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Abstract

Insulin degrading enzyme (IDE), a metalloprotease that degrades amyloid-β (Aβ) peptides and 

insulin, is associated with Alzheimer’s disease and diabetes. The mechanism of IDE catalyzed 

degrading of Aβ peptides, which is of fundamental importance in the design of therapeutic 

methods for Alzheimer’s disease, has not been fully understood. In this work, combined quantum 

mechanics and molecular mechanics (QM/MM) style Møller-Plesset second order perturbation 

theory (MP2) geometry optimization calculations are performed to investigate the catalytic 

mechanism of the Aβ40 Phe19-Phe20 peptide bond cleavage by human IDE. The analyses using 

QM/MM MP2 optimization suggest that a neutral water molecule is at the active site of the 

enzyme-substrate (ES) complex. The water molecule is in hydrogen bonding with the nearby 

anionic Glu111 of IDE, but not directly bound to the catalytic Zn ion. This is confirmed by 

QM/MM DFTB3 molecular dynamics simulation. Our studies also reveal that the hydrolysis of the 

Aβ40 Phe19-Phe20 peptide bond by IDE consists of four key steps. The neutral water is first 

activated by moving toward and binding to the Zn ion. A gem-diol intermediate is then formed by 

the activated neutral water molecule attacking the C atom of the Phe19-Phe20 peptide bond. The 

next is the protonation of the N atom of Phe19-Phe20 peptide bond to form an intermediate with 

an elongated C-N bond. The final step is the breaking of the Phe19-Phe20 C-N bond. The final 

step is the rate-determining step with a calculated Gibbs free energy of activation of 17.34 kcal/

mol, in good agreement with the experimental value 16.7 kcal/mol. This mechanism provides the 

basis for the design of biochemical methods to modulate the activity of IDE in humans.
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I. Introduction

Insulin degrading enzyme (IDE, EC 3.4.24.56) is an evolutionarily conserved zinc 

metalloprotease that effectively degrades three pancreatic hormones, insulin, amylin, and 

glucagon that regulate glucose levels.1–4 Concordantly, the defects of IDE lead to glucose 

intolerance in rodents.5,6 Furthermore, the genome-wide association studies and 

polymorphism studies reveal that IDE gene is linked to type 2 diabetes in humans.7,8 IDE 

also degrades other bioactive, amyloidogenic peptides, such as amyloid β (Aβ).9 Based on 

amyloid cascade hypothesis, Aβ aggregates plays a key role in the progression of 

Alzheimer’s disease.10 The enhancement of IDE activity is a promising therapeutic 

approach for Alzheimer’s disease as IDE degrades the monomeric form of Aβ,11 which 

would curtail the Aβ aggregate-mediated toxicity in brain. Consistent with this notion, IDE 

over-expression reduced Aβ load in mice.12 A fundamental understanding for the catalytic 

mechanism of how IDE degrades Aβ would contribute to better design of methods for 

controlling the degradation of Aβ by IDE.

In general, zinc metalloproteases use zinc ion to activate a water molecule to 

nucleophilically attack the C atom of a targeted peptide bond. The water molecule can exist 

as a hydroxide ion (OH−) in the enzyme-substrate (ES) ground state, or as a neutral water. 

After the initial nucleophilic attack, the N atom of the targeted peptide bond can accept a 

proton (H+). As a result, the peptide C-N bond would be significantly weakened, and finally 

break. Different metalloproteases and its targeted substrates have been shown to have very 

different energetics in these catalytic steps.13 For example, the Zn2+-assisted nucleophilic 

attack of H2O or OH− to C atom could be the rate determining step if the activation free 

energy is the highest. The proton transfer event could also be rate-determining, and the 

enzyme catalyzed hydrolysis reaction would show a significant solvent hydrogen-deutorium 

kinetic isotop effect.14 In some cases, the peptide C-N bond breaking could also be the rate-

determining step. Therefore, it is necessary to identify the specific mechanism of a given 

pair of zinc protease and substrate in addition to the general acid-base catalytic mechanism. 

Understanding the specific mechanism can be critical for retional design of small molecule 
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modulators for a given zinc protease. For example, if the peptide C-N bond breaking is the 

rate-determining step, an effective small molecule modulator should be able to alter the free 

energy of activation for the C-N bond breaking.

Kinetic studies show that IDE stochastically cleaves a variety of peptide bonds in Aβ 
peptides, primarily at Val12-His13, His13-His14, His14-Gln15, Phe19-Phe20, Phe20-Ala21, 

and Lys28-Gly29.15 X-ray diffraction method has been used to determine the crystal 

structure of IDE and its mutants in complex with substrates such as insulin, Aβ peptides and 

mutated Aβ peptides.16,17 It is found that the tertiary structure of IDE contains four 

homologous domains in the form of αβ-sandwich. A flexible loop, formed by 28 residues of 

IDE, enables open and closed conformations. When it is closed, human IDE forms a 

catalytic chamber, which consists a Zn2+ ion coordinated by three residues, His108, His112 

and Glu189.18 The existence of a distal site, which is ~30 Å away from the active site, serves 

to anchor Aβ N-terminus, allowing the stochastic cleavages at the middle of Aβ.18,19 It is 

worth noting that the Phe19-Phe20 peptide bond is consistently found at the active site in 

many X-ray crystal structures of IDE in complex with Aβ peptides, for example, in 2G4716, 

4M1C and 2WK317.

Theoretical investigations of the catalytic mechanism,20–22 adenosine triphosphate (ATP) 

inhibition of IDE,23 and the interaction between Aβ peptides and IDE24 have been 

attempted. The general mechanism of human IDE was studied by Amata et al,20 who used 

truncated chemical models consisting of 130 and 159 atoms and density functional theory 

(DFT) method in gas phase and in solvent. The substrates involved in their study were 

simplified as CH3NH-Leu-Tyr-Leu-CONHCH3 and CH3NH-Ala-Ala-Ala-CONHCH3. They 

found that in the small model corresponding to the enzyme-substrate (ES) state, a hydroxide 

ion (OH−) is bound to the Zn2+ and forms a hydrogen bond to the nearby neutral Glu111.20 

Bora et al21 used similar methods (DFT and a continuum solvation model) on truncated 

chemical models (68–80 atoms) of IDE active site with three dipeptides representing His14-

Gln15, Phe19-Phe20, Lys28-Gly29. A different ES state was identified in that a neutral 

water molecule rather than a hydroxide was binding to the Zn2+ ion. Bora et al’s results 

suggest that the rate-determining step for the cleavage of these dipeptides is the activation of 

the neutral water molecule by Zn2+ and anionic Glu111 and the simultaneous addition of the 

resulted hydroxide ion to the peptide C atoms.21 da Cruz and Seabra used combined 

quantum mechanics and molecular mechanics (QM/MM25) style self-consistent charge 

density functional tight-binding (i.e., SCC-DFTB26) molecular dynamics (MD) simulation 

method to study the ATP inhibition of IDE in the hydrolysis of the Phe19-Phe20 peptide 

bond in Aβ42.22 In their spherical QM/MM system, the QM region had 120 atoms and the 

MM region had more than 66000 atoms. Similar to Bora et al21, da Cruz et al22 found that 

the ES state contains a neutral water molecule directly bound to Zn2+. Instead of the 

hydroxide addition (as the first step), their results suggest that the rate-determining step (as 

the second step) is the breaking of the Phe19-Phe20 peptide bond in Aβ42 with an activation 

free energy of 15±2 kcal/mol when ATP is absent, and of 22±4 kcal/mol when ATP is 

present.

The three theoretical studies aforementioned suggest that either Zn2+-OH− or Zn2+-H2O is 

present in the ES ground state. However, no water coordinated by Zn ion is found in all 
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substrate-bound IDE crystal structures that represent IDE ES state (i.e., substrate is 

coordinated by Zn2+). It is likely that a water molecule could not be coordinated by the 

active site Zn ion when the Zn ion is bound to a peptide substrate such as amyloid and 

insulin in the ES state. This is consistent with the notion that the geometry of Zn ion 

coordination at the IDE catalytic site could not allow stable water coordination upon 

substrate binding. In addition, no water molecule or hydroxide ion was found to bind to the 

same Zn ion when BDM series of IDE inhibitors developed by Benoit Déprez and 

colleagues were used. For example, in the X-ray structure 4DTT.PDB27, both chains A and 

B have inhibitors (compound BDM41367) bound to the Zn ions, and no water is bound to 

the Zn ion. In 4RE9.PDB28, both chains A and B have the inhibitors (compound 

BDM71290) bound to Zn ion, and no water is bound to Zn ion. In 4IFH.PDB28 chain B, an 

inhibitor (compound BDM44619) is bound to the Zn ion and no water is bound to the Zn 

ion; while the chain A has no inhibitor, and a water is directly bound to the Zn ion. 

Interestingly, a water molecule was found to be coordinated by catalytic Zn ion and Glu111 

of IDE in substrate-free IDE structure (IDE-Y831F; PDB code 2JG429), highlighting the 

potential role of glutamate 111 in water coordination. Thus, the ES states and the 

mechanisms proposed by theoretical studies aforementioned would need to be modified and 

updated.

IDE needs to undergo a large open-closed conformational change to capture and unfold its 

substrates and release its reaction products. However, most reported IDE structures are 

trapped in the fully closed state, likely due to the constraints of crystal lattice. Recently, a 

Fab bound substrate-free IDE reveals a motion at the catalytic domain that would allow IDE 

to recognize amyloidogenic peptides.30 As such crystallization condition would likely 

provide the requisite conformational freedom for IDE catalysis, we thus use a structure of 

Fab-bound IDE in complex with Aβ40 (PDB code 4M1C) to perform our MD simulation. In 

this structure, the Phe19-Phe20 peptide carbonyl O atom is bound to the active site Zn ion, 

and no water molecule is identified near the Zn ion. We performed highly accurate QM/MM 

Møller–Plesset second order perturbation theory (MP2)31 geometry optimization 

calculations to explore the catalytic reaction pathway energetics for the hydrolysis of the 

Aβ40 Phe19-Phe20 peptide bond. MP2 methods are consistently more accurate than DFT 

methods for many closed-shell molecules, especially for Zn compounds, and are often used 

to calibrate DFT methods. In addition, QM/MM density functional tight-binding third-order 

method (DFTB3)32 was used to run MD simulations to examine the position and stability of 

the neutral water molecule in the enzyme-substrate (ES) state. The third-order DFTB3 

method with recent parameterization is systematically more accurate than the second-order 

SCC-DFTB method.32 The QM/MM calculations were performed with the methods 

implemented in the quantum chemistry polarizable force field (QuanPol)33 program, which 

offers a seamless and full-spectrum combination of various QM and MM methods in a 

rigorous fashion. As such, the QM/MM MP2 and DFTB3 methods and results are 

systematically comparable. In this paper, we applied these improved methodologies, which 

offer more accurate description of the catalytic mechanism of IDE.
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II. Computational methods

All force field and quantum chemical calculations were performed with the quantum 

chemistry polarizable force field (QuanPol)33 program implemented in the General Atomic 

and Molecular Electronic Structure System (GAMESS) package.34,35 The QM/MM MP2 

calculations were performed with the parallel MP2 program implemented by Ishimura, 

Pulay and Nagase et al,36,37 and the QuanPol routines that add MM interactions to the MP2 

method.38 The QM/MM DFTB332 method was implemented by the authors in the QuanPol 

and GAMESS program based on the DFTB3 code implemented by Nishimoto,39 and the 

technical details will be published in a separate paper. The details of the computational 

methods are available in the Supporting Information.

The coordinates of IDE and Aβ40 were obtained from the chain A and chain G of the X-ray 

structure file 4M1C in the Protein Data Bank.40 The missing loops in chains A and G were 

constructed by using the Modeller tool41 in the Chimera program;42 The mutated residues in 

4M1C were restored by using the Rotamer tool43 in the Chimera program;42 H atoms were 

added by using the Chimera program.42 A water molecule was manually added to a position 

near the Zn ion and Glu111. The QuanPol33 program was used to assign the AMBER44–46 

ff12SB47 force field to IDE, Aβ40 peptide and the Zn ion. The QuanPol three-point non-

polarizable water model QP30133 was used for the added water molecule at the active site. 

The IDE-Aβ40 complex was solvated in a 96 Å × 112 Å × 108 Å periodic boundary 

condition rectangular box, and randomly filled with 60 Na+ ions, 36 Cl− ions, and 30320 

water molecules. The whole system had 107407 atoms and a zero net charge (Figure 1).

The system was equilibrated by running force field molecular dynamics (MD) simulation for 

1.25 ns with a time step size of 1 fs. The last geometry from the force field MD simulation 

was used for QM/MM geometry optimizations. The 46 atoms of Aβ40 peptide (including 

atoms of Val18, Phe19, Phe20 and Ala21) and 48 atoms of IDE (including atoms of His108, 

His112, Glu111 and Glu189, the zinc ions and the water molecule) were defined as QM 

atoms (Figure 2). As selected, the QM region had a total of 94 atoms and a zero charge 

(Figure 2). The 94 QM atoms were optimized together with 1709 MM atoms that were 

within 16 Å to the Zn2+ ion (so the total number of atoms optimized was 1803). The same 

1803 QM and MM atoms were optimized in different cases so their energies were 

comparable. The QM/MM geometry optimization was performed with the MP231 method, 

in which the 6–31G* basis set48 was used for 80 QM atoms and the aug-cc-pVDZ basis 

set49,50 was used for 14 most important QM atoms (Figure 2). The QM/MM optimized 

coordinates of the 94 QM atoms are available in Supporting Information. QM/MM MP2 

Hessian calculations (after QM/MM MP2 geometry optimization) were performed by using 

a partial Hessian method.51

The results of the QM/MM MP2 geometry optimization depend on the initial structure from 

the MM MD simulation. When affordable, it is common to take a set of snapshots from MM 

MD simulation to perform QM/MM calculations to enhance the sampling. In this study, the 

active site of IDE is pretty rigid due to the Zn-ligand coordinate bonds. Therefore, unless the 

protein environment around the active site is dramatically different, the resulted mechanism 

and energetics should be similar to each other. Here 1803 atoms around the active site 
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(radius ~16 Å) were fully optimized, so the influence of the initial structure is further 

reduced. The QM/MM MP2 method is very expensive (10~20 times more costly than DFT 

methods in terms of computer resource and timing), so it is not very practical at the current 

stage to perform a set of QM/MM MP2 calculations for the system.

In order to get a better understanding of how the water molecule moves at the active site in 

the ES state, QM/MM DFTB3 MD simulation was performed. In the DFTB3 method, the 

parameter set named the Third-Order Parameterization for Organic and Biological systems 

(3OB-3–152–55) was used. The ES structure for the QM/MM DFTB3 MD simulation was the 

QM/MM MP2 optimized geometry. This ES structure was equilibrated at 298.15 K and 1.0 

bar for 100.0 ps with a time step size 1.0 fs. At the end of this simulation, the Zn-Owater 

distance was 3.92 Å. This very last geometry was then used to run a subsequent QM/MM 

DFTB3 thermodynamic integration free energy simulation with a series of restricted 

distances from 3.9 to 2.1 Å between Zn2+ ion and Owater.

III. Results and discussion

III.A. Water is not directly bound to Zn in the ES ground state

Both QM/MM MP2 and DFTB3 calculations suggest that there is a neutral water molecule 

at the active site but the water molecule is not directly bound to the Zn2+ ion in the enzyme-

substrate (ES) ground state. The O atom of the water molecule stays 4.116 Å away from the 

Zn2+ ion in the QM/MM MP2 optimized structure; an average Zn-Owater distance of 4.06 Å 

was observed in a 100 ps QM/MM DFTB3 MD simulation. This result is consistent with X-

ray crystal structures in that the Zn ion is bound to an inhibitor.

Three possible ES candidate structures, A, B and C (Figures 2A, 2B, 2C), were examined 

with QM/MM MP2 geometry optimization methods. The key interatomic distances and 

relative energies of these three structures are shown in Table 1. It turned out that structure A 

is the ES state (and very similar to the X-ray structure 4M1C), structure C is a higher energy 

(higher than structure A by 7.41 kcal/mol) pre-attack state (named ES* here and hereafter). 

In order for the neutral water molecule in structure A (the ES state) to attack the CPhe19 

atom, it should move closer to the CPhe19 atom and bind to the Zn2+ ion to form structure C 

(the ES* state), in which it would remain as a neutral water molecule.

Structure A was optimized starting from the last geometry of the force field MD simulation 

as described in the Computational Methods section. After QM/MM MP2 optimization, the 

water molecule remains at a position far away from Zn2+, with a distance of 4.12 Å between 

O and Zn2+ (Figure 2A). This water molecule is also far away from the C atom of Phe19, 

with a distance of 4.250 Å between CPhe19 and Owater. At this distance, the water molecule 

is not ready to attack the CPhe19 atom and it is difficult to be activated either by the nearby 

Glu111 or the Zn2+ ion. The direct addition of the water molecule to the CPhe19 atom of 

Aβ40 would require a very high activation energy. The structure A has interatomic distances 

(Zn-O1, Glu189 1.95 Å, Zn-O2, Glu189 2.47 Å and Zn-OPhe19 2.03 Å) similar to those (Zn-

O1, Glu189: 2.26 Å, Zn-O2, Glu189: 2.68 Å and Zn-OPhe19: 2.20 Å) in the X-ray structure 

4M1C, suggesting that the X-ray structure 4M1C (with Gln111 and other site mutations) 

may be very similar to the ES state formed by the wild-type IDE. QM/MM DFTB3 MD 
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simulation was performed for the ES state (Figure 2A) identified from QM/MM MP2 

geometry optimization. During the 100.0 ps simulation, the water molecule was wandering 

in the pocket formed by Glu111 and Aβ40 peptide, but did not bind to Zn2+ ion. The water 

molecule maintained a hydrogen bond with the anionic Glu111 thus could not flee from the 

active center. The average distance between the O atom of the water molecule and the Zn2+ 

ion was 4.06 Å, with the shortest (note the distances were checked at every 1000 fs) distance 

being 2.72 Å and the longest distance being 5.67 Å. For comparison, when a neutral water 

molecule binds to a Zn ion, the O-Zn distance should be ~2.0 Å. Therefore, both QM/MM 

geometry optimization and MD simulation suggest that the neutral water molecule is not 

bound to Zn2+ ion and its position is not fixed, making it difficult to be identified in X-ray 

diffraction measurement of IDE crystal structures.

Structure B was started from a structure in that the water molecule is manually positioned to 

be close to the C atom of Aβ40 Phe19, thus ready to react. As positioned, the water 

molecule is not bound to the Zn2+ ion (with a Zn-Owater distance ~4 Å). After optimization 

the water molecule remains at the initially assigned position (Figure 2B), with a Zn-Owater 

distance of 4.164 Å and a distance between CPhe19 and Owater being 2.513 Å. Structure B 

(Figure 2B) is 8.79 kcal/mol higher in energy than structure A.

Structure C was similar to structure B, but the water molecule was manually positioned to 

bind to the Zn2+ (with a Zn-Owater distance ~2 Å). In addition, an H atom of the water 

molecule was manually moved to Glu111 so the neutral water became a hydroxide ion and 

Glu111 was neutral. This is to examine whether a hydroxide can directly bind to the Zn ion 

in the ES state. This structure was then optimized with the QM/MM MP2 method. During 

the optimization process, the proton on Glu111 automatically transferred back to the 

hydroxide to form a neutral water molecule and an anionic Glu111 (Figure 2C). The Zn-

Owater distance was optimized to 2.028 Å. Due to the binding of the neutral water to the Zn 

ion, the binding between Aβ40 OPhe19 and the Zn2+ ion is lost (becomes 3.37 Å), so the 

Zn2+ ion retains the same coordination number. This is probably due to steric effects. This 

result suggests that a hydroxide ion is not preferred at the active center, even when it is 

bound to Zn2+. In structure C, the distance between the C atom of Phe19 (CPhe19) and the O 

atom of the neutral water molecule (Owater) is 2.62 Å, so the water is ready to attack the 

CPhe19.

III.B. Four-step mechanism

Our computational results support a four-step catalytic mechanism with the rate-determining 

step being the breaking of the Aβ40 Phe19-Phe20 peptide bond (C-N bond) concerted with a 

proton transfer to Glu111 of IDE. The details of the proposed catalytic mechanism are 

shown in Figure 3 and the electronic energy profile is shown in Figure 4.

The first step is the evolving of ES (Figure 2A and Figure 3) to ES* (Figure 2C and Figure 

3), which involves the breaking and formation of Zn2+ coordinate bonds. As already 

discussed, the ES* state is higher in energy then the ES state by 7.41 kcal/mol as calculated 

with the QM/MM MP2 optimization method. In order to estimate the Gibbs free energy 

change (ΔG) from ES to ES*, a thermodynamic integration free energy simulation was 

performed using the QM/MM DFTB3 method. In the DFTB3 free energy simulation, the 
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Zn-Owater distances were gradually changed from 3.9 Å (ES state) to 2.1 Å (ES* state). 

Figure 5 shows that the ES* state (Figure 2C) has a higher Gibbs free energy (4.86 kcal/mol 

higher) than the ES state (Figure 2A). This is in fairly good agreement with the QM/MM 

MP2 geometry optimization result 7.41 kcal/mol. The ES* state from this QM/MM DFTB3 

simulation is similar to the ES* state found from QM/MM MP2 optimization: all Zn-ligand 

distances are similar except for the Zn-OPhe19 distance (DFTB3 is ~2.37 Å while MP2 is 

3.372 Å). As discussed earlier, the Aβ40 OPhe19 ligand steps away as the water establishes a 

direct binding to the Zn2+ ion. The QM/MM DFTB3 simulation shows a similar trend: the 

Zn-OPhe19 distance increases from 1.99 Å (in ES state, water not binding to Zn) to 2.37 Å 

(ES*, with water binding to Zn). A search for the transition state linking ES and ES* was 

attempt with the QM/MM MP2 method, but it turned out that these two states are far away 

on the potential energy surface so it is very difficult to find a well-defined transition state 

between them. There must be several transition states between them. The QM/MM DFTB3 

MD free energy simulation suggests that the free energy of activation for ES conversion to 

ES* is 5.52 kcal/mol (Figure 5). Nevertheless, the conformational changes on going from ES 

to ES* to kick off the degradation of Aβ40 peptide is very unlikely the rate-determining 

step.

In the second step, as the neutral water molecule is already bound to the Zn2+ ion (the ES* 

state), it is ready to attack the Phe19-Phe20 peptide bond. The first transition state (T1) is 

formed with a reduction of the distance (2.62 Å to 1.91 Å) between the C atom of Phe19 

(CPhe19) and the O atom of the neutral water molecule (Owater). In the meantime, an H atom 

of the water transfers to Glu111. The electronic energy barrier calculated for this process is 

13.69 kcal/mol (Figure 4). Passing this transition state, an intermediate EI1 is formed with a 

CPhe19-Owater bond length of 1.49 Å and a neutral Glu111. The electronic energy for EI1 is 

higher than the ES state by +4.29 kcal/mol.

In the third step, Glu111 delivers the just accepted H atom to the N of Phe20 (NPhe20). The 

distance between H and NPhe20 is reduced from 2.94 Å (in EI1) to 1.09 Å (in EI2) with a 

transition state distance of 1.28 Å (in T2). The electronic energy barrier for this step is 

calculated as 16.73 kcal/mol. Due to the formation of the N-H bond, the substrate CPhe19-

NPhe20 peptide bond is significantly weakened as the bond length changes from 1.46 Å in 

EI1 to 1.55 Å in T2, and to 1.60 Å in EI2.

In the fourth step, the weakened CPhe19-NPhe20 peptide bond breaks by passing a transition 

state T3 to reach the final product PS. Concertedly, the other H atom of the H2O molecule 

(now carboxylic acid proton on Phe19) transfers to the anionic Glu111, making it neutral. 

The electronic energy barrier calculated for this step is 17.68 kcal/mol, higher than other 

steps. So this is the rate-determining step. Partial Hessian analysis was performed and the 

free energy correction was calculated as −0.34 kcal/mol, with a −1.27 kcal/mol contribution 

from zero point energy. Therefore, the activation free energy can be estimated as 17.34 kcal/

mol.

III.C. Comparison to experimental kinetics

Leissring et al15 determined the rate of degradation of Aβ peptide by IDE by using modified 

Aβ peptide (fluorescein-Aβ-(1–40)-Lys-biotin) and two different methods: fluorescence 
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polarization (FP) and avidin-agarose precipitation (AAP), which yielded kcat as 256±22 min
−1 and 221±11 min−1, respectively. According to unimolecular transition state theory, those 

rate constants correspond to activation free energies of 16.59±0.05 kcal/mol and 16.68±0.03 

kcal/mol for FP and AAP, respectively. Our calculated activation free energy is 17.34 kcal/

mol, which is in good agreement with these experimental values. While the agreement is 

good, we must note that the experimentally measured rate constant is for modified Aβ 
peptide assay instead of the wild-type Aβ peptide. Moreover, the measured rate constant is 

not solely for the degradation of Aβ peptide at Phe19-Phe20 position because Aβ peptide 

can be degraded by IDE at several possible positions, such as Lys28-Gly29 and His14-

Gln15.

III.D. Comparison to other theoretical results

Amata et al20 reported that the cleavage of peptide bonds involves an OH− nucleophilic 

addition with activation free energies of 15.9 kcal/mol for Ala-Ala and 15.6 kcal/mol for 

Tyr-Leu. The highest transition state found in their study is the TS2 (corresponding to OH− 

addition to the peptide N atom), so the rate-determining free energy of activation are 19.2 

and 19.5 kcal/mol, respectively. Bora et al21 suggested that the rate-determining step is the 

activation of the neutral water molecule by Zn2+ and anionic Glu111 and the simultaneous 

addition of the resulted hydroxide ion to the peptide C atoms.21 The electronic energy 

barrier of this step calculated for the His14-Gln15, Phe19-Phe20, Lys28-Gly29 dipeptide 

models are 22.3, 18.8 and 14.3 kcal/mol, respectively.21 Both of these papers suggest that 

the rate-determining step is the OH− addition to the peptide C atom. The QM/MM MP2 

calculation in the current paper suggests that the OH− addition step requires an electronic 

energy barrier of 13.69 kcal/mol, and is not the rate-determining step. While these 

comparisons are meaningful, because there could be a common catalytic mechanism for 

different substrates, we must emphasize that the mechanism and energetics may be very 

different for small peptides and long peptides. In addition, different QM methods (DFT v.s. 

MP2) may also give different results.

da Cruz and Seabra used QM/MM SCC-DFTB molecular dynamics (MD) simulation 

method to study the IDE hydrolysis of the Phe19-Phe20 peptide bond in Aβ42.22 Instead of 

the hydroxide addition, their results suggest that the rate-determining step is the breaking of 

the Phe19-Phe20 peptide N-C bond in Aβ42, with an activation free energy of 15±2 

kcal/mol when ATP is absent, and of 22±4 kcal/mol when ATP is present. The QM/MM 

MP2 calculation in the current paper also suggests that the rate-determining step is the N-C 

bond breaking, with a 17.34 kcal/mol free energy of activation (but note the two different 

substrates: Aβ42 versus Aβ40).

These comparisons suggest that the choice of QM/continuum and QM/MM methods may 

significantly affect the computed reaction energetics: QM/continuum methods may 

overestimate the OH− addition energy barrier.

IV. Conclusion

QM/MM MP2 and DFTB3 methods are used to investigate the catalytic mechanism of 

hydrolysis of the Phe19-Phe20 peptide bond in Aβ40 by insulin degrading enzyme (IDE). It 
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is found that in the enzyme-substrate (ES) state, the reactive water molecule is not directly 

bound to Zn2+ ion, different from the findings in other theoretical studies.20–22 The distance 

between the O atom of the water molecule is 4.116 Å in the MP2/[aug-cc-pVDZ/6–31G*]/

AMBER optimized structure. QM/MM DFTB3 MD simulation suggests that this water 

molecule can move around at the active center. The average distance between O atom of 

H2O molecule and the Zn2+ ion is calculated to be 4.06 Å during the 100 ps simulation with 

the shortest distance being 2.72 Å and the longest distance being 5.67 Å.

The catalytic reaction can be divided into four steps. In the first step, with the assistance of 

the anionic Glu111, the neutral water molecule (in hydrogen bond with anionic Glu111) 

near the active center is activated by binding to the Zn2+ ion. In the second step, the 

activated neutral water molecule attacks the C atom of Aβ40 Phe19-Phe20 peptide bond to 

form a gem-diol intermediate. In the third step, a proton transfer from Glu111 of IDE to N 

atom of Aβ40 Phe19-Phe20 peptide bond to form an intermediate with elongated C-N bond 

that is ready to break. In the fourth step, the peptide C-N bond breaks with a simultaneous 

proton transfer to Glu111. The fourth step is the rate-determining step with a Gibbs free 

energy of activation of 17.34 kcal/mol, in good agreement with experimental value 16.6 

kcal/mol.
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Figure 1. 
Structure of QM/MM MP2 optimized enzyme-substrate (ES) state of IDE in complex with 

Aβ40. The active site structure is shown on the right side. The water molecule is not bound 

to the Zn2+ ion (Zn-Owater distance is 4.116 Å). Zn2+ ion is displayed in purple. Water 

molecule is displayed with red (O) and white (H).
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Figure 2. 
QM/MM MP2 optimized structure (QM region, 94 atoms in the QM/MM system, Zn: green; 

N: blue; O: red; C: tan; H: white) for three possible active site structures of the enzyme-

substrate (ES) state in the degradation of Aβ40 Phe19-Phe20 peptide bond by IDE. The 

distance between the O atom of water and the Zn2+ ion is: (A) 4.116 Å; (B) 4.164 Å; (C) 

2.028 Å.
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Figure 3. 
QM/MM MP2 calculated catalytic mechanism for IDE catalyzed hydrolysis of Aβ40 Phe19-

Phe20 peptide bond.
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Figure 4. 
Electronic energy profiles from QM/MM MP2/[aug-cc-pVDZ/6–31G*] geometry 

optimization. Zero point energy and thermal energies are not included.
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Figure 5. 
QM/MM DFTB3 thermodynamic integration free energy simulation from state ES to ES* 

with the reduction of distance between O atom of water molecule and Zn2+ ion from 3.9 Å 

to 2.1 Å.
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Table 1.

Key Zn-ligand distances (Å) in the QM/MM MP2 optimized structures A, B and C shown in Figure 2. The 

relative energies (ΔE) are from QM/MM MP2/[aug-cc-pVDZ/6–31G*] geometry optimization. The distances 

in the X-ray structure 4M1C are also included for comparison.

ΔE (kcal/mol) Zn-NHis108 Zn-NHis112 Zn-O1, Glu189 Zn-O2, Glu189 Zn-OPhe19

4M1C.PDB NA 2.331 2.121 2.258 2.682 2.199

Structure A 0.00 1.967 1.994 1.951 2.473 2.027

Structure B 8.79 1.973 1.986 1.973 2.377 2.049

Structure C 7.41 2.016 2.013 1.973 2.466 3.372
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