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Ectoparasites of the Critically Endangered green sawfish Pristis zijsron and 
sympatric elasmobranchs in Western Australia 
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A B S T R A C T   

This study reports the metazoan ectoparasite fauna of juvenile Critically Endangered green sawfish, Pristis zijsron, 
and sympatric elasmobranchs in Western Australia. Five parasite taxa were found on 76 screened P. zijsron: 
Caligus furcisetifer (Copepoda: Caligidae), Dermopristis pterophila (Monogenea: Microbothriidae), Branchellion 
plicobranchus and Stibarobdella macrothela (Hirudinea: Piscicolidae), and praniza larvae of an unidentified gna-
thiid isopod. Only C. furcisetifer and D. pterophila were common, exhibiting discrepant site-specificity, with C. 
furcisetifer occurring mostly on the head and rostrum, and D. pterophila around the pectoral and pelvic fins. 
Intensity of infection for C. furcisetifer and D. pterophila increased with host total length and was influenced by 
host sex, but in opposite directions; intensity of C. furcisetifer was greater on female P. zijsron, whereas intensity 
of D. pterophila was greater on males. In the Ashburton River, likelihood of infection for C. furcisetifer and D. 
pterophila on P. zijsron increased with time since substantial freshwater discharge events, suggesting decreased 
salinity impacts both taxa. In addition to P. zijsron, five other sympatric elasmobranch species were opportu-
nistically screened for ectoparasites in the study area: the giant shovelnose ray, Glaucostegus typus, the eyebrow 
wedgefish, Rhynchobatus palpebratus, the nervous shark, Carcharhinus cautus, the lemon shark, Negaprion acuti-
dens, and the graceful shark, Carcharhinus amblyrhynchoides. Caligus furcisetifer was found on R. palpebratus; no 
other parasites of P. zijsron were found on other sympatric elasmobranch species. Conversely, Perissopus dentatus 
(Copepoda: Pandaridae) was found on all three carcharhinids but not on batoid rays (P. zijsron, G. typus or R. 
palpebratus).   

1. Introduction 

Estimates of extinction rates and biodiversity loss usually fail to ac-
count for dependent symbionts, despite coextinctions accounting for 
most biodiversity loss [1–3]. Meaningfully including parasite taxa in 
biodiversity estimates and community models is challenging because 
most species are poorly known. For example, perhaps 85–95% of ver-
terbrate helminth endoparasites remain unknown to science [4]. It is 
therefore important to characterise parasite faunas, particularly those of 
threatened host species, both to estimate potential biodiversity loss 
before a host becomes extinct and to understand the downstream com-
munity implications of parasite coextinctions. 

The green sawfish, Pristis zijsron Bleeker, 1851 (Pristidae), is a large 
shark-like ray threatened with extinction primarily as a consequence of 
over-fishing [5,6,8]. Once distributed widely throughout the Indo-West 

Pacific, viable populations of P. zijsron are now mostly restricted to 
northern Australia [5,9–12], where it is listed as Vulnerable under the 
Environment Protection and Biodiversity Conservation Act 1999, 
whereas it is considered Critically Endangered both within Australia and 
globally, based on the International Union for Conservation of Nature 
Red List of Threatened Species classification criteria [6,7]. North- 
western Australia is a particularly important refuge for P. zijsron 
[10,13,14]. The Ashburton River delta in particular is an important 
nursery for P. zijsron; females pup reliably in spring each year and young 
remain within the sheltered waters of the estuary and associated tidal 
creeks throughout their juvenile phase [13,14]. The known parasite 
fauna of P. zijsron comprises six cestodes, one leech, one monogenean 
and one nematode [15–21]. Here we report on the ectoparasites 
occuring on P. zijsron in Western Australia, to characterise, and bring 
attention to, the previously unknown diversity of parasites infecting this 
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species in this region. Several other sympatric elasmobranchs were also 
screened for ectoparasites, to investigate host-specificity of parasites 
exploiting P. zijsron. Lastly, to investigate potential predictors of infec-
tion, we modelled parasite abundance in response to several abiotic and 
biotic factors, including the size and sex of the host and fluvial 
discharge. 

2. Materials and methods 

2.1. Host examination and parasite collection 

Targeted sampling for P. zijsron was conducted in the Ashburton 
River mouth and associated mangrove creeks (Four Mile Creek, Hooley 
Creek and Hooley Lagoon/Ashburton Delta) in the Pilbara region of 
Western Australia. Supplementary, opportunistic sampling was con-
ducted in the nearby Fortescue River estuary, as well as in the Bay of 
Rest in the Exmouth Gulf (Fig. 1; Table 1). Pristis zijsron, as well as other 
sympatric elasmobranchs (bycatch), were captured with monofilament 
gillnets or cast nets using methods detailed by Morgan et al. [13]. Upon 
capture, elasmobranchs were held on their backs in the extreme shal-
lows with their gills submerged, inducing a state of tonic immobility, 
with sex and length (to the nearest mm) measured. Subsequent esti-
mations of P. zijsron age classes were based on growth data reported by 
Lear et al. [22]. 

Examinations for ectoparasites were conducted first on the ventral 
surface, after which the host was righted for examination of the dorsal 
surface, before being released. Parasite attachment sites were recorded 
according to general body location: head (including rostrum, spiracles 
and nares), first and second dorsal fins (grouped together), pectoral fins, 
pelvic fins (including male reproductive organs, i.e., claspers), and 
caudal fin (including caudal peduncle). Ectoparasites were recorded as 
occurring on the dorsal or ventral body surface if they were not found on 
the head or on/adjacent to fins. Parasites were removed using forceps 
and immediately preserved in either 100% ethanol or 10% formalin. 
Measurements of water salinity were recorded within the Ashburton 

River and associated tidal creeks using a YSI Professional Plus Multi-
parameter Meter (YSI Inc., Yellow Springs, United States of America) 
(Supplementary Table S1). 

2.2. Morphological study 

Parasite identifications were based solely on morphology, using 
primarily uncleared and unstained wet mounts in absolute ethanol. 
Specimens initially preserved in formalin were later transferred to ab-
solute ethanol using a graded ethanol series: 40, 60, 75 and twice at 
100%, for approximately 1 h per stage for mounting. Select copepod 
specimens were cleared in lactophenol and mounted (unstained) in 
Canada balsam. Monogeneans were treated as described previously (see 
Ingelbrecht et al. [20]). Slide-mounted specimens were examined and 
photographed using an Olympus BX50 compound microscope, with 
Nomarski interference contrast, fitted with an Olympus DP71 digital 
microscope camera and U-CMAD3 adaptor (Olympus Inc., Tokyo, 
Japan). Gnathiid isopods and piscicolid leeches were examined and 
photographed using an Olympus SZX7 stereo microscope with an 
Olympus DF PLAPO auxiliary lens. 

2.3. Data analyses 

Prevalence (proportion of infected hosts), intensity of infection 
(number of parasites per infected host) and parasite abundance 
(equivalent to prevalence × intensity) (mean and range) were calculated 
for each ectoparasite species across all screened P. zijsron and sympatric 
elasmobranchs, using the online tool QPweb (v. 1.0.15) [23]. Bias- 
corrected and accelerated bootstrap 95% confidence intervals (CI) 
were calculated for mean infection intensity. For ectoparasites with 
adequate sample sizes (i.e., present on ≥10 host individuals), aggrega-
tion was investigated in QPweb from variance/mean ratios (s2/m) and 
negative binomial exponent values (k), with aggregation indices calcu-
lated across all screened P. zijsron. Aggregation was not investigated for 
ectoparasites found on sympatric elasmobranchs, because of inadequate 

Fig. 1. Sampling locations for green sawfish, Pristis zijsron Bleeker, 1851, in Western Australia.  
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sample sizes (i.e., present on <10 host individuals). 
For ectoparasites encountered on at least 10 host individuals, site- 

specificity was investigated in QPweb by comparing the number of 
specimens found on or adjacent to infection sites. Bias-corrected and 
accelerated bootstrap 95% CI were calculated for mean parasite abun-
dance for each infection site. No correction was applied to control for 
discrepancy in available surface area between site categories, because 
data for host surface areas were not available. Differences in parasite 
abundance between attachment sites were compared using a bootstrap 
one-way ANOVA test with 2000 bootstrap replications. The relationship 
between infection site usage and parasite intensity was investigated 
using Spearman’s Rank correlation coefficient (r), by comparing the 
number of infection sites occupied by a species with intraspecific in-
tensity, based on 10000 Monte Carlo replications. 

Predictors of parasite abundance were examined using a series of 
models in R (v. 4.2.3; R Foundation for Statistical Computing, Vienna, 
Austria). Because parasite abundances were aggregated among hosts 
(see Results), we compared several distributions to account for over-
dispersion, including negative binomial, zero-inflated negative binomial 
and zero-inflated Poisson. Fixed predictors of abundance incorporated 
into initial models included host stretched total length (TL) and sex, and 
time since substantial fluvial discharge in the Ashburton River, 
measured as the number of days since discharge fell below 10 ML day− 1. 
Discharge information was obtained from the Nanutarra Station [24] 
(situated >150 km upstream of the Ashburton River mouth). Freshwater 
is typically lethal to marine ectoparasites [25–27]. We used time since 
substantial river discharge to the estuary as an indication of exposure to 
freshwater, rather than direct measurements of salinity, because one-off 
salinity measurements are unlikely to accurately reflect recent envi-
ronmental exposure for large juvenile P. zijsron, which are known to be 
transient. Sampling location was not incorporated as a predictor in 
models, because several localities (50%) had few samples (i.e., <10 
screened P. zijsron). Models using all combinations of predictor variables 
and model types were created. The best-fit model from this set was 
chosen through examination of Akaike’s Information Criterion (AIC), 
where the best-fit model was selected as the model with the lowest AIC 
score, or, if the lowest AIC scores were within two AIC units of each 
other, selected as the model with the fewest degrees of freedom (DF). 

3. Results 

3.1. Elasmobranchs 

A total of 76 juvenile P. zijsron (37 females, 39 males) were examined 
for ectoparasites (Table 1). Of these, ectoparasites were detected on 43 
individuals. A further five elasmobranch species were opportunistically 
screened for ectoparasites in the Ashburton River estuary and associated 
tidal creeks: the giant shovelnose ray, Glaucostegus typus (Anonymous 
[Bennett], 1830) (Glaucostegidae) (n = 16), the eyebrow wedgefish, 
Rhynchobatus palpebratus Compagno & Last, 2008 (Rhinobatidae) (n =
4), the graceful shark, Carcharhinus amblyrhynchoides (Valenciennes, 

1839) (Carcharhinidae) (n = 2), the nervous shark, Carcharhinus cautus 
(Whitley, 1945) (Carcharhinidae) (n = 24), and the lemon shark, Neg-
aprion acutidens (Rüppell, 1837) (Carcharhinidae) (n = 6) (Table 2). 

3.2. Parasite taxa 

Five ectoparasitic taxa were detected on P. zijsron: Caligus furcisetifer 
Redkar, Rangnekar & Murti, 1949 (Copepoda: Caligidae), Dermopristis 
pterophila Ingelbrecht, Morgan & Martin, 2022 emend. (Monogenea: 
Microbothriidae), Branchellion plicobranchus Sanjeeva Raj, 1953 and 
Stibarobdella macrothela (Schmarda, 1861) (Hirudinida: Piscicolidae), 
and an unidentified gnathiid encountered as praniza larvae (Isopoda: 
Gnathiidae; referred to as Gnathiidae gen. sp.) (Table 3). Ectoparasites 
were predominantly encountered at low prevalences (i.e., encountered 
on <10 host individuals). Caligus furcisetifer (Fig. 2) and D. pterophila 
(Fig. 3) were the only species observed on >10% of P. zijsron, observed 
on 39% and 32% of P. zijsron, respectively. Leeches and gnathiids were 
consistently scarce, with only two B. plicobranchus (Fig. 4), five 
S. macrothela (Fig. 5), and eight Gnathiidae gen. sp. (Fig. 6) encountered 
during screenings. 

Caligus furcisetifer was also detected on the snout and pectoral fins of 
two R. palpebratus (Table 4). No other ectoparasite species encountered 
on P. zjisron was found on any sympatric elasmobranch species. How-
ever, another copepod species, Perissopus dentatus Steenstrup & Lütken, 
1861 (Pandaridae) (Fig. 7), was found on one C. amblyrhynchoides, eight 
C. cautus and three N. acutidens, and was the only ectoparasite detected 
on these carcharhinids. 

Lastly, egg tracks from an unidentified parasite (likely a nematode) 

Table 1 
Catch data for green sawfish, Pristis zijsron, screened for ectoparasites in Western Australia.  

Site Coordinates n Sex TL (mm) Age class Capture date 

Lat◦ Lon◦ F M  YOY ≥1+

AR − 21.694 114.917 35 17 18 651–3195 23 12 10/2019–10/2022 
BR − 22.321 114.119 3 0 3 804–843 3 0 09/2021 
FM − 21.683 115.056 12 5 7 810–1988 10 2 04/2021–10/2022 
FR − 21.006 116.099 3 0 3 790–2015 1 2 08/2022 
HC − 21.687 115.036 6 3 3 832–1532 5 1 04/2021–10/2022 
HL − 21.676 114.985 17 12 5 789–2195 13 4 10/2020–10/2022 

Abbreviations: AR, Ashburton River estuary; BR, Bay of Rest; FM, Four Mile Creek; FR, Fortescue River; HC, Hooley Creek; HL, Hooley Lagoon/Ashburton Delta; F, 
female; M, male; TL, total length; YOY, young of the year; ≥1+, juveniles that are one year and older. 
Age classes are based on Lear et al. [22]. 

Table 2 
Catch data for elasmobranchs screened for ectoparasites while surveying green 
sawfish, Pristis zijsron, in the Ashburton River estuary and adjacent tidal creeks, 
Western Australia.  

Species n Sex TL (mm) Site Capture date 

F M 

Carcharhinus 
amblyrhynchoides 

2 1 1 1243–1251 AR 10/ 
2020–04/ 
2021 

Carcharhinus cautus 24 17 7 688–1148 AR, FM, 
HC, HL 

10/ 
2020–10/ 
2022 

Glaucostegus typus 16 7 7 432–595 AR, FM, 
HC, HL 

10/ 
2020–04/ 
2021 

Negaprion acutidens 6 2 4 645–1216 AR, FM, 
HC, HL 

10/ 
2020–10/ 
2022 

Rhynchobatus 
palpebratus 

4 3 1 1468–1764 AR 10/ 
2020–10/ 
2021 

Abbreviations: AR, Ashburton River estuary; FM, Four Mile Creek; HC, Hooley 
Creek; HL, Hooley Lagoon/Ashburton Delta; F, female; M, male; TL, total length. 
Host sex data were not recorded for two G. typus. 
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were observed on the snout, adjacent to the gills and on the pectoral fins 
of a single G. typus (597 mm TL) captured in Hooley Lagoon. No 
scrapings were taken of these tracks, nor were any similar tracks 
observed on P. zijsron. 

3.2.1. Caligus furcisetifer 
Caligus furcisetifer is one of few caligids known to parasitise elas-

mobranchs [28–30]. Our identification is consistent with previous re-
ports [29–31] on the basis of the following: body size (4.5–5.0 mm body 
length; n = 5); shape and details of the cephalothorax, rounded, 
approximately 1.1 times longer than wide, with maximum width 
approximately half of the distance from the anterior end, comprising 
approximately 65% of total body length (Fig. 2b), and presence of a 
small, triangular sclerite on the ventral surface that projects distally over 
dentiform process base of the maxillule; details of the genital complex, 
approximately 1.3 times wider than long, with rounded corners; size and 
position of lunules, minute and shifted laterally on the frontal plate 
(Fig. 2c); presence of an accessory process on middle and inner terminal 
spines and reduced apical seta on the terminal exopodal segment of leg 1 
(Fig. 2e); and subequal middle and outer spines on the terminal exo-
podal segment of leg 4 (Fig. 2f). This species has previously been re-
ported from an unidentified Pristis species in Indian coastal waters, from 
the largetooth sawfish, Pristis pristis (Linnaeus, 1758) (formerly 
P. microdon), in northern Australia, from G. typus in Moreton Bay, 
Queensland, from the grey nurse shark, Carcharias taurus Rafinesque, 

Table 3 
Ectoparasites infecting green sawfish, Pristis zijsron, in Western Australia.  

Parasite Prevalence Intensity Infection site Locality 

Caligidae     
Caligus furcisetifer 39 (30) 1–54 (7.5; 

4.7–15.7) 
hd; df; pc; cf; 
ds 

AR; BR; 
FM; FR; HL 

Gnathiidae     
Gnathiidae gen. 
sp. 

5 (4) 1–4 (2; 
1.3–3.3) 

nr FM 

Microbothriidae     
Dermopristis 
pterophila 

32 (24) 1–13 (2.2; 
3.3–6.3) 

hd; df; pc; pv; 
cf; ds; vs 

AR; FM; 
HC; HL 

Piscicolidae     
Branchellion 
plicobranchus 

3 (2) 1 cf (open 
wound); nr 

AR 

Stibarobdella 
macrothela 

3 (2) 1–4 (2.5; 
1.0–2.5) 

hd; nr BR; FR 

Abbreviations: AR, Ashburton River estuary; BR, Bay of Rest; FM, Four Mile 
Creek; FR, Fortescue River; HC, Hooley Creek; HL, Hooley Lagoon/Ashburton 
Delta; cf, caudal fin (including peduncle); df, dorsal fins; ds, dorsal body surface 
not in proximity to fins; hd, head; nr, nares; pc, pectoral fins; pv, pelvic fins 
(including male reproductive organs); vs, ventral body surface not in proximity 
to fins. 
Prevalence is the percentage of hosts infected, followed by the number of hosts 
infected in parentheses, out of 76 screened P. zijsron. Intensity is the range of 
intensity of infection, followed by the mean and 95% confidence intervals in 
parentheses. 

Fig. 2. Female Caligus furcisetifer Redkar, Rangnekar & Murti, 1949 (Copepoda: Caligidae), from the skin of the green sawfish, Pristis zijsron Bleeker, 1851, in Western 
Australia. (a) Habitus, dorsal view. (b) Sternal furca. (c) Left lunule. (d) Left maxillule. (e) Left leg 1 exopod. (f) Left leg 4 exopod. Scale bars: b–f = 50 μm. 
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1810, in Jeffreys Bay and from the bull shark, Carcharhinus leucas 
(Valenciennes, 1839), in Kwazulu-Natal, South Africa [29,30,32]. Cal-
igus furcisetifer was found on P. zijsron at all sampling locations except for 
Hooley Creek (Table 3) and on R. palpebratus in the Ashburton River 
estuary, which are the first records of C. furcisetifer occuring on these 
host species. These records extend the geographical range of C. furcise-
tifer south in the eastern Indian Ocean to the Exmouth Gulf, Western 
Australia. 

3.2.2. Dermopristis pterophila 
The morphology of the microbothriids recovered here is consistent 

with those of Dermopristis pterophila, which we justified previously in 
Ingelbrecht et al. [20]. Dermopristis pterophila seemingly has a narrow 
geographic range and, like its congeners, is believed to be host-specific, 
known only from P. zijsron in the Ashburton River estuary and adjacent 
tidal creeks [20,33,34]. 

3.2.3. Branchellion plicobranchus & Stibarobdella macrothela 
Species of Branchellion Savigny, 1822, are smooth, non-tuburculate 

leeches, with three species known from Australian waters: Branchellion 
australis Legih-Sharpe, 1916, which is known from southern Australia 
and from Shark Bay, Western Australia (over 400 km southwest of 
Onslow); Branchellion lineare Baird, 1869, known from King Sound near 
Derby, Western Australia; and B. plicobranchus, known from eastern 
Australia, including from a “shovelnose” in Moreton Bay, Queensland 
(likely G. typus) [21,35]. Our specimens, which were found only on 
P. zijsron in the Ashburton River estuary (Table 3), are consistent with B. 
plicobranchus, based on the 33 pairs of leaf-like branchiae (Fig. 4a), 
absence of eyespots on the oral sucker, and absence of an obvious 
bilobed hump on the ventral surface of segment VII [36]. 

Species of Stibarobdella Leigh-Sharpe, 1925, are large, tuburculate 
leeches that are known only from elasmobranchs, including P. zijsron in 
the Embley River, Queensland [21,37,38]. Our specimens, which were 
found only on P. zijsron in the Bay of Rest and Fortescue River, are 
consistent with S. macrothela (previously Pontobdella macrothela), based 

Fig. 3. Dermopristis pterophila Ingelbrecht, Morgan & Martin, 2022 (Monogenea: Microbothriidae), from the skin of the green sawfish, Pristis zijsron Bleeker, 1851, in 
the Ashburton River, Western Australia. (a) Habitus, ventral view. (b) Simple haptor. (c) Spermatophore capsules. Scale bars: a = 500 μm; b, c = 100 μm. 

Fig. 4. Branchellion plicobranchus Sanjeeva Raj, 1953 (Hirudinida: Piscicoli-
dae), from the skin of the green sawfish, Pristis zijsron Bleeker, 1851, in the 
Ashburton River, Western Australia. (a) Habitus, ventral view, showing lateral 
branchiae. (b) Oral sucker, dorsal view. Scale bars: a = 2 mm; b = 500 μm. Fig. 5. Stibarobdella macrothela (Schmarda, 1861) (Hirudinida: Piscicolidae) 

from the skin of the green sawfish, Pristis zijsron Bleeker, 1851, in the Fortescue 
River, Western Australia. (a) Habitus, lateral view. (b) Oral sucker showing 
ocular patches and caudal sucker. (c) Contracted oral sucker, lateral view. Scale 
bars: a = 2 mm; b, c = 500 μm. 
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on the large, wart-like tubercles present both dorsally and ventrally on 
each annulus of each trachelosome and urosome segment (Fig. 5a), two 
large, trumpet-shaped ocular patches on the oral sucker (Fig. 5b), and a 
large caudal sucker [21,39]. 

3.2.4. Gnathiidae gen. sp. 
Although over 100 species of gnathiids are known from Australian 

waters [40,41], including from numerous elasmobranchs in northern 
Australia [41,42], this is the first record of a gnathiid parasitising a 
pristid, worldwide. Gnathiid taxonomy is typically based on adult males 
[43], and therefore, we have not made efforts to determine the specific 
identity of pranizae recovered here. Our specimens were found only on 
P. zijsron in Four Mile Creek and are consistent with gnathiid 
morphology on the basis of the following: body size (4.0–4.3 mm body 
length; n = 4); cephalosome with well-developed, ovoid compound eyes 
on the lateral margins, straight medio-anterior margins possessing 
concave lateral excavations, posterior cephalosome margin wider than 
anterior margin, presenting few setae on the posterior dorsal region, first 
antenna being shorter than second antenna and antenna 1 having three 
pedunculate articles; peraeon being larger than cephalosome, with 
perionite 1 fused with cephalon, and with shallow, convex anterior and 
posterior borders; and triangular-shaped pleotelson, with straight lateral 
marins, longer than it is wide, presence of two simple setae on the dorsal 
surface, and distal tip ending in pair of setae (Fig. 6) [44]. 

3.2.5. Perissopus dentatus 
Perissopus dentatus has perhaps the broadest host-range of any pan-

darid, known from over 30 elasmobranchs, mostly carcharhinids 

[45,46]. Our identification of P. dentatus, based on the morphology of 
female specimens, is consistent with previous reports on the basis of the 
following: body size (4.1–4.5 mm body length; n = 3); anteriorly narrow 
cephalothorax, widest at posterior margins; dorsal plates of thoracic 
segments rounded, with crenate posterior margins; dorsal plates of 
second thoracic segment oblique; dorsal plates of third thoracic segment 
slightly overlapping along the mid-line; presence of adhesion pads, all 
legs lacking plumose setae; genital segment larger than cephalothorax, 
with pair of postero-lateral processes; and a pair of posterior lobes with 
crenate hind margins [45,47]. This species has previously been reported 
from Australian waters in Cleveland Bay, Queensland, from the creek 
whaler, Carcharhinus fitzroyensis (Whitley, 1943), the spot-tail shark, 
Carcharhinus sorrah (Valenciennes, 1839), the whitecheek shark, 
Carcharhinus dussumieri (Valenciennes, 1839), and the scalloped 
hammerhead, Sphyrna lewini (Griffith & Smith, 1834) [48]. To our 
knowledge, this is the first record of P. dentatus parasitising 
C. amblyrhynchoides, C. cautus and N. acutidens, and the first record from 
Western Australia. 

3.3. Aggregation, prevalence and intensity of Caligus furcisetifer and 
Dermopristis pterophila 

Caligus furcisetifer and D. pterophila were both highly aggregated on 
P. zijsron (s2/m = 27.96, k = 0.15; s2/m = 6.05, k = 0.18, respectively). 
Akaike’s Information Criterion values indicated a zero-inflated negative 
binomial model type was the best-fit for C. furcisetifer (AIC = 186.96, DF 

Fig. 6. Gnathiidae gen. sp. from the nares of the green sawfish, Pristis zijsron 
Bleeker, 1851, in the Ashburton River, Western Australia; lateral (top) and 
ventral (bottom) views. Scale bar = 1 mm. 

Table 4 
Ectoparasites infecting elasmobranchs caught as bycatch while surveying green sawfish, Pristis zijsron, in the Ashburton River estuary and adjacent tidal creeks, 
Western Australia.  

Host n Parasite Prevalence Intensity Infection site Locality 

Carcharhinus amblyrhynchoides 2 Perissopus dentatus 50 (1) 2 cf AR 
Carcharhinus cautus 24 Perissopus dentatus 33 (8) 1–4 (2.1; 1.4–2.8) af; cf; cls; df; pc AR; FM; HC; HL 
Negaprion acutidens 6 Perissopus dentatus 50 (3) 1–2 (1.7; 1.0–2.0) cf; df AR; FM; HL 
Rhynchobatus palpebratus 4 Caligus furcisetifer 50 (2) 1–7 (4; 1.0–4.0) pc; sn AR 

Abbreviations: AR, Ashburton River estuary; FM, Four Mile Creek; HC, Hooley Creek; HL, Hooley Lagoon/Ashburton Delta; af, anal fin; cf, caudal fin; cls, claspers; df, 
dorsal fins; pc, pectoral fins; sn, snout. 
Prevalence is the percentage of hosts infected, followed by the number of hosts infected in parentheses. Intensity is the range of intensity of infection, followed by the 
mean and 95% confidence intervals in parentheses. 

Fig. 7. Perissopus dentatus Steenstrup & Lütken, 1861 (Copepoda: Pandaridae), 
from the skin of the nervous shark, Carcharhinus cautus (Whitley, 1945), in the 
Ashburton River, Western Australia; habitus, dorsal view. Scale bar = 1 mm. 
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= 9), whereas a zero-inflated Poisson model type was the best-fit for D. 
pterophila (AIC = 171.05, DF = 8) (Supplementary Table S2). Zero- 
inflated models assume that excess zeros are generated by a separate 
process from count data and are therefore modelled separately; in this 
case, the first modelled distribution relates to the odds of infection for a 
host (i.e. whether it is infected or not), and the second relates to the 
intensity of infection. The best-fit model for C. furcisetifer included host 
TL, host sex, and days since water discharge fell below 10 ML day− 1 as 
predictors of parasite presence (AIC = 187.37, DF = 8), with odds of 
infection increasing with host TL and days since discharge fell below 10 
ML day− 1, and females more likely to be infected than males (Supple-
mentary Table S3). Host TL and sex were the best predictors of infection 
intensity (AIC = 187.37, DF = 8), which increased with TL, and female 
P. zijsron were more heavily infected than males, especially females 
>2500 mm TL (Fig. 8) (Supplementary Table S4). 

For D. pterophila, host TL and days since water discharge fell below 
10 ML day− 1 were maintained as predictors of parasite presence in the 
best-fit model (AIC = 172.87, DF = 6) (Supplementary Table S3), with 
the odds of infection increasing with host TL and with days since 
discharge fell below 10 ML day− 1. The best-fit predictors of D. pterophila 
infection intensity were host TL and sex (AIC = 172.87, DF = 6) (Sup-
plementary Table S4). Intensity increased with P. zijsron TL and, in 

contrast to C. furcisetifer, male P. zijsron were more heavily infected than 
females, although the effect was not as compelling as for C. furcisetifer, 
and pertained mostly to hosts >2500 mm TL (Fig. 8). 

3.4. Site specificity 

There were significant differences in the mean number of both C. 
furcisetifer (P = 0.047) and D. pterophila (P = 0.001) between infection 
sites on P. zijsron. Caligus furcisetifer were found predominantly on the 
head and rostrum (mean = 7.73 C. furcisetifer per infected P. zijsron; 95% 
CI = 4.27–15.20), with small numbers of copepods found on, or adjacent 
to, the dorsal fins (mean = 0.23; 95% CI = 0.03–0.83), pelvic fins (mean 
= 0.07; 95% CI = 0.01–0.20), caudal fin and peduncle (mean = 0.20; 
95% CI = 0.03–0.63), and on the general dorsal body surface (mean =
0.40; 95% CI = 0.03–1.46). No copepods were encountered on, or 
adjacent to, the pectoral fins, nor on the general ventral body surface 
(Fig. 9). Number of infection sites used by C. furcisetifer increased with 
copepod infection intensity (r = 0.54, P <0.0001), with only one site 
(head and rostrum) used when nine or fewer copepods were present and 
up to three sites used at an intensity of 10 copepods. 

Dermopristis pterophila were found almost exclusively posterior to the 
gills of their host, with only a single specimen found anterior to 

Fig. 8. Abundance (data points) and model-predicted intensity (curve) of (a) Caligus furcisetifer Redkar, Rangnekar & Murti, 1949, and (b) Dermopristis pterophila 
Ingelbrecht, Morgan & Martin, 2022, on the green sawfish, Pristis zijsron Bleeker, 1851 (n = 70), in the Ashburton River and adjacent tidal creeks, Western Australia. 
Abundance is displayed relative to host total length (mm), sex, and number of days since river discharge fell below 10 ML day− 1. 
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respiritory organs. The number of D. pterophila infections was greatest 
on, or immediately adjacent to, the pelvic fins (mean = 1.79 D. pterophila 
per infected P. zijsron; 95% CI = 1.11–2.96), with moderate numbers of 
worms recorded on, or adjacent to, the pectoral fins (mean = 1.33; 95% 
CI = 0.75–2.12) and dorsal fins (mean = 0.75; 95% CI = 0.38–1.21), and 
few on the head/rostrum (mean = 0.04; 95% CI = 0.01–0.13), caudal fin 
and peduncle (mean = 0.08; 95% CI = 0.01–0.21), or elsewhere on 
either the dorsal (mean = 0.42; 95% CI = 0.08–1.00) or ventral (mean =
0.17; 95% CI = 0.01–0.38) body surfaces (Fig. 9). Number of infection 
sites used by D. pterophila increased with worm infection intensity (r =
0.77, P <0.0001), with sites other than the pelvic fins used at an in-
tensity of three worms and a maximum of five sites used at an intensity 
of 12 worms. 

Gnathiidae gen. sp., Branchellion plicobranchus and S. macrothela 
were encountered too infrequently for statistical analyses of site pref-
erence, but Gnathiidae gen. sp. occurred exclusively in host nares, the 
two B. plicobranchus were found in a naris and on an open wound on the 
caudal peduncle, and S. macrothela were found exclusively in host nares 
or elsewhere on the head. 

4. Discussion 

Chondrichthyan metazoan parasites are an important component of 
biodiversity, and may inform several aspects of their host’s biology, 
geographical origins, phylogeny, and migrations [49–51]. This research 
has increased the number of species reported for P. zijsron by three 
metazoan taxa, bringing the known parasite fauna for this host to 12 
metazoan taxa. 

4.1. Aggregation and patterns of ectoparasite presence and intensity 

Generally, host individuals are infected with few or no parasites of a 
given species, whereas a small proportion of individuals are infected 
with many parasites [52–54]. The aggregated distribution of C. 

furcisetifer and D. pterophila found here (k <1) is typical among parasite 
populations [54–56] and could be the consequence of a number of 
factors, such as heterogeneity in individual host exposure to infection, 
host susceptibility to infection, and parasite choice of host [56–58]. 
However, to determine the relative importance of these factors, addi-
tional work is required, such as relating host condition and immuno-
competence to parasite abundance [59]. 

In our analyses, the best-fit models demonstrated that larger 
P. zijsron are more likely to be infected and carry a greater intensity of 
infection for both C. furcisetifer and D. pterophila. Correlations between 
host size and parasite intensity are common and intuitive; larger, older 
fish have had more time to accumulate parasites and offer greater sur-
face area for parasites to colonise [60–62]. This pattern has also been 
reported for numerous other marine fishes [60,63,64], including for the 
microbothriid Dermophthirioides pristidis Cheung & Nigrelli, 1983, on the 
smalltooth sawfish, Pristis pectinata Latham, 1974, off the coast of 
Florida, USA [65]. Furthermore, larger juveniles of P. zijsron are known 
to expand their home ranges [14], likely increasing their chances of 
accruing more infections than smaller individuals [66]. Although 
smaller P. zijsron were less frequently infected and carried less parasite 
loads, even some of the smallest juveniles surveyed were infected (≥651 
mm TL; estimated as being neonates due to the presence of a fresh yolk 
sac scar). It is therefore plausible that newborn P. zijsron might occa-
sionally acquire infections from their mother during birth, although we 
cannot discount acquisition from associating with older juveniles. 

For C. furcisetifer and D. pterophila, infection prevalence and intensity 
increased with time since substantial fluvial discharge. Freshwater 
exposure is lethal to caligids and monogeneans, and in mariculture, 
freshwater bathing is a highly effective treatment for marine ectopara-
sites [25–27,67–70]. Furthermore, salinity in the Ashburton River es-
tuary is variable and fluvial discharge is non-existent throughout most of 
the year, occuring only after precipitation, when salinity declines briefly 
(see Supplementary Table S1) [71]. Pristis zijsron appear to temporarily 
leave the Ashburton River estuary for nearby, more saline environments 

Fig. 9. (a) Mean abundance with 95% confidence intervals of Caligus furcisetifer Redkar, Rangnekar & Murti, 1949, and Dermopristis pterophila Ingelbrecht, Morgan & 
Martin, 2022, on or adjacent to one of seven sites of infection on the green sawfish, Pristis zijsron Bleeker, 1851, infected with at least one C. furcisetifer (n = 30 
P. zijsron) and/or D. pterophila (n = 24 P. zijsron) in Western Australia. (b) Gross morphology of P. zijsron with combined total numbers of individual C. furcisetifer or 
D. pterophila, per infection site, and the site prevalence (%) of each taxon calculated out of the total number of hosts infected with at least one C. furcisetifer or D. 
pterophila. Caligus furcisetifer was not encountered on the pectoral fins or isolated on the ventral surface. Head includes body surface anterior to the gills; caudal fin 
includes caudal peduncle; pelvic fins include male reproductive organs (claspers). Illustration by K.O. Lear. 
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following periods of significant precipitation [14], which may afford 
parasites some protection against freshwater exposure. Nevertheless, 
our models suggest that the decrease in salinity caused by fluvial 
discharge events poses a considerable abiotic challenge for C. furcisetifer 
and D. pterophila in the Ashburton River estuary, leading to diminished 
populations of these parasites. 

The apparent sensitivity of C. furcisetifer and D. pterophila to changes 
in salinity highlights their potential as biological indicators. Ectopara-
sites, particularly monogeneans, can be useful biological indicators 
because they are typically in direct contact with the environment and 
susceptible to environmental stressors [72–76], can often be detected 
and removed non-invasively [77–79], and are highly host-specific 
[80–83]. Based on criteria proposed by Nachev & Sures [84] and 
Sures [85], D. pterophila, although having a narrow biogeographical 
range, appears to meet at least some of the conditions for being a suit-
able bioindicator: it is large enough to provide tissue for analyses and, 
like the other parasite species encountered in this study, can be easily 
observed in situ (Supplementary Fig. S1–S4), it is sessile and specific to 
P. zijsron, and it is sufficiently abundant. The health of coastal ecosys-
tems in the Pilbara region is not well understood, and an effective bio-
indicator in this area could help with monitoring and mitigating 
potential threats for this important sawfish population. Additional work 
is required to characterise the physiology of D. pterophila, determine its 
distribution beyond the study area, and ascertain its susceptibility to 
particular pollutants [84,85]. 

4.2. Host-sex differences in ectoparasite infections 

Intriguingly, infection intensities of C. furcisetifer and D. pterophila 
varied with host sex, and in opposing directions; female P. zijsron were 
host to more C. furcisetifer, whereas males were host to more D. pter-
ophila. For both parasites, the discrepancy between host sexes only be-
comes apparent for juveniles over 2000 mm TL, and the opposing nature 
of this pattern is not easily explained. Host sex-related differences in 
parasite load can sometimes be explained by differences in host 
morphology, movement patterns, or behaviour [66,86], especially for 
parasites like copepods and monogeneans, which have direct trans-
mission [80,87,88]. Some sexual dimorphism is apparent in Pristis zijs-
ron; Lear et al. [22] found that the relative rostrum length of female 
P. zijsron was greater than males and Faria [89] reported that the height 
of the first dorsal fin on male P. zijsron was greater than females, and that 
the claspers on males become more elongated with growth and matu-
ration, presenting additional body surface area for colonisation. How-
ever, additional work is required to determine whether these 
morphological differences could result in differences in intensity of 
infection between host sexes, and these results are based on few P. zijsron 
over 2000 mm TL. 

4.3. Site specificity 

Ectoparasites are typically specialised for attachment in particular 
areas of the host’s body [50,90]. Distinct site-specificity is apparent for 
C. furcisetifer and D. pterophila on P. zijsron; 90% of C. furcisetifer were 
found on the head and rostrum, whereas D. pterophila were found almost 
exclusively posterior to the gills. Our evaluation of site-specificity 
revealed that sites with greater available surface area did not neces-
sarily recruit greater numbers of parasites, as the pelvic fins are among 
the smallest sites. Intriguingly, the site-specificity for C. furcisetifer on 
the head of P. zijsron is consistent with observations by Morgan et al. 
[30] for this copepod on P. pristis, whereas the site-specificity for D. 
pterophila is different than for Dermopristis paradoxa Kearn, Whittington 
& Evans-Gowing, 2010 (emend.), on P. pristis, which instead attaches to 
the skin around the mouth [33]. This discrepant site-specificity between 
D. pterophila and D. paradoxa suggests differences in site preference 
between these species, or perhaps the role of an unexplained selective 
pressure, likely related to differences in morphology, behaviour or 

ecology between P. zijsron and P. pristis. Site-specificity is common 
among ectoparasites [90], with segregation between coexisting ecto-
parasites often interpreted as an evolutionary consequence of interspe-
cific competition, leading to ecological character displacement [90–94]. 
By dividing the host body surface into a number of discrete infection 
sites, our analysis suggests that the distributions of C. furcisetifer and D. 
pterophila on P. zijsron are influenced by intraspecific competition, due 
to the number of infection sites used by each species increasing with 
intraspecific intensity of infection. 

Segregation between coexisting ectoparasite species may also arise 
through host and/or predator mediated interactions, such as grooming 
or cleaning [90,95]. Specificity for the head, rostrum and fins conceiv-
ably provides some protection against predation [96]. For example, 
parasitic copepods (including species of Caligus) form a large portion of 
the diet of echeneids [97–100], which were occasionally observed 
accompanying P. zijsron (Supplementary Fig. S5) in the study area, 
including sharksuckers, Echeneis naucrates Linnaeus, 1758, and remora, 
Remora remora (Linnaeus, 1758). Attempting to prey upon C. furcisetifer 
on the tooth-lined rostrum of a sawfish would not be without risk, as 
sawfishes use their rostrum to detect and capture prey [101]. 

The narrow site-specificity of D. pterophila on P. zijsron is perhaps 
most likely related to mating strategies [102,103]. Monogeneans are 
hermaphroditic, although for many species cross-fertilization is likely 
obligatory, and is thought to occur through the exchanging of sper-
matophore capsules for species of Dermopristis [34,104]. Rohde 
[102,103,105] provided several points of evidence for the ‘mating hy-
pothesis’ as the cause of niche restriction in marine parasites, most of 
which are directly applicable to ectoparasites of P. zijsron, particularly 
D. pterophila, such as host-specificity, narrow habitat range (having not 
been found outside of the Pilbara region), and these flatworms being 
sessile on the host [20]. 

4.4. Sawfish ectoparasites on sympatric elasmobranchs 

Metazoan parasites of elasmobranchs are poorly characterised, with 
hundreds of elasmobranch species yet to be thoroughly examined [50]. 
There are no previous reports of parasites infecting R. palpebratus, 
although this species has only recently been recognised as distinct from 
other Rhynchobatus species [106], from which several parasite taxa have 
been recorded [107,108]. In contrast, ectoparasites of G. typus have 
received moderate attention [29,34,109], although never in Western 
Australia. The occurrence of C. furcisetifer on R. palpebratus is not sur-
prising, as this parasite has a relatively low host-specificity. However, it 
is intriguing that no C. furcisetifer were encountered on G. typus, a known 
host from eastern Australian waters [29]. Most G. typus surveyed in the 
Ashburton River and adjacent tidal creeks were small juveniles 
(432–669 mm) estimated to be YOY, based on age classes reported by 
White et al. [110], and have therefore had less time to accumulate 
parasites than mature G. typus, although we did find C. furcisetifer on the 
smallest sympatric P. zijsron (651 mm TL). Lastly, although S. macrothela 
has been found on numerous species of requiem sharks in Australian 
waters [21], it is unsurprising that this species was not found on 
C. amblyrhynchoides, C. cautus or N. acutidens, considering the low 
prevalence of leeches found on P. zijsron in the Ashburton River estuary 
(0–2%). 

4.5. Conclusions 

This study provides the foundation for numerous avenues of future 
study, including patterns in the distribution of parasite diversity, rates of 
speciation, diversification, and the local threat of extinction for several 
parasite taxa. Because the gene flow of P. zijsron in Australia is restricted 
at large spatial scales, with significant population structuring between 
assemblages [111], localised extinctions of P. zijsron could lead to the 
extinction of host-specific parasites such as D. pterophila, which is only 
known from P. zijsron in the study area. This is important to consider, not 
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just because of the potential loss of biodiversity, but because parasite 
species may serve as bioindicators of environmental quality and play key 
roles in the maintenance of ecosystem function. 
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