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A nitrogen (N) balance, calculated as the difference between N inputs and grain-N 

removal, provides an estimate of the potential N losses. We used N balance with other N-

related metrics (partial factor productivity for N inputs, and yield-scaled N balance), to 

benchmark maize yields in relation with N input use in the US Corn Belt. We first used 

experimental data on grain-N concentration (GNC) to assess variation in this parameter 

due to biophysical and management factors. Subsequently, we used N balance and N-

related metrics to benchmark yields in relation with N inputs in irrigated and rainfed 

fields in Nebraska using a large database (9,280 field-years). Similarly, we used this 

database to determine data requirements for robust N balance estimation for a given 

climate-soil domain and investigated the persistence of N balance. Finally, we used a 

database (311 field-years) with detailed management practices to identify drivers of N 

balance variation among fields. Analysis of experimental data indicated average GNC of 

1.15%. Analysis of large database showed that irrigated exhibited smaller yield-scaled N 

balance than rainfed fields. There were fields that achieved high yields with small 

positive N balance, indicating that productivity and environmental goals can be achieved 

simultaneously. Important number of fields exhibited persistent large N balance over 

years which was associated with higher N inputs than other fields. There is substantial 

room to improve yield and/or reduce N balance through agronomic management like N 

fertilizer reduction and rotation with soybean. Important drivers of variation in N balance 



were water regime, sowing date, soil organic matter, timing and split of N fertilizer 

application. Producers risk perception plays an important role at explaining N balance 

variation across fields. A robust N balance can be estimated with at least four (irrigated) 

and six (rainfed) years and 100 fields per year per climate-soil domain, which, together 

with an existing spatial framework, can serve as basis to develop strategy to collect field-

level data to monitor N balance for the entire US Corn Belt region, which, in turn, can 

help prioritize policy and research investments to ensure productivity with small N losses 

from agricultural production. 
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CHAPTER 1. CONCEPTUAL FRAMEWORK TO BENCHMARK ON-FARM 

MAIZE YIELD AND NITROGEN BALANCE 

 

I. Crop nitrogen use 

 

Nitrogen (N) is an essential plant nutrient. Typically, a cereal crop has a 

requirement of 22 kg N uptake ha-1 to produce one metric ton of grain. Nitrogen can 

easily become limiting in crop production since only a small proportion of the N present 

in soils is readily available for crop uptake (Godwin and Singh, 1998). Since N 

mineralization from soil organic matter is typically not sufficient to fully meet crop N 

requirement, producers apply N in the form of synthetic fertilizer or animal manure. The 

use of N fertilizer and/or manure is one of the pillar to produce high crop yields and meet 

the increased food demand on existing cropland (Cassman et al., 2002, Tilman et al., 

2002). It has been estimated that, by year 2050, N fertilization would annually add 236 × 

106 MT of N to terrestrial ecosystems (Tilman et al., 2001).  

Typically, cereal crops use 50% or less of the applied N for yield production 

(‘recovery efficiency’) (Craswell and Godwin, 1984, Krupnik et al., 2004; Lassaletta et 

al., 2014). The portion of the N that is not absorbed by the crop or immobilized to build 

soil organic matter (SOM) may be lost to the atmosphere through volatilization, 

denitrification, leaching, and/or run-off. Environmental impact associated with N losses 

include eutrophication of coastal seas, loss of biodiversity, groundwater pollution with 

nitrate and nitrite, increases in greenhouse gas emissions (N2O), and acidification of soils 
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and surface water bodies (Howarth et al., 1996; Holland et al., 1999). Given the critical 

role of N in sustaining high crop productivity, together with the high potential 

environmental impact associated with N losses (hereafter referred to as ‘N footprint’), a 

significant improvement in N management is needed so that productivity and 

environmental goals can be achieve simultaneously (Tilman et al., 2001). Ultimately, 

achieving synchrony between N supply and crop demand so that there is no excess (i.e., 

N surplus) or deficiency (i.e., N deficit) is the key to sustain high yields and producer 

profit without environmental degradation. 

 

II. Nitrogen balance as an indicator of potential N losses 

 

The magnitude of N losses in producers’ fields can be considered as an indicator 

of the potential N footprint. Current approaches to quantify N losses from agricultural 

systems ranged from direct measurement, typically performed in experimental plots or 

field trials (e.g., Harmel et al., 2008; Venterea et al., 2012), to in-silico modeling studies 

at regional and global levels (e.g., Van Drecht et al., 2003; Howarth et al., 2006). 

However, there were issues with estimation of N losses using direct environmental 

monitoring and modeling. On the one hand, estimating N losses is complex because of 

the multitude of factors that can influence N losses in the environment and it is 

expensive, time consuming, and difficult to implement across thousands of producer 

fields (Connor et al., 2011; Venterea et al., 2011; Linquist et al., 2012a, b; Robertson, 
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2014). For example, even proxies to N losses, such as the agronomic N use efficiency or 

N recovery efficiency, require N-omission plots to account for temporal and spatial 

variation in indigenous soil N supply (Cassman et al.. 1996, 2002; Wortmann et al., 2011; 

van Groeningen et al., 2010). On the other hand, while process-based models to estimate 

N losses are promising, there is general consensus that more efforts are needed to 

improve their predictions (Venterea and Rolston, 2000; Kariyapperuma et al., 2011; Del 

Grosso et al., 2012; Roelsma and Hendriks, 2014). These models also require a large 

number of field-level parameters, which are usually not available in producer fields. 

Hence, there is a need of a simple but robust, cost-effective metric that only requires 

small number of parameters that are readily available at field-level. 

Sources of N inputs in agricultural systems include synthetic fertilizer, manure, 

biological N fixation, soil organic matter (SOM) mineralization, dry and wet atmospheric 

deposition, nitrate-N in shallow water tables, and, in the case of irrigated agriculture, N-

NO3
- in the irrigation water (Skaggs et al., 1995; Connor et al., 2011). N outputs include 

SOM immobilization, grain N removal, and N losses. As detailed in Chapter 3, 

quantification of all sources of N inputs for a large population of producer fields is not 

possible as it would require expensive and laborious measurements. Hence, in our study, 

we used a partial N balance (simplified here as ‘N balance’) to estimate the potential N 

losses. The N balance is calculated as the difference between N inputs (from synthetic 

fertilizer, manure, and groundwater irrigation) and grain N removal. In other words, we 

focused on those N inputs that account for the largest fraction of total N inputs and that 
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are readily available from producer fields. In addition, we assumed N released from SOM 

mineralization (which includes the inorganic soil N at sowing) to be similar to soil N 

immobilization, which is a reasonable assumption for soils in which SOM is near steady 

state as it is the case in the US Corn Belt (Baker and Griffis, 2005; Verma et al., 2005; 

Blanco-Canqui and Lal, 2008). The magnitude of the N balance can be taken as an 

indicator of potential N losses as reported by a number of previous studies (Broadbent 

and Carlton, 1978, van Groenigen et al, 2010, Venterea et al., 2011, Shcherbak et al., 

2014, Pittelkow et al., 2014, Sanz-Cobena et al., 2014, Xu et al., 2016). A negative N 

balance indicates that crop N removal exceeds the N inputs; hence, if this trend persists 

over time, there will be progressive soil mining and declining crop productivity. In 

contrast, a positive N balance indicates that N inputs exceed crop N removal, leading to 

high potential N losses. Ideally, a near-zero N balance reduces the potential N losses, 

while maximizing yield and maintaining soil quality over time.  

Previous attempts to use the N balance approach to diagnose current use of N 

fertilizer to produce grain in agricultural systems have been limited due to lack of 

publicly available field-level data on N inputs and outputs (yield). Due to this limitation, 

studies that aimed to benchmark yield and N input use have relied on N fertilizer data at 

coarser spatial aggregation (e.g., county, state, and country) such as the National 

Agricultural Statistics Service (NASS, https://quickstats.nass.usda.gov/) and FAO 

database, http://www.fao.org/faostat/en/#data/) (Khanal et al., 2014; Lassaletta et al., 

2014; Basso et al., 2019). For example, in the US, the available data on N fertilizer is 

available for a single average value per state and is reported every 5 years by the USDA-

https://quickstats.nass.usda.gov/
http://www.fao.org/faostat/en/#data/
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Economic Research Service (https://www.ers.usda.gov/data-products/fertilizer-use-and-

price/). Due to the lack of more detailed data, some studies have attempted to generate 

predictions of N fertilizer for small regions or even individual fields following tortuous 

methods (e.g., fertilizer sales records, university-based N recommendations), but such 

predictions have not been validated on their ability to reproduce actual N fertilizer rates 

in producer fields (Khanal et al., 2014; Basso et al., 2019).  

 

III. Conceptual framework to benchmark yield and N balance 

 

Benchmarking crop yields against external input use helps to elucidate possible 

opportunities to increase producer profit while using the same or less amount of input. 

The aim of benchmarking is to compare production, economic or environmental targets 

with the performance of the sampled farms to identify performance, devise improved 

processes, identify priorities and implement improvement programs based on the results 

(Camp, 1989; Waterfield, 2002). Benchmarking of crop yields, farm inputs and economic 

factors can provide a rational basis for on-farm decision making and practice change 

(Franks and Collis, 2003). Previous studies have used this benchmarking approach in 

assessing productivity and identifying opportunities for improvements (French and 

Schultz, 1984; Sadras and Angus, 2006; Passioura, 2006; Grassini et al., 2009, 2011; 

Hochman et al., 2014; Gibson et al., 2019). Along these lines, the N balance framework 

https://www.ers.usda.gov/data-products/fertilizer-use-and-price/
https://www.ers.usda.gov/data-products/fertilizer-use-and-price/
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/economic-factors
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/economic-factors
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can help producers benchmark their yield and N balance and compare them against other 

producers within their region and find means for further improvements. 

The Corn Belt is located in the US North Central region, accounting for ca. 30% 

of global maize production. Large variation in N balance is typical among producer fields 

(Grassini and Cassman, 2012). In principle, this may suggest that there is room to 

improve N balance, provided that the underlying biophysical and mananagement factors 

explaining the variation in N balance can be identified. Following Gibson et al. (2019), 

our study used a benchmarking framework for N balance to assess possible ways to 

increase yield and/or reduce N balance in producer fields (Figure 1-1). In other words, 

our study aimed to identify opportunities to achieve high yields and exhibit small N 

balance simultenously (category A in Figure 1-1). We note that the goal is not to achieve 

zero N balance because that would lead to mining of soil organic matter over the long 

term. Instead, the aim is to keep the N balance above a level at which there is sufficient N 

to convert crop residues into soil organic matter while avoiding high N losses due to 

excessive N input application.  

 

IV. Research goals 

 

The main goal of the present study was to assess performance of maize systems in 

US Corn Belt in relation with use of N fertilizer to produce high yields and identify 

opportunities for improvement. In the present study, we overcome some of the limitations 

from previous studies aiming to assess N balance in agro-ecosystems by using a (i) large 
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database including field-level data on yield and N inputs collected across multiple field-

years, (ii) a simple, yet conceptually robust, N balance approach to estimate potential N 

losses, and (iii) a spatial framework to define cohort of fields located within similar 

climate-soil domains and upscale results from field to regional level (technology 

extrapolation domain [TEDs]; Rattalino Edreira et al., 2018). Similarly, a better 

assessment of N balance required robust estimation of grain N removal which, in turn, is 

calculated based on grain yield and grain N concentration (GNC). While maize producers 

usually know their grain yield, they rarely measure GNC. In this regard, this study 

assessed variation in GNC as a result of climate, soil, and management practices using 

experimental data compiled from experiments conducted across the US North Central 

region to determine the degree to which grain N removal is sensitive due to variation in 

GNC. 

This study initially evaluated the variation in grain N removal due to variation in 

GNC and aimed to identify factors influencing this variation to have better GNC estimate 

at field level (Chapter 2). Then, the N balance framework was used in bechmarking yield 

against N input level using a large producer database containing 9,280 field-year 

observations (Chapter 3). Subsequently, the same large database was used to quantify 

data requirements for reliable estimation of N balance for a given climate-soil domain 

(Chapter 4). Lastly, a smaller producer database (that contain more robust data on 

biophysical and management practices in each field (total of 311 field-years) was used to 

identify manageable factors that can potentially improve yield and/or reduce N balance 
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(Chapter 5). Major findings were summarized and dicussed in a broader context, 

highlighting future research priorities (Chapter 6). 

 

The specific objectives of this study were: 

 to identify major factors influencing GNC and develop a predictive model for  

GNC estimation at field-level (Chapter 2); 

 to evaluate the current spatio-temporal variation in on-farm N balance  

(Chapters 3, 4); 

 to develop a framework to diagnose on-farm yield and N balance (Chapter 3); 

 to identify the number of years and fields per year that are needed for reliable  

N balance estimation and assess the persistence in N balance in individual fields   

 over time (Chapter 4); 

 to identify major soil and agronomic management factors influencing variation in 

N balance in producer fields (Chapter 5). 
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Figure 1-1. Conceptual diagram showing relative yield (RY; ratio of producer yield to 

simulated yield potential) versus nitrogen (N) balance (difference between producer N 

inputs (from fertilizer and applied N irrigation water] and grain N removal). Four 

categories are shown: (A) high RY, small N balance, (B) low RY and small N balance, 

(C) high RY and large N balance, and (D) low RY, and large N balance. Red solid arrows 

delineate categories and dashed blue arrows show possible trajectories to increase yield, 

reduce N balance, or both. 
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CHAPTER 2: ASSESSING VARIATION IN MAIZE GRAIN NITROGEN 

CONCENTRATION AND ITS IMPLICATIONS FOR ESTIMATING NITROGEN 

BALANCE IN THE US NORTH CENTRAL REGION 

 

ABSTRACT 

 

Accurate estimation of nitrogen (N) balance (a measure of potential N losses) in 

producer fields requires information on grain N concentration (GNC) to estimate grain-N 

removal, which is rarely measured by producers. The objectives of this study were to (i) 

examine the degree to which variation in GNC can affect estimation of grain-N removal, 

(ii) identify major factors influencing GNC, and (iii) develop a predictive model to 

estimate GNC, analyzing the uncertainty in predicted grain-N removal at field and 

regional levels. We compiled GNC data from published literature and unpublished 

databases using explicit criteria to only include experiments that portray the 

environments and dominant management practices where maize is grown in the US North 

Central region, which accounts for one-third of global maize production. We assessed 

GNC variation using regression tree analysis and evaluated the ability of the resulting 

model to estimate grain-N removal relative to the current approach using a fixed GNC. 

Across all site-year-treatment cases, GNC averaged 1.15%, ranging from 0.76 to 1.66%. 

At any given grain yield, GNC varied substantially and resulted in large variation in 

estimated grain-N removal and N balance. However, compared with GNC, yield 

differences explained much more variability in grain-N removal. Our regression tree 
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model accounted for 35% of the variation in GNC, and returned physiologically 

meaningful associations with mean air temperature and water balance in July (i.e., 

silking) and August (i.e., grain filling), and with N fertilizer rate. The predictive model 

has a slight advantage over the typical approach based on a fixed GNC for estimating 

grain-N removal for individual site-years (root mean square error: 17 versus 21 kg N ha−1, 

respectively). Estimates of grain-N removal with both approaches were more reliable 

when aggregated at climate-soil domain level relative to estimates for individual site-

years. 

 

Keywords: grain nitrogen concentration, grain nitrogen removal, nitrogen balance, maize 

 

Abbreviations: ANOVA, analysis of variance; ETO, grass-based reference 

evapotranspiration (mm); GNC, grain nitrogen concentration (%); ME, absolute mean 

error; NIR, near infrared; RMSE, root mean square error; SS, sum of squares; TED, 

technology extrapolation domain; Tmax, maximum temperature (°C); Tmean, mean 

temperature (°C); Tmin, minimum temperature (°C); US, United States 

 

2.1. INTRODUCTION 

 

Nitrogen (N) fertilizer is an essential input to sustain high cereal yields (Cassman 

et al., 2002). However, mismatches between N inputs and crop N demand could result in 
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N losses to the environment (Erisman et al., 2013). As a result, there is growing interest 

in developing cost-effective indicators to evaluate the degree to which N fertilizer inputs 

are congruent with crop N requirements (Zhang et al., 2015). A simplified N balance, 

calculated as the difference between N inputs (including fertilizer, manure, symbiotic N2 

fixation, deposition) and grain-N removal, can be used to assess potential for N losses in 

producer fields (McLellan et al., 2018 and references cited therein). However, estimating 

N balance depends on the calculation of grain-N removal, and while maize producers 

usually know the grain yield achieved on each of their fields, they rarely measure grain 

nitrogen concentration (GNC). Lack of GNC measurements reflects that most maize 

grain produced in the US is used for livestock feed, and its value derives from its energy 

rather than its protein content. Some maize crop models (e.g., CERES-Maize; Jones and 

Kiniry, 1986) can simulate grain- N removal, but they require calibration and copious 

amounts of data inputs (i.e., daily weather, soil properties, cultivar coefficients, and 

management practices) to be useful for predicting grain-N removal in individual fields. 

Additionally, previous studies have shown that these models performed relatively poor at 

reproducing measured GNC in field-grown maize (e.g., Liu et al., 2010; Yakoub et al., 

2017). Hence, at issue is how reliable the estimation of grain-N removal can be in the 

absence of measured GNC.  

Average maize GNC has declined over time as an unintended consequence of 

breeders’ selection for higher yields (Duvick and Cassman, 1999; Ciampitti and Vyn, 

2012; DeBruin et al., 2017), and a number of published studies have aimed to understand 

the associated physiological drivers (Chen and Vyn, 2017 and references cited therein). 
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Early in the 1970s, Welch (1971) used an average GNC of 1.61% to estimate grain-N 

removal. Later, Boone et al. (1984) reported a mean of 1.33% based on measured data 

across commercial maize hybrids grown in the Midwestern US at different plant 

densities. A review paper by Ciampitti and Vyn (2012) reported the same mean GNC of 

1.33% for maize hybrids released between 1940 to 1990, with mean GNC decreasing to 

1.20% for hybrids released between 1991 and 2011. The GNC values reported here are 

all expressed at a standard 15.5% moisture content. Besides the long-term decline in 

GNC, prior studies on maize have reported substantial variation in GNC due to climate 

and management practices (Viets and Domingo, 1948; Zuber et al., 1954; Genter et al., 

1956; Lang et al., 1956; Boone et al., 1984; Feil et al., 1990; Liang et al., 1996). In the 

absence of measured GNC data, the typical approach is to assume a fixed GNC from the 

literature. For example, the International Plant Nutrition Institute (IPNI) recommended 

using an average GNC of 1.2% for estimating grain-N removal in absence of measured 

data (http://www.ipni.net/article/IPNI-3296). However, the degree to which variation in 

GNC would affect the estimation of grain-N removal and N balance in individual field 

has not been explicitly evaluated. 

There are many studies aiming to model sources of variation in GNC for winter 

cereals such as wheat and barley (Correll et al., 1994; Smith and Gooding, 1999; Hansen 

et al., 2002; Zhao et al., 2005). For instance, Correll et al. (1994) developed a predictive 

model based on seasonal air temperature and precipitation to explain variation in GNC 

for wheat and barley in South Australia. Later, Smith and Gooding (1999) reported a 

model showing that cultivar and N fertilizer rate were also important factors influencing 
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GNC in wheat. Although both environmental and management factors have been reported 

to influence GNC in maize, no attempt has been made to synthesize and analyze existing 

GNC data to generate a predictive model for maize GNC. Such a model would be useful 

for estimating grain-N removal and N balance in producer fields in the absence of 

directly measured GNC data.  

In the present study, we collected existing maize GNC data from experiments 

conducted across the US North Central region (Figure 2-1), which is an area that 

accounts for ca. 33% of global maize production. Only data that portray the range of 

dominant on-farm management practices and hybrids were used for the analysis. The 

specific objectives were to (i) examine the degree to which variation in GNC can affect 

estimation of grain-N removal in maize, (ii) identify major factors influencing GNC and 

model these sources of variation, and (iii) evaluate an approach to estimate GNC as an 

alternative to a fixed GNC, analyzing the uncertainty in predicted grain-N removal at 

field as opposed to regional level. 

 

2.2. MATERIALS AND METHODS 

2.2.1. Database description and criteria 

 

Published articles and online databases were screened to compile experimental 

data on GNC from field-grown maize across the US North Central region. Major climate, 

soil, and management features of maize based agroecosystems in the US North Central 

region are described elsewhere (Grassini et al., 2014). The search was restricted to 



19 
 

 
 

experiments conducted during the 1999-2016 period to represent recent hybrids and 

management practices. Our database included observations from nine states: Illinois (IL), 

Indiana (IN), Iowa (IA), Kansas (KS), Minnesota (MN), Nebraska (NE), Ohio (OH), 

South Dakota (SD), and Wisconsin (WI) (Figure 2-1; Table 2-1). Only data from 

replicated experiments that meet two criteria were included: (i) field grown grain maize 

crops managed with current crop and soil management practices in the region, and (ii) 

reported data on grain yield, GNC, N fertilizer rate, and water regime (irrigated or 

rainfed). We thus excluded experiments sown for silage or hybrid seed production, with 

experimental hybrids, with outdated practices (e.g., moldboard plow), or with unrealistic 

treatments (e.g., N omission plots). Likewise, we excluded experiments in which maize 

was grown after alfalfa because only a very small fraction of US maize follows alfalfa 

and potential soil N supply following this perennial legume crop can be large and 

difficult to calculate. Hence, only experiments sown after maize and soybean were 

included because majority (>85%) of maize across the US Corn Belt region is grown 

continuously or in a maize-soybean rotation (Farmaha et al., 2016). Experiments 

receiving manure were also excluded given the difficulties to quantify N inputs from the 

manure. A total of 1307 site-year-treatment cases met our criteria, which were used for 

the subsequent analyses. The database included rainfed and irrigated crops (43 and 57% 

of total cases, respectively). 

Since GNC and grain yield were reported across studies either at oven-dry or 

standard moisture content, all grain yield and GNC data were standardized to 15.5% 

moisture content for analysis. Reported oven-dry moisture content was assumed to be 
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zero. GNC was measured using combustion and near infrared (NIR) in 70% and 30% of 

total observations, respectively. Although we did not have side-by-side data to rigorously 

compare GNC measured with different methods (NIR versus combustion), we did not 

find strong evidence that this would bias the analysis because average GNC (± standard 

deviation) differed little among experiments using NIR (1.19 ± 0.16%) versus 

combustion (1.13 ± 0.16%) to determine GNC. Additionally, results from the statistical 

analyses using the database with NIR- versus combustion-measured GNC were almost 

identical; hence, we showed the results using the pooled database (see Section 2.2.2). For 

half of the sites, geographic coordinates were available; county or nearby city were 

reported for the remaining sites. Other variables were available for a reasonable number 

of experiments (> 40%), including plant density, previous crop, artificial drainage, tillage 

method, N fertilizer source, N split application (yes/no), and N application timing (spring 

only or fall and spring). Analytical methods that can handle missing values, such as the 

regression tree analysis followed in this study, allowed inclusion of the full suite of data 

(see Section 2.2.2).  

Daily maximum (Tmax) and minimum (Tmin) air temperature and precipitation 

were retrieved for each field from DAYMET (https:// daymet.ornl.gov/) while incident 

solar radiation was retrieved from the Prediction of Worldwide Energy Resources 

(NASA POWER, https:// power.larc.nasa.gov/) based on the coordinates or approximate 

site reported for each experiment. Both DAYMET and NASA POWER provide gridded 

weather data (resolution: 1 km2 and 12,000 km2, respectively). The DAYMET weather 

has shown good agreement with measured data for average temperature and total 
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precipitation when summed over several months or an entire growing season (Mourtzinis 

et al., 2017), while NASA POWER incident solar radiation has shown strong agreement 

with measured records in agricultural areas with flat terrain, as in the US North Central 

region (van Wart et al., 2013). Informed by physiological principles (Cantarero et al., 

1999; Cicchino et al., 2010; Lobell et al., 2013), key weather variables influencing crop 

growth and grain yield were investigated in relation to their influence on GNC. For July, 

which roughly coincides with silking, and for August, corresponding to grain filling in 

the target region, we calculated mean air temperature (Tmean), number of days with 

Tmax ≥ 32 °C, number of days with Tmin ≥ 22 °C, mean incident solar radiation, and 

total water balance, calculated as the difference between total precipitation and reference 

grass-based evapotranspiration (ETo; Allen et al., 1998). Thresholds of 22 °C (Tmin) and 

32 °C (Tmax) were chosen for stressful high air temperatures for maize (Herrero and 

Johnson, 1980; Prasad et al., 2006a; Cicchino et al., 2010; Lobell et al., 2013). 

Unfortunately, dates of silking and physiological maturity were not recorded in most 

experiments; hence it was not possible to derive means of weather variables for specific 

crop phases rather than on a calendar basis. For irrigated crops, water balance was 

assumed to be zero as irrigation ensures adequate water supply during the entire crop 

season. Because coordinates were not available for ca. half of the experiments, and given 

the large spatial variability in soil properties, we did not attempt to retrieve site-specific 

soil parameters. 

Experiments were assigned to technology extrapolation domains (TEDs; Rattalino 

Edreira et al., 2018). Each TED corresponds to a climate-soil domain, within which crop 



22 
 

 
 

growth and nutrient cycling are expected to be similar. In those cases in which field 

coordinates were not available, experiments were assigned to the prevalent TED in the 

area around/within the near town/county where the study was conducted. Experiments 

used for the analysis were located within TEDs that account for 58% of the total US 

maize harvested area (Figure 2-1). Because of data imbalance among states, with higher 

number of experiments in NE and MN, the regression tree was repeated 20 times using 

resampling of 50 observations in these two states, to obtain a balanced experimental 

design. The test indicated that using either a balanced versus unbalanced number of 

observations or different subsets of randomly selected fields had little impact on the 

results. Hence, in the present study, we reported only the results derived from the 

regression trees using the entire database. 

  

2.2.2. Data analysis 

 

Nitrogen removed with harvested grain was estimated based on reported grain 

yield and GNC. To evaluate sensitivity of grain-N removal to variation in GNC at a given 

yield level, we plotted grain-N removal versus grain yield and fitted boundary functions 

using quantile regression for the 5th and 95th percentiles (Koenker and Basset, 1978) via 

the “quantreg” package (Koenker, 2017) in R (Figure 2-2). Additionally, analysis of 

variance (ANOVA) was performed to determine the percentage of total variance in grain-

N removal explained by grain yield and GNC. 
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Whereas GNC varies with hybrid (Genter et al., 1956; Boone et al., 1984; 

Uribelarrea et al., 2004), the large number of hybrids available in the market and their 

fast turn over precluded adding hybrid as an explanatory factor for prediction purposes. 

Here we used ANOVA to discern the degree to which hybrid explains variation in GNC 

relative to other factors, using a subset of data that contained 12 hybrids grown 

consistently across 3 sites and 2 years in IL. All hybrids were grown under rainfed 

conditions, with N fertilizer rate of 252 kg N ha-1, and plant density of 7.9 plant m-2. 

Relative maturity ranged between 109-114 d among hybrids and GNC was measured 

using near infrared. Likewise, previous studies have attributed differences in GNC to a 

‘dilution effect’, suggesting a trade-off between GNC and grain yield (e.g., Gupta et al., 

1975; Dudley et al., 1977; Boone et al., 1984; Simmonds, 1995). To assess the degree to 

which GNC could be explained by grain yield, linear regression models between GNC 

and grain yield were fitted separately for the entire database, each study, and each study-

site-year. 

Regression tree analysis was used to quantify the influence of weather and 

management variables on GNC using the “rpart” package in R (Hothorn et al., 2006). 

Regression tree analysis is a non-parametric method which recursively partitions the data 

into successively smaller groups with binary splits based on a single continuous predictor 

variable (Breiman et al., 1984; Verbyla, 1987; Clark and Pregibon, 1992; 

Prasad et al., 2006b). Regression tree analysis produces a tree-diagram output, with 

branches determined by splitting rules and a series of terminal nodes that contain the 

mean response (i.e., GNC) and the number of observations that fall within each terminal 
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node. The procedure initially grew maximal trees and then used a cross-validation 

technique (i.e., maxdepth) to prune the over-fitted tree to an optimal size (Therneau and 

Atkinson, 1997). A “caret” package in R was used to split the dataset into training (80%) 

and testing (20%) datasets. The training dataset was used to run the regression tree 

analysis, while the testing dataset was utilized to estimate the mean square error (MSE) 

between observed and predicted GNC (Table 2-1). The regression tree analysis handled 

missing values in the explanatory factors (na.rpart function), excluding cases only if the 

response variable (i.e., GNC) or all explanatory factors were missing. When missing 

values were encountered in considering a split, they were ignored and predictions are 

calculated from the non-missing values of that factor (Venables and Ripley, 2002). For 

the regression tree analysis, we excluded some variables due to high collinearity. For 

example, high correlation (Pearson r = 0.87, P < 0.001) was found between number of 

days in July with Tmax ≥ 32 °C and July Tmean, so we only included the latter variable 

(Table 2-2). Likewise, incident solar radiation in July was correlated with water balance 

(Pearson r = 0.31; P < 0.001) and Tmean (Pearson r = 0.44, P < 0.001). Additionally, 

source of N applied was highly associated with geographical site (ammonium nitrate was 

only used in MN, while urea and urea ammonium nitrate were the dominant sources in 

other experiments); hence, we did not include it in the analysis. Initially, previous crop 

(i.e., maize and soybean) was included as an explanatory factor and showed to influence 

GNC. However, in the regression tree, previous crop only differentiated between maize 

or soybean versus no previous crop reported, hence, it was excluded as an explanatory 

factor. After accounting for these issues, 10 variables remained as potential explanatory 
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factors for variation in GNC (Tables 2-3 and 2-4). This same set of explanatory factors 

was used to generate a regression tree for grain yield to help differentiate drivers for 

GNC versus grain yield variation (Figure 2-5). 

Relationships between GNC and weather and agronomic factors that were 

identified as the most important at explaining GNC variation by the regression tree were 

further explored using linear regression. These factors included July Tmean and N 

fertilizer rate. Mean GNC and standard error were calculated for different intervals of 

July Tmean and N fertilizer rate. Duncan’s multiple range test was used to determine 

significant differences (α=0.05) between means. 

We compared the grain-N removal prediction ability of the regression tree GNC 

estimates with a fixed 1.2% GNC value (as recommended by IPNI in absence of 

measured GNC) at two spatial levels: field and climate-soil domain (i.e., TED). 

Agreement between observed and predicted grain-N removal was evaluated using the 

root mean square error (RMSE) and absolute mean error (ME). Regression analysis was 

used to explore biases in the relationship between predicted and observed grain-N 

removal. Frequency distributions were used to estimate the percentage of fields with 

differences in observed versus predicted grain-N removal ≥ |20| kg N ha−1. At the TED 

scale, grain-N removal was estimated by averaging the values across all fields located 

within the same TED (Figure 2-1). The objective of this evaluation was two-fold: (i) to 

discern any advantage of estimating GNC using a predictive model instead of using a 
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fixed GNC value and (ii) to analyze the uncertainty in predicted grain-N removal at field 

as opposed to regional level. 

 

2.3. RESULTS 

2.3.1. Variation in grain nitrogen concentration 

 

The database included variation in GNC, weather, and management practices that 

is typical of conditions across producer fields in the US North Central region (Tables 2-3 

and 2-4). The GNC ranged from 0.76 to 1.66%, averaging 1.15% across all observations. 

Average GNC derived here was slightly, though statistically significant (t-test; P < 

0.001), lower than the 1.2% reference reported by IPNI. On average, grain-N removal 

increased at a rate of 11.5 kg N per Mg of grain yield (Figure 2-2), although there was 

substantial variation in grain-N removal at a given grain yield level due to variation in 

GNC. Slopes of the quantile regression in Figure 2-2 indicated that GNC can vary from 

0.89% to 1.41% for a given grain yield. Hence, using the recent (2013–2017) US average 

grain yield of 10.6 Mg ha−1 (https://www.nass.usda.gov), grain-N removal can vary from 

94 to 150 kg N ha-1, corresponding to a difference of 56 kg N ha-1 in the associated N 

balance. On the other hand, the proportion of variation in grain-N removal explained by 

grain yield was ca. three times larger than the variance accounted for by GNC (73 versus 

25%) (Figure 2-2, inset). 
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2.3.2. Environment versus hybrid influence on grain nitrogen concentration 

 

At issue is the degree to which GNC is influenced by hybrid. An ANOVA, using 

a subset with a uniform set of hybrids grown across multiple site-years in IL, showed that 

hybrid influenced GNC more than it affected grain yield (% of sum of squares [%SS]=32 

versus 6%, respectively). The portion of variation explained by year, site, and their 

interaction (i.e., environmental effects) on GNC was higher, but of same order of 

magnitude, compared with the variation explained by hybrid alone (%SS=49 versus 32). 

Site effect on GNC was 4-fold larger than year effect, which may reflect the importance 

of site-specific average weather and/or soil properties (Table 2-5). 

 

2.3.3. Relationship between grain yield and grain nitrogen concentration 

 

If variation in GNC is associated with a ‘N dilution’ effect, one would a priori 

expect a strong negative relationship between GNC and grain yield. In contrast with this 

expectation, we found a statistically significant, though weak, positive relationship 

between GNC and grain yield when the entire dataset was used (p<0.001; r2=0.02) 

(Figure 2-3a). The linear regression analysis using the entire database may have been 

biased by differences in the environmental and/or management background across site-

years. To account for this potential confounding effect, we fitted separate regressions to 

the data compiled from each study (Figure 2-3b) and from each study-site-year (Figure 2-

3c), which indicated that there was a statistically significant negative relationship (p 
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<0.001) in only 11 and 3% of the cases, respectively. We concluded that, for our dataset, 

observed variation in GNC cannot be attributed to ‘N dilution’ effect due to yield. Hence, 

our subsequent analysis did not consider grain yield as an explanatory factor for variation 

in GNC. 

 

2.3.4. Environmental factors influencing variation in grain nitrogen concentration 

 

The regression tree explained 35% of variation in maize GNC using five 

variables, including July and August Tmean, July and August total water balance, and N 

fertilizer rate (Figure 2-4). July Tmean was the most important variable associated with 

GNC, with crops exposed under warm conditions during July (Tmean ≥ 22.5 °C) 

exhibiting higher GNC in relation with their counterparts with lower Tmean (1.17 versus 

1.09%). The influence of high air temperature during July on GNC was amplified in 

fields that were also exposed to unfavorable water balance (i.e., water shortage) and high 

air temperature in August. In contrast, N fertilizer rate was the most important factor 

influencing GNC in fields exposed to lower July Tmean (< 22.5 °C). In these fields, 

highest GNC was observed with large N fertilizer input and unfavorable water balance, 

while fields with lowest GNC were associated with small N fertilizer inputs (Figure 2-4). 

Fields with lowest GNC corresponded to those exposed to the same conditions as fields 

with highest GNC, but with lower Tmean during August (< 21.6 °C). Finally, the 

explanatory power of the regression tree for GNC was about one-half of that for grain 
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yield (R2 = 0.35 versus 0.65; Figures 2-4, 2-5) and different in relation to the driving 

variables. 

We further investigated the relationships between GNC and two variables 

identified in the regression tree: July Tmean and N fertilizer rate (Figure 2-6). GNC 

increased with increasing July Tmean and N fertilizer rates (Figure 2-6a, b). Across the 

entire range of N fertilizer rates, GNC was higher in warmer environments; however, this 

difference was larger for small and moderate N fertilizer rates (Figure 2-6c). At high N 

rates (300-400 kg N ha-1), there was no significant difference in GNC between fields 

exposed to high versus low July Tmean. 

 

2.3.5. Comparison of grain-N removal with fixed and modelled GNC 

 

We evaluated two methods (regression tree’s estimates versus fixed 1.2% GNC 

value) on their performance to reproduce the observed grain-N removal (Figure 2-7). 

Predicted grain-N removal based on reported grain yield and GNC estimated from the 

regression tree had a slightly better fit to observed values compared with the approach 

based on a fixed value, with RMSE representing 12% versus 15% of the mean observed 

grain-N removal, respectively (Figure 2-7a, b). Consistent with this finding, the 

percentage of site-years with large differences (≥ |20| kg N ha-1) between predicted and 

observed grain-N removal was smaller using regression tree versus fixed GNC values (25 

versus 36% of total fields) (Figure 2-7a, b, insets). However, both approaches 

underestimated grain-N removal in the upper range of observed values (> 200 kg N ha-1), 
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which was consistent with the statistically significant quadratic term revealed by our 

regression analysis (P < 0.001). Agreement between predicted and observed values at the 

TED level was improved compared to agreement of field-level data (average RMSE% = 

9 versus 13%), with very little difference in accuracy between estimates based on the 

fixed GNC versus regression-tree (RMSE%: 10 versus 9% of observed mean) (Figure 2-

7c, d). 

 

2.4. DISCUSSION 

 

The influence of environmental and management factors on maize GNC were 

assessed using data collected from multiple sites and years across the US North Central 

region to include field experiments that are representative of dominant management 

practices in producer fields. Average maize GNC calculated for the entire database was 

1.15%, which was slightly lower than the commonly used GNC of 1.2%, and corresponds 

with a continuing decline in GNC over time (Welch, 1971; Boone et al., 1984; Duvick 

and Cassman, 1999; Ciampitti and Vyn, 2012). Overall, the regression tree explained 

35% of variation in GNC across the US North Central region, with air temperature and 

water balance during July and August and N fertilizer rate identified as the most 

important factors explaining variation in GNC. We recognize that part of the unexplained 

variation could be attributed to hybrid, which could account for ca. one third of GNC 

variation as indicated by our analysis using a subset of site-years where the same set of 

hybrids were grown. Nonetheless, accounting for hybrid effect for predictive purpose is 
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very difficult given the large number of hybrids available in the market and their rapid 

turnover. Soil factors may also account for part of the unaccounted variation in GNC. Our 

ANOVA indicated a much larger influence of site rather than year on GNC, which could 

reflect differences in soil properties, although it is difficult to separate this effect from 

weather variation across sites. This finding highlights the importance of collecting in situ 

key soil and topography data (e.g., available-water holding capacity, soil texture, 

landscape position, etc.) or, at least, reporting of exact experiment coordinates so that 

these attributes can be retrieved from existing databases such as SSURGO 

(www.websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx). Unfortunately, soil 

parameters and/or field coordinates were not collected and/or missing for most of the 

observations in our database, so we could not include these factors in our evaluation. 

Results from the regression tree analysis are consistent with current understanding 

of factors influencing GNC. In general, stressful weather conditions during July and 

August, such as high air temperature and unfavorable water balance (i.e., water shortage), 

and high N fertilizer rates led towards high GNC, which is consistent with previous 

studies (Genter et al., 1956; Mayer et al., 2016). High temperature and unfavorable water 

balance during the kernel setting phase reduces kernel number (Hall et al., 1981; Otegui 

et al., 1995; Rattalino Edreira et al., 2011). Our study also suggested that unfavorable 

(favorable) weather conditions during August seem to amplify (ameliorate) the effect of 

stressful conditions during July. In relation to N supply, our analysis revealed an 

interactive effect of air temperature and N fertilizer rate on GNC, with largest differences 

http://www.websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
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in GNC between fields exposed to contrasting temperature in low N fertilizer rate 

conditions, which are consistent with published results for wheat (Altenbach et al., 2003). 

Previous studies have reported that maize GNC tends to increase with decreasing 

grain yield as a result of ‘N dilution’ effect (Zuber et al., 1954; Simmonds, 1995; 

Uribelarrea et al., 2004). However, in the current study, GNC and yield were related 

weakly and inconsistently. Further, the fitted regression tree for grain yield was 

substantially different from the one for GNC (Figures 2-4, 2-5). A possible explanation 

for the discrepancy between our study and previous reports is that our database did not 

include extreme conditions such as severe drought, N omission plots or very high or low 

plant densities as in previous studies (Zuber et al., 1954; Lang et al., 1956) because these 

conditions are not common in producer fields. Instead, our objective was to understand 

GNC variation within the range of environment and management practices typically 

found in producer fields. Another explanation is that most studies used for our analysis 

included treatments with varying N fertilizer amounts which caused, in most cases, a 

simultaneous increase in grain yield and GNC with increasing N fertilizer input. In 

contrast, previous studies reporting a trade-off between GNC and grain yields for maize 

were based on experiments in which yield differences were a consequence of using 

different hybrids and/or plant densities across treatments, without changing N fertilizer 

amounts (e.g., Gupta et al., 1975; Dudley et al., 1977; Boone et al., 1984; Simmonds, 

1995). In other words, the trade-off between grain yield and GNC is not apparent when 

variation in yield is due to differences in N fertilizer input. In agreement with this 

hypothesis, a number of studies (Zuber et al., 1954; Chen and Vyn, 2017; DeBruin et al., 
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2017) reported decreasing GNC with increasing yield due to improved hybrids and/or 

higher plant density, but the same authors reported that both GNC and grain yield 

increased with increasing N fertilizer rate. 

The predictive model developed for estimating GNC is more accurate, relative to 

the approach using a fixed GNC value, at estimating grain-N removal and N balance for 

individual site-years. Hence, the predictive model can help obtain more accurate 

estimates of grain-N removal and N balance in producer maize fields, in absence of GNC 

data, although this advantage needs to be weighed against the extra data needed (weather, 

N fertilizer) to use the model. The predictive model underestimated grain-N removal in 

the upper range of observed values (> 200 kg N ha-1). An implication of this finding is 

that grain-N removal may be underestimated in high-yield environments that favor large 

N uptake. Indeed, 96% of the observations with grain-N removal > 200 kg N ha-1 

corresponded to irrigated maize in NE - a production environment where producers 

routinely attain yields that correspond to 80–90% of their yield potential as determined 

by climate and current genetics (Grassini et al., 2011). Predictions of grain-N removal 

using both approaches were more accurate at climate-soil domain level compared with 

estimates for individual site-year cases. This suggests that comparisons for these 

parameters (i.e., grain-N removal and N balance) among climate-soil domains using 

aggregated values are more reliable compared with assessments for individual fields. In 

addition, result from this study indicates that using the fixed GNC value of 1.2% would 

work reasonably well for estimating grain-N removal at climate-soil domain level. 
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Hence, in absence of measured GNC data, the N balance approach would still provide 

reasonable estimates of potential N losses for major climate-soil domains where maize is 

grown in the US North Central region. In contrast, estimates for individual fields will be 

subjected to greater uncertainty and, ultimately, GNC should be measured for accurate 

quantification of N balance. New technologies, such as combines equipped with NIR to 

map protein at the same level of yield maps, may allow direct measurement of N-grain 

removal at field and intra-field scales in the future (Montes et al., 2006; 

https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-

updatepapers/ 2017/07/on-the-go-protein-sensors-using-real-time-protein-data-formore-

profitable-marketing-aggregations-and-nitrogen-decisions). The methodology described 

in this paper for understanding sources of variation in GNC estimation could potentially 

be applied to other regions or crops depending upon availability of data on GNC and 

ancillary variables. 
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Table 2-4. Summary statistics for categorical factors used in the analysis. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

†Conventional tillage includes chisel plow, disk, field cultivator, strip till, and vertical 

till. 
 

 

Table 2-5. Analysis of variance (ANOVA) for the effects of year, site, hybrid, and their 

interactions on maize grain nitrogen concentration (GNC) and grain yield, in a factorial 

combination of 6 site-years by 12 commercial hybrids. 

Variables d.f. 
F-value a % SS (%) b 

GNC (%) Grain yield GNC (%) Grain yield 

Year (Y) 1 40*** 88*** 7 23 

Site (S) 2 95*** 64*** 32 34 

Hybrid (H) 11 17*** 2* 32 6 

Y x S 2 30*** 33*** 10 17 

Y x H 11 3*** 1 5 4 

S x H 22 2** 1 8 8 

Y x S x H 22 2 1 6 8 
a F-test significant at *P<0.05, **P<0.01, and ***P<0.001.  
b Proportion (in %) of total sum of squares (SS) excluding the error. 

 

 

 

 

Categorical variables   % observations   

N application time (n = 589)   

              spring only 89  

              fall and spring 11  

N split application (n =1307)   

              yes 25  

              no 75   

Tile drainage (n = 1030)   

              yes 30  

              no 70  

Tillage method (n = 715)   

              conventional† 81  

               no-till 19  
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Figure 2-1. Map of US North Central region showing the sites of the experiments used in 

the analysis (circles). Each color represents a climate-soil combination (Technology 

Extrapolation Domain [TED], Rattalino Edreira et al., 2018). Experiments were located 

in TEDs that account for 58% of total US maize harvested area. Acronyms are: Illinois 

(IL), Indiana (IN), Iowa (IA), Kansas (KS), Minnesota (MN), Nebraska (NE), Ohio 

(OH), South Dakota (SD), and Wisconsin (WI).  
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Figure 2-2. Relationship between grain-nitrogen (N) removal and grain yield based on 

data collected from field-grown maize across the US North Central region. Slopes of the 

linear regression (solid line) and boundary functions fitted for the 5th and 95th percentiles 

are shown (dashed lines). Fitted regressions were forced through the origin. Grain yields 

were reported at 15.5% moisture content. Inset shows proportion of grain-N removal 

variation explained by grain yield and grain N concentration (GNC). 

 

 

 
Figure 2-3.  Relationships between grain nitrogen concentration (GNC) and grain yield 

for the entire dataset (a), each study (b), and each study-site-year (c). Data points were 

removed and only the fitted linear regressions are shown in (b) and (c) and percentage of 

cases with statistically significant positive and negative relationships are shown (p < 

0.001).  
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Figure 2-6. Relationships between average grain nitrogen concentration (GNC, 15.5% 

moisture content basis) and July mean air temperature (A) and N fertilizer rate (B). 

Relationship between GNC and N fertilizer rate, for fields with contrasting July mean air 

temperature (greater or lower than 22.5 ºC based on Figure 2-4), is shown in (C). Fitted 

linear regressions and their parameters are shown. Each data point represents average 

GNC for fields that fall within each July mean air temperature and/or N fertilizer rate 

interval. Vertical bars indicate the standard error of the mean. Different letters indicate 

statistically significant differences (Duncan’s test; alpha=0.05). 



49 
 

 
 

 
Figure 2-7. Predicted versus observed grain-N removal in maize for each site-year-

treatment case (a, b) and for climate-soil domains (c, d). Predicted grain-N removal was 

calculated based on a fixed (1.2 %) grain nitrogen concentration (a, c) or based on 

concentration estimated from the regression tree model (b, d). Root mean square error 

(RMSE) and mean error (ME) are indicated and y=x (black) and quadratic or linear 

regression (red) lines are shown. Insets show frequency distributions for the difference 

between observed and predicted grain-N removal; fields with differences ≥ |20| kg N ha-1 

are shown in blue. 
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CHAPTER 3: BENCHMARKING IMPACT OF NITROGEN INPUTS ON GRAIN 

YIELD AND ENVIRONMENTAL PERFORMANCE OF PRODUCER FIELDS IN 

THE WESTERN US CORN BELT 

 

ABSTRACT 

 

Benchmarking crop yields against nitrogen (N) input levels can help provide 

opportunities to improve N fertilizer efficiency and reduce N losses on maize in the US 

Corn Belt by identifying fields most likely to benefit from improved N management 

practices. Here, we evaluated a large producer database that includes field-level data on 

yield and applied N inputs from 9,280 irrigated and rainfed fields over a 7-year period 

(2009-2015) in Nebraska (USA). A spatial framework, based on technology extrapolation 

domains (TEDs), was used to cluster each field into spatial units with similar climate and 

soil type that represents 1.3 million ha of US farm land sown annually with maize. Three 

metrics were employed to evaluate agronomic and environmental performance: partial 

factor productivity for N inputs (PFPN, ratio between yield and N inputs), N balance 

(difference between N inputs and grain N removal), and yield-scaled N balance (ratio 

between N balance and yield). Nitrogen inputs included N from fertilizer and N contained 

in applied irrigation water. Fields receiving manure were not included in this evaluation 

because they represent a relatively small proportion of US maize production area. 

Average yield and N inputs were 40 and 44% higher in irrigated versus rainfed fields. 

The N balance was more than 2-fold greater in irrigated versus rainfed fields (82 versus 
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37 kg N ha-1). Of the total number of field-years, 58% (irrigated) and 14% (rainfed) had 

N balance ≥ 75 kg N ha-1, which was considered a threshold to identify fields with 

potentially large N losses. Very large (> 150 kg N ha-1) or negative N balance estimates 

were not apparent when analysis was based on field averages using a minimum of three 

years data instead of individual field-years. Nitrogen balance was smaller for maize crops 

following soybean compared to continuous maize. Despite the larger N balance (on an 

area basis), irrigated fields exhibited smaller yield-scaled N balance relative to rainfed 

fields. The approach proposed here can readily be adopted to benchmark current use of N 

fertilizer for other cereal-based crop systems, inform policy, and identify opportunities 

for improvement in N management.  

 

Keywords: maize; yield; nitrogen; nitrogen balance; fertilizer; rotation 

 

 

3.1. INTRODUCTION 

 

Nitrogen (N) is an essential nutrient to support crop growth and a key pillar for 

global food security (Cassman et al., 2002; Tilman et al., 2002; Mueller et al., 2012). 

Sources of N that contribute to crop N supply include synthetic fertilizer, manure, 

biological N fixation, mineralization of soil organic matter, dry and wet atmospheric 

deposition, nitrate-N in shallow water tables, and, in the case of irrigated agriculture, N 

contained in applied irrigation water (Skaggs et al., 1995; Connor et al., 2011). Synthetic 

N fertilizer accounts for ca. half of total N input to global cropland, and increasing N 

fertilizer use since the middle of the 20th century has been a major contributor to rapid 
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increases in cereal crop yields (Cassman et al., 2002, Tilman et al., 2002; Foley et al., 

2011). Globally, nitrogen inputs exceeding crop N requirements (i.e., N surplus) are 

straining the capacity of the earth to meet humanity’s need for clean water, clean air, and 

abundant, healthy food (Matson et al., 1998; Erisman et al., 2013; Steffen et al. 2015). 

For agriculture, the N fertilizer lost via denitrification, leaching, volatilization, and run-

off is an empty investment. In contrast, N fertilizer inputs consistently below crop N 

requirements (i.e., N deficit) can lead to soil N mining and reduced soil quality (Sanchez, 

2002; Sanchez and Swaminathan, 2005). The challenge is to find an effective balance 

between N inputs and crop N requirements, to achieve high crop productivity while 

preserving soil quality and reducing environmental footprint (Zhang et al., 2012; 

Lassaletta et al., 2014). 

Benchmarking N input use in individual fields against a large number of cohort 

fields may help identify fields with greatest opportunities to improve productivity and 

reduce overall environmental impact. However, we are not aware of previous studies that 

used actual field-level data to benchmark the efficacy of N inputs to produce grain and 

avoid N losses to the environment. Instead, studies addressing both productivity and 

environmental performance of agro-ecosystems in relation to N inputs can roughly be 

grouped in two categories. The first category includes the large number of studies 

conducted in experimental plots or field trials in which researchers selectively applied 

different N input levels or management practices and carefully measured yield and N 

losses (e.g., Harmel et al., 2008; Venterea et al., 2012). The second category includes in-

silico modeling studies at regional and global levels (e.g., Van Drecht et al., 2003; 
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Howarth et al., 2006). In between these two extremes, we found few studies that 

explicitly aimed to benchmark on-farm yield and N input use (e.g., Khanal et al., 2014; 

Lassaletta et al., 2014; Basso et al., 2019). However, most of these studies have relied on 

N fertilizer use data reported at a high level of spatial aggregation (e.g., country, state). 

The major reason for scarcity of such studies is lack of field-level data on yield and N 

inputs. For example, for the Corn Belt, a large region in the north-central USA that 

produces ca. one third of global maize production, data on N fertilizer rates applied to 

maize are available only at the state level at 5-year intervals (USDA-ERS, 

https://data.ers.usda.gov/reports.aspx?ID=17883). Due to the lack of more detailed data, 

some studies have attempted to generate predictions of N fertilizer for small regions or 

even individual fields following tortuous methods (e.g., fertilizer sales records, 

university-based N recommendations), but such predictions have not been validated on 

their ability to reproduce actual N fertilizer rates in producer fields (Khanal et al., 2014; 

Basso et al., 2019).  

Accurate assessments of both the current situation and opportunities for 

improvement require cost-effective approaches for evaluating on-farm yield and 

environmental footprint in relation to N inputs to identify those fields with poor N use 

efficiency. To be feasible, such an approach would need to rely on a small number of 

parameters that are readily available from producers. To that end, we evaluated three 

metrics related to agronomic and environmental performance (hereby called ‘N-metrics’): 

partial factor productivity for N inputs from fertilizer and irrigation water (PFPN), N 

balance, and yield-scaled N balance. The PFPN – the ratio between grain yield and the 

https://data.ers.usda.gov/reports.aspx?ID=17883
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amount of applied N inputs (Cassman et al., 1996) – represents an N fertilizer efficiency 

metric and only requires data on yield and N inputs. However, while PFPN provides an 

indication of N fertilizer efficiency for grain production, it tells little about potential 

environmental impact and long-term sustainability of the resource base. It may also give 

a biased assessment of agronomic performance of the cropping system. For example, 

high PFPN values can result from a combination of low yields and nil N inputs; if this 

situation continues over time, it would invariably lead into soil N mining, loss of soil 

quality, and, at scale, a deficient cereal supply. Another metric is the partial N balance 

(hereafter simply referred to as ‘N balance’), which is defined as the difference between 

N inputs and grain N removal (Treacy et al., 2008; Oenema et al., 2012; McLellan et al., 

2018). As in the previous example, a persistent negative N balance over time would 

invariably lead to soil N mining. In contrast, a large N balance is a strong indicator of 

potentially large N losses. For example, in the case of maize, N losses increase 

exponentially when N balance exceeds 75 kg N ha-1 (Zhao et al., 2016; McLellan et al., 

2018). An example of the application of the N balance approach is the framework for 

assessing N use or management developed by the European Union Nitrogen Expert Panel 

that considers (i) minimum amount of N input required for production; (ii) maximum N 

surplus that is environmentally acceptable; and (iii) minimum and maximum N use 

efficiency, defining a “safe operating space”, which shows the most desirable range for N 

output and N input (EU-NEP, 2015). Other examples of application of the N balance 

approach include whole-farm level assessments, including dairy farms (Schroder et al., 

2003; Spears et al., 2003; Cela et al., 2014). Finally, the N balance can also be expressed 
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per unit of yield (hereafter referred to as ‘yield-scaled N balance’) to recognize the 

different land requirements associated with low- and high-yield cropping systems to meet 

a given production goal (Schroder et al., 2003; Grassini and Cassman, 2012). Estimating 

N balance and other N-metrics in producer fields can help understand potential N losses 

in current agro-ecosystems, on a per-area and per-output basis. Greatest opportunities for 

improving agronomic and environmental performance associated with N input use would 

most likely be found in fields with large N balance and low PFPN.  

To establish a baseline and determine the variability among maize fields in both 

production and environmental outcomes related to N input use, we developed an 

approach using producer-reported data, a combination of N-metrics (PFPN, N balance, 

and yield-scaled N balance), and a spatial framework to cluster fields into near-similar 

climate-soil domains. We used Nebraska, (NE), USA as a study case—a state that 

produces 43 million MT of maize annually in ca. 4 million ha (USDA-NASS, 2014-

2018). The assessment was based on a large database including field-level data on yield 

and N fertilizer rates collected from irrigated and rainfed maize over multiple years (total 

of 9,280 field-year observations). Specific objectives were to (i) determine current PFPN, 

N balance, and yield-scaled N balance for irrigated and rainfed maize; (ii) evaluate the 

sensitivity of these N-metrics as a result of different levels of spatial and temporal 

aggregation (field averages, year averages, and individual field-year observations); and 

(iii) assess the influence of water regime and crop sequence on yield, N inputs, and N-

metrics as a first step towards understanding how management practices affect these N 

performance metrics. 



56 
 

 
 

 

3.2. MATERIALS AND METHODS 

3.2.1. Study region, on-farm database, and field grouping based on climate and soil 

 

The United States accounts for 28% of global maize production (FAOSTAT, 

2013-2017). About 90% of maize in the USA is produced in the north-central region, 

commonly referred to as the “Corn Belt”, where maize is grown as monoculture or in a 2-

y rotation with soybean (Grassini et al., 2014). Nebraska ranks third among USA maize 

producing states, with irrigated area accounting for ca. 58% and 65% of total NE maize 

cropland and production, respectively (USDA-NASS, 2014-2018). Nebraska is divided 

into 23 Natural Resources Districts (NRDs; www.nrdnet.org), with each NRD serving as 

a government entity authorized to establish regulations to conserve water and soil 

resource quality and quantity (Exner et al., 2010; Ferguson, 2015). Some of the NRDs 

require producers with fields located within their boundaries to report field-level data on 

yield and applied inputs every year. In the present study, we used data reported from 

maize fields located in four NRDs: Little Blue, Lower Platte North, Tri-Basin, and Upper 

Big Blue (Figure 3-1). Producer-reported data included field location (township, range, 

and section), maize yield (at standard moisture content of 155 g H2O kg−1 grain), N 

fertilizer rate, irrigation amount, some management practices (previous crop, irrigation 

system type, and manure application), and nitrate-N (NO3
--N) concentration contained in 

applied irrigation water. The database included irrigated and rainfed fields sown with 

http://www.nrdnet.org/
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maize during seven crop seasons (2009-2015) with contrasting weather conditions. For 

example, 2012 exhibited warmer and dry conditions, with seasonal temperature and total 

rainfall averaging 22°C and 202 mm, respectively, across the study area. In contrast, 

2014 was cooler and wet, with seasonal temperature and total rainfall averaging 20°C and 

544 mm, respectively. Water table depth was consistently below the rooting depth across 

the region where the reporting fields were located. 

Field boundaries were mapped using Google Earth® based on the field location as 

provided by the NRDs. Associated data were screened for erroneous and incomplete 

entries, using quality control measures that set acceptable ranges for yield, N inputs, and 

applied irrigation. For example, fields that reported maize yields >20 Mg ha-1 and/or N 

fertilizer amounts >350 kg N ha-1 were excluded from the database (ca. 0.1% of total 

observations). Fields receiving manure application were excluded because (i) on average, 

only 5% of maize fields in NE receive manure (USDA-ERS, 2005), and (ii) it is difficult 

to estimate the release and amount of N from applied manure (van Kessel and Reeves, 

2002). Only pivot-irrigated fields were considered for our study as surface (flood) 

irrigation accounts for a small fraction of irrigated maize area in NE (ca. 14%) and its 

area has steadily declined over time (USDA-ERS, 2010). Because the majority (>85%) of 

maize across the US Corn Belt region is grown continuously or in a maize-soybean 

rotation (Farmaha et al., 2016), fields sown with maize after wheat, alfalfa, or other crops 

besides maize and soybean were excluded from the analysis. Our study only includes 

fields sown with maize for grain; other maize fields sown for seed production or silage 
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were excluded. The group of reporting fields remained the same during the 2009-2015 

time period in the four NRDs. 

A robust comparison of producer fields in terms of yield, N inputs, and N-metrics 

requires grouping fields based on those factors with greatest influence on yield potential, 

yield stability and, indirectly, on nutrient cycling and other variables influencing crop 

responses to N inputs. In the present study, maize fields were grouped into technology 

extrapolation domains (TEDs; Rattalino Edreira et al., 2018). Briefly, a TED corresponds 

to a unique combination of annual growing-degree days (GDD), aridity index (ratio 

between precipitation and reference ET), temperature seasonality (as quantified with 

standard deviation for monthly temperature), and plant available water holding capacity 

(PAWHC). Within a defined region, such as the US Corn Belt, the TED framework 

categorizes soils into cohort groups, within which climate and soils are of sufficient 

similarity that crop responses to management practices (including N fertilizer) are 

expected to be similar. Detailed description of the TED spatial framework is available at 

http://www.yieldgap.org/web/guest/cz-ted. For our analysis, we grouped fields into two 

TEDs (TED 1 and 2) which, together, account for ca. 1.3 million ha land in the US sown 

with maize every year. Both TEDs have high temperature seasonality and same GDD 

range (i.e., 3792 – 4829 °Cd). In contrast, TED 1 had higher PAWHC (>300 versus 250-

300 mm) and higher water limitation (i.e., lower aridity index) compared to TED 2. The 

TED 1 only included irrigated fields, while TED 2 included both irrigated (I) and rainfed 

fields (R), which were disaggregated for the analysis. Hence, fields were grouped into 

three TED-water regime (TED-WR) combinations: TED 1I, TED 2I, TED 2R. After 

http://www.yieldgap.org/web/guest/cz-ted
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applying quality control measures and grouping the fields into the three TED-WRs, the 

database contained a total of 9,280 field-year observations; of these, 91 and 9% 

corresponded to irrigated and rainfed fields, respectively. On average, there were 511, 

691 and 124 fields per year in TEDs 1I, 2I, and 2R, respectively. 

 

3.2.2. On-farm data quality assessment 

 

Previous studies have shown that NRD producer-reported data aligned well with 

data collected by other independent sources (Grassini et al., 2014). In this study, we 

further evaluated the quality of the NRD data by comparing average annual N fertilizer 

and yield derived from the NRD database for each TED-WR against independent 

estimates derived from producer survey data (Grassini et al., 2015; Gibson et al., 2019) 

and official statistics (USDA-NASS, http://quickstats.nass.usda.gov/; USDA-ERS, 

https://data.ers.usda.gov/). Survey data included two crop seasons (2010 and 2011) and a 

total of 55 fields located within the same NRDs in the three TED-WRs (1I, 2I, and 2R). 

Data were disaggregated by water regime for the comparison. For consistency, we used 

the 2010-2011 time period for all yield and fertilizer paired comparisons. Unfortunately, 

USDA ERS data on N fertilizer amount for irrigated and rainfed maize were aggregated 

at state level and only available for 2010; hence, the comparison against our database 

average N rate could not be made at the same level of spatial aggregation. 

 

http://quickstats.nass.usda.gov/
https://data.ers.usda.gov/
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3.2.3. Retrieval of weather and soil data and simulation of yield potential for each 

TED-water regime in each year 

 

Weather and soil data were retrieved to assess differences among selected TED-

WR combinations. Averages of weather variables retrieved for each TED-year during the 

crop season (emergence to physiological maturity) were calculated for the 2009-2015 

time period per TED. Average dates of emergence and physiological maturity in each 

year were simulated using Hybrid-Maize model (Yang et al., 2004, 2017) based on 

average sowing date and hybrid maturity data available for each TED-WR (Morell et al., 

2016; Gibson et al., 2019) and measured daily weather data from three or four 

meteorological stations located within each TED (Figure 3-1). Weather variables 

included incident solar radiation, minimum and maximum temperature (Tmin and Tmax, 

respectively), precipitation, and Penman-Monteith grass-referenced evapotranspiration 

(ETo; Allen et al., 1998). Soil variables including percentage of soil organic matter, 

PAWHC, and topographic wetness index (TWI) for each field were retrieved from Soil 

Survey Geographic database (SSURGO, https://websoilsurvey.nrcs.usda.gov). PAWHC 

represents the amount of water (mm) that the soil can hold between field capacity and 

wilting point within the rootable depth. TWI indicates the likelihood of surface runoff 

(run-on) from (to) an area based on slope and surrounding area, with bottom and upland 

areas having highest and lowest values, respectively (Sørensen et al., 2006). 

Yield potential (Yp) is defined as the yield attained by an adapted crop cultivar 

when grown with non-limiting nutrient and water supplies and with pests and diseases 

https://websoilsurvey.nrcs.usda.gov/
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effectively controlled (Evans, 1993; van Ittersum et al., 2013). Water-limited yield 

potential (Yw) is influenced by the same factors that define Yp but also determined by 

precipitation amount and distribution and soil properties that influence water availability 

such as PAWHC and field slope. In our study, we estimated Yp and Yw for three 

purposes. First, the ratio between Yw and Yp provides an objective estimate of the degree 

of water limitation, which is useful to discern the degree of water limitation in rainfed 

versus irrigated fields in TED 2. Second, comparison of average producer yield against 

simulated Yp (irrigated fields) or Yw (rainfed fields) provides an estimate of the yield 

gap (difference between producer yield and Yp or Yw), which is useful to understand 

yield performance in relation to the N balance for a given field-year. For example, a large 

yield gap and a large N balance suggests an opportunity to produce more yield with the 

same or even smaller N balance. Third, expressing producer yield as a percentage of the 

Yp (or Yw) for a given TED-WR-year (hereafter referred to as ‘relative yield’) allows a 

fair comparison of producer yields and N balance across years with contrasting weather 

conditions, which is critical in the case of rainfed fields that depends on the erratic 

fluctuation in precipitation amount and distribution across years. 

We used Hybrid-Maize model (Yang et al., 2006, 2017) to estimate Yp (irrigated) 

and Yw (rainfed) for each TED-WR-year combination. Hybrid-Maize model has been 

widely evaluated for its ability to estimate yield potential in well-managed crops that 

grew without nutrient limitations and kept free of biotic stresses (Yang et al., 2004; 

Grassini et al., 2009a). Because the goal was to estimate the maximum possible yield that 

results from the best possible management in each TED-WR, we selected the 
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combination of sowing date, hybrid maturity, and plant density that give the highest yield 

in each TED-WR based on previous survey data (Farmaha et al., 2016; Gibson et al., 

2019). Data inputs and model parameters used to simulate Yp or Yw are shown in Tables 

3-1 and 3-2. Producer yield exceeded simulated Yp (or Yw) in 4% of the total field-year 

observations, likely due to inaccuracies in weather, soil, or producer yield data. For the 

purposes of this analysis, relative yield was set at one when producer yield exceeded Yp 

(or Yw).  

 

3.2.4. Calculation of partial factor productivity for nitrogen (N) inputs, N balance, 

and yield-scaled N balance 

 

The N inputs include N from synthetic fertilizer, applied irrigation water (in the 

case of pivot-irrigated fields), manure, atmospheric dry and wet deposition, inorganic soil 

N at sowing, and soil organic matter (SOM) mineralization during the crop season. 

Quantification of all N input sources for a large population of producer fields would 

require expensive and laborious measurements. Hence, we focused on those N inputs that 

account for the largest fraction of total N inputs and that are readily available from 

producer fields. In our study, we excluded fields receiving manure application as this is 

not a common practice in NE. In the case of atmospheric N deposition, NE is situated far 

from industrial areas and overall annual N deposition has been estimated to be very small 

(<10 kg N ha-1; NADP, USDA-REEIS, 

https://reeis.usda.gov/web/crisprojectpages/1007486-the-national-atmospheric-

https://reeis.usda.gov/web/crisprojectpages/1007486-the-national-atmospheric-deposition-program-nadp.html
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deposition-program-nadp.html). We assumed N released from SOM mineralization 

(which includes the inorganic soil N at sowing) to be similar to soil N immobilization, 

which is a reasonable assumption for soils in which SOM is near steady state as it is the 

case in the US Corn Belt (Baker and Griffis, 2005; Verma et al., 2005; Blanco-Canqui 

and Lal, 2008). In contrast, the amount of N contained in applied irrigation water 

(hereafter referred to as “N irrigation”) cannot be neglected for irrigated fields (Grassini 

et al., 2014; Ferguson, 2015). Hence, we considered N from both fertilizer and applied 

irrigation water for our calculation of PFPN, N balance, and yield-scaled N balance.  

Nitrogen added via irrigation was calculated from reported irrigation amount and 

NO3
--N concentration in groundwater. For field-years with no data to estimate N 

irrigation (because irrigation amount and/or NO3
--N concentration were not available), 

we used the average N irrigation calculated for other fields located within the same TED-

WR-year. Because irrigation amounts were not reported for TED2I, we estimated an 

irrigation amount consistent across all fields within a TED-year, using the relationship 

between seasonal water deficit and on-farm irrigation amount for silt loam soils reported 

by Gibson et al. (2018) for the same region. While the NO3
--N concentration used was 

the average value estimated across fields in TED2. We note that N irrigation accounts for 

a relatively small portion of the N inputs (ca. 11%), so the estimation of N irrigation for 

TED 2I is unlikely to bias results.  

Partial factor productivity for N inputs (PFPN) was calculated as the ratio between 

yield and N inputs. The N balance was calculated as the difference between N inputs and 

grain N removal. Maize grain N removal was estimated based on producer yield, 

https://reeis.usda.gov/web/crisprojectpages/1007486-the-national-atmospheric-deposition-program-nadp.html
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assuming a grain nitrogen concentration of 11.5 g kg-1 grain (at standard moisture content 

of 155 g H2O kg−1 grain) as derived from a recent review study for the US Corn Belt 

(Tenorio et al., 2019). We note that the goal is not to achieve zero N balance because that 

would lead to mining of soil organic matter for its mineralized N. Instead, here we used a 

threshold of 75 kg N ha-1 to identify fields with large N balance and, hence, potentially 

large N losses (Zhao et al., 2016; McLellan et al., 2018). Using data from individual 

field-year may give a biased assessment of producer performance in relation with using N 

inputs to produce grain. For example, a severe drought (e.g., year 2012) would reduce 

yield and lead to a relatively large N balance in rainfed fields. Likewise, a severe soil 

mining can be (wrongly) inferred from a field that (purposely) received little N fertilizer 

in a specific year because of large residual soil N from previous crop as measured using 

soil nitrate tests. To evaluate the degree to which our estimates of N balance may be 

biased due the aformentioned factors, we calculated the N balance at three different levels 

of aggregation: (i) individual field-years, (ii) individual fields with N balance averaged 

across years, and (iii) individual years with N balance averaged across fields. In the case 

of (ii), we included only those fields with at least three years of data. Finally, the yield-

scaled N balance was calculated as the ratio between N balance and producer yield. 

Frequency distributions were used to assess variation in yield, N inputs, and N-

metrics. Deviation from normality was tested using D’Agostino-Pearson normality test. 

In addition, a three-way analysis of variance (ANOVA) was used to quantify the 

influence of TED-WR, year, previous crop, and their interactions at explaining observed 
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variation on yield, N inputs, N balance, PFPN, and yield-scaled N balance. Proportion of 

sum of squares (%SS) attributable to each term was computed after excluding the error. 

Mean contrasts were used to assess the overall effect of water regime and crop sequence 

on the different parameters. Tukey’s test was used to determine statistically significant 

differences among averages (α= 0.05). Yield versus N balance plots were assessed to 

determine the frequency of fields with small or large N balance and low or high yield. 

The analysis was also performed using relative yield (as % of Yp or Yw) to account for 

weather variation across years, TEDs, and WR. Fields were subsequently grouped in four 

categories: (A) high relative yield, N balance <75 kg N ha-1; (B) low relative yield, N 

balance <75 kg N ha-1; (C) high relative yield, N balance ≥75 kg N ha-1; (D) low relative 

yield, N balance ≥75 kg N ha-1. Following Lobell et al. (2009) and van Ittersum et al. 

(2013), we used 80% and 70% of Yp and Yw as thresholds to distinguish high versus low 

yields in irrigated and rainfed fields, respectively. These values represent reasonable 

yield goals, with the smaller yield goal in the case of rainfed crops aiming to account for 

the higher production risk associated with erratic rainfall across years.  

 

3.3. RESULTS 

3.3.1. On-farm yield, N inputs, and N-metrics across climate x soil x water regime 

domains 

 

Averages of meteorological variables were similar between the three TED-WRs, 

except for ETo, which tended to be higher in TED 1 versus TED 2 (Table 3-3). Irrigated 
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fields exhibited higher PAWHC and TWI, and lower soil organic matter in TED 1 

compared with TED 2. Within TED 2, irrigated fields had higher soil organic matter and 

TWI compared with rainfed fields, explained by the fact that pivot-irrigated fields are 

usually located in the best soils and give higher yields, which means increased mass of 

returned crop residues. Weather and soil parameters exhibited relatively small year-to-

year and field-to-field variation, respectively, as indicated by their respective coefficients 

of variation (CVs ≤16%); although total precipitation was an important exception, 

exhibiting large variation across years in both TEDs (CVs = 30-35%) (Table 3-3).   

Averages for NRD yield and N fertilizer were in reasonable agreement with 

estimates derived from independent survey data, collected from fields located in same 

NRD, with differences among databases within ±4% of NRD averages (Table 3-4). 

Similarly, there was good agreement between NRD and NASS maize yields (differences 

<4%). In contrast, average statewide N fertilizer data reported through official statistics 

was 7-10% (irrigated) and 5% (rainfed) lower than average N fertilizer rate as reported to 

the NRDs. Inclusion of other regions of NE with lower maize yields and, probably, lower 

fertilizer N amounts in the calculation of the statewide average (for the official statistics) 

may explain these differences. Indeed, our study area has slightly higher average irrigated 

and rainfed maize yields (13.4 and 9.3 Mg ha-1) compared with the state averages (12.7 

and 9.0 Mg ha-1; USDA-NASS, 2013-2017).  

Average producer yield represented ca. 81% of simulated Yp for irrigated fields 

and ca. 70% of Yw for rainfed crops (Table 3-5). The Yw for rainfed maize in TED 2 

was ca. 30% lower and three times more variable compared with the simulated Yp for 
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irrigated maize in the same TED. Average yield and inter-annual CV for irrigated maize 

is similar to those reported for favorable rainfed maize production environments in the 

central and eastern portions of the US Corn Belt, including Iowa, Illinois, and Indiana 

(Grassini et al., 2014). 

Frequency distributions for irrigated and rainfed producer field yields were 

negatively skewed, with the majority of the fields closer to highest yields (Figures 3-2 a, 

c). TED-WR had the greatest influence on yield and N inputs, accounting for 70-90% of 

SS excluding the error, with the rest of the modelled variation mostly explained by year, 

TED-WR x year interaction, and, in the case of N inputs, also by previous crop (Table 3-

6). This result was expected as the TED-WR stratification aimed to account for 

differences in climate, soil, and water supply between regions and water regimes. 

Average producer yield was ca. 40% lower (and 5x more variable) in rainfed versus 

irrigated fields (Table 3-6). Consistent with the yield difference, average N input was 

44% higher in irrigated versus rainfed fields (Figures 3-2 b, d). In contrast to crop yield, 

the degree of inter-annual variation for N inputs was identical for both water regimes (CV 

= 6%). Distribution of field-level N inputs was normally distributed in irrigated fields but 

positively skewed in rainfed fields, indicating that a relatively smaller number of fields 

received much larger N inputs than the rest of the fields. In irrigated fields, N fertilizer 

exhibited a negatively skewed distribution (skewness = -0.19). Average N irrigation 

represented 11% of the N input in irrigated fields, exhibiting larger inter-annual variation 

compared with N fertilizer (CV = 41 versus 4%) as a result of variation in irrigation 
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amounts across years in response to water demand as affected by weather (Figure 3-2b, 

inset).  

Frequency distribution for N balance and PFPN showed contrasting patterns 

between water regimes: the N balance was negatively and positively skewed in irrigated 

and rainfed fields, respectively (Figures 3-3 a, d) while PFPN exhibited the inverse trend 

(Figures 3-3 b, e). However, yield-scaled N balance was positively skewed in both water 

regimes, indicating that a relatively smaller number of fields in irrigated (1%) and rainfed 

(9%) exhibited very large yield-scaled N balance (> 15 kg N Mg-1 grain).  

The TED-WR term of our ANOVA explained ca. half of the modelled variation 

in N balance; the rest of the variation was accounted for by year, TED-WR x year, and 

previous crop (Table 3-6). In contrast, TED-WR explained a small portion of modelled 

variation in PFPN and yield-scaled N balance (<10%), with most variation accounted for 

by year, TED-WR x year, and, in the case of PFPN, by previous crop as well. The large 

portion of unaccounted variation in N balance, PFPN, and yield-scaled N balance (75, 75, 

and 63% of total SS, respectively) suggests that magnitude of field-to-field variation was 

as important as variation due to TED-WR, year, previous crops, and their interactions.  

 

3.3.2. Benchmarking yield and N balance in producer fields  

 

Similar to the observed pattern in average yield, the average N balance, calculated 

using all field-year observations, decreased in the following order: TED 1I (86 kg N ha-1), 

2I (77 kg N ha-1) and 2R (37 kg N ha-1) (Figures 3-4 a, b, c). About 61, 54, and 14% of 
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the field-years in TED 1I, 2I, and 2R, respectively, exhibited N balance ≥ 75 kg N ha-1. 

Results were similar when field averages (i.e., averages for each field based on at least 3 

years of data) were used for the analysis instead of individual field-year observations 

(Figures 3-4 d, e, f), except that the range of N balance narrowed considerably. For 

example, cases with very large N balance (> 150 kg N ha-1) or negative N balance were 

not apparent when the analysis was based on field averages instead of field-years.  

Average annual N balance did not vary substantially among years in the case of 

irrigated maize (CV = 15%) (Figures 3-4 g, h). In contrast, rainfed maize exhibited a 

large year-to-year variation (CV = 51%), with larger (smaller) N balance corresponded to 

years with lower (higher) yield (Figure 3-4i). For instance, highest N balance in TED 2R 

(rainfed) occurred in 2012, which corresponded to a drought year with very low yield. 

The year-to-year variation in N balance in irrigated fields was mostly due to variation in 

N irrigation (CV = 34-56%), but not in N fertilizer (CV = 3-5%).  

Analysis of yield variation across field-years, for a given N balance level, is 

confounded by year-to-year variation in weather. Expressing producer yields as 

percentage of Yp (irrigated fields) or Yw (rainfed fields) using field averages allows an 

objective assessment of available room for improving yield at a given N balance level 

through better agronomic practices. About 41 and 52% of the irrigated and rainfed fields 

fell into the low relative yield categories (i.e., below 80% and 70% of Yp and Yw, 

respectively, categories B and D in Figure 3-5), indicating room to further increase yields 

within the observed range of N balance (Figure 3-5). Of particular concern are those 

fields exhibiting large N balance and low relative yield (category D), representing 29 and 
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3% of total irrigated and rainfed fields, respectively. Attaining high yields with a smaller 

N balance (category A) is a realistic goal: 24% and 47% of irrigated and rainfed fields, 

respectively, exhibited N balance < 75 kg N ha-1 and attained or even exceeded their 

respective yield goals.   

 

3.3.3. Yield, N inputs and N-metrics as influenced by TED, water regime, and 

previous crop 

 

Average N input rates were 44% larger in irrigated versus rainfed fields, but 

higher yields in irrigated fields meant that PFPN was remarkably similar between water 

regimes (Table 3-6, Figure 3-3). And while N balance was 51% larger in irrigated versus 

rainfed fields, yield-scaled N balance was smaller in irrigated fields. For a given TED-

WR, yield and N inputs were 2% lower and 10% larger, respectively, in maize after 

maize versus maize after soybean (Table 3-6, Figure 3-6). As a result, PFPN and N 

balance was higher and lower, respectively, in maize after soybean compared to maize 

after maize. Consistent with these results, frequency of fields with N balance ≥ 75 kg N 

ha-1 was lower in soybean-maize than in maize-maize: 40% versus 71% (irrigated fields) 

and 11% versus 18% (rainfed fields).  

 

3.4. DISCUSSION  
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Benchmarking crop yields against external input use provides insight about 

opportunities to increase producer profit while using the same or less amount of input. 

There are many examples using this approach in the literature. For example, in a classic 

study, French and Schultz (1984) developed a boundary function for the relationship 

between yield and seasonal water supply for wheat in Australia; these authors 

documented large variation in yield across a wide range of water supply, which was 

attributable to management. This framework has been subsequently used in a multitude 

of studies to assess crop water productivity and identify opportunities for improvement 

(Sadras and Angus, 2006; Passioura, 2006; Grassini et al., 2009b, 2011). As far as we 

know, Hochman et al. (2014) is the only study that used a similar approach to benchmark 

crop yields in relation with N inputs. These authors presented an input-yield production 

frontier that benchmarked the efficiency of applied N fertilizer in terms of crop 

production; however, the approach had a (data-intensive) modeling component to 

estimate crop N requirement and did not explicitly focus on assessing potential N losses 

or estimating the N balance. In contrast, our study provides a cost-effective approach to 

benchmark yields in relation to N balance of individual producer fields using several 

readily-available parameters. 

At issue is the degree to which the observed variation in N balance across 

producer fields is attributable to variation in agronomic management. Our study showed 

that field-to-field variation in N balance was much larger than the portion of variance 

accounted for by year, TED-WR, crop sequence, and their interactions (ca. 75 versus 

25%, respectively; Table 3-6). Similarly, although fields were grouped into TED-WRs, 
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and N balance was averaged across years, there was still large variation in N balance at 

any given yield level and vice versa. For instance, at a yield level of ca. 13 Mg ha-1, the N 

balance in irrigated fields varied from ca. 30 to 150 kg N ha-1 (Figure 3-4). Altogether, 

these findings suggest that management practices likely have a large influence on on-

farm N balance, though part of the variation can also be attributed to spatial and temporal 

variation in climate and soil within each TED-WR combinations. It is still uncertain, 

however, how much of that variation is manageable through cost-effective agronomic 

technologies. In this regard, a key challenge to improved N fertilizer efficiency is that 

producers apply fertilizer without knowing the magnitude of total crop N demand, which 

is largely determined by Yp (or Yw in the case of rainfed fields) of the crop season 

ahead. If the season is unfavorable, the amount of N fertilizer they apply may be too large 

compared with crop N requirements that year. In contrast, if the year has Yp (or Yw) well 

above average, the applied N fertilizer may be insufficient to meet crop N requirements. 

Uncertainty in yield and N demand is most important in rainfed fields because Yw 

fluctuates dramatically from year to year (inter-annual CV = 31%) as a result of 

contrasting in-season precipitation amounts and temporal distribution, while N fertilizer 

remains fairly constant (inter-annual CV = 6%) as rainfed producers did not try to adjust 

N fertilizer rates in response to the large annual yield variation. Not surprisingly, our 

study shows that N balance is smaller and more variable in rainfed versus irrigated fields 

as a result of its higher climatic risk (Figure 3-4). We note that NE is a harsh environment 

for rainfed maize production; in contrast, irrigated maize yield (and its stability) in NE 

will be comparable to those of rainfed maize production in the most favorable 
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environments in the eastern and central portions of the US Corn Belt (Grassini et al., 

2014). Hence, results from this study for irrigated maize in NE are likely to be 

comparable to those for maize grown in favorable rainfed environments in the US Corn 

Belt. 

While it may be difficult for producers to optimize N balance based on in-season 

weather, there may be other options that can help reduce the N balance regardless of the 

year-specific weather, and with little (if nil) yield penalty. The present study has 

identified some of those factors. For example, irrigated maize in rotation with soybean 

exhibited substantially smaller N balance with a slightly higher yield (Figure 3-6). In 

connection to this finding, we note that future studies addressing the N balance in agro-

ecosystems should aim to include the entire crop sequence into the analysis rather than 

individual crops. This is critical in the case of maize-soybean rotation considering the 

typical negative N balance during the soybean cycle as documented by a number of 

studies (Connor et al., 2011; Santachiara et al., 2017; Ciampitti and Salvagiotti, 2018). 

While the goal of having N balance < 75 kg N ha-1 seems realistic for continuous maize 

systems, this threshold may need to be re-examined in the case of maize-soybean 

sequences where an apparent large N balance during the maize cycle may actually be 

needed if the goal is to keep the N balance for the entire crop sequence above a level at 

which there is sufficient N to maintain soil organic matter at steady state.  

Our proposed framework to categorize fields into low/small N balance and yield 

gap is useful to inform meaningful agronomic interventions and orient policy (Figure 3-

5). Firstly, our findings demonstrated that the goal of achieving high yields without a 
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large N balance is not an oxymoron as 25% of the fields in our study cases achieved these 

two goals simultaneously (category A in Figure 3-5). Secondly, the framework can help 

avoid the “one-size-fits-all” solutions promoted by some environmental advocacy groups 

that propose restricting the amount of N fertilizer that can be applied across all fields 

regardless of crop yields and N demand. This approach would punish producers who are 

already producing high yields while achieving small positive N balance. Instead, 

agronomic and extension efforts should focus on those fields with large positive N 

balance and large yield gaps (category D in Figure 3-5), which roughly represent 30% of 

the irrigated fields in our study and likely contribute disproportionately more to the 

overall N footprint compared with the other fields. Similar findings have been reported 

for irrigated wheat in Mexico (Ahrens et al., 2010). Finally, the framework is useful for 

individual producer and crop consultants to diagnose their current N fertilizer 

management, serving as a starting point to identify inefficiencies and possible solutions. 

For example, if the current yield gap is small, it may be wise for producers to look for 

opportunities to reduce N input use without reducing crop yields, which would lead to 

greater input-use efficiency and extra producer revenue as it has been documented in the 

case of irrigation water management in NE (Irmak et al., 2012; Gibson et al., 2019).  

Our assessment makes two key contributions relative to estimation of N balance. 

First, our study showed that calculation of N balance for individual fields should rely on 

more than one year to avoid the confounding effect of weather and episodic adjustments 

in N fertilizer rates to account for large residual soil N from previous crop or other 

factors. For example, the analysis based on all field-year observations would have 
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pointed out to an important number of fields with apparent soil mining (i.e., negative N 

balance) or very large N balance; this pattern was not apparent when the analysis was 

based on average N balance using three or more years (Figure 3-5). Second, our 

assessment clearly indicated that using a suite of N-metrics is more robust compared with 

the use of single indicators. For instance, results in this study showed that (low-input) 

rainfed systems exhibited lower N balance with almost same PFPN compared to (high-

input) irrigated systems. However, in a broader scale, to reach the same total grain 

production target, the low-input system would need ca. 40% more cropland, which would 

lead to an overall N balance (on a regional basis) that is similar or even higher compared 

with the high-input irrigated systems. In other words, as reported by previous studies 

(e.g., Grassini and Cassman, 2012), when the N balance was scaled by yield (i.e., yield-

scaled N balance), the apparent advantage of low-input versus high-input systems 

vanished. So, while N balance at a field-level would be the proper indicator to evaluate 

environmental footprint in relation to crop-system performance, yield-scaled N balance is 

a more relevant metric for regional and global assessments that account for possible 

changes in land use. 
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Table 3-1. Meteorological stations and inputs used to simulate yield potential or water-

limited yield potential in each technology extrapolation domain-water regime (TED-

WR). 

TED-

WR 
Meteorological stations 

Sowing 

date 

Hybrid relative 

maturity (days) 

Plant density 

(plants m-2) 

1I Axtell, Holdrege, Ragan, Smithfield April 23 115 8.7 

2I Harvard, Guiderock, York April 23 115 8.7 

2R Duncan, Harvard, York April 25 115 7.0 

 

 

 

 

 

Table 3-2. Soil and field input used to simulate water-limited yield potential in rainfed 

maize fields located in TED 2R. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Value 

Rooting depth (cm) 150 

Topsoil texture silt loam 

Subsoil texture silt loam 

Bulk density (g cm-3) 1.3 

Available soil water (at sowing) 100% PAWHC 

Soil surface residues coverage (%) 50 

Field slope (%) ≤ 2 

Soil drainage Good 
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Table 3-4. Comparison for yield and N fertilizer among the Natural Resource District 

(NRD) database (this study), independent survey producer data (Grassini et al., 2015; 

Gibson et al., 2019), and official statistics (National Agricultural Statistics Service 

[USDA-NASS]; Economic Research Service [USDA-ERS]) for each technology 

extrapolation domain x water regime (TED-WR) combination. Values are 2010-2011 

averages, except for average N fertilizer reported by ERS, which corresponds to an 

average statewide value reported for year 2010. 

 

 

Table 3-5. Average producer yield, yield potential (Yp; irrigated crops) or water-limited 

yield potential (Yw; rainfed crops), and relative yield (ratio between producer yield and 

Yp or Yw) for each technology extrapolation domain x water regime (TED-WR) 

combination. Parenthetic values indicate the inter-annual coefficient of variation (in %).  

TED-WR 
Producer yield          

(Mg ha-1) 

Yp or Yw                

(Mg ha-1) 
Relative yield 

1I 13.9 (8)a 17.1 (7)a 0.81 (11)a 

2I 13.3 (4)b 16.6 (10)b 0.80 (9)b 

2R 8.2 (28)c 11.8 (31)c 0.69 (13)c  

Different letters indicate statistically significant differences among TED-WRs (p<0.05, Tukey’s 

test). 

 

 

 

 

 

 

TED-WR 
Yield (Mg ha-1) 

NRD Survey NASS/ERS 

1I 12.6 12.6 12.4 

2I 12.5 13.0 12.0 

2R 8.9 8.8 9.0 
 N fertilizer rate (kg N ha-1) 

1I 210 218 
189 

2I 204 197 

2R 138 144 131 
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Figure 3-1. Location of irrigated (blue dots; n= 8,413 field-years) and rainfed maize 

fields (red dots; n= 867 field-years). Fields were grouped into two ‘technology 

extrapolation domains’ (TED 1 & 2) based on climate and soil similarity and fields in 

TED2 were further grouped based upon water regime (irrigated [2I] and rainfed [2R]), 

resulting in three TED-water regime combinations (TED 1I, 2I and 2R). Note that all 

fields in TED1 were irrigated. Stars indicate location of the meteorological stations. Inset 

shows maize harvested area (in green; USDA-NASS, 2017) and location of area of 

interest within Nebraska (NE). Lines show borders of NE Natural Resources Districts 

(NRDs). Producer data from four NRDs were used for the present study: Little Blue 

(LB), Lower Platte North (LPN), Tri Basin (TB), and Upper Big Blue (UBB). 
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Figure 3-2. Frequency distributions for producer yield (left) and N inputs (right) in 

irrigated (a, b; and rainfed fields (c, d). Number of field-years were 8,413 (irrigated) and 

867 (rainfed). Average (solid line), maximum and minimum (dashed lines) annual 

simulated yield potential (irrigated) or water-limited yield potential (rainfed) are shown. 

Inset in panel b shows averages for N fertilizer and N irrigation. Average (X ± standard 

error) and skewness (S) are shown. Irrigated data from technology extrapolation domains 

(TEDs) 1 and 2 were pooled as frequency distributions for yield and N inputs were 

almost identical. 
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Figure 3-3. Frequency distributions for nitrogen (N) balance (left), partial factor 

productivity for N inputs (PFPN, center), and yield-scaled N balance (right) in irrigated 

(a, b, c) and rainfed fields (d, e, f). Number of field-years were 8,413 (irrigated) and 867 

(rainfed). Average (X ± standard error) and skewness (S) are shown. Irrigated data from 

technology extrapolation domains (TEDs) 1 and 2 were pooled as frequency distributions 

for yield and N inputs were almost identical. 
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Figure 3-4. Nitrogen (N) balance and producer maize yield in irrigated fields in TED 1 

(1I; left) and TED 2 (2I; center) and rainfed fields in TED 2 (2R; right). Each datapoint 

represents a field-year observation (a, b, c), field averages based on 3 years of data or 

more (d, e, f), and annual averages based on all fields in a given year (g, h, i). Horizontal 

arrows indicate N balance = 75 kg N ha-1, which was used as a threshold to identify fields 

with large N balance. Average yield (Ya) and N balance are shown (and indicated with 

blue crosses). Percentage of field-years (a, b, c), field averages (d, e, f), and years (g, h, i) 

with N balance ≥ 75 kg N ha-1 is also shown.  
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Figure 3-5. Relative yield and nitrogen (N) balance in irrigated fields in TED 1 (1I; left) 

and TED 2 (2I; center) and rainfed fields in TED 2 (2R; right). Relative yield was 

calculated based on producer yield expressed as percentage of yield potential (Yp; 

irrigated) or water-limited yield potential (Yw; rainfed). Each datapoint represents a field 

average based on at least 3 years of data. Vertical line indicates N balance = 75 kg N ha-1, 

which was used as a threshold to identify fields with small and large N balance. 

Horizontal lines indicate 80% and 70% of Yp and Yw, which are reasonable yield goals 

for irrigated and rainfed fields, respectively. Frequency of fields in each of four (yield x 

N balance categories) combinations are shown. 
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Figure 3-6. Average producer yield, nitrogen (N) fertilizer rate, N inputs, N balance, 

partial factor productivity for N inputs (PFPN), and yield-scaled N balance in the three 

technology extrapolation domain-water regime (TED-WR) combinations: irrigated TED 

1(1I), irrigated TED 2 (2I), and rainfed TED 2 (2R). Separate averages are shown for 

fields sown with maize after maize (empty bars) or after soybean (solid bars). Averages 

were calculated based on annual averages, with vertical lines indicating the standard 

errors. Different letters indicate statistically significant differences among TED-WR x 

previous crop combinations (Tukey’s test; p <0.05). Percentage of fields sown with maize 

after maize or soybean in each TED-WR combination is shown in (A). 
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CHAPTER 4: DATA REQUIREMENTS FOR RELIABLE ESTIMATION OF ON-

FARM MAIZE NITROGEN BALANCE  

 

ABSTRACT 

 

The N balance, that is, the difference between N input and grain N removal, provides 

an indication of potential N losses to the environment. Application of this approach 

requires field-level data on yield and N inputs across mutiple field-years to account for 

variation in climate and management. The objetive of this study was to (i) determine the 

minimum number of years and fields per year needed for a reliable N balance estimation 

for a given climate-soil domain, and (ii) assess the degree to which N balance is 

persistent in individual producer fields over time. We used maize in Nebraska (USA) as a 

case study. The database included information on yield and N inputs collected from 

producer fields during seven years (total of 9,280 field-years). Fields were clustered into 

two climate-soil domains (TED 1 and TED 2) that were representative of ca. 1.3 million 

ha sown with maize. TED1 only included irrigated (TED 1I) fields while TED2 included 

both irrigated and rainfed fields (TED 2I and TED 2R, respectively). We found that year-

to-year variation in N balance were substantially larger in rainfed versus irrigated fields, 

which resulted into a higher number of years in the former to obtain an estimate of N 

balance that was within ±10% of the average N balance estimated using all years of data 

(6 versus 4 years). Irrespective of water regime, our results showed that 100 fields per 

year was sufficient for a robust estimation of N balance within a given climate-soil 
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domain. There were irrigated fields that consistently exhibited large N balance (LNB) as 

a result of consistent high N inputs and/or low yield. Similarly, the proportion of fields 

with maize in rotation with soybean was consistently smaller in LNB fields compared 

with the other fields. Our results can guide efforts in collecting producer data for 

estimation of N balance and understand the causes of large N balance in producer fields.  

 

Keywords: maize, nitrogen balance, producer data, spatial variation, temporal variation 

 

4.1. INTRODUCTION 

 

A partial nitrogen (N) balance in producer maize fields can be estimated as the 

difference between N inputs and grain N removal (Treacy et al., 2008; Oenema et al., 

2012; McLellan et al., 2018). The N balance is a good indicator of potential N losses to 

the environment associated with agricultural production (van Groenigen et al., 2007; 

Venterea et al., 2011; Pittelkow et al., 2014; Zhao et al., 2016; McLellan et al., 2018). 

Previous studies have shown evidence of either excessive (i.e., N surplus) or insufficient 

(i.e., N deficit) N application in relation to crop N demand, which unintendedly have 

negative impact on the environmental and soil quality (Sanchez and Swaminathan, 2005; 

Zhang et al., 2015). Hence, monitoring N balance of a given field is necessary to 

benchmark N inputs application in relation with crop N requirements, which, in turn, can 

help to identify pathways for reducing environmental footprint while maintaining or 

increasing current yields and soil quality. 
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Despite the simplicity of the N balance approach, a key constraint for its 

estimation is the lack of field-level yield and N inputs data. While there were previous 

efforts in benchmarking N balance, these studies retrieved yield and/or N inputs (e.g., N 

fertilizer) from aggregated data reported at coarser spatial levels (e.g., county, state, and 

country) such as the National Agricultural Statistics Service (NASS, 

https://quickstats.nass.usda.gov/) and FAO database, 

http://www.fao.org/faostat/en/#data/) (Khanal et al., 2014; Lassaletta et al., 2014; Basso 

et al., 2019). To our knowledge, Tenorio et al. (2019b) was the only study that used field-

level producer data on yield and N inputs to estimate N balance for individual field-years. 

Despite similarity in climate and soil among fields, this study found large variation in N 

balance across field-years (range: -50 to 230 kg N ha-1), indicating a high spatio-temporal 

variation in either yield, N inputs or both. In order to retrieve a robust estimate of the N 

balance for a given climate-soil domain, it would be necessary to have a sufficient 

number of years and fields so that the resulting estimate can be taken as representative of 

the dominant climate, soil, and management practices. Unfortunately, there has been no 

explicit effort to understand the data requirements, in terms of number of years and fields, 

needed for robust estimation of N balance.  

Variation in N balance across years in a given field can be attributed to annual 

variation in climatic and/or management factors which lead to changes in yield, N inputs, 

or both. Following Lobell et al. (2007), underlying factors affecting N balance of a given 

field could be grouped into consistent (e.g., constant management practices, soil 

properties, producer’s skill) or inconsistent (e.g., weather, crop diseases). A similar 

https://quickstats.nass.usda.gov/
http://www.fao.org/faostat/en/#data/
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categorization was followed by Farmaha et al. (2016) and Gibson et al. (2018) to assess 

the persistence in yield gaps and irrigation water surplus over time in producer fields. 

This analysis could also help understand the degree to which N balance is manageable 

within a region with similar climate and soil. On one hand, if N balance in a group of 

fields is consistently high or low across years, it means that a persistent factor drives the 

variation in N balance across producer fields (e.g., producer’s skill, stable N input 

application). On the other hand, if N balance is not persistent over time, it means that the 

driving variation in N balance across fields are erratic and/or difficult to manage (e.g., 

weather-induced yield variation, pest incidence). Analyzing differences between fields 

exhibiting persistent large and small N balance can help understand the causes for the 

(lack of) persistency.  

To summarize, there is a dearth of knowledge in relation with the number of years 

and fields needed for robust estimation of N balance and the degree of persistence in N 

balance in individual fields. As a first step to fullfill this knowledge gap, here we used a 

large database collected from irrigated and rainfed producer maize fields in Nebraska 

(NE, western US Corn Belt) as a study case. The database was collected over seven years 

(2009-2015) and includes a total of 9,280 field-year observations. Specific objectives 

were to (i) examine the spatio-temporal variation in yield, N inputs, and N balance; (ii) 

examine the degree to which variation in yield and N inputs affect N balance estimation; 

(iii) identify the number of years and fields per year that are needed for reliable N balance 

estimation; and (iv) assess the persistence in N balance in individual fields over time and 

identify the underlying factors. 
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4.2. MATERIALS AND METHODS 

4.2.1. Description of producer database and field clustering 

 

This study utilized a database collected from the Natural Resources Districts 

(NRD, www.nrdnet.org) in Nebraska (USA). The NRDs are local government entities 

with authority to collect producer data every growing season as part of their programs to 

protect and conserve natural resources. The NRD data included field-specific information 

on maize yield (at standard moisture content of 155 g H2O kg−1 grain), applied N 

fertilizer and irrigation, management practices (e.g., previous crop, irrigation system type, 

and manure application), and nitrate-N (NO3
--N) concentration in applied irrigation 

water. We used data collected over seven years (2009-2015) from fields located within 

four NRDs: Little Blue, Lower Platte North, Tri-Basin, and Upper Big Blue (Figure 3-1). 

Quality control was performed to remove fields with missing data or outliers (e.g., yield 

>20 Mg ha-1). This study considered only pivot-irrigated maize fields in rotation with 

maize or soybean. A small fraction of fields (5%) with manure application was discarded. 

Overall, we used a total of 9,280 field-year observations. Detailed explanations on the 

quality control measures and criteria used for data exclusion is provided elsewhere 

(Tenorio et al., 2019a).  

Fields were grouped based on similarity of climate and soils using the technology 

extrapolation domain (TEDs) framework (Rattalino Edreira et al., 2018; 

http://www.yieldgap.org/web/guest/czted). Briefly, TEDs delineate regions with similar 

http://www.nrdnet.org/
http://www.yieldgap.org/web/guest/czted
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growing-degree days, aridity index, temperature seasonality, and plant available water 

holding capacity (PAWHC). Hence, crop responses to management practices (including 

fertilizer) are expected to be similar within a given TED. For our analysis, we grouped 

fields into two TEDs (TED 1 and 2), which, in turn, include ca. 1.3 million ha sown with 

maize every year. TED 1 only included irrigated fields, while TED 2 included both 

irrigated and rainfed fields. Hence, field-years were grouped into three TED-water 

regime (TED-WR) combinations: TED 1 irrigated (1I), TED 2 irrigated (2I), and TED 2 

rainfed (2R). Average cumulative GDD and precipitation between ca. emergence and 

physiological maturity were estimated using weather data from meteorological stations 

located within each TED-WR. Detailed description of weather and soils for the three 

TED-WRs can be found elsewhere (Tenorio et al., 2019a). Briefly, TED 1 and 2 had 

similar solar radiation, temperature, and precipitation, but grass-referenced 

evapotranspiration (ETo) was higher in TED 1. In contrast, soil properties varied between 

TEDs, with TED 1 exhibiting higher PAWHC, but lower soil organic matter content, 

relative to TED 2. Within TED 2, soil organic matter and TWI was higher in irrigated 

versus rainfed fields. We note that irrigated maize in NE has a small inter-annual 

coefficient of variation (CV) for yield, which is comparable to those reported for 

favorable rainfed maize production environments in the central and eastern fringes of the 

US Corn Belt (Grassini et al., 2015).  

 

4.2.2. Estimation of N balance and other N-related metrics 
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A simple maize N balance was calculated as the difference between N inputs (i.e., 

N from fertilizer and applied irrigation water) and grain N removal in each producer 

field. As explained by Tenorio et al. (2019b), quantification of all N input sources (which 

also include manure, atmospheric dry and wet deposition, inorganic soil N at sowing, and 

soil organic matter mineralization) for a large population of producer fields would require 

expensive and laborious measurements. The N inputs used for the calculation of N 

balance includes N fertilizer and groundwater N in irrigation water. The N fertilizer 

accounts for ca. half of total N input to global cropland (Cassman et al., 2002). Similarly, 

the amount of N contained in applied irrigation water cannot be neglected for irrigated 

fields (Grassini et al., 2014; Ferguson, 2015). Hence, we focused on those N inputs that 

account for the largest fraction of total N inputs and that are readily available from 

producer fields. In addition, N released from SOM mineralization (which includes the 

inorganic soil N at sowing) was assumed to be similar to soil N immobilization, which is 

a reasonable assumption for soils in which SOM is near steady state as it is the case in the 

US Corn Belt (Baker and Griffis, 2005; Verma et al., 2005; Blanco-Canqui and Lal, 

2008). Maize grain N removal was estimated based on producer yield assuming a grain N 

concentration of 11.5 g kg-1 grain, which is reported at standard moisture content of 155 g 

H2O kg-1 grain (Tenorio et al., 2019b). Other N use efficiency metrics were also 

estimated, including the partial factor productivity for N inputs (PFPN; ratio between 

yield and N inputs) and yield-scaled N balance (ratio between N balance and yield), to 

asses N balance both in area- and grain output-basis. Detailed description of estimation of 

N balance and other N-related metrics is provided elsewhere (Tenorio et al., 2019a). 
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4.2.3. Number of years and fields per year for reliable estimation of N balance 

 

On-farm N balance estimation requires field-level data on yield and N inputs. 

Hence, variation in any of these parameters (or both) would lead to changes in N balance 

across field-years. As a first step to evaluate sensitivity of N balance to variation in yield 

at a given N inputs, we plotted N balance versus N inputs and fitted boundary functions 

using quantile regression for the 5th and 95th percentiles (Koenker and Basset, 1978) 

using the “quantreg” package in R (Koenker, 2017). Additionally, analysis of variance 

(ANOVA) was performed to determine the percentage of total variance in N balance 

explained by yield versus N inputs, which was quantified using the percentage of total 

sum of squares (SS), after excluding the error, attributable to each variable. 

We followed an approach similar to the one used by Grassini et al. (2015) to 

analyze the number of years and fields per year required for robust estimation of N 

balance for a given TED. Average N balance for each TED was estimated using different 

number of years (n, from one up to seven years) with 100 subsets of years of size n re-

sampled from the 7-y annual averages. The range in average N balance gives an 

indication of the uncertainty in this parameter due to year-to-year variation in yield 

and/or N inputs. Likewise, the sensitivity of N balance to the number of fields per year 

was evaluated by assessing the range of N balance using different number of fields per 

year (from one up to 100 fields). We chose two years which represented the crop season 

exhibiting the largest (year 2014) and smallest (year 2015) field-to-field variation in yield 
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for each TED. Number of fields per TED ranged from 146 (TED 2R in year 2014) to 785 

(TED 2I in year 2014). The range of average N balance, for a given number of fields used 

on its calculation, represents the uncertainty on TED-level average N balance due to 

field-to-field variation in yield and/or N inputs. We considered average N balance to be 

robust when all possible average values (for a given number of years or fields per year) 

was within ±10% of average N balance obtained using all years of data or all fields per 

year in each TED. A ±10% range would be equivalent to ca. ±7 and ±3 kg N ha-1 in 

irrigated and rainfed fields, respectively. The same analyses for number of years and 

fields were performed for yield and N inputs to understand the underlying drivers for 

variation in N balance. 

 

4.2.4. Assesment of nitrogen balance persistency over time 

 

Persistency in N balance in irrigated fields across years was investigated. 

Unfortunately, the analysis could not be performed for rainfed fields because of 

insufficient number of fields in some years that would not allow a reliable assesment of 

persistency over time. Fields that corresponded to the upper and lower quartile of the N 

balance distribution were grouped into two categories: large N balance (LNB) and small 

N balance (SNB). The year that was used to categorize fields into LNB and SNB was 

referred to as “ranking year” and the remaining years as “non-ranking years”. Average N 

balance for each group was estimated in both ranking and non-ranking years. Following 

Farmaha et al. (2016), difference between annual (2009-2015) average N balance of SNB 
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and LNB field categories and annual average TED N balance (hereafter called 

“NBdifference”) was calculated for both ranking and non-ranking years. Persistence for each 

field category (i.e., SNB and LNB) was then estimated as the ratio between average 

NBdifference across non-ranking years and NBdifference calculated for ranking year. To avoid 

biases due to selection of a single ranking year, the analysis was repeated separately for 

two years (2010 and 2014). The overall persistence in each category (SNB and LNB) was 

calculated as the average from the persistence calculated using the two ranking years 

(2010 and 2014). A high persistence value would imply that N balance in ranking and 

non-ranking years persistently deviated from the average TED N balance and not just in 

the year in which the fields were ranked. To understand the underlying drivers for 

variation in N balance, persistence in yield and N inputs were also estimated for the SNB 

and LNB fields. 

To determine some of the factors explaining fields with persistent LNB or SNB, 

we estimated average N balance, yield, N inputs, proportion of fields in continuous maize 

versus rotation with soybean, soil properties, and efficiencies for each field category in 

each TED. Ranking years were taken into account for the analysis, and for each N 

balance field category, data were pooled across years. Differences in means between 

SNB and LNB for each variable were tested for statistical significance using t-tests, 

except for percentage of maize fields in rotation with soybean, which was analyzed using 

Chi-square (χ2) test. 
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4.3. RESULTS 

4.3.1. Weather patterns across the seven crop seasons 

 

The study period (2009–2015) portrayed well the inter-annual variation in 

seasonal weather and providing an interesting range of environmental conditions 

influencing the N balance (Figure 4-1). Across TED-years, cumulative GDD was 

relatively stable (CV = 7%) while in-season precipitation fluctuated (CV = 29-37%). For 

example, accumulated GDD in TED 1I ranged from 1685 °Cd (year 2009) to 2051 °Cd 

(year 2012) while precipitation ranged from 163 mm (year 2012) to 527 mm (year 2010). 

As a result of weather variation, average yield ranged from 11.9 to 15.4 Mg ha-1 

(irrigated) and 3.8 to 10.5 Mg ha-1 (rainfed) across years (Figure 4-2). Highest and lowest 

average irrigated yields were associated with season with low (2015) and high (2011) 

temperature, respectively, while highest and lowest rainfed yields were associated with 

wet (2015) and dry seasons (2012), respectively (Figure 4-1). 

 

4.3.2. Temporal and spatial variation in yield, N inputs, and N balance  

 

Field-to-field variation in yield, N inputs, and N balance was higher than year-to-

year variation (Figure 4-2). An exception was the case of rainfed yields, which exhibited 

similar temporal and spatial variation. Variation in N balance, both across years and 

among fields, was larger relative to variation in yield and N inputs. Key differences 

between irrigated and rainfed fields were: (i) yield was lower and year-to-year yield 
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variation was larger in rainfed versus irrigated fields (CV = 28% versus 4-8%), (ii) field-

to-field variation in yield was also larger in rainfed versus irrigated fields (CV = 26% 

versus 11%), (iii) both yield and N inputs exhibited low inter-annual and field-to-field 

variation in irrigated fields while rainfed fields exhibited large and small year-to-year 

variation for yield and N inputs, respectively, and (iv) both inter-annual and field-to-field 

variation in N balance was larger in rainfed versus irrigated fields, though N balance was 

notably smaller in the former (Figure 4-2).  

The majority (71%) of the N balance field distributions shown in Figure 4-2 were 

normally distributed (D’Agostino-Pearson test, p < 0.05). The N balance was largest in 

the drought year (2012) in both rainfed and irrigated fields, but the drivers were different. 

In irrigated fields, higher applied irrigation due to low rainfall lead to higher N input from 

irrigation water, without detectable changes in yield compared with other years. In the 

case of rainfed fields, drought resulted into much lower yields and, consequently, smaller 

grain N removal and larger N balance (Figure 4-2).  

 

4.3.3. Influence of yield and N inputs on N balance in irrigated and rainfed fields 

 

On average, if N inputs exceeds 145 kg N ha-1, N balance increased by 0.9 

(irrigated) and 0.6 (rainfed) kg N per kg of N inputs (Figure 4-3). About 57 and 14% of 

the irrigated and rainfed field-years, respectively, exceeded the N balance threshold of 75 

kg N ha-1 above which potential N losses increase substantially. Considerable variation in 

N balance at any given level of N inputs was observable due to variation in yield. For 
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example, N balance varied from 56 to 116 kg N ha-1 in irrigated fields that received N 

inputs of ca. 240 kg N ha-1 which, in turn, was associated with yield variation from 10.8 

and 16.0 Mg ha-1. A similar pattern was observable in rainfed fields. However, there was 

an important difference between irrigated and rainfed fields. In irrigated fields, the 

proportion of variation explained by N inputs was ca. 7x larger than the variance 

accounted for by yield (88% versus 12% of SS) (Figure 4-3, inset). In contrast, the 

proportion of variation accounted for by yield was higher compared with the variation 

explained by N inputs in rainfed fields (54% versus 40% of SS). This discrepancy 

between irrigated and rainfed fields was due to greater field-to-field variation in N inputs 

versus yield in irrigated fields, while the opposite pattern was observed in rainfed fields 

(Figure 4-2). 

 

4.3.4. Number of years and fields for robust estimation of N balance  

 

A larger number of years was needed for a robust estimation of N balance at TED 

level compared with yield and N inputs (Figure 4-4). For example, in TED 1I, one to 

three years of data were needed to estimate average yield and N inputs, but four years 

were needed to estimate N balance with the same level of confidence. In the case of TED 

2I, only two years were needed to estimate average N balance because the inter-annual 

variation in yield and N inputs was smaller compared with TED 1I (Figure 4-2). In the 

case of rainfed fields, the number of years required to reach reliable estimate of N 

balance was higher (six years) because of the high variation in yield across years as a 
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result of the erratic rainfall amount and distribution among seasons (Figure 4-2).  Only 

two years of data allowed a robust estimation of average N inputs but six years were 

needed in the case of yield (Figure 4-4). If an extreme year, like a drought year (e.g., 

2012) would have been excluded from the analysis, the number of years required in TED 

2R would have decreased from six to five years (Figure 4-5).  

At question is how many fields are needed to estimate average N balance for a 

given TED-year with confidence. Results for year 2014 showed that a relatively small 

number of fields (15-20 irrigated fields and 25-35 rainfed fields) were sufficient to 

reliably estimate average yield and N inputs (Figure 4-6). In contrast, at least 100 fields 

were needed to estimate average N balance to have the same accuracy. If one would 

accept an accuracy of ±20% of TED average, which is equivalent to ca. ±15 and ±6 kg N 

ha-1 for irrigated and rainfed maize, respectively, a more reasonable number of fields 

would be needed (ca. 35 and 60 fields for irrigated and rainfed fields, respectively). 

Similar results were found for year 2015, except for a lower number needed (5 to 10 for 

irrigated fields and 20 for rainfed fields) for robust yield estimate due to lower field-to-

field variation in yield than in 2014 (Figure 4-7). 

 

4.3.5. Persistency in N balance, yield, and N inputs  

 

The LNB fields exhibited 31-41% (2010) and 40% (2014) higher N balance than 

the TED average (Table 4-1). Majority of LNB fields across years in TED 1I (80%) and 

TED 2I (86%) had N balance ≥ 75 kg N ha-1 (i.e., threshold for large potential N losses) 
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(Figure 4-8). On average, LNB fields achieved 3-4% lower yield and received 15-17% 

higher N inputs relative to SNB fields, resulting into lower PFPN and higher yield-scaled 

N balance (Table 4-1). 

Most of the fields grouped into the SNB and LNB in ranking years (2010 and 

2014) also exhibited respective smaller and larger N balance in the non-ranking years 

(Figure 4-8, Table 4-1). In both TEDs, higher degree of persistence in N balance were 

observed in LNB fields (24-50%) compared with SNB fields (16-40%), suggesting that, 

at least, some of the factors explaining large N balance were persitent across years. 

Consistent with this observation, persistency in N inputs followed the same pattern as for 

N balance: LNB fields exhibited a relatively larger persistency in N inputs (28-62%) 

compared with SNB fields (18-39%). In contrast, yield in SNB and LNB fields did not 

deviate from the TED average yield across years. Altogether, these results indicate that 

persistency in N balance in LNB fields was driven by a consistently higher N input 

application compared with other fields located within the same TED and that this pattern 

was consistent during the entire time period. In addition, frequency of maize fields 

rotated with soybean was higher in SNB versus LNB fields (Table 4-1). Differences in 

soil properties were relatively small and weak between SNB and LNB fields, suggesting 

that differences in applied N inputs were not related with differences in soil properties 

among fields. 
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4.4. DISCUSSION 

 

Agriculture is under increasing pressure to demonstrate progress towards 

productivity and environmental goals using cost-effective metrics that can be calculated 

using information readily available in producer fields. As shown in previous study, the N 

balance is a useful metric for benchmarking the efficiency of N input and estimating 

potential N losses into the environment for individual fields and regions (Tenorio et al., 

2019a). The present study makes a first step in understanding the data requirements for 

reliable estimation of the N balance for climate-soil domains, using maize in Nebraska as 

a case study. Analysis based on NE data showed that rainfed fields required six years of 

data for robust N balance estimation relative to four years for irrigated fields and about 

100 fields per TED-year. Data requirements would be more modest by excluding years 

with extreme weather conditions (in the case of rainfed crops) and/or by accepting a 

lower level of accuracy in N balance estimation.  

As indicated previously, irrigated maize in Nebraska has similar yield level and 

stability compared with maize in favorable rainfed environment in the US Corn Belt. 

Hence, a modest investment on data collection can help map the N balance for the entire 

region as well as other regions of the world where maize or other cereal crops are 

produced. For example, targeting yield and N inputs data collection from the 16 TEDs 

with largest maize area in USA would allow estimation of N balance for an area that 

account for 50% of US maize area (18 million ha), which means that collecting producer 
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data in 1600 fields per year in four years is sufficient for robust N balance estimation for 

half of US maize area. Covering 75% of US maize area would require an additional 28 

TEDs (i.e., total of 44 TEDs), which, in turn, would require data from a total of 4400 

fields. Focusing on TEDs with largest maize area may not allow to identify areas with 

smaller maize area but high potential for N losses (e.g., sandy soils). Hence, additional 

TEDs can be added based on biophysical attributes that are likely to contribute to large N 

losses. Identifying climate-soil domains with largest N balance can help orient 

investments on agricultural research and development to mitigate environmental footprint 

where most needed. 

Contribution of persistent and non-persistent factors to large N balance can help 

determine the degree to which the N balance can be managed by producers through 

agronomic practices. Indeed, our study showed that producers that exhibited largest N 

balance in one year are likely to also be the ones exhibiting large N balance in the other 

years. Considering the persistency in N balance, it would be useful to differentiate 

between those persistent factors that are manageable (e.g., crop sequence, N inputs 

application) versus non-manageable (e.g., soil type) to quantify how much N balance can 

possibly be improved. This study found a number of manageable factors that can be fine-

tuned by producers to improve their N balance, including N input rate and crop sequence. 

Future research should be oriented towards identification of other practices that can help 

reduce N surplus (when excessive) without detrimental effects on yield. 
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Figure 4-1. Cumulative growing-degree days (GDD, Tbase and Tmax = 8 °C and 30 °C, 

respectively) and precipitation for the period between May 1st and Sep 30th, which 

roughly coincides with maize emergence and physiological maturity, respectively, at each 

technology extrapolation domain (TED 1 and TED 2). Each colored line corresponds to a 

year within the (2009–2015) time interval and was averaged from representative weather 

stations in each TED (see Figure 3-1). Dashed line indicates the long-term historical 

average based on 20 years (1996-2015) of measured daily weather data.  

 

 



113 
 

 
 

Figure 4-2. Distribution of producer yield, nitrogen (N) inputs, and N balance from 2009 

to 2015 for fields across technology extrapolation domain (TEDs): TED 1 irrigated, TED 

2 irrigated and TED 2 rainfed. Upper and lower boundaries of boxes indicate 75th and 

25th percentile, respectively. Vertical bars indicate maximum and minimum values. 

Horizontal lines and crosses within boxes are the median and mean value, respectively. 

Horizontal dashed lines show the average N balance across years in each TED. Average 

year-to-year and field-to-field coefficient of variation are shown (CVyears and CVfields; 

respectively; in %). Asterisks indicate when distributions deviate significantly from 

normality (D’Agostino-Pearson test, p < 0.05). 
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Figure 4-3.  Nitrogen (N) balance and N inputs in irrigated and rainfed conditions. Each 

datapoint represents a field-year observation. Slopes of linear regression (solid line) and 

boundary functions fitted for the 5th and 95th (dashed lines) percentiles are shown. Inset 

shows proportion of N balance variation explained by N inputs and yield. Note that 

regression lines do not imply causality; instead, they are shown to illustrate how the N 

balance changes with increasing N inputs and the variation in N balance at any given 

level of N inputs. 

 

 



115 
 

 
 

 
Figure 4-4. Average yield, nitrogen (N) inputs, and N balance as a function of the number 

of years included in the calculation for irrigated maize fields in three technology 

extrapolation domains (TEDs): TED 1 irrigated (TED 1I), TED 2 irrigated (TED2I), and 

TED 2 rainfed (TED 2R).  Each data point corresponds to an average estimated using a 

given number of years (ny). Averages were estimated for 100 subsets of years of size ny, 

resampled from the entire 7-y database (2009-2015). Arrow shows the number of years at 

which all estimated averages fall within ±10% (shaded area) of the average value using 

all available years in each TED. 

 

 
Figure 4-5. Average yield, nitrogen (N) inputs, and N balance as a function of the number 

of years included in the calculation for rainfed fields in TED 2. Each data point 

corresponds to an average estimated using a given number of years (ny). Averages were 

estimated for 100 subsets of years of size ny, resampled from the entire 6-y database 
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(2009-2015, excluding 2012). Arrow shows the number of years at which all estimated 

averages fall within ±10% (shaded area) of the average value using all available years in 

each TED. 

 

 

Figure 4-6. Average yield, nitrogen (N) inputs, and N balance as a function of the number 

of fields included in the calculation for irrigated maize fields in three technology 

extrapolation domains (TEDs): TED 1 irrigated (TED 1I), TED 2 irrigated (TED2I), and 

TED 2 rainfed (TED 2R) in year 2014. Each data point corresponds to an average 

estimated using a given number of fields (nf). Averages were estimated for 100 subsets of 

fields of size nf, re-sampled from the entire field distribution in 2014. Arrow shows the 

number of fields at which all estimated averages fall within ±10% (shaded area) of the 

average value using all available fields in each TED in 2014. Dotted lines indicate ±20% 

deviation from the average N balance value. 
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Figure 4-7. Average yield, nitrogen (N) inputs, and N balance as a function of the number 

of fields included in the calculation for irrigated maize fields in three technology 

extrapolation domains (TEDs): TED 1 irrigated (TED 1I), TED 2 irrigated (TED2I), and 

TED 2 rainfed (TED 2R) in year 2015. Each data point corresponds to an average 

estimated using a given number of fields (nf). Averages were estimated for 100 subsets of 

fields of size nf, re-sampled from the entire field distribution in 2015. Arrow shows the 

number of fields at which all estimated averages fall within ±10% (shaded area) of the 

average value using all available fields in each TED in 2015. Dotted lines indicate ±20% 

deviation from the average N balance value. 
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Figure 4-8. Nitrogen (N) balance, yield, and N inputs persistency based on two years: 

2010 and 2014 (“ranking years”), in irrigated (I) maize fields located in technology 

extrapolation domain (TED) 1 and 2. Fields were classified in large N balance (LNB) and 

small N balance (SNB) categories based on top and bottom quartiles of producer fields N 

balance distribution in ranking years, respectively. Average N balance of fields in LNB 

(red) and SNB (blue) categories selected for 2010 (solid symbols and lines) and 2014 

(open symbols, dashed lines) were tracked across other years (“non-ranking years). 

Annual TED average is shown (square symbols). Encircled datapoints represent the 

average estimate for 2010 (solid) and 2014 (dashed) ranking years. 
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CHAPTER 5: ASSESSING EXPLANATORY FACTORS FOR VARIATION IN 

ON-FARM NITROGEN BALANCE IN THE WESTERN US CORN BELT 

 

ABSTRACT 

 

Previous studies have shown large variation in N balance among maize producer 

fields in the US Corn Belt. However, it is still unknown the degree to which such 

variation is explained by differences in soil and/or crop management factors. This study 

aimed to identify soil and management factors influencing N balance in irrigated and 

rainfed maize producer fields in Nebraska (USA). Driving factors for variation in N 

balance were assessed using a database containing yield and management data from 311 

fields sown with maize during two years (2010-2011). The N balance was estimated as 

the difference between N inputs (from fertilizer and applied irrigation) and grain N 

removal. Random forests and regression tree analyses were used to relate variation in N 

balance to soil and management factors. We derived a boundary function for the 

relationship between yield and N inputs with a slope of 40 kg N ha-1, reaching a yield 

plateau for N inputs > 255 kg N ha-1. Water regime, sowing date, soil organic matter 

(SOM), N application timing, and spring N split application explained 41% of observed 

variation in N balance. On average, irrigated fields exhibited 48% higher N balance 

relative to rainfed fields, with 68% of irrigated fields showing N balance ≥ 75 kg N ha-1. 

In rainfed fields, sowing date, N application timing, and SOM were main variables 
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influencing N balance while, in the case of irrigated fields, SOM and spring N split 

application were the most important drivers. Irrigated fields located in sandy soils 

exhibited the largest N balance as a result of high N rates and N from irrigated water. Our 

analysis suggests that producer risk perception plays an important role at explaining the 

variation in N balance across fields and that there is room to improve yield and reduce N 

surplus by fine tuning management factors. 

 

Keywords: maize, nitrogen, nitrogen balance, management, soil  

 

5.1. INTRODUCTION 

 

Agriculture has the challenge of meeting expected increase in food demand on 

existing cropland while minimizing the environmental impact (Tilman et al., 2002). 

Addition of nitrogen (N) fertilizer is essential to attain high yields in cereal crops but can 

also lead to N pollution (Goolsby et al., 2000; Erisman et al., 2013; Zhang et al., 2015; 

Cui et al., 2018). Hence, achieving synchrony between nitrogen (N) supply and crop 

demand, so that there is no N excess (i.e., N surplus) or deficiency (i.e., N deficit) is key 

to attain high yields and reduce N losses (Cassman et al., 2002). Along these lines, there 

is an increasing demand for robust, cost-effective indicators that could be used to assess 

progress of agricultural systems towards productivity and environmental goals (Thomson 

et al., 2017). The N balance, that is, the difference between N inputs and grain N 
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removal, is one of those indicators (Treacy et al., 2008; Oenema et al., 2012; McLellan et 

al., 2018; Tenorio et al., 2019a, b). It can be estimated using readily available information 

by crop producers as it only requires data on yield and N inputs. Potential N losses 

increase with large N balance (≥ 75 kg N ha-1). Thus, the N balance approach can be used 

to benchmark current yield performance of producer fields in relation with N fertilizer 

use. 

The Corn Belt is located in the US North Central region, accounting for ca. 30% 

of global maize production. A number of studies have assessed N balance in maize 

producer fields in this region (e.g., McLellan et al., 2018; Basso et al., 2019; Tenorio et 

al., 2019a). For example, Tenorio et al. (2019a, b) study found variability in N balance 

across fields to be as high as variation across years, suggesting potential room for 

improving N balance through fine tuning of management practices. The same study 

identified crop sequence and water regime as important factors influencing N balance. 

However, we are not aware of any study that has explicitly assessed management 

practices (e.g., sowing date, fertilizer management, etc.) and soil properties (e.g., soil 

organic matter, texture) on their influence on N balance in producer fields. Such analysis 

would be of value to identify opportunities for reducing N balance for those fields 

exhibiting large N surplus. 

As an starting point to identify suites of practices that can help producers meet 

productivity and environmental goals, we assessed here mangement and soil properties 

explaining variation in N balance. As a study case, we used an on-farm database collected 
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in Nebraska (USA)— this state produces 43 million MT of maize annually in ca. 4 

million ha (USDA-NASS, 2014-2018). The database incuded field-specific detailed data 

on yield, applied inputs, and management practices collected during two cropping 

seasons (2010-2011) from rainfed and irrigated maize fields. 

 

5.2. MATERIALS AND METHODS 

5.2.1. Description of study area, and producer data 

 

This study used data collected from rainfed and irrigated maize fields in Nebraska 

during 2010 and 2011 (Figure 5-1). Nebraska ranks third amongst maize producing 

states, with irrigated and rainfed area accounting for 65 and 35% of NE maize production 

(USDA-NASS, 2014-2018). Each field was mapped using Google Earth® and the 

following information was available for each fied: grain yield (at standard moisture 

content of 155 g H2O kg-1 grain), total irrigation water, amount and time of fertilizer 

applications, fertilizer inputs, hybrid relative maturity, sowing date, tillage method, plant 

density, and previous crop. Reported yield and applied N fertilizer were representative of 

NE producer’s fields as determined by comparing values against other independent data 

sources (Grassini et al., 2015; Tenorio et al., 2019a). 

Only fields sown with maize for grain that reported complete data on yield and N 

fertilizer were included in our study. In addition, only pivot-irrigated fields were 

considered as surface (flood) irrigation accounts for a small fraction of irrigated maize 
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area in NE (ca.14%) and its area has steadily declined over time (USDA-ERS, 2010). 

Because the majority (>85%) of maize across the US Corn Belt region is grown 

continuously or in a maize-soybean rotation (Farmaha et al., 2016), fields sown with 

maize after wheat, alfalfa, or other crops besides maize and soybean were excluded from 

the analysis. Similarly, we also exclude a small number of fields that received manure 

application as this is not a frequent practice in NE and also because determination of 

amount and time of N released from manure is difficult. Associated data were screened 

for erroneous and incomplete entries using quality control measures that set acceptable 

ranges for yield and N inputs. For example, fields that reported incidence of 

unmanageable production site adversities (e.g., hail, frost, wind) and achieved yield < 6 

Mg ha-1 were excluded in the database (ca. 3% of total observations). The 

aforementioned method ensured to only exclude fields with substantial yield losses due to 

the reported adversity and maintain those fields which yield loss were negligible. After 

the quality control, our database contained a total of 202 and 109 field-year observations 

for irrigated and rainfed maize fields, respectively. 

Soil variables including percentage of soil organic matter (SOM), plant available 

water holding capacity (PAWHC), and topographic wetness index (TWI) were retrieved 

for each field from the Soil Survey Geographic database (SSURGO, 

https://websoilsurvey.nrcs.usda.gov). PAWHC represents the amount of water (mm) that 

the soil can hold between field capacity and wilting point within the rootable depth. TWI 

indicates the likelihood of surface runoff (run-on) from (to) an area based on slope and 

https://websoilsurvey.nrcs.usda.gov/
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surrounding area, with bottom and upland areas having highest and lowest values, 

respectively (Sørensen et al., 2006). 

 

5.2.2. Calculation of nitrogen balance  

 

A simple maize N balance was calculated as the difference between N inputs and 

grain N removal. The N inputs include N from fertilizer and, in the case of irrigated 

fields, also groundwater NO3
--N from irrigation water (hereafter referred to ‘N 

irrigation’). As explained elsewhere (Tenorio et al., 2019a), N fertilizer and N irrigation 

inputs accounted for the largest portion of total N inputs (which also include manure, 

atmospheric deposition, soil organic matter mineralization) and they are readily available 

from producer fields. The N irrigation was calculated from reported irrigation amount for 

each field-year (typically measured using flowmeters installed at each irrigation well) and 

average NO3
--N concentration in groundwater estimated for each NE Natural Resources 

District (www.nrdnet.org). Maize grain N removal was estimated based on producer 

yield, assuming a grain N concentration of 11.5 g kg-1 grain (Tenorio et al., 2019c). 

Detailed description of N balance estimation is provided elsewhere (Tenorio et al. 

(2019a). 

 

5.2.3. Yield potential simulation for each field-year 

 

http://www.nrdnet.org/
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Yield potential (Yp) is the yield attained by an adapted crop cultivar when grown 

with non-limiting nutrient and water supplies and with pests and diseases effectively 

controlled (Evans, 1993; van Ittersum et al., 2013). Water-limited yield potential (Yw) is 

influenced by the same factors that define Yp but also determined by precipitation 

amount and distribution and soil properties that influence water availability such as 

PAWHC and field slope. In our study, Yp (irrigated) and Yw (rainfed) were estimated 

using Hybrid-Maize model for each field-year.  Simulations were based on field-specific 

input variables, including daily weather data (precipitation, maximum and minimum 

temperature, solar radiation, wind speed, relative humidity, and ETo), crop management 

(sowing date, relative maturity, and plant density) and soil and terrain properties (soil 

depth, texture, bulk density, soil surface residue cover, and field slope). Weather 

variables, including maximum and minimum temperature, solar radiation, wind speed, 

and relative humidity, were retrieved from the High Plains Regional Climate Center 

(www.hprcc.unl.edu) and interpolated for each field using inverse distance weighting 

using the data from the three nearest weather stations to each field (Yang and Torrion, 

2014; Franke and Nielson, 1980). Hybrid-Maize model has been widely evaluated for its 

ability to estimate yield potential in well-managed crops that grew without nutrient 

limitations and kept free of biotic stresses (Yang et al., 2004; Grassini et al., 2009). 

 

5.2.4. Random forests and regression tree analyses 

 

http://www.hprcc.unl.edu/
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Distribution of yield, N inputs, and N balance were assessed separately for 

irrigated and rainfed fields, and deviation from normality was tested using D’Agostino-

Pearson test. We used a number of machine-learning techniques to identify candidate soil 

and management factors explaining variation in N balance among producer fields. 

Machine learning analysis has been increasingly used in different areas of research due to 

some advantages over other (more frequently used) statistical methods (e.g., multiple 

regression). Some of the advantages of machine learning are: (i)  no assumption on 

distribution of response and predictor variables and robust in the presence of 

multicollinearity; (ii) it can handle missing data and combinations of categorical and 

continuous variables; and (iii) it has the ability to reveal variable interactions (Strobl et 

al., 2009). Two types of machine learning recursive partitioning techniques were used to 

investigate the influence of management and soil variables on N balance. The first 

technique was regression tree analysis, which is a non-parametric method that recursively 

partitions the data into successively smaller groups with binary splits based on a single 

continuous predictor variable using the “rpart” package in R (Breiman et al., 1984; 

Verbyla, 1987; Clark and Pregibon, 1992; Hothorn et al., 2006; Prasad et al., 2006). 

Regression tree analysis produces a tree-diagram output, with branches determined by 

splitting rules and a series of terminal nodes (TN) that contain the mean response (i.e., N 

balance) and the number of observations (n) that fall within each TN. Here, a maxdepth 

validation technique was used to prune the regression tree to an optimal size (Therneau 

and Atkinson, 1997). The regression tree analysis handled missing values in the 



127 
 

 
 

explanatory factors (na.rpart function), excluding cases only if the response variable (i.e., 

N balance) or all explanatory factors were missing. When missing values were 

encountered in considering a split, they were ignored and predictions are calculated from 

the non-missing values of that factor (Venables and Ripley, 2002).  

While regression trees produce simple model, they are unstable. For example, a 

few changes in dataset can give a different first splitting variable, which when changed 

can drastically modify the entire tree structure. Hence, we also performed random forest 

analysis using “randomForest” function in R, which overcomes the instability problem of 

the regression tree analysis (Breiman, 2001). Random forests uses an ensemble learning 

technique (bootstrap sampling) to create many trees and make final prediction as the 

average of the predictions across the trees. Random forests quantifies the variable 

importance, which was based on how much the mean accuracy decreases when a variable 

is excluded. To normalize values between water regimes, relative variable importance 

was determined by setting the variable with the highest importance to 1 and calculating 

individual values as a percentage of the most important variable. In general, while 

random forests analysis improves accuracy, the simple regression tree analysis gives a 

model that is easy to interpret and presents the value of variables used to split data and 

predict outcome. Given the advantages and limitations of each machine learning 

technique, we used both techniques in our study. Overall, seven continuous and nine 

categorical variables were used as potential explanatory factors for variation in N balance 

across producer fields (Tables 5-1 and 5-2). In addition, the most important factors 
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affecting N balance were further analyzed based on their influence on yield and N inputs. 

Finally, quantile linear-plateau regression was used to determine a boundary function 

(quantile: 0.95) for the relationship between yield and N inputs. 

 

5.2.5. Framework to benchmark yield and N balance in producer fields 

 

Analysis of yield variation across field-years, for a given N balance level, is 

confounded by year-to-year and site-to-site variation in weather. Hence, expressing 

producer yields as percentage of Yp (or Yw) for a given field-year (hereafter referred to 

as ‘relative yield’) allows a fair comparison of producer yields and N balance across 

years and regions. Some cases with relative yield greater than one (i.e., 15% of total 

field-years) were likely associated with inaccuracies in weather, soil, or producer yield 

data; in those cases, the relative yield was set at one. Relative yield (as percentage of Yp 

or Yw) versus N balance plots were assessed to determine the frequency of fields with 

small or large N balance and low or high yield. Fields were subsequently grouped in four 

categories: (A) high relative yield, N balance <75 kg N ha-1; (B) low relative yield, N 

balance <75 kg N ha-1; (C) high relative yield, N balance ≥75 kg N ha-1; (D) low relative 

yield, N balance ≥75 kg N ha-1. Following Lobell et al. (2009) and van Ittersum et al. 

(2013), we used 80% and 70% of Yp and Yw as thresholds to distinguish high versus low 

yields in irrigated and rainfed fields, respectively. These values represent reasonable 

yield goals, with the smaller yield goal in the case of rainfed crops aiming to account for 
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the higher production risk associated with erratic rainfall across years. Finally, the 

framework was used to assess available room to improve N balance by identifying 

different agronomic practices between the four groups of fields. Differences in averages 

of fields that exhibited small (SNB) versus large N balance (LNB) and achieved low 

(LRY) versus high relative yield (HRY) for each continuous variable were tested for 

statistical significance using t-tests, while Chi-square (χ2) test was used for categorical 

variables. 

 

5.3. Results 

5.3.1. On-farm yield, N inputs, and N balance in irrigated and rainfed conditions 

 

The study included two crop seasons (2010 and 2011) with above-normal 

precipitation, except for 2011 in the south-central region, which exhibited near-normal 

precipitation (Figure 5-2). Cumulative GDD for both years did not deviate from the long-

term average in the three regions. Average irrigated fields had 23% and 33% higher yield 

and N inputs, respectively, relative to rainfed fields (Figure 5-3). The N inputs averaged 

162 and 240 kg N ha-1 in rainfed and irrigated fields, respectively. In irrigated fields, N 

irrigation represented 11% of the N inputs. Irrigated fields exhibited (48%) higher 

average N balance compared with rainfed fields (94 versus 49 kg N ha-1), with 21% and 

68% of rainfed and irrigated fields exhibiting N balance ≥ 75 kg N ha-1. Smaller N 

balance in rainfed versus irrigated fields were expected due to a combination of relatively 
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small N inputs in the former and above-average rainfed yields as a result of above-normal 

precipitation in both years. The opposite would have occurred in a drought year (i.e., 

large N balance in rainfed fields as a result of low yield). Both water regimes exhibited 

negatively skewed field yield distributions, indicating that an important number of fields 

were closer to highest yields (Figure 5-3). In contrast, distribution of N inputs showed 

contrasting patterns between water regimes: irrigated and rainfed fields exhibited 

positively and negatively skewed N input distributions. The N balance distribution in 

irrigated fields was positively skewed, but normally distributed in the case of rainfed 

fields. 

The boundary function fitted for the relationship between yield and N inputs 

showed that the attainable yields over the range of N inputs increased at a rate of 40 kg 

per kg N ha-1, reaching a plateau (16 Mg ha-1) for N inputs > 255 kg N ha-1 (Figure 5-4). 

Above this value, there was no further increase in grain yield. There were, however, 18% 

of total fields received N inputs in excess to 255 kg N ha-1; all of them corresponded to 

irrigated fields exhibiting a large N balance (range: 85 to 228 kg N ha-1). The y-intercept 

of the fitted boundary function also provides an estimate of the attainable yields without 

N inputs (5.7 Mg ha-1), which is consistent with data from N-omission trials in Nebraska 

(Wortmann et al., 2011). Finally, it was clear that, given the same level of N input, maize 

yields were typically higher in irrigated versus rainfed fields. For example, average yield 

was 1.9 Mg ha-1 higher in irrigated than rainfed fields at N inputs ≥ 200 kg N ha-1 (t-test, 

p <0.001). A number of factors associated with rainfed fields (e.g., late sowing, less 
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intensive management, insufficient water supply, less suitable soils) can help explain why 

rainfed yield depart from their attainable yield at a given N input level, even in years with 

favorable weather conditions as it was the case in this study. 

 

5.3.2. Management and soil factors influencing variation in N balance 

 

Analysis based on conditional random forest indicated that water regime was the 

most important factor explaining variation in N balance among fields (Figure 5-5a). 

Separate analysis performed for each water regime revealed that most important factors 

explaining the remaining variation in N balance were different in irrigated versus rainfed 

fields (Figure 5-5b, c). In irrigated fields, SOM, seeding rate, and spring N split 

application were most important variables driving differences in N balance among 

producer fields (Figure 5-5b). Sowing date, N application timing, and foliar fungicide 

application were the most important factors in the case of rainfed fields (Figure 5-5c).  

Results from the analysis based on conditional regression trees analysis were consistent 

with those derived from the conditional random forest analysis. Water regime, sowing 

date, SOM, N application timing, and spring N split application explained 41% of 

variation in N balance (Figure 5-6). It was notable that most combinations of 

management practices and soil properties would lead to an acceptable N balance (≤ 77 kg 

ha-1), except for two cases (>100 kg N ha-1). These two cases corresponded to irrigated 

fields with low SOM or receiving spring N split applications. In rainfed fields, early-
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sown fields receiving fall and spring N applications exhibited the largest N balance (77 

kg N ha-1).  

 

5.3.3. Impact on yield and N inputs of management factors influencing N balance  

 

Producers growing irrigated maize in sandy soils with low SOM tend to apply 

larger N inputs (both N fertilizer and N irrigation) compared with producers in fine-

textured soils, probably to compensate for the lower indigenous soil N and also as a 

consequence of higher irrigation water inputs (Figure 5-7). For instance, total N fertilizer 

applied ranged from 250 – 360 kg N ha-1 in sandy soils, while N irrigation varied from 22 

to 92 kg N ha-1. This risk-aversion behavior leads to a large N surplus, with N balance 

ranging from 129 to 228 kg N ha-1. While the number of fields in sandy soils was 

relatively small, their N balance and N losses is substantially higher compared with the 

other fields, contributing proportionally more to the total N load in the region. 

Producers in rainfed fields who applied N fertilizer in fall only or both in fall and 

spring exhibited high N balance due to 10% higher total N inputs compared with spring 

N application only and, lesser yield for fall application while a proportionally smaller 

(+7%) yield advantage for fall and spring application (Figure 5-7). In contrast, irrigated 

fields with only spring N application had higher N input compared with fall or fall and 

spring application (+10 and +2%, respectively), and N input was even larger (+34 kg N 

ha-1) when the spring application was split (Figure 5-7). In the case of rainfed fields, 
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early-sown fields exhibited higher N balance as a result of larger N inputs compared with 

late-sown fields, without any detectable change in yield between early and late sowings 

(Figure 5-8A). In addition, seeding rate had a positive relationship with N balance, N 

inputs, and yield (Figure 5-8B). 

 

5.3.4. Benchmarking yield and N balance in producer fields 

 

There is ample room for improvement of N balance in irrigated field as indicated 

by the fact that 68% of the fields exhibited large N balance (categories C and D) and, of 

these, about half reached yields below their attainable yield level (Figure 5-9). In 

contrast, about 20% of total rainfed fields exhibited a large N balance. Notably, 23% and 

67% of irrigated and rainfed fields attained high yields with small N balance (i.e., < 75 kg 

N ha-1), indicating that meeting productivity and environmental goals simultaneously is 

possible.  

Analysis of differences in the management practices associated with each field 

category revealed a number of practices that could potential lead to yield increase, or N 

surplus reduction, or both (Tables 5-3 and 5-4). It was remarkable that N fertilizer inputs 

was similar between the high relative yield (HRY) and low relative yield (LRY) fields; 

indeed, yields were higher in the small N balance (SNB) versus large N balance (LNB) 

field categories. On the one hand, the analysis revealed options to increase yield without 

trade-offs in terms of N balance. For example, irrigated LRY fields that were sown, on 
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average, three days later had exhibited higher N balance than HRY fields (Tables 5-4). 

On the other hand, there seem to be opportunities to reduce the N balance without hurting 

yield. For example, LRY fields tended to exhibit higher N inputs, suggesting that N 

fertilizer rates can be reduced by using a more realistic yield goal. Some results need to 

be treated cautiously as they may be confounded by the biophysical background. For 

example, irrigated fields receiving spring split application exhibited larger N balance and 

the proportion of these fields was higher in low-yield (LRY) versus high-yield (HRY) 

fields (Tables 5-3 and 5-4). Similarly, K and S fertilizer input application was more 

frequent in LRY compared with HRY fields. Application of K and S fertilizer and split of 

spring N application is frequent in fields located in sandy soils with lower SOM and high 

risk of N leaching. These soils have, in turn, lower indigenous soil N, leading the 

producer to apply larger N fertilizer rates as indicated previously. 

 

5.4. DISCUSSION 

 

This study assessed the importance of soil and management factors at explaining 

variation in maize N balance across irrigated and rainfed fields in NE. Random forests 

and regression tree analyses revealed important factors influencing N balance across 

fields, including water regime, SOM, sowing date, and timing and split of N fertilizer 

application, and seeding rate. While this study identified management and soil properties 

influencing N balance, they only accounted for 41% of field-to-field variation in producer 
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N balance. Part of unexplained variation might be attributed to factors not available in 

our database or unaccounted variation in climate and soil among fields. Understanding 

drivers for N balance in producer fields could be improved in future studies by including 

other management practices and covering a larger number of fields and years. Still, we 

found that risk-aversion played a major role at explaining large or small N balance. For 

example, rainfed fields exhibited smaller N balance due to higher risk as a result of 

erratic precipitation. In other words, producers typically apply smaller N fertilizer rates in 

rainfed versus irrigated fields, leading to a smaller N balance than irrigated fields, 

especially when precipitation is above-normal as it was the case of the two years included 

in our study. Similarly, a risk aversion behavior was also clear for irrigated producers 

growing maize in sandy soils. In this case, producers applied relatively larger N fertilizer 

rates to compensate for lower indigenous soil N, which, together with the N from 

irrigation, lead to a large N balance. Another example of risk aversion was observed in 

late-sown rainfed fields. Although there was no relationship between rainfed yield and 

sowing date, producers who sown late probably considered that less N is required for 

crops with shorter growth period and with a higher risk of early-killing frost, hence, 

applied smaller N fertilizer rates compared with early-sown fields. Results from irrigated 

fields in this study are probably applicable to other large maize-producing areas in US 

Corn Belt since irrigated maize in Nebraska has comparable yield level and stability 

compared to those of rainfed maize production in the most favorable environments in the 

eastern and central portions of the US Corn Belt (Grassini et al., 2014).  



136 
 

 
 

Variation in N balance across field-years was also explained by timing of N 

application. In our study, high N balance in rainfed fields was associated with N 

application in fall only and both in fall and spring (Figure 5-7). Producers apply N 

fertilizer during fall due to some economical advantages (e.g., lower N fertilizer price, 

and more available equipments and applicators); however, previous studies have 

indicated higher N recovery in spring versus fall N applications (Randal and Vetsch, 

2005). Hence, moving from fall to spring application can help reduce cases of large N 

balance in the case of rainfed fields. For irrigated fields, we found larger N balance 

during spring versus fall or fall and spring N application and when producers split the N 

fertilizer spring application. In principle, one would expect the opposite results. However, 

those same producers who applied N fertilizer in the spring application also used larger N 

fertilizer rates compared with those that applied N fertilizer in the fall or fall and spring. 

It may be the case that producers applying N fertilizer in the spring would increase the 

rate to compensate for potential N losses as a result of excessive precipitation early in the 

season, which they knew before spring N fertilizer application time (Feinerman et al., 

1990). We also found that producer splitting the spring N fertilization would also tend to 

use larger N rates: irrigated fields with spring N split application exhibited same yield 

and larger N balance compared with those without split application. Consistent with these 

results, Jaynes and Colvin (2006) reported that split N application (shortly after 

emergence and midseason) was only beneficiary for yield when lower N rate early in the 

season is applied compared with a single application. Lastly, while higher seeding rate 
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increased yield, this practice also showed higher N inputs applied which resulted to larger 

N balance compared to lower seeding rate. For example, 51% of fields that sown greater 

than 80 seeds m-2 applied N inputs rate >255 kg N ha-1 at which yield was shown to 

plateau (Figure 5-4). 

The N balance framework was used to identify fields with low/high yield and 

small/large N balance and recognized soil and management factors that could be improve 

to increase yield and reduce N balance. Consistent with Tenorio et al. (2019a), there were 

fields that successfully achieved the goal of simultaneuosly attaining high yield and small 

N balance (category A in Figure 5-9). The framework can be used for an effective 

research and extension prioritization by identifying and focusing on fields that have 

larger room for improvements. For instance, agronomic intervention and policy should be 

first directed to fields that attained low yield and exibited large N balance (category D in 

Figure 5-9), which represents 33% of total irrigated fields. Similarly, additional research 

on manageable practices to reduce N balance should be focused on fields with sandy soil 

type that showed to exhibit the largest N balance (Figures 5-6, 5-7). The framework can 

also be used by individual producers to assess their current yield and N balance and 

identify possible practices to increase N use efficiency. For instance, producers in 

categories C and D (N balance ≥ 75 kg N ha-1) can look for opportunities to reduce their 

N balance while maintaining or even increasing their yield. This study provides a first 

step for a cost-effective assessment of N balance and its drivers at local and regional level 

based on field-level producer data. 
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Figure 5-1. Map of Nebraska showing location of surveyed irrigated (upper panel) and 

rainfed (bottom panel) producer fields. Stars show the representative meteorological 

stations used to describe weather patterns in Figure 5-2. Maize harvested area distribution 

is shown in green (IFPRI, 2019). Inset shows the location of NE within the conterminous 

USA (highlighted in red). 
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Figure 5-2. Cumulative precipitation and growing-degree days (GDD, Tbase and Tmax = 8 

°C and 30 °C, respectively)  for the period between May 1st and Sep 30th, which roughly 

coincides with maize emergence and physiological maturity, respectively, in years 2010 

(blue), and 2011 (green), at three representative locations: O’Neill, NE (northeast region), 

Holdrege, NE (south central region) and, Mead, NE (southeast region). Dashed black 

lines represents long-term (1997- 2011) average.   

 

 

 
Figure 5-3. Distribution of producer yield, nitrogen (N) inputs, and N balance for 

irrigated and rainfed fields. Data from the two years (2010 and 2011) were pooled. Upper 

and lower boundaries of boxes indicate 75th and 25th percentile, respectively. Vertical 

bars are 10th and 90th percentile. Horizontal line and cross within boxes are the median 

and mean value, respectively. Skewness (S) of the field data distribution is indicated in 

each case. 



148 
 

 
 

 

 
Figure 5-4. Yield and N inputs for irrigated (blue) and rainfed (red) fields. Parameters of 

the fitted linear-plateau model using quantile regression are shown (quantile: 0.95; 

p<0.01). 

 



149 
 

 
 

 F
ig

u
re

 5
-5

. 
R

el
at

iv
e 

v
ar

ia
b
le

 i
m

p
o
rt

an
ce

 r
an

k
in

g
 f

o
r 

th
e 

in
fl

u
en

ce
 o

f 
so

il
 a

n
d
 m

an
ag

em
en

t 
fa

ct
o
rs

 o
n
 n

it
ro

g
en

 b
al

an
ce

 b
as

ed
 o

n
 

co
n
d
it

io
n
al

 r
an

d
o
m

 f
o
re

st
 f

o
r 

(a
) 

p
o
o
le

d
 d

at
a,

 (
b

) 
o
n
ly

 i
rr

ig
at

ed
 f

ie
ld

s,
 a

n
d
 (

c)
 o

n
ly

 r
ai

n
fe

d
 f

ie
ld

s.
 

   



150 
 

 
 

 F
ig

u
re

 5
-6

. 
R

eg
re

ss
io

n
 t

re
e 

m
o
d
el

 s
h
o
w

in
g
 s

o
u
rc

es
 o

f 
v
ar

ia
ti

o
n
 i

n
 n

it
ro

g
en

 (
N

) 
b
al

an
ce

 d
u

e 
to

 m
an

ag
em

en
t 

an
d
 s

o
il

 f
ac

to
rs

 

(o
v
er

al
l 

R
2
=

0
.4

1
).

 B
o
x
es

 a
re

 s
p
li

tt
in

g
 n

o
d
es

, 
w

it
h
 b

o
tt

o
m

 b
o
x
es

 r
ep

re
se

n
ti

n
g
 t

er
m

in
al

 n
o
d
es

 (
T

N
).

 V
al

u
es

 w
it

h
in

 e
ac

h
 o

f 
th

e 
se

v
en

 

T
N

 T
N

1
 t

o
 T

N
7
) 

in
d
ic

at
es

 a
v
er

ag
e 

N
 b

al
an

ce
 a

n
d

 t
h
e 

n
u
m

b
er

 o
f 

o
b
se

rv
at

io
n
s 

(n
).

 



151 
 

 
 

 
Figure 5-7. Nitrogen (N) balance, yield, and N inputs for irrigated and rainfed fields for 

soil organic matter (SOM) classes, N application timing, and spring N split application. 

Only irrigated fields were shown for SOM since it is unusual to have rainfed fields with 

SOM <1%. Data points represent means and error bars denote the 95% confidence 

intervals. Different letters indicate statistically significant differences (Tukey’s test, p < 

0.05). Number of fields (n) in each category is also shown. 
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Figure 5-8. Influence of (A) sowing date in rainfed fields and (B) seeding rate in irrigated 

fields on nitrogen (N) balance, N inputs, and yield. Person’s correlation coefficient (r) is 

shown. 

 

 

 
Figure 5-9.  Relative yield and nitrogen (N) balance in irrigated and rainfed fields. 

Relative yield was calculated based on producer yield expressed as percentage of yield 

potential (Yp; irrigated) or water-limited yield potential (Yw; rainfed). Each data point 

represents a field-year case. Red vertical line indicates N balance = 75 kg N ha-1, which 

was used as a threshold to identify fields with small and large N balance. Red horizontal 

lines indicate 80% and 70% of Yp and Yw, which are reasonable yield goals for irrigated 

and rainfed maize fields, respectively. Frequency of fields in each of the four (yield x N 

balance) categories is show
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CHAPTER 6: SUMMARY AND FUTURE RESEARCH PRIORITIES 

 

6.1. Key findings from this study 

 

The present research applied the nitrogen (N) balance approach to benchmark the 

performance of a maize cropping system in the western US Corn Belt in terms of 

productivity and environmental outcomes using field-level data across a large number of 

fields in multiple years. A spatial framework (technology extrapolation domain [TED]) 

was used to upscale the N balance estimates from field to regional level with same soil-

climate domain. Overall, this study provides a foundation to develop a platform to 

monitor potential N losses associated with maize-based systems in the US Corn Belt and, 

more broadly, to any cropping system in the world. 

On-farm N balance assessment requires accurate estimation of grain N 

concentration (GNC), which was rarely measured by producers. Along these lines, this 

study found that GNC varied from 0.76 % to 1.66% across experiments conducted in the 

US North Central region, causing uncertainty in the resulting estimates of grain-N 

removal and N balance (Chapter 2). A predictive model was developed to refine 

estimates of grain-N removal and N balance for specific site-years based on key 

biophysical and management factors explaining variation in GNC (e.g., N fertilizer rate 

and air temperature and water balance in July and August). In absence of measured GNC 

data, the predictive model can be applied although its advantage needs to be balanced out 

against the extra data requirements. Estimates of N balance from the model seem to be 
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more accurate when aggregated to climate-soil domains compared with individual fields; 

in that case, using a fixed GNC value to estimate grain-N removal would work 

reasonably well. Here, an average estimated GNC value of 11.5 g kg-1 grain (at standard 

moisture content of 155 g H2O kg−1 grain) was used for field-level maize N balance 

estimation. 

This study demonstrated the value of a comprehensive field-level assessment of 

yield and N input use in producer fields, which could be useful for producers, supply-

chain companies, and policy makers in improving yield and reducing N losses from 

agricultural production. We found a wide range of N balance across producer maize 

fields, even within the same year and climate-soil domain, suggesting a substantial room 

for improvement (Chapter 3). For example, fields in a region of similar domain exhibited 

an N balance ranging from -50 to 230 kg N ha-1. We used a benchmarking framework for 

N balance to identify fields that are most likely to benefit from improved management 

practices. Of the total 8413 irrigated and 867 rainfed field-years, 58% (irrigated) and 14% 

(rainfed) exhibited N balance ≥ 75 kg N ha-1. Similarly, there were irrigated fields that 

consistently exhibited large N balance as a result of consistent high N inputs and/or low 

yield (Chapter 4). The proportion of fields with maize in rotation with soybean was, on 

average, consistently smaller in fields that exhibited large N balance compared with the 

other fields (15 versus 75%). In addition, there were 8% of rainfed fields that exhibited N 

deficit across years (Figure 3-5), which may possibly benefit from additional N fertilizer 

application. 



155 
 

 
 

Further analysis of the N balance in relation with producer soil and management 

practices brought new insights about drivers of potential N losses in agro-ecosystems. We 

found that, in rainfed fields, sowing date, N application timing, and SOM were main 

variables influencing N balance while, in the case of irrigated fields, SOM and spring N 

split application explained the largest portion of the variation in N balance (Chapter 5). 

There were number of practices that could potential lead to yield increase, or N surplus 

reduction, or both. For example, relative to late-sown fields, early-sown irrigated fields 

had higher yield without any trade-off in terms of N balance. Likewise, there was 

opportunity to reduce N balance without sacrificing yield. For instance, irrigated fields 

with low yield (i.e., yield < 80% of yield potential) had applied higher N inputs compared 

to fields that attained high yield, suggesting that N fertilizer rates can be reduced by using 

a more realistic yield goal. Achieving high yields with relatively small positive N balance 

are not conflicting goals since there were already producers reaching these goals 

simultaneously.  

The producer risk perception plays an important role at explaining the variation in 

N balance across fields (Chapter 5). For example, rainfed fields exhibited smaller N 

balance due to higher risk as a result of erratic precipitation, leading rainfed producers to 

typically apply smaller N fertilizer than irrigated fields. Likewise irrigated producers with 

sandy soil type exhibited higher N balance since they applied high N fertilizer rates to 

compensate for lower indigenous soil N and high N from irrigation water as compared to 

producers with fine-textured soils. Results from this study showed the importance of 
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evaluating the influence of management practices on N balance to properly assess 

opportunities for improvement. 

This study also provide valuable information on data requirements for robust 

estimation of N balance for a given climate-soil domain (Chapter 4). At least four 

(irrigated) and six (rainfed) years and 100 fields per year per climate-soil domain were 

needed to derive an estimate of maize N balance that was ±10% of N balance estimated 

using all field-years observations available in our database. These information, together 

with the spatial framework used in this study, can serve as basis to develop a strategy to 

collect field-level data to monitor productivity and environmental performance over large 

agricultural areas. Such information would be useful to prioritize research and extension 

programs that aimed to reduce N footprint in agro-ecosystems as well as to quantify the 

ex-ante and ex-post impact derived from these programs. Although Nebraska was used as 

a case study for proof of concept, the approach can be extended to other cereal-based 

systems around the world as long as field-level data on yield and N inputs are available. 

We expect these databases to become available soon given growing demand to measure 

the environmental footprint in agricultural systems. 

 

6.2. Developing a N balance baseline for the US Corn Belt 

 

Results from irrigated fields in this study are probably applicable to other large 

maize-producing areas in US Corn Belt since irrigated maize in Nebraska has comparable 

yield level and stability compared to those of rainfed maize production in the most 
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favorable environments in the eastern and central portions of the US Corn Belt. To verify 

this, collection of extra data was necessary across major TEDs where maize is currently 

grown in the US Corn Belt. For example, targeting yield and N inputs data collection 

from the 16 major TEDs with largest maize area in USA would allow estimation of N 

balance for an area that account for 50% of US maize area (18 million ha), which means 

that collecting producer data in 1600 fields per year in four years is sufficient for robust 

N balance estimation for half of US maize area.  

As a first step for N balance estimation across large US maize-based 

agroecosystem, producer data on yield and N inputs were collected from collaborators 

who have access to large, high quality producer databases in other US Corn Belt states. 

The producer database contained 3,066 rainfed fields sown with maize during 2004-2017 

(Figure 6-1). Fields were grouped into 15 TEDs, that accounts for 51% of total US maize 

harvested area. 

The current database was used to perform an initial analysis. Results indicated 

that (i) a greater proportion of the variation (% sum of squares excluding the error) in N 

balance was explained by TEDs rather than year (21% versus 13%); and (ii) average N 

balance ranged from 17 to 94 kg N ha-1 across TEDs, with larger N balance in the 

northern and eastern fringes of the US maize producing region (Table 6-1; Figures 6-2, 6-

3). Smaller and more variable N balance in the western fringe reflects smaller N input 

due to high risk associated with lower and more erratic precipitation. In addition, areas 

with high N balance also exhibited higher frequency of fields with N balance ≥ 75 kg N 

ha-1 (Figure 6-3). As indicated previously, potential N losses increase substantially about 
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this N balance level. Proportion of fields that exhibited N balance ≥ 75 kg N ha-1 ranged 

from 4-78% across TEDs, suggesting available room for improvement. 

These maps can help identify hotspots for potential N losses and, in tune, help 

prioritize research and extension program and inform policy. Further, this N balance 

baseline can serve as basis to identify management options to reduce N balance while 

maintaining high productivity and profit, given the availability of biophysical and 

management factor associated with each field. Complete data on yield, N inputs, 

management practices, and biophysical factors for a given field-year can give a more 

robust estimation of N balance at field and regional level. 

While these maps gave an initial N balance from large maize areas in US Corn Belt, 

inclusion of more producer data will give a more accurate assessment of the N balance 

since few data were currently available for other TEDs in eastern part of US (Figure 6-2). 

For example covering 75% of US Corn Belt will need 44 TEDs that corresponds to 4400 

fields per year. In addition, continuous collection of producer data over the years is 

important to monitor progress towards the effort in reducing potential N losses from 

agricultural production across the US Corn Belt. 

 

 

 



159 
 

 
 

Table 6-1. Analysis of variance (ANOVA) for the effects of climate-soil domain 

(domain), year, and their interaction on N balance. Proportion (in %) of total sum of 

squares (SS) excludes the error.  

Source df %SS F Value Pr > F 
domain 14 21 5 <0.001 
year 12 13 4 <0.001 
domain*year 74 66 3 <0.001 
 

 

 

 

 

Figure 6-1. Map showing the location of each rainfed maize field (blue points) located 

within the same soil-climate domain. Each color represents a technology extrapolation 

domain (TED), and is identified using numeric values (from TED 1 to 15). Inset shows 

the location of study area (highlighted in red) within the conterminous USA. 
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Figure 6-2. Boxplot of nitrogen balance for each technology extrapolation domain (TED). 

TEDs were arranged from west to east region of US (see Figure 6-1 for TED ID). Below 

and above box boundary indicates the 25th and 75th percentile, respectively. A black line 

and a star within the box marks the median and mean, respectively. Whiskers above and 

below the box indicate the minimum and maximum values. Different letters indicate 

statistically significant differences (Duncan’s test; alpha=0.05). Number of observations 

were shown in the bottom of each TED. 
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Figure 6-3. Maps showing mean N balance (left) and proportion of fields with N balance 

≥ 75 kg N ha-1 (right) per climate-soil domain. N balance ≥75 kg N ha-1 was used as a 

threshold to identify maize fields with large N balance. 
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