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Figure 5.3: Received Lena pictures using 16-QAM with different distances between
Alice and Bob: (a) distance = 15 cm, SNR = 18.8 dB; (b) distance = 20 cm, SNR =
15.4 dB; (c) distance = 25 cm, SNR = 10.86 dB; (d) distance = 30 cm, SNR = 3.9
dB.
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Figure 5.4: Eavesdropping attacks with an angle θ between the eavesdropper Eve
and the LoS link of the benign transmission between Alice and Bob. The distances
between Alice and Bob, Alice and Eve are set as the same: (a) eavesdropping attack
experimental setup; (b) SNR of Eve with different eavesdropping angles and distances
using BPSK.
5.3 Security Evaluation

Ultrasonic signal transmits efficiently over an LoS link, and any angular devia-

tion may result in a significant loss of SNR, which is also the reason why URadio

can effectively counter eavesdropping attacks. The URadio system assembled with a

pair of SensComp transducers is used to test the relationship between eavesdropping

angles, SNR, and BER with different distances between Alice and Eve, as shown in

Fig. 5.4 and Fig. 5.5. We can see from Fig. 5.5 that URadio communication can be

eavesdropped at a wider angle at 3 m, but a small eavesdropping angle of 5◦ will still

result in an SNR loss of at least 5 dB as shown in Fig. 5.4(b). Moreover, a 10◦ angular

deviation can cause an SNR dip of more than 25 dB, 20 dB, and 10 dB with a dis-

tance of 1 m, 2 m, and 3 m, respectively. Notably, higher order modulation schemes

are more secure against eavesdroppers, with which the BER performance degrades

dramatically when there is a slight angular deviation. This result indicates that eaves-

dropping URadio’s data transfer will suffer from low channel quality, leading to a low
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Figure 5.5: BER performance of an eavesdropper with different eavesdropping angles
and different distances.

eavesdropping quality. It is worth-noting that: as the transmission distance increases,

the 3dB-SNR-loss transmission angle slightly increases. The results demonstrate the

URadio’s secure communication capability enabled by ultrasound.

We also evaluate the jamming resilience performance of URadio system (equipped

with SensComp transducers) by setting up an experiment as shown in Fig. 5.6. We

let Eve continuously transmit an ultrasonic jamming signal to Bob, while Bob is

receiving benign signals from Alice. Alice is positioned 5 meters away from Bob; Eve

is at different positions on the vertical bisector pointing to Bob. The jamming signal
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Figure 5.6: Eve launches jamming attack to disrupt the communication between Alice
and Bob: (a) jamming attack experimental setup (distance between Alice and Bob is
5 m); (b) SNR of Bob for the benign communication under attack.

Table 5.2: Performance comparison.

Related Systems Modulation Type Data Rate (bps) Range (cm)
U-Wear [5] 16QAM-OFDM 2.76K N/A
BackDoor [6] AM 4K 100
Chirp [7] chirp 4K 100

Multi-Tone [8] MFSK 800 N/A
Short-Range [10] QPSK 200K 1,200

Indoor [11] 16QAM-OFDM 800K 70
URadio-SC BPSK-OFDM 20K 1,030

URadio-rGO 64QAM-OFDM 4.8M 17
URadio-SC is the URadio system with SensComp transducers.
URadio-rGO is the URadio system with rGO transducers.

is a band-limited Gaussian white noise with its power equal to the source power sent

by Alice and its bandwidth covering the entire frequency range of SensComp (i.e.,

45 kHz - 65 kHz). The result is shown in Fig. 5.6, which indicates that jamming

attack can only effectively reduce the SNR of received signal by at least 3 dB when

the distance is less than 30 cm, demonstrating URadio’s jamming resilience.
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5.4 Performance Comparison

Table 5.2 compares URadio with other state-of-the-art airborne ultrasonic com-

munication systems according to their maximum transmission range and maximum

data rate. As is shown in Table 5.2, when using SensComp transducers for data com-

munication, URadio achieves a longer transmission range. While using rGO trans-

ducers, URadio significantly improves the data rate at a short range. URadio so

far has the highest data rate (i.e., 4.8 Mbps), which is 6× faster than the previous

best system. Therefore, if the data throughput is considered as the first priority, our

lab-made transducers with broader bandwidth should be used. On the other hand,

if the transmission range is considered as the top priority, Senscomp 600 series could

be employed. Compared with previous work that primarily considers a small amount

of data exchange, URadio can handle large size file transfer. The high-speed commu-

nication capability integrated with security features make URadio well suited to be

adopted in secure smart home applications.
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Chapter 6

Conclusion

In this thesis, we presented URadio, a secure and high data rate ultrasonic commu-

nication system. Using a pair of COTS transducers, URadio can achieve an attainable

range of 10.3 meter at a data rate of 20 Kbps. We designed two types of new trans-

ducers using membranes made of thin materials including Aluminized Mylar Film

and reduced Graphene Oxide. The proposed system was able to achieve a record-

high data rate of 4.8 Mbps with an attainable range of 17 cm. The relatively short

range of lab-made transducers was caused by the limited power upper bound of the

power amplifier that could be improved if a higher gain power amplifier is used, as

well as the lack of acoustic engineering. Image transmission quality was evaluated to

prove that our system can achieve high-speed data exchange in an error-free manner.

We evaluated URadio’s security performance by measuring eavesdropping angles and

jamming attack distances, which corroborates the security of URadio communication.
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