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Wheat is the 3rd most prominent crop in the USA and approximately 50% is 

exported annually. Nebraska wheat production is 11th in the country, and it plays a major 

role in the state's agricultural economy, especially in western NE.  Generally, wheat is 

grown under dryland conditions and the region grows much more wheat on unirrigated 

land than it does on irrigated. However, deficit irrigation has shown great value in 

producing high yielding wheat with much less water than needed for other crops. Finding 

new ways to leverage irrigation in wheat production may help address the need to 

produce food with fewer inputs. The objective of this project was to evaluate the effect of 

nitrogen, irrigation, and cultivar on grain yield and quality. A randomized complete block 

with split-split plots was used as the design for this experiment. Six cultivars were 

(Anton, Armour, Overland, Settler-CL, Snowmass, Wesley), five nitrogen treatments (0, 

30, 60, 90, 120 lbs of N per acre) and three irrigation treatments (0, 6, 12 inches) were 

used.  Plots were harvested when mature using small plot combines equipped with 

onboard weighing systems. Differences between years had a dramatic effect on yield 

across all treatments and all locations. However, when correcting for rainfall, location 

didn't have a substantial impact on yield. Irrigation events only occurred at the 

Scottsbluff location. Irrigation had a significant effect when compared to dryland 



 

production, but the effect of 6 and 12-inch irrigation treatments was subtler and at times 

not significant. Nitrogen had little effect on yield or predicted grain protein. Variety had a 

significant effect on both yield and predicted grain protein, and this trend was consistent 

across years and locations.  Test weight (TWT) was not responsive to nitrogen or 

irrigation, but varietal differences were significant and some trends remained constant 

from year to year. However, TWT trends did not align between locations in either year. 

Gluten response was very similar to protein, but the response was much less dramatic.  
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2 
Wheat Production 

It is projected that the world population will grow to 9 billion people by 2050. 

During that time the amount of cultivatable land will decrease, the demand for food will 

increase, and the effects of climate change will become greater. Water is a limited natural 

resource, and agriculture accounts for nearly 70% of humanity’s total water usage. Fossil 

fuels are a finite natural resource as well, and synthetic nitrogen fertilizer is derived from 

fossil fuels via the Haber process. Therefore, there will be a growing need to manage 

natural resources such as water and fertilizer more sustainably. Ultimately, the world 

must produce more food with less land and with fewer inputs. Wheat is a vital crop in this 

effort: Wheat is grown on more land area than any other crop, and regarding production, 

it is second to maize. Wheat is highly adaptable; it can grow in a wide range of 

elevations, temperatures, soil conditions, and with dramatically different levels of 

precipitation. Winter wheat is grown between latitudes 30-60N and 27-40S (Curtis, 

2002).  

Wheat has held a prominent role in western agriculture, from the early agrarians 

until now. Wheat is a significant crop because of an assortment of traits that, when 

combined, increase its utility to farmers, food producers, and consumers. Wheat has a 

wide adaptability and stability across various geographies. It is scalable, capable of being 

planted and harvested by hand; also, able to be part of large-scale commercial production. 

In larger farms, wheat can be produced with little labor and a reduction in production 

costs.  Wheat can easily and rapidly be planted and harvested through mechanical means. 

It has a very consistent seed size for planting, a very uniform height, threshes easily, and 
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semi-dwarf varieties have a low volume of straw to process during harvest. The harvested 

product is typically clean and requires almost no post-processing before it enters food 

markets. Modern combines can harvest swaths in upwards of 60’, and the ground speeds 

are consistently increasing as designs improve. Harvested wheat can be shipped and 

stored with less effort than is required for many other crops. Wheat also has a relatively 

long storage life. Other small grains, such as rice do not store well without processing 

because of the lipid content of whole rice. However, once milled whole wheat flour has a 

very short storage life. If wheat is left intact, then it can easily be stored in large 

quantities without a measurable loss in protein or utility (Doblado-Maldonado et al., 

2012). Because wheat is capable of being directly utilized in food production, there 

should always be markets available. (Ahmad et al., 1991; Bishop and Bugbee, 1998; 

Battenfield et al., 2013). 

Wheat, through a complicated chain of events, evolved in a large and diverse 

region known as the Fertile Crescent sometime between 7,000-10,000 years ago (Fig. 

1.1) (Brown et al., 2009; Fort, 2012). Agricultural practices began at this time, but the 

evolution of wheat likely came from naturally occurring events. This region is regarded 

as the place where humans transitioned from nomads to agrarian neoliths. Wild grasses 

such as Einkorn wheat, Barley, and Emmer Wheat were all found in the region, but they 

were adapted to slightly different geographies in the region. There is evidence that people 

were using these wild grains for food. But at some point, a series of natural crosses from 

some of these wild ancestors led to modern wheat growing wild, and people began to 

cultivate it. During this same time, people started raising animals and staying a location 
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for multiple years, they no longer had to move with the seasons. Because people were 

able to stay in a location they could more easily select for the most desirable plants. 

 

Figure 1-1 Map of the Fertile Crescent.  The people of the region were largely 

nomadic, traveling with animals. These people began domesticating animals and small 

grains as their agricultural practices developed. Emmer and Einkorn share a common 

ancestry with Bread Wheat. This figure shows the small geography where agricultural 

practices were initially developed. (Driscoll et al., 2009) 

Common bread wheat (T. aestivum) is an allohexaploid (2n=6x=42, AABBDD), 

and has a relatively complex genome when compared to other major crops. Modern bread 

wheat has evolved through naturally occurring hybridization between its progenitors (Fig. 

1.2). Two diploid wild relatives: T. uratu (2n=2x=14,AA) and Ae. Speltoides 
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(2n=2x=14,BB), leading to T. turgidum(2n=4x=AABB) which crossed with T. tauschii 

(DD) resulting in T. spelta(AABBDD). Modern bread wheat (T. aestivum) was derived 

from T. spelta through natural evolution. T. turgidum is then divided into subspecies via 

selection pressure. Durum (T. turgidum subsp. durum or T. durum) and Emmer (T. 

turgidum subsp. dicoccum or T. dicoccum). All the progenitors of modern wheat came 

from the same region and are still in production, but on a much smaller scale than modern 

wheat. Einkorn is a diploid species, and it was one of the earliest domesticated forms of 

wheat. Wild Einkorn has a head that drops seeds easily whereas the domesticated head 

holds seeds until being threshed. Einkorn has poor yield characteristics but is hardier in 

marginal environments.  Einkorn is not free-threshing meaning that the seed coat doesn't 

easily separate from the seed (Stallknecht et al.,; Zohary et al., 2000). Emmer is also a 

diploid species, it shares many characteristics with Einkorn. Both of these early kinds of 

wheat were naturally seen in the region and they were both domesticated and cultivated at 

near the same time. Wild Emmer shatters and drops seeds, domesticated Emmer has a 

head that holds seeds until being threshed. Emmer is not free-threshing (Stallknecht et 

al.,). Tauschii is a wild goat grass, it isn't really a food item and it was found in the 

eastern reaches of the fertile crescent. It is also a diploid, and the final component of the 

modern hexaploid wheat. it has a very tight head that has very small grains. Wild goat 

grass is a very hardy plant, capable of growing in very poor soil conditions (“Taxonomy - 

GRIN-Global Web v 1.10.3.6,”). Bread wheat has more seeds per plant and is easier to 

harvest than other types of wheat; giving it greater yield, value, and utility in modern 

agriculture. Over time, people have developed tailored uses for each type of wheat, and 

these types are frequently distributed based on social boundaries rather than on natural 
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boundaries. Durum is widely used for making pasta and is considered better for the task 

than other types of wheat. Durum pasta dough is strong but flexible, able to be formed 

into thin sheets. However, the dough is not elastic like other wheat doughs; These 

qualities are what make durum useful in making pasta. Emmer wheat is used to make 

bread, however, it does not see widespread use because of relatively poor agronomic 

characteristics. (Fifield et al., 1945; Kimber and Sears, 1987; Wishart, 2004). 

Figure 1-2 Evolution of modern wheat. (Shewry, 2009) 

 

  



7 
 

Production and Distribution: 

Wheat spread throughout the Mediterranean and then Europe because of its utility 

as a food source for early agrarians. Wheat became a staple food throughout Europe, 

Russia, and North America. 

Worldwide, wheat ranks first based on total production area but ranks second with 

respect to tons of grain produced. Globally wheat production area is 551 million acres, 

which produces 834 million short tons of wheat. Rice production area is 400 million 

acres, and production is 541 million short tons. Maize global production area is 480 

million acres, and production is 1237 million short tons.  

 

 

 

 

 

 

Table 1-1 This data is based on total planted acres. Worldwide production 
statistics references all wheat classes, this data also shows all wheat classes and 
production methods.   

 

Comparison of Top 10 US Wheat Producing States in 2018  

 Million  
Acres  % of US Million 

Tons % of US 

North Dakota 7.74 16 10.91 19 
Kansas 7.70 16 8.32 15 

Montana 5.39 11 5.93 11 
Texas 4.50 9 1.68 3 

Oklahoma 4.40 9 2.10 4 
Colorado 2.26 5 2.12 4 

Washington 2.22 5 4.60 8 
South Dakota 1.88 4 2.17 4 

Minnesota 1.62 3 2.79 5 
Idaho 1.19 2 3.13 6 

Nebraska 1.10 2 1.48 3 
US Totals 47.82  56.55  
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Top 5 Nebraska counties by total acres planted to wheat in 2018 

Region County Acres 
Northwest Kimball 95,000 
Northwest Box Butte 89,700 
Southwest Perkins 75,100 
Northwest Deuel 53,320 
Southwest Hitchcock 52,500 
Table 1-2 The top five counties according to total acres  
planted in wheat, this is dryland and irrigated. 

 

Top 5 Nebraska counties by irrigated acres harvest in wheat in 2017 
Region County Acres 

Northwest Box Butte 18,263 
Southwest Chase 8,306 
Northwest Cheyenne 6,417 
Southwest Dundy 4,828 
Northwest Morrill 4,732 

Table 1-3 The top 5 wheat-producing Nebraska counties by acres planted, that 
were also irrigated.  

 

Classes of Wheat 

Modern wheat is subdivided further, into different classes based on appearances 

and end-use production. These classes are: growth habit, kernel color, and kernel 

hardness. Growth habit is the most significant classification for wheat and is based on the 

need for a vernalization period, a period of uninterrupted cold after germination. Winter 

wheat requires vernalization; spring wheat does not require Vernalization is determined 

by the Vrn genes, which are heritable and allow for growth at various latitudes based on 

the combination of the alleles. Typically, winter wheat will need between 180 and 250 

days to reach harvest; this is long compared to many crops, but this includes the fall 

growing period. Color and Hardness are also heritable but are not as complex as growth 

habit. Based on color, wheat can either be Red or White. The hardness of the grain 
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dictates how much force is required to mill the grain into flour. Based on these different 

factors, wheat can be classified as follows: hard red winter (HRW), hard red spring 

(HRS), soft red winter (SRW), and so on (Fifield et al., 1945). 

Wheat as a Calorie Source 

When comparing the grains as calorie sources worldwide, wheat and rice are tied 

and have been for many years. Both wheat and rice directly provide close to 20% of the 

world’s calories each. Maize, however, directly supplies approximately 5% of the world’s 

caloric needs. Maize undoubtedly supplies many calories as a secondary source because 

it is often used as an animal feed source. Whereas, rice and wheat are almost entirely 

used as a food source for people. Grains supply nearly half of the calories eaten by all 

people. Wheat has higher protein level relative to rice and maize. Wheat has the highest 

ratio of protein to calorie content among these top three cereals. Rice has the highest 

caloric density, followed by wheat, and then maize. However, it is important to remember 

that none of these grains contain all necessary amino acids for human nutrition, and as 

such, a single one cannot be a sole source of nutrition (Dhuyvetter, 2016; “FAOSTAT,” 

2017). 

Wheat is most commonly milled into flour; typically this involves separating the 

bran from the endosperm, yielding white flour. The milled endosperm produces a flour 

that has outstanding dough qualities and is very palatable to most cultures. Whole grain 

flour, containing both the bran and the endosperm, is gaining popularity for both health 

and culinary reasons. With whole grain flour, the entire grain is milled and retained for 

baking. The white flour stores longer than the whole wheat flour, but even still, white 
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flour spoils quickly. (Pena, 2002).Typically, hard red winter (HRW) wheat is the best 

wheat for making bread, cereal, and general-purpose flour. White wheat is typically used 

in confectionaries and pasta. However, HWW is beginning to be used more often as a 

leavened bread flour source. There is a growing effort to utilize hard white wheat in 

whole bread products, thus improving the nutritional value. Many consumers have a 

negative perception of whole wheat bread as it relates to palatability, but this seems to be 

mostly connected to the color of the flour. Whole wheat flour milled from HWW yields a 

much lighter color that many people find to be more palatable. Bread wheat has a very 

high level of gluten which allows for a very light bread that can rise substantially in the 

preparation and baking process. Gluten creates strong and highly elastic bonds that trap 

gases in the rising process, enhancing the appeal of the bread.  

Management Practices for High Wheat Yield 

There are many factors which affect wheat yield. The important agronomic inputs 

with major effect are cultivars, water and nitrogen availability in soil during growing 

season. Other factors with relatively less effect on yield are soil type, seeding rate, row 

spacing, date of planting. Management practices have been shown to have a significant 

impact on yield and quality. Planting density will have one of the largest impacts on yield 

(Kiesselbach and Sprague, 1926). However, planting population should not be so high 

that it inhibits tillering in individual plants, as tillering significantly improves yield 

(Gardner et al., 1985). Harvest Index is linearly and negatively related to plant height; 

management practices should focus on grain yield and quality rather than aggressive 

vegetative growth (Miralles and Slafer, 1995). Varieties vary widely in their response to 
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heat and drought stress (Stone and Nicolas, 1994). Varieties also vary in their 

performance when grown in different regions from where they were initially developed, 

or if they are managed differently from what is common in the home region (Souza et al., 

2004). Varietal differences lead to significant differences among all significant economic 

traits (Stone and Nicolas, 1994). Therefore, planting correct varieties that are well suited 

to their environment is important. The dissertation focuses on cultivars, soil water and 

nitrogen and therefore, these three inputs are discussed in detail. 

Cultivars 

Genetics of the cultivar is very important for high wheat yield. Genetically 

improved cultivars should have high yield potential under any given production 

environment when compared to wild types. This genetic improvement should be seen 

under optimal or sub-optimal soil water and nitrogen availabilities. Wheat is a genetically 

complex plant, an example of this is plant height. Plant height can be affected by more 

than 20 genes located across 17 of the 21 chromosomes found in the wheat genome. 

These genes that affect plant height are collectively referred to as Rht genes. Currently 

there have been two groups of Rht genes defined. The first group is gibberellic acid 

sensitive genes that either do not produce gibberellic acid or produced a modified form 

that doesn’t function correctly in the plant. Plants with only these genes affecting plant 

height will grow to normal heights if external gibberellic acid is applied. The second 

group are less-sensitive to external gibberellins, these plants will only respond to GA 

under very high doses. (Korzun et al., 1998; Worland et al., 1998; Zanke et al., 2014) 
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Modern commercial wheat appears different from its wild ancestors. The wheat 

produced today is shorter than older lines because of selection for the Rht gene. These 

varieties are known as semi-dwarfs. Semi-dwarf plants are less prone to lodging, 

especially when they receive large amounts of nitrogen fertilizer. Many of these semi-

dwarf lines were also capable of higher yields relative to the tall lines. This yield increase 

is not without issue though; the shorter growth affects the plant at all stages, and with the 

semi-dwarf plant even the coleoptiles are shorter and can make it difficult to plant the 

wheat into moisture while still allowing for uniform germination. (“Semidwarf Wheat 

Varieties,” 1968; Ahmad et al., 1991; Sial et al., 2010) 

Genetic improvement of wheat has consistently risen over the last century, as the 

understanding of wheat genetics has evolved (Austin et al., 1980, 1982). Wheat 

productivity is dependent upon several yield components and traits, such as plant height, 

straw strength, tillers per plant, spikes per acre, grains per spike, grain weight. Modern 

breeding programs have focused on these components, as well as responsiveness to 

irrigation and fertilization. Many modern varieties are also very resilient to disease and 

poor environmental conditions (Kiesselbach and Sprague, 1926; Thomas, 2014).  
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Soil Water 

Water is essential for all 

physical functions within a plant. 

Water use varies dramatically 

throughout the life cycle of the crop. 

Water use is dependent upon the 

growth stage of the crop; water usage 

increases dramatically during the reproductive stages of growth (Yonts et al., 2009). 

Water demands and responsiveness to water stress is different between varieties (Lopes et 

al., 2012).  

 Water use in field crops is measured by tracking all irrigation and rainfall then 

account for the movement of that water. An equation represents this water movement, 

where W is the total amount of water the crop receives in a growing season, R is runoff, 

D is soil drainage, Ec & Es is the water lost through evaporation from the crop and soil, 

Tw & Tc is the transpiration from weeds and crops: 

𝑊 = 𝑅 + 𝐷 + 𝐸' + 𝐸( + 𝑇* + 𝑇' 

Equation 1-1: Crop Water Use. 

Water Use Efficiency (WUE) goes further by comparing productivity or yield (P) 

against seasonal water availability (W). Improvements in WUE translate into reductions 

in water application and increases in profitability and yield.  

𝑊𝑈𝐸 = 𝑃 𝑊⁄  

Equation 1-2: Water Use Efficiency. 

Figure 1-3: Seasonal water consumption in winter 
wheat. 
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Improving WUE is not accomplished only by reducing the total applied water, but 

by improving the synchrony of water applications to match the demands of the crop. 

Ultimately the most significant gains in WUE are realized when all applied water is 

utilized by the crop, and the crop's entire water demand is met through the growing 

season. Deficit irrigation (DI) is an irrigation management that focuses on matching 

water application to crop needs to significantly improves WUE (Xue et al., 2006). Deficit 

Irrigation seeks to reduce drought stress during heading, flowering, and grain fill. The 

duration of grain fill is mostly based on environment and can be prolonged by well-timed 

irrigation (Yang et al., 2001). Well-Managed stress after anthesis can result in more 

pronounced remobilization of stored assimilates (Gallagher et al., 1976). Improved grain 

yields are correlated with an extended grain fill period (Gallagher et al., 1976).  

Water applications must be optimized to match the crop needs during the 

reproductive phase to improve productivity, reduce water usage, and maintain high 

protein levels (Yang and Zhang, 2006). Yield reduction due to water stress under hot, 

drought conditions depends on at what stage of growth and development the stress 

occurred. Reduced irrigation levels and mild drought stress during vegetative growth 

(Feekes 4-9) do not have a significant effect on grain yield (Kang et al., 2002; Zhang et 

al., 2004). Yield components are reduced by heat and drought stress during early 

reproductive stages (Feekes 10, 11) (Kobata et al., 1992; Guttieri et al., 2000; Altenbach 

et al., 2003). Drought occurring at or near anthesis can reduce total number of grains per 

spike, accelerate senescence, and reduce the overall grain-fill period (Kobata et al., 1992; 

Palta et al., 1994; Gibson and Paulsen, 1999).  
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Harvest Index (HI) is a similar measure that is related to efficiency and 

productivity in cropping systems. HI is the ratio between the economic yield and the 

biological yield (Gardner et al., 1985). Crops with low HI produce large amounts of 

vegetative growth relative to the economic yield of the crop. Harvest Index relates to 

WUE because they are both measures of productivity. Irrigating early in the season 

encourages wasteful straw growth at the expense of grain and input costs. Water can be 

significantly reduced early in the year with no significant effect on yield (Yang et al., 

2001; Yonts et al., 2009). 

ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑑𝑒𝑥 =
𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑦𝑖𝑒𝑙𝑑
𝑏𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑦𝑖𝑒𝑙𝑑 ∗ 100 

Equation 1-3: Harvest Index. 

Water availability is the most significant management input when producing 

small grains (Zhang et al., 2004; Ali et al., 2007). Grain yields in wheat will be highest 

under full irrigation, but as water input increases beyond necessary levels, WUE will 

decrease (Ali et al., 2007). Like any plant, wheat has a point of diminishing returns when 

applying irrigation water. Wheat has a nearly linear response to applied water (Zhang et 

al., 2004). Vegetative biomass production increases with early-season irrigation (Xue et 

al., 2006). There is a practical limit when irrigating wheat; any water applied after that 

point will have significant diminishing returns (Clark et al., 2001). The grain protein 

content is established at early grain fill; however, grain starch production is dependent on 

the length of grain fill period. The relative protein content is higher under post-flowering 

water stress (Gooding et al., 2003).  
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Nitrogen 

Nitrogen (N) availability in modern wheat production is almost as important as 

soil water availability. Without adequate N supply, all stages of growth will be severely 

hindered. (Cassman et al., 2002). Nitrogen uptake and utilization are dependent upon soil 

water availability. In semi-arid regions (like western Nebraska) nitrogen uptake increases 

with irrigation (Ercoli et al., 2008). An overabundance of nitrogen under optimal soil 

water level can delay reproductive growth and lead to lodging as plant height is 

unnecessarily increased (Guarda et al., 2004). Moreover, there is significant variability 

among cultivars their responsiveness to nitrogen applications (Austin et al., 1977). 

Nitrogen availability influences both yield components and quality. The benefits 

of nitrogen fertilizer on yield and quality is dependent upon rate and timing of the 

application (Borghi et al.,; Spiertz and Vos, 1983). Increased N level before spike 

development can increase kernels per spike (Guarda et al., 2004). Increasing levels of 

nitrogen has a positive effect on the number of spikes/m2 (Abedi et al., 2011). Early 

season N applications increase dry-matter growth and plant height (KSU Extension, 

1997). Heading date in wheat is delayed with higher levels of applied nitrogen (Guarda et 

al., 2004). Nitrogen uptake during grain fill in wheat is strongly correlated with the 

amount of applied N (Delogu et al., 1998). Nitrogen applications do not have a 

substantial effect on the duration of grain fill (Halse et al., 1969).   

Quality is directly affected by nitrogen applications; however, the timing of the 

application has a significant impact on the utility of the application (Mahler et al., 1994). 

Applying liquid, foliar fertilizer near heading has a positive effect on grain protein 
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(Garrido-Lestache et al., 2004). Applications after flowering will not affect yield or 

protein (Abad et al., 2004).  

Nitrogen Use Efficiency (NUE) is the relationship between applied nitrogen and 

what the plant uses. Wheat can utilize a large amount of nitrogen, with much of that 

nitrogen going to the straw (Abril et al., 2007). Large improvements can be made to NUE 

by matching applications to the growth stage of the plant and reducing wasteful 

vegetative growth (Mahler et al., 1994). Protein content is set early in the grain fill 

process; however, starch continue to accumulate throughout grain fill. Protein is 

negatively correlated to yield because the starch continue to accumulate thereby reducing 

the relative protein content (Rao et al., 1993).  

Justification and Objectives 

Nebraska has varying geography, and crop production practices change depending 

on geography and climate. The most prominent production practice that defines wheat 

production in the region is irrigation. Wheat can either be dryland (rainfed) or irrigated. 

This project is significant because it helps to address the challenges of wheat production 

in Nebraska.  

Dryland production is characterized by minimal inputs and minimal capital costs 

on the farm. Often the rotation is summer fallow, where wheat is planted in alternating 

years and in the off years the ground is not disturbed and weeds are managed via 

chemical weed control. In dryland settings there is no infrastructure to provide irrigation, 

farmers must manage all of their on-farm operations based entirely on weather. There is 

an additional concern about managing soil to prevent wind erosion, so reside and tillage 
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must be utilized properly in-order to address these challenges. Dryland production 

limitations are predominately characterized by negotiating a delicate balancing act; 

drylands farmers can lose substantial amounts of money if they apply fertilizer that is 

never utilized by the plant or if they apply weed control at the wrong time. Because 

dryland wheat has a low yield potential, all inputs must be timed perfectly to ensure 

maximum return on investment.  

Irrigated wheat is typically managed more intensely in-order to maximize yield. 

Capital and input costs are often much higher because there is greater yield potential with 

these farms. This higher yield potential helps to justify utilizing more inputs that help 

push yield even higher. Production concerns and limitations are somewhat different with 

irrigated wheat versus dryland. Irrigated wheat fields can often be heavily tilled, requiring 

entirely different management strategies than in dryland fields that may not be tilled at 

all. Nitrogen and water allocations have to be timed to maximize output but not push the 

crops to the point of damage. Further there is an additional concern not to waste 

resources. In Western Nebraska, water is a scarce resource that is functionally non-

renewable (Basso et al., 2013). The primary irrigation source is water derived from the 

High Plains Aquifer, the rate of recharge is less each year than the rate of discharge 

which makes this a limited and non-renewable natural resource (Sophocleous, 2005).  

Therefore, it is imperative for growers to find a balance wherein they achieve the 

highest yield potential while not wasting water. Most of information currently available 

for what production is dated. There is a clear need to improve our understanding of 

dryland and irrigated wheat production. Further, the study and understand surround the 
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interactions of irrigation, fertility, and variety selection are extremely complicated. The 

objective of this project is to add to the body of data surrounding problem of how to best 

manage water in wheat production when water is in limited supply. Secondly, how to 

most efficiently use nitrogen in these limited irrigation scenarios. And third, to confirm 

that this information is consistent across various cultivars that are representative to the 

region.  
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Chapter 2 Materials and Methods 
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Trial Locations 

Figure 2-1: Research locations in the state of Nebraska. Two locations were used 

for the experiment, Scottsbluff in the west and Mead in the east. 

 

Scottsbluff was chosen to represent semi-arid High Plains of Nebraska Panhandle, 

the major wheat producing region of the state. Whereas, Mead was selected to represent 

eastern Nebraska site with contrasting environment and climate of high rainfall and low 

elevation. The western field trials were planted at Panhandle Research and Extension 

Center (PREC) in Scottsbluff, NE (Tripp very fine sandy loam, i.e., Coarse-silty, mixed, 

superactive, mesic Aridic Haplustolls) (N41°.89², W-103°.68²) with an elevation of 

3,891ft (1186m). The eastern field trials were planted at the Agricultural Research and 

Development Center near Mead, NE (Tomek silt loam, i.e., fine, smectitic, mesic Pachic 

Argiudolls) (N41°.16², W-96°.41²) with an elevation of approx. 1211ft (369m). Growing 

conditions at these two sites provide contrasting experimental field conditions because of 

their significantly different climates. Scottsbluff has less precipitation and fewer 

accumulated Growing Degree Days (GDD). Scottsbluff has approximately 140 frost-free 

days, and Mead has approximately 150 frost-free days. (Table 2.1) 
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Table 2-1: Annual Precipitation (inches) at Scottsbluff and Mead 

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Sum
2012 0.16 0.69 0 0.98 0.35 1.74 0.93 0 0.79 0.87 0.29 0.19 6.99
2013 0.26 0.28 0.21 2.43 1.46 1.54 0.88 0.79 2.37 1.67 0.85 0.63 13.37
2014 0.46 1.14 0.85 0.62 4.08 1.73 1.5 1.66 4.26 0.59 0.91 1.47 19.27

30 Yr. Avg. 0.39 0.65 0.94 1.85 2.46 2.68 1.64 1.22 1.31 1.2 0.62 0.53 15.49

2012 0.16 1.84 0.62 2.81 3.8 4.24 0.26 0.91 1.18 1.36 0.25 1.06 18.49
2013 0.44 0.42 1.31 3.62 6.42 4.68 0.62 1.8 3.79 3.86 1.27 0.15 28.38
2014 0.07 0.46 0.21 3.22 6.48 8.33 0.55 6.97 3.12 3.3 0.22 1.51 34.44

30 Yr. Avg. 0.54 0.71 1.56 2.99 4.33 4.68 3.33 3.5 3 2.15 1.31 0.94 29.04

Monthly Precipitation (inches)
Scottsbluff

Mead

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Sum
2012 0 0 103 142 349 764 929 754 462 87 7 0 3597
2013 0 0 13 49 326 624 780 791 523 41 0 0 3147
2014 0 1 12 88 277 492 740 698 431 144 1 0 2884

30 Yr. Avg. 0 1 15 70 268 540 765 697 380 91 6 0 2833

2012 3 0 228 185 508 681 974 727 439 114 11 0 3870
2013 0 0 1 67 343 604 738 764 587 158 5 0 3267
2014 0 0 18 130 384 616 653 702 416 175 6 2 3102

30 Yr. Avg. 0 1 34 129 361 644 786 732 451 171 21 0 3330

Monthly Growing Degree Days (GDD 50)
Scottsbluff

Mead

Table 2-2: Monthly Growing Degree Days for Scottsbluff and Mead 
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The growing season for wheat begins in September, at planting and continues 

through to the following August. At Scottsbluff, total precipitation during the growing 

season in 2013 was 8 inches. Of this precip., 3.18 inches was rainfall after spring green-

up and before harvest (Table 2-1). Total precipitation during the growing season in 2014 

was 14 inches. Of this total precip., 6.78 inches was rainfall after spring green-up and 

before harvest (Table 2-1). Which means 2014 had 6" more annual precip., than 2013. Of 

which 3.6" was additional rainfall during the spring and summer in 2014 than that of 

2013. That means 2014 had 3.6" more rainfall during the active growing season and 2.4" 

more rain and snow between Sept., '13 to March '14. Thus, 2014 was a wetter year than in 

2013. Compared to the 30-year average, precipitation in 2013 was below average while 

in 2014 it was slightly higher than average.  

At Mead, both years provided above adequate moisture for winter wheat 

production. Compared to the 30-year average, precipitation was near average in 2013 and 

above average in 2014. 

Design & Treatments 

The experiment was a randomized complete block design with a split-split-plot 

configuration. Design was based on three main factors: irrigation, nitrogen, and cultivar. 

Irrigation treatments were applied at three rates (0”, 6”, 12”). Nitrogen fertilizer 

treatments were applied at five rates (0, 30, 60, 90, 120 lbs/acre). Variety was the final 

treatment and six unique cultivars were used four hard red winter (HRW) and two hard 

white winter (HWW). The experiment was replicated three times at each location. The 

irrigation treatments were main plots and were applied as blocks. Nitrogen treatments 



24 
were applied in strips, as subplots within each irrigation treatment. Cultivars were 

randomized within each nitrogen treatment. Buffer strips were incorporated on all sides 

of the field with 30 feet buffers between each irrigation treatment.  
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Figure 2-2 Field design from year two of the study. Demonstrating experimental 

design and facilitating the simplicity required to irrigate with lateral irrigation system. It 

is important to note that because of a significant stand issue related to seed purity, we 

decided to drop Overland from the analysis because we were not certain that it was 

representative of the variety. 
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Irrigation Levels and Methods 

The experiment included three irrigation levels, which were applied in addition to 

rainfall and all allocated water would be applied so long as it did not damage the crop. 

The allocations were: 0, 6, 12 inches of irrigation water. In reality, the total amount of 

irrigation water might not be utilized because of adequate rainfall. The goal of this 

treatment style is to mimic the methods of irrigation management used by regional 

farmers. Evapotranspiration (ET), rainfall, and irrigation were all tracked throughout the 

season in a checkbook method. Crop growth stage was also tracked so that ET could be 

matched to variable crop needs.  

The dry-land treatment (0") was a negative control. There was a significant 

drought across the region in 2012 and the early part of 2013. In the absence of fall rains, 

0.5" irrigation was required to incorporate the nitrogen fertilizer to prevent volatilization 

and loss of the experiment.  An additional 0.25" was applied across all treatments in the 

spring to ensure uniform stand as the crop ending dormancy. Whereas in the 2013-'14 

season, no irrigation was applied in the fall and 0.25" was applied to all treatments in the 

spring. Both the 6- and 12-inch irrigation was distributed throughout the season wisely in 

such a way to minimize water stress during critical growth stages, flowering and grain-fill 

stages (Figure 2.3 & 2.4). 
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Figure 2-3 2012-2013 Irrigation Schedule. Irrigation management prioritized 

avoiding stress during flowering, followed by avoiding stress during grain fill.  

 

  

Period Week Phenology Weekly Use Cumltv Use Rain
Actual Actual Actual

1 Start of Week End of Week 0.25 0.25 0.5 0.5 0.5 0
2 22-Apr-13 28-Apr-13 Leaf Elong 0.3 0.55 0 0 0 0
3 29-Apr-13 5-May-13 Leaf Elong 0.5 1.05 0 0 0 0
4 6-May-13 12-May-13 Jointing 0.85 1.9 0 0 0 0
5 13-May-13 19-May-13 Jointing 1 2.9 0 0.5 0.5 1.15
6 20-May-13 26-May-13 Pre-Boot 1.25 4.15 0 0.5 0.5 0.09
7 27-May-13 2-Jun-13 Boot-head 1.25 5.65 0 0.75 1.5 0.27
8 3-Jun-13 9-Jun-13 Head-Flowr 1.5 7.55 0 0.75 1.5 0.13
9 10-Jun-13 16-Jun-13 Flowr-Fill 1.9 9.55 0 0.5 1.75 0

10 17-Jun-13 23-Jun-13 Grain milk 2 11.55 0 0.5 1 1.54
11 24-Jun-13 30-Jun-13 Grain Fill 2 13.45 0 1.68 1.68 0
12 1-Jul-13 7-Jul-13 Soft dough 1.9 15.25 0 0 2 0
13 8-Jul-13 14-Jul-13 stiff dough 1.8 16.75 0 0 1 0
14 15-Jul-13 21-Jul-13 Ripening 1.5 17.75 0 0 0 0
15 22-Jul-13 28-Jul-13 1 18.25 0 0 0 0
16 29-Jul-13 4-Aug-13 0.5 18.5 0 0 0 0
17 5-Aug-13 11-Aug-13 Mature 0.25 18.75 0 0 0 0

TOTAL 19.75 0.5 5.68 11.93 3.18
Remaining -0.5 0.32 0.07

0" 6" 12"
2012-2013 Irrigation Log
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Figure 2-4 2013-2014 Irrigation Schedule. Irrigation management prioritized 

avoiding stress during flowering, followed by avoiding stress during grain fill. 

 

  

Period Week Etr Phenology Weekly Etc
Actual Actual Actual Inch

1 Start of Week End of Week 0 0 0 0
2 21-Apr 27-Apr 2.08 Leaf Elong 1.9 0 0 0 0.66
3 28-Apr 4-May 1.63 Leaf Elong 1.5 0 0 0 0
4 5-May 11-May 0.86 Jointing 0.9 0.5 0.5 0.5 2.67
5 12-May 18-May 1.12 Jointing 1.2 0 0 0 0.14
6 19-May 25-May 0.98 Boot 1.1 0 0 0 0.16
7 26-May 1-Jun 1.44 Heading 1.6 0 1 1.75 0.68
8 2-Jun 8-Jun 1.40 Flowering 1.5 0 0.68 1.75 0.14
9 9-Jun 15-Jun 1.40 Grain Fill 1.5 0 0.75 1.75 0

10 16-Jun 22-Jun 1.40 Grain Fill 1.5 0 1 1 1.44
11 23-Jun 29-Jun 1.40 Grain Fill 1.5 0 1 2 0
12 30-Jun 6-Jul 1.54 Soft Dough 1.5 0 1.25 2 0
13 7-Jul 13-Jul 1.40 Ripening 0.7 0 0 0.75 0.53
14 14-Jul 20-Jul 2.00 Ripening 1.0 0 0 0 0.25
15 21-Jul 27-Jul 1.60 Ripening 0.8 0 0 0 0.11

USED 0.5 6.18 11.5 6.78
REMAINING -0.5 -0.18 0.5

2013-2014 Irrigation Log
Dry 6 Inch 12 Inch Rain
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The irrigation management scheme was derived from well-documented methods 

collectively known as deficit irrigation. Deficit irrigation is the deliberate under-irrigation 

of the crop, where less water is applied that is required to match seasonal ET. During 

vegetative growth, available water is below total ET and above wilting point. However, 

as the plant transitions into reproductive growth stages, irrigation must match crop ET to 

ensure the highest possible yield.(English, 1990) 

Farmers in the region commonly use some form of the checkbook method 

(Melvin and Yonts, 2009) to track rainfall, irrigation events, and crop water usage. To 

schedule irrigation in this way a grower must accurately track rainfall and irrigation as 

well as evapotranspiration (ET). Using crop specific ET data from the University, 

growers can accurately predict water consumption of the crop and available soil moisture 

(“Table of Wheat Water Use by Growth Stage.pdf,”). Irrigation treatments and rainfall 

were carefully recorded whereby, the crop could be stressed without significantly 

reducing the yield. Crop growth stage was monitored closely to aid in predicting ET. 

(“High Plains Regional Climate Center,”) 

Gravimetric soil analysis is the process of weighing soil, drying it, and weighing 

it again to determine the soil water content. This analysis was performed before the first 

irrigation of the season to establish a baseline of stored soil water to begin the process of 

irrigation scheduling. The formula has multiple components:  

𝜃D =
(𝑤𝑡	𝑜𝑓	𝑤𝑒𝑡	𝑠𝑜𝑖𝑙) − (𝑤𝑡	𝑜𝑓	𝑑𝑟𝑦	𝑠𝑜𝑖𝑙)

(𝑤𝑡	𝑜𝑓	𝑑𝑟𝑦	𝑠𝑜𝑖𝑙)  
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𝜃KD = 𝜃D ∗
𝑠𝑜𝑖𝑙	𝑏𝑢𝑙𝑘	𝑑𝑒𝑛𝑠𝑖𝑡𝑦
𝑤𝑎𝑡𝑒𝑟	𝑑𝑒𝑛𝑠𝑖𝑡𝑦  

Figure 2-5: Volumetric water content in soil 

Where 𝜃Dis the water content of soil on a dry basis, 𝜃KDis the volumetric water 

content of the soil and, 𝜃KDis the value that was used to represent the water content of the 

soil.  

Empty reference bag weights were recorded prior to drying, and these bags were 

dried and reweighed at the end of the process to account for bag weights throughout the 

process. Soil samples were placed in their empty bags, and the bag with soil was weighed 

before being placed in the drying oven. The samples were placed in an oven at a 

temperature of 110°C and remained there until the weights of the samples were stable 

across 24 hours (Klocke et al., 2004). Data from this process determined when irrigation 

would begin. This process was completed before the stem elongation stage ended (Feekes 

4-5). Irrigation planning and application followed the methods described in Nebraska 

Extension Guide EC731 (Melvin and Yonts, 2009). 

Nitrogen fertilizer rates and application method 

Fertilizer was applied at five rates: 0, 30, 60, 90, 120lbs N/acre. Granular urea 

(46-0-0) was the only nitrogen source. New fertilizer was purchased from Panhandle Co-

Op, a local commercial agriculture retailer, each year. Fertilizer was stored in cool, dark, 

dry locations and remnant was disposed of after application. Nitrogen fertilization rate 

was not adjusted based on residual soil nitrogen, and residual soil nitrogen was minimal 

at both site and in both years. All fertilizer was applied near planting and before 
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emergence. To ensure that fertilizer was incorporated into the soil, all applications were 

timed to coincide with rain and in the event that no rain was forecasted then 0.25" of 

irrigation was applied.  

To improve application efficiency, fertilizer was measured volumetrically in cups. 

One plot's allocation of fertilizer was weighed according to the respective treatment, and 

plastic cups were cut to match the pre-weighed reference. At the time of application, the 

cups were used to scoop fertilizer, and then it was spread by hand. All five fertilizer 

treatments were randomized as blocks within each irrigation treatment. Each fertilizer 

treatment block contained all varieties, and the varieties were randomized within the 

fertilizer blocks. This blocking allowed for rapid and consistent application. 

 Varieties 

Six cultivars were used, four hard red winter wheat (HRW) cultivars: ‘Armour’ 

(Monsanto Technology, LLC., 2014), ‘Overland’ (Baenziger P. , et al., 2006), ‘Settler-

CL’ (Baenziger P. S., et al., 2011), ‘Wesley’ (Peterson, et al., 2011). Moreover, two hard 

white winter wheat (HWW) cultivars: ‘Anton’ (Graybosch, et al., 2011), ‘Snowmass’ 

(Haley, et al., 2011).  

Armour is an early maturity variety that is well adapted to most regions and has 

moderate winter hardiness. Test weights are average and protein is slightly better than 

average. Armour is characterized as relatively short plant height, with moderate 

coleoptile length. Armour is susceptible to leaf, stem, and stripe rust. (Regassa et al., 

2012) 
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Anton has a later maturity than other varieties and is well adapted to irrigated 

production in the West and West Central regions. Anton has average winter hardiness. 

Anton is susceptible to leaf, stripe, and stem rust. Test weights are average and grain 

protein is slightly better than average (University of Nebraska - Lincoln, 2016). 

Settler-CL has an average maturity, with moderate winter hardiness. Settler-CL is 

a very short variety and was the shortest of the experimental group. It has moderate 

resistance to leaf and stem rust (University of Nebraska - Lincoln, 2016). 

Snowmass has a moderate maturity, with moderate winter hardiness. It is well 

adapted to irrigated production in the West and West Central regions. Snowmass is 

average in height and has long coleoptiles. it is susceptible to leaf, stem, and stripe rust. 

Snowmass has lower than average test weight and better than average grain protein 

(University of Nebraska - Lincoln, 2016). 

Wesley has a moderate maturity, and a moderate winter hardiness. Wesley is a 

short variety with short coleoptiles. Wesley is resistant to leaf rust, but is susceptible to 

stem and stripe rust. Wesley has low test weight and better than average grain protein 

(University of Nebraska - Lincoln, 2016). 

These cultivars are all pertinent to Nebraska and are commonly grown by 

commercial growers. Moreover, they were all selected based on their strong disease 

resistance profiles, marketability for the farmer, and their adaptability to being produced 

in both the eastern and western regions of Nebraska. Further, to fulfill the intent of our 

experiment proposal all of these varieties were to have some ability to be utilized in 
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whole wheat foods. And finally, some of the varieties were developed by the University 

of Nebraska and held added merit in that way.  

Seed Preparation 

Certified seed producers were used to source all six cultivars. The seed for the 

year was treated with Raxil® at labeled rates using a portable cement mixer (Bayer 

CropScience, 2010). Germination % of all seed lots was ~95% (+/-2%). All plots were 

drilled at the same rate of 110lbs/acre. The seeding rate was an average of recommended 

rates from a University of Nebraska Extension guide to planting winter wheat (Klein et 

al., 2011). Germination rate and seed size (TKW=Thousand Kernel Weight) was not 

considered while calculating seeds/packet. 

Field Preparations & Planting 

For both years of trials, the previous crop at Scottsbluff was silage corn, and 

soybean at Mead. In Scottsbluff, a disk and roller packer were used to prepare the field. 

In Mead, a field finisher was used as the primary tillage implement. Soil samples were 

taken prior to planting at both locations and in both years using the same equipment and 

the same methods. Samples were taken at depths of 0-12”, 12-24”, 24-40”, 40-60”; these 

were then assessed for nitrogen and the surface sample was also tested for potassium and 

phosphorous and select micronutrients. A Giddings brand, truck-mounted soil probe was 

used at both sites (Ferguson et al., 1991). 

Plots were 5’wide and 25’ long and consisted of 8 rows with 7.5” spacing 

between the rows. Planting depth was approximately 0.5” to 0.75”. A cone drill (Hege by 
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Wintersteiger) used at both locations and were calibrated to plant the plots at 25’ with 

30” alleys being inclusive in the 25’ length. Planting occurred on 22-Sept-2012 and 26-

Sept-2013 in Scottsbluff, and on 9-Oct-2012 and 10-Oct-2013 in Mead. These dates were 

after the last risk of Hessian fly damage and before the cutoff for crop insurance for 

regional farmers In Scottsbluff water was applied in both years after planting to 

incorporate nitrogen fertilizer and ensure uniform germination.  

Agronomic Data 

Agronomic and phenological data were collected throughout the growing season, 

this included: tillering, plant height, flag leaf nitrogen, grain yield, grain moisture, test 

weight. The data is listed in chronological order of when the notes were taken throughout 

the year.  

Plant height was measured by placing a measuring stick at the base of the plant. 

The measuring stick was the held perpendicular to the ground. The plant was then held 

erect, parallel to the measuring stick and the tallest portion of the plant was measured, 

excluding the awns. Four plants within each plot randomly chosen for measurements. 

Measurements were never taken from plants residing in the outer rows of the plot, or 

from plants adjacent to alleyways. Height notes were taken before harvest to ensure that 

the plants were done growing for the season.   

 Flag Leaf N was taken during the boot stage. Four flag leaves were cut from each 

plot and were packaged in small paper envelopes. A critical part of the method of 

gathering these samples was to ensure that they did not sit idle for too long. The samples 

were high in moisture and were in small paper envelopes in an already humid climate. 
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Samples could begin to mold soon after harvest because of this the samples were quickly 

placed in a drying oven at 120°F; samples were dried for five days. After drying the 

samples were sent to Ward Laboratories of Kearney, NE for analysis. A standard test was 

run at the lab to assess the nitrogen content, this test typically called for the entire 

aboveground portion of the plant. However, for our need, the lab was able to 

accommodate this test.  

Harvest, Yield, and Seed Quality 

Harvest timing was based on the moisture of the crop and how well the plants 

could be threshed. The decision on when to harvest was based on average maturity 

between the six varieties. In both years, harvest occurred at the end of July. The combines 

were able to measure and record plot weight, moisture, and test weight. During harvest, a 

1kg subsample was retained to be processed later in the lab; the remaining seed was 

discarded. Samples were collected in the cab of the combine; the samples were placed in 

pre-labeled paper bags. 

In Scottsbluff, a Winterstieger Delta plot combine with a Harvest Master Classic 

Graingauge grain handling system was used to harvest all plots (Winterstieger,; “Classic 

GG - HarvestMaster::Juniper Systems, Inc.,”). In Mead, an Almaco plot combine was 

used with an Almaco SPC-40 grain handling system (Almaco,). Grain was processed on 

the combine during harvest through the use of on-board weighing systems. Through the 

use of these systems test weight (lbs/bu), total harvested weight (lbs), and percent 

moisture were all collected.  
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Limited grain quality data was collected thousand kernel weight (TKW) was 

determined by counting 1000 seeds via an Agiculex Inc. ESC-1 Electronic Seed Counter 

and then weighing the sample (“ESC-1 – Agriculex Inc.,” 2018). A Perten DA 7250 NIR 

Analyzer, we assessed grain moisture, protein and other various quality measures such as 

starch and hardness(Perten Instruments, 2018). Dr. Guttieri, University of Nebraska 

developed the equations used to estimate flour protein and gluten from the NIR output. 

And these estimated values were used in our experiment. Some work was physical lab 

work was done to assess the quality of the flour. However, it was soon realized that the 

cost and time associated with this effort would outpace the ability of the research 

assistant and the budget of the project. Therefore, only grain protein was the only form of 

quality data that was collected and as such other typical quality data will not be presented 

here.  

Data Analysis 

 In our analysis, explanatory variables were: Plant Height, Flag Leaf Nitrogen, 

Cultivar, Nitrogen, Irrigation, Location, and Year. Moreover, our response variables 

were: Yield, Test Weight, Protein, Starch, Hardness, Fiber, Plant Height, Flag Leaf 

Nitrogen. Some traits that would traditionally be analyzed as response variables were also 

assessed as explanatory variables, to see if there could be any unexpected relationships 

between variables, i.e., plant height and yield. In our analysis, we also evaluated the 

relationships between the interactions of different explanatory variables, examples of 

these were Nitrogen by Cultivar, Irrigation by Cultivar, Nitrogen and Irrigation by 
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Cultivar. All potentially meaningful relationships were analyzed to find significant 

relationships.  

 Data were analyzed using PROC GLM and PROC GLIMMIX in SAS 9.4 to 

detect significant differences and to evaluate complex interactions between the 

explanatory variables (SAS Institute, 2013). Because of the split-split-plot design of our 

experiment we used a nested model in PROC GLIMMIX to account for the effect of the 

blocks on the data. The analysis was sliced by individual cultivars and treatments to 

determine specific effects of each explanatory variable. Slicing allowed for the analysis 

to show responses on a more granular level.  
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Chapter 3 Results and Discussion 
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PLANT HEIGHT 

Plant height response to irrigation 

Plant height was only recorded for Scottsbluff. In 2013 plant height was slightly 

responsive to irrigation treatments. The 0” treatment rate was significantly lower than the 

two irrigated treatments. Overall plant height was lower in 2013 than in 2014. In 2014 

there were no differences between the treatments and the response curve was flat.  

 
  

15

25

35

0 6 12

Pl
an

t H
ei

gh
t (

in
ch

es
)

Inches of Irrigation Water

Plant Height/Irrigation - Scottsbluff 

2013

2014

A
A

A

B

A

A

Figure 3-1: Plant height response to irrigation treatments. 
Plant height across all varieties and nitrogen treatments was 
averaged. Different letters denote statistically different groups 
at p=0.05. 
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Plant height response to nitrogen 

Plant height was lower in 2013 than in 2014. Differences among treatments were 

subtle but there were significant differences in both years that correlated with increasing 

nitrogen treatment rates. There was a five-inch height difference between all treatments 

from 2013 to 2014.  

 

Plant height response to variety 

Plant height was significantly different between varieties in both years. In 2013 all 

varieties had lower plant heights than in 2014. In 2013 and 2014 Snowmass was the 

tallest variety and Armour was the shortest. Variety. In most cases there was about a five 

inch height difference between 2013 and 2014 data for each variety.  
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Figure 3-2: Plant height response to nitrogen. Plant height 
across all varieties and irrigation treatments averaged. 
Different letters denote statistically different groups at p=0.05. 
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YIELD 

Yield response to irrigation:  

There was no irrigation treatments at the Mead location because rainfall was 

higher than crop water needs. Therefore, the results presented here are based on two years 

of trial data at the Scottsbluff location only.  

During 2013 there was a 20-bushel/acre yield difference between each irrigation 

treatment (Fig.3-1). Further, in 2013 a linear response from the application of irrigation 

treatments was observed and the yield difference was significantly different between each 

treatment. Whereas, in 2014 there were no significant differences between the 6” and 12” 

treatments (Fig.3-1). However, the yield response between 0” and 6” treatments was 

similar to that of 2013.  This differences in yield is likely in response to the higher levels 
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Figure 3-3: Plant height response to variety. Plant height 
across all nitrogen and irrigation treatments was averaged. 
Different letters denote statistically different groups at p=0.05. 
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of rainfall during the growing season (see Table 2-1). As seen in Figure 3-1, there were 

significant differences between trial years. The 2013 growing season experienced 

significantly lower average rainfall. This lack of precipitation resulted in the linear 

response of yield to irrigation. The yield response between the 6” and 12” treatments was 

non-significant. This suggests that in 2014 season maximum yield potential was reached 

at the 6” irrigation level and the crop was not able to effectively utilize any additional 

water beyond the 6” treatment. In 2013, the similar maximum yield potential was reached 

at 12” irrigation level. In other words, 12” irrigation in 2013 and 6” irrigation in 201d 

resulted in similar yield.  

Similar yield responses to irrigation in wheat were also reported by Zhang, et al. 

They concluded that when water was limited there would be a nearly linear response to 

irrigation until yield potential is reached and response tapers off (Zhang et al., 2004). 

Yield response to nitrogen per irrigation treatment was seen in figure 3-4. The 

experimental design has nitrogen treatments nested within irrigation treatments. Nitrogen 

treatments did not influence yield as much as irrigation treatments. And the response to 

nitrogen treatments becomes more visible as irrigation levels increase. Irrigation by 

nitrogen figure is grouped by irrigation treatment and then by nitrogen treatment. the first 

value on the x-axis is 0" of irrigation and 0lbs/N the sixth is 6" of irrigation and 0lbs/N. 

(Figure 3-5). 
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Figure 3-4: Yield response to irrigation. Yield across all nitrogen and 

varieties was averaged. Different letters denote statistically different groups at 
p=0.05. 

 

Figure 3-5: Yield response of each irrigation and nitrogen treatment. Yield of 
all varieties were averaged. Different letters denote statistically different groups at 
p=0.05. 
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Yield response to nitrogen:  

In 2013 at Scottsbluff, yield response to different nitrogen treatments between 0 lbs/a to 

90 lbs/a was positive and differences were significant (Fig.3-3). However, the yield 

difference between 90 lbs/a to 120 lbs/a was nonsignificant. In 2014 at Scottsbluff, there 

was some positive yield response to nitrogen treatments.  However, yield differences 

between treatments were non-significant. There were some significant differences among 

yield response to nitrogen treatments; however, these differences were sporadic and 

inconsistent (Fig 3-3 and 3-4). While not displayed, there was also no relationship 

between nitrogen and yield when each cultivar was evaluated separately.  

There were no significant differences in yield response to different nitrogen treatments at 

Mead in either 2013 or 2014. There were no meaningful trends. Overall the response was 

relatively flat. Yield response to nitrogen treatments was small at Scottsbluff and there 

was difference between years. The 2013 had a significant response and 2014 did not. At 

Mead, the yield was not responsive to nitrogen treatments and there were no trends. 

Averaging the two experiment years, Mead had lower yields than Scottsbluff. 

It may be possible that we were not able to adequately deplete the residual soil nitrate or 

that our treatment methods were not adequate for applying this type of treatment. Soil 

tests were taken, and it was determined that residual soil nitrate levels (>20lbs/acre) were 

not high enough to justify an adjustment to our experiment. Sub-soil nitrate below 20 

inches did increase dramatically, but it was thought at the time that there should be no 

reason for that to affect wheat because the rooting zone isn't that deep. Overall, the lack 
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of response relative to fertilizer treatments is not immediately explainable by anything 

that was recorded or any nitrogen treatments applied. 
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Figure 3-6:Yield response to nitrogen treatments at Scottsbluff in 2013 and 

2014. Yield averaged across all irrigation treatments and cultivars. Different letters 
denote statistically different groups at p=0.05. 

 

Figure 3-7: Yield response to nitrogen treatments in Mead for both 2013 and 
2014. Yield averaged across all irrigation treatments and cultivars. No significant 
differences in either year. Different letters denote statistically different groups at 
p=0.05. 

 
  

30

40

50

60

70

80

90

100

110

0 30 60 90 120

bu
/a

c

Lbs/N

Yield/Lbs N - Mead

2014
2013

A
A

A
AA

A

A A
AA



47 
Yield response between varieties 

At Scottsbluff in 2013 (Fig.3-5), yields of Settler-CL and Snowmass were highest 

but were not statistically different. The yields of Anton, Armour, and Wesley were lowest 

yielding varieties but statistically similar to each other. At Scottsbluff in 2014 (Fig.3-5), 

Settler-CL and Anton were the highest yielding variety. Armour and Anton were no 

statistically different. Armour, Snowmass, and Wesley were lowest yielding varieties and 

not statistically different from one another. Yields were higher in 2014 and there was 

more separation between varieties. Settler-CL is a consistently high yielding variety in 

both 2013 and 2014 (Figure 3-8). 

At Mead in 2013 (Fig.3-9) there were no significant differences between 

cultivars. However, Settler-CL was the highest yielding cultivar. At Mead in 2014 (Fig.3-

9) there were still no significant differences between cultivars with Settler-CL still being 

the highest yielding cultivar. Yields in 2014 were lower, but there were similar levels of 

variability in both years.  Settler-CL was the highest yielding variety at both the location 

except in 2013 at Scottsbluff where Settler-CL and Snowmass were not discernibly 

different. Scottsbluff produced higher yield than Mead during the trial period. Variety 

differences were clearer as precipitation increased. 

Settler-CL is a modern HRW cultivar developed in Nebraska and is intended to be 

produced in the region.  That might be the reason why its yield reduction due to low 

rainfall in 2013 was not as severe as other three cultivars (Anton, Armour, and Wesley). 

On the other hand, Snowmass, a non-Nebraska cultivar, was uncharacteristically high 

yielding relative to other cultivars in the experiment. This may be the fact that it was bred 
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for dryland production on the plains of Colorado, this climate is very similar to western 

Nebraska. When water was limited in 2013 at Scottsbluff, yield reduction in Snowmass 

was not as bad as other thee cultivars (Anton, Armour, and Wesley).  

Figure 3-8: Yield differences between varieties at Scottsbluff for both 2013 
and 2014. Yields of all irrigation and nitrogen treatments averaged. Different letters 
denote statistically different groups at p=0.05. 

 

Figure 3-9: Yield differences between varieties at Mead for both 2013 and 
2014. Yields of all nitrogen treatments averaged. Different letters denote statistically 
different groups at p=0.05. 
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TEST WEIGHT 

Test weight response to different irrigation rates 

There were no irrigation treatments at the Mead location because rainfall was 

higher than crop water needs. Therefore, the results presented here are based on two years 

of trial data at the Scottsbluff location only. At Scottsbluff in 2013, when water was 

limiting, TWT was significantly higher at the 6" than the 0" treatment, but the 12" 

treatment was not different from the 6" treatment. In 2014, when water was more 

available, TWT was higher than in 2013 but did not respond to any of the irrigation 

treatments (Figure 3-10). Irrigation by nitrogen interaction did not produce any 

significant trends beyond what was already seen in the irrigation treatments (Figure 3-

11). Standard TWT in wheat is 56lbs/bushel, and during both trial years at Scottsbluff, 

the TWT was above this level. Even the worst TWT response at Scottsbluff was higher 

than the standard TWT value. Based on basic agronomic understanding, the test weight 

should increase with irrigation. Possible reasons for this unexpected outcome could be 

related to ample soil moisture and ideal growing conditions. Irrigation by nitrogen figure 

is grouped by irrigation treatment and then by nitrogen treatment. the first value on the x-

axis is 0" of irrigation and 0lbs/N the sixth is 6" of irrigation and 0lbs/N (Figure 3-11) 
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Figure 3-10: TWT response to irrigation. TWT averaged across all varieties 

and nitrogen treatments. Different letters denote statistically different groups at 
p=0.05. 

 

 

Figure 3-11: TWT response to each irrigation and nitrogen treatment. TWT 
of all varieties were averaged. Different letters denote statistically different groups 
at p=0.05. 
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Test weight response to nitrogen rate  

Test weight was lower in 2013 than in 2014, and in 2013 TWT averaged 58lbs/bu. 

The only time that significant differences were seen for TWT was at Scottsbluff during 

2014. Differences were very subtle, but they were significant. It was anticipated that 

TWT would increase with nitrogen rate, but this response was not seen. The 0# treatment 

was not significantly different than the 30 and 120# treatment. The 60 and 90# treatments 

were significantly lower than the 0# rate (Fig 3-9). There were no significant differences 

in either year at Mead. Also, the standard error for the data in 2014 was very high. 

However, in 2014 there were also no trends in the data (Fig 3-10). On average, over the 

two trail years, Scottsbluff had higher TWT levels. Based on available agronomic 

knowledge, there was no expectation of any effect on TWT from nitrogen fertilization. 

TWT was higher during 2014 in Scottsbluff likely due to the more favorable growing 

conditions, more timely rains. In both Mead and Scottsbluff, TWT response was similar 

and increased as growing conditions improved between years.  
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Figure 3-12: TWT response to nitrogen treatments at Scottsbluff for both 

2013 and 2014. TWT of irrigation treatments and variety were averaged. Different 
letters denote statistically different groups at p=0.05. 

 

Figure 3-13: TWT response to nitrogen treatments at Mead for both 2013 
and 2014. Yields of all varieties were averaged. Different letters denote statistically 
different groups at p=0.05. 
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Test weight comparison between varieties 

In 2013 at Scottsbluff, TWT was lower for all varieties than in 2014. Anton and 

Snowmass were not significantly different but had significantly higher TWT levels than 

Armour, Settler-CL, and Wesley. Settler-CL had significantly higher levels than Armour 

and Wesley, and Armour and Wesley were not different from each other. In 2014 at 

Scottsbluff, Anton had the highest TWT levels but was not significantly different from 

Wesely. Wesley was higher than Snowmass but they were not significantly different from 

each other. Armour and Settler-CL were not different from each other but were both 

significantly lower than Snowmass. in 2013 at Mead, TWT values were higher for all 

varieties than in 2014. Snowmass had the highest TWT levels but was not statistically 

different from Arton, Settler-CL. These three varieties were significantly higher than 

Wesley, which was significantly higher than Armour. in 2014 at Mead, there were no 

significant differences between varieties. Settler-CL had highest TWT levels. However, 

the standard error in 2014 was high.  

It is difficult to see which variety produces the highest TWT levels, but it is more 

clear that Armour has consistently lower TWT levels than other varieties. The 

inconclusive results for TWT is an excellent example of why state variety trials have 

many locations. The data set must be large enough to overcome the effect of the 

environment and various other sources of error. This experiment was likely too small to 

provide enough data for a trait like TWT.  
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Figure 3-14: TWT differences between varieties at Scottsbluff for both 2013 
and 2014. TWT of all irrigation and nitrogen treatments were averaged. Different 
letters denote statistically different groups at p=0.05. 

 

 

Figure 3-15: TWT differences between varieties at Mead for both 2013 and 
2014. TWT of all nitrogen treatments averaged. Different letters denote statistically 
different groups at p=0.05. 
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Protein 

Protein response to different irrigation rates 

There were no irrigation treatments at Mead because rainfall was higher than crop 

water needs. At Scottsbluff protein levels were higher in 2013 than in 2014. Also, there 

were no significant differences between irrigation treatments in either 2013 or 2014. 

Agronomic convention says that protein is inversely related to irrigation levels and that is 

seen here, where 2013 was dryer and yield was lower while protein levels were higher. A 

second trend that was observed in both trial years was that the 6" treatment was 

consistently lower than the 12" treatment, which was consistently lower than the 0" 

treatment (Fig. 3-13). Data was double checked for errors and none were found. Irrigation 

by nitrogen figure is grouped by irrigation treatment and then by nitrogen treatment. the 

first value on the x-axis is 0" of irrigation and 0lbs/N the sixth is 6" of irrigation and 

0lbs/N (Figure 3-16). 

Figure 3-16: Protein response to irrigation at Scottsbluff for both 2013 and 
2014. Protein response of all nitrogen treatments and varieties were averaged. 
Different letters denote statistically different groups at p=0.05. 
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Figure 3-17: Protein response of each irrigation and nitrogen treatment. 

Protein levels of all varieties were averaged. Different letters denote statistically 
different groups at p=0.05. 

 

 

Protein response to different nitrogen rates 
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Scottsbluff had the highest levels when averaging the two years of data. There was no 

apparent relationship that linked positive trends to nitrogen treatments. Response to 

nitrogen was very subtle compared to other treatment effects. The 60# treatment had the 

most significant effect on improving protein while using the least amount of fertilizer.  

Figure 3-18: Protein response to nitrogen treatments at Scottsbluff for both 
2013 and 2014. Protein response to irrigation treatments and variety were averaged. 
Different letters denote statistically different groups at p=0.05. 

 

Figure 3-19: Protein response to nitrogen treatments at Mead for both 2013 
and 2014. Protein levels averaged across all variety. Different letters denote 
statistically different groups at p=0.05. 
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Protein response between different varieties 

At Scottsbluff in 2013, protein levels were higher than in 2014. Wesley had 

significantly higher levels than all other varieties. At Scottsbluff in 2014, Wesley still had 

significantly higher protein levels than all other varieties. Relationships between varieties 

did not change from 2013 to 2014. Anton and Armour didn't perform differently and 

were significantly lower in protein levels than Wesley. Settler-CL was lower than Anton 

and Armour. Snowmass was lower than Settler-CL in 2013 (Fig 3-17). At Mead in 2013, 

protein levels were lower than in 2014. Anton had the highest protein levels. However, 

Anton was not significantly different from Armour, Settler-CL, or Wesely. Snowmass 

was significantly lower than everything else in 2013. At Mead in 2014, Anton had the 

highest protein levels and was not different from Armour. Anton and Armour were 

significantly higher than Wesley, which was significantly higher than Settler-CL and 

Snowmass. Just as in Scottsbluff, relationships between varieties did not change from 

2013 to 2014. Anton and Armour performed similarly, although in Mead they were 

among the highest at Mead where Wesley was highest at Scottsbluff (Fig 3-18).  

Scottsbluff produced significantly higher protein levels than Mead. Dryer growing 

conditions lead to higher protein levels. Snowmass had consistently low protein levels at 

both locations and in both trial years. Wesely had the highest protein levels at Scottsbluff, 

whereas Anton had the highest levels at Mead. Anton and Armour were always similar in 

their protein levels. In terms of achieving the highest protein content, the growing 

location has a dramatic effect on the performance of any variety. In the west, Wesley was 

the apparent leader in protein levels. In the east, the difference in protein levels was not 
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nearly as pronounced. It is generally assumed that white wheat (Anton and Snowmass) 

should have higher protein levels. This was not seen in the two trial years of this 

experiment.  
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Figure 3-20: Protein differences between varieties at Scottsbluff for both 
2013 and 2014. Protein levels for all irrigation and nitrogen treatments were 
averaged. Different letters denote statistically different groups at p=0.05. 

 

 

Figure 3-21: Protein differences between varieties at Mead for both 2013 and 
2014. Protein levels for all nitrogen treatments were averaged. Different letters 
denote statistically different groups at p=0.05. 
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GLUTEN 

Gluten response to different irrigation rates 

There were no irrigation treatments at Mead because rainfall was higher than crop 

water needs. At Scottsbluff in 2013, gluten levels were higher than in 2014. There were 

no significant differences between treatments in either year. (Fig 3-19). Gluten appears to 

be even less responsive to irrigation than total protein content. However, the trend of the 

response to irrigation is similar to the protein response. Protein levels in wheat are a sum 

of all proteins in the grain; this is more than just gluten. Protein ratios are predicated on 

the genetics of the crop, while the overall protein levels can increase the ratios should 

remain relatively constant. This experiment didn't address the composition or ratios of 

various proteins in the flour. Irrigation by nitrogen figure is grouped by irrigation 

treatment and then by nitrogen treatment. the first value on the x-axis is 0" of irrigation 

and 0lbs/N the sixth is 6" of irrigation and 0lbs/N (Figure 3-23). 
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Figure 3-22: Gluten response to irrigation at Scottsbluff for both 2013 and 
2014. Gluten levels across all nitrogen treatments and varieties were averaged. 
Different letters denote statistically different groups at p=0.05. 

 

Figure 3-23: Gluten response to each irrigation and nitrogen treatment at 
Scottsbluff for both 2013 and 2014. Gluten levels of all varieties were averaged. 
Different letters denote statistically different groups at p=0.05. 
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Gluten response to different nitrogen rates 

Gluten response at Scottsbluff had a very narrow range of response, but in both 

years there was a significant response trend that aligned with increasing nitrogen rates 

(Fig 3-21). At Mead, the 2013 data had high error values and there were no significant 

differences. However, in 2014 there was a positive trend that aligned with increasing 

fertilizer rates with significant differences between treatments. This response was similar 

to what was seen in Scottsbluff, (Figure 3-25). Overall, Scottsbluff had higher gluten 

levels than Mead. 

Figure 3-24: Gluten response to nitrogen treatments at Scottsbluff for both 
2013 and 2014. Gluten levels across all irrigation treatments and varieties were 
averaged.  

 

  

1.5

2

2.5

3

3.5

4

0 30 60 90 120

Gl
ut

en
_d

b

Lbs N

Gluten/Lbs N - Scottsbluff 
2013

2014

B B AB AB
A

AABBBB



64 
Figure 3-25: Gluten response to nitrogen treatments at Mead for both 2013 

and 2014. Gluten levels of all varieties were averaged.  
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often had lower gluten levels. As with protein, gluten levels were higher in the dryer 

years.  

Figure 3-26: Gluten differences between varieties at Scottsbluff for both 2013 
and 2014. Gluten levels of all irrigation and nitrogen treatments were averaged. 
Different letters denote statistically different groups at p=0.05. 

 

Figure 3-27: Gluten differences between varieties at Mead for both 2013 and 
2014. Gluten levels of all nitrogen treatments were averaged. Different letters denote 
statistically different groups at p=0.05. 
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Conclusion 

The objective of this project was to evaluate the effect of nitrogen, irrigation, and 

cultivars on wheat yield and quality. Data gathered from this experiment showed that the 

most critical factor for improving wheat yield is irrigation and the second was cultivar 

selection. Similarly, to enhance the quality of the grain, the best action is to choose 

varieties with ideal quality characteristics. Interactions of yield and grain quality 

attributes (test weight, grain protein, and gluten content) with agronomic factors 

(irrigation, nitrogen, and cultivar) were very complex.  

While the data was of high enough quality, there was not the quantity and breadth 

necessary to meet the project goals. In literature, the effect of single factors on wheat 

yield or quality was well documented and well understood. However, the interactions of 

agronomic factors are not well understood. Especially when considering the synergistic 

effect that some of those factors may have with each other. Multiple authors in this field 

reached similar conclusions in their publications that multi-factor experiments have 

complex interactions. There has been broad consensus among those authors that research 

on these complex interactions must be continued and more data must be collected before 

comprehensive conclusions can be reached. There will likely be significant leaps in 

research as technology helps to reduce cost and complexity of data collection.  

This experiment was part of an MS-level thesis and as such, has been an 

incredible learning experience. There were deficiencies in the planning as well as in the 

execution of the experiment. However, we are confident in the integrity of the data 
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collected. Nothing about it has been easy, and the skills and information gained have set 

the stage for a lifetime of growth and improvement. 
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