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Pumping of magnons in a Dzyaloshinskii-Moriya ferromagnet

Alexey A. Kovalev, Vladimir A. Zyuzin, and Bo Li
Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience,

University of Nebraska, Lincoln, Nebraska 68588, USA
(Received 26 January 2017; revised manuscript received 17 March 2017; published 5 April 2017)

We formulate a microscopic linear response theory of magnon pumping applicable to multiple-magnonic-band
uniform ferromagnets with Dzyaloshinskii-Moriya interactions. From the linear response theory, we identify the
extrinsic and intrinsic contributions where the latter is expressed via the Berry curvature of magnonic bands.
We observe that in the presence of a time-dependent magnetization Dzyaloshinskii-Moriya interactions can act
as fictitious electric fields acting on magnons. We study various current responses to this fictitious field and
analyze the role of Berry curvature. In particular, we obtain an analog of the Hall-like response in systems
with nontrivial Berry curvature of magnon bands. After identifying the magnon-mediated contribution to the
equilibrium Dzyaloshinskii-Moriya interaction, we also establish the Onsager reciprocity between the magnon
mediated thermal torques and heat pumping. We apply our theory to the magnonic heat pumping and torque
responses in honeycomb and kagome lattice ferromagnets.

DOI: 10.1103/PhysRevB.95.165106

I. INTRODUCTION

It is well known that an electric field can drive a charge
current, whereas in order to understand how to drive a spin
current one needs to resort to the field of spintronics [1].
Magnetization dynamics generates spin currents in adjacent
normal metal by a phenomenon known as spin pumping [2–4].
The discovery of spin pumping had a great deal of influence
on the development of the field of spintronics as it led to
new insights into the spin Hall [5], spin torque [6,7], and
spin Seebeck effects [8]. The phenomena related to the spin
Seebeck effect are studied within the field of spincaloritronics
[9] in which the focus is on interplay between the spin degrees
of freedom and heat currents.

As heat and spin currents are also carried by magnons, one
naturally arrives at a concept of magnon-mediated spin torques
which can lead to thermally induced motion of magnetic
domain walls [10–12]. Such torques exist only in noncollinear
magnetic structures or when the Dzyaloshinskii-Moriya inter-
actions (DMI) are present. In the latter case, such spin torques
have been termed as DMI torques [13]. Recently, both fieldlike
and antidampinglike contributions to DMI torques have been
studied theoretically [14–18]. It has been noted [13] that DMI
torques can be seen as magnon analogs of spin-orbit torques
[19–24]. This suggests that the phenomenology developed
for spin-orbit torques can be readily applied to DMI torques
[25,26]. In particular, the intrinsic contribution to DMI torques
has been identified [16]. Continuing this analogy, one can
identify fictitious electric fields acting on magnons due to
time-dependent magnetization dynamics [11,27,28]. One can
also identify the magnon-mediated equilibrium contribution to
DMI. Due to such contribution the electron-mediated energy
current calculated in response to magnetization dynamics
from the Kubo formalism contains an unphysical ground-
state contribution [26] which needs to be subtracted. Similar
unphysical contributions have been identified for anomalous
responses induced by statistical forces [29–31].

There is a considerable interest in magnets on lattices with
nontrivial geometry as they allow observation of Berry phase
related phenomena such as the thermal Hall effect of magnons

[32–41]. Theoretically, the increased magnon damping [42],
Dirac magnons [43], and the magnon-mediated spin Hall effect
[16,44,45] have been predicted for kagome and honeycomb
lattice ferromagnets. In addition, other manifestations of the
Berry phase physics can arise in layered kagome [40] and
honeycomb [46] ferromagnets as examined in this work.

In this work we analyze magnon currents arising in response
to magnetization dynamics (see Fig. 1). In the presence of
a time-dependent magnetization, DMI can act as fictitious
electric fields acting on magnons. As has been noted earlier in
the Introduction, the energy current carried by such magnons
contains the ground state contribution associated with magnon-
mediated equilibrium DMI. Note that such corrections are
important only in systems with nontrivial Berry curvature
of magnon bands. Here we concentrate on systems with
nontrivial Berry curvature by considering various current
responses in honeycomb and kagome lattice ferromagnets.
Our linear response calculation of heat currents agrees with
the calculation of magnon-mediated thermal torques [16], thus
confirming the Onsager reciprocity principle (see Fig. 1). We
also study the feasibility of experimental observation of such
current responses.

The paper is organized as follows. In Sec. II we introduce
the Hamiltonian describing magnons with multiple bands
and calculate the equilibrium DMI. Next, within the same
section, we describe pumping of magnons in response to
magnetization dynamics and thermal torques within the linear
response theory. In the final part of Sec. II, we formulate
the Onsager relations. In Sec. III we apply our theory to
honeycomb and kagome lattice ferromagnets. We conclude
our paper in Sec. IV. The Appendices A, B, C, and D contain
very detailed derivations of our results.

II. THEORY OF MAGNON PUMPING AND DMI TORQUES

In this section we develop a microscopic linear response
theory of magnon pumping and nonequilibrium magnonic
torques applicable to multiple-magnonic-band uniform fer-
romagnets with Dzyaloshinskii-Moriya interactions. We note
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FIG. 1. Two effects related by the Onsager reciprocity principle.
Left: Magnetization dynamics pumps magnon current Jp and spin
current J s = −h̄Jp . This process also involves heat current Jq

carried by magnons. Right: A temperature gradient leads to a thermal
torque with two components Tx and Ty acting on the uniform
magnetization.

that in our theory magnons are treated as conserved particles.
Gilbert damping α could broaden magnonic bands and intro-
duce magnon nonconserving processes. In realistic situations
α is typically small. In what follows, to simplify formulas,
we take the system volume V = 1 and recover it in the final
expressions (19), (20), and (28).

A. Preliminaries

We consider a noninteracting boson Hamiltonian describing
the magnon fields, which could be, e.g., a result of the Holstein-
Primakoff transformation:

H =
∫

dr�†(r)H�(r), (1)

where H is a Hermitian matrix of the size N × N and �†(r) =
[a†

1(r), . . . ,a†
N (r)] describes N bosonic fields corresponding

to the number of modes within a unit cell (or the number of
spin-wave bands). The Fourier transformed Hamiltonian reads

H =
∑

k

a
†
kH (k)ak, (2)

where a
†
k is the Fourier transformed vector of creation

operators. The Hamiltonian in Eq. (2) can be diagonalized by
a unitary matrix Tk , i.e., Ek = T

†
k H (k)Tk and T

†
k Tk = 1N×N ,

where Ek is the diagonal matrix of band energies and 1N×N is
the N × N unit matrix.

B. Magnon-mediated Dzyaloshinskii-Moriya interaction

As magnons can exert a torque on magnetization even in
equilibrium, we begin by considering an equilibrium state of
the system. Such equilibrium DMI torques can be captured
by calculating the DMI tensor in the presence of magnons in
equilibrium state. The torque operator is introduced as

T = ∂mH × m, (3)

where m is a unit vector in the direction of the spin density.
We then interpret DMI in terms of the moments of the torque:

Dαβ = 1

2

〈∫
dr�†(r)(Tαxβ + xβTα)�(r)

〉
eq

, (4)

where we assume a finite system. In order to represent an
infinite system, we will eliminate the position operator from
the final result. The average in Eq. (4) has been calculated in

Ref. [16] in a form of a tensor Mβ defined as

Mβ = 1

2
Tr[(xβ∂mH + ∂mHxβ)g(E)], (5)

where g(E) is the Bose distribution function g(E) =
1/[exp(βE) − 1]. In particular, it has been found that

Mβ =
∑
kn

{
1

β
ln(1 − e−βεnk )B(n)

mβ(k) − g(Ekn)A(n)
mβ(k)

}
, (6)

where (for details of this calculation see Appendix A 1)

A
(n)
mβ(k) =

∑
m�=n

Im

[
[̃ηk]nm

1

εnk − εmk

[̃vkβ]mn

]
(7)

and

B
(n)
mβ(k) =

∑
m�=n

Im

[
[̃ηk]nm

2

(εnk − εmk)2
[̃vkβ]mn

]
, (8)

with the velocity vk = ∂kHk , the effective field ηk = −∂mHk ,
and their eigenbasis representations ṽk = T

†
k vkTk and η̃k =

T
†
k ηkTk . Finally, the expression for the DMI tensor is given by

Dαβ = [Mβ × m]α. (9)

It is easy to notice that B
(n)
mβ(k) = −�

(n)
mβ(k), where now

�
(n)
mβ(k) ≡ i[(∂mT

†
k )(∂βTk)]

nn
− (m ↔ β) is the mixed space

Berry curvature of the nth band. The second term in Eq. (6)
has a clear analogy to the orbital moment [47] which can be
seen after a substitution ηk → vk [25].

C. Heat and spin pumping by magnetization dynamics

In this subsection we derive the magnon-mediated current
response to slow magnetization dynamics in a system with
broken inversion symmetry and spin-orbit interactions. The
Kubo linear response energy current contains the ground
state energy contribution related to the magnon-mediated DMI
which have been calculated in the previous subsection. Thus,
we will use the results calculated earlier in order to identify
various transport contributions.

We are interested in the heat, particle, and spin current
density responses described by a tensor taα:

Jaα = −taα · ∂tm, (10)

where a is q for the heat current, p for the particle current, and
s for the spin current. Here the spin current is related to the
magnon particle current density Jp by a relation Js = −h̄Jp.

In the presence of magnetization dynamics, Hamiltonian H
acquires a perturbation of the form

H′ =
∫

dr�†(r)H
′
�(r), (11)

where H
′ = ∂mH · δm(t) and we assume that δm(t) is small.

We are interested in a linear response to the time derivative
of m(t), thus we write δm(t) = (1/iω)∂tm. Note that this
calculation is similar to the calculation of dc current response
to electric field with the correspondence A(t) → δm(t), where
the perturbation in Eq. (11) leads to an analog of equilibrium
diamagnetic current correction. Using the linear response
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Kubo theory we obtain for the heat and particle current density
response:

JK
aα = 〈

J [0]
aα

〉
ne + 〈

J [1]
aα

〉
eq (12)

or

JK
aα = lim

ω→0

{− �R
α (ω)/iω

}
∂tm + 〈

J [1]
aα

〉
eq, (13)

where �R
α (ω) = �α(ω + i0) is the retarded correlation

function related to the following correlator in Matsub-
ara formalism: �α(iω) = − ∫ β

0 dτeiωτ 〈TτJ
[0]
aα h〉, with h =

− ∫ dr�†(r)∂mH�(r) being the nonequilibrium field, and
j[0]
q (r) = (1/2)�†(r)(vH + Hv)�(r) and J[0]

q = ∫
drj[0]

q (r)
being the heat current density and the macroscopic heat
current, respectively. For the particle current we have sim-
ilar expressions j[0]

p (r) = �†(r)v�(r) and J[0]
p = ∫

drj[0]
p (r).

Here the velocity operator is given by v = (1/ih̄)[r,H ].
We also introduce a gradient correction to the heat and
particle currents due to perturbation, i.e., J[1]

a = ∫
drj[1]

a (r),
where j[1]

q (r) = (1/2)�†(r)[(δm(t) · ∂m)(vH + Hv)]�(r) and
j[1]
s (r) = �†(r)[δm(t) · ∂mv]�(r). This analog of diamagnetic

current cancels with the term �R
α (0) resulting in the Kubo

contribution of the form

JK
aα = lim

ω→0

{[
�R

α (0) − �R
α (ω)

]
/iω

}
∂tm. (14)

The correlation function in Eq. (14) is calculated by consid-
ering the simplest bubble diagram for �α and performing the
analytic continuation, see, e.g., Ref. [16]. We express the result
through a response tensor tKaα containing two contributions
tKaα = tI

aα + tII
aα , which are given by

tI
aα = 1

h̄

∫
dω

2π
g(ω)

d

dω
ReTr〈JaαGRηGA − JaαGRηGR〉,

tII
aα = 1

h̄

∫
dω

2π
g(ω)ReTr

〈
JaαGRη

dGR

dω
− Jaα

dGR

dω
ηGR

〉
,

(15)

where g(ω) is the Bose distribution function g(ω) = 1/

[exp(h̄ω/kBT ) − 1], GR = h̄(h̄ω − H + i�)−1, GA =
h̄(h̄ω − H − i�)−1, η = −∂mH , J q = (vH + Hv)/2, and
J p = v. In our calculations we adopt a phenomenological
treatment and relate the quasiparticle broadening to the
Gilbert damping, i.e., � = αh̄ω.

Note that the Kubo response for the energy current density
in Eq. (14) contains the bound energy current associated with
DMI:

JD
q = D̂ · (m × ∂tm), (16)

where tensor D̂ is given in Eq. (9). This current needs to be
subtracted from the Kubo current in Eq. (14) in order to obtain
a transport heat current:

Jqα = JK
qα − JD

q . (17)

To express the response tensor tKaα , we use the Fourier
transformed operators and the eigenbasis representation for
the velocity h̄̃vk = ∂kEk − iAkEk + iEkAk , and the effective
field −η̃k = ∂mEk − iAmEk + iEkAm, where Ak = iT

†
k ∂kTk

and Am = iT
†
k ∂mTk . For the details of derivation of intrinsic

contribution to the heat current see Appendix A 2. We obtain

tKqα =
∑
kn

{
g(εnk)

[− εnkB
(n)
mα(k) + A(n)

mα(k)
]

− εnkg
′(εnk)

2�
(n)
k

(∂mεnk)(∂kα
εnk)

}
, (18)

which after combining with DMI energy current JD
q leads to the

response tensor describing the heat current (see Appendix A 3):

tex
qα = − 1

V

∑
k

N∑
n=1

1

2�
(n)
k

(∂mεnk)(∂kα
εnk)εnkg

′(εnk),

(19)

tin
qα = 1

V

∑
k

N∑
n=1

c1(εnk)�(n)
mkα

(k),

where εnk = [Ek]nn, �
(n)
k = αεnk , g′(εnk) = (2kBT )−1{1 −

cosh(εnk/kBT )}−1, c1[εnk] = g(εnk)εnk − (1/β) ln(1 −
e−βεnk ), V is volume, and we separated the total tensor tqα into
the intrinsic and extrinsic contributions, i.e., tqα = tex

qα + tin
qα .

For the particle current response only tKpα tensor needs to be
considered, thus we obtain the following expression for the
total tensor: tpα = tex

pα + tin
pα , divided into the intrinsic and

extrinsic contributions (for details of calculations of intrinsic
contribution see Appendix B):

tex
pα = − 1

V

∑
k

N∑
n=1

1

2�
(n)
k

(∂mεnk)(∂kα
εnk)g′(εnk),

tin
pα = 1

V

∑
k

N∑
n=1

g(εnk)�(n)
mkα

(k). (20)

The last tensor also describes the spin current response, i.e.,
tsα = −h̄tpα .

D. Thermal torques

In this subsection we derive the magnon-mediated magne-
tization torque response to a temperature gradient in a system
with broken inversion symmetry and spin-orbit interactions.
For details of derivations see Appendix C. The thermal torque
is defined according to equation

T = −βα∂αT , (21)

where βα is the thermal torkance tensor and T describes
torque acting on magnetization and leading to modification of
the Landau-Lifshitz-Gilbert equation, i.e., s(1 + αm×)ṁ =
m × Heff + T , where Heff is the effective magnetic field and
s is the spin density. We use the Luttinger linear response
method [48] in which the temperature gradient is replicated by
a perturbation to Hamiltonian H of the form

H′ = 1

2

∫
dr�†(r)(Hχ + χH )�(r), (22)

where we introduce the temperature gradient as ∂iχ =
−∂iT /T . The torque response can be found by calculating
the effective magnon-mediated field:

h = h[0] + h[1] = −〈∂mH〉ne − 〈∂mH
′ 〉eq, (23)
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where for the second term the averaging is done over the
equilibrium state and for the first term over nonequilibrium
state induced by the temperature gradient. The magnon-
mediated torque acting on the magnetization is given by

T = m × h. (24)

Within the linear response theory, the response h[0] to a
temperature gradient can be calculated from expression

h[0] = lim
�→0

{[
�R

α (�) − �R
α (0)

]
/i�

}
∂αχ, (25)

where �R
α (�) = �α(� + i0) is the retarded correlation

function related to the following correlator in Matsubara
formalism: �α(i�) = − ∫ β

0 dτei�τ 〈Tτ hJ [0]
qα 〉. Note that this

correlator differs from the one arising in Eq. (13) in the order of
operators. In the correlator we reduce the perturbationH′

to the
energy current by employing the equality Ḣ′ = (i/h̄)[H,H′

] =
J[0]

q ∂χ and integration by parts. Following the notations in
Ref. [16], we introduce the linear response tensors Sα and
Mα for the fields h[0] and h[1] and the total response tensor
Lα = Sα + Mα according to equation

h[0] + h[1] = −Lα∂αχ, (26)

where Mα is given by Eq. (5) as it follows from Eq. (23). For
the tensors Sα we obtain

Sα =
∑
kn

{
g(εnk)

[− εnkB
(n)
mβ(k) + A

(n)
mβ(k)

]
+ εnkg

′(εnk)

2�
(n)
k

(∂mεnk)(∂kβ
εnk)

}
. (27)

We can also separate the total response tensor into the intrinsic
and extrinsic contributions:

Lex
α = 1

V

∑
k

N∑
n=1

1

2�
(n)
k

(∂mεnk)(∂kα
εnk)εnkg

′(εnk),

Lin
α = 1

V

∑
k

N∑
n=1

c1(εnk)�(n)
mkα

(k). (28)

For the thermal torkance tensor we obtain

βα = Lα × m/T . (29)

E. Onsager reciprocity relation

We are now in the position to combine the results from pre-
vious subsections into one expression that emphasized the On-
sager reciprocity relation. In principle, the result of calculation
of thermal torques in the last section can be extracted from the
Onsager relations without performing the calculation. Writing
the response tensors in terms of the torkance tensors, we obtain⎛⎝Jpα

Jqα

T

⎞⎠ =
⎛⎝ σ̂ (m) �̂T (−m) αα(−m)

�̂(m) T λ̂(m) T βα(−m)
αα(m) T βα(m) −Λ̂(m)

⎞⎠⎛⎝ −∂αϕ

∂αχ

m × ∂tm

⎞⎠,

(30)

where summation over repeated indices is implied, and we
introduced the conductivity tensor σ̂ (m), the magnonic heat
conductivity tensor λ̂(m), the tensor �̂(m) describing the

1

2

3

a1
a2

+

-

d1
d2

d3

x

y

FIG. 2. Schematics of the graphene layer parameters for the
tight-binding model. Vectors connecting nearest neighbors are τ 1 =
1
2 ( 1√

3
,1), τ 2 = 1

2 ( 1√
3
, − 1), and τ 3 = 1√

3
(−1,0) are used in deriving

the Hamiltonian for magnons. Vectors a1 = 1
2 (

√
3,1) and a2 =

1
2 (

√
3, − 1) are used in deriving the second-nearest neighbor DMI.

magnon Seebeck and Peltier effects, and the tensor Λ̂(m)
corresponding to LLG equation. The tensor αα(m) was
introduced by analogy with the tensor βα(m) and it is given
in Eq. (20), i.e., αα(−m) = tpα × m. For completeness
we also added a response to an analog of electric field for
magnons −∂αϕ [49]. Equation (30) immediately follows from
Eqs. (19), (20), and (28) given that intrinsic contributions are
odd and extrinsic contributions are even under magnetization
reversal. The Onsager reciprocity relation in Eq. (30) is
similar to expressions obtained for similar electron-mediated
effects in Ref. [25]. Equation (30) can be modified to account
for the possibility of magnon accumulation resulting from the
magnon motive force [28] or temperature gradient [49].

III. RESULTS FOR HONEYCOMB AND KAGOME
FERROMAGNETS

In this section we apply our theory to single layer honey-
comb and kagome ferromagnets with DMI. In our models, we
introduce two types of DMI. The Rashba DMI correspond
to mirror asymmetry in the system (see Figs. 2 and 4).
The remaining DMI make the second quantized Hamiltonian
of magnons to be asymmetric under time reversal. Such
asymmetries make our systems exhibit behavior analogous
to electronic systems lacking the center of inversion and
time reversal symmetry [26]. To demonstrate explicitly how
fictitious electric fields result in magnon currents, we describe
the honeycomb system analytically. Our results could also be
relevant to three-dimensional layered structures with weakly
coupled layers. Note that the magnon pumping could in prin-
ciple be modified by DMI induced anharmonic interactions
of magnons [42]. We do not expect this effect to be large
when magnetization substantially deviates from the direction
orthogonal to DMI vector.

A. Application to honeycomb ferromagnet

In this subsection we study a model of an insulating
ferromagnet on a honeycomb lattice. This model contains
physics discussed above in a transparent and analytical way.
For the details of further derivations see Appendix D. We
assume a Heisenberg exchange of ferromagnetic sign, in-plane

165106-4
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DMI of Rashba type, and second-nearest neighbor DMI. The
Hamiltonian is

H = −J
∑
〈ij〉

SiSj +
∑
〈ij〉

D[R][Si × Sj ]

+D[z]
∑
〈〈ij〉〉

νij [Si × Sj ]z. (31)

The vectors of the Rashba type DMI are shown in Fig. 2,
where d1 = 1

2 (
√

3, − 1), d2 = 1
2 (−√

3, − 1), and d3 = (0,1),
such as D[R] = D[R]d. Note that all vectors, such as τ i and ai ,
are measured in units of lattice spacing a0 which is recovered
in the final result. The vector of the second-nearest neighbor
DMI is in the z direction, and the signs of νij are depicted
in green in Fig. 2 for the directions shown by dashed green
arrows. For analytical results, we assume that all DMI are
small, i.e., J 
 D[R] and J 
 D[z]. In our model, initially,
we assume that the order is in general (mx,my,mz) direction,
which can be realized by application of the magnetic field.
Our strategy would be to first understand the role of the
DMI in the behavior of magnons for a general direction of
the ferromagnetic order. After that we will assume that the
main order is in the z direction, while the perturbations that
deviate the order are in the x-y plane (see Fig. 1). To study the
magnons, we perform the Holstein-Primakoff transformation.
The unit cell of the honeycomb ferromagnet has two spins
SA and SB, hence the two sets of boson operators, a†(r),a(r)
and b†(r),b(r) corresponding to the A and B sublattices are
introduced. The Holstein-Primakoff transformation reads as
usual Sz

A = S − a†a and S+
A = (Sx

A + iS
y

A) = √
2S − a†aa (S

is the total spin), and the same for B spins. The Fourier image
of the Hamiltonian describing noninteracting magnons written
in terms of the � = (ak,bk)T spinor is

H = JS

[
3 + �k −γ̃k
−γ̃ ∗

k 3 − �k

]
, (32)

where �k = 2�[sin(ky) − 2 sin ( ky

2 ) cos (
√

3kx

2 )], with � =
mzD

[z]/J . This type of DMI is a k-dependent mass of
magnons. Deriving γ̃k we considered Rashba DMI in the
lowest order in D[R]/J � 1 parameter. With this assumption

γ̃k = 2e
i k̃x

2
√

3 cos

(
k̃y

2

)
+ e

−i k̃x√
3 , (33)

where k̃x = kx − √
3D[R]

J
my and k̃y = ky + √

3D[R]

J
mx . We

observe that Rashba DMI plays an effective role of magnon
charge, while order direction (mx,my,0) is an effective vector
potential felt by magnons.

The eigenvalues of the Hamiltonian are calculated to be

εk,± = JS
(
3 ±

√
�2

k + |γ̃k|2
)
, (34)

with corresponding eigenfunctions

vk,+ = [cos(ξ̃k/2)eiχ̃k , − sin(ξ̃k/2)]T (35)

and

vk,− = [sin(ξ̃k/2), cos(ξ̃k/2)e−iχ̃k ]T , (36)

where sin(ξ̃k) = |γ̃k|/
√

�2
k + |γ̃k|2 and γ̃k = |γ̃k|eiχ̃k , and the

tilde symbol here means that corresponding k momenta are

shifted by the Rashba DMI. Unitary matrix that diagonalizes
the Hamiltonian is readily constructed and it is given by

Tk =
⎡⎣cos

(
ξ̃k
2

)
eiχ̃k sin

(
ξ̃k
2

)
− sin

(
ξ̃k
2

)
cos

(
ξ̃k
2

)
e−iχ̃k

⎤⎦. (37)

We are now ready to derive spin and heat currents which
are driven by magnetization dynamics. We set the dominant
component of the ferromagnetic order in the z direction and
assume that the magnetization dynamics is in the x-y plane.
We only focus on the intrinsic contribution to the currents,
i.e., due to nontrivial Berry curvatures of the magnon band
structure. An expression defining the Berry curvature is

�α,mβ
= 2Im[(∂αT

†
k )(∂mβ

Tk)] = 1

2
sin(ξ̃k)

× [(∂αχ̃k)(∂mβ
ξ̃k) − (∂mβ

χ̃k)(∂αξ̃k)]

[
1 0
0 −1

]
. (38)

In the following, we focus on the α = x and β = x case,
and mention β = y case at the end. Recall that �k does not
depend on mβ for β = (x,y) components, hence ∂mβ

�k = 0.
The derivative with respect to the direction of the order mβ of
the remaining functions that depend on k̃ is

∂

∂mx

=
√

3
D[R]

J

∂

∂k̃y

≡
√

3
D[R]

J
∂y, (39)

∂

∂my

= −
√

3
D[R]

J

∂

∂k̃x

≡ −
√

3
D[R]

J
∂x. (40)

This straightforward transformation makes the mixed Berry
curvature a regular k space one, except for the ∂mβ

�k = 0
condition. The Berry curvature has extrema at the K′ = (0, 4π

3 )
and K = (0, − 4π

3 ) points, and can be approximated as

�x,mx
|K(K′) ≈ −27

8

D[R]

J

�(
27�2 + 3

4k2
)3/2

[
1 0
0 −1

]
. (41)

The curvature is the same for both K′ and K points. The
spectrum at these points is finite, εk,± ≈ JS(3 ± 3

√
3|�|),

but the Berry curvature is of the monopole type. Hence at
small temperatures, despite the exponential suppression of
the magnon number at the K′ and K points, there might
be a contribution to the magnon currents due to this Berry
curvature. At the 	 = (0,0) the spectrum of the lowest band
is εk,− ≈ 1

4SJk2, and it will be populated by the magnons the
most at low temperatures. The Berry curvature is approximated
close to this point as

�x,mx
|� ≈ −D[R]

J

�

48
k2
yk

2
x

[
1 0
0 −1

]
. (42)

According to Eqs. (10) and (20), the particle current density
due to the Berry curvature at small temperatures SJ 
 T reads

Jpx = D[R]

J

√
3

a0π

[
sinh

(
1

z

3
√

3D[z]

J

)
e− 3

z

+ D[z]

J

√
3ζ (3)

36
z3

]
(∂tm)x, (43)
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num

anal

0.25 0.5
kBT�SJ

0.0003

0.0006

a0 xy
even�kB

num
anal

0.25 0.5
kBT�SJ

0.002

0.004
a0 xy

even�kB

FIG. 3. Left: The even component under magnetization reversal
of the tensor αij as a function of temperature. Right: The even
component under magnetization reversal of the torkance tensor βij as
a function of temperature. In both cases the magnetization is along
the z axis. For the strength of DMI we use D[z] = D[R] = J/6. Red
curves correspond to numerical results and blue curves correspond to
analytical results in Eqs. (43) and (44).

where we introduced z = T/SJ for brevity, and set mz = 1.
Similarly, from Eq. (18), the heat current due to the Berry
curvature at small temperatures SJ 
 T reads

Jqx = JS
D[R]

J

3
√

3

a0π

[
sinh

(
1

z

3
√

3D[z]

J

)
e− 3

z

+ D[z]

J

√
3I

216
z4

]
(∂tm)x. (44)

In both cases a term ∝ e− 3SJ
T is due to K′ and K points,

while the remaining one is due to 	 point. We introduced
a numerical constant I = ∫∞

0 dxx2[x ex

ex−1 − ln(ex − 1)] =
4π4/45 ≈ 8.65, and Riemann zeta-function ζ (3) ≈ 1.2.

It is straightforward to show that Berry curvature parts
of the Jpx and Jqx currents driven by (∂tm)y magnetization
dynamics vanish. The Jsy and Jqy currents driven by (∂tm)y
magnetization dynamics will have the same expressions as in
Eqs. (43) and (44). Thus, we calculated even under magnetiza-
tion reversal components αeven

xy = −αeven
yx and βeven

xy = −βeven
yx

as it follows from Eq. (30). As can be seen from Fig. 3, Eqs. (43)
and (44) only qualitatively agree with the numerical results at
higher temperatures as the Berry curvature from other parts of
the Brillouin zone starts to contribute to the result.

B. Application to kagome ferromagnet

Here we apply our theory to the kagome lattice ferromagnet
with the nearest neighbor DMI. The lattice of the system and
its magnon spectrum are shown in Fig. 4. Note that all vectors,
such as a1 and a2, are measured in units of lattice spacing a0

which is recovered in the final result. We consider a model
considered in Ref. [16] with a Hamiltonian given by

H = −J
∑
〈ij〉

SiSj − B
∑

i

Sz
i +

∑
〈ij〉

νij Dij [Si × Sj ], (45)

where J > 0 corresponds to ferromagnetic nearest neighbor
exchange, B is the external magnetic field, and νij describes a
sign convention for the nearest neighbor DMI, i.e., νij = 1 for
the clockwise sense of direction and νij = −1 otherwise (see
Fig. 4). Note that vectors Dij = D[z]ẑ + D[R]

ij have an in-plane

Rashba-like component D[R]
ij directed orthogonally to bonds

and outwards with respect to bond triangles (see Fig. 4). The
Rashba-like DMI could result from mirror asymmetry with

FIG. 4. Left: A two-dimensional kagome lattice with lattice
vectors a1 = 1

2 (
√

3, − 1) and a2 = 1
2 (

√
3,1) where atoms are placed

in the corners of triangles. Rashba-like DMI vectors D[R]
ij are shown

by blue vectors perpendicular to the bonds. The clockwise ordering
of bonds corresponding to ν = 1 is shown by black arrows. Right:
Magnon spectrum of a kagome ferromagnet with DMI D[z] = 0.3J

and magnetization pointing in the z direction. The distribution of the
Berry curvature over the Brillouin zone is plotted by the color coding
on top of the spectrum for each subband.

respect to the kagome planes. At sufficiently low temperatures
the Hamiltonian in Eq. (45) can be analyzed by applying
the Holstein-Primakoff transformation. The corresponding
magnon spectrum is shown in Fig. 4 where the lower, middle,
and upper bands have the Chern numbers −1, 0, and 1,
respectively.

We begin by analyzing an effect of magnon pumping
by magnetization dynamics. This effect is characterized by
tensor αα or equivalently by Eq. (10). It is also clear from
Eq. (30) that the same tensor also describes a magnetization
torque induced by an analog of electric field for magnons.
We assume a small-angle precession of magnetization around
the z axis. By symmetry consideration, it is sufficient to
consider only αeven

yx = −αeven
xy and αodd

xx = αodd
yy components

of the tensor where we separate tensor αα into the parts
that are odd and even under magnetization reversal, i.e.,
αα = αodd

α + αeven
α . The results of our calculations for the two

components are shown in Fig. 5. Note that we use a simple
phenomenological treatment by relating the quasiparticle
broadening to the Gilbert damping as � = αh̄ω. Under a
simple circular precession of the magnetization described by
angle θ we have ∂tm = θω[− sin(ωt), cos(ωt),0]T and

Jpx = θω
[
αodd

xx cos(ωt) − αeven
yx sin(ωt)

]
,

Jpy = θω
[
αodd

xx sin(ωt) + αeven
yx cos(ωt)

]
. (46)

D�0.1J

D�0.2J

D�0.3J

0.5 1. 1.5
kBT�SJ

0.3

0.6

a0 xx
odd

D�0.1J

D�0.2J

D�0.3J

0.5 1. 1.5
kBT�SJ

0.01

0.02

a0 yx
even

FIG. 5. Left: The odd component of the tensor αij as a function
of temperature. The plot is rescaled by multiplying it with the Gilber
damping α. Right: The even component of the tensor αij as a function
of temperature. In both cases the magnetization is along the z axis.
For the strength of the Rashba DMI we use D[R] = D[z] = D.
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D�0.1J

D�0.2J

D�0.3J

0.5 1. 1.5
kBT�SJ

0.1

0.2
a0 xx

odd�kB

D�0.1J

D�0.2J

D�0.3J

0.5 1. 1.5
kBT�SJ

0.02

0.04

a0 yx
even�kB

FIG. 6. Left: The odd component of the torkance tensor βij as a
function of temperature. The plot is rescaled by multiplying it with the
Gilber damping α. Right: The even component of the torkance tensor
βij as a function of temperature. In both cases the magnetization
is along the z axis. For the strength of the Rashba DMI we use
D[R] = D[z] = D.

We can now estimate the amplitude of ac spin current
as θh̄ω

√
(αodd

xx )2 + (αeven
yx )2. For a three-dimensional system

containing weakly interacting kagome layers, we can write
α3D

ij = αs
ij /c, where c ∝ a0 is the interlayer distance which is

comparable to the lattice constant a0. For parameters D[z] =
0.1J , D[R] = 0.1J , θ = 0.1 degrees, ω = 2π × 10 GHz,
kBT = 0.5SJ , and the Gilbert damping α = 0.1, we obtain
the spin current of amplitude Js ≈ 10−8 J/m2. We suggest to
detect such spin currents by the ac inverse spin Hall effect [50].

We also consider an effect of heat pumping by magneti-
zation dynamics. This effect is characterized by tensor βα .
Here we again assume a small-angle precession of magne-
tization around the z axis. Similar symmetry considerations
result in relations βeven

yx = −βeven
xy and βodd

xx = βodd
yy between

nonzero components of tensor βα = βodd
α + βeven

α separated
into the odd and even under magnetization reversal parts.
The results of our calculations for the two components are
shown in Fig. 6. The amplitude of ac heat current is given
by θT ω

√
(βodd

xx )2 + (βeven
yx )2 which for the above parameters

and T = 50 K results in the heat current of amplitude Jq ≈
50 kW/m2.

After invoking the Onsager relation (30) one can confirm
that estimates obtained in this subsection are comparable to
estimates for thermal torques obtained in Ref. [16]. Note also
that the phenomenology discussed in this paper is similar to
Ref. [26], however, the heat current is carried by magnons in
contrast to electronic mechanisms considered before.

IV. CONCLUSIONS

In this work we explored fictitious electric fields acting
on magnons in response to time-dependent magnetization
dynamics in the presence of DMI. We find that such fictitious
electric fields can drive sizable spin and energy currents. We
suggest a detection scheme relying on the ac inverse spin
Hall effect [50]. Additionally, we obtain an analog of the
Hall-like response in systems with nontrivial Berry curvature
of magnon bands. This leads to even under magnetization
reversal contributions to the response tensors. By the Onsager
reciprocity relation, this Hall-like response can be related
to the antidamping thermal torque [16]. Finally, we identify
the ground state energy current associated with the magnon-
mediated equilibrium contribution to DMI. This contribution
needs to be subtracted from the Kubo linear response result
according to our analysis.
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APPENDIX A: HEAT CURRENT AS A RESPONSE TO
MAGNETIZATION DYNAMICS

Measurable heat current consists of three parts. Free
energy contribution, nonequilibrium heat current, and orbital
magnetization heat current carried by magnons.

1. Free energy heat current

Magnon mediated Dzyaloshinskii-Moriya interaction con-
tribution to the free energy of the system is

FDMI = D
[

m(r) × ∂m(r)

∂r

]
, (A1)

where DDMI is the Dzyaloshinskii-Moriya tensor we will
calculate below. For instance, functionality on x might be
due to the boundary or it might be due to spatially dependent
magnetization profile. Assuming a time dependence of the
magnetization, via a r → r + ωt/k shift, one can derive the
current due to time dependence of DMI part of free energy
using continuity equation ∂F DMI

∂t
+ ∇JDMI = 0, where

J DMI
α = − 1

V
Dαβ(∂tm)β, (A2)

where V is the volume of the system. The Dzyaloshinskii-
Moriya interaction constant is

Dαβ = 1

2

〈∫
dr�†(r)

(
rαTβ + Tβrα

)
�(r)

〉
eq

, (A3)

where Tβ = (∂mH × m)β is the torque operator. To calculate
the DMI, we introduce

Aαβ(η) = iTr

[
vαk

dG+

dη
v̄βkδ(η − Hk)

− vαkδ(η − Hk)v̄βk
dG−

dη

]
, (A4)

Bαβ(η) = iTr[vαkG
+v̄βkδ(η − Hk) − vαkδ(η − Hk)v̄βkG

−],
(A5)

where v̄βk = ∂mβ
Hk ≡ i[Hk,rmβ

] is equivalent to the velocity
operator definition, with rmβ

≡ i∂mβ
equivalent to the position

operator. It was shown that

Aαβ − 1

2

dBαβ

dη
= 1

4π
Tr[rα(GA − GR)rmβ

− rαrmβ
(GA − GR)] − (α ↔ β)

+ 1

2
Tr

[
(rαv̄βk − vαkrmβ

)
d

dη
δ(η − Hk)

]
.

(A6)
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Also, we derive the Berry curvature parts of Aαβ and Bαβ :

Aαβ(η) = −i
∑

n

(
∂αT

†
k ∂mβ

Tk
)
nn

δ[η − (εk)nn] − (α ↔ β), (A7)

and a Berry curvature part of the Bαβ as

Bαβ(η) = i
∑

n

[∂αT
†

k (η − Hk)∂mβ
Tk]nnδ[η − (εk)nn] − (α ↔ β). (A8)

Therefore,

Dαβ =
∑

k

∫ ∞

−∞
dη̃

[
Aαβ(η̃) − 1

2

dBαβ(η̃)

dη̃

] ∫ η̃

0
dηg(η), (A9)

and it can be shown that

Dαβ =
∑

n

∫ +∞

−∞
dη̃

[
Aαβ(η̃) − 1

2

dBαβ(η̃)

dη̃

] ∫ η̃

0
dηg(η)

=
∑

n

∫ +∞

−∞
dη̃

{
−i(∂αT

†
k ∂mβ

Tk)nnδ[η̃ − (εk)nn]
∫ η̃

0
dηg(η)

}

+ i

2

∑
n

∫ +∞

−∞
dη̃{[∂αT

†
k (η̃ − Hk)∂mβ

Tk]nng(η̃)δ[η̃ − (εk)nn]} − (α ↔ β). (A10)

2. Heat current due to magnons

We assume that the magnetizaion is varying in time. Next,
we assume that due to that there is a time-dependent term in
the Hamiltonian. For example, since the DMI depends on the
direction of the order, this DMI will be time dependent. The
Hamiltonian of the spin waves is then

HT = 1

2

∫
dr�†(r)[Ĥ + Ĥ ′(t)]�(r). (A11)

We define ĤT = Ĥ + Ĥ ′(t). Microscopic expression for the
heat current current is derived via commutation relationship

jQ(r) = 1

2
�†(r)(ĤTV + VĤT)�(r), (A12)

here V = i[ĤT,r] is the full velocity. Velocity has two parts
V = v + v′, where v = i[Ĥ ,r] and v′ = i[Ĥ ′,r]. Assuming
that the magnetic order is m(t) = m + δm(t), we write the
perturbation as Ĥ ′(t) = (∂mĤ )δm(t). We will use analogy
between magnetization dynamics and the electromagnetic
waves. The direction of the local magnetization can be seen
as a vector potential for effective electromagnetic field electric
and magnetic fields. Then, ∂m

∂t
is analogous to the electric field,

while ∇ × m is analogous to the magnetic field. We will then
write δm(t) = 1

ω

∂m(t)
∂t

≡ 1
ω
∂tm (in Matsubara frequency).

The heat current is separated into two parts

j[0]
Q (r) = 1

2�†(r)(Ĥv + vĤ )�(r), (A13)

j[1]
Q (r) = 1

2�†(r)(Ĥ ′v + vĤ ′)�(r)

+ 1
2�†(r)(Ĥv′ + v′Ĥ )�(r)

= 1
2�†(r)[(δm(t) · ∂m)(Ĥv + vĤ )]�(r). (A14)

The H ′(t) will be treated as a perturbation. We will be working
with global currents JQ ≡ 1

V

∫
drjQ(r). The heat current is

conveniently written as

〈JQ〉 =
〈
J[0]

Q

〉
ne

+
〈
J[1]

Q

〉
eq

, (A15)

where the former one is estimated over nonequilibrium states
and is given by Kubo formula, while the later one is due to
analog of diamagnetic current for magnons and is estimated
over equilibrium states.

a. Nonequilibrium heat current, Kubo formula

Kubo formula for an arbitrary operator A(ω), where ω is
Matsubara frequency, is

〈A(ω)〉ne =
∫ β

0
dτeiωτ 〈TτA(0)H ′(−τ )〉eq, (A16)

where H ′(τ ) = ∫
dr�†(τ,r)Ĥ ′�(τ,r) is the perturbing

Hamiltonian

〈
J

[0]
Qα

〉
ne =

∫ 1/T

0
dτeiωτ

〈
TτJ

[0]
Qα (0)H ′(−τ )

〉
eq

≡ 1

V
Sαβ(ω)

1

ω
(∂tm)β. (A17)

After all of the transforms, we get

Sαβ = 1

2

∑
k

(εkṽαk + ṽαkεk)nm[T †
k (∂βHk)Tk]mn

× g[(εk)nn] − g[(εk)mm]

iω + (εk)nn − (εk)mm

, (A18)
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where

ṽαk = T
†

k vαkTk = ∂αεk + Aαkεk − εkAαk, (A19)

˜̄vβk = T
†

k v̄βkTk = ∂mβ
εk + Āβkεk − εkĀβk, (A20)

where Aαk = T
†

k ∂αTk and Āβk = T
†

k ∂mβ
Tk ≡ T

†
k ∂βTk, and where a bar over Āβk symbolizes information that the derivative is

over β component of the magnetization direction mβ . After the transformations we get

Sαβ(ω) = 1

2

∑
kn

g[(εk)nn] − g[(εk)mm]

iω + (εk)nn − (εk)mm

(ṽαk)nm[(εk)nn + (εk)mm](∂mβ
εk + Āβkεk + εkĀβk)mn. (A21)

Expand Sαβ(ω) in ω and get

Sαβ(ω) = S
[1]
αβ (0) + S

[2]
αβ (0) + ∂

∂ω
S

[2]
αβ (ω)|ω=0ω, (A22)

where n = m parts of Sαβ are

S
[1]
αβ (0) =

∑
kn

∂g(ε)

∂ε
|ε=(εk)nn

(εk)nn(∂αεk)nn(∂mβ
εk)nn

= −1

2

∑
kn

g[(εk)nn]
(
∂α∂mβ

ε2
k

)
nn

, (A23)

where we integrated by parts over k. Term with n �= m elements reads

S
[2]
αβ (ω) = −1

2

∑
kn

g[(εk)nn] − g[(εk)mm]

iω + (εk)nn − (εk)mm

[(εk)nn + (εk)mm][(εk)nn − (εk)mm]2(Aαk)nm(Āβk)mn, (A24)

which we expand in ω, and get

S
[2]
αβ (0) = −1

2

∑
kn

{g[(εk)nn] − g[(εk)mm]}[(εk)2
nn − (εk)2

mm

]
(Aαk)nm(Āβk)mn (A25)

and

∂

∂ω
S

[2]
αβ (ω)|ω=0 = i

1

2

∑
kn

{g[(εk)nn] − g[(εk)mm]}[(εk)nn + (εk)mm](Aαk)nm(Āβk)mn. (A26)

Overall the Kubo part of the current is presented as

lim
ω→0

Sαβ(ω)
1

ω
= S

[1]
αβ (0)

1

ω
+ S

[2]
αβ (0)

1

ω
+ ∂

∂ω
S

[2]
αβ (ω)|ω=0. (A27)

b. Analog of diamagnetic current for magnons

In this section we calculate an expectation value of the perturbed current over the equilibrium ground state,〈
J

[1]
Qα

〉 = 1

V

1

2
Tr
∑

k

g[(εk)]T †
k {[δm(t) · ∂m](Hkvαk + vαkHk)}Tk ≡ 1

V
Mαβ

1

ω
(∂tm)β. (A28)

Quantity of interest is

T
†

k [∂β(Hkvαk + vαkHk)]Tk = ∂mβ
(εkṽαk + ṽαkεk) + Āβkεkṽαk − ṽαkεkĀβk + Āβkṽαkεk − εkṽαkĀβk. (A29)

We then get

Mαβ

1

ω
= 1

2ω

∑
kn

(Aαk)nm(Āβk)mn

[
(εk)2

nn − (εk)2
mm

]{g[(εk)nn] − g[(εk)mm]} + 1

2ω

∑
kn

∂mβ
∂α

(
ε2

k

)
nn

g[(εk)nn]. (A30)

165106-9



ALEXEY A. KOVALEV, VLADIMIR A. ZYUZIN, AND BO LI PHYSICAL REVIEW B 95, 165106 (2017)

c. Overall

Overall response is

J
[0]
Qα + J

[1]
Qα = 1

V

[
Sαβ

1

ω
+ Mαβ

1

ω

]
(∂tm)β = ∂

∂ω
S

[2]
αβ (ω)|ω=0(∂tm)β

= 1

V

{
i

2

∑
kn

{g[(εk)nn] − g[(εk)mm]}[(εk)nn + (εk)mm](Aαk)nm(Āβk)mn

}
(∂tm)β

= 1

V

{
i

2

∑
kn

g[(εk)nn][(εk)nn + (εk)mm](Aαk)nm(Āβk)mn − (α ↔ β)

}
(∂tm)β. (A31)

3. Overall heat current

Summing up the Dzyaloshinskii-Moriya current and current carried by magnons, we get

J�
Qα = J

[0]
Qα + J

[1]
Qα + J DMI

α = 1

V

(
Sαβ

1

ω
+ Mαβ

1

ω
+ Dαβ

)
(∂tm)β

= i
1

V

{∑
kn

(AαkĀβk)nnc1[(εk)nn] − (α ↔ β)

}
(∂tm)β

≡ 1

V

∑
kn

[�αβ]nnc1[(εk)nn](∂tm)β, (A32)

where c1(x) = ∫ x

0 dηη
dg

dη
, where �αβ = 2Im(∂αT

†
k )(∂mβ

Tk) is the mixed Berry curvature.

APPENDIX B: SPIN CURRENT AS A RESPONSE TO
MAGNETIZATION DYNAMICS

Again, we study a ferromagnetic system with time-
dependent magnetization direction. The Hamiltonian is

HT = 1

2

∫
dr�†(r)

[
Ĥ + Ĥ ′(t)

]
�(r). (B1)

We define ĤT = Ĥ + Ĥ ′(t). Microscopic expression for the
spin density current current is derived via commutation
relationship

jS(r) = �†(r)V�(r), (B2)

here V = i[ĤT,r] is the full velocity. Velocity has two parts
V = v + v′, where v = i[Ĥ ,r] and v′ = i[Ĥ ′,r]. Assuming
that the magnetic order is m(t) = m + δm(t), we write the
perturbation as Ĥ ′(t) = (∂mĤ )δm(t). The spin current splits
into two parts

jS(r) = j[0]
S (r) + j[1]

S (r). (B3)

We again consider macroscopic currents JS = 1
V

∫
drjS(r). We

write

J
[0]
Sα = 1

V
Sαβ

1

ω
(∂tm)β, (B4)

J
[1]
Sα = 1

V
Mαβ

1

ω
(∂tm)β. (B5)

The later term is due to analog of diamagnetic current for
magnons, while the former current is given by Kubo formula

Sαβ(ω) =
∑
kn

[ṽαk]nm[ ˜̄vβk]mn

g[(εk)nn] − g[(εk)mm]

iω + (εk)nn − (εk)mm

, (B6)

where again

ṽαk = T
†

k vαkTk = ∂αεk + Aαkεk − εkAαk, (B7)

˜̄vβk = T
†

k v̄βkTk = ∂mβ
εk + Āβkεk − εkĀβk. (B8)

After straightforward transformations, expanding the expres-
sion above in ω, and taking corresponding integral over k by
parts, we obtain an expression

Sαβ =−
∑
kn

g[(εk)nn]∂α∂mβ
(εk)nn

−
∑
kn

(Aαk)nm(Āβk)mn

[
(εk)nn − (εk)mm

]{
g
[
(εk)nn

]
− g[(εk)mm]

}
+ iω

∑
kn

(Aαk)nm

(
Āβk

)
mn

{g[(εk)nn] − g[(εk)mm]}.

(B9)

The analog of diamagnetic current for magnons is given by

Mαβ =
∑
kn

[T †
k

(
∂α∂mβ

Hk
)
Tk]nng[(εk)nn]

=
∑
kn

[∂α∂mβ
(εk)nn]g[(εk)nn]

+
∑
kn

(Aαk)nm

(
Āβk

)
mn

[(εk)nn − (εk)mm]{g[(εk)nn]

− g[(εk)mm]}. (B10)
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Hence we observe

Sαβ +Mαβ = iω
∑
kn

(Aαk)nm(Āβk)mn{g[(εk)nn]−g[(εk)mm]}.

(B11)

The overall spin current is readily obtained:

JSα = 1

V
(Sαβ + Mαβ)

1

ω
(∂tm)β

= i
1

V

∑
kn

(Aαk)nm(Āβk)mn{g[(εk)nn] − g[(εk)mm]}(∂tm)β

≡ 1

V

∑
kn

[�αβ]nng[(εk)nn](∂tm)β, (B12)

where �αβ = 2Im(∂αT
†

k )(∂mβ
Tk) is the mixed Berry curvature.

APPENDIX C: TORQUE AS A RESPONSE TO
TEMPERATURE GRADIENT

We adopt the Luttinger formalism to study the response of
the system to the temperature gradient. In this formalism the
Hamiltonian acquires extra terms, written compactly as

H =
∫

dr�̃†(r)Ĥ (r)�̃(r), (C1)

where �̃(r) = (1 + r∇χ

2 )�(r) ≡ ξ (r)�(r), with ∇χ being the
temperature gradient. We define the torque as T = 〈∂mH 〉.
For the response of the torque on the temperature gradient, we
again define two terms:

〈∂mH 〉 ≡ 〈∂mH 〉ne + 1

2
〈∂m[rβH + Hrβ]〉eq∇βχ. (C2)

The first term is again described by a Kubo formula 〈∂mH 〉ne =
1
V

Smβ∇βχ , the second term we again define as Mmβ =
1
2 〈∂m[rβH + Hrβ]〉eq, we then formally rewrite the expression
for torque

〈∂mH 〉 = 1

V
(Smβ + Mmβ)∇βχ = 1

V
Lmβ∇βχ. (C3)

Calculations for the torque are similar to the ones presented
for the particle current in Appendix B with a definition of rm
operator as in Appendix A 1. As a result, we get

〈∂mH 〉 = 1

V

{∑
kn

�
(n)
mβ(k)c1[(εk)nn]

+
∑
kn

(∂mεnk)(∂βεnk)εnk
1

2�nk
g′[(εk)nn]

}
∇βχ,

(C4)

where now �
(n)
mβ(k) ≡ i[(∂mT

†
k )(∂βTk)]

nn
− (m ↔ β) is the

mixed space Berry curvature of the nth band.

APPENDIX D: A MODEL OF HONEYCOMB
FERROMAGNET WITH DZYALOSHINSKII-MORIYA

INTERACTION

1. Hamiltonian

We study a model of a ferromagnet on a honeycomb lattice.
We assume a Heisenberg exchange, in-plane Dzyaloshinskii-

1

2

3

a1
a2

+

-

d1
d2

d3

x

y

FIG. 7. Schematics of the graphene layer parameters for the
tight-binding model. Vectors connecting nearest neighbors are τ 1 =
1
2 ( 1√

3
,1), τ 2 = 1

2 ( 1√
3
, − 1), and τ 3 = 1√

3
(−1,0) are used in deriving

the Hamiltonian for magnons. Vectors a1 = 1
2 (

√
3,1) and a2 =

1
2 (

√
3, − 1) are used in deriving the second-nearest neighbor DMI.

Moriya interaction (DMI) of Rashba type, and second-nearest
neighbor DMI. In our model we assume that the order is
in general (mx,my,mz) direction, which can be realized by
application of the magnetic field. The Hamiltonian is

H = J
∑
〈ij〉

SiSj +
∑
〈ij〉

D[R][Si × Sj ] + D[z]
∑
〈〈ij〉〉

[Si × Sj x]z.

(D1)

Dzyaloshinskii-Moriya interaction originating from the
Rashba type spin-orbit coupling for 1,2,3 links (see Fig. 7)
is

H
[R]
1 = D[R]

(
−1

2
[SA × SB]y +

√
3

2
[SA × SB]x

)
, (D2)

H
[R]
2 = D[R]

(
−1

2
[SA × SB]y −

√
3

2
[SA × SB]x

)
, (D3)

H
[R]
3 = D[R][SA × SB]y. (D4)

In Holstein-Primakoff bosons, Rashba DMI reads

[SA × SB]x = S
y

ASz
B − Sz

AS
y

B = −iSmx(b†a − a†b), (D5)

[SA × SB]y = −Sx
ASz

B + Sz
ASx

B = −iSmy(b†a − a†b). (D6)

Together with Heisenberg exchange and second-nearest neigh-
bor DMI written in Holstein-Primakoff bosons, we get

H = JS

[
3 + �k −γ̃k
−γ̃ ∗

k 3 − �k

]
, (D7)

where �k = 2�[sin(ky) − 2 sin ( ky

2 ) cos (
√

3kx

2 )], where � =
mzD

[z]/J . Deriving γ̃k we considered Rashba DMI in the
lowest order in D[R]/J � 1 parameter. With this assumption

γ̃k = 2e
i k̃x

2
√

3 cos

(
k̃y

2

)
+ e

−i k̃x√
3 , (D8)

where k̃x = kx − √
3D[R]

J
my and k̃y = ky + √

3D[R]

J
mx . We

observe that Rashba DMI plays an effective role of magnon
charge, while order direction is an effective vector potential
felt by magnons.
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The eigenvalues of the Hamiltonian are calculated as

εk,± = JS
(
3 ±

√
�2

k + |γ̃k|2
)
, (D9)

with corresponding eigenfunctions

�k,+ =
[

cos
(

ξ̃k
2

)
eiχ̃k

− sin
(

ξ̃k
2

)
]
, �k,− =

[
sin
(

ξ̃k
2

)
cos

(
ξ̃k
2

)
e−iχ̃k

]
, (D10)

where sin (ξ̃k) = |γ̃k|√
�2

k+|γ̃k|2 and γ̃k = |γ̃k|eiχ̃k , where the tilde symbol means that corresponding k momenta are shifted by the

Rashba DMI. Unitary matrix that diagonalizes the Hamiltonian is readily constructed:

Tk =
[

cos
(

ξ̃k
2

)
eiχ̃k sin

(
ξ̃k
2

)
− sin

(
ξ̃k
2

)
cos

(
ξ̃k
2

)
e−iχ̃k

]
. (D11)

An expression defining the Berry curvature is

�αβ(k) = 2Im[(∂αT
†

k )(∂βTk)] = 1

2
sin(ξ̃k)[(∂αχ̃k)(∂β ξ̃k) − (∂βχ̃k)(∂αξ̃k)]

[
1 0
0 −1

]
≡
[
�

(+)
αβ (k) 0

0 �
(−)
αβ (k)

]
, (D12)

where �(+)
xmx

(k) = −�(−)
xmx

(k) and

(∂αχ̃k)(∂β ξ̃k) − (∂βχ̃k)(∂αξ̃k) = (∂αImγ̃k)

|γ̃k|2
(
�2

k + |γ̃k|2
) [(∂β |γ̃k|)(Reγ̃k)�k − (∂β�k)(Reγ̃k)|γ̃k|]

− (∂αReγ̃k)

|γ̃k|2
(
�2

k + |γ̃k|2
) [(∂β |γ̃k|)(Imγ̃k)�k − (∂β�k)(Imγ̃k)|γ̃k|] − (α ↔ β)

= �k

|γ̃k|
(
�2

k + |γ̃k|2
) [(∂αImγ̃k)(∂βReγ̃k) − (∂βImγ̃k)(∂αReγ̃k)]

+ ∂α�k

|γ̃k|
(
�2

k + |γ̃k|2
) [Reγ̃k(∂βImγ̃k) − Imγ̃k(∂βReγ̃k)]. (D13)

Recall that β here stands for the component of the
ferromagnetic order, i.e., mβ . Recall that �k does not depend
on mβ , hence ∂β�k = 0. The derivitive with respect to the
direction of the order mβ of the remaining functions that
depend on k̃ is

∂

∂mx

=
√

3
D[R]

J

∂

∂k̃y

≡
√

3
D[R]

J
∂y, (D14)

∂

∂my

= −
√

3
D[R]

J

∂

∂k̃x

≡ −
√

3
D[R]

J
∂x, (D15)

this straightforward transformation makes the mixed Berry
curvature a regular k space one.

2. Berry curvature at the K′ and K points

We first show that the Berry curvature has peaks at the K′
and K points. Let us study the spectrum close to K′ = (0, 4π

3 ),

(�k)K′ ≈ −3
√

3�, (D16)

(γ̃k)K′ ≈ −
√

3

2
(k̃y + ik̃x). (D17)

At K = (0, − 4π
3 ) point we expand as

(�k)K ≈ 3
√

3�, (D18)

(γ̃k)K ≈
√

3

2
(k̃y − ik̃x). (D19)

Hence, under the mentioned above approximations the mixed
Berry curvature becomes a regular, k space one. To the lowest
order in Rashba DMI, we can disregard all tildes in k̃. Using
these approximations, we get for the Berry curvature which is
close to the K′ point

�(+)
xmx

(k) = 1

2
sin (ξk)

[
(∂xχk)

(
∂mx

ξk
)− (

∂yχk
)(

∂mx
ξk
)]

≈ −
√

3D[R]

J

3
√

3�

2
(
27�2 + 3

4k2
)3/2 [(∂xReγk)(∂yImγk)

− (∂yReγk)(∂xImγk)x]

≈ −27

8

D[R]

J

�(
27�2 + 3

4k2
)3/2 . (D20)

Note that the Berry curvature is of the same sign for both
K and K′ points (�k and Reγk change sign under the point
interchange).

3. Berry curvature at the 	 point

We note that since the 	 = (0,0) point is not gapped,
it might contribute to currents at low temperatures. In the
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following we estimate the Berry curvature at the point. For
that we expand all functions entering the current close to 	

point in small k as

�k ≈ 1

4
�ky

(
3k2

x − k2
y

)
, (D21)

Reγ̃k ≈ 3 − 1

4
k̃2, (D22)

Imγ̃k ≈ 1

24
√

3
k̃x

(
k̃2
x − 3k̃2

y

)
. (D23)

We recall that ∂β�k = 0 for β = x,y.

a. α = x and β = mx

�(+)
xmx

(k) ≈ 1

2
sin (χ̃k)[(∂xχ̃k)(∂mx

ξ̃k) − (∂mx
χ̃k)(∂xξ̃k)]

≈ −D[R]

J

�

48
k2
yk

2
x. (D24)

b. α = x and β = m y

�(+)
xmy

(k) ≈ 1

2
sin(χ̃k)[(∂xχ̃k)(∂my

ξ̃k) − (∂my
χ̃k)(∂xξ̃k)]

≈ −D[R]

J

�

192
kykx

(
k2
x − k2

y

)
, (D25)

which will vanish upon angle integration. Same for α = y and
β = nx combination.

4. Spin current

The spin current is defined as

J [S]
x = 1

V

∑
n=±

∫
k
�(n)

xmx
(k)g(εk,n)(∂tm)x. (D26)

We approximate the integrals at small temperatures SJ 
 T .
At K′ and K points we use the following approximations:

g(εk,+) − g(εk,−) ≈ −2 sinh

[
SJ

T

3
√

3D[z]

J

]
e− 3SJ

T , (D27)

in which εk± ≈ SJ (3 ± 3
√

3|�|) was used:∫ ∞

0
kdk

3
√

3�(
27�2 + 3

4k2
)3/2 = 4

3
. (D28)

At 	 point only the εk− ≈ 1
4SJk2 contributes to the current.

We use the following integrations:∫ ∞

0
k5dk

1

e− 1
4 JSβk2 − 1

= 1

2

(
1

4
JS

)−3 ∫ ∞

0

z2dz

e−z − 1

=
(

1

4
JS

)−3

ζ (3), (D29)

where ζ (3) is the Riemann zeta function. Summing all the
contributions, we get

J [S]
x = 1

V

D[R]

J

√
3

π

[
sinh

(
1

z

3
√

3D[z]

J

)
e− 3

z

+ D[z]

J

√
3ζ (3)

36
z3

]
(∂tm)x, (D30)

where z = T
SJ

was introduced for brevity.

5. Heat current

J [Q]
x = 1

V

∑
n=±

∫
k
�(n)

xmx
(k)c1(εk,n)(∂tm)x. (D31)

At K′ and K we approximate

c1(εk,+) − c1(εk,−) ≈ −2(3SJ ) sinh

(
3
√

3

z

D[z]

J

)
e− 3

z .

(D32)

At 	 point it is important to keep in mind the Berry curvature
sum rule, we then get an integral∫ ∞

0
dxx2

∫ x

0
dyy

dg(y)

dy

→
∫ ∞

0
dxx2

[
x

ex

ex − 1
− ln(ex − 1)

]
≈ 8.65, (D33)

where after the right arrow all the divergent terms are
disregarded due to Berry curvature sum rule:

J [Q]
x ≈ JS

D[R]

J

3
√

3

V π

[
sinh

(
1

z

3
√

3D[z]

J

)
e− 3

z

+ D[z]

J

√
3I

216
z4

]
(∂tm)x. (D34)
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