

to mention the location of control input value present in the software code, this will be

incorporated in the future.

4.3.2.1 Matlab specific mutation

For the purpose of generating mutants, in the third category - Time and Space Model, we

had to improvise our process. Reason being, they involved software code changes with

time and space related variables specific to ArduPilot and Paparazzi UAV. To identify

the variable types and names related with time and space in Matlab environment, we

gathered all the time and space related blocks from Matlab library manually. It is

important to note here that this can be replicated for any other libraries or any other

platforms, in our case this could be used in C and C++ programming languages. Also

our tool has this information in separate configuration file that the user can easily modify

this properties without even changing the code.

We constructed a basic Simulink model environment for these blocks and then gen-

erated C code for each of the models separately. Some models did not successfully get

executed due to the requirement and dependency on other blocks, while most others got

successfully executed and generate C code from them. We then use this information to

identify time related variables for Matlab generated C code, automatically. We auto-

mated this process with the help of cppchecker [43]. The cppchecker is a static analysis

tool that helps to identify all the variables from the C code. We list these variables for

all the identified Simulink model and hand pick those that are present in more than

one models. This way we ensured that they do not bias the variable names. We then

used these data types and names to come up with templates for mutating in Matlab

41

environment.

4.3.3 Phase III

Finally, in the third phase we verify our results. For this purpose, we check whether the

mutated code is stable, unstable, or has altered performance. The tool uses a comparison

mechanism to check the step response characteristics value of the mutants with the

original system. It is important to note here that each system has a different control input

parameter: cruise control system has speed, helicopter system have pitch angle and roll

angle, and Boeing 747 system have airspeed and altitude. In turn, each of these control

input has different step values consisting of numerical quantity and a physical unit. Our

verification process took these things into account and computed the absolute difference

of 8 traditional control step response quantities between the mutated code and original

system. Based on this difference, we classify the mutated code as stable, unstable, or has

altered performance.

Table 4.4: Mutation output details for Precision and Accuracy category in all three systems

Mutation Operator
Cruise control Helicopter Boeing 747

mu-
tants

#
com-
piled

exe-
cuted

mu-
tants

#
com-
piled

exe-
cuted

mu-
tants

#
com-
piled

exe-
cuted

int T→ uint32 T 2 2 2 6 6 6 3 3 3

int T→ real T 2 1 1 6 1 1 3 0 0

uint32 T→ int T 0 0 0 0 0 0 3 3 3

real T→ int T 1 1 1 3 3 3 46 46 46

d*→ d*.0f 75 74 74 109 108 108 263 258 258

d*→ d*.0 75 74 74 109 108 108 263 258 258

d*.0f or d*.0→ d* 85 85 84 125 125 124 144 144 142

float F()→ (double) F() 0 0 0 0 0 0 0 0 0

double F()→ (float) F() 0 0 0 0 0 0 37 37 37

42

Table 4.5: Mutation output details for Exception handling category in all three systems

Mutation Operator
Cruise control Helicopter Boeing 747

#
mu-
tants

#
com-
piled

#
exe-
cuted

#
mu-
tants

#
com-
piled

#
exe-
cuted

#
mu-
tants

#
com-
piled

#
exe-
cuted

if(rtIsNaN(X))→ if(!rtIsNaN(X)) 0 0 0 3 3 2 3 3 3

if(rtIsInf(X))→ if(!rtIsInf(X)) 0 0 0 0 0 0 2 2 2

if(!rtIsNaN(X))→ if(rtIsNaN(X)) 0 0 0 0 0 0 0 0 0

if(!rtIsInf(X))→ if(rtIsInf(X)) 0 0 0 0 0 0 0 0 0

insert if statment - check divide by 0 0 0 0 0 0 0 18 16 16

remove if statment - check divide by 0 0 0 0 0 0 0 0 0 0

miultiply denominator by zero 24 24 24 24 24 24 31 31 31

Table 4.6: Mutation output details for Time and Space Model category in all three systems

Mutation Operator
Cruise control Helicopter Boeing 747

#
mu-
tants

#
com-
piled

#
exe-
cuted

#
mu-
tants

#
com-
piled

#
exe-
cuted

#
mu-
tants

#
com-
piled

#
exe-
cuted

datatype of time is multiplied by 1000 6 5 5 18 17 17 20 17 17

datatype of time in ifstmt() is negated 4 4 3 4 4 3 0 0 0

variable of time is multiplied by 1000 2 2 2 2 2 2 3 3 3

variable of time in ifstmt() is negated 7 7 7 10 10 10 1 1 1

time and space variables 0 0 0 0 0 0 0 0 0

Table 4.7: Summary of the mutation output details for all three systems

Mutation Operator
Cruise control Helicopter Boeing 747

#
mu-
tants

#
com-
piled

#
exe-
cuted

#
mu-
tants

#
com-
piled

#
exe-
cuted

#
mu-
tants

#
com-
piled

#
exe-
cuted

Total 283 279 277 416 408 406 840 822 820

Number of lines in file 279 449 1290

Number of unique mutated locations* 84 193 435

Total mutation coverage 30.10% 42.98% 33.72%
*Unique mutated location is the number of lines that got changed by the mutation tool.

4.4 Results

We generated a total of 1539 mutations from the three different control models. Table 4.4,

4.5, 4.6, and 4.7 provides details on the number of mutants, the number compiled, and

the number executed for each system. The tool covered a considerable percentage of the

43

Table 4.8: Summary of mutation results for all three systems

System name Step input
parameter

name

Step input
values

Most
impacted

step
response

characteris-
tics

% Live
mutants at

10%
threshold

% Dead
mutants at

10%
threshold

Cruise control Cruise speed
(mph)

0-10 PeakTime 0 100

Helicopter
Pitch angle

(deg)
0-1 SettlingMin 0 100

Roll angle
(deg)

0-1 SettlingMin 0 100

Boeing 747

Altitude (m) 61 - 62 RiseTime 95.37 4.63

Airspeed
(mps)

150.148 -
151.148

RiseTime 0 100

code, altering more than one-third of the code in each of the systems. Compilation errors

were the result of rare syntax mismatches. Occasionally, a mutant would fail to execute

due to a runtime error. For example, one of the errors was due to altering a timing

value (the mutation changed a timing variable value to 0, as a result the program was

waiting indefinitely) and the other was due to a change in random number generation

(the mutation resulted in a code change seeding the random value to zero, causing the

program to run in a loop indefinitely to find a valid number). Overall, 1503 mutants out

of the 1539 mutations were successfully compiled and executed. This demonstrates the

strength and robustness of our mutation tool.

4.4.1 Analysis I

To analyze the impact of our mutated code, we designed an oracle to classify the results

as either “live” or “dead”. To better understand how a normal mutation tool works,

we refer the reader to [53]. Mutation testing is a check on the robustness of a software

test suite. It does this by mutating software and comparing the output of mutated and

original software. If changes are detected the test suite is robust, otherwise it should

44

be improved. Our use of mutation testing differs slightly as we assume an ideal test

suite that will catch all errors, and are therefore interested in assessing the control code’s

robustness to small changes. As a result, ‘live’ mutants are desirable as they indicate

there was no difference in outputs of mutated and original control code. ‘Dead’ mutants

are undesirable as they indicate control code was vulnerable to small software changes.

The oracle has two criteria: one is the threshold value and the other is the number

of step response quantitites. In our case, we use the 8 step response quantities from the

system, we classify a system as “live” if all 8 step response quantities have an output

value within a certain percent of the original design. If not, the mutant is considered

“dead.” We varied this threshold between 0% to 100% to capture the amount of variation

in a step response that might be considered acceptable. Thresholds above 10% resulted

in an inability to discriminate performance as all mutants would either be live or dead.

Columns 5 and 6 in Table 4.8 show the percent live and dead mutants at the 10% threshold.

A summary of our findings are provided in Table 4.8, in the 2nd column is the control

input parameter, the step values of which are given in the 3rd column. In the final column

is the % of dead mutants. At just a 10% threshold output difference all mutants are killed

by the test suite for all control systems except altitude control of the Boeing 747. This

shows the fragility of the control designs which generate different responses with

even just a single, small change to the software. In contrast, only 4.63% of mutants

were killed in the altitude controller of the Boeing 747, suggesting that this controller

is very robust to small software changes. Interestingly, only a few quantities in the

system response were responsible for this dramatic change. For example, in the cruise

control system, only the PeakTime quantity was not within the threshold limit as a result

all the mutants were dead. Similarly, for the helicopter system, only the SettlingMin

quantity was highly impacted by our mutations but caused all the mutants to die. Our

investigation suggests that these two controllers are not robust to software changes and

45

the inevitable accompanying evolution. For the Boeing 747, on the other hand, airspeed

was not affected by our mutations at all. Altitude was only mildly affected. This suggests

a controller that is more robust to software changes and maintenance that are part of a

healthy controller evolution. However, control system for airspeed of Boeing 747 was

severely affected and RiseTime played a crucial role.

4.4.2 Analysis II

In this section, we present a more thorough analysis by designing a new oracle to compare

our mutation output results. The analysis in section 4.4.1 is very conservative, in the

sense, our previous oracle classifies a mutant as ”dead” even if one of the step quantities

does not satisfy the threshold criteria of 10% variation in results. Therefore, to better

understand the controller performance, in this second analysis, we made two major

changes in oracle. First, instead of 10% threshold, the oracle now uses a value from 0%

to 100% in the increment of 10. Second, instead of having all 8 step quantities within

the threshold value, the oracle now changes the number of step quantities within the

threshold from 1 to 8 by gradually increasing the number by 1.

The results are presented in Figure 4.3, 4.4, 4.5, 4.6,and 4.7. The value present in

each cell of these figures represents the percentage of mutants classified as either live or

dead. On the x-axis, we have the number of step quantities within the threshold criteria.

On the y-axis, we have the threshold criteria; it is given by the range of values from 0-100

denoting the % of error that the step response quantities are allowed to diverge. We begin

our analysis by classifying a mutant as ”live” even if one of the step quantities value is

within the threshold. On the x-axis, we then continue our analysis by gradually increasing

the number of step quantities within the threshold until all the 8 step quantities have to

be within the threshold. Similarly, we repeat this process for different threshold values

from 0% to 100%.

46

In addition to this, to show the impact severity on the controller performance, we have

color coded each cells in the figures with green color and red color. Green color denotes

that the mutants are alive, we have different shades of green color (lighter tone to darker

tone) to show the level of impact severity, darker greener means that the system is more

stable or less vulnerable to cyber-physical mismatches. For example, in Figure 4.7(a),

altitude of Boeing 747 is the most robust system as it has more green color shades. On the

other hand, the red color denotes that the mutants are dead, lighter red tone shows less

impact whereas darker red shows critical impact in controller performance. For example,

in Figure 4.6(b), airspeed of Boeing 747 is one of the most unstable system as it has more

darker red color shades.

For the cruise control system, we found that the system was mostly stable and only

one step quantity (i.e., PeakTime) played a major role in not meeting the criteria. The

importance and criticality of this quantity vary depending on the application, but our

analysis shows that a small variant of the system gets affected at a very early stage of

3 step quantity requirement, given by a value greater than zero in Figure 4.3(b). For

helicopter system, both pitch angle and roll angle step response, most of the mutants got

impacted at an early stage, given by a value greater than zero in Figure 4.4(b) and 4.5(b).

Especially in the last 8 step quantity requirement, even though SettlingMin quantity had

a negative value we did not consider this as ”live” because the mutant itself did not have

a valid SettlingTime value. For Boeing 747 system, altitude step response was the most

stable system we observed, as shown in Figure 4.7. On the other hand, the Boeing 747

airspeed quantity was the most unstable system we observed, denoted by more number

of zeros and less values in % live mutants in Figure 4.6(a).

Overall, we observed that our mutation tool can expose the impact in controller

performance. In other words, our generic templates is able to bring out the mismatches

between the control design model and software system, causing the mutants to be unstable.

47

It is also interesting to note that if a system has more than one control parameter, like in

the Boeing 747 system, it is not necessary that both parameter has to be impacted at a

same level. This needs to be further investigated in the direction of dependency between

two control parameters in a control system. In control engineering this analysis is called

multiple-input-multiple-output (MIMO) system analysis. In summary, the analysis II

supports the results from the analysis I, it also shows how small divergence can impact

the controller performance with varying threshold criteria.

The key impact of our tool is that much like a change in control gain can be directly

mapped to a change in system response [62], this tool allows us to directly map control

software changes to a change in system response. This opens the door for studying how

to design controllers that lead to robust software implementations.

(a) % Live mutants (b) % Dead mutants

Figure 4.3: Cruise control system divergence for speed step quantity

48

(a) % Live mutants (b) % Dead mutants

Figure 4.4: Helicopter system divergence for pitch angle step quantity

(a) % Live mutants (b) % Dead mutants

Figure 4.5: Helicopter system divergence for roll angle step quantity

49

(a) % Live mutants (b) % Dead mutants

Figure 4.6: Boeing747 system divergence for airspeed step quantity

(a) % Live mutants (b) % Dead mutants

Figure 4.7: Boeing747 system divergence for altitude step quantity

50

Chapter 5

Conclusions and Future Work

Modern control systems are complex integrations of computation and physical systems

where software defines the relationship between them. As systems evolve, so do their

controllers and control software though there is little understanding about how control

software evolves. A deeper understanding of the types and quantity of evolution that

occur in controllers can help the control and software communities develop new models

and development strategies to maintain the integrity of key properties verified in the

model and/or software.

We have directly studied the evolution, through 964 commits with 15,066 control

software lines changed, of two dominant open-source control software suites, ArduPilot

and Paparazzi UAV, used extensively in safety-critical unmanned autonomous systems.

We found that control software evolves quickly, with controllers being entirely rewritten

through their lifetime, and introduced categories capturing some of the inherent mis-

matches between typical control models and control software not previously identified.

To facilitate more rapid study of this evolution we built a mutation tool that can rapidly

change control code and compare its performance against the original designs. The im-

pact of this tool is the ability to map software changes directly to controller performance,

thereby paving the way for studying the design of controllers robust to software changes.

Currently, our approach and tool are still at an early development stage. We could

51

incorporate a richer set of templates, including those that attempt to describe resource

attributes category. The tool could also be improved by adding support for different

programming language paradigms. We are also interested in understanding the effect

of mutation changes on the real-time system performance, for example, the scenario

could include a drone flying in a predetermined trajectory. We will be exploring such

improvement and further applying the tool to a larger number of systems.

In addition to this, we acknowledge that control engineers also write software coding

for controllers, we see this trend even at the very early stage as students start taking

courses in control engineering. Once the control engineering students develop control

design model, they implement the model by writing software code in platforms such as

Matlab, Arduino, etc. To help these developers imminently, during the software devel-

opment process, we are exploring the possibility to automatically warn these developers

if they write codes related to cyber-physical mismatches. We strongly believe that this

could be achieved by creating a plug-in (i.e., plug-in is a software component containing

functions capable of adding specific features) that could be integrated inside the software

developers programming environment to provide a real-time message warning system.

Lastly, from a control engineering perspective, one of the most crucial future directions

is to extend the scope and application of our study. Currently, the scope of our study

is limited to P, PI and PID controller, in the future, we want to include analysis from

other types of controllers such as observer-based control, Fuzzy-logic, etc. From an

application point of view, we also plan to understand the different properties of the

controller. For example, knowing the transfer function of the controller can help us

perform additional mathematical analysis to understand properties like the relationship

between input and output, get a response of the system to any input, and know the poles

and zeros for stability analysis. One possible way forward is to obtain a transfer function

from software code using software abstraction techniques from software engineering

52

discipline. Techniques like theorem solver and numerical invariant detection could help

us abstract the transfer function from software code into a mathematical equivalent.

53

Bibliography

[1] git Documentation. https://git-scm.com/doc. Accessed: 2017-09-30.

[2] ArduPilot. ArduPilot Open Source Autopilot, 2018. 1.2, 2.2, 3.1.1

[3] Karl Johan Åström and B Wittenmark. Computer-controlled systems: theory and design.

Prentice-Hall New York, 1984.

[4] Richard Baker and Ibrahim Habli. An empirical evaluation of mutation testing for

improving the test quality of safety-critical software. IEEE Transactions on Software

Engineering, 39(6):787–805, 2013. 2.2.2

[5] E Bini and G M Buttazzo. The optimal sampling pattern for linear control systems.

Automatic Control, IEEE Transactions on, 59(1):7890, January 2014.

[6] Vı́ctor Braberman, Nicolas D’Ippolito, Nir Piterman, Daniel Sykes, and Sebastian

Uchitel. Controller synthesis: From modelling to enactment. In Proceedings of the 2013

International Conference on Software Engineering, ICSE ’13, pages 1347–1350, Piscataway,

NJ, USA, 2013. IEEE Press. 2.2

[7] Justin M Bradley and Ella M Atkins. Coupled cyber-physical system modeling and

coregulation of a cubesat. IEEE Transactions on Robotics, 31(2):443–456, April 2015.

[8] Giampiero Campa. Airlib, 2018. Accessed: 2018-10-11. 4.2

https://git-scm.com/doc

54

[9] Maria Christakis and Christian Bird. What developers want and need from program

analysis: An empirical study. In Proceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering, ASE 2016, pages 332–343, New York,

NY, USA, 2016. ACM. 2.1

[10] Darren Cofer and Steven Miller. DO-333 certification case studies. In NASA Formal

Methods Symposium, pages 1–15. Springer, 2014. 2.1

[11] Jamal Daafouz, Pierre Riedinger, and Claude Iung. Stability analysis and control

synthesis for switched systems: A switched Lyapunov function approach. IEEE

transactions on automatic control, 47(11):1883–1887, 2002. 1

[12] Marco D’Ambros, Harald Gall, Michele Lanza, and Martin Pinzger. Analysing

Software Repositories to Understand Software Evolution, pages 37–67. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2008. 2.2.1

[13] Murial Daran and Pascale Thévenod-Fosse. Software error analysis: A real case

study involving real faults and mutations. In ACM SIGSOFT Software Engineering

Notes, volume 21, pages 158–171. ACM, 1996. 2.2.2

[14] Patricia Derler, Edward A Lee, and Alberto Sangiovanni Vincentelli. Modeling

cyber–physical systems. Proceedings of the IEEE, 100(1):13–28, 2012.

[15] RTCA DO. 178b. 1992. Software considerations in airborne systems and equipment

certification. Radio Technical Commission for Aeronautics (RTCA), 1992. 2.2.2

[16] Emad Ebeid, Martin Skriver, and Jie Jin. A survey on open-source flight control

platforms of unmanned aerial vehicle. In Euromicro Symposium on Digital Systems

Design. IEEE, 2017.

55

[17] Sebastian G Elbaum and John C Munson. Code churn: A measure for estimating

the impact of code change. In Software Maintenance, 1998. Proceedings., International

Conference on, pages 24–31. IEEE, 1998.

[18] Tom Erkkinen and Bill Potter. Model-based design for DO-178B with qualified tools.

In AIAA Modeling and Simulation Technologies Conference and Exhibit, 2009. 2.1, 2.2.1

[19] Eric Feron. From control systems to control software. IEEE Control Systems Magazine,

30(6):50–71, December 2010. 2.1, 2.2.1

[20] Eric Feron and Fernando Alegre. Control software analysis, part I open-loop proper-

ties. arXiv preprint arXiv:0809.4812, 2008.

[21] Eric Feron and Fernando Alegre. Control software analysis, part II: Closed-loop

analysis. arXiv preprint arXiv:0812.1986, 2008.

[22] Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated design of self-

adaptive software with control-theoretical formal guarantees. In Proceedings of the

36th International Conference on Software Engineering, ICSE 2014, pages 299–310, New

York, NY, USA, 2014. ACM. 2.2

[23] G F Franklin, M L Workman, and D Powell. Digital Control of Dynamic Systems.

Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1998. 2

[24] Gregory A. Hall and John C. Munson. Software evolution: Code delta and code

churn. Journal of Systems and Software, 54(2):111–118, 2000. 3.2.1

[25] Dan Henriksson, Anton Cervin, and Karl-Erik Årzén. TrueTime: Simulation of

control loops under shared computer resources. IFAC Proceedings Volumes, 35(1):417–

422, 2002. 3.2.2

56

[26] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A model checker

for hybrid systems, pages 460–463. Springer Berlin Heidelberg, Berlin, Heidelberg,

1997. 2.2

[27] Heber Herencia-Zapana, Romain Jobredeaux, Sam Owre, Pierre-Loı̈c Garoche, Eric

Feron, Gilberto Perez, and Pablo Ascariz. PVS Linear Algebra Libraries for Verifica-

tion of Control Software Algorithms in C/ACSL. NASA Formal Methods, 7226:147–161,

2012.

[28] Bo Hu and Anthony N Michel. Stability analysis of digital feedback control systems

with time-varying sampling periods. Automatica, 36(6):897–905, 2000.

[29] BX Huang and Furong WANG. Cyber physical systems: a survey. Presentation Report,

Jun, 2008.

[30] Y. Jia and M. Harman. An analysis and survey of the development of mutation

testing. IEEE Transactions on Software Engineering, 37(5):649–678, Sept 2011. 2.2.2, 4.1,

4.1

[31] R. Jobredeaux, T. E. Wang, and E. M. Feron. Autocoding control software with proofs

I: Annotation translation. In 2011 IEEE/AIAA 30th Digital Avionics Systems Conference,

pages 7C1–1–7C1–13, October 2011.

[32] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why

don’t software developers use static analysis tools to find bugs? In Proceedings of

the 2013 International Conference on Software Engineering, ICSE ’13, pages 672–681,

Piscataway, NJ, USA, 2013. IEEE Press. 2.1

57

[33] EI Jury and FJ Mullin. The analysis of sampled-data control systems with a periodi-

cally time-varying sampling rate. Automatic Control, IRE Transactions on, (1):15–21,

1959.

[34] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-integrated development

of embedded software. Proceedings of the IEEE, 91(1):145–164, Jan 2003.

[35] Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty. Model-integrated

development of embedded software. Proceedings of the IEEE, 91(1):145–164, 2003. 1,

2.1

[36] Bruce H Krogh. Cyber physical systems: the need for new models and design

paradigms. Presentation Report, 2008.

[37] Marta Kwiatkowska, Gethin Norman, and David Parker. Controller dependability

analysis by probabilistic model checking. Control Engineering Practice, 15(11):1427 –

1434, 2007. Special Issue on Manufacturing Plant Control: Challenges and Issues. 2.2

[38] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. International

Journal on Software Tools for Technology Transfer (STTT), 1(1):134–152, 1997. 3.2.2

[39] Edward A. Lee. The past, present and future of cyber-physical systems: A focus on

models. Sensors, 15(3):4837–4869, 2015. 3.2.2

[40] Edward Ashford Lee and Sanjit A Seshia. Introduction to embedded systems: A cyber-

physical systems approach. MIT Press, 2016.

[41] M. M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings of

the IEEE, 68(9):1060–1076, Sept 1980. 2.2.1

[42] Richard J Lipton. Fault diagnosis of computer programs. Student Report, Carnegie

Mellon University, 1971. 2.2.2

58

[43] Daniel Marjamäki. Cppcheck: a tool for static c/c++ code analysis, 2013. 4.3.2.1

[44] Johnny Marques and Adilson Marques da Cunha. Use of the RTCA DO-330 in

aeronautical databases. In Digital Avionics Systems Conference (DASC), 2015 IEEE/AIAA

34th, pages 8D1–1. IEEE, 2015.

[45] MathWorks. Helicopter System Documentation, 2018. Accessed: 2018-10-11. 4.2

[46] Reza Matinnejad, Shiva Nejati, Lionel Briand, and Thomas Brcukmann. MiL testing

of highly configurable continuous controllers. In Proceedings of the 29th ACM/IEEE

International Conference on Automated Software Engineering - ASE ’14, pages 163–174,

New York, New York, USA, September 2014. ACM Press.

[47] Reza Matinnejad, Shiva Nejati, Lionel Briand, Thomas Bruckmann, and Claude Poull.

Search-based automated testing of continuous controllers: Framework, tool support,

and case studies. Information and Software Technology, 57:705–722, January 2015. 2.2

[48] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, and Thomas Bruckmann. Effective

test suites for mixed discrete-continuous stateflow controllers. In Proceedings of the

2015 10th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2015, pages

84–95, New York, New York, USA, August 2015. ACM Press.

[49] Tom Mens and Serge Demeyer. Software Evolution. Springer Publishing Company,

Incorporated, 1 edition, 2008. 2.2.1

[50] Iulian Neamtiu, Jeffrey S Foster, and Michael Hicks. Understanding source code

evolution using abstract syntax tree matching. ACM SIGSOFT Software Engineering

Notes, 30(4):1–5, 2005. 4.2

[51] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. A SLOC counting

standard. In Cocomo Ii Forum, volume 2007, pages 1–16, 2007. 2

59

[52] University of Michigan. Cruise Control System Documentation, 2018. Accessed:

2018-10-11. 4.2

[53] Jeff Offutt. A mutation carol: Past, present and future. Information and Software

Technology, 53(10):1098–1107, 2011. 4.4.1

[54] Katsuhiko Ogata and Yanjuan Yang. Modern control engineering, volume 4. Prentice

hall India, 2002. 4.3.2

[55] PaparazziUAV. PaparazziUAV, 2018. 1.2, 2.2, 3.1.1

[56] Libre Pilot. LibrePilot – Open – Collaborative – Free, 2018. 3.1.3

[57] pixhawk. Pixhawk Flight Controller Hardware Project, 2018. 2.2, 3.1.3

[58] Joseph Porter, Gábor Karsai, Péter Völgyesi, Harmon Nine, Peter Humke, Graham

Hemingway, Ryan Thibodeaux, and János Sztipanovits. Towards Model-Based Inte-

gration of Tools and Techniques for Embedded Control System Design, Verification,

and Implementation. In MoDELS Workshops, pages 20–34. Springer, 2008. 2.1

[59] Leanna Rierson. Developing Safety-Critical Software: A Practical Guide for Aviation

Software and DO-178C Compliance. CRC Press, 2013. 2.1

[60] Tariq Samad and Gary Balas. Software-Enabled Control: Information Technology for

Dynamical Systems. John Wiley & Sons, 2003.

[61] Douglas C. Schmidt. Model-driven engineering. COMPUTER-IEEE COMPUTER

SOCIETY-, 39(2):25, 2006. 1

[62] Maria M Seron, Julio H Braslavsky, and Graham C Goodwin. Fundamental limitations

in filtering and control. Springer Science & Business Media, 2012. 4.4.2

60

[63] Zhendong Sun and Shuzhi Sam Ge. Analysis and synthesis of switched linear control

systems. Automatica, 41(2):181–195, 2005. 2.2.1

[64] J. Sztipanovits and G. Karsai. Model-integrated computing. Computer, 30(4):110–111,

April 1997.

[65] Jiafu Wan, Hehua Yan, Hui Suo, and Fang Li. Advances in cyber-physical systems

research. KSII Transactions on Internet and Information Systems (TIIS), 5(11):1891–1908,

2011.

[66] Fei-Yue Wang and Derong Liu. Networked control systems. Theory and Applications,

Springer-Verlag, London, 2008.

[67] Björn Wittenmark, Karl Johan Åström, and Karl-Erik Årzén. Computer control: An

overview. IFAC Professional Brief, 1, 2002. 2

[68] M. Zimmer, J. K. Hedrick, and E. A. Lee. Ramifications of software implementation

and deployment: A case study on yaw moment controller design. In 2015 American

Control Conference (ACC), pages 2014–2019, July 2015. 2, 2.1

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Fall 11-30-2018

	Controller Evolution and Divergence: A Software Perspective
	Balaji Balasubramaniam

	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Innovations

	Related work
	Software development and control design
	Control software validation and verification
	Software evolution
	Mutation testing

	Controller evolution: an empirical study
	Study
	Analysis Artifacts
	Analysis Process
	Threats to validity

	Results
	Answers to RQ1 - How Much do Controllers Evolve?
	Answers to RQ2 - What Evolution Results from Model and Software Mismatches?

	Conclusions

	Impact of Software Changes on Control Performance
	Mutation testing process
	Mutation tool overview
	Methodolgy
	Phase I
	Template creation

	Phase II
	Matlab specific mutation

	Phase III

	Results
	Analysis I
	Analysis II

	Conclusions and Future Work
	Bibliography

