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This work pertains to the laser powder bed fusion (LPBF) additive manufacturing 

process. The objective of this thesis is to predict a frequently occurring type of thermal-

induced process failure in LPBF called recoater crash. To ascertain the likelihood of a 

recoater crash before the part is printed, we develop and apply a computationally efficient 

thermomechanical modeling approach based on graph theory.  

Despite its demonstrated ability to overcome the design and processing constraints of 

conventional subtractive and formative manufacturing, the production-level scaleup of 

LPBF is hindered by frequent build failures. For example, the part often deforms as it is 

being printed due to uneven heating and cooling. This thermal-induced deformation of the 

LPBF part during processing causes it to interfere with the deposition mechanism 

(recoater) leading to a common build failure called recoater crash. A recoater crash not 

only destroys the part involved but also causes an entire build to be abandoned resulting in 

considerable time and material losses.  

In this context, fast and accurate thermomechanical simulations are valuable for 

practitioners to identify and correct problems in the part design and processing conditions 

that can lead to a recoater crash before the part is even printed.  Herein, we propose a novel 



 

 

 

thermomechanical modeling approach to predict recoater crashes which is based on two 

sequential steps. First, the temperature distribution of the part during printing is predicted 

using a meshfree graph theory-based computational thermal model. Second, the 

temperature distribution is used as an input into a finite element model to predict recoater 

crashes. The accuracy and computational efficiency of this graph theory-based approach is 

demonstrated in comparison with both non-proprietary thermomechanical finite element 

analysis (Abaqus), and a proprietary LPBF simulation software (Netfabb). Based on 

numerical (verification) and experimental (validation) studies, the proposed approach is 5 

to 6 times faster than the non-proprietary finite element modeling and has the same order 

of speed as Netfabb. This physics-based approach to prevent recoater crashes can engender 

substantial savings by supplanting existing build-and-test optimizations of part design and 

parameters.   
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CHAPTER 1 ‒ INTRODUCTION 

1.1 Motivation and Background 

In the laser powder bed fusion (LPBF) metal additive manufacturing process, thin 

layers of powder are deposited and selectively melted using energy from a laser to form a 

three-dimensional part [1]. A schematic of the LPBF process is shown in Figure 1.  The 

process can revolutionize functional performance in strategic applications ranging from 

aerospace to biomedical industries [2-4]. For instance, using LPBF to make an aircraft 

engine decreased the number of parts from 855 to 12 and increased fuel efficiency as well 

as engine power by 20 percent [5].  

 

Figure 1: A schematic of the laser powder bed fusion (LPBF) process. Image from Yavari 

et al. [6]. 

However, poor process consistency and degraded part quality currently afflict LPBF, 

and print failure rates often exceed 30 percent due to a lack of responsive process control 

[7-11]. Thus, precision-oriented industries are reluctant to use LPBF to make safety-critical 
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parts [9-15]. Hence, to ensure broader use of LPBF parts,  potential causes of flaw 

formation must be understood, predicted, and mitigated. 

Flaw formation in LPBF parts is influenced by the spatiotemporal temperature 

distribution – thermal history – as they are being printed [10]. To make an LPBF part, a 

laser melts individual tracks of material at scanning speeds close to 1,000 mm per second. 

Consequently, the heating and cooling cycles often exceed 105 degrees Celsius per second 

[16, 17]. The thermal history is a complex function of the part shape, material properties, 

and 50+ processing parameters [18-20]. Therefore, parameters optimized by empirical 

testing of simple-shaped coupons may not work for complex parts [11, 21].  

A particular type of frequently occurring build failure called recoater crash – the focus 

of this work – is directly related to the thermal history. Due to the uneven heating and 

cooling of the part during printing, the part deforms, and its top surface extends (raises) 

above the thin layer of powder. This phenomenon is called superelevation. If the 

deformation of the top surface of the part in the vertical build direction is larger than the 

layer height (typically 20 to 50 µm), the part will interfere with the recoater as it attempts 

to deposit a new layer of powder. The resulting contact of the part with the recoater may 

damage the part; fine features are particularly vulnerable for failure due to recoater crash. 

Furthermore, following a crash the recoater drags debris from the failed part across the 

build plate. This debris from the recoater crash can potentially damage other parts of the 

build plate. Often an entire build must be discarded due to a recoater crash.  
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Figure 2: (Top) The build plate used for the experimental validation in this work, note the 

failed arch-shaped parts and damage to the lattice-like N-shaped part. (Bottom) The 

superelevation of the arches and N-shaped part leads to a subsequent recoater crash. 
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Examples of recoater crashes are exemplified in Figure 2. Shown in Figure 2 (top) is 

an LPBF build plate consisting of several Inconel 718 parts of different shapes. All these 

parts were built under identical processing conditions. Near the left edge of the build plate 

are five arch-shaped parts built without supports. A similar failure of features is observed 

for the N-shaped part with a lattice-like structure owing to superelevation and subsequent 

contact with the recoater.  In Figure 2 (bottom), the occurrence of superelevation of the 

arch and N-shaped parts is evident.   

In Figure 2 (top), it is observed that the arch-shaped parts built with support structures 

did not fail, unlike their counterparts without supports. The arches without supports tend 

to retain heat, leading to the uneven temperature distribution. Supports, by providing a 

conduit to rapidly conduct the heat, avoid heat retention, thus, avoiding superelevation. 

The foregoing example further illustrates the causal interaction of part design and quality 

in LPBF.  

Currently, practitioners resort to an empirical build-and-test approach to optimize the 

part geometry, placement of supports, part orientation, and process parameters to avoid 

recoater crashes – an expensive and time-consuming process. Moreover, such empirical 

optimization efforts are tightly linked to the build plan because the addition or removal of 

parts from the build plate changes the thermal history. Thus, in the context of Figure 2, fast 

and accurate thermal simulations that can replace trial-and-error experiments are critical 

for reducing build failures and facilitating production-level scaling of LPBF parts.      
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1.2 Objective, Hypothesis, and Scope 

The objective of this work is to predict the thermal-induced deformation in LPBF parts 

as they are being printed, and consequently, forecast the occurrence of recoater crashes 

using a graph theory-based thermomechanical modeling approach.   

The approach is based on two sequential steps. First, the thermal history of the part is 

predicted using a meshfree graph theory-based computation thermal modeling approach. 

Second, the graph theory-derived thermal predictions are used as inputs into a finite 

element model to predict deformation. In other words, we present a hybrid graph theory-

finite element model for the prediction of thermal-induced deformation leading to possible 

recoater crashes.  

The central hypothesis is that such a decoupled approach based on using graph theory 

to obtain the thermal history and the finite element approach to predict deformation will 

outperform, in terms of computational speed, the coupled thermomechanical finite element 

model without sacrificing accuracy. We test this hypothesis through verification and 

experimental validation studies. In these we compare thermal history, deformation in the 

z-direction (vertical build direction), and recoater crash predictions obtained from the 

graph theory-based model, with (i) non-proprietary finite element-derived predictions 

(implemented in Abaqus with identical assumptions), and (ii) a proprietary LPBF modeling 

software (Netfabb).  

Verification results are reported in Chapter 3 for two test parts. Experimental 

validation of the approach is reported in Chapter 4, in the context of the arch-shaped objects 
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(with and without supports) exemplified in Figure 2 (top). We note the verification and 

validation procedure follows the recommendations by Gouge et al. in Ref. [22]. 

Apart from a recoater crash, the deformation of the part during printing is also 

responsible for another type of common build failure that results from the shearing of 

anchoring supports. Subsequent to printing, the part may crack or deform when it is 

separated from the build plate due to thermal-induced residual stresses.  

We note that the focus of this work is to predict recoater crashes. We do not report 

results for part deformation and warpage that occur when the part is removed from the 

build plate on account of thermal-induced residual stresses. Recoater crashes are caused by 

superelevation – a phenomenon that is tied to in-process deformation of the part in the z-

direction (vertical build direction). Hence, the deformation results reported in this work are 

restricted to those in the z-direction.  

1.3 Literature Review 

The thermomechanical finite element (FE) method is a widely used approach for 

modeling LPBF process to predict thermal-induced residual stress and deformation. The 

governing principles are based on the concepts of welding [23, 24]. The thermomechanical 

FE modeling advanced from welding is used to predict thermal history, deformation, and 

residual stress in LPBF [25-29]. However, there are unique challenges associated with the 

modeling of LPBF process. The modeling of welding is relatively simpler than the LPBF, 

wherein welding modeling deals with the process of joining two parts. The part undergoes 

considerably fewer cycles of heating and cooling, whereas in LPBF several thousand tracks 

of material are deposited over hundreds of layers. For example, in one cubic inch part 

typically over 150,000 tracks of material are deposited in 500+ layers, wherein the process 
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experiences thousands of uneven heating and cooling cycles [24]. Thus, the simulation of 

this LPBF process has become computationally inefficient and complex.  

The fully coupled or decoupled thermomechanical mesoscale modeling of the LPBF 

process considers the effect of the laser beam as a concentrated, moving body heat source 

[30, 31]. The mesoscale model demonstrates a high resolution of thermal stress and 

deformation fields. However, the computational domain is very small, typically  several 

spots, tracks, or layers due to excessive computational expense [30-39]. Hence, researchers 

investigated simple geometries such as small cubes or thin plates [30, 31, 39-44]. For 

example, Ma et al. [33] developed a transient, two-dimensional axisymmetric FE model to 

simulate surface melting and solidification resulting from a single laser pulse for studying 

the effect of pulse duration. They simplified the model by considering homogeneous and 

isotropic materials while neglecting heat loss due to convection and radiation. The 

computation domain was as small as 0 < r < 120 µm in the radial direction. According to 

Ma et al., the coupled FE model can be used to study the effect of process parameters [33]. 

Nickel et al. advanced to three–dimensional (3D) FE modeling to study thermal stress and 

deformation due to deposition patterns [45]. Dai et al. used an ANSYS model to simulate 

the LPBF process to investigate the thermal history and warpage of a layer-by-layer build 

part, but the result showed only two layers without validation [36].  

According to current literature, mesoscale modeling cannot be used in the industrial 

environment for building large and complex geometries without implementing multi-

scaling or layer lumping approach [31, 46, 47]. Hence, researchers seek part-level 

modeling which enables them to model real-size parts with a reasonable computational 

expense [31, 48-51]. It has been found that simulating several layers or blocks, instead of 
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a single track or layer at a time substantially reduced the computational burden. However, 

part-level modeling requires considering several model simplification assumptions. For 

instance, Zaeh et al. [47] investigated the residual stress and thermal-induced distortion in 

an LPBF process. They implemented the layer lumping approach also known as a super 

layer approach in their model. Williams et al. [49] studied thermal stress, residual stress, 

and deformation by simulating blocks of multiple layers. Liang et al. [47] investigated the 

layer lumping approach to accelerate the simulation of metal components in the LPBF 

process. According to Liang et al., the super layer thickness ranging from 0.4 mm to 0.6 

mm reduces the computation time significantly with good accuracy.  

Gouge et al. [22, 51-53], Luo et al. [54], DebRoy et al. [55], and Bandyopadhyay et 

al. [16] have recently published comprehensive studies on part-level finite element 

modeling in AM. Researchers have proposed several strategies to reduce the computational 

burden of FE analysis. The summary of the strategies are as follows:  

1. Mesh refinement technique 

In the mesh-based AM process simulation, following every new track or layer of 

deposition, the whole consolidating part has to be re-meshed. Hence, the 

computation is usually inefficient and complex. To address this issue (i.e., to 

reduce the computational cost) researchers have proposed some techniques such 

as adaptive meshing, inactive element approach, quiet element approach, and 

hybrid meshing.  

i. Adaptive meshing approach: The key idea of this approach is to create finer mesh at 

a specific area where boundaries change intensely while keeping coarser mesh for 

the rest of the part [56]. As a result, computational expense reduces significantly. 
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Commercial software such as Amphyon and Autodesk Netfabb use adaptive meshing 

to accelerate the simulation [57].  

ii. Inactive element approach: Elements are incrementally added for each new 

deposition and only the nodes of the active element are considered during simulation. 

The number of elements of the parts increases as the part builds up and requires 

repetitive equation numbering and solver initialization, resulting in an inefficient 

implementation of this approach. [22]. 

iii.  Quiet element approach: The concept of this approach is to mesh the entire geometry 

and assign element properties prior to the simulation. The active elements of the 

consolidating part are simulated while the rest of the elements have no thermal or 

mechanical effect. This approach is computationally more efficient than the inactive 

element approach, as the number of elements remains constant in the entire 

simulation  [22, 56]. 

iv.  Hybrid meshing approach: This approach combines inactive and quiet element 

techniques. Initially, the elements are kept inactive. Then before a new layer is 

activated for simulation, the elements are switched to quiet. This approach is faster 

than the inactive and quiet element approaches with the same level of accuracy [22].  

Commercial software Autodesk Netfabb implemented this approach in its software 

[56, 58]. 

2. Model simplification 

According to the current literature, the simplification approach is commonly used 

in AM to reduce the computation. This approach includes geometry simplification 

through simulating a portion of a symmetric part, simplification of the energy 
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source by heating the entire layer at once, and simplification of the process physics 

by ignoring the latent heat of the melt pool phenomena, considering isotropic and 

homogeneous material properties [33]. However, some of the simplifications can 

negate the prediction accuracy significantly [56, 59].  

 Based on the computational strategies, the available thermomechanical models to 

predict thermal-induced deformation in AM are categorized as follows and shown in Figure 

3.  

i. Coupled thermomechanical FE model 

The key idea of this modeling technique is that the nonlinear thermal and 

mechanical equations are solved at every time step for the entire simulation to 

compute the thermal history and mechanical responses such as thermal stress, 

residual stress, and deformation. The coupled thermomechanical FE model can 

provide very precise thermal and mechanical solutions. However, the computation 

cost is high, and simplification assumptions are required in order to simulate large 

and complex parts. The details of the coupled thermomechanical FE modeling 

approach can be found in the literature [36, 38, 39, 45, 53, 54, 60-66]. 

ii. Decoupled thermomechanical FE model 

The governing principle of this modeling approach is to perform a thermal 

simulation of the process and obtain a thermal history, then employ the thermal 

history to a mechanical model to predict mechanical responses such as thermal 

stress, residual stress, and deformation. Thermal simulation is independent of 

mechanical analysis [22]. The benefit of this type of modeling approach is that the 

computation is faster than coupled thermomechanical approach and provides 
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reasonable prediction accuracy. However, the decoupled thermomechanical model 

loses fidelity when the distortion is high enough to change the system boundaries. 

The modeling approach, benefits, and challenges are discussed in the literature [49, 

53, 67-79]. Commercial software such as Autodesk Netfabb, Amphyon, Simufact, 

and Additive Print implement this approach in their software for AM process 

simulation and optimization.  

iii. Meshfree approach 

Despite the different strategies adopted to model the AM process using finite 

elements, the computational expense is still significant. Hence, researchers have 

explored meshfree techniques. For example, Yavari et al. developed graph theory-

based thermal modeling to predict thermal history in the LPBF process [56], Peng 

et al. introduced a thermal circuit network (TCN) model to predict the thermal 

history of a part, then using the thermal history coupled with FE to predict 

thermomechanical behavior such as thermal stress, residual stress and distortion 

[57, 80]. Commercial software Sunata is developed based on the thermal circuit 

network (TCN) model [57]. Ganeriwala et al. developed a coupled discrete finite-

difference model to simulate heat transfer for melt pool size prediction [81]. These 

models are computationally more efficient than the finite element model. 

However, these models have not been explored rigorously in the broader spectrum 

of AM processes.  

iv. AI-based approach 

Researchers have recently implemented an AI-based approach in AM to predict 

thermal history, residual stress, and thermal-induced distortion. For example, 
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Chowdhury et al.[82] developed an artificial neural network (ANN)-based model 

to investigate thermal-induced deformation. They used the model prediction to 

compensate for the geometric dimensional inaccuracy which occurs due to 

thermal-induced deformation. According to Chowdhury et al., by implementing 

the ANN-based model, the part dimensional accuracy improved substantially. 

Francis et al. [83] introduced a recurrent neural network (RNN)-based deep 

learning approach to study thermal-induced distortion in laser-based additive 

manufacturing (LBAM). This deep learning modeling approach offers automated 

feature learning and facilitates highly accurate distortion prediction. In addition, it 

is easily integrable to cloud computing which fits into the industry 4.0 framework 

for analyzing big data. However, the bottleneck of this approach is that it requires 

high performance computing (HPC) for training, as well as large physical memory 

(>100GB). 
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Figure 3: Available thermomechanical modeling approaches to predict thermal-induced 

deformation are categorized based on the computational technique. 

This work makes an effort to develop a computationally efficient thermomechanical 

model for the LPBF process simulation by coupling sequentially a meshfree, graph theory-

based thermal model with a FE mechanical model. The graph theory-based thermal 

analysis is independent of the FE-based mechanical analysis and vice-versa. Yavari et al. 

[56] have shown that the graph theory thermal model is nearly 10 times faster than the FE 

model for thermal analysis. Besides, the decoupled thermomechanical model is a widely 

accepted modeling approach in AM due to its computational efficiency. Hence, to take the 

advantage of the graph theory thermal model and decoupled modeling approach, we 

developed the graph theory-based thermomechanical model to predict thermal induced 

deformation in LPBF. The modeling approach is discussed in detail in the forthcoming 

Chapter 2. 
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CHAPTER 2 ‒ APPROACH 

The graph theory-based thermomechanical modeling approach consists of two 

sequential phases. First, the temperature distribution in the part after the end of each layer 

is predicted using the graph theory thermal model. Second, the mechanical response (i.e., 

deformation) is obtained by exporting the temperature distribution predictions obtained 

from graph theory to an FE model. The sequential coupling flow process is shown in Figure 

4.  

 

Figure 4: The sequential steps of graph theory-based thermomechanical modeling wherein 

the graph theory thermal model uses the input parameters to estimate thermal history. Next, 

the FE-based mechanical model receives the thermal history from the graph theory model 

and computes thermal-induced deformation.  

The rationale for using the graph theory approach for thermal analysis is that it reduces 

computation time compared to FE analysis. The graph theory approach, by obtaining the 

temperature distribution over a set of discrete nodes, and its distinct matrix multiplications 

solution, saves computational effort compared to FE method. In the second phase, the 

temperature distribution obtained at the end of a layer using the graph theory approach is 

exported to a finite element mesh of the part, reflecting the part geometry at the end of a 

layer from which the thermal-induced deformation is obtained. 
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The decoupled approach implemented in this work assumes that the thermal 

distribution influences the mechanical response, but the mechanical response does not 

influence the thermal history. The unidirectional relationship between the thermal and 

mechanical problems is an assumption that is widely applied in the LPBF field. However, 

as pointed out by Michaleris et al. [22, 52, 53], this assumption would need to be relaxed 

when the deformation is severe so as to drastically change the part shape or physical 

constraints, such as the failure of supports and detachment of the part from the build plate.  
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 Overview of Thermal Modeling in AM using Graph Theory 

The temperature distribution of a part being printed in the LPBF process is predicted 

by solving the continuum heat diffusion equation [52].  

 

𝜌𝑐𝑝⏞

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 
𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 ∂T(𝑥, 𝑦, 𝑧, 𝑡) 

∂𝑡
− 𝑘 (

∂2

∂𝑥2
+
∂2

∂𝑦2
+
∂2

∂𝑧2
)

⏞            
𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛

T(𝑥, 𝑦, 𝑧, 𝑡)  = E𝑉⏞

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

 
(1) 

Here, the material density is ρ [kg·mm-3], specific heat 𝑐𝑝 [J·kg-1·K-1], thermal 

conductivity k [W·m-1·K-1], T (x, y, z, t) is the instantaneous temperature at location (x, y, 

z) at time t. The second derivative term in the heat equation captures the effect of shape on 

the temperature distribution. This second derivative is called the continuous Laplacian [2]. 

On the right-hand side is the energy density Ev [J·mm-3]; E𝑉 = 
𝑃

v×h×t
 is defined as the 

amount of energy supplied by the laser to melt a unit volume of powder. The volumetric 

energy density is a function of laser power (P) [W], laser scanning speed (v) [ms-1], spacing 

between two consecutive laser tracks (h), [mm], and layer thickness (t), [mm].  To solve 

the heat diffusion equation the following boundary conditions are typically imposed,  

 

T(𝑥, 𝑦, 𝑧, 𝑡 = 0) = Tm (𝑥, 𝑦, 𝑧)  

∂T(𝑥, 𝑦, 𝑧, 𝑡) 

∂n
=  0 

(2) 

In Eq.(2), Tm is the melting point of the material and n is the outward normal vector at 

the boundary. The heat diffusion equation is further simplified as follows, with the 

Laplacian operator represented as ∇2 and the thermal diffusivity as  𝛼 =
𝑘

𝜌𝑐𝑝
. 
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∂T (𝑥, 𝑦, 𝑧, 𝑡) 

∂𝑡
− 𝛼∇2T(𝑥, 𝑦, 𝑧, 𝑡)   = 0 (3) 

The graph theory approach approximates the continuous Laplacian with the Laplacian 

matrix L, in effect, ∇2= −L. The solution is obtained by discretizing the heat diffusion 

equation over N nodes and by replacing the continuous temperature with a discrete 

temperature vector (T),   

∂T(𝑥, 𝑦, 𝑧, 𝑡) 

∂𝑡
+ αLT(𝑥, 𝑦, 𝑧, 𝑡)  = 0  (4) 

The eigenvector matrix (ϕ) and eigenvalue matrix (Λ) of the Laplacian matrix (L) are 

found by solving the eigenvalue equation Lϕ =  ϕΛ.   

𝜕T(𝑥, 𝑦, 𝑧, 𝑡) 

𝜕𝑡
+ 𝛼(ϕΛϕ−1) T(𝑥, 𝑦, 𝑧, 𝑡)  = 0  

(5) 

As the Laplacian matrix is symmetric and positive semi-definite, as described later in 

Chapter 2.2, the eigenvalues (Λ) are non-negative, and the eigenvector matrix (ϕ) is 

orthogonal [84-87]. As the transpose of an orthogonal matrix is the same as its inverse, that 

is, ϕ−1 =  ϕ′,  making substitution in Eq.  (5) gives, 

𝜕T(𝑥, 𝑦, 𝑧, 𝑡) 

𝜕𝑡
+ 𝛼(ϕΛϕ′) T(𝑥, 𝑦, 𝑧, 𝑡)  = 0  

(6) 

Equation (5) is a first-order, ordinary linear differential equation, with solution [61], 

T(𝑥, 𝑦, 𝑧, 𝑡)  = 𝑒−𝛼(𝛟𝚲𝛟
′)𝑡Tm  (7) 

The term 𝑒−𝛼(ϕΛϕ
′)𝑡 is simplified via a Taylor series expansion and substituting ϕ ϕ′ = I,  
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𝑒−𝛼(ϕΛϕ
′)𝑡 = I −

ϕΛ𝛼𝑡ϕ′

1!
+
(ϕΛ𝛼𝑡ϕ′)2

2!
−
(ϕΛ𝛼𝑡ϕ′)3

3!
+ ⋯ 

=  I −
ϕΛ𝛼𝑡ϕ′

1!
+
(ϕΛ𝛼𝑡ϕ′)(ϕΛ𝛼𝑡ϕ′)

2!
−
(ϕΛ𝛼𝑡ϕ′)(ϕΛ𝛼𝑡ϕ′)(ϕΛ𝛼𝑡ϕ′)

3!
+ ⋯ 

= I −
ϕΛ𝛼𝑡ϕ′

1!
+
ϕ′(Λ𝛼𝑡)2ϕ′

2!
−
ϕ(Λ𝛼𝑡)3ϕ′

3!
+ ⋯ 

𝑒−𝛼(ϕΛϕ
′)𝑡 = ϕ𝑒−𝛼(Λ)𝑡ϕ′ 

(8) 

Substituting, 𝑒−𝛼(ϕΛϕ
′)𝑡 = ϕ𝑒−𝛼Λ𝑡ϕ′ into Eq. (7) gives, 

T(𝑥, 𝑦, 𝑧, 𝑡)  = ϕ𝑒−𝛼Λ𝑡ϕ′Tm  

(9) 

Equation (9) is the graph theory solution to the discrete heat diffusion equation as a 

function of the eigenvalues (Λ) and eigenvectors (ϕ) of the Laplacian Matrix (L), 

constructed on a discrete set of nodes. The graph theory (Thermal) approach has two 

inherent advantages over FE analysis.  

(1) Elimination of mesh-based analysis. The graph theory (Thermal) approach 

represents the part as discrete nodes, which entirely eliminates the tedious meshing 

steps of FE analysis.  

(2) Elimination of matrix inversion steps. While FE analysis rests on matrix inversion 

at each time step for solving the heat diffusion equation, the graph theory (Thermal) 

approach relies on matrix multiplication, shown in Eq. (9), which greatly reduces 

the computational burden. 
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 Thermomechanical Analysis using Graph Theory and Finite Element Modeling 

The manner in which the graph theory approach is adapted for thermal modeling in 

LPBF, and subsequently combined with finite element modeling, is described in Steps 1 

through 4.   

Step 1: Discretization of the geometry into nodes   

The entire (desired) part geometry, in the form of a STEP file, is transformed into a FE 

mesh which also generates a set of discrete nodes. The position of these nodes is recorded 

in terms of their spatial coordinates (x, y, z).  

Step 2: Network graph construction  

A fixed number of N nodes are sampled randomly from the FE-generated nodes obtained 

from Step 1. In this work, the random sampling is adjusted such that a constant volumetric 

density of nodes (n nodes·mm-3) is selected. These nodes are then used in Steps 2 through 

3 to obtain the thermal history using graph theory. The temperature history of the node 

located at (x, y, z) at a simulation time step ∆𝑡 is T(x, y, z, ∆𝑡).  The spatiotemporal 

temperature distribution obtained from graph theory simulation for the whole part is stored 

in a tensor T.  

The N randomly sampled nodes obtained from step 1, are binned into their respective 

layers and a network graph is constructed by connecting these nodes based on their spatial 

distance. The link connecting the nodes is known as an edge. Nodes in layers where the 

material is deposited are termed active nodes, and those nodes that belong in layers that are 

yet to be deposited are termed inactive nodes. 
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Consider an active node 𝜋𝑖 at the center of a sphere of radius ε (mm). The active nodes 

that fall inside or on the surface of the sphere are called the neighbors of 𝜋𝑖. The radius of 

the sphere is termed as neighborhood distance (𝜖) and is a tunable parameter. The 

neighborhood distance is chosen based on the geometry of the part to be modeled. A 

guideline is to set the neighborhood distance no greater than the dimension of the finest 

feature in a part [56]. In this work, we set ε = 2 mm for all parts studied.  

To reduce the computation burden and avoid the non-physical effects of connecting 

nodes that are far away from each other, we only connect a fixed number of nearest nodes 

within the ɛ-neighborhood of a node. In other words, node 𝜋𝑖 is connected to certain nearest 

nodes within its ɛ-neighborhood. For example, we connect the node 𝜋𝑖 to its fifteen nearest 

nodes with an edge in C-shaped parts.  

Next, the Euclidean distance between two connected nodes (e.g., node 𝜋𝑖 and a node 

𝜋𝑗  whose spatial Cartesian coordinates are 𝑐𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and  𝑐𝑗(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗), respectively) is 

computed, and weight ai,j is assigned to each edge based on the Gaussian function (also 

called the heat kernel),  

𝑑 (𝑐𝑖 , 𝑐𝑗) = ‖𝑐𝑖 − 𝑐𝑗‖
2
= (𝑥𝑖 − 𝑥𝑗)

2 + (𝑦𝑖 − 𝑦𝑗)
2 + (𝑧𝑖 − 𝑧𝑗)

2 . 

𝑎𝑖,𝑗 =  𝑒
−
𝑑 (𝑐𝑖 ,𝑐𝑗)

𝜎2      ∀ 𝑖 ≠   𝑗, 𝑑(𝑐𝑖 , 𝑐𝑗) ≤ ε 

 𝑎𝑖,𝑗 = 0, otherwise 

lim
𝑐𝑖−𝑐𝑗→0

𝑎𝑖,𝑗 = 1 

 

 

 

 

lim
𝑐𝑖−𝑐𝑗→∞

𝑎𝑖,𝑗 = 0 

 

 

 

(10) 
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In other words, nodes beyond the neighborhood distance are not connected and no node is 

allowed to connect to itself. Further, the edge weight depends on the relative distance 

between the nodes and is between 0 and 1. The larger the edge weight between two nodes, 

the proportionally greater is the heat transfer between them. The quantity σ2 in Eq. (10) is 

the variance obtained from the standard deviation of the Euclidean distance 𝑑(𝑐𝑖 , 𝑐𝑗) 

between all node pairs.   

Next, an adjacency or similarity matrix is formed by placing ai,j in row i and column 

j,  

A = [ai,j]. 

   

A =

[
 
 
 
 
0 𝑎1,2 𝑎1,3 ⋯ 𝑎1,N

𝑎2,1 0 𝑎2,3 ⋯ 𝑎2,𝑁
𝑎3,1
⋮
𝑎N,1

𝑎3,2
⋮
𝑎N,2

0
⋮
𝑎N,3

⋯
⋱
⋯

𝑎3,𝑁
⋮
0 ]
 
 
 
 

 

 

(11) 

The adjacency matrix is an N × N symmetric matrix, hence, ai,j = aj,i, where N represents 

the number of randomly sampled nodes. A degree matrix, D is formed by summing the 

rows of the adjacency matrix A and placing the sums in the ith diagonal. The diagonal 

entries 𝑑𝑖∙ are positive and off-diagonal entries are zero.  

   

𝑑𝑖∙ =∑𝑎𝑖,𝑗

𝑁

𝑗=1

 

D = [
𝑑1∙ 0 0
0 ⋱ 0
0 0 𝑑N∙

] 

(12) 
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The discrete graph Laplacian matrix is constructed as  

L = D − A 

   

L =

[
 
 
 
 
+𝑑1∙ −𝑎1,2 −𝑎1,3 ⋯ −𝑎1,N

−𝑎2,1 +𝑑2∙ −𝑎2,3 ⋯ −𝑎2,𝑁
−𝑎3,1
⋮

−𝑎N,1

−𝑎3,2
⋮

−𝑎N,2

+𝑑3∙
⋮

−𝑎N,3

⋯
⋱
⋯

−𝑎3,𝑁
⋮

+𝑑N∙ ]
 
 
 
 

 

 

(13) 

The Laplacian matrix falls under the category of a Stieltjes matrix as all its elements are 

real, it is symmetric and diagonally dominant with all off-diagonal elements non-positive. 

The Laplacian matrix is positive semi-definite. From the Laplacian matrix, eigenvalues (Λ) 

and eigenvectors (Ф) are obtained by solving the eigenvalue problem LФ =  ФΛ with 

standard methods.  

Step 3: Simulate layer deposition and predict the temperature distribution 

In this step, in every cycle, a new layer is deposited on the top of the previously deposited 

layers at its melting temperature. The heat on the top layer diffuses to the rest of the part 

via edges connecting the various nodes.  The temperature at each node is determined at 

each time step Δt and stored in the temperature vector T(𝑥, 𝑦, 𝑧, Δt).  

The time between layers (TBL) is the time between the start of laser scanning of one layer 

to the start of scanning the next consecutive layer; it is the sum of the time it takes to scan 

a layer and recoat a fresh layer. For simulation, the TBL is divided into small timesteps Δt.  

The temperature at a node T(𝑥, 𝑦, 𝑧, Δt) at time step Δt is a function of eigenvectors (ϕ) 

and eigenvalues (Λ) of the Laplacian matrix (L), determined by solving the first-order 

linear differential equation as discussed in Eq. (9).  
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T(𝑥, 𝑦, 𝑧, Δt) = ϕ𝑒−𝛼𝑔ΛΔtϕ′Tm(𝑥, 𝑦, 𝑧) (14) 

In this work, Tm is the melting point of Inconel 718, T0 = ~1400 ℃. To reduce the 

computational burden, we simulate the deposition and melting of several layers. This 

technique called the super layer or meta-layer approach is commonly used in LPBF as it 

reduces the simulation time, compared to a layer-by-layer approach while without 

drastically degrading computational accuracy [48, 49, 88, 89].  

To adjust the units to the solution of the heat equation, a parameter called gain factor 

𝑔 is introduced in Eq. (14). The effect of the gain factor 𝑔 is discussed in depth in our 

previous work; it influences the diffusion rate. The gain factor is contingent on the material 

type and node density. In this work, we set 𝑔 = 2 × 106 m-2. This value is identical to those 

used in our previous work with Inconel 718 [90].   

In Eq. (14) the temperature of a node T(𝑥, 𝑦, 𝑧, Δt) is obtained by incorporating only 

the conduction heat loss of the part to the substrate. Heat loss due to convection and 

radiation occurs at the boundary nodes; this is factored using a lumped capacitive theory, 

T𝑏 = 𝑒
−ℎ̃𝜏 (T𝑏𝑖 − T𝑝) + T𝑝 (15) 

Here,  the temperature of the surroundings T𝑝 is considered as constant, T𝑏𝑖 is the boundary 

node temperature obtained by the heat diffusion alone in Eq. (14), T𝑏 is the resulting 

boundary node temperature  incorporating  convection and radiation heat loss, τ is the 

dimensionless time between layer depositions, and ℎ̃ is the normalized cumulative 

coefficient of heat loss for convection (via Newton’s law of cooling)  and radiation (via 

Stefan-Boltzmann law) from the boundary nodes to the surrounding powder and air.  
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After convection and radiation are adjusted at boundary nodes, the temperature at various 

nodes obtained from graph theory at each node located at position (x, y, z) at time step Δt 

is T(𝑥, 𝑦, 𝑧, Δt). This spatiotemporal temperature distribution over time is stored as a matrix 

tensor T. 

Step 4: Mechanical analysis using finite element method    

Step 4 is the bridge between the thermal history obtained using graph theory and the 

mechanical analysis from FE.  The temperature (thermal history) at each node at the end 

of each layer stored in the tensor T from step 3 is mapped (transferred) to its exact location 

on the FE mesh of the part generated in Step 1 for mechanical analysis. Since the focus of 

this work is to predict recoater crashes, which occur when the deformation in the top layer 

of a part exceeds the layer thickness (40 µm), we assume that elastic and thermal-induced 

strains dominate, and plastic strain is ignored. These assumptions are used frequently by 

LPBF researchers in the literature [91, 92]. 

Based on small deformation theory, as elucidated by Gouge et al. [22], this approach 

is valid when there are no major faults, such as cracking, the collapse of the supports, and 

separation of the part from the build plate. Such failures would not only alter the shape of 

the part but also change the heat conduction pathway, leading to considerable changes in 

the temperature profile.   

 In FE analysis, the thermal-induced deformation {U} is computed according to the 

following equations for elastic materials [57, 93]. The bottom face of the part is considered 

to be constrained (attached) to the substrate.  A combination of displacement and traction 

boundary conditions is enforced to the entire part. The bottom face is in a fixed condition 
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(i.e., u = v = w =  0) which means displacements in x, y, and z directions are zero. Where 

u, v, and w are the displacement components in x, y, and z directions. Traction boundary 

conditions T(n) is enforced at the specific nodes using thermal history. Moreover, the free 

surfaces (i.e., the surfaces between part and powder, and the top surface)  are given traction 

free conditions, T(n) = 0.  

The deformation of a node is obtained according to Eq. (16) 

{U} =  [K]−1{FT} (16) 

where {U} is the displacement vector; [K] the element stiffness matrix; and {FT} is the 

thermal load vector. These are obtained per Eq. (17) and Eq. (18),  

[K] = ∫[B]T[H][B] · dv (17) 

{FT} = ∫[B]
T[H] 𝛼(Δ𝐓) · dv 

(18) 

Where the domain of integration is the volume of an element, [B] is the strain-displacement 

matrix, [H] is the elasticity matrix, α is the vector of thermal expansion coefficients, and 

Δ𝐓 is the temperature difference between two nodes. For linear elastic isotropic materials, 

the elasticity matrix [H] is given by Eq. (19). 
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[H] = 
E

(1+𝜈)(1−2𝜈)

[
 
 
 
 
 
 
 
1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0

0 0 0
1−2ν

2
0 0

0 0 0 0
1−2ν

2
0

0 0 0 0 0
1−2ν

2 ]
 
 
 
 
 
 
 

 (19) 

where E is the modulus of elasticity [N·m-2] and ν is the Poisson’s ratio. The strain-

displacement matrix [B] depends on the shape of the finite element used for analysis. In 

this study, we used eight-node hexahedral elements.  The strain-displacement matrix for a 

hexahedral element is given by Eq. (20). This 8 node hexahedral mesh was chosen, as it is 

also used in the popular commercial LPBF simulation software, Netfabb.  

[B] = [B1 B2 B3 B4 B5 B6 B7 B8] 

[Bi] = 

[
 
 
 
 
 
 
 
 
 
𝜕𝑁𝑖

𝜕𝑥
0 0

0
𝜕𝑁𝑖

𝜕𝑦
0

0 0
𝜕𝑁𝑖

𝜕𝑧

0
𝜕𝑁𝑖

𝜕𝑧

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑧
0

𝜕𝑁𝑖

𝜕𝑥
𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑥
0 ]
 
 
 
 
 
 
 
 
 

 

(20) 

where Ni is the shape function and is computed by Eq. (21). 

Ni = 
1

8
(1 + 𝜉𝜉𝑖)(1 + 𝜂𝜂𝑖)(1 + 𝜁𝜁𝑖) (21) 

where 𝜉𝑖 , 𝜂𝑖  𝑎𝑛𝑑 𝜁𝑖 denote the natural coordinates of node i, and i = 1, 2, 3,…,8. 
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In this analysis, it is assumed that the mechanical properties of the part are isotropic, 

and the elastic material behavior is considered only. Interpolation is used to scale 

temperature-dependent material properties between the build chamber temperature and the 

melting point. 

Step 5: Obtain the thermal history and deformation for the entire part 

Steps 3 and 4 are repeated until the entire part is finished, noting that the subsequent layers 

are simulated as being deposited on top of the previously deposited and deformed layer. 

Hence, the deformation of subsequent layers accounts for, and is in turn influenced by, 

dislocations in previous layers. 
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CHAPTER 3 ‒ VERIFICATION WITH FINITE ELEMENT METHOD 

 Procedure 

We applied the graph theory-based approach to predict deformation in the z-direction 

in two LPBF test parts (Figure 6). The verification procedure pertains to comparing both 

the thermal history and mechanical deformation predictions obtained from the decoupled 

solution from the proposed graph theory-based approach with: (i) a coupled 

thermomechanical FE model implemented in Abaqus, and (ii) the commercial software 

Autodesk Netfabb. We reiterate that the focus of this study is to predict recoater crashes.  

Since recoater crashes are caused by part deformations in the z-direction (build direction) 

that occur as the part is being printed (during the process), this work reports deformation 

in the vertical build direction (z-direction). However, we note that the approach predicts 

deformations in all three dimensions.  

The coupled thermomechanical FE-based simulation serves as the ground truth to 

calibrate as well as evaluate the graph theory results. The comparison of the graph theory 

solution and the coupled thermomechanical FE solution is made in terms of the root mean 

squared error (RMSE) and mean absolute percentage error (MAPE) of the deformation 

predictions.  

The coupled thermomechanical FE model was obtained using the DFLUX routine in 

Abaqus per the procedure widely used in the LPBF literature (e.g., see Ref. [94, 95]). The 

mechanical analysis phase of the graph theory approach is identical to the corresponding 

coupled thermomechanical FE-based analysis. Identical assumptions were imposed in both 

the coupled thermomechanical FE-based model and graph theory model, including the use 

of super-layers or meta-layers to ease the computational burden [48]. The meta-layer or 
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super-layer approach assumes the deposition of multiple layers at once.  Both models also 

maintain identical mechanical boundary conditions and hexahedral mesh elements. In the 

graph theory (Deformation) model, the mechanical analysis employs the mesh element 

C3D8R in Abaqus (8-node linear brick, reduced integration, hourglass control). The 

coupled thermomechanical FE analysis uses the similar C3D8T mesh element (8-node 

thermally coupled brick, trilinear displacement, and temperature). We note that both 

element types are identical in shape, except that C3D8R does not facilitate thermal analysis.  

Verification with Netfabb was reported with respect to deformation at the top layer of 

the part. We note the following characteristics inherent to Netfabb which prevent a rigorous 

one-to-one comparison with either coupled thermomechanical FE or graph theory 

(Deformation) approaches. 

(i) In Netfabb the user cannot control precisely the number of elements. Four levels of 

mesh fineness can be selected by the user, these are Fastest, Fast, Accurate, and 

Most Accurate. 

(ii) Netfabb uses an adaptive meshing strategy for purposes of computational efficiency. 

The element size in Netfabb is not static but changes continually. The elements in 

prior layers are made larger (coarser). Hence, it is not possible to track the 

temperature and deformation at a specific location with Netfabb. 

(iii) In Netfabb the time step for simulation and the time between layers, also called the 

interlayer time, cannot be controlled by the users. The time between layers is a 

particularly important factor in determining the thermal history.  The time between 

layers is not constant, but changes during the build in proportion to the surface area 

to be scanned. A longer time between layers allows a longer time for the part to 
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cool. The time between layers is automatically determined in Netfabb without user 

input.  

 Test Parts 

To verify the graph theory-based solution with the coupled thermomechanical FE 

model two test parts were considered as shown in Figure 6. These are termed the C-shaped 

part without supports, Figure 6(a) and the C-shaped part with supports, Figure 6(b). The 

C-shaped part without supports in Figure 6(a) has a large overhang feature, whose 

underside is not supported. The overhang region tends to accumulate heat leading to 

thermal-induced deformation, often leading to a recoater crash.  

The C-shaped part built with supports, Figure 6(b), would have a significantly different 

thermal history from the C-shaped part without supports. This is because the supports 

would facilitate the conduction of heat away from the overhang region, thus reducing its 

tendency to deform during printing. 

We note that the coupled thermomechanical FE model converged within a minute for 

these case studies, given the small size and simple shape of the parts. The computation time 

was increased for the experimental cases in Chapter 4. 
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Figure 6: (a) C-shaped part without supports, (b) C-shaped part with supports. 

The practical context of using the C-shaped parts as exemplar objects is illustrated in 

Figure 7, which shows an LPBF knee implant. To prevent the part from collapsing under 

its own weight, supports were built under the overhanging feature.  However, these 

supports were too thin to prevent heat retention in the overhang region. Hence, after the 

build, the overhang area manifested overheating, resulting in coarse-grained microstructure 

and poor surface finish, which made the implant potentially unsafe for clinical use.  

 

Figure 7: LPBF knee implant with thin supports showing over the heated surface at the 

overhang region. Image from Yavari et al. [6]. 
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 Model Calibration and Convergence 

The simulation parameters, material properties are shown in Table 1. The powder 

properties used in this analysis are of Inconel 718.  

Table 1: Summary of material properties and simulation parameters for graph theory and 

the coupled thermomechanical FE models. 

 

Material properties and simulation 

parameters 
Values 

Material Inconel 718 

Density, 𝜌 [kg·m-3] 8,230  

Thermal conductivity, k [W ·m−1 ·K−1] 11.1 

Specific heat, Cp [J ·kg−1 ·K−1] 435 

Thermal diffusivity (α) [m2s-1] 3.2 × 10-6  

Expansion coefficient [℃-1] 12.1 × 10-6 

Young’s modulus [N·m-2] 2 × 1011 

Poisson’s ratio 0.3 

Melting Point (Tm) [℃] 1,400  

Build chamber temperature, Tamb [℃] 110  

Convection coefficient wall to powder, hw [W·m-2· 

C-1] 
25 (C-shaped parts) 15 (arches) 

Convection coefficient substrate (sink), hs [W·m-2· 

C-1] 

5000 (C-shaped parts), 2500 

(arches) 

Characteristic length [mm] 3  

Neighborhood distance (ε) [mm] 2  

Fixed number of nearest neighbors (n) 15 (C-shaped parts) 5 (arches) 

Layer thickness [mm] 0.040 

Super layer thickness [mm] 0.5  

Gain factor (g) [m-2] 2 × 106 

Time between layers [sec] 

10 sec for both C-shaped parts, 

varies for arches based on 

experiment 

Computational hardware 
Intel(R) Core (TM) i5-7500 CPU 

@ 3.40GHz with 16 GB RAM 

 

The model calibration was performed based on the C-shaped part without supports and 

followed the recommendations of Gouge et al. [22, 52, 53]. First, the thermal history 
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predictions (thermal solution) obtained from graph theory were verified with its 

corresponding thermal solution obtained from the coupled thermomechanical FE 

simulation. Next, the thermal solution from graph theory was used as an input to the 

decoupled mechanical FE model to predict layer-by-layer deformation. The mechanical 

solution was verified with the coupled thermomechanical FE-based simulation.  In effect, 

the coupled thermomechanical FE model served as the ground truth.  

Two parameters need to be calibrated in the graph theory-based model. With super 

layer thickness fixed at 0.5 mm based on prior work, the first parameter is the number of 

nodes per unit volume in graph theory (node density, nodes·mm-3) for thermal analysis. 

The second parameter is the FE mesh element size for the prediction of deformation. We 

note that an extensive convergence study for the coupled thermomechanical FE model was 

conducted to ascertain the element size. Five element sizes were studied, ranging from 2 

mm × 2 mm × 2 mm to 0.3 mm × 0.3 mm × 0.3 mm, as summarized in Table 2.   

The results in Figure 8 show the thermal history and maximum deformation in the z-

direction (build direction) as a function of the layer height at a specific location (x = 4 mm, 

y = 1 mm, z mm) on the C-shaped part without supports; the origin is on the left front 

vertex of the part. The result obtained using the graph theory (red line) is overlaid on the 

temperature and deformation predictions from the coupled thermomechanical FE 

simulation (ground truth, black line), in Figure 8(a) and Figure 8(b), respectively.  

The results in Figure 8(a) show that the surface temperature predictions obtained from 

the graph theory thermal model converge to the coupled thermomechanical FE solution 

with the increase of the node density. Increasing the node density is advantageous to 

prediction accuracy as shown in recent work at the expense of the computation time [56].  
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The thermal history predictions at the end of each layer obtained from graph theory 

were imported into an FE model to obtain the mechanical solution. With the decrease in 

element size, model accuracy improves as is evident in Figure 8(b). As there is a tradeoff 

between the element size and the computation time, an element size of 0.5 mm × 0.5 mm 

× 0.5 mm was considered in this work based on convergence studies.  The top surface 

temperature at a specific spatial location after completion of a layer was predicted using 

the graph theory approach. The solution was calibrated with respect to the temperature 

predicted by the coupled thermomechanical FE model as a function of the node density 

(nodes·mm-3) with mesh size was set at 0.5 mm × 0.5 mm × 0.5 mm. Based on the 

calibration, we selected the node density as 5.0 (nodes.mm-3) that yields MAPE ~1% and 

RMSE ~7 °C with respect to the coupled thermomechanical FE model.  
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Figure 8: Calibration of (a) graph theory thermal model for node density as the number of 

nodes per mm3 and (b) coupled thermomechanical FE model for mesh element size in mm. 

In the graph theory thermal model, increasing the node density results in better 

convergence while in coupled thermomechanical FE model, reducing the element size 

improves the prediction accuracy. In this work, we selected the node density 5.0 nodes.mm-

3 and mesh element size 0.5 mm. The asterisk* represents the origin (x = 0, y = 0, z = 0) of 

the C-shaped parts.  

Table 2: Effect of the number of nodes on graph theory thermal prediction and element size 

on deformation prediction using FE. 

Variables Number of nodes MAPE (%) RMSE (℃) 
Computation 

time (s) 

 

Thermal 

history 

1540 (selected) 1 7 11 

1295 3 17 10 

1230 6 48 9 

1080 9 62 8 

 

 

 

Deformation 

Element size (mm) MAPE (%) RMSE (µm) Computation 

time (s) 
2 × 2 × 2 8 76 6 

1 × 1 × 1 3 30 16 

0.5 × 0.5× 0.5 (selected) 1 5 57 

0.4 × 0.4 × 0.4 0.15 1 92 

0.3 × 0.3 × 0.3 0 0 756 
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 C-shaped Part without Supports 

The part geometry as shown in Figure 6(a) was converted into FE mesh. The mesh 

consisted of 2,624 elements (3705 nodes) having an approximate element size of 0.5 mm 

× 0.5 mm × 0.5 mm. These nodes were extracted from the FE model and employed in the 

graph theory model for predicting deformation, as described in Steps 2 through 5 in Chapter 

2. 

3.4.1 Thermal History Prediction  

The temperature predictions from the graph theory approach were obtained with node 

density set at 5 nodes·mm-3. Shown in Figure 9(a) is the average surface temperature 

prediction at the end of the layer. Likewise, reported in Figure 9(b) and Figure 9(c) are the 

surface temperature at the specific location (x = 4 mm, y = 1 mm, z mm) and location (x = 

7 mm, y = 1 mm, z mm), respectively. The temperature predictions using the graph theory 

(red line) overlaid on the temperature predictions from the coupled thermomechanical FE 

simulation (ground truth, black line).  
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Figure 9: Thermal history of the C-shaped part without supports. (a) Average surface 

temperature measured at the end of the layer. (b) & (c) Surface temperature at a specific 

location (4, 1, z) mm and (7, 1, z) mm, respectively. The red line in the figure represents 

the thermal history predicted using the graph theory approach with ± 1 standard deviation 

over 10 replications, whereas the black line is the thermal history predicted using the 

coupled thermomechanical FE model which is considered as the ground truth. 

 The error in the graph theory thermal prediction with respect to the coupled 

thermomechanical FE model for the average surface temperature in Figure 9(a) is ~ 2% 

(MAPE) and ~16 °C (RMSE). Similarly, for the chosen location (x = 4 mm, y = 1 mm, z 

mm) reported in Figure 9(b) the MAPE and RMSE are ~ 1% and ~ 7 °C, respectively, and 

at location (x = 7 mm, y = 1 mm, z mm) reported in Figure 9(c) the MAPE and RMSE are 

~ 2% and ~ 12 °C, respectively. The graph theory thermal prediction is bounded with ± 1 

standard deviation over ten replications. The graph theory thermal simulation converged 

in ~ 6 seconds while the coupled thermomechanical FE reached the solution in ~ 58 

seconds. The temperature distribution of the complete part obtained from the coupled 

thermomechanical FE, graph theory (Thermal), and Netfabb simulations is shown in Figure 

10.  
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Figure 10: Qualitative comparison of thermal history predictions at the completion of the 

part from (a) coupled thermomechanical FE model, (b) graph theory (Thermal) model, and 

(c) Netfabb. 

3.4.2 Deformation Prediction  

 The maximum top surface deformation predicted using the graph theory-based 

approach is shown in Figure 11(a), and closely tracks the deformation obtained from the 

coupled thermomechanical FE simulation. The results are summarized in Table 3 and Table 

4. The average deformation in each layer is shown in Figure 11(b). Next, shown in Figure 

11(c) & Figure 11(d) are the deformations as a function of layer height at the specific 

locations (4 mm, 1 mm, z mm) and (7 mm, 1 mm, z mm), respectively. Layers 188 - 225 

undergo considerable deformation due to heat accumulation in the overhang region. From 

Figure 11(a) and Figure 11(b), we note that the deformation in the z-direction exceeds the 

layer thickness (40 µm) at a build height of 7 mm, indicating the possibility of a recoater 

crash. In these studies, the typical error in the graph theory (Deformation) approach with 

respect to the coupled thermomechanical FE model is ~ 4-6% (MAPE) and ~ 0-9 µm 

(RMSE). 
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Figure 11: Comparison of predicted deformation of C-shaped part without supports 

between the coupled thermomechanical FE model and the graph theory-based approach 

showing (a) maximum deformation of each layer, (b) average layer deformation, and (c) & 

(d) deformation measured at (4, 1, z) mm, and (7, 1, z) mm, respectively, along the build 

direction.  
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Table 3: Graph theory (Deformation) model performance in terms of MAPE, RMSE, and 

computation with respect to coupled thermomechanical FE model. The MAPE and RMSE 

are estimated based on the maximum deformation of each layer. 

 

Part 

 

Variables 

Coupled 

thermomechanical 

FE Model 

 

Graph theory (Deformation) 

model 

 

C-

shaped 

part 

without 

supports 

Node density 

(nodes/mm3) 

11.30 5.0 4.5 4.0 3.5 

Node count 3705 1540 1295 1230 1080 

MAPE (%) Ground truth 6.30 11.11 13.31 14.89 

RMSE (µm) Ground truth 8.81 20.79 25.29 25.05 

Computation 

time (s) 
57.10 10.93 9.77 9.04 7.95 

 

Table 4: Graph theory model performance for the estimation of deformation in terms of 

MAPE, RMSE, and computation with respect to coupled thermomechanical FE analysis 

for C-shaped part without supports. 

Part Description 
MAPE 

(%) 

RMSE 

(µm) 

Computation time (s) 

Thermo-

mechanical 

FE 

Graph 

theory 

C-

shaped 

part 

without 

supports 

Maximum layer deformation 

(Figure 11(a)) 6.30 8.81 

 

57.10 

 

10.93 

Average layer deformation 

(Figure 11(b)) 6.09 4.83 

Deformation at (4, 1, z) mm 

(Figure 11(c)) 5.90 1.26 

Deformation at (7, 1, z) mm 

(Figure 11(d)) 3.94 0.48 
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 C-shaped Part with Supports 

 The C-shaped part with supports, Figure 6(b), was simulated using the identical 

boundary conditions, material properties, and the simulation parameters of the C-shaped 

part without supports. Similar to the C-shaped part without supports, the geometry was 

converted into FE mesh. The mesh consisted of 2,752 elements (3885 nodes) having a size 

of 0.5 mm × 0.5 mm × 0.5 mm.  

3.5.1 Thermal History Prediction  

      The coupled thermomechanical FE and graph theory thermal history predictions of the 

average surface temperature are overlaid in Figure 12 (a). The thermal predictions at two 

specific locations, namely, (4 mm, 1 mm, z mm), and (17 mm, 1 mm, z mm) are also 

overlaid in Figure 12(b) and Figure 12(c), respectively. The error in the thermal history of 

the graph theory approach in comparison to the coupled thermomechanical FE solution for 

average surface temperature is MAPE 2% and RMSE 23°C. At location (4 mm, 1 mm, z 

mm) the error in comparison to the coupled thermomechanical FE model is 1% (MAPE) 

and 10 °C (RMSE). At the second location (17 mm, 1 mm, z mm), the error is 3% (MAPE) 

and 28 °C (RMSE). The graph theory thermal simulation converged in ~7 seconds while 

the coupled thermomechanical FE simulation in ~61 seconds.  

Shown in Figure 13 is a qualitative comparison of temperature distribution on the 

completion of the C-shaped part with supports obtained from the coupled 

thermomechanical FE model, graph theory thermal model, and Netfabb. 

Comparing Figure 12(a) and Figure 9(a) we note that the C-shaped part with supports 

depicts a more gradual decrease in surface temperature in contrast to the C-shaped part 
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without supports. Further, the temperature of the final layer of the C-shaped part with 

supports is almost 200 ℃ lower than its counterpart without supports.  

 

Figure 12:  Thermal history of the C-shaped part with supports showing (a) average surface 

temperature at the end of each layer; (b) & (c) are the temperatures measured at two 

different coordinates for different layer heights of z (4 mm, 1 mm, z mm), and (17 mm, 1 

mm, z mm), respectively. 

 

Figure 13: Qualitative comparison of the thermal history predictions at the completion of 

the part from (a) coupled thermomechanical FE model, (b) graph theory (Thermal) model, 

and (c) Netfabb. 
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3.5.2 Deformation Prediction  

The deformation of the C-shaped part with supports was predicted using the coupled 

thermomechanical FE model and the graph theory (Deformation) approach at different 

locations. The results are depicted in Figure 14 and summarized in Table 5 and Table 6.  

For the scenarios tested, the graph theory approach predicted the deformation in the z-

direction with MAPE ~ 9% and 4 µm RMSE. The computation time of the graph theory 

(Deformation) approach was ~ 12 seconds compared to ~ 61 seconds with the coupled 

thermomechanical FE model.  

The beneficial effects of using supports are evident in comparing  Figure 14(a) and Figure 

14(b), for the C-shaped part with supports alongside Figure 11(a) and Figure 11(b), 

respectively. The maximum and average layer deformation in the C-shaped part with 

supports is significantly less than 40 µm. In other words, the C-shaped part with supports 

mitigates the tendency for a recoater crash by avoiding heat retention in the overhang 

region. The supports act as conduits to conduct the heat away from the overhang region. 

The prediction error (i.e., the MAPE and the RMSE) decreases with the increase of the 

node density (node per mm3) as evident in Table 5.  

 



45 

 

 

 

Figure 14: Comparison of deformation predictions for C-shaped part with supports between 

the coupled thermomechanical FE and the graph theory (Deformation) approaches.  
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Table 5: Graph theory (Deformation) model performance in terms of MAPE, RMSE, and 

computation time with respect to the coupled thermomechanical FE model. The MAPE 

and RMSE are estimated based on the maximum deformation of each layer. 

Part Variables 

Coupled 

thermomechanical 

FE Model 

 

Graph theory (Deformation) 

model 

C-

shaped 

part 

with 

supports 

Node density 

(nodes/mm3) 
11.30 5.0 4.5 4.0 3.5 

Node count 3885 1620 1460 1295 1140 

MAPE (%) Ground truth 3.74 8.04 13.78 17.02 

RMSE (µm) Ground truth 1.28 2.07 2.58 3.67 

Computation 

time (s) 
60.70 11.56 11.10 9.83 8.59 

 

Table 6: Graph theory model performance for the estimation of deformation in terms of 

MAPE, RMSE, and computation with respect to coupled thermomechanical FE analysis 

for C-shaped part with supports. 

Part Description 
MAPE 

(%) 

RMSE 

(µm) 

Computation time (s) 

Thermo-

mechanical 

FE 

Graph 

theory 

C-

shaped 

part 

with 

supports 

Maximum layer 

deformation (Figure 14(a)) 
3.74 1.28 

 

60.70 

 

11.56 

Average layer deformation 

(Figure 14(b)) 
3.02 3.47 

Deformation at (4, 1, z) 

mm (Figure 14(c)) 
8.77 0.68 

Deformation at (17, 1, z) 

mm (Figure 14(d)) 
8.76 1.25 
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CHAPTER 4 ‒ EXPERIMENTAL VALIDATION 

 To validate the graph theory (Deformation) approach for predicting recoater crashes, 

experiments were conducted on an open architecture LPBF platform at Edison Welding 

Institute, Columbus, Ohio. These experiments are detailed in our previous work [90]. The 

schematic and pictures of the setup are shown in Figure 15; the resulting build plate is 

shown in Figure 15. The material was Inconel 718. The build required ~ 10 hours to 

complete.  

The system was integrated with a thermal camera inside the chamber to acquire the 

surface temperature measurements of the part as it was being built. The thermal camera 

was inclined at 80° to the horizontal.  The thermal camera (Micro Epsilon, model TIM 640) 

had a spectral range of 8 to 14 µm (longwave infrared spectrum), and an optical resolution 

of 640 pixels × 480 pixels. The spatial resolution was ~20 pixels per mm2. The thermal 

camera was triggered to capture images of the powder bed only when the laser was actively 

melting a layer. The thermal camera stopped recording when the laser finished scanning a 

layer. In other words, the camera was turned on only when the laser was active. The thermal 

camera was calibrated to an absolute temperature scale using a reference thermocouple 

measurement as described by Yavari et al. [90].  Temperature measurement in LPBF is 

predominantly based on infrared thermography of the surface layers, as there is no 

practically viable approach to observe the temperature trends in the interior of an LPBF 

part without halting the process. 

 



48 

 

 

 

Figure 15: The schematic of the open architecture build platform and photograph of the 

setup. A longwave infrared thermal camera located above the build plate and inclined at 

80° to the horizontal plane is used to capture the part surface temperature during the build 

process. Image from Yavari et al. [90]. 

The graph theory (Deformation) approach is applied to predict recoater crashes of the 

arch-shaped parts are shown on the build plate in Figure 2. There are two types of arch-

shaped parts, namely, arches built with supports and those without supports. These parts 

are analogous to the C-shaped parts with and without supports studied in Chapter 3. 

As shown in Figure 16, all the arches have the same length of 40 mm and height of 26 

mm, and base width of 5 mm but have varying gauge thicknesses (t) from 0.5 mm to 2.5 

mm in steps of 0.5 mm. As evident from Figure 2, all the arches without supports, except 

the arch with gauge thickness t = 1.5 mm, failed during printing due to recoater crash. The 

arches are labeled per their gauge thickness, as follows: the arch with thickness t = 0.5 mm 

is labeled as A05; t = 1.0 mm as A10; t = 1.5 mm as A15; and so on. The arches with 

supports are labeled as SA05, SA10, and so on.  
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Figure 16: Arch-Shaped geometries (with/without supports) with varying gauge 

thicknesses, t = 0.5, 1.0, 1.5, 2.0, and 2.5 mm. 

The arches A05 and A10 had recoater crashes at layer 556 and 548, respectively, 

corresponding to the build height of 22 mm; arches A20 and A25 crashed at a build height 

of 23 mm corresponding to layer 574. Arch A15 did not experience a recoater crash as it 

was protected by neighboring arches. To explain further, the superelevation of the arches 

on either side of A15 (A10 and A20) lifted the recoater blade and created sufficient 

clearance to prevent contact with the part. Representative thermal camera frames 

corresponding to the layers where the unsupported arches underwent recoater crashes are 

shown in Figure 17.  

These recoater crash events are evident from the infrared thermal image. After the recoater 

crash event of arch A10 at layer 548, higher thermal intensity is recorded in its location 

compared to the rest of the arches at that same layer. To explain further, following the 



50 

 

 

breakage of the arch A10 due to the recoater crash, the laser scans an area of the powder 

bed without a solid part underneath. Since compared to a solid part, powder is a poor 

conductor of heat, the temperature of the powder bed increases. The same heat retention 

phenomena are also evident with the recoater crashes of the arches A05, A20, and A25 

corresponding to layers 556 and 574. Indeed, the debris from arch A10 is observed at layer 

574 in the thermal image, nearly 25 layers after the recoater crash.   

 

Figure 17: IR camera images of recoater crash incidents at layers 548, 556, and 574 

corresponding to arches A10, A05, and A25 & A20. Note that the relative intensity of the 

failed arches is higher compared to the other arches which indicate relatively higher heat 

retention occurring following the recoater interference with these arches. The debris of the 

crashed arch A10 is still evident in the subsequent layers. Image from Yavari et al. [90]. 

Ten arches (five arches with supports and five arches without supports) were simulated 

(one at a time). For brevity, the results of four representative arches A10, A20, A25, and 

SA25 are reported. The boundary conditions, material properties, and simulation 

parameters are reported in Table 1. The corresponding arch thickness, number of solid 

mesh elements, and nodes are shown in Table 7. Each arch contained 52 superlayers 

corresponding to 650 actual layers; each super layer corresponded to 12.5 actual layers 

equating to 0.5 mm. The super layer thickness was identically implemented in coupled 

thermomechanical FE and graph theory approaches.  
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Table 7: Part properties of arches showing gauge thickness, number of mesh elements, and 

nodes in each arch. 

Part 

Gauge 

thickness (t) 

(mm) 

Part Label  
Number of FE 

mesh element 

Number of nodes 

in graph theory 

Arches 

without 

supports 

1.0 A10 17,576 1,920 

2.0 A20 20,932 2,155 

2.5 A25 23,611 2,260 

Arches with 

supports 
2.5 SA25 26,554 2,635 

 

4.1 Prediction of Thermal History 

In Figure 18, the surface temperature at the end of a layer is predicted using the graph 

theory, and results from the coupled thermomechanical FE models are overlaid on the 

experimental data. It is observed that both the graph theory thermal model and coupled 

thermomechanical FE model closely track the experimental thermal observation up to the 

point of the recoater crash. The thermal prediction results are summarized in Table 8. 

A qualitative comparison of the thermal prediction of two types of arches – arch 

without supports (A25), and arch with supports (SA25) – at three different build heights is 

shown in Figure 19. The thermal fields of the coupled thermomechanical FE, graph theory 

(Thermal), and Netfabb models show that the arch without supports (A25) is accumulating 

heat as it builds up. At one point, the heat retention caused enough deformation in the build 

direction to interfere with the recoater which ultimately caused the recoater crash. 

Meanwhile, the arch with supports (SA25) created a conductive path between the thin legs 

and the base that prevented heat accumulation. As a result, heat-induced deformation is 

relatively low and no subsequent recoater crash occurred. 
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Figure 18: The surface temperature observed during experiments (blue line) overlaid on 

the coupled thermomechanical FE model (black), and graph theory (red) thermal history 

predictions for four representative arches (a) A10, (b) A20, (c) A25, and (d) SA25.  
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Table 8: Coupled thermomechanical FE and graph theory thermal model performance for 

the estimation of thermal history in terms of MAPE, RMSE, and computation, with respect 

to experimental data. 

Part 

MAPE - before the 

first crash  

(Layer 548) (%) 

RMSE- before the 

first crash (°C) 

 

Computation Time (s) 

 

Coupled 

FE 

Graph 

theory 

Coupled 

FE 

Graph 

theory 

Coupled 

FE 

Graph 

theory 

A10   

(Figure 18(a)) 
4.40 3.66 19.85 15.40 1523 193 

A20  

(Figure 18(b)) 
5.80 3.98 29.05 20.12 1601 214 

A25 

(Figure 18(c)) 
4.19 3.57 26.63 18.32 1683 224 

SA25 

(Figure 18(d)) 
2.13 2.03 12.99 8.82 1716 273 

 

4.2 Prediction of Recoater Crash 

 Deformation predictions from the coupled thermomechanical FE, graph theory 

(Deformation), and Netfabb models are shown in Figure 20 and reported in Table 9 and 

Table 10. The qualitative comparison of deformation predictions from the coupled 

thermomechanical FE, graph theory (Deformation), and Netfabb approaches is shown in 

Figure 21. As is evident, the arches without supports (A10, A20, and A25 in Figure 20(a), 

Figure 20(b), and Figure 20(c)) deform considerably. When the part reaches nearly 23 mm 

in height, the deformation becomes sufficient to exceed the recoater clearance of 40 µm, 

increasing the likelihood of a recoater crash. Meanwhile, the arch with supports, SA25 

shows the deformation in the vertical build direction remains below 40 µm as the supports 
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create a conductive path to prevent heat retention. Hence, a recoater crash is unlikely to 

occur for SA25. 

 

Figure 20: Deformation predictions of each layer using coupled thermomechanical FE 

(black), graph theory-based (red), and Netfabb (green) models corresponding to the arches 

(a) A10, (b) A20, (c) A25, and (d) SA25. The recoater crash occurs when deformation 

exceeds the layer height of 40 µm (red dotted). 
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In Table 9, the layer at which a recoater crash is likely to occur is predicted using graph 

theory (Deformation), and the results are compared with those from coupled 

thermomechanical FE and Netfabb. We note that a recoater crash is likely to occur when 

the maximum deformation of the top surface of the part exceeds 40 µm (the layer 

thickness). The graph theory (Deformation) approach correctly predicts the moment of the 

recoater crash for all the unsupported arches, as well as correctly anticipates that a recoater 

crash is unlikely to occur for the supported arches. The graph (Deformation) approach 

predicts that a recoater crash would occur about 12 layers before the recoater crash is 

observed in the experiment in the unsupported arches except for the case of the arch A10. 

Similar results are reported by both the coupled thermomechanical FE and Netfabb models.  

Table 9: Summary of experimental recoater crash, and the recoater crash predictions 

obtained from coupled thermomechanical FE, graph theory (Deformation), and Netfabb 

approaches, respectively. The number in the parentheses is the computation time in 

seconds.  

Part 

Layer at which 

recoater crash 

occurred in the 

experiment   

Layer of recoater crash prediction 

Coupled 

thermomechanical 

FE 

Graph theory 

(Deformation) 
Netfabb 

A05 556 538 (1512) 550 (189) 550 (207) 

A10 548 562 (1523) 562 (193) 560 (229) 

A15 No crash 562 (1536) 562 (211) 550 (239) 

A20 574 562 (1601) 562 (214) 560 (246) 

A25 574 550 (1683) 562 (224) 550 (252) 

SA25, and 

all supported 

arches 

No crash No crash (1716) 

 

No crash (273) No crash (351) 
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Table 10: Summary of Node density, Node count, Mean Percentage Error (MAPE), Root 

Mean Square Error (RMSE), and computation time for the coupled thermomechanical FE 

model, graph theory (Deformation), and Netfabb simulations. 

Part 
  

Variables  

Coupled 

thermomechanical 

FE  

 

Graph theory 

(Deformation)  

 

Netfabb 

A05 

Node count 19930 1795 16668 

MAPE (%) Ground truth 13.79 12.61 

RMSE (µm) Ground truth 2.54 3.34 

Computation time (s) 1512 189 207 

A10 

Node count 21588 1920 24370 

MAPE (%) Ground truth 18.8 9.80 

RMSE (µm) Ground truth 2.90 2.30 

Computation time (s) 1523 193 229 

A15 

Node count 23348 2035 26764 

MAPE (%) Ground truth 18.28 10.29 

RMSE (µm) Ground truth 2.78 3.77 

Computation time (s) 1536 211 239 

A20 

Node count 25123 2155 30686 

MAPE (%) Ground truth 13.00 10.80 

RMSE (µm) Ground truth 2.60 2.20 

Computation time (s) 1601 214 246 

A25 

Node count 26678 2260 24896 

MAPE (%) Ground truth 15.40 13.00 

RMSE (µm) Ground truth 3.90 3.20 

Computation time (s) 1683 224 252 

SA25 

Node count 26964 2635 40323 

MAPE (%) Ground truth 8.40 5.27 

RMSE (µm) Ground truth 1.60 1.09 

Computation time (s) 1716 273 351 
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CHAPTER 5 ‒ CONCLUSIONS AND FUTURE WORK 

This work presented a novel graph theory-based approach for thermomechanical 

modeling in the Laser Powder Bed Fusion (LPBF) process. The approach was developed 

by combining a meshfree graph theory thermal model with an FE-based mechanical model. 

The approach is applied for predicting a particular type of commonly occurring thermal-

induced deformation failure in LPBF called recoater crash. The advantage of this approach 

is its computational efficiency when compared to a coupled thermomechanical FE model. 

The specific contributions of this work are as follows: 

1. Two LPBF test parts were simulated using the graph theory approach. The 

deformation in the vertical direction was predicted using the graph theory 

(Deformation) approach and the predictions were compared with the coupled 

thermomechanical FE analysis which was considered as the ground truth. It was 

found that the deformation predictions obtained from the graph theory 

(Deformation) approach closely agreed with the coupled thermomechanical FE 

solutions. The calculated errors were less than 10% (MAPE), and 10 µm (RMSE). 

The key result is that the graph theory (Deformation) approach converges about 5 

times faster than the coupled thermomechanical FE approach.   

2. The experimental validation was carried out on an open architecture LPBF 

platform at Edison Welding Institute, Columbus, Ohio. Ten arch-shaped parts 

encompassing different gauge thicknesses were built. Two types of arches were 

built, namely, arches with supports and arches without supports. All the arches 

without supports except arch A15 experienced recoater crash during the 

experiment, while all five arches with supports were successfully printed without 
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the occurrence of recoater crash. The graph theory (Deformation) approach 

predicted the likelihood of a recoater crash for all the arches without supports. The 

results agreed with both the coupled thermomechanical FE model results and that 

of a commercial FE-based LPBF simulation software (Autodesk Netfabb). The 

graph theory (Deformation) approach converged approximately 6 times faster than 

the coupled thermomechanical FE approach (5 minutes vs 30 minutes).  

 In summary, this research develops and applies a computationally efficient graph 

theory-based approach for part-level thermomechanical modeling to predict thermal-

induced deformation, specifically, in LPBF. The approach is applied to predictions of 

recoater crashes. The approach is valuable to LPBF practitioners. The following questions 

are yet to be addressed which we will endeavor to answer in our forthcoming works: 

1. What is the effect of the thermal history on residual stress? 

2. How much would the part distort when removed from the build plate? 

3. What is the effect of thermal-induced deformation on the geometric aspects, such 

as causality, planarity, straightness, etc.? 

4. What is the likelihood of supports failure? 

The graph theory (Deformation) approach drastically reduces the time required for 

predicting deformation and recoater crashes. As a consequence, a user can identify and 

rapidly correct red flag problems in the part design and processing conditions before the 

part is printed. This work presents an opportunity to evolve from a build-and-lost (trial and 

error) procedure to a physics-based strategy for process optimization in LPBF, thus leading 

to accelerating time-to-market for LPBF parts. 
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