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Fracture and corrosion are two major causes of structure failure. They can interact 

with each other, leading to faster material degradation. They are also under the influence 

of environmental conditions. The corrosion rate highly depends on the transportation rate 

of involving substances, while the fracture can be accelerated significantly due to fluid 

flow. These complex mechanisms involved in structure failure have troubled classical 

models for decades. The peridynamic (PD) theory introduced in 2000 has shown great 

potential in modeling such problems. In this work, we develop novel PD models for 

fracture, corrosion, mass transport, and viscous flow, which are building blocks to make 

comprehensive predictions on structure failure.  

We first introduce a partially-homogenized PD model for concrete fracture. The 

model links microscale information to macroscale fracture behavior, while costing the 

same as a fully homogenized model. This model successfully predicts corrosion-induced 

fracture in concretes with a single or multiple rebars. We then develop a new PD 

corrosion model which can update the distribution of corrosion rates along arbitrary metal 

surface, particularly useful for simulating galvanic corrosion. We couple the new PD 

corrosion model with the PD fracture model and solve a problem under combined 

electro-chemical attack and mechanical forces to demonstrate the capability of PD 



 

models. We also construct PD models for transient advection-diffusion and viscous flow 

from fundamental conservation principles. The constructive approach in deriving these 

models allows for future modeling of complex fluid-structure interaction problems in 

which solid degradation takes place, such as erosion-corrosion and hydraulic fracture.  

In PD models, boundary conditions (BCs) are naturally nonlocal, but usually only 

local BCs are available from measurements. The existing mirror-type fictitious nodes 

method (FNM) can convert local BCs to nonlocal ones, but its application is limited to 

domains with simple geometries. We introduce a new algorithm to make the mirror-type 

FNM work autonomously for domains with arbitrary geometries. The algorithm 

developed is general and should also work for any type of peridynamic model, including 

corrosion, fracture, and fluid-structure interactions. 
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Chapter 1 Introduction 

1.1 Motivation and objectives 

The recent tragedy in Surfside, Florida [1] clearly demonstrated the consequences of 

unexpected structural failure and the importance of being able to make predictions at low 

cost. Corrosion of the rebar and the subsequent concrete spalling due to the expansion of 

corrosion product, coupled with the structural loading, played a critical role in the 

collapse of the condo building. Fracture and corrosion often coexist and interact with 

each other (i.e., stress corrosion cracking [2]), leading to faster and more complex 

degradation of materials. The proximity of the building to the Atlantic Ocean, with its 

corrosive seawater, significantly accelerated the corrosion process and thus the 

degradation of the structure [3]. 

Reinforced concrete is one of the most used construction materials. The load carrying 

capacity of reinforced concrete structures exposed to a corrosive environment can be 

greatly affected by rebar corrosion [4]. The expansion of corrosion products can lead to 

cracks propagating through the concrete cover. These cracks act as additional channels 

for aggressive agents (e.g. chlorides) that can now reach faster and over larger areas the 

rebars, accelerating the corrosion process [5]. Corrosion decreases the rebar’s effective 

cross-sectional area, breaks the bond between the rebar and concrete, causing 

performance degradation of the structure [6]. Moreover, changes in the layer affected by 

corrosion trigger significant reductions in ductility [7], in addition to hydrogen 

embrittlement (see pp. 334-336 in [8]). Degraded rebars can fail, resulting in the collapse 

of the structure. During this entire process, concrete fracture due to rebar corrosion 



 
2 

expansion plays a key role, thus, it is necessary to have an efficient and reliable 

computational model to make predictions. 

Classical models employ spatial (partial) derivatives to formulate their governing 

equations. These partial differential equations (PDEs), however, are not defined at spatial 

discontinuities such as crack/corrosion surfaces. The crack path requires to be tracked 

explicitly. Besides, in classical models, a crack is only a mathematical thin line/surface, 

while in some problems, the crack comes along with a damage process zone that 

influences its evolution. Thus, classical models do not allow sufficiently general type of 

description of damage growth. Moreover, descriptions of crack initiation and propagation 

(speed and direction) requires additional criteria which add complexity in classical 

models. Finite element method (FEM), commonly used to numerically solve classical 

models for fracture, requires remeshing the domain every step the crack grows. 

Traditional FEMs use techniques such as element-deletion and cohesive zone to model 

crack propagation. These approaches only allow cracks to pass along element edges, 

leading to inaccurate crack paths. XFEM [9] allow cracks to pass through elements, 

providing better approximations of the crack path. However, subdivision of the cut 

elements for numerical integration purposes also introduces complexities. These 

additional treatments work for simple fracture problems (e.g., single crack propagation). 

However, for problems with coupled fracture and corrosion (e.g., stress corrosion 

cracking [8,10,11]), or the interaction of multiple cracks (e.g., crack branching [12,13] 

and fragmentation [14]), their efficacy and efficiency become doubtful. 

In 2000, a nonlocal alternative of the classical theory named “peridynamics”, originally 

aimed for solving fracture problems, was developed by Silling [15]. Peridynamic (PD) 
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models offer important advantages over classical ones in modeling fracture. PD 

formulations use spatial integration rather than differentiation, leading to a 

mathematically consistent formulation that works naturally for problems in which 

discontinuities in the domain (such as cracks) appear. Moreover, by using simple 

meshfree discretization, PD models can autonomously capture the initiation and 

propagation of cracks/damage [16].  

Peridynamics has received considerable attention since its introduction [17–19]. It has 

been successfully applied to model fracture of brittle materials such as glass [14], damage 

in composite [20] and ductile [21] materials, fatigue failure [22], etc.  

For heterogeneous materials such as concrete, the microstructure plays a significant role 

in how cracks initiate and grow, thus, meso-scale models have often been used for 

concrete fracture [23]. However, issues such as the selection of the geometric shape of 

the aggregates can significantly affect the fracture behavior [24]. Thus, the general 

application of these models is rather limited. A more desirable approach would be to 

develop a partially-homogenized model which implicitly involves some of concrete’s 

microscale features, including their randomness. Such models, spanning multiple scales, 

would allow for efficient simulation of fracture and failure at the macro-scale while 

accounting for the correct crack initiation at the micro-scale.  

In the first part of this dissertation, we introduce a multiscale stochastic peridynamic 

model for concrete to simulate concrete fracture induced by the expansion of rebar 

corrosion-products. This model implicitly uses information about the concrete meso-scale 

structure, leading to a partially-homogenized model, and uses the simplest possible linear 
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elastic with brittle failure constitutive relation. A mathematical distribution function is 

used to mimic the expansion process of the corrosion product, which is the loading that 

induces fracture in this setting. We validate the model for concrete structures with a 

single and multiple rebars, for which experimental data is available in the literature.  

While the PD method has been primarily used to deal with mechanical fracture, it has 

also been employed in diffusion-type problems involving cracks and damage, including 

thermal diffusion [25] and mass transport (e.g. corrosion) [26]. In 2015, Chen and Bobaru 

[27] introduced a PD model for corrosion damage. PD corrosion models allow for 

autonomous propagation of corrosion damage in the solid subdomain as an intrinsic 

solution to a nonlocal damage-dependent mass transfer equation. The PD corrosion 

formulation offers some major advantages [28] when compared with other approaches 

such as phase field (PF) and Cellular Automata (CA). For example, the concentration-

dependent damage index in the PD model monitors the phase changes continuously from 

solid to electrolyte across the “Diffuse Corrosion Layer” (DCL). This helps us capture the 

subsurface damage and degradation of mechanical properties (strength, ductility, etc.) 

observed in corroded samples [7]. Moreover, the PD corrosion model can be easily 

coupled with the powerful peridynamic fracture models for investigating the potential 

stress-corrosion cracking and structural failure when mechanical loads are present in 

addition to the environmental attack [11,29]. However, there are also two limitations in 

the existing PD corrosion model. One is that the initial distribution of corrosion rate 

along the corrosion surface must be given as an input. This does not work for problems 

such as galvanic corrosion [2] in which the corrosion rate distribution can change 

significantly as the corrosion front evolves and thus should be updated on the fly. The 
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other is that numerical calibration (which requires a trial solution in a pre-processing 

step) of certain coefficients in the formulation is required for each simulation. The PD 

corrosion model needs to be extended in order to be applied to a larger class of corrosion 

problems. 

In the second part of this dissertation, we reformulate and extend the existing PD 

corrosion model such that it becomes applicable to a larger class of corrosion problems 

such as galvanic corrosion. We introduce a PD electric potential model, and couple it 

with the existing PD corrosion model [30]. In addition, we reformulate the PD corrosion 

dissolution model in [27,30] based on electrochemistry, and replace the previous 

numerical calibration stage (which required a trial solution in the pre-processing step) 

with an analytical one. With above changes, the new model is autonomous and 

significantly more efficient in problems with highly non-uniform current densities along 

an arbitrary-shape corroding surface, such as galvanic corrosion. Moreover, the new 

model eliminates the required artificial changes to a given geometry of a galvanic couple 

which we found is necessary in models based on PDEs (e.g., COMSOL, phase-field) in 

order to match the experimental observations. The new PD model is validated against 

experimental galvanic corrosion results available in the literature. A coupled corrosion-

fracture problem is solved to show the potential of the new PD model in resolving failure 

caused by the combination of sharp corrosion damage (induced by galvanic corrosion) 

and mechanical loading. 

Participation of fluid flow can significantly accelerate corrosion and fracture process, 

either by transporting corrosive substances, or by directly exerting additional mechanical 
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forces on the structure. Thus, it is important to consider these factors into our corrosion 

and fracture models for problems under such circumstances. PD formulations and 

applications to fluid mechanics are rather few. State-based PD models for fluid flow in 

porous media are presented in [31–33]. More general models for fluid flow based on 

Navier-Stokes equations (NSEs) have been developed in the PD framework to simulate 

viscous flow. Some of them use the PD correspondence model [34–37] and thus suffer 

from zero-energy modes [38,39]. Others use “PD differential operators” [40–42] to 

translate classical NSEs to integro-differential equations. The “nonlocality” introduced in 

these translations is merely a computational parameter, instead of a length-scale in true 

nonlocal formulation which can capture the nonlocal effect in complicated fluid motions 

(e.g., turbulent flow). 

In the third part of this dissertation, we construct PD models for diffusion-advection and 

viscous flow from fundamental conservation principles, such that the influence of fluid 

flow and mass transport on corrosion and fracture will be possible to be modeled under 

the same PD framework. We test the PD diffusion-advection model using examples with 

classical solutions and use the new model to simulate advection-diffusion in complex 

heterogeneous media. For the PD model of viscous flow, we investigate the convergence 

of the PD continuity equation to its classical counterpart as the nonlocal size in PD 

equations approaches zero. We also verify the PD model numerically using examples for 

which (classical) analytical or numerical solutions are available in the literature. 

For PD formulations, associated BCs are of nonlocal type, and they are sometimes referred 

to as “nonlocal volume constraints” [43,44]. In reality, however, only surface conditions 
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are measurable, not through a finite thickness layer at the surface. Therefore, imposing 

local BCs accurately in nonlocal/peridynamic models is often desired/needed. Another 

issue caused by nonlocality is the surface effect [45] which appears because, unlike in the 

bulk, points near the free surface/boundary do not have a full horizon region. A popular 

strategy to handle above issues is to extend the solution domain by a fictitious layer (such 

that each point in the solution domain has a full horizon region) and then convert local BCs 

into nonlocal volume constraints on this fictitious region. This strategy is called fictitious 

nodes method (FNM). However, while this works fine for regular geometries, it is still a 

challenge to apply it to problems with irregular geometries, curved boundaries, etc.  

In the last part of this dissertation, we introduce a new algorithm which enables us to use 

the mirror-type FNM for arbitrary geometries, including for domains with cracks. We 

select the PD diffusion model to test our algorithm. With small modifications, the algorithm 

presented here is also applicable to PD models solving other types of problems, such as 

fracture and corrosion damage. We verify this new algorithm using two problems: one is a 

simple problem without singularity and the other is the Motz’s problem with a singularity 

(in fluxes) along a boundary where Dirichlet and Neumann boundary conditions meet 

[46,47]. We further demonstrate the capability of the new algorithm by solving examples 

with crack surfaces and curved boundaries. 

1.2 Dissertation organization 

This dissertation is written in a paper-based format, meaning that the main chapters are 

either published articles, under-review manuscripts submitted for publication, or 

manuscripts ready for submission for publication at the time that this document is being 
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written. Each chapter stands alone and does not refer the reader back and forth to other 

chapters. The content of this dissertation is as follows:  

In Chapter 2, a multiscale stochastic peridynamic model for concrete is introduced to 

simulate concrete fracture. This model is validated against experimentally observed 

patterns of corrosion-induced concrete fracture. In Chapter 3, a new PD corrosion model 

is introduced to handle corrosion problems with arbitrary distribution of corrosion rate 

along arbitrary corrosion surface. This model is used to simulate galvanic corrosion and 

the results are validated by experimental results in the literature. A coupled corrosion-

fracture problem is solved to show the potential of the new model in resolving failure 

caused by the combination of sharp corrosion damage (induced by galvanic corrosion) and 

mechanical loading. In Chapter 4 and Chapter 5, we construct PD models for diffusion-

advection and viscous flow, respectively, from fundamental conservation principles. Both 

models are verified by examples with (classical) analytical or numerical solutions from the 

literature. In Chapter 6, a new algorithm is developed for the mirror-type fictitious nodes 

method to allow local boundary conditions to be imposed in PD models with arbitrary 

boundary geometries. We select the PD diffusion model to test the new algorithm. Finally, 

in Chapter 7, conclusions of this dissertation are summarized, and future works are 

discussed. 

1.3 Dissertation organization 

This dissertation is written in a paper-based format, meaning that the main chapters are 

either published articles, under-review manuscripts submitted for publication, or 

manuscripts ready for submission for publication at the time that this document is being 
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written. Each chapter stands alone and does not refer the reader back and forth to other 

chapters. The content of this dissertation is as follows:  

In Chapter 2, a multiscale stochastic peridynamic model for concrete is introduced to 

simulate concrete fracture. This model is validated against experimentally observed 

patterns of corrosion-induced concrete fracture. In Chapter 3, a new PD corrosion model 

is introduced to handle corrosion problems with arbitrary distribution of corrosion rate 

along arbitrary corrosion surface. This model is used to simulate galvanic corrosion and 

the results are validated by experimental results in the literature. A coupled corrosion-

fracture problem is solved to show the potential of the new model in resolving failure 

caused by the combination of sharp corrosion damage (induced by galvanic corrosion) 

and mechanical loading. In Chapter 4 and Chapter 5, we construct PD models for 

diffusion-advection and viscous flow, respectively, from fundamental conservation 

principles. Both models are verified by examples with (classical) analytical or numerical 

solutions from the literature. In Chapter 6, a new algorithm is developed for the mirror-

type fictitious nodes method to allow local boundary conditions to be imposed in PD 

models with arbitrary boundary geometries. We select the PD diffusion model to test the 

new algorithm. Finally, in Chapter 7, conclusions of this dissertation are summarized, and 

future work is discussed. 
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Chapter 2 A Stochastic Multiscale Peridynamic Model for 

Corrosion Induced Fracture in Reinforced Concrete 

2.1 Introduction 

Reinforced concrete is one of the most commonly used construction materials. 

Reinforced concrete structures exposed to a corrosive environment can be greatly 

affected as penetration of aggressive substances (water, oxygen, chloride, carbon dioxide, 

etc.) can lead to degradation of the steel rebars [1, 2]. If the concrete cover is thick and 

free of defects, this process usually is slow, extending over decades. However, concrete 

may contain or develop small cracks, caused during the manufacturing or early loading 

stages [3, 4]. Small amounts of aggressive elements then reach the rebars and can initiate 

their corrosion. When the corrosion reaches a certain stage (less than 1% of cross-section 

area of the initial rebar), the expansion of corrosion products (volume of corrosion 

products can be 3-4 times the volume of consumed iron [2]) can lead to major cracks 

propagating through the concrete cover. These major cracks can then act as additional 

channels for penetration of aggressive agents, accelerating the corrosion process [5]. The 

corrosion of the steel rebar decreases its effective cross-sectional area and breaks the 

bond between the rebar and concrete, causing performance degradation of the structure 

[6]. Moreover, changes in the layer affected by corrosion trigger significant reductions in 

ductility [7], in addition to hydrogen embrittlement (see pp. 334-336 in [8]). Corrosion of 

the rebar is usually non-uniform (e.g. pitting corrosion [8]). Non-uniformities in 

corrosion damage of the rebars can reduce the concrete cracking pressure by more than 

50% compared with uniform corrosion [9]. Degraded rebars can fail, resulting in the 
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collapse of the structure. During this entire process, concrete’s fracture plays a key role. 

Corrosion-induced concrete fracture is the focus of our paper.  

Analytical methods based on the thick-walled cylinder theory are available to estimate 

conditions that would lead to cracking of the concrete cover due to rebar corrosion, but 

these cannot model the actual failure process, and, in general, are limited to a single rebar 

[10-12]. Experimental investigations of corrosion-induced fracture in concrete can offer 

some insights into the process but they are expensive and time-consuming. Usually, these 

are performed using external currents to accelerate the corrosion process, making 

corrosion patterns more uniform than those resulting from natural environmental 

conditions. Departures from uniformity in the corrosion process, and the complex 

evolution of concrete fracture induced by rebar corrosion require the use of 

computational modeling to obtain a more complete understanding of this phenomenon 

[13, 14]. 

An important contribution to computational modeling in this field has appeared in [13, 

14], where a 3D chemo-hygro-thermo-mechanical model for concrete (with a specialized 

constitutive model for concrete) is used to simulate corrosion-induced damage and 

transport of corrosion products into cracks. These works assumed that the reinforcement 

bar was already depassivated. Several choices for corrosion sites along the longitudinal 

direction and around the cross-section of rebars were tried. For some of these choices, the 

obtained fracture patterns agree with experimental observations very well. However, 

although the crack band theory used in these publications can alleviate mesh size 

dependence for smeared crack approach, it cannot solve the mesh orientation dependence 

[15]. For each example, only one mesh was employed, and convergence studies were not 
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presented for comparing variability of crack patterns with those from experiments. A 2D 

mechano-chemical model ([16]) coupled the ingress of chloride ions, carbonation, 

electrochemical reaction and mechanical damage for the prediction of rebar corrosion and 

concrete damage. In this model, the active zone on the rebar evolves automatically. 

However, for the fracture model, using the crack band theory, no details (material 

properties, boundary conditions, etc.) were provided. Recently, a 2D diffusion-

mechanical model [17] studied depassivation of the steel surface due to chloride ingress 

in concrete and the subsequent corrosion of steel and crack propagation in concrete. The 

distribution of rust thickness obtained is close to what is measured experimentally, but 

fracture patterns obtained for the 3-rebar case do not capture the experimental 

observation very well.  

One of the limitations of the above-mentioned works is that they all use a homogenized 

model for the concrete structure. This may not work well in cases where the concrete 

microstructure does play a role in how cracks initiate and grow. Around corroding rebars 

that create pressures against the concrete, microcracks develop leading to major concrete 

cracks reaching the concrete cover. The evolution of such cracks can depend on certain 

microstructure characteristics. Meso-scale models have shown their potentials for such 

problems [18]. However, issues such as the selection of the geometric shape of the 

aggregates can significantly affect the fracture behavior [19-21]. It is possible to use a 

meso-scale structure acquired from X-ray tomography images [22], but it is 

computationally costly to extend meso-scale models to meter-scale samples. Thus, the 

general application of these models is rather limited. A more desirable approach would be 

to develop a partially-homogenized model which implicitly involves some of concrete’s 
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microscale features, including their randomness. Such models, spanning multiple scales, 

would allow for efficient simulation of fracture and failure at the macro-scale while 

accounting for the correct crack initiation at the micro-scale.  

While most of the above-mentioned models are based on the classical (local) continuum 

mechanics, nonlocal models offer some important advantages over local ones in 

modeling fracture behavior of heterogeneous materials like concrete ([23]). Classical 

(local) continuum-based models lead to spurious mesh sensitivity in fracture problems, 

while nonlocal ones can prevent it. Another reason for using nonlocality is the complex 

interactions between microcracks: these appear at scales too small to efficiently model 

with a local formulation, and their formation and growth are interlinked, resulting in an 

effectively nonlocal damage behavior. Nonlocality is also necessary in a macroscale 

framework to describe microstructural phenomena in concrete such as cohesion, friction 

and aggregate interlock [24]. 

Peridynamics (PD) is a nonlocal theory which has received considerable attention since 

its introduction almost two decades ago [25, 26]. PD reformulates the classical continuum 

mechanics by eliminating spatial derivatives to model mechanical [27-37], 

diffusion/corrosion [38-43], or mechano-chemical [44-46] etc., behaviors in materials 

involving damage. Using spatial integration rather than differentiation leads to a 

mathematically consistent formulation that works naturally for problems in which 

discontinuities in the domain (such as cracks) appear. In a PD model, cracks/damage can 

initiate and propagate autonomously [47]. 
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One of the first applications of the PD theory to concrete structures was [48]. A 

micropolar PD model to better simulate damage in concrete was introduced in [49]. 

Later, this model was employed in [50] for simulating fracture in short fiber-reinforced 

concrete. The authors of [50] introduced a semi-discrete method to represent the fiber-

concrete interaction and considered the random nature of concrete by reducing the 

particle strength of some PD nodes. A formulation of pressure-dependent PD plasticity 

model was shown to work well for compression, impact, and spallation of concrete 

structures [51]. The trilinear peridynamic model introduced in [52] has shown good 

results in terms of the load-CMOD curves for three-point-bending tests. This model, 

however, being a homogenized one, cannot capture the rough and tortuous crack 

trajectories. Tortuous crack paths are an indication of considerable local mode-mixity, 

and this is lost in some models [53]. Homogenized models may also fail to capture the 

observed fracture modes in porous/composite materials [54, 55]. A mesoscopic PD model 

for concrete (using explicit geometrical representation of aggregates) was shown in [56], 

but when comparing to experiments, different normalization schemes are used for the 

simulation results and the experimental data, which raises questions about the validity of 

the comparison. 

In this paper, we introduce a multiscale stochastic peridynamic model that implicitly uses 

some information about the concrete meso-scale structure, to simulate fracture induced in 

reinforced concrete induced by the expansion of rebar corrosion-products. The model 

does not require the explicit geometrical representation of aggregates, for example, and in 

that sense is a partially- or Intermediately-Homogenized peridynamic (IH-PD) model. 
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Notably, the model uses the simplest possible linear elastic with brittle failure 

constitutive relation. 

A mathematical distribution function is used to mimic the expansion process of the 

corrosion product, which is the loading that induces fracture in this setting. The results 

from this multiscale peridynamic model are compared with experiments and with results 

from a “fully-homogenized” PD (FH-PD) model, to highlight deficiencies of complete 

homogenization in modeling failure in concrete and the need for preserving some 

information about material heterogeneity. We test the model for concrete structures with 

a single and multiple rebars, for which experimental data is available in the literature. We 

also perform parametric studies to show how the aggregates’ fracture energy and various 

possible rebar corrosion patterns can affect the evolution of fracture in reinforced 

concrete. 

This paper is organized as follows: in Section 2.2 we give a brief review of the bond-

based peridynamic theory; in Section 2.3 we present the numerical discretization of the 

peridynamic formulation; in Section 2.4 we show the IH-PD model for concrete and its 

implementation; Section 2.5 discusses the radial displacement model for imposing the 

effective expansion of corrosion product as a boundary condition on the concrete in the 

hole where the rebar is; numerical results are gathered in Section 2.6, where we test the 

IH-PD model in corrosion-induced fracture in concrete structures with a single (several 

configurations) and multiple rebars; conclusions are drawn in Section 2.7. 

2.2 Brief review of bond-based peridynamic theory 

Bond-based PD (BBPD) is the original version of peridynamics, later generalized as 

state-based PD (SBPD) [25, 47]. BBPD leads to material models with a fixed Poisson’s 
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ratio (1/3 in 2D plane stress problems, and 1/4 in 2D plane strain and 3D problems). The 

focus of our paper is on concrete’s fracture behavior and Poisson’s ratio has little effect 

on such problems (see theoretical analyses in [57, 58]). It is then reasonable to use the 

BBPD model, and the results and conclusions should not be affected by this choice. 

Given the geometry of the experimental samples used to compare our simulation results 

with, we employ the BBPD for plane strain conditions (Poisson’s ratio equals 1/4) 

everywhere in the paper. 

The equations of motion for the BBPD can be written as [25];  

𝜌(𝒙)�̈�(𝒙, 𝑡) = ∫ 𝒇
𝐻𝒙

(𝒖(𝒙, 𝑡) − 𝒖(𝒙, 𝑡), 𝒙 − 𝒙)𝑑𝑉𝒙 + 𝒃(𝒙, 𝑡)  (2.1)  

where 𝜌 is the density field, 𝒖 is the displacement vector field, 𝒇 is the pairwise force in 

the peridynamic bond 𝒙 − 𝒙, and 𝒃 is the body force field. 𝐻𝒙 is called the “horizon” of 

𝒙, and is the region in which pairwise forces exist between 𝒙 and 𝒙, an arbitrary point 

located inside 𝐻𝒙 (see Figure 2.1). 𝑉�̂� is the volume (area in 2D, length in 1D) occupied 

by the material point 𝒙, and 𝑡 is the time (or a parameter tracking the loading step in 

quasi-static problems, in which case the acceleration in the equation above is zero). The 

horizon is usually taken to be a ball (sphere in 3D, disk in 2D, line segment in 1D) of 

radius 𝛿. 
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Figure 2.1. Nonlocal interaction between point 𝒙 and an arbitrary point located in the 

horizon of 𝒙.  

The pairwise force for a prototype microelastic brittle material [47] is defined as: 

𝒇(𝝃, 𝑡) = 𝑔(𝑠(𝝃, 𝑡))ℎ(𝝃, 𝑡)
𝝃 + 𝜼

‖𝝃 + 𝜼‖
 (2.2)   

where 𝝃 = 𝒙 − 𝒙 is the relative position of 𝒙 and 𝒙 in the reference configuration, 𝜼 =

𝒖(𝒙, 𝑡) − 𝒖(𝒙, 𝑡) is the relative displacement with respect to the reference configuration, 

𝑠 =
‖𝝃+𝜼‖−‖𝝃‖

‖𝝃‖
=

𝜁−𝜉

𝜉
 is the relative deformation or bond strain (𝜉 = ‖𝝃‖ and 𝜁 =

‖𝝃 + 𝜼‖). 𝑔 and ℎ are respectively given by:  

𝑔(𝑠) = {
 𝑐(𝜉)𝑠     𝜉 ≤ 𝛿
 0             𝜉 > 𝛿

 (2.3)   

ℎ(𝜉, 𝑡) = {
 1     if 𝑠(𝜉, 𝑡′) < 𝑠0 for all 0 ≤ 𝑡

′ ≤ 𝑡
 0     otherwise

 
(2.4)   

where 𝑐(𝜉) is the micro-modulus function or the elastic stiffness of the bond. The micro-

modulus function can take different forms, depending on the required horizon-scale 

behavior [59]. Here we only consider plane strain conditions and the “conical” 

micromodulus function [60]: 
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𝑐(𝜉) = 𝑐1 (1 −
𝜉

𝛿
) =

192𝐸

5𝜋𝛿3
(1 −

𝜉

𝛿
) (2.5)   

For heterogeneous materials, micro-modulus depends on the location. This is discussed in 

the next section.  

To simulate fracture and failure, peridynamics uses the notion of bond damage [25, 47]. 

Peridynamic bonds break irreversibly when they reach the critical relative deformation 

𝑠0, which can be related to material’s fracture energy 𝐺0. Note that other types of failure 

can be considered in PD models, including reforming bond connections [61]. For the case 

of the conical micro-modulus function, 𝑠0 is given by [60]: 

𝑠0 = √
25𝜋𝐺0
48𝐸𝛿

 (2.6) 

Note that in heterogeneous materials 𝑠0 also depends on location. With the breakage of 

bonds, failure starts to accumulate, and cracks begin to initiate and propagate. The 

damage index 𝑑 is used to measure the damage level: 

𝑑(𝒙, 𝑡) = 1 −
∫ ℎ(𝜉, 𝜂)d𝑉�̂�𝐻𝒙

∫ d𝑉𝒙𝐻𝒙

 (2.7)   

which, in the discrete version (see below) is the ratio of the number of broken bonds to 

that of total bonds connected to point 𝒙 at time (or load step) 𝑡. When all bonds 

connected to point 𝒙 are broken, 𝑑(𝒙, 𝑡) = 1 and point 𝒙 becomes a free point. 



 
23 

2.3 Numerical discretization 

Eq. (2.1) can be solved by any method that can solve integro-differential equations, 

including mesh-free direct discretization [47], the finite element method (FEM) [62, 63], 

or a combination of both in which the FEM is used far from cracks, and the meshfree 

discretization is used where damage happens [63-65]. Spectral methods can be alternative 

approaches to achieve efficient peridynamic computations [66]. Here we use the 

meshfree discretization, which makes it easiest to handle damage and fracture [31, 67].  

We discretize the domain into cells with nodes in the center of those cells, effectively 

using the mid-point integration scheme to approximate the integral in Eq. (2.1). Both 

uniform [47] and non-uniform [68-70] grids are possible. Figure 2.2 (a) shows a 2D 

uniform discretization with grid spacing 𝛥𝑥 around a node 𝐱𝒊. Non-uniform grids 

conform better for shapes with rounded boundaries. Such grids can be easily obtained 

based on finite element meshes generated, for example, with ANSYS and a simple APDL 

code (see the appendix in [55]). As shown in Figure 2.2 (b), the PD nodes are centroids of 

elements, and the PD nodal area of each node is the element area. To keep the quadrature 

error low, it is important to have meshes with relatively uniform element sizes. 

Comparisons between uniform and non-uniform grids for corrosion-induced fracture are 

shown in Section 2.6.1.2.1. 

 

(a)  Uniform grid. 

 

(b)  Non-uniform grid. 
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Figure 2.2. Possible discretization types for a peridynamic model. The circular region 

is the horizon region of node xi. 

At time 𝑡, the spatially discretized form of Eq. (2.1) is written as: 

𝜌�̈�𝑖
𝑡 = ∑ 𝑐𝑖𝑗𝑠𝑖𝑗

𝑡 𝑉𝑖𝑗𝒏

𝑗,𝑗∈𝐻𝑖

+ 𝒃𝑖
𝑡 

(2.8)   

where 𝒖𝑖
𝑡 is the displacement of node 𝑖, 𝐻𝑖 is the horizon region of node 𝑖, 𝑗 ∈ 𝐻𝑖 includes 

all the nodes covered by 𝐻𝑖 (fully or partially), 𝑐𝑖𝑗 is the micro-modulus of the bond 𝑖 – 𝑗, 

𝑠𝑖𝑗
𝑡  is the relative stretch of bond 𝑖 – 𝑗, 𝑉𝑖𝑗 is the area of node 𝑗 covered by 𝐻𝑖, 𝒏 is the 

unit vector pointing from node 𝑖 to node 𝑗 in the current configuration and 𝒃𝑖
𝑡 is the body 

force at node 𝑖. 

Since node 𝑗 may be only partially covered by the horizon of node 𝑖, the “partial volume” 

integration scheme is used to improve the quadrature accuracy [31, 71]. Note that the 

partial volume integration scheme was developed for regular grids. We used the same 

scheme on irregular grids because the irregular grids used here do not depart much from 

uniform grids (most element sizes are about the same). Moreover, the use of the “conical” 

micromodulus (see Eq. (2.5)) helps with reducing the quadrature error since the influence 

of nodes near the edges of the horizon is smaller than that of nodes near the center of the 

horizon.  

For the type of fracture we simulate, inertial effects are likely minor, thus all of the 

simulations performed in this work are quasi-static. The displacement-controlled loads 

are applied step-by-step, and at each step we solve the nonlinear (in displacements) 

system in Eq. (2.8) and use the criteria in Eq. (2.6) to determine which bonds need to 
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break at this step. The values for the micro-moduli c𝑖𝑗 and the critical relative 

deformation s0 for each bond are determined by the bond type (see Section 2.4 below). 

We solve the equilibrium nonlinear system in Eq. (2.8) via the energy minimization 

method, using the nonlinear conjugate gradient (NCG) method with secant line search. 

The detail of the algorithm can be found in [32, 35]. Instead of the Polak-Ribiere formula 

[72], we use the hybrid Hu-Storey (HuS) formula [73], for a faster convergence. Note 

that other methods, such as the adaptive dynamic relaxation (ADR) method [74] and the 

direct sparse matrix solver [75], can also be used for quasi-static fracture problems in PD. 

Compared with a direct matrix solver, the NCG solver is faster and uses less memory. 

The ADR uses a variable artificial viscosity coefficient that sometimes can lead to some 

unphysical effects in the solution [76]. The NCG does face convergence difficulties in 

problems in which the relation between bond force and bond stretch has a softening part, 

due to loss of positive definiteness. Here we are using the linear elastic (with brittle 

failure) force-bond strain model, and the NCG is a good option. 

The overall simulation process is shown in Figure 2.3. At a given load step, the NCG 

solver is called to find the equilibrium displacement field. On these displacements, the 

bond-breaking subroutine is called to check if any bonds exceeded their critical strain. If 

there are any such bond breaks, the NCG solver is called again (at the same load step) 

until no more bonds break and the physical system reaches equilibrium. If too many 

bonds break after one NCG solution, numerical instabilities may result [32]. To prevent 

this, once the number of broken bonds at a step reaches a user-provided parameter 𝑁max, 

we need to go back half a step (re-compute the equilibrium for half of the load increment 

used in the previous iteration) and repeat the static solution. In the examples shown in 
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this paper, the crack growth is stable, and as long as a reasonable number of load steps 

are used, numerical instabilities are avoided. We have conducted tests with 100 and 1,000 

load steps and found no significant difference between these splits. All the results shown 

here are therefore using 100 load steps.  

 

Figure 2.3. Flowchart for the simulation process of PD quasi-static fracture modeling. 

Here 𝑡 is the load step. 

2.4 The IH-PD model for concrete 

In this paper, the regular homogenization approach is called the “fully-homogenized” 

peridynamic (FH-PD) model to distinguish it from the “intermediately-homogenized” 

peridynamic (IH-PD) model discussed below [58]. In the FH-PD model, concrete is seen 

as a locally homogeneous material in terms of its mechanical properties (elasticity, 

density, and fracture energy). The properties used in the FH-PD model are the macro-

scale properties obtained from direct experimental measurements. The multiscale IH-PD 
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model has been originally introduced for functionally graded materials (FGMs) and 

porous materials, like rock, in [54, 58]. Here we adapt it for a two-phase composite, in 

which we define three types of intermingled sets of bonds: one bond-type for each of the 

phases (aggregates and matrix), and one for interfacial (aggregate-matrix) bonds. The 

model uses some meso-scale information (volume fraction of the phases) but does not 

preserve the topology of the microstructure phases. A discussion on conditions under 

which this approach is still sufficient to capture the fracture behavior accurately and 

efficiently can be found in [55].  

Consider the two-phase (phases A and B) composite material shown on the left side of 

Figure 2.4. At the microscale, an arbitrary PD bond connects points 𝒙 and 𝒙, whose 

geometrical positions fall in one of the two phases, A and B. We assume that the horizon, 

and therefore the size of the nodal volumes, are at a scale larger than that of the 

inclusions so that the composite volume fractions in a nodal volume are statistically 

representative of the macro-scale value. The probability for a bond to have the properties 

of phase A, B, or interfacial properties, depends on the volume fraction of the phases over 

the nodal volumes/areas of the two nodes.  

A bond with properties of the A or B phases will be called an A-bond or a B-bond, 

respectively, while a bond with interfacial properties will be called an AB-bond. Figure 

2.5 shows an example of bond-type distribution in the IH-PD model around a particular 

node. 

In the IH-PD model, we assume a linear relationship between the chance of the bond type 

and the local phase volume fractions at the two end nodes, but other choices could also be 
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made. If the volume fractions of phase A are 𝑅 and 𝑅′ at 𝒙 and 𝒙, respectively, the 

chance for this bond to be an A-bond, B-bond, or an AB-bond is 𝑅𝑅′, (1 − 𝑅)(1 − 𝑅′), 

or 1 − (1 − 𝑅)(1 − 𝑅′) − 𝑅𝑅′, respectively. While we will not use the specific 

distribution of the continuous or discontinuous phases (in order to end up with a 

computationally efficient model), the volume fraction information is included, and the 

model is, at the small scale, heterogeneous. For a discussion on when the topology of the 

phases is important, see [55]. Since the explicit microstructure is not used here, and only 

the volume fraction information is input data, we generate the bond properties as a 

preprocessing step shown in Figure 2.6. Notice that we only select bond types, not node 

types. The algorithm visits each node in the discretization, then considers each bond in 

that node’s family (if it had not previously been assigned its properties) and assigns its 

properties based on a random number generated from a uniform distribution (see Figure 

2.6). 

For concrete, phase A is aggregate and phase B is cement. We assume that the concrete is 

homogeneous at the larger scale so that the phase volume-fractions are constants 

throughout the domain, i.e., 𝑅 = 𝑅′. For example, if 𝑅 =  𝑅′ = 40%, then 16% of all PD 

bonds end up as aggregate-bonds, 36% as cement-bonds and the remaining 48% as 

interfacial (aggregate-cement) bonds.  
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Figure 2.4. Determining the properties of a PD bond in the IH-PD model, based on the 

local volume fractions of phase A at points 𝒙 (𝑅), and 𝒙′(𝑅′). Note: here we only use 

the overall volume fraction of the phases in concrete, not the local ones. The 

microscale geometry is not used. 

 

 

Figure 2.5. A possible distribution of bond properties at a node in the IH-PD model. 

Only bonds connecting the nearest eight neighbors of the central node are shown. 
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Figure 2.6. The pre-processing step for instantiating bond properties in the IH-PD 

model, at a node 𝑥𝑖 for each 𝑥𝑗 node in its family. 

The mechanical properties for the interface can be chosen as the arithmetic or the 

harmonic averages [58] of the two phases A and B. In a recent paper on failure in solder 

joints [77], an area-weighted harmonic average method was introduced for computing 

elastic properties of PD interfacial bonds in order to reduce/eliminate oscillations in 

strains observed at an interface when other options are used. For concrete, the harmonic 

average is a good option for the elasticity of the interface, according to the test results 

given in [78]: 

𝑀𝐴𝐵 =
2𝑀𝐴𝑀𝐵

𝑀𝐴 +𝑀𝐵
 (2.9)   

where 𝑀𝐴, 𝑀𝐵, and 𝑀𝐴𝐵 are the mechanical properties corresponding to aggregate, 

matrix, and interface, respectively. The micromoduli of the three bond-types will be 

computed to match (see Eq. (2.5)) the 𝑀𝐴, 𝑀𝐵, and 𝑀𝐴𝐵 moduli, respectively. 



 
31 

The fracture properties (s0 values in Eq. (2.6)) for A- and B-bonds are computed based 

on the fracture energies of the two material phases: aggregate and mortar. In terms of the 

interfacial fracture property, we take into account that in concrete, the interface between 

aggregates and matrix is generally weaker than both of them. The fracture energy of the 

interface in concrete materials is found in experiments to be 4% - 34% that of the mortar, 

with a value estimated to be between 2.5 – 25.3 N/m [79]. Surface roughness also affects 

the fracture energy, increasing fracture energy with increasing roughness [79]. We 

choose the fracture energy of the interface to be 25% of mortar [19], and the 

corresponding property (𝑠0) of AB-bonds will be computed to match this value. (see Eq. 

(2.6)). 

Note that the stochastic pre-processing step illustrated in Figure 2.6 can generate different 

realizations of bond structure in different simulations if a different “seed” is used in the 

random number generator. Different simulations with the same IH-PD realization and 

same input data give, obviously, the same result. Different results are found using 

different microstructure realizations of the IH-PD model, even when the rest of the input 

data is the same. However, for a fixed horizon size, differences between such solutions 

become smaller the finer the grid (the larger the ratio of horizon to grid spacing, or the 

“𝑚-value” [80]) is.  

2.5 Radial displacement model for effective expansion of corrosion product 

Carbon dioxide and chloride ions from the environment can both depassivate the rebar 

surface [1, 2]. Carbon dioxide can neutralize the alkalinity of concrete and make the 

passive film unstable. Corrosion induced by carbonation usually happens uniformly. 

Chlorides, however, usually destroy the passive film locally, which results in non-
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uniform pitting corrosion on the rebar surface. Corrosion can be more non-uniform when 

one considers the heterogeneities (defects and pores) at the concrete-rebar interface. Non-

uniform corrosion leads to the non-uniformly distributed expansion of corrosion 

products. Various methods have been developed to mimic this expansion, rather than 

solve for it: radial displacement [81], internal pressure [82], or thermal expansion [83]. 

The purpose for these models is to use the distribution of displacements/pressures created 

by the expansion of corrosion products onto the concrete as a boundary condition, thus 

eliminating the need for explicitly modeling the rebar itself.  

Here, we choose the radial displacement method and select the von Mises distribution 

model to approximate the corrosion pattern. We implement this distribution as 

displacement boundary condition on the inner surface of the rebar hole [19], without 

actually modeling the rebar. The von Mises model for corrosion pattern is simple to 

implement and has shown good accuracy compared to available experimental data. The 

parameters in the formula have physical meanings and are easy to manipulate.  

Using the von Mises model, the expansion of corrosion product can be written in the 

form of a radial displacement as (see Figure 2.7): 

𝑇𝑑(𝜃) = (𝑎 − 1)𝜋𝑅𝜂
𝑒𝑘 cos(𝜃−𝜇)

2𝜋𝐼0(𝑘)
 (2.10) 

where 𝐼0(𝑘) is the modified Bessel function of order 0 written as 𝐼0(𝑘) = ∑
(
1

4
𝑘2)𝑖

(𝑖!)2
∞
𝑖=0 . The 

meaning of all parameters can be found in Table 2.1. The values of 𝑎 and 𝜂 are fixed to 

be 4 and 0.0003, respectively, for all the following numerical problems, while the values 

for other parameters depend on each problem.  
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A sketch of the von Mises radial displacement model and displacement plots for different 

k values (level of non-uniformity, k = 0 means uniform corrosion) are given in Figure 2.7. 

The thickness of the expanded corrosion product around the rebar surface (see Eq. (2.10)) 

will be used in our model as displacement boundary condition on the concrete inner hole 

surface, where the rebar expansion pushes against. To apply these conditions, considering 

the surface effect in peridynamic models [84], we use a fictitious layer of nodes outside 

of the domain (in the hole region) and enforce these displacements to all of the nodes in 

the fictitious region instead of only to the domain nodes located nearest to the surface of 

the hole. This is done to reduce the peridynamic surface effect. This layer is shown in 

Figure 2.8, and its thickness equals the horizon size 𝛿. With the horizon size approaching 

zero, the PD boundary condition converges to the classical boundary condition [85].  

Table 2.1.The meaning for parameters used in Eq. (2.10). 

Parameter Meaning 

𝑇𝑑 Thickness of the expanded layer 

𝑎 Ratio of rust expansion to corroded rebar 

𝑅 Radius of the rebar 

𝜂 Corrosion degree 

𝜇 Location of maximum thickness 

𝑘 Non-uniform coefficient 
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(a)  Schematic distribution of radial 

displacements caused by corrosion 

product expansion (redrawn from [19]). 

(b)  Thickness of the expanded layer around 

the rebar, for different parameter k values. 

Figure 2.7. The von Mises radial displacement model. 

There are different ways to implement the displacement boundary conditions defined by 

Eq. (2.10). For the elastic problem (no damage is allowed), the radial displacement 

boundary condition at the rebar hole surface is assigned in one step. For cases involving 

fracture, we incrementally increase the imposed displacements. One way to reach the 

values provided by the formula in Eq. (2.10) is to split the total/final radial displacement 

distribution, at each point around the (initially) circular rebar hole surface, in multiple 

equal steps (e.g. 100 steps). This is a simple option. However, in reality, certain part of 

the rebar corrodes earlier than other parts of the rebar, as shown in Figure 2.27 in 

Appendix A. Notice that the modeling of chloride diffusion given in Appendix A is 

important because it helps us in applying the von Mises boundary conditions on the rebar 

hole surface in Figure 2.8. Therefore, another option is to control the sequence of radial 

displacement at different locations around the rebar hole surface, as described in 

Appendix B.  
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Figure 2.8. Imposing displacement boundary conditions at the rebar hole surface using 

a fictitious node layer. Notice that the rebar is not included in the model.  

Other factors such as the porous zone at the concrete-rebar interface [19] and the 

movement of corrosion products into cracks [13, 86] also play a role in the cracking 

process, affecting the crack initiation time and the speed of crack growth. In the present 

work, we focus on the fracture patterns and its evolution in a quasi-static setting. 

2.6 Fracture in concrete due to corrosion of single/multiple rebars 

2.6.1 Concrete structure with a top-sided middle rebar 

In this section, we study a particular reinforced concrete structure with one rebar located 

as shown in Figure 2.9. For this case, only the region inside the red dashed contour will 

be shown in the numerical results. The bottom of the concrete structure is under roller 

support. The displacement boundary condition at the rebar hole surface was presented in 

Section 2.5. The material properties, used in all of the following simulations are gathered 

from several references and given in Table 2.2. Concrete properties listed in Table 2.2 are 

measured directly, not derived from those of concrete components. The volume fraction 

of aggregates is 40%, which is a common value used in literature [19, 56]. We first verify 

the elastic solution by comparing with FEM results. Then we conduct a PD convergence 

study of the fracture patterns using different horizon sizes. We perform a parametric 

study to show the influence of aggregate fracture energy on the formation of cracks. We 
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also show the evolution of fracture. After that, we compare the numerical simulation 

results for deformation of concrete surface with experiments.  

 

Figure 2.9. Geometry of the concrete structure with a top-sided middle rebar (mm).  

Table 2.2. Material properties for all concrete structures to be analyzed (from [19, 81, 87, 

88]). 

Material Young’s modulus (GPa) Fracture energy (N/m) 

Concrete 31.5 52.5 

Matrix 25.0 60.0 

Aggregate 70.0 500* 

Interface 36.8 (see Eq. (2.9)) 15.0 

* See section 2.6.1.2.3 for a parametric study. 

 

2.6.1.1 Verification for the elastic response 

We first verify the PD model for the elastic response (damage is not active) using the 

concrete structure with a top-sided middle rebar shown in Figure 2.9. We compare the 

FH-PD and IH-PD results with those from a FEM solution, when the displacements 

induced from the rebar corrosion are given by taking 𝑘 = 5 in Eq. (2.10). It should be 

noticed that the FEM solves the local model while the PD-solutions are for corresponding 

nonlocal models. The local and nonlocal solutions, in general, are different, but the 
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nonlocal model, in the limit of the horizon going to zero, should converge to the local 

elasticity solution [25, 80].  

For the FEM simulation, we generate a conforming map-mesh around the circular rebar 

with the total node number of 14,048 (see Figure 2.10 (a) and (b)). The rebar is not 

included in the model, but the displacement boundary condition at the concrete inner hole 

surface is the same as that used in the PD simulation (but only applied at the interface 

nodes, not over a layer of nodes). Figure 2.10 (c) and (d) show the displacements 

obtained with ANSYS using four-node plane strain elements (plane 182). 

 

(a)  Map-mesh for the concrete with one 

rebar. 

 

(b)  Zoom-in of the map-mesh for the 

concrete around the rebar (arrows 

schematically represent the imposed 

displacement boundary condition on the 

rebar hole surface in Figure 2.8). 

 

 

(c)  Horizontal displacement. 

 

 

(d)  Vertical displacement. 

Figure 2.10. FEM mesh and displacements computed using ANSYS (only the 

highlighted region from Figure 2.9 is shown). 
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(a)  Horizontal displacement, FH-PD model. (b)  Vertical displacement, FH-PD 

model. 

 

 

 

 

(c)  Horizontal displacement, IH-PD model. (d)  Vertical displacement, IH-PD 

model. 

Figure 2.11. Displacements obtained with the PD models (only the highlighted region 

from Figure 2.9 is shown). 

For the PD simulations with a uniform grid (for horizon size 2 mm and node spacing 0.5 

mm; total number of nodes 90,000), the displacements with both FH-PD and IH-PD 

models are shown in Figure 2.11. The contour plots for both PD models (plotted with 

Tecplot) and the FEM ANSYS solution are close to identical. The same color legend was 

used in all PD results, and we tried to match with the ones produced by ANSYS (some 

colors may have slightly different nuances between Tecplot and ANSYS). Note that the 

horizon size must be smaller than the smallest relevant geometrical feature of the model 

[29], the rebar size in our case. Otherwise, stress concentrations and cracks initiating 

from the rebar may not be captured accurately. The horizon size may need also to be 

correlated to the damage process zone if damage is involved [29]. The agreement 

between the PD and FEM solutions is very good, except for some small differences near 
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the boundary, caused by the peridynamic surface effect [84]. Note that a map-mesh 

cannot be used directly in the PD model due to the large size differences between 

elements near the rebar and those far from it. With an adaptive approach [68] or with the 

dual-horizon PD model [89], one could use such a mesh to generate the discretization 

nodes for the PD model. In the following PD simulations, we either use a uniform grid 

(𝑑𝑥 = 𝛿/𝑚 with 𝑚 = 4) or free-mesh conforming grid generated in ANSYS (linear quad 

elements with edge-length equal to 𝛿/4). See Section 2.3 for how non-uniform grids 

generated with ANSYS are transformed into PD grids. 

2.6.1.2 Fracture of concrete with a top-sided middle rebar 

Figure 2.12 shows the experimental results from [81], for fracture patterns in the case 

with a top-sided middle rebar. In our simulations we use the same geometry as used in 

the experiments. However, material properties for the aggregate, mortar and interface 

used in our simulation are from other sources (see Table 2.2) because they are not 

provided in [81]. External current was used to speed up the corrosion process in this 

experiment, which may result in different corrosion profile compared to natural 

conditions. Also, experimental results for only two samples were given in [81], with 

significant variability between their fracture patterns. As a result, we can only use these 

experimental observations for qualitative comparisons with our simulation results.  

 

(a)  Sample 1 

 

(b)  Sample 2 

Figure 2.12. Experimental results for different samples of reinforced concrete under 

accelerated corrosion test [81].  
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2.6.1.2.1. The 𝜹-convergence study 

First, for the concrete structure with a top-sided middle rebar (see Section 2.6.1), we 

compare the fracture pattern obtained by FH-PD and IH-PD models, using uniform and 

non-uniform grids, respectively. The fracture energy of aggregates is taken as 500 N/m 

and 𝑘 = 5 (level of non-uniformity, see Eq. (2.10). It should be noticed that fracture of 

aggregates is not considered in previous works [19, 21], this being equivalent to selecting 

an infinite fracture energy for aggregates. In our model, however, we select a large but 

finite value to also allow failure of aggregate PD bonds because aggregates do, 

sometimes, fracture when concrete fractures. As seen in Figure 2.13, with the FH-PD 

model we do not get convergence in terms of fracture patterns as we take the horizon size 

𝛿 to zero while keeping the ratio of 𝛿 and 𝑑𝑥 fixed (the 𝛿-convergence, see [80]). With 

either uniform or non-uniform grids, the fracture patterns change rather significantly 

when different horizon sizes are used. Although one of the fracture patterns (obtained 

using the larger horizon and the corresponding coarser grid) appears similar to one of the 

experimental observations, (see Figure 2.12), the vertical crack found by the FH-PD 

model for this case initiates at the rebar hole surface and then propagates to the concrete 

surface. This is opposite to what is reported in the experiments [81, 86] as well as 

previous numerical studies [17, 19]. In this fully homogenized model, with linear-elastic 

and brittle fracture, once the cracks start from the rebar hole surface, stress is 

redistributed uniformly through the material, and the tensile bending deformation at the 

concrete surface is relieved. Lower tensile stress at the surface means a crack cannot 

initiate there. The initial cracks continue to grow towards the concrete surface. 

Meanwhile, one or more cracks may initiate at the interface and propagate.  
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The reasons for the failure of the FH-PD model to converge come from changes in stress 

distribution caused by different grids around the rebar hole surface. Small changes in the 

location of highest tensile stress (strain) induced by use of different discretization grid 

sizes (especially with uniform grids), leads to variations in the location of crack initiation. 

These relative differences increase as the cracks grow. The differences in crack patterns 

are smaller when non-uniform (and not symmetric) conforming grids are used (see Figure 

2.13 (b)) because the stress state is less dependent on the grid. Nevertheless, any small 

difference is still amplified in terms of crack paths because the material is homogeneous 

and brittle, and therefore, sensitive to any small numerical perturbations.  

 

𝛿 = 4 mm 

 

𝛿 = 2 mm 

 

𝛿 = 1 mm 

 (a)  Uniform grids. 

 

𝛿 = 4 mm 

 

𝛿 = 2 mm 

 

𝛿 = 1 mm 

(b)  Non-uniform grids. 

Figure 2.13. Convergence study for the FH-PD model (𝑚 = 4) for parameter 𝑘 =  5 in 

Eq. (2.10). 

In the IH-PD models, the bond structures are different between the tests because different 

grid densities are used. When we use the same horizon size but create a new realization 

of the PD bond structure, the fracture patterns obtained are remarkably similar to one 

another (see Appendix D). As can be seen from Figure 2.14, the fracture patterns show 
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similar features for different horizon sizes too, matching well those from experiments 

(see Figure 2.12). Note that the fracture pattern obtained by the IH-PD model is not 

symmetric because the bond structure generated by the stochastic process (see Figure 2.6) 

is not symmetric. Moreover, with the IH-PD models, the vertical crack happens before 

the horizontal ones fully split the sample, which is consistent with the experimental 

observations. To further explore the reasons for the apparent success of the IH-PD model 

in contrast with the FH-PD model, in the next section, we discuss in detail the evolution 

of the fracture process in the IH-PD simulations.  

Since the fracture patterns obtained with 𝛿 = 2 mm are not much different from those 

with 𝛿 = 1 mm, for the remaining simulations we use the IH-PD model with 𝛿 = 2 mm, 

unless otherwise stated. Also, for simplicity, we only use uniform grids for the rest of the 

simulations. 

 

𝛿 = 4 mm 

 

𝛿 = 2 mm 

 

𝛿 = 1 mm 

 (a)  Damage maps for uniform grids. 

 

𝛿 = 4 mm 

 

𝛿 = 2 mm 

 

𝛿 = 1 mm 

(b)  Damage maps for non-uniform grids. 

Figure 2.14. Convergence study for the IH-PD model (𝑚 = 4) for parameter 𝑘 =  5 in 

Eq. (2.10). 
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2.6.1.2.2. Fracture evolution with the multiscale PD model 

To explain why 𝛿 –convergence for crack patterns happens in IH-PD but not in FH-PD, it 

helps to recall that bond properties are randomly distributed (to match the volume 

fraction of the phases in terms of the elastic response) in the IH-PD case. This small-scale 

variability leads to a relative insensitivity to variability in the computational grid. The 

results in Figure 2.14 (a) and (b) show that crack patterns are about the same for the 

uniform grid and the non-uniform grid (conforming to the round rebar).  

A typical evolution of fracture obtained with the IH-PD model is shown in Figure 2.15. 

Micro-damage first accumulates around the rebar hole surface due to failure of weaker 

bonds (most of them should be AB-bonds) around the interface where the displacement 

loading conditions are applied. Damage starts to localize into horizontal cracks. However, 

since the material ahead of the crack tip is composed of PD bonds with different failure 

resistance, the horizontal cracks propagate but may arrest in regions with higher crack 

growth resistance. When that happens, due to the continued loading, a vertical crack can 

initiate on the top surface and propagate across the concrete cover towards the rebar. The 

horizontal cracks may continue to grow and approach the sides of the concrete specimen. 

As the expansion of corrosion products continues, additional cracks may start from the 

rebar hole surface and propagate. 

The stage when micro-damage around the rebar forms is difficult to detect 

experimentally. Nevertheless, the initiation and propagation of the vertical crack are both 

consistent with the post-mortem experimental observations [81, 86, 90] and other 

numerical simulations which utilized the meso-scale structure of concrete[19-21, 81]. It 

can be shown by both theoretical and FE analysis that, before fracture occurs, the 
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maximum circumferential stress is located symmetrically about the vertical axis of the 

rebar [17]. From these locations, horizontal cracks initiate and propagate first, but the 

propagation is constrained by “chains” of aggregate bonds. Once horizontal cracks have 

grown sufficiently, the loading is similar to bending of a beam: vertical cracks start from 

the concrete surface because the top concrete surface is under highest tensile horizontal 

loading, while the rebar top region is under bi-axial compression [91]. Because of this, 

tensile horizontal stresses at the concrete surface build up and eventually lead to breakage 

of bonds. Only when the vertical crack reaches the rebar, can the horizontal cracks 

continue their propagation.  

 

 

(a) step 20 

 

(b) step 25 

 

(c) step 27 

 

 

(d) step 30 

 

(e) step 50 

 

(f) step 100 

Figure 2.15. Typical fracture evolution using the IH-PD model. 

In real problems, the microstructure randomness of concrete can lead to significantly 

different corrosion profiles around the rebar. We use our model to test how different 

“shapes” of corrosion distribution can affect the fracture patterns in the reinforced 
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concrete. The results presented in Figure 2.31 (Appendix C) show that the shape of the 

corrosion product pressure function (see the parameter 𝑘 in Eq. (2.10)) and the sequence 

of the imposed displacements (gradual or simultaneous corrosion around the rebar) affect 

the final fracture pattern but not in a significant way. Therefore, for the remaining 

simulations for the sample with a top-sided middle rebar (see Figure 2.9), we only use the 

k = 5 value. The corrosion process is assumed to happen simultaneously around the rebar 

in all remaining simulations. 

It should also be noticed that, due to the embedded randomness, slightly different fracture 

patterns are obtained when using different bond-scale realizations of the IH-PD model. A 

brief study on this is included in Appendix D.  

2.6.1.2.3. Parametric study in terms of the aggregates’ fracture energy 

As mentioned before, aggregate fracture is ignored in the available meso-scale models 

which use explicit representations of the aggregates. However, in physical tests, cracks 

do sometimes cut through aggregates. In order to understand the effect of aggregate-type 

bonds in the IH-PD model has on the overall failure behavior of the concrete-rebar 

structure, we perform a parametric study. Fracture patterns obtained by using different 

fracture energy for computing the critical strain for aggregate bonds in the IH-PD model 

are shown in Figure 2.16. We vary the fracture energy for such bonds from the small 

value equal to that of the mortar (not entirely realistic) to some arbitrary value (eight 

times larger than that of the mortar). When the fracture energy for aggregate bonds is too 

small, the vertical crack does not match the behavior seen in reality (Figure 2.16 (a)). 

When it is too large, significant damage spreads sideways from the major crack paths 

(Figure 2.16 (d)), also not observed experimentally. The latter result is caused by the 
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presence of the network of aggregate-type bonds in the IH-PD model, which is in contrast 

with the actual concrete microstructure (aggregates are inclusions, not long chains 

spanning the sample). The different topology at the micro-scale in the IH-PD model 

compared with the actual microstructure does not affect the material behavior in the 

elastic regime, but it can affect it once damage is considered [55]. With an intermediate 

value of G = 500 N/m, the crack patterns match well the trends seen in experiments. This 

value will be used for the remaining simulations. 

 

(a)  G = 100 N/m 

 

 

 

(b)  G = 300 N/m 

 

 

(c)  G = 500 N/m 

 

(d)  G = 800 N/m 

Figure 2.16. Fracture patterns produced by different choices for the aggregates’ 

fracture energy (case with k = 5 in Eq. (2.10)) with 𝛿 = 2 mm and 𝑚 = 4. 

2.6.1.2.4. Surface deformation 

As the rebar corrodes and the expansion of the corrosion product leads to internal 

pressure build-up, the concrete surface is experiencing horizontal tensile stresses, similar 

to the case of beam bending. The surface crack initiates once these tensile stresses/strains 

reach a critical value. A comparison with experimental results can be made for the 

vertical deformation of the concrete surface [81]. We also compare the width of the 
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surface crack. For these simulations, we choose a horizon size equal to 1 mm because the 

smallest width of the surface crack measured in experiment is around 2 mm.  

To estimate the surface crack width, we assume it to equal the smallest relative 

displacement between any two top-surface nodes on opposite sides of the crack with 

damage index bigger than 0.4. In Figure 2.17 we plot the deformation of the concrete 

surface (vertical displacement) and give the values of the crack opening width in the 

legend. The experimental curves were measured from the sample given in Figure 2.12 (a) 

at two different times. While the crack opening width is only qualitatively matched, the 

surface deformation curves are very similar to those measured in experiments. Some 

difference between experimental data and our numerical results is expected because our 

input data (the pressure profile) is only a rough approximation of the actual conditions. It 

should be noticed that in Figure 2.17 (b) the maximum deformation in experimental curve 

is not located at the surface crack of the experimental fracture pattern (see Figure 2.12 

(a)), which is unexpected. No reason was given for this inconsistency, but it is possible 

that the deformation was not measured exactly at the location of the cross-section shown 

in Figure 2.12 (a), but at a different location.  
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(a) step = 50 

 

 

(b) step = 100 

Figure 2.17. Comparison of surface deformation at two different corrosion stages 

between IH-PD results, experimental observations (see the sample in Figure 2.12 (a)) 

as well as the RBSM solutions in [81]. Data in the legends refers to the crack opening 

width at the top of the sample. 

2.6.2 Concrete structure with a corner rebar  

In this section, we study two cases in which the rebar is located at the corner of the 

concrete structure as shown in Figure 2.18. The material properties are the same as those 

in the case with a top-sided middle rebar. The geometry data is given in Table 2.3. The 

horizon size is 1 mm, and node spacing is 0.25 mm. A smaller horizon size is used 

because the rebar size here is smaller than the concrete structure in the previous example 

(see Section 2.6.1.1 for a discussion on selecting the horizon size). 
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Figure 2.18. Concrete structure with a corner rebar: geometry and mechanical 

boundary conditions. The bottom and right sides are symmetry lines. 

Table 2.3.Geometry data for two samples of the reinforced concrete structure shown in 

Figure 2.18 [92]. 

Geometry data  Sample 1 (mm) Sample 2 (mm) 

c 35 20 

d 16 12 

The experimental results (and zoom-in images) for two different samples (see Table 2.3) 

are shown in Figure 2.19. We note that the experimental setup used external current to 

accelerate corrosion [92]. The chloride appears to penetrate through the left side of the 

concrete cover according to Figure 2.19 (a) and (b). The zoom -in images show that the 

corrosion profiles vary significantly between the two samples, which could be, besides 

the slightly different geometrical setups, the main reason why the observed fracture 

patterns are also significantly different. 

For our PD model, we assume the corrosion profile for the top-sided middle rebar is 

rotated by an angle 𝛾, as shown in Figure 2.20, to account for the chloride penetration 

from the left side. For sample 1 with 𝛾 = π/2, 𝛾 = 3π/8 and 𝛾 = π/4, we obtain 

fracture patterns in Figure 2.21 (a), (b) and (c), respectively, with two different k values. 
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The crack patterns for sample 1 in the experiment, shown in Figure 2.19 (a), have a 

corner-type symmetry, while the computed results less so. For sample 2, Figure 2.21 (d) 

shows fracture patterns obtained with 𝛾 = π/4. The fracture pattern for 𝑘 = 10 shows 

diagonal symmetry, while the experimental fracture pattern, shown in Figure 2.19 (b) 

does not. Because only one sample was provided in the experimental work [92] for each 

geometry, it is difficult to draw a definitive conclusion in these cases. Some differences 

between our simulation results shown in Figure 2.21 and the experimental observations 

shown in Figure 2.19 may be attributed to several factors, such as: the partially-

homogenized PD bond structure is not an exact representation of the actual concrete 

microstructure; the boundary condition used to mimic the expansion of the corrosion 

products is an assumed approximate distribution instead of real values; some features 

could be reflections of 3D effects (possibly more significant for the corner rebar case than 

the previous symmetric rebar case), that our 2D model cannot be expected to replicate.  

We noticed that references [13, 14] (using a specialized constitutive model for concrete) 

obtained fracture patterns very similar to experimental observations using a 3D model. 

They obtained the radial expansion of corrosion product from the corrosion of rebar and 

applied it to the contact element between the rebar and the concrete. This coupling may 

produce more realistic boundary conditions for the corrosion expansion. However, the 

anodic regions around the rebar were determined beforehand in all simulations, by 

selecting just one pair of anode and cathode in each activated cross-section of the rebar. 

This may not be realistic since microcell corrosion in reality usually consists of many 

pairs of mixed anodic and cathodic areas [2], which would result in a relatively uniformly 

accumulated corrosion product along the depassivated rebar surface. The actual corrosion 
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process is a combination of micro- and macro-cell corrosion [2]. Macrocell corrosion 

involves pitting corrosion, leading to non-uniform corrosion patterns. Our way of 

applying radial displacement boundary condition (see Section 2.5) is a grossly simplified, 

but perhaps more reasonable approximation of real conditions because it can be seen as a 

weighted combination of pitting corrosion and uniform corrosion. Also, according to the 

pressure profile in [13, 14], the corrosion product accumulates in zones that do not seem 

to agree with the experimental observations from [92] (shown in Figure 2.19). Only one 

mesh was used for each example shown in [13, 14]. Since the crack band theory used to 

simulate the fracture process in [13, 14] has mesh orientation dependence ([15]), it would 

be interesting to see if any changes take place in the reported results if one uses a 

differently oriented mesh and whether possible changes in fracture patterns would match 

the fracture patterns variability seen experimentally.  

 

(a)  Sample 1 and the zoom-in at the rebar 

 

(b)  Sample 2 and the zoom-in at the rebar 

Figure 2.19. Experimental results for cracking in reinforced concrete due to corrosion 

of a corner rebar (from [92]). 
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(a)  Sample 1 with 𝛾 = π/2 (b)  Sample 1 with 𝛾 = 3π/8 

 

    

(c)  Sample 1 with 𝛾 = π/4 (d)  Sample 2 with 𝛾 = π/4 

Figure 2.21. Damage maps from the IH-PD models for corner rebar (with the same 

bond-structure realization) with different 𝛾 and 𝑘 values in Eq. (2.10). 

 

Figure 2.20. Corrosion profile for the corner rebar. 
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2.6.3 Corrosion induced fracture from multiple rebars 

A reinforced concrete structure with three rebars, shown in Figure 2.22, is analyzed next. 

Only the region inside the red dash contour is shown in the following numerical results. 

 

Figure 2.22. Geometry for the concrete structure with three rebars. 

In order to determine the departures from vertical symmetry for the pressure profiles for 

the left and right bars (due to the corner effect), we use the diffusion-based model in [38, 

93] to find the approximate corrosion patterns shown in Figure 2.28 (a). From the results 

shown in Figure 2.28 (b), the “tilt” in the corrosion pattern induced by the edge/corner 

effect is small but clear. Considering this, we choose the parameter 𝜇 in Eq. (2.10) to be 

𝜋 + 𝛾 and 𝜋 − 𝛾 respectively for the two side rebars so that their corrosion patterns are 

tilted by 𝛾 and −𝛾 respectively towards the two sides of the structure (see Figure 2.23). 

The corrosion pattern shown in Figure 2.28 (b) is obtained by a simplified diffusion-

corrosion model and thus may not be used directly to determine 𝛾 with high accuracy. 

Instead, we try several values for 𝛾 and observe the effects on fracture patterns. 



 
54 

 

Figure 2.23. Corrosion pattern for three-rebar cases. 

 

 

Figure 2.24. Experiment result of corrosion with three rebars (from [94]). 

The fracture patterns from the experiments in [94] (corrosion process was accelerated 

with applied current) are shown in Figure 2.24. With tilt angles 𝛾 = 0, 𝜋/18, and 𝜋/8, 

we obtain the results shown in Figure 2.25 (a), (b) and (c), respectively, with different k 

values. The PD results capture the merger of horizontal cracks observed in the 

experiment. Moreover, for 𝛾 = 𝜋/18 and k = 20, for example, two vertical cracks fully 

form, just like what was observed in the experiment. Unlike the case with one top-sided 

middle rebar, the fracture caused by the corrosion of multiple rebars is more complicated 

and is more sensitive to the microstructure of the concrete. Fracture patterns obtained 

with different realizations of IH-PD bond-structure are shown in Appendix D (Figure 

2.33). 
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(a)  𝛾 = 0 

   

(b)  𝛾 = 𝜋/18 

   

(c)  𝛾 = 𝜋/8 

 

Figure 2.25. Fracture patterns for different tilt angles of the pressure profile on the side 

bars (angle 𝛾) and different levels of non-uniformity in Eq. (2.10). 

2.7 Conclusions 

We introduced a 3-phase stochastic multiscale intermediately-homogenized peridynamic 

(IH-PD) model to study fracture in reinforced concrete due to non-uniform rebar 

corrosion. Different from traditional meso-scale heterogeneous models, our model only 

uses the volume fraction of different phases in the heterogeneous material. A simple 

constitutive model, linear-elastic with brittle failure, is used. We show and explain the 

reasons for which a fully homogenized peridynamic model leads to fracture patterns and 

failure evolution different from what is observed experimentally, while the new IH-PD 

model results match experimental observations very well. The model does not consider 
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details such as aggregate sizes and shapes, making the analysis much simpler/cheaper 

than that of models with explicit representation of the microstructure geometry, matching 

the computational cost of a fully homogenous model. 

The corrosion product expansion around the rebar was approximated here by the “von 

Mises model” from the literature. This simplified the analysis. For a more accurate 

representation of pressures induced by corrosion product formation around the rebar, the 

current model could be coupled with an explicit corrosion model. 

We tested the IH-PD model on concrete structures with a single or multiple rebars. The 

numerical results match well experimentally observed crack patterns as well as the 

sequence/evolution of their growth. We performed computations using several different 

stochastic realizations of the peridynamic bond structures and found that fracture patterns 

remain within the variability of features observed experimentally.  

The IH-PD model succeeds in balancing the accuracy of fracture prediction in concrete 

from (expensive) models that use an explicit representation of aggregates, with the 

efficiency of homogeneous models. It can be used for larger scale modeling without 

losing the influence the microscale has on the failure behavior of the material. 
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Appendix A. Rebar corrosion patterns from diffusion of chlorides 

To better understand how to apply the equivalent boundary conditions that would mimic 

the expansion of the corrosion products in the concrete rebar hole, we use the PD 

diffusion model [38, 93] to compute the diffusion of chloride into the concrete cover, 

estimate the regions in the rebar where the chloride concentration reaches a certain 

threshold and approximate the potential corrosion regions around of the rebar. Notice that 

the result obtained here is only used to help with the selection of radial displacement 

boundary conditions at the rebar hole surface. Once chloride concentration around the 

rebar reaches the threshold value [1, 2], the passive film covering the rebar is destroyed 

and the rebar corrodes. We can assume that the breaking of the passive film and corrosion 

of the rebar happen immediately since the time needed for this process is much shorter 

than that for the chloride to diffuse to the rebar. Here we only “mimic” the evolution of 

corrosion (with a simpler diffusion-only model). Of course, a full PD corrosion-damage 

simulation [39] could be used for a more precise analysis, but here we only need a rough 

approximation, given the uncertainties and variations in these types of problems. Note 

that we do not take into account the likely defects/pores at the rebar-concrete interface 

that affects this process in reality.  

Because the PD diffusion model is nonlocal, we have three different options to judge 

when the chloride concentration at a point 𝒙 reaches the threshold value:  

1. if point x reaches the threshold; 
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2. if any of its family points reaches the threshold; 

3. if half of its family points reach the threshold. 

Here we use the third option (Figure 2.26), which takes a slightly longer time for the 

corrosion to happen, to compensate for the assumption that the passive film breaks 

immediately when the chloride content reaches the threshold value. When the horizon 

size is small enough compared to the rebar size (its diameter), there is little difference 

between the three options above. The boundary conditions for the concrete structure with 

a top-sided middle rebar are shown in Figure 2.26. The chloride penetrates the concrete 

from all edges of the concrete. The same boundary and initial conditions (zero 

concentration over the RC structure) are used for all other cases except for the last one 

with three rebars.  

Diffusion/”corrosion” patterns obtained for different concrete structures are shown in 

Figure 2.27 and Figure 2.28. Modeling of corrosion processes as a diffusion-only process 

is a major simplification. However, the patterns obtained with this simplified model are 

sufficient to inform us about the possible spread of corrosion products. 

 

 

Figure 2.26. A zoom-in sketch of the concrete structure with a top-sided middle rebar 

under diffusion of chloride. A rebar node is “corroded” once half of its family nodes 

reach the critical chloride concentration. 
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(a) Concrete with a top-sided middle rebar 

 

 

(b) Concrete with a corner rebar 

 

 

(c) Time-progression of diffusion: zoom-in around the rebar in (a).  

 

 

(d) Time-progression of diffusion: zoom-in around the rebar in (b) 

 

Figure 2.27. Computed diffusion/”corrosion” for rebars in two different concrete 

structures. Points in the rebars with a concentration larger then a threshold value are 

shown in red. 
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(a) Chloride diffusion in the three-rebar 

case. 

 

(b) The diffusion pattern around the left 

side rebar (𝛾 is the tilt angle of the 

corrosion pattern relative to the vertical 

direction). 

 

Figure 2.28. Points in the rebars with a concentration larger than a threshold value 

(shown in red) obtained from chloride diffusion (from the top surface only) for the 

concrete structure with three rebars. 

Appendix B. Applying radial displacement at the rebar hole surface 

As mentioned in Section 2.5, the simplest way to apply the radial displacement boundary 

condition is to incrementally increase the imposed displacements at each point around the 

rebar hole surface in multiple equal steps, assuming that the corrosion around the 

interface happens simultaneously. However, considering the fact that certain part of the 

rebar corrodes earlier than other parts, as shown in Figure 2.27, another option is to 

control the sequence of radial displacement at different locations around the rebar hole 

surface to mimic the evolution of the corrosion front (or corrosion products) around the 

rebar. To explain the idea, we only consider the right half of the rebar hole surface 

because of symmetry. As shown in Figure 2.29, the right half of the interface is evenly 

divided into 𝑛 sectors. The incremental steps (total number of 100) at which these sectors 

are applied the radial displacements are shown in Figure 2.30. For boundary nodes in 

sector 𝑘, the radial displacement is applied evenly from t𝑘−1 to t𝑛. We consider both 
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these options in Appendix D. Because the total radial displacement is very small (the 

concrete is very stiff), we can assume that the shape of the rebar hole surface is close to 

circular at all times, and therefore the direction of the radial displacement is always 

normal to the rebar hole surface. 

 

Figure 2.29. Rebar cross-section (half) is split into n equal sectors. 

 

 

Figure 2.30. Applying radial displacements increments for different sectors around the 

rebar considering the evolution of the corrosion process. Radial displacement for each 

sector is applied incrementally during different time periods. 
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Appendix C. Parametric study on corrosion-induced pressure profiles 

In real problems, due to the randomness of the microstructure of concrete, the corrosion-

induced pressure profile around the rebar can take different shapes, which may lead to 

different fracture patterns in the concrete. Thus, it is necessary to try different shapes of 

corrosion distribution in our simulations. The parameter k in Eq. (2.10), expressing the 

level of non-uniformity in the pressure profile, is the main factor which affects the shape 

of the pressure distribution (imposed as applied displacements here) around the rebar. 

Here we test the influence different k values have on the fracture patterns obtained. We 

also study the influence the way incremental displacements are applied (as discussed in 

Section 2.5 and Appendix B) have on fracture patterns. 

Fracture patterns for different k values are given in Figure 2.31, using the constant or 

sectorial implementation of imposed displacements around the rebar. We notice that the 

effects of the particular imposition of internal pressures are negligible. When k is small, 

four major cracks develop. As k increases, the pressure from corrosion products is more 

pronounced near the top of the rebar, and, as a result, there is less cracking around the 

rebar and the crack growing vertically down does not form when k = 20. All of these 

different fracture patterns, nevertheless, match well with the experimental results shown 

in Figure 2.12, which also exhibit three or four major cracks. Because of microstructure 

randomness in concrete and since the IH-PD model does not consider it explicitly, our 

goal wat not to exactly match the experimental results, but to obtain the trends seen 

experimentally.  
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(a) without control of radial 

displacement 

(b) with control of radial 

displacement 

Figure 2.31. Fracture patterns with the IH-PD model for the concrete sample with a 

top-sided middle shown in Figure 2.9. 

Appendix D. Influence of different realizations of the IH-PD material model 

Different bond-scale realizations/bond-structures of the IH-PD model, due to the 

embedded randomness, lead to slightly different fracture patterns. Figure 2.32 gives four 

such results for the concrete structure with one top-sided middle rebar. The main fracture 

pattern features are reproduced in all cases, with some differences in the finer details. 

This is not unlike what is observed in experiments between different samples (see Figure 

2.12). 
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Different realizations of bond-structure in the IH-PD models for the concrete structure 

with three rebars also give similar fracture patterns (see Figure 2.33). These results show 

that the randomness in the IH-PD model leads to results that are in the range of variability 

seen in experimental results.  

  

(a) Realization 1 

 

 

 

(b) Realization 2 

 

 

(c) Realization 3 

 

(d) Realization 4 

Figure 2.32. Fracture patterns obtained from different realizations of the bond-structure 

in the IH-PD model for the top-sided middle rebar geometry. 

 

 

(a) Realization 1 

 

(b) Realization 2 

 

(c) Realization 3 

 

Figure 2.33. Fracture patterns for different realizations of IH-PD model for the three 

rebars example, with 𝛾 = 𝜋/18 and k = 20. 
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Chapter 3 A Peridynamic Model for Galvanic Corrosion and 

Fracture 

3.1 Introduction 

Corrosion induced by galvanic coupling can cause deep and rough trenches at the 

material interface, leading to dangerous situations like other types of localized corrosion, 

such as pitting corrosion. As stresses rise at these locations, cracks can easily initiate and 

grow catastrophically. Efficient and accurate predictions of galvanic corrosion problems 

can help evaluate their effect on engineering structures and provide insights on solutions 

to prevent it. Due to the simultaneous influence of multiple physical mechanisms 

involved in galvanic corrosion, computational models are necessary for this purpose. A 

comparison between different computational models for corrosion can be found in [1]. 

Major recent advances in galvanic corrosion modeling comes with models based on finite 

element method (FEM) [2–4] or phase field (PF) method [5,6]. 

A FEM-based model was developed for galvanic corrosion using the commercial 

software COMSOL MultiPhysics® (COMSOL hereafter) [2] and validated against the 

experimental results in [3]. For the galvanic couple between steel and magnesium alloy, 

although the initial current density and the final corrosion depth obtained by the model 

have similar patterns to the measured data, the maximum current density and corrosion 

depth, as well as the transition across the material interface, present nontrivial deviations 

from the experimental data. A similar model was used in [4] to investigate the effect of 

mechanical loading on the galvanic corrosion behavior by including stress/strain-

dependent electric potential. However, the corrosion pattern obtained by this model, 

when the mechanical loading is absent, agree even less with those from the experiments 
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shown in [3]. This deviation possibly comes from the linear, instead of piecewise linear, 

fitting of the polarization curve. The authors of [4] also studied crack initiation in the 

galvanic couple under uniaxial tension loading by computing the stress intensity factor, 

approximating the specimen as a side edge notched tensile specimen. As the corrosion 

front progresses, it departs from such an idealization of the geometry, and these 

approximations may not be sufficiently accurate. Corrosion depths closer to experimental 

observations in [3] were obtained in [7][8] by taking into account the effect of corrosion 

deposition on the corrosion rate. 

A PF model for corrosion in galvanic couples was introduced in [5]. However, in the 

simulation results, the current density distribution does not match well a reference 

solution given by the FEM-based COMSOL simulation [3]. In addition, the corrosion 

depth at the junction of the galvanic couple deviates from experimental observation [3] 

significantly. A different PF model was developed in [6] and was verified against a FEM-

based model built in COMSOL, but the polarization was neglected along the corroding 

interface and no validation tests against experimental data were presented. 

One notes that, for these FEM-based /PF models, when corrosion happens at the interface 

between two joined metal parts, an artificial step-down on the anode side needs to be 

introduced because of mathematical and numerical inconsistencies [5,6]. As we shall see, 

in the absence of such a step, an incorrect evolution of the corrosion front is obtained (see 

discussion in Section 3.4.2 below). Determining a proper height of this artificial step has 

not been examined in the published literature. Moreover, with these models based on 

partial differential equations (PDEs), there is, so far, no attempt to couple galvanic 

corrosion in a couple with that of crack initiation and propagation. This is partly due to 
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difficulties in being able simulate the complex interactions of these two critical 

mechanisms: singularities (in classical models), moving-boundary problem, arbitrary 

geometries, etc. 

Recently, the peridynamic (PD) method has been applied to corrosion modeling [9,10]. 

PD models view corrosion as material damage caused by the dissolution of metal into the 

electrolyte, coupled with the diffusion of metal ions in the electrolyte [9,10]. A 

concentration-dependent damage index monitors the evolving corrosion front (phase 

changes from solid to electrolyte) and the gradual changes in material degradation across 

the Diffusion-based Corrosion Layer (DCL) [9]. This provides us a better understanding 

of the factors that lead to the degradation of mechanical properties (strength, ductility, 

etc.) observed in corroded samples. The PD model has been especially advantageous in 

simulating stress-corrosion cracking, as shown in the results for pit-to-crack transition 

obtained in [11].  

The existing PD corrosion models, however, use an important simplification: for 

activation-controlled corrosion, one assumes a constant potential along the corrosion 

front. The constant potential determines a constant current density from the polarization 

curve which is measured experimentally. This approach avoids solving for the electric 

potential distribution along the corrosion front and is acceptable for pitting corrosion 

cases in which the potential distribution (and therefore the current density) along the pit 

surface is close to uniform [12]. To cover situations like salt layer formation or 

passivation at the corrosion front when diffusion-controlled conditions dominate (and the 

potential distribution varies significantly along the corrosion front), the existing PD 

models include concentration-based rules that can cause pausing/stopping of metal 
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dissolution as specific locations along the corrosion front [10,13], effectively leading to 

non-uniform corrosion rates (even if the input corrosion rate is constant). Under 

activation-controlled conditions, however, these mechanisms are not triggered, and the 

existing PD corrosion models would not apply to galvanic corrosion problems [14], in 

which activation-controlled conditions are critical and the electric potential (or the 

corrosion rate) varies significantly along the corrosion front. Moreover, these variations 

can also change drastically as the corrosion front evolves. This is the reason why one 

needs to compute the distribution of the electric potential along the corrosion front in 

order to predict the evolution of galvanic corrosion.  

For galvanic corrosion problems, FEM-based and PF models first evaluate the electric 

potential by solving the Laplace’s/Poisson’s equation, with the boundary condition (BC) 

given by the corresponding metals’/alloys’ polarization curves (Tafel’s equations). The 

electric potential determines the current density, which is related to corrosion rate by 

Faraday’s law [2,6,15]. Following a similar procedure, in this paper we introduce a PD 

electric potential model, and couple it with the existing PD corrosion model [10]. This 

model is an important extension compared with the previous PD model and will be 

applicable to a larger class of corrosion problems, including galvanic corrosion. When 

solving for the electric potential, in order to apply the nonlinear Robin BCs at the 

arbitrarily-shaped corrosion front and reduce the PD surface effect in the PD electric 

potential solver, we use a recently introduced autonomous fictitious nodes method (FNM) 

([16]).  

In addition to introducing the PD electrostatic solver to compute the electric potential, we 

reformulate the PD corrosion dissolution model in [9,10] based on electrochemistry, and 
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replace the previous numerical calibration stage (which required a trial solution in the 

pre-processing step) with an analytical one. By eliminating the numerical calibration, the 

model is significantly more efficient in problems with highly non-uniform current 

densities along an arbitrary-shape corroding surface, which is often the case in galvanic 

corrosion problems. The damage-dependent corrosion model used in the original PD 

corrosion model in [9] is no longer needed. The new model eliminates the required (in 

order to match the experimental observations) artificial changes to the given geometry of 

a galvanic couple in models based on PDEs (e.g., COMSOL, phase-field).  

We verify the new model for a uniform corrosion 2D case against a classical analytical 

solution in terms of the electric potential and current density at the beginning of the 

corrosion process, as well as the evolution of the corrosion depth in time. The model is 

validated against experimental galvanic corrosion results available in the literature for a 

mild steel-AE44 galvanic couple. The results for the initial current density distribution 

and final corrosion profile are also compared with those from a model built using 

COMSOL. A coupled corrosion-fracture problem is solved to show the potential of the 

new PD model in resolving failure caused by the combination of sharp corrosion damage 

(induced by galvanic corrosion) and mechanical loading.  

3.2 Kinetics of galvanic corrosion 

In galvanic corrosion, the metal/alloy with lower corrosion potential is the anode and 

corrodes first. The ordering of corrosion potential (the galvanic series) for metals/alloys, 

for a specific environment, is determined from experiments (see pages 171-172 in [17]). 

However, the galvanic series only gives information about the corrosion tendency. The 

actual corrosion rates of the anode must be determined by separate experiments and the 
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mixed potential theory by overlaying the polarization curves of the constituent individual 

metals/alloys [2], as schematically shown in Figure 3.1.  

 

Figure 3.1. Schematic polarization curves of anode and cathode in a galvanic couple 

(see page 177 in [17]). 𝜙0
𝑐 and 𝜙0

𝑎 are the uncoupled corrosion potential and 𝑖0
𝑐 and 𝑖0

𝑎 

are the uncoupled exchange current density for the cathode and anode, respectively. 

𝜙couple and 𝑖couple are the coupled corrosion potential and current density, 

respectively. 

Electrochemical polarization is the change in electrode potential due to the flow of 

current (see page 127 in [14]). When the overpotential is small, the corrosion process is 

activation controlled. In this corrosion type, the current density is governed by Tafel's 

law: 

where 𝑖0 is the uncoupled exchange current density, 𝜙 is the electrode potential, 𝜙0 is the 

uncoupled corrosion potential and 𝛽 is the geometric slope of the linear portion of the 

semi-logarithmic plot of the polarization curve.  

When the overpotential is large, the resulting high anodic dissolution rate saturates the 

electrolyte near the anode surface, and the corrosion process becomes diffusion 

𝑖𝑎 = 𝑖0 × 10
𝜙−𝜙0
𝛽   (3.1) 
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controlled. In this case, the current density is determined by concentration changes in 

reactants or products near an electrode surface. Between these two corrosion types, there 

exists a transition corrosion type called IR controlled corrosion which is caused by 

resistance of the electrolyte to the current flow. It happens because there is a finite 

distance between the reference electrode and the metal surface to be investigated (see 

pages 130-131 in [14]). There are other factors which can affect the corrosion rate, such 

as the pH field, temperature field, formation of corrosion products, etc. In real corrosion 

problems, the corrosion rate is simultaneously influenced by multiple factors and can be 

determined from the polarization curve measured from corresponding experiments.  

For the computational modeling of galvanic corrosion in this work, we focus on the 

anodic reaction (metal dissolution). The cathodic reaction and the mass transfer in the 

electrolyte will not be included. Consider an anodic reaction: 𝑀 → 𝑀𝑞+ + 𝑞𝑒−, the 

current density is formulated by Eq. (3.1) in which the unknown coefficients are 

determined by the polarization curve obtained from experiments. 

Note that 𝑖𝑎 scales linearly with the magnitude of the molar dissolution flux (|𝑱diss|) at 

the corrosion front via Faraday’s law [18]: 

where 𝑞 is the charge number and 𝐹 is the Faraday’s constant. To use Eq. (3.1) to 

determine the distribution of current density at the electrode surface, we have to solve for 

the potential distribution in the electrolyte domain. The electrostatic field satisfies the 

following Poisson equation [19,20]: 

𝑖𝑎 = 𝑞𝐹|𝑱diss|.  (3.2)  
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∇2𝜙 =
𝜌

𝜀0
= 
�̇�

𝜎
 (3.3)  

where 𝜙 is the electric potential, 𝜌 is the charge density, 𝜀0 and 𝜎 are the electric 

permittivity and conductivity of the medium, respectively. For problems in this work, 

electroneutrality is satisfied in the electrolyte domain, therefore, Poisson’s equation 

reduces to the Laplace’s equation: 

∇2𝜙 = 0. (3.4)  

Rather than using this classical model (Laplace’s equation) to approximate the electric 

potential in the electrolyte for the examples shown in Section 3.4, we will use the 

corresponding nonlocal (PD) version of this equation because it will be easier to couple it 

with the mechanical PD model that we seek to employ for simulating the corrosion and 

fracture of the sample exposed to galvanic conditions and mechanical loadings. The PD 

model for the electrostatic solver is given in Section 3.3.2.1. 
3.3 A coupled PD model for electric potential-driven corrosion and fracture  

The PD theory is a nonlocal extension of the classical continuum mechanics [21]. The PD 

formulation is in the form of integro-differential equations (IDEs) rather than PDEs used 

in classical local theories. In PD models, discontinuities such as cracks/damages can 

initiate and propagate naturally and autonomously [22–25]. While the PD method has 

been primarily used to deal with mechanical behaviors [22,24,26–29], it has also been 

employed in diffusion-type problems involving cracks and damage, including thermal 

diffusion [30–33] and mass transport (e.g. corrosion) [1,9,10,13,34–36].  
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Consider a PD body occupying the domain Ω ∈ ℝ𝑘, 𝑘 = 2 or 3, in which a point 𝒙 ∈

Ω interacts with points 𝒙 ∈ Ω\𝒙 in a neighborhood 𝐻𝒙 (called the horizon region of 𝒙, 

usually selected to be a disk in 2D, sphere in 3D, centered at 𝒙). The radius of 𝐻𝒙 is 

called the horizon size (or simply, the horizon) and denoted by 𝛿. Objects that carry the 

pairwise nonlocal interactions between points are called bonds. Figure 3.2 schematically 

shows a PD body with a generic point 𝒙, its family and its horizon. 

  

Figure 3.2. Nonlocal interaction between point 𝒙 and an arbitrary point located in the 

horizon of 𝒙. 

In this section we first briefly review the PD mechanical (for fracture) model and then 

introduce an extended PD corrosion model. Finally, we show how these models are 

coupled together into a PD corrosion-fracture model. For further discussion on the model 

the following definitions for solid and liquid domains are useful: 

Ω𝑠(𝑡) = {𝒙 ∈ Ω|𝐶(𝒙, 𝑡) > 𝐶sat} 

Ωdiss(𝑡) = {𝒙 ∈ Ω|𝐶sat < 𝐶(𝒙, 𝑡) < 𝐶solid} 

Ω𝑙(𝑡) = {𝒙 ∈ Ω|𝐶(𝒙, 𝑡) ≤ 𝐶sat} 

(3.5)  

where 𝐶solid refers to the concentration of metal atoms in the intact solid phase, and 𝐶sat 

is the saturation value for dissolved metal atoms in electrolyte. 
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3.3.1 Bond-based PD mechanical model  

The equations of motion for the bond-based PD mechanical model, at each 𝒙 ∈ Ω𝑠, can 

be written as [22]:  

𝜌(𝒙)�̈�(𝒙, 𝑡) = ∫ 𝒇
𝐻𝒙∩Ω𝑠

(𝒖(𝒙, 𝑡) − 𝒖(𝒙, 𝑡), 𝒙 − 𝒙)𝑑𝑉𝒙 + 𝒃(𝒙, 𝑡)  (3.6)  

where 𝑡 is the time, 𝜌 is the density field, 𝒖 is the displacement vector field, 𝒇 is the 

pairwise force in the PD bond 𝒙 − 𝒙, and 𝒃 is the body force field. 𝑑𝑉𝒙 is the volume 

(area in 2D, length in 1D) associated with 𝒙 that is covered by 𝐻𝒙. The pairwise force for 

a prototype micro-elastic brittle material is defined as [22]: 

𝒇 = 𝑐𝑠𝜇
𝝃 + 𝜼

‖𝝃 + 𝜼‖
 (3.7)  

where 𝝃 = 𝒙 − 𝒙 is the relative position of 𝒙 and 𝒙 in the reference configuration, 𝜼 =

𝒖(𝒙, 𝑡) − 𝒖(𝒙, 𝑡) is the relative displacement with respect to the reference configuration, 

𝑐 is the micro-modulus function or the elastic stiffness of the bond which can take 

different forms depending on the required horizon-scale behavior [37], 𝑠 =
‖𝝃+𝜼‖−‖𝝃‖

‖𝝃‖
 is 

the relative deformation or bond strain. PD bonds break when they reach the critical 

relative deformation 𝑠0 and the state of a bond is tracked by the bond damage factor 𝜇 as 

[22]: 

𝜇(𝒙, 𝒙, 𝑡) = {
 1     if 𝑠(𝒙, 𝒙, 𝑡′) < 𝑠0 for all 0 ≤ 𝑡

′ ≤ 𝑡
 0     otherwise

 (3.8)  
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which means once a bond breaks, it does not carry bond force anymore. With the 

breakage of bonds, failure starts to accumulate, and cracks begin to initiate and 

propagate. The damage index 𝑑 is used to measure the damage level at a point: 

𝑑(𝒙, 𝑡) = 1 −
∫ 𝜇(𝒙, 𝒙, 𝑡)d𝑉�̂�𝐻𝒙

∫ d𝑉𝒙𝐻𝒙

. (3.9)  

After spatial discretization, 𝑑(𝒙, 𝑡) is the ratio of the number of broken bonds to that of 

total bonds connected to point 𝒙 at time 𝑡. When all bonds connected to point 𝒙 are 

broken, 𝑑(𝒙, 𝑡) = 1 and point 𝒙 becomes a free point. In this work, we consider the 

constant micro-modulus function [27]. For plane stress conditions, we have 𝑐 =
9𝐸

𝜋𝛿3
 and 

𝑠0 = √
4𝜋𝐺0

9𝐸𝛿
 (𝐸 and 𝐺0 are Young’s modulus and energy release rate, respectively), while 

for plane strain conditions, we have 𝑐 =
48𝐸

5𝜋𝛿3
 and 𝑠0 = √

5𝜋𝐺0

12𝐸𝛿
.  

For mechanical equilibrium problems with no body forces, but in which damage may 

evolve in time because of corrosion, Eq. (3.6) becomes: 

∫ 𝒇
𝐻𝒙

(𝒖(𝒙, 𝑡) − 𝒖(𝒙, 𝑡), 𝒙 − 𝒙)𝑑𝑉𝒙 = 0  (3.10)  

where 𝑡 is the time when equilibrium is tested/enforced after a certain evolution of the 

corrosion process. Appropriate conditions on the boundaries (volume constraints) have to 

be assigned to this equation for specific problems. In many cases, it is convenient to 

enforce these nonlocal BCs to approximate as close as possible the local BCs one would 
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use in a classical model. For each of the examples solved below we describe these 

conditions in detail.  

3.3.2 PD corrosion model 

Corrosion is the result of an electrochemical process. In the presence of electrolytes, 

metal corrosion can be represented as a dissolution process of the solid material (metal) 

into the liquid medium (electrolyte). The diffusion of metal ions in the electrolyte can 

affect the dissolution rate. This process can be effectively described by the original PD 

corrosion model [9,10], which treats corrosion as a diffusion-type problem in a bi-

material system, with specific diffusivities assigned to the solid (an effective diffusivity, 

not its actual one), liquid and interface phases. Later it was recognized ([10]) that 

important savings can be achieved by focusing only on the dissolution layer part of the 

solid (the DCL, Diffusion-based Corrosion Layer [38]) and the electrolyte, as the rest of 

the solid (with its very small actual diffusivity) does not directly participate in the 

corrosion process. Specifically, the dissolution flux of metal ions crossing the solid-liquid 

interface is used in the PD diffusion equation to solve for the metal ion concentration in 

the bi-material system. The nonlocality in PD models introduces a length scale which 

facilitates modeling of the dissolution flux, which cannot be defined in local models 

when jump-discontinuities are present at the interface [10].  

The dissolution process causes mechanical damage through a thin layer (several 

micrometers-thick) at the corroding surface [38–41]. To model mass transport and 

material damage simultaneously in the PD corrosion model, the material damage 

definition (𝑑) in Eq. (3.9) is employed and two sets of bonds are overlaid: transport bonds 

and mechanical bonds. Transport bonds are responsible for diffusion/dissolution of metal 



 
83 

ions/atoms, while mechanical bonds provide the link between strain- and corrosion-

induced damage. The corrosion damage process is the progression of material 

damage/disintegration into the intact material. When the concentration at a solid point 

drops below the saturated concentration, the point suffers a phase change from solid to 

electrolyte (its diffusivity is switched to that of the electrolyte), and all of its mechanical 

bonds are broken (its damage value becomes 1). Material points with a damage value 

lower than 1 are part of the solid phase: intact (𝑑 = 0, no broken bonds) or partially 

damaged (0 < 𝑑 < 1). 

Existing PD models for corrosion can capture important changes that happen near the 

corrosion front (on the solid side) and offer a more complete description of corrosion 

damage than was possible before [1,9,10,13]. However, in these models, an important 

simplification is used for activation-controlled corrosion, namely that the overpotential is 

a constant value (independent of location) along the corrosion front. This value can be 

measured from experiments and determines the current density from corresponding 

polarization curves. This treatment avoids solving for the electric potential distribution 

along the corrosion front and is acceptable for pitting corrosion cases in which the 

potential distribution (and therefore the current density) along the pit surface is close to 

uniform [12]. To cover situations like salt layer formation or passivation at the corrosion 

front when diffusion-controlled conditions dominate (and the potential distribution varies 

significantly along the corrosion front), the existing PD models include concentration-

based rules that lead to the pausing/stopping of metal dissolution [10,13]. Under 

activation-controlled conditions, these mechanisms are not triggered, and the existing PD 

corrosion models would not apply to galvanic corrosion problems [14], in which 
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activation-controlled conditions are critical and the electric potential (or the corrosion 

rate) varies significantly along the corrosion front. Moreover, these variations also 

change drastically as the corrosion front evolves. Therefore, to predict galvanic corrosion, 

it is necessary to compute and update the potential distribution throughout the corrosion 

process, so that the distribution of corrosion rates along the corrosion front can be 

updated accordingly. 

To achieve this goal, we introduce a PD electrostatic solver to compute the electric 

potential distribution in the electrolyte domain. In addition to that, we reformulate the PD 

corrosion dissolution model in [10] based on electrochemistry to substitute the numerical 

calibration with an analytical one. This change makes the model more reliable for 

problems with highly non-uniform current densities along arbitrary corroding surface, as 

in the case of galvanic corrosion. Moreover, we show that the damage-dependent 

corrosion model which was used in the original PD concentration-dependent damage 

model is no longer needed. 

3.3.2.1  PD electrostatic model 

In galvanic corrosion, one can use the classical model (Laplace’s equation) shown in Eq. 

(3.4) to find the electric potential. However, because we would like to couple the electric 

potential solver with the PD corrosion model, it is more convenient (for a seamless 

integration) to formulate and solve the corresponding PD problem of Laplace’s equation 

in Eq. (3.4) to find the electric potential needed in the corrosion model. The PD model for 

finding the electric potential is identical to that for steady state diffusion, with a constant 

micro-diffusivity: 
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∫
𝜙(𝒙) − 𝜙(𝒙)

∥ 𝒙 − 𝒙 ∥2
𝐻𝒙

𝑑𝑉𝒙 = 0. (3.11)  

When using Eq. (3.11) to solve for the electric potential in the electrolyte, the BCs away 

from the metal surfaces can be approximated as homogeneous Neumann-type conditions 

(zero flux across those boundaries). The BC that has to be specified on the metal 

surfaces, according to the Ohm’s law, is: 

𝑖(𝒑, 𝑡) = −𝜎∇𝒏𝜙(𝒑, 𝑡) (3.12)  

in which 𝒑 is a point at the metal surface, 𝜎 is the electric conductivity, 𝑖 is the current 

density and ∇𝒏𝜙 = ∇𝜙 ⋅ 𝒏, where 𝒏 is the outward unit normal. The relation between 𝑖 

and 𝜙 can be measured experimentally and expressed using Tafel’s equation (see Eq. 

(3.1)). This makes Eq. (3.12) a nonlinear Robin type BC [2], written as: 

𝑖0 × 10
𝜙(𝒑,𝑡)−𝜙0

𝛽 = −𝜎∇𝒏𝜙(𝒑, 𝑡).  
(3.13)  

To enforce the local Robin BC on the metal surfaces in the PD model, we use an 

autonomous mirror-type fictitious nodes method (FNM) [16], which has been designed to 

handle boundaries of arbitrary shape. Implementation details are provided in Appendix 

A. Once the electric potential is obtained, the current density at each point 𝒑 ∈ 𝜕Ω can be 

determined by Eq. (3.13) or the Ohm’s law (see Section 3.3.2.2). For simplicity of 

implementation, along the zero-flux boundaries, we do not use fictitious nodes, and these 

conditions are then, approximately, but naturally, represented in the model.  



 
86 

3.3.2.2 A modified PD corrosion dissolution model 

PD corrosion models use a phase-dependent nonlocal diffusion equation on a domain that 

contains both liquid (electrolyte) and solid (metal) phases. Diffusion of metal ions/atoms 

in the liquid/solid, and the dissolution of solid into liquid at the solid-liquid interface can 

all be represented using the PD corrosion model as discussed in [9,10]. In this work, 

however, we assume activation-controlled conditions, i.e., corrosion rate is not influenced 

by mass transport in the liquid domain Ω𝑙 (all liquid points are set to always have zero 

metal-ion concentration). In addition ([10]), mass transport in the solid Ω𝑠 is too slow 

relative to the interfacial mass transport (dissolution). Therefore, for these conditions we 

ignore diffusion in Ω𝑙 and Ω𝑠. Consequently, as shown in Figure 3.3 for pitting corrosion, 

only transport bonds connecting solid and liquid points across the anode surface (pit wall) 

are involved in the dissolution of solid into liquid. These are called dissolution bonds.  

 

Figure 3.3. A schematic of different regions and bonds defined in the PD corrosion 

model at the corrosion front (redrawn from [10]). The PD horizon size is 𝛿. Solid-solid 

bonds are considered as inert here, and diffusion in liquid is also ignored (by enforcing 

zero concentration at all times on liquid nodes).  

Based on the above assumptions, the PD corrosion dissolution model can be written as: 
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𝜕𝐶(𝒙𝑑 , 𝑡)

𝜕𝑡
= ∫ 𝐽(𝒙, 𝒙𝑑 , 𝑡)𝑑𝑉𝒙

𝐻𝒙𝑑∩Ω𝑙

 (3.14)  

where 𝐶(𝒙𝑑 , 𝑡) is the concentration at a dissolving point 𝒙𝑑 ∈ Ωdiss at time 𝑡, and the 

integrand 𝐽(𝒙, 𝒙𝑑 , 𝑡) is the mass flow density from 𝒙𝑑 to a point 𝒙 ∈ 𝐻𝒙𝑑 ∩ Ω𝑙. In the 

model presented in [10], 𝐽 was assumed to depend on the concentration gradient between 

the ends of a transport bond, 𝒙𝑑 and 𝒙: 

𝐽(𝒙, 𝒙𝑑 , 𝑡) = 𝜅𝑑
𝐶(𝒙, 𝑡) − 𝐶(𝒙𝑑 , 𝑡)

‖𝒙 − 𝒙𝑑‖2
 (3.15)  

where 𝜅𝑑 is the constant micro-dissolvability, a parameter that needs to be calibrated such 

that the dissolution rate in the PD model matches the measured/given activation-

controlled corrosion rate. Since there is a linear correlation between 𝜅𝑑 and the current 

density 𝑖 [9], i.e., 𝜅𝑑 = 𝜆𝑖, one can find the correlation constant 𝜆 by using a trial 

simulation as follows [10]: a simulation of uniform corrosion under activation-controlled 

regime is performed with a trial micro-dissolvability 𝜅𝑑
trial; if the resulting current density 

is denoted by 𝑖trial, we have 𝜆 = 𝜅𝑑
trial/𝑖trial. For cases like galvanic corrosion where 𝑖 is 

location-dependent, this would lead to a location-dependent 𝜅𝑑 in Eq. (3.15), which could 

be computed from 𝜆𝑖(𝒑(𝒙𝑑), 𝑡) (since the electrostatic solver gives the current density 

value at each point along the metal surface), where 𝒑(𝒙𝑑) is the point in Γ𝑓 (the corrosion 

front/surface, see Figure 3.4) that minimizes the distance to 𝒙𝑑. One still would have to 

find 𝜆, through a calibration procedure. Each set of 𝒙𝑑 which share the same 𝒑 are 

denoted by 𝜒(𝒑), as shown in Figure 3.4 for the case of a smooth boundary. 
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Figure 3.4. Examples of dissolving points (that form the set 𝜒(𝒑)) which share the 

current density of point 𝒑 ∈ Γ𝑓, for an arbitrary, but smooth, boundary. 

Since the calibration procedure described above was based on a trial simulation that 

assumed uniform corrosion for a flat surface, the calibrated value would not be valid on 

anode surfaces with high curvature (where the radius of curvature is in the order of the 

horizon size). Such high curvatures are likely to appear in galvanic corrosion in which the 

corrosion rate can vary significantly along the anode surface, especially near the anode-

cathode joint. Moreover, even for flat anode surfaces, this calibration approach would fail 

to predict the corrosion rate accurately at locations near a corner of the anode (e.g., 

anode-cathode joint), since dissolving points located near a corner have significantly 

smaller number of dissolution bonds compared with those which are located elsewhere. 

This would result in unrealistically slow dissolution rates at locations which can be 

critical in the evolution of material damage and failure. For example, the corrosion rate at 

the anode-cathode joint in galvanic corrosion plays a significant role in material failure 

since these joints are likely to become stress concentration locations once corrosion 

starts.  

While these issues could be overcome with a series of calibrations performed on a 

sufficient number of different geometrical configurations of the anode surface, that would 
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lead to a rather complex algorithm/implementation, as well as an increase in the 

computational cost of the simulation. A preferred option is an analytical, instead of a 

numerical, calibration for this model parameter. Recall that most PD models are setup 

using analytical relationships between bond parameters, such as micro-modulus and 

micro-diffusivity, and material properties, like elastic modulus and diffusivity [22,30].  

Furthermore, the dependency of mass flow density in Eq. (3.15) on concentration 

distribution becomes less reliable for problems with highly non-uniform current densities 

along an arbitrary corroding surface, which is the case of galvanic corrosion, for example. 

From electrochemistry, we know that anodic dissolution is driven by the corrosion 

reaction (directly related to the current density), which is determined by the potential 

distribution at the anode surface, and is only indirectly dependent on the concentration 

distribution near the corrosion front. Therefore, we modify the definition of the PD mass 

flow density in Eq. (3.15) to make it directly depend on the current density distribution 

(determined by the PD electrostatic model, see Section 3.3.2.1) at the corrosion front, as 

follows: 

𝐽(𝒙, 𝒙𝑑 , 𝑡) = 𝜔
𝑖(𝒑(𝒙𝑑), 𝑡)

‖𝒙 − 𝒙𝑑‖
 (3.16)  

where 𝜔 is a constant that will be calibrated analytically for a certain curvature at 𝒑 by 

matching the PD flux 𝐽diss
PD (𝒑, 𝑡) (see below) with a given constant dissolution 

flux 𝐽diss(𝒑, 𝑡). Note that here we use a constant 𝜔, but other options are not precluded, 

for example one could choose 𝜔 = 𝜔(‖𝒙 − 𝒙𝑑‖).  
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Consider a flat surface as shown in Figure 3.5, 𝐽diss
PD (𝒑, 𝑡) is contributed from all 

dissolution bonds connected to 𝒙𝑑 ∈ 𝜒(𝒑) and can be computed as [25]: 

𝐽diss
PD (𝒑, 𝑡) = ∫ ∫ ∫ 𝐽(𝒙, 𝒙𝑑 , 𝑡)

cos−1(
𝑧
𝜉
)

0

𝜉

0

𝛿

0

𝜉𝑑𝜃𝑑𝜉𝑑𝑧

= ∫ ∫ ∫ 𝜔
𝑖(𝒑, 𝑡)

𝜉

cos−1(
𝑧
𝜉
)

0

𝜉

0

𝛿

0

𝜉𝑑𝜃𝑑𝜉𝑑𝑧 = 𝜔𝑖(𝒑, 𝑡)𝛿2 

(3.17)  

where 𝜉 is the bond length, 𝜃 is the angle between the bond and the surface, and 𝑧 is the 

distance between 𝒙𝑑 and the surface (or 𝒑(𝒙𝑑)). Since 𝐽diss(𝒑, 𝑡) = 𝑖(𝒑, 𝑡)/𝑞𝐹 according 

to Faraday’s law, by letting 𝐽diss
PD (𝒑, 𝑡) = 𝐽diss(𝒑, 𝑡), we obtain: 

𝜔 =
1

𝑞𝐹𝛿2
. (3.18)  

  

Figure 3.5. Computation of the PD flux at a point 𝒑 at a flat anode surface. 

One more step is required to make this model applicable for general corrosion problems, 

including galvanic corrosion. The PD flux definition in Eq. (3.17) assumes a flat surface 

(see Figure 3.5). In order to have this analytical calibration process work for the PD 
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transport equation in Eq. (3.14) independent on the curvature of the anodic surface, we 

modify the transport equation as described next.  

In general, uniform corrosion (same current density 𝑖 everywhere) on a metal surface of 

arbitrary shape, as shown in Figure 3.4, should evolve perpendicular to the surface and 

progress with the same speed everywhere. In the PD framework, this means that points 

𝒙𝑑 with the same distance to the surface (𝑧) should have the same rate of concentration 

loss, independent of the curvature of the surface at 𝒑(𝒙𝑑) and the number of dissolution 

bonds connected to 𝒙𝑑 (the shape of the horizon region contained in the electrolyte 

domain, 𝐻𝒙𝑑 ∩ Ω𝑙). Therefore, we can write 
𝜕𝐶(𝒙𝑑,𝑡)

𝜕𝑡
= 𝑓(𝑧(𝒙𝑑)), where 𝑓(𝑧(𝒙𝑑)) is the 

integral of the mass flow density of all dissolution bonds connected to 𝒙𝑑, that should not 

depend on the shape of 𝐻𝒙𝑑 ∩ Ω𝑙. Since we calibrated 𝜔 for a flat surface, we need to 

compute 𝑓(𝑧(𝒙𝑑)) over a flat surface: 

𝑓(𝑧(𝒙𝑑)) = ∫ ∫ 𝜔
𝑖(𝒑(𝒙𝑑), 𝑡)

𝜉

cos−1(
𝑧
𝜉
)

0

𝛿

𝑧

𝜉𝑑𝜃𝑑𝜉

= 2𝜔𝑖(𝒑(𝒙𝑑), 𝑡) {𝛿 cos
−1
𝑧

𝛿
− 𝑧 ln [

𝛿

𝑧
+ tan (cos−1

𝑧

𝛿
)]}. 

(3.19)  

The modification to the PD model for corrosion dissolution defined by Eqs. (3.14) and 

(3.15) is:  

𝜕𝐶(𝒙𝑑 , 𝑡)

𝜕𝑡
= 2𝜔𝑖(𝒑(𝒙𝑑), 𝑡) {𝛿 cos

−1
𝑧

𝛿
− 𝑧 ln [

𝛿

𝑧
+ tan (cos−1

𝑧

𝛿
)]}. (3.20)  

Therefore, we replace the integro-differential model in Eqs. (3.14) and (3.15) with an 

ordinary differential model (Eq. (3.20)) in which 𝑧(𝒙𝑑) for each 𝒙𝑑 ∈ Ωdiss, together 

with 𝑖(𝒑(𝒙𝑑), 𝑡), determines the dissolution flux. Note that computing the distance 𝑧(𝒙𝑑) 
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is, in a sense, computationally equivalent to evaluating the integral in Eq. (3.14), because 

it involves, after discretization, searching through the nodes in 𝐻𝒙𝑑 ∩ Ω𝑙 for the one 

closest to 𝒙𝑑.  

We remark that if we wanted to calibrate 𝜔 using a surface different than a flat one, we 

would have to use that same geometry for computing 𝑓(𝑧(𝒙𝑑)). Eq. (3.20) works 

naturally for cases where 𝑖 is highly location-dependent, or when the curvature of the 

corrosion surface is high (at corners, for example). In Section 3.4.1, we will use the 

discrete version of Eq. (3.20) to estimate the numerical error of resulting current density 

introduced by the discretization, for a problem with a known (classical) analytical 

solution. 

We now explain how to find the corresponding 𝒑 and the distance to the surface 𝑧, for a 

given 𝒙𝑑. With the meshfree-type (one-point Gaussian quadrature) spatial discretization 

of the domain (see Figure 3.6), the corrosion surface Γ𝑓 is located between the solid nodes 

and liquid nodes and can be approximated by those liquid nodes �̃� which are closest to 

solid nodes, as shown in Figure 3.6. To determine 𝒑(𝒙𝑑), we search all 𝒙 ∈ 𝐻𝒙𝑑 ∩ Ω𝑙 for 

the one closest to 𝒙𝑑. If there are multiple such points, we select the one which makes the 

angle between 𝒙𝑑𝒑⃗⃗ ⃗⃗ ⃗⃗  ⃗ and the nonlocal outward unit “normal” at 𝒙𝑑, 𝒏(𝒙𝑑), the smallest. 

The nonlocal outward unit “normal” at 𝒙𝑑 (which approximates the classical outward 

normal on the boundary of a domain) is [16]: 

𝒏(𝒙𝑑) =
∫ (𝒙 − 𝒙𝑑)𝑑𝒙𝐻𝒙𝑑∩Ω𝑙

‖∫ (𝒙 − 𝒙𝑑)𝑑𝒙𝐻𝒙𝑑∩Ω𝑙
‖

 (3.21)  
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Since we are not tracking the corrosion front with a moving mesh (we use a fixed and 

uniform discretization), to improve the approximation of current density distribution 

along Γ𝑓, we take 𝑧(𝒙𝑑) ≈ ||𝒙𝑑 − �̃�|| −
Δ𝑥

2
, and used it in Eq. (3.20).  

We compute the current density 𝑖(�̃�, 𝑡) from Ohm’s law: 

𝑖(�̃�, 𝑡) = 𝜎
|𝜙(�̃�, 𝑡) − 𝜙(�̃�𝑅, 𝑡)|

∥ �̃�𝑅 − �̃� ∥
. (3.22)  

Here, �̃�𝑅 is the reflection/mirror node of �̃� (see Appendix A) through Γ𝑓 and 𝜙(�̃�𝑅, 𝑡) is 

the electric potential assigned at �̃�𝑚 to enforce the local BC for the electric potential 

solver as discussed in Section 3.3.2.1 and Appendix A. If the polarization curve (or 

Tafel’s equation) is used, we can also compute 𝑖(�̃�, 𝑡) using Eq. (3.13) with 𝜙(�̃�, 𝑡) =

1

2
[𝜙(�̃�, 𝑡) + 𝜙(�̃�𝑅, 𝑡)]. 

  

Figure 3.6. A schematic of corrosion front after spatial discretization. 

3.3.2.3 Concentration-dependent damage models in PD simulation of corrosion 

Modeling of corrosion-induced damage is important in understanding stress-corrosion 

cracking [42]. In the combined action of mechanical loading and environmental attack, 

material damage can be caused by strain- or chemically-induced atomic bond rupturing. 



 
94 

In the corresponding PD model, we will account for damage accumulation (see Eq. (3.9)) 

from both sources: corrosion-induced damage (monitored by 𝑑𝑐(𝒙, 𝑡)) and mechanical 

strain-triggered damage (monitored by 𝑑𝑠(𝒙, 𝑡)). Note that, in the context of corrosion, 

Eq. (3.8) is augmented so that the condition for 𝜇 = 0 includes corrosion-induced bond 

breaking. 

A concentration-dependent damage (CDD) model was introduced in [9] to establish a 

relationship between corrosion and the damage of mechanical bonds. Given the intrinsic 

randomness of the corrosion reaction (partly due to the variations in the microstructure of 

the material), one can assign a probability 𝑃(𝒙, 𝑡) of the bonds connected at 𝒙 ∈ Ω𝑠 at 

time 𝑡 to break, based on the concentration drop at 𝒙, for all (intact) mechanical bonds 

connected to 𝒙. In order to determine 𝑃(𝒙, 𝑡), a linear dependency between the corrosion-

induced damage 𝑑𝑐(𝒙, 𝑡) and the concentration 𝐶(𝒙, 𝑡) was proposed in [9]: 

𝑑𝑐(𝒙, 𝑡) = {

1                         , 𝐶(𝒙, 𝑡) ≤ 𝐶sat  

𝐶solid − 𝐶(𝒙, 𝑡)

𝐶solid − 𝐶sat
      , 𝐶sat < 𝐶(𝒙, 𝑡) ≤ 𝐶solid

 (3.23)  

where 𝐶solid refers to the concentration of metal atoms in the intact solid phase, and 𝐶sat 

is the saturation concentration for metal ions in electrolyte. Reaching 𝐶sat was assumed 

as a good approximation for when the solid-to-liquid phase-change takes place. Note that 

for activation-controlled corrosion, we assume that if a nodal concentration reaches 

below 𝐶sat, that concentration is set to zero. The change in damage (from one time-step to 

the next, at a point) can then be expressed in terms of the probability 𝑃(𝒙, 𝑡) as [9]: 

Δ𝑑𝑐(𝒙, 𝑡𝑖) = 𝑑𝑐(𝒙, 𝑡𝑖) − 𝑑𝑐(𝒙, 𝑡𝑖−1) = (1 − 𝑑𝑐(𝒙, 𝑡𝑖−1))𝑃(𝒙, 𝑡𝑖) (3.24)  
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Combining Eqs. (3.23) and (3.24), one finds an expression for the probability of 

corrosion damage at 𝒙 ∈ Ω𝑠 and 𝑡𝑖 in terms of the concentration drop at that point: 

𝑃(𝒙, 𝑡𝑖) =
1

1 − 𝑑𝑐(𝒙, 𝑡𝑖−1)
(
𝐶(𝒙, 𝑡𝑖−1 ) − 𝐶(𝒙, 𝑡𝑖)

𝐶solid − 𝐶sat
) =

𝐶(𝒙, 𝑡𝑖−1 ) − 𝐶(𝒙, 𝑡𝑖)

𝐶(𝒙, 𝑡𝑖−1 ) − 𝐶sat
 (3.25)  

This quantity now allows us to break a corresponding number of mechanical bonds 

connected to 𝒙 so that the damage evolves (stochastically) according to Eq. (3.23). The 

stochastic procedure for selecting which mechanical bond breaks at a given time ∀𝒙 ∈ Ω𝑠 

is as follows [9]: 

Appendix B. Compute/update the concentration field at this time step. 

Appendix C. Loop over all 𝒙 ∈ Ω𝑠. 

a. Compute the probability of breaking 𝑃 at 𝒙; if 𝑃 = 0, then skip this 𝒙, else 

continue. 

b. Loop over all 𝒙 ∈ 𝐻𝒙 ∩ Ω𝑠.  

i. If the mechanical bond connecting 𝒙 and 𝒙 is already broken, then skip this 

bond, else continue.  

ii. Generate a random number 𝑅(𝒙, 𝒙) from a uniform distribution in interval 

[0,1]; if 𝑅(𝒙, 𝒙) is smaller than or equal to 𝑃, then break the bond (note that 

each bond connects two points, thus, once a bond breaks, it is considered 

broken for both points).  

c. End loop over all 𝒙 ∈ 𝐻𝒙 ∩ Ω𝑠.  

Appendix D. End loop over all 𝒙 ∈ Ω𝑠. 

Note that Eq. (3.23) gives the expected corrosion-induced damage value 𝑑𝑐 at point 𝒙, 

based on the concentration drop at that point only. After performing the bond-breaking 

procedure for all 𝒙 ∈ Ωdiss, the damage index 𝑑 at each 𝒙 ∈ Ω𝑠 is computed from Eq. 
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(3.9). However, as we can see in this procedure, a mechanical bond 𝒙 − 𝒙 can be broken 

due to either 𝒙 or 𝒙, which means that the damage index at a point 𝒙 ∈ Ω𝑠, at the end of a 

time step, can also be affected by bond-breaking events due to concentration drop at 𝒙 ∈

𝐻𝒙 ∩ Ωdiss. This means that the damage index computed by Eq. (3.9) may have a slightly 

larger values than what is expected from Eq. (3.23). As a result, there could be material 

points that reach 𝑑 = 1 (totally detached from other solid points) that still have 𝐶 > 𝐶sat. 

Physically, this would mean that a small part of the solid (a speck, defined by a node) is 

now surrounded by electrolyte and would dissolve rather instantaneously. This leads to 

the conclusion that we can assume this location to, effectively, now be electrolyte phase. 

This was the reason for the damage-dependent corrosion (DDC) model to be used in [9], 

where such nodes where switched from a the solid phase to the liquid phase (by changing 

the micro-diffusivity of transport bonds connected to them). In the absence of DDC, 

given the “effective” diffusion in solid used in [9] to calibrate the model to a given 

corrosion rate, one obtains an ever expanding corrosion-affected layer, which is not 

physically observed (see [38]).  

An important update to the CDD+DDC model in [9] has appeared in [10]. There, it was 

recognized that it was sufficient to monitor changes in the Diffusion-based Corrosion 

Layer (DCL, a layer of thickness 𝛿 at the corrosion surface), and only model transport 

through PD transport bonds whose end nodes are either solid-liquid or liquid-liquid. The 

numerical calibration to match a certain corrosion rate for the model in [10] was 

performed to determine the micro-dissolvability of an dissolution (anode-liquid) bond, as 

explained above in the paragraph after Eq. (3.15). While the DDC part of the coupled 

corrosion-damage model was still used in [10], it had become redundant. Because of the 
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numerical calibration procedure, the model in [10] can work with or without the DDC 

part. However, the new PD formulation for corrosion dissolution, see Eq. (3.20), 

introduced here, does not work with DDC because it uses an analytical calibration, which 

assumes dissolution happens only through dissolution bonds, and phase-change takes 

place only when the concentration at a node drops below 𝐶sat: 

{
if 𝐶(𝒙, 𝑡) ≤ 𝐶sat then 𝒙 ∈ Ω𝑙                 

if 𝐶sat < 𝐶(𝒙, 𝑡) ≤ 𝐶solid  then 𝒙 ∈ Ω𝑠
. (3.26) 

In the context of the new coupled corrosion-damage model, Eqs. (3.20) and (3.25), 

adding the DDC part would artificially speed up the corrosion rate. Therefore, the 

coupled corrosion-induced damage model we use here is based on Eqs. (3.20), (3.25), and 

(3.26). 

3.3.3 PD corrosion-fracture model 

In previous sections, we reviewed the mechanical fracture model and introduced different 

ingredients of the modified corrosion model. In this section, we introduce the coupling 

strategy for these models and discuss their numerical implementation.  

The elasticity (with fracture), electrostatics, and mass transfer (with damage and phase-

change) models are coupled into a PD model called the PD corrosion-fracture (PD-CF) 

model and consists of the following set of equations: 

Elasticity (Eqs. (3.7) and (3.10)): 

∫ 𝑐𝑠𝜇
𝝃+𝜼

‖𝝃+𝜼‖
𝑑𝑉�̂�𝐻𝒙

= 0       ∀𝒙 ∈ Ω𝑠 (displacement)  

where 𝑠 =
‖𝝃+𝜼‖−‖𝝃‖

‖𝝃‖
 (bond strain) 

(3.27)  

Electrostatics (Eqs. (3.11) and (3.22)): 
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∫
𝜙(𝒙)−𝜙(𝒙)

∥𝒙−𝒙∥2
𝐻𝒙

𝑑𝑉𝒙 = 0      ∀𝒙 ∈ Ω𝑙 (electric potential) 

𝑖(�̃�, 𝑡) = 𝜎
|𝜙(�̃�,𝑡)−𝜙(�̃�𝑅,𝑡)|

∥�̃�𝑅−�̃�∥
 (current density) 

(3.28)  

Corrosion (Eqs. (3.20), (3.25) and (3.26)): 

𝜕𝐶(𝒙,𝑡)

𝜕𝑡
= 2𝜔𝑖(𝒑(𝒙), 𝑡) {𝛿 cos−1

𝑧

𝛿
− 𝑧 ln [

𝛿

𝑧
+ tan (cos−1

𝑧

𝛿
)]}     ∀𝒙 ∈ Ωdiss 

(mass transport) 

 

𝑃(𝒙, 𝑡𝑖) =
𝐶(𝒙,𝑡𝑖−1 )−𝐶(𝒙,𝑡𝑖)

𝐶(𝒙,𝑡𝑖−1 )−𝐶sat
     ∀𝒙 ∈ Ω𝑠 (bond-breaking probability) 

 

{
if 𝐶(𝒙, 𝑡) ≤ 𝐶sat  then 𝒙 ∈ Ω𝑙                 

if 𝐶sat < 𝐶(𝒙, 𝑡) ≤ 𝐶solid  then 𝒙 ∈ Ω𝑠
 (phase-change) 

(3.29) 

Bond damage (corrosion- and strain-induced bond breaking) is defined as:  

𝜇(𝒙, 𝒙, 𝑡) = {
 1     if 𝒙, 𝒙 ∈ Ω𝑠 and 𝑠(𝒙, 𝒙, 𝑡

′) < 𝑠0 and 𝑅(𝒙, 𝒙, 𝑡
′) > 𝑃(𝒙, 𝑡′) 

∀𝑡′ ∈ [0, 𝑡]

 0     otherwise

 

where 𝑅 is the random number generated for each bond in the algorithm 

given in the previous section. 

(3.30)  

These equations are accompanied by appropriate initial and BCs. The initial 

concentration distribution for the corrosion and the local BCs to be enforced for 

electrostatics and elasticity are specified for each of the examples considered here in 

Sections 3.4 and 3.5. In Appendix A, we explain how we enforce local BCs in PD 

models.  

In the PD-CF model, the elasticity model (Eq. (3.27)) computes the displacements field 

(𝒖) and bond strains (𝑠) in the solid; the electrostatic model (Eq. (3.28)) computes the 

electric potential distribution (𝜙) in the electrolyte and current density distribution (𝑖) on 
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electrode surfaces; the corrosion model (Eq. (3.29)) updates the distribution of metal 

concentrations (𝐶), computes the corrosion-induced bond-breaking probability (P) and 

determines the necessary phase changes from the dissolution process; the damage model 

(Eq. (3.30)) updates the strain- and corrosion-induced bond-failure in the solid. To 

visualize damage results, in a post-processing phase, we determine the total nodal 

damage index value (𝑑) by Eq. (3.9). Note that in the PD-CF model, 𝑑(𝒙, 𝑡) ≈ 𝑑𝑠(𝒙, 𝑡) +

(1 − 𝑑𝑠) × 𝑑𝑐(𝒙, 𝑡) in which 𝑑𝑐 represents the corrosion-induced damage index and 𝑑𝑠 is 

mechanical strain-triggered damage index. 

The implementation of the PD-CF model is shown in Figure 3.7. In the main solver, the 

corrosion solvers are called at each time-step, and the electric potential and displacement 

fields are updated at the first time-step and any time step if any of the solid nodes 

becomes liquid in the previous time step. In the electrostatic solver, because the FNM is 

used to impose BCs, the electric potential needs to be solved iteratively, with the solution 

in the domain and constraint in the fictitious region updated after each iteration, until two 

sequential solutions differ by less than a given tolerance. Since this system is linear, we 

use the Conjugate Gradient (CG) method to solve it. The Euclidean norm is used to 

measure the difference between two solutions, and the tolerance is set to 1e-6. The 

displacement field is solved by the Nonlinear Conjugate Gradient (NCG) method [43,44] 

and, ideally, should be updated every time new corrosion damage happens. However, in 

this work, to save computational time, we update it as frequently as the electric potential 

field. The influence of this treatment on the stress corrosion cracking behavior is 

insignificant [11]. If any mechanical bond breaks after we updated the displacement field, 

the update needs to be repeated until equilibrium is satisfied and no more bonds break in 
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the process. The simulation stops when the final time-step is reached, or when the 

number of successive updates of displacement field exceed a certain value, e.g., 50, since 

this would be an indication of unstable crack growth, and a different solver (e.g., explicit) 

may need to be used. 

 

 

 

Figure 3.7. Workflow of the PD corrosion-fracture (PD-CF) model. 

The corrosion rate may depend on the stress field [36]. While we will show an example 

solving a coupled corrosion-fracture problem (in which changes in sample geometry 

induced by the galvanic dissolution process leads to higher tensile stresses/strains and 

fracture) in Section 3.5, here we assume the corrosion rate to be independent of the stress 

field. It is, however, possible to introduce the stress-dependent corrosion rate model into 

a PD model of corrosion, as has been presented in [36]. The examples shown in Section 
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3.4 do not employ the mechanical solver, because no mechanical loadings are involved. 

The full model is used in the example in Section 3.5, where we simulate the combined 

effects of galvanic corrosion and failure induced by corrosion and mechanical loadings.  

To discretize the PD IDEs, we use the meshfree method with one-point Gaussian 

quadrature, in which handling damage and fracture is natural [24]. Uniform grids are 

used to discretize the domain, both electrolyte and solid regions. Detailed descriptions of 

the discretization used can be found in [10]. 

3.4 Verification and validation of the PD corrosion model 

In this section, we first verify the new PD corrosion model against a problem with the 

corresponding classical analytical solution. Then, validation against experimental data is 

provided. We only consider activation-controlled corrosion, therefore mass transport 

between any two points in the electrolyte domain is ignored.  

3.4.1 Verification of the new PD formulation for galvanic corrosion 

To verify the new corrosion model for galvanic corrosion, we consider the example 

shown in Figure 3.8. The cathode and anode are in electric contact by a perfect 

conductor, in the presence of an electrolyte with conductivity 𝜎. The electrode potential 

of cathode and anode are 𝜙𝑐 and 𝜙𝑎, respectively. The whole domain is infinite in the 𝑥 

direction and the electrolyte region has an initial height of ℎ0. 
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Figure 3.8. Sketch of the example used to verify the PD galvanic corrosion model 

(redrawn from [6]). 

If both electrodes are nonpolarizable, the classical formulation for the electric potential 

distribution in the electrolyte domain is: 

{

∇2𝜙 = 0

𝜙(𝑥, 𝑦 = 0, 𝑡) = 𝜙𝑐
𝜙(𝑥, 𝑦 = ℎ(𝑡), 𝑡) = 𝜙𝑎

 (3.31)  

where ℎ(𝑡) is the height of the electrolyte domain at time 𝑡. The classical solution of Eq. 

(3.31) is: 

𝜙(𝑦) = 𝜙𝑎 −
𝑦

ℎ(𝑡)
(𝜙𝑎 − 𝜙𝑐) (3.32) 

and the mass flux at the anode surface is: 

𝐽 =
𝜎(𝜙𝑎 −𝜙𝑐)

𝑞𝐹ℎ(𝑡)
 (3.33)  

where 𝑞 is charge number of a metal ion and 𝐹 is Faraday’s constant. Values for these 

parameters are provided in Table 3.1. Note that the width of the domain is set to 𝐿 in the 

PD simulation, and periodic BCs are imposed at 𝑥 = ±
𝐿

2
, to effectively make the domain 
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infinite in the 𝑥 direction. To accomplish this, two fictitious regions (�̃� and �̃�), with their 

width equal to the horizon size, are added outside the domain, as shown in Figure 3.9. 

The electric potential in these fictitious regions is mapped from that of the corresponding 

subdomains (𝐴 and 𝐵) in the solution domain, so that the left and right boundaries of the 

solution domain are effectively connected by periodicity. 

 

Figure 3.9. Schematic of the implementation of periodic BCs in PD simulations. 

Table 3.1. Parameter values for the example shown in Figure 3.8.

Parameters Value Parameters Value 

𝜙𝑎 0.6 V 𝐹 96,485 C/mol 

𝜙𝑐 0.1 V ℎ0 0.1 m 

𝜎 2.5 S/m 𝐿 0.1 m 

𝐶solid 143 mol/L 𝑞 2 

We first compute the electric potential in the electrolyte domain to verify our PD 

electrostatic model. We choose 𝛿 = 4 mm and Δ𝑥 = 1 mm for the simulation. The 

relative difference (using the Euclidean norm) of the electric potential compared to the 

classical solution (see Eq. (3.32)) is 1.67e-6, when the tolerance for convergence is set to 
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1e-6. The uniform current density at the anode surface computed by Eq. (3.22) is 

12.50183 A/m2, while the classical solution is 12.5 A/m2, leading to a relative difference 

of 1.46e-4. Note that the convergence study on the electric potential is not needed for this 

problem, because the exact solution has a linear distribution and the FNM enforces the 

local BCs exactly, i.e., the PD solution matches the analytical classical solution exactly 

regardless of the grid density. In fact, a finer grid leads to a larger error due to 

accumulation of round-off numerical errors.  

Next, we analyze the numerical error introduced by using the discretized form of Eq. 

(3.20) to update the concentration in the corrosion dissolution model. Assuming that at a 

point on the anode surface the given current density (e.g., obtained from the electric 

potential) is 𝑖0, the relative difference between 𝑖0 and the resulting current density 𝑖PD
𝑚  

generated by using the discrete form of Eq. (3.20) can be written as: 

|
𝑖PD
𝑚 − 𝑖0
𝑖0

| = |1 −
2

𝑚2
∑{𝑚cos−1

𝑧𝑘
𝑚
− 𝑧𝑘 ln [

𝑚

𝑧𝑘
+ tan (cos−1

𝑧𝑘
𝑚
)]}

𝑚

𝑘=1

| (3.34)  

where 𝑚 is the ratio of horizon size and grid size (𝛿/Δ𝑥), and 𝑧𝑘 = 𝑘 − 1/2. This 

relative error only depends on the value of 𝑚 and should drop as 𝑚 increases (or as 1/𝑚 

decreases). The error for different 𝑚-values is given in Table 3.2; as expected, larger 𝑚-

value leads to smaller error (with a convergence rate close to quadratic). However, as we 

increase the 𝑚-value (with 𝛿 fixed), the scaling of the total computational cost also 

increases significantly, since with this type of numerical solution, the scaling is 𝑂(𝑁2), 

where N is the total number of nodes used in the discretization [45]. Note also that a 

larger 𝑚-value does not necessarily improve the accuracy because of concurrent increase 
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in round-off error. It is possible to choose different 𝑚-values for each model in the 

coupled PD-CF model to balance cost and accuracy. When a large 𝑚-value is needed to 

capture some fine details, the fast convolution-based PD method recently introduced, 

may be used as an alternative approach, since it has been shown to lead to significant 

computational efficiencies [45,46]. Here, considering that the relative error in 𝑖PD is 

acceptable when 𝑚 = 4, we use this value. Note that since we calibrated the PD models, 

for any horizon size, to match a given current density (see Eq. (3.18)), these numerical 

errors are independent of the horizon size. 

Table 3.2. Numerical errors (for different values of 𝑚) for the resulting current density 

when the discrete version of Eq. (3.20) is used to update the concentration in the 

corrosion dissolution model.

𝑚-value |
𝑖PD
𝑚 − 𝑖0
𝑖0

| 

2 7.15e-2 

4 2.18e-2 

8 6.4e-3 

16 1.8e-3 

32 5.2e-4 

 

To verify the coupling of the electrostatic model and the corrosion dissolution model, we 

test the corrosion evolution for the problem in Figure 3.8 by checking the corrosion depth 

𝑧ℎ = (ℎ − ℎ0) as a function of time 𝑡. The solution for the corrosion depth in the 

classical model is [6]: 
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𝑧ℎ = √
2𝜎𝑡(𝜙𝑎 −𝜙𝑐)

𝑞𝐹𝑐solid
+ ℎ0

2 − ℎ0 (3.35)  

The evolution of corrosion depth obtained by the PD corrosion model (using effective 

corrosion depth, see Appendix A) agrees with the classical solution, as shown in Figure 

3.10. The relative difference of the final depth between them is 2.07%, which is close to 

the numerical error in the effective current density for 𝑚 = 4 shown in Table 3.2. Note 

that the relative difference in electric potential between the PD and classical solutions, 

and the approximation of the current density by Eq. (3.22), also contribute to the relative 

difference in corrosion depth between the PD and classical models. 

 

Figure 3.10. Comparison of the corrosion depth vs. time between PD solution and 

classical solution (Eq. (3.35)) for the problem shown in Figure 3.8. Computing the 

effective corrosion depth in PD corrosion model is described in Appendix A. 

3.4.2 Validation against experimental results from the literature 

The previous example verified the PD electrostatic model and the modified corrosion 

dissolution model. In this subsection, we validate the model against a galvanic corrosion 

experiment which appeared in [3]. We compare the PD results with experimental 

observations, as well as with results obtained by a FEM-based model built in COMSOL 

(see Appendix B) for the classical formulation of the problem. The model in COMSOL 
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uses the Arbitrary Lagrangian-Eulerian method to track the corrosion front as a moving 

boundary [2].  

The setup of the problem is shown in Figure 3.11 (a). The classical formulation for the 

electric potential distribution in the electrolyte domain is: 

{
  
 

  
 

∇2𝜙 = 0

∇𝒏𝜙(𝑥 = 0, 10 < 𝑦 < 20, 𝑡) = 0

∇𝒏𝜙(𝑥 = 20, 10 < 𝑦 < 20, 𝑡) = 0

∇𝒏𝜙(0 < 𝑥 < 20, 𝑦 = 15, 𝑡) = 0

∇𝒏𝜙(0 < 𝑥 < 10, 𝑦 = 5, 𝑡) = −𝑖𝑐/𝜎 

∇𝒏𝜙(10 < 𝑥 < 20, 𝑦 = 5, 𝑡) = −𝑖𝑎/𝜎 

 (3.36)  

in which∇𝒏𝜙 = ∇𝜙 ⋅ 𝒏, 𝑖𝑎 and 𝑖𝑐 are defined by the Tafel’s equation (see Eq. (3.13)) 

which can be determined by fitting the polarization curves of corresponding galvanic 

couples. The polarization curves we use for the mild steel-AE44 couple are shown in 

Figure 3.11 (b) which are (piecewise) linear interpolations of the experimentally obtained 

curves in [2]. The coefficients in the Tafel’s equation are given in Table 3.3. Note that the 

sign of cathodic and anodic current densities is negative and positive, respectively. Other 

material properties for this problem are provided in Table 3.4. These parameters are used 

in both PD and COMSOL simulations. 

(a)  (b) 
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Figure 3.11. (a) Geometry and BCs for the galvanic corrosion problem (adapted from 

[2]); (b) piecewise linear interpolation of the experimentally obtained polarization 

curves for mild steel and AE44 in [2] (details are given in Table 3.3). 

Table 3.3. Data used in the piecewise linear interpolation of the polarization curves from 

[2] (to be used in the Tafel’s equation). 

 Alloy 𝜙 (V, SCE) 𝑖0 (A/m
2) 𝛽 (V) 𝜙0 (V, SCE) 

Anode AE44 

(−∞,−1.48) 0.014 0.021 −1.55 

[−1.48,−1.41] 21.145 0.166 −1.48 

(−1.41,∞) 58.107 0.400 −1.41 

Cathode 
Mild 

steel 
 0.00125 −0.153 −0.58 

 

Table 3.4. Material properties for the galvanic problemshown in Figure 3.11 (a). 

Parameters 𝜎  𝐶solid
AE44 𝑞 

Value 2.5 S/m 67860 mol/m3 2 

The comparison between COMSOL results and PD results (with 𝛿 = 0.4 mm) in terms 

of the initial potential distribution is shown in Figure 3.12. The COMSOL result is 

selected after a convergence study with respect to the mesh size (see Appendix B for 

details on the COMSOL model) and then, before plotting, post-processed by the Kriging 

interpolation (necessary because of the adaptive mesh used in COMSOL) and plotting 
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that at the nodes of the uniform grid used in the PD model. The agreement between the 

two solutions is very good.  

(a) 

 

(b) 

 

Figure 3.12. Electric potential distribution for mild steel-AE44 galvanic couple 

obtained by (a) PD; (b) COMSOL. 

For a quantitative comparison, we plot the initial current density distribution along the 

electrode surface in Figure 3.13. From the zoom-in images, we can see that the PD 

solution, as the horizon size decreases (m-value is fixed to be 4), approaches the result 

found by COMSOL. In the experimental results, there is a smooth transition of current 

density at the galvanic joint, and its minimum value is around -50 A/m2, while the PD 

and COMSOL results show much smaller values (around -120 A/m2), and a sudden 

jump at the galvanic joint. We notice that, in the experiment (see [2]), the spatial 

resolution of the current density variation at the joint is highly dependent on the scan rate, 

or the data acquisition time at each measurement point, but the author did not perform a 

convergence study on the scan rate. A slower scan rate may lead to sharper transition at 

the joint. Another possible factor is that, in the real physical system, there exists a 

transition zone between different materials, while in our models, we assumed a sudden 

material change at the joint. Note that the difference between the PD and COMSOL 

results near the interface is due to the finer discretization used by COMSOL near the 

interface (automatic adaptive refinement). 
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Figure 3.13. Initial current density along the electrode surface for mild steel-AE44 couple: PD 

solutions, COMSOL (our work), and experimental results from [3]. 

The experimental profile and that obtained by the PD model for the mild steel-AE44 

galvanic couple after 3 days of corrosion are shown in Figure 3.14 (a) and (b), 

respectively. Although the magnitude of corrosion depth obtained by PD simulation is 

slightly smaller than that from the experiment, their patterns agree very well.  

(a) 

 

 

 

(b) 

 

 

Figure 3.14. Corrosion profiles for the mild steel-AE44 galvanic couple obtained from 

(a) experiments [3]; (b) PD corrosion model (𝛿 = 0.4 mm). 

The comparison for the final corrosion depth between experimental measurements, 

COMSOL and PD results, is shown in Figure 3.15. In Appendix A we explain how we 

computed the effective corrosion depth in the PD corrosion model. The corrosion profile 

obtained by the COMSOL model differs considerably from the experimental one or the 

one found by the PD corrosion model. Notice, however, that the results presented in 



 
111 

references [5,6,47] show patterns similar to experimental measurements. That is because 

an artificial step in the geometry of the galvanic joint was used in producing those results. 

While this artificial step is mentioned in reference [31], it was not mentioned in [32] but 

its insertion is obvious from the plots shown there. To obtain COMSOL results closer to 

those measured in experiments, we therefore modify the geometry and insert the small 

step at the galvanic joint before the start of the COMSOL simulation. This extra 

treatment, which reduces the generality of the COMSOL model, is necessary because of 

difficulties with assigning proper BCs in the classical model at the interface, and it allows 

the corrosion front to start moving in a way similar to what is observed experimentally 

(see Appendix B). The size of the artificial step determines the smallest mesh size used, 

and, as its size goes to zero, the maximum corrosion depth obtained appears to converge, 

as results shown in Appendix B indicate. Note also that in [2,4], the authors did not 

specify whether or not they inserted this artificial step into their COMSOL model. 

However, the corrosion depth profiles for the mild steel-AE44 galvanic couple obtained 

there show a pattern close to our COMSOL results that use the artificial step, and it is, 

therefore, reasonable to assume that they made use of the step there as well. 

As shown in Figure 3.15, both PD and the modified-geometry COMSOL models generate 

slightly smaller maximum corrosion depths than measured in experiments. Some possible 

explanations are: 1) the geometry of the electrolyte domain used in simulations is 

different from the real conditions (our electrolyte “bath” has “walls” at the ends of the 

sample, while the electrochemical cell used in experiments is likely larger than the 

sample; also, our model is a 2D approximation of an actual 3D experiment); 2) other 

corrosion mechanisms, not included here (e.g. crevice or micro-galvanic corrosion, 
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stress-dependent corrosion rate), may accelerate the corrosion at the interface between the 

anode and the cathode, as well as at the edge of the anode; 3) the deposition of corrosion 

products on the corrosion surface (not considered here), can affect the dissolution of 

metal atoms into the electrolyte and the electric potential around the surface and thus 

impact the evolution of corrosion [7,8]. Note that the specific shape at the bottom of the 

trench carved by the galvanic corrosion process is very important when mechanical 

loadings are involved because it affects the stress profile in that critical region, from 

which cracks can initiate and propagate (see next section). Microscale experimentation 

that can quantify, in detail, the shape of the bottom of the trench as galvanic corrosion 

attack progresses, could be used for further validation of the PD models presented here.  

  

Figure 3.15. Corrosion depths obtained from the PD corrosion model (𝛿 = 0.4 mm), 

COMSOL with and without the artificial step (our work), and experiments from [3] for 

mild steel-AE44 galvanic couple. See Appendix A for how we computed the corrosion 

depth in the PD corrosion model. 



 
113 

The COMSOL curve obtained with the artificial step (see Figure 3.15), appears to be 

slightly steeper and deeper at the galvanic interface than the PD curves. This is because: 

(1) the adaptive mesh refinement technique the COMSOL model employs generates a 

much finer mesh near the interface than the uniform grid used in PD models, leading to a 

slightly larger current density at the interface than that obtained by the PD corrosion 

model (see Figure 3.13); and (2), the discretized PD corrosion dissolution model 

effectively induces a slightly slower corrosion rate, as demonstrated in Section 3.4.1, that 

could be mitigated by using a larger 𝑚-value (not pursued here due to increasing 

computational cost). 

Note that our galvanic corrosion model is general and work for any kind of galvanic 

joints, as long as the corrosion processes are well described by the mechanisms included 

in the model. An additional validation for the AE44-AA6063 galvanic couple is provided 

in Appendix C.  

The DCL formed below the corrosion front can degrade material’s performance, and can 

play a significant role in material failure when mechanical loadings are applied to the 

galvanic couple [48]. In the next section, we investigate the coupling of galvanic 

corrosion and fracture, when both corrosion attack and mechanical loadings are present. 

Such a multi-physical problem can be easily treated with PD models but is difficult to 

simulate using classical models. 

3.5 Application of the PD-CF model to galvanic corrosion-induced fracture 

In this section, we investigate the coupling effect between galvanic corrosion and 

mechanical loading on material failure. Galvanic corrosion usually generates localized 
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and deep trenches at a material interface. As stresses rise/concentrate at these locations, 

cracks can easily initiate and grow catastrophically. To date, no model has attempted to 

predict the coupling of these two critical mechanisms involved in material degradation 

and failure. Such a multi-physical problem can be easily treated using PD models. 

We consider the 2D thin plate galvanic couple (mild steel and AE44, see Figure 3.11 (a)) 

under plane stress conditions and subject to the mechanical loadings and environmental 

conditions shown in Figure 3.16. As galvanic corrosion progresses at the interface, 

bending creates a region a higher tensile stresses at the corrosion trench, and a crack may 

initiate and propagate, if conditions meet the brittle fracture criterion discussed in Section 

3.3.1. Note that the loading conditions and geometry have significant effects on the stress 

concentration at the joint of the galvanic couple. In addition, once a crack initiates in the 

region damaged by galvanic corrosion, its stress intensity factor also depends on the 

loading conditions and geometry [49]. In actual 3D structures, conditions along the crack 

front vary from plane stress near its edges to plane strain in its central part [49]. The thin 

plate couple we chose here is only for demonstrating our models’ capabilities to handle 

the coupled effect of galvanic corrosion and fracture induced by it. A full 3D example 

will be pursued once experimental data for this coupled problem become available. 
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Figure 3.16. Geometry and BCs for the galvanic couple under combined mechanical 

loading and galvanic corrosion attack. 

The local mechanical BCs to be enforced are: 

{
 
 

 
 
𝑢𝑦(0 < 𝑥 < 𝛿, 𝑦 = 5, 𝑡) = 𝑢0

𝑢𝑦 (−
𝛿

2
< 𝑥 <

𝛿

2
, 𝑦 = 0, 𝑡) = 0

𝑢𝑥(𝑥 = 20, 0 < 𝑦 < 5, 𝑡) = 0

𝑢𝑦(𝑥 = 20, 0 < 𝑦 < 5, 𝑡) = 0

 (3.37)  

In the corresponding PD mechanical model, the displacement on the right side is fixed in 

all directions through a thickness equal to the horizon size 𝛿. At the left top of the 

cathode domain, a 𝛿 × 𝛿 square region is displaced at the start of the simulation by a 

fixed amount (𝑢0 = 50 μm) and is kept constant in time, while another square region (of 

same dimension) at the central bottom location of the couple is fixed in the vertical 

direction. In this example, we choose 𝛿 = 4 mm and Δ𝑥 = 1 mm. 

Since we did not find experimental data for this type of problem to compare our PD 

results with, we simply assume a certain fracture toughness (100 J/m2) for the interface 

between the metals, to allow a crack to propagate at some point (not too early, not too 

late) during the formation of the galvanic corrosion trench in our particular example. 
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Material properties for the alloys and the interface are given in Table 3.5. The Young’s 

modulus for the interface is assumed to be the average of the two alloys [50], i.e., 

125 GPa.  

Table 3.5. Mechanical properties for materials in the galvanic couple (Figure 3.16). 

Parameters Steel  AE44 Interface 

Young’s modulus 

(GPa) 
205 [51] 45 [52] 125 

Fracture energy (kJ/
m2) 

65 [53] 1.5 [54] 0.1 

As mentioned previously, the DCL reduces the material properties at the corrosion front. 

According to experimental measurements (performed on a number of material systems, 

such as Mg and Al alloys), the DCL can be several micrometers thick and is seamlessly 

attached to the bulk with gradual change of properties [38–40]. Under external loadings, 

microcracks can accumulate in the DCL in a brittle fashion and grow into the bulk, 

leading to significant loss of overall ductility in the structure. 

Contours of the damage index obtained by the PD simulation for the problem setup seen 

in Figure 3.16 are given in Figure 3.17. A simulation movie is also included in 

Supplementary Materials. The system does not crack under the applied bending loads 

before corrosion starts, as shown in Figure 3.17 (a). As galvanic corrosion progresses, the 

geometry changes gradually, creating higher and higher tensile stresses at the bottom of 

the trench. A few PD bonds start to break because of reaching their critical strain (see 

Section 3.3.1), but once they do, strains nearby relax and any potential crack growth 

arrests, and the next call to the corrosion solver is made. After about 41.6 hrs. of 

corrosion time, as shown in Figure 3.17 (c), a crack suddenly initiates and propagates 
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along the interface. The crack arrests at some point before reaching the bottom of the 

interface, because of the displacement-controlled BCs. Note that here we only considered 

a brittle fracture model. Plastic deformations can also strongly influence crack growth but 

were not considered in this work.  

While galvanic corrosion influences the state of stress in our model (by changing the 

geometry of the sample as the corrosion trench increases), we did not consider here 

stress-dependent corrosion rate, the possible direct effect tensile stresses could have on 

the corrosion itself. A PD model that uses a stress-dependent corrosion rate has been 

introduced and validated in [11,36]. We do not consider it here for simplicity, but once 

experimental data on the coupled corrosion-fracture problems become available, such a 

model can easily be tested. For the same reason, we do not account for the conditions that 

are specific to crevice corrosion, which has been recently investigated with a PD model 

in [55]. The example chosen here is demonstrate that possible coupling of degradation 

due to galvanic corrosion and that due to critical strains that take place in the trench 

created by the galvanic corrosion process.  

Note also that temperature can have a significant influence on the corrosion rate, as well 

as on the mechanical properties (elasticity, plasticity, fracture). Our model can 

incorporate such dependencies easily and examples of such effects in thermomechanical 

fracture have been shown using PD formulations in, , e.g. [44]. Such dependencies are, 

however, beyond the scope of the present work. 
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(a)  

 

(b)  

 

 

(c)  

Figure 3.17. Damage index for the mild steel-AE44 galvanic couple under stress 

corrosion cracking at (a) 𝑡 = 0 hrs, (b) 𝑡 =  36 hrs, and (c) 𝑡 =  41.6 hrs. See also the 

movie in Supplementary Materials. 

To solve this coupled problem using COMSOL or other PDE-based classical models, one 

needs to consider a model for crack growth. One option is to use cohesive elements with 

their corresponding damage models defined throughout the domain of interest. Beside the 

complexity of coupling these physical mechanisms, introducing cohesive elements can 

significantly increase the computational cost by creating new nodes and increasing the 

bandwidth of matrices. The PD model, on the other hand, simplifies this process and 

allows treatment of complex problems with little effort. For realistic, complex problems, 

the advantages of PD formulations over traditional methods stand out. 
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3.6 Conclusions 

A new peridynamic (PD) model for coupled galvanic corrosion and fracture was 

introduced. The coupled model consists of a PD electrostatic solver to compute the 

electric potential distribution over the electrolyte domain, a reformulated PD corrosion 

dissolution model which is applicable to problems with highly non-uniform current 

densities along arbitrary-shape corroding surfaces (a common occurrence in galvanic 

corrosion problems), and a linear elastic-brittle fracture PD model. 

The reformulated PD corrosion dissolution model was established based on the 

electrochemical view of the corrosion process. This change enabled an analytical 

calibration for the corrosion rate and replaced the original integro-differential equation 

for corrosion dissolution with an ordinary differential equation, leading to a simplified 

algorithm/implementation and decreased computational cost of simulation compared to 

the original PD corrosion model. The new model works well even in cases where the 

current density is highly location-dependent, or when the curvature of the corrosion 

surface is high (near reentrant corners, for example), as in the case of galvanic corrosion.  

The model was verified for a 2D uniform corrosion case in terms of the initial electric 

potential and current density, and time-dependent corrosion depth. Validating the model 

against experimental results available from the literature for two galvanic couples (mild 

steel-AE44 and AE44-AA6063) was performed. Results obtained with an FEM-based 

model built using COMSOL were compared with the PD results. It was found that for 

FEM-based or phase-field models of corrosion in galvanic couples, a “step-down” needs 

to be artificially inserted in the geometry at the material interface of the couple in order 

for these models to produce reasonable results. The step appears to be necessary in 
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models based on partial differential equations because of difficulties in assigning proper 

boundary conditions at the galvanic couple interface, to correctly initialize the motion of 

the corrosion front. The need for introducing such geometrical artifacts in a model 

reduces its generality. Moreover, such artificial modifications to the sample geometry 

may lead to erroneous results when mechanical loadings are applied to a galvanic couple 

system, because the stress profile near the interface would be different from the actual 

one, at least in the early stages of the corrosion process. If there is a strong stress-

dependency of the corrosion rate, the likelihood of obtaining wrong results for coupled 

problems (e.g., galvanic corrosion and fracture) may be further enhanced. The PD model 

introduced here does not require the artificial change in geometry at the interface to 

obtain results that match the experimental observations. 

A coupled corrosion-fracture problem was solved using the new PD model, 

demonstrating how fracture can initiate and grow from the sharp trench created by 

galvanic corrosion. This showed the model’s potential for simulating failure caused by 

the combined galvanic corrosion attack and mechanical loadings.  
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Appendix A. Boundary conditions in PD elastic and electrostatic solvers 

Unlike classical local methods, the BCs in peridynamic models are intrinsically nonlocal. 

However, when solving practical problems, imposing local-type BCs in nonlocal/PD 

models is usually desired/needed because, in reality, conditions (on the unknown function 

values or its flux) are imposed at the surfaces of a body, not through a finite layer near 

the surface. The natural representation of such conditions (based on measurements) is via 

local BCs. Various methods to impose local BCs in PD models have been investigated in 

[32,56,57].  

For the elastic solver in this work, the local BCs involved (see the example in Section 

3.5) is of the Dirichlet type, and the accuracy of the BCs is not a major concern 

considering the purpose of the example. Therefore, we assign the value of the Dirichlet 

BCs directly to those PD nodes nearby, as described in Section 3.5. 

The electrostatic solver, however, involves Robin-type BCs and requires more accurate 

representation of the local BCs to be enforced. Therefore, we use the fictitious nodes 

method (FNM) [32,57,58]. In FNM for PD models, certain constraints are specified on 

the fictitious region Ω̃ = {𝒙 ∉ Ω|distance(𝒙, 𝜕Ω) < 𝛿} (the “collar” outside of the 

solution domain Ω shown in Figure 3.18), so that desired local BCs on 𝜕Ω are satisfied or 

approximately satisfied. There are a couple of different FNMs to enforce local BCs in PD 

models. In this paper, we use the autonomous mirror-based one (or mirror FNM) [16], 

which is designed to handle arbitrary boundary shapes, to enforce the local BCs at metal 

surfaces for the electrostatic solver. The fictitious region overlaps a solid region with 

thickness 𝛿 below the metal surface, as shown in Figure 3.19. A brief review of the 
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autonomous mirror FNM and a simplification performed for the problem in this work are 

provided next. 

  

Figure 3.18. Schematic of a PD domain (Ω), its boundary (𝜕Ω), and its fictitious region 

(Ω̃). 

 

 

Figure 3.19. An illustration of the electrolyte domain (Ω), boundaries (𝜕Ω) and 

fictitious region in the PD electrostatic model for a general corrosion problem. The PD 

horizon size is 𝛿. 

Consider a body occupying the domain Ω ∈ ℝ𝑑, 𝑑 = 2 or 3, and an extended fictitious 

region Ω̃ = {𝒙 ∈ ℝ𝑑\Ω|distance(𝒙, 𝜕Ω) < 𝛿}. The mirror FNM assigns the constraint 

�̃�(𝒙) at each 𝒙 ∈ Ω̃ based on 𝑢(𝒙𝑅) and 𝑢(𝒙𝑃) in which 𝒙𝑃 = OProj𝜕Ω(𝒙) is the 

orthogonal projection of 𝒙 onto 𝜕Ω and 𝒙𝑅 = Ref𝜕Ω(𝒙) = 𝒙 + 2(𝒙
𝑃 − 𝒙) is the 

reflection, or mirror point, of 𝒙 through/across 𝜕Ω. For 𝒙 ∈ Ω̃, when 𝜕Ω𝒙 = {𝜕Ω ∩ℋ𝒙} is 

continuous and the normal to 𝜕Ω𝒙 at each 𝒚 ∈ 𝜕Ω𝒙 is unique (i.e., 𝜕Ω𝒙 ∈ 𝐺
1), we have 

𝒙𝒙𝑃⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝛼𝒏(𝒙𝑃), in which 𝛼 ∈ ℝ− and 𝒏(𝒙𝑃) is the outward unit normal vector at 𝒙𝑃. 
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Figure 3.20. A schematic of orthogonal projection of 𝒙 onto 𝜕Ω and the reflection of 𝒙 

through/across 𝜕Ω in mirror-based FNM [32]. 

In the mirror FNM, to impose the local Dirichlet BC 𝑢(𝒙) = 𝑢D(𝒙) for 𝒙 ∈ 𝜕ΩD and the 

Neumann BC 𝛁𝒏𝑢(𝒙) = 𝑞 for 𝒙 ∈ 𝜕ΩN, �̃�(𝒙) at 𝒙 ∈ Ω̃D is assigned as: 

and �̃�(𝒙) at 𝒙 ∈ Ω̃N is assigned as: 

�̃�(𝒙) = 𝑢(𝒙𝑅) + ‖𝒙 − 𝒙𝑅‖𝑞 (3.39)  

respectively. For the local Robin BC 𝛁𝒏𝑢(𝒙) = 𝑓(𝑢(𝒙)) for 𝒙 ∈ 𝜕ΩR, we have, for 𝒙 ∈

Ω̃R: 

�̃�(𝒙) = 𝑢(𝒙𝑅) + ‖𝒙 − 𝒙𝑅‖𝑓(𝑢(𝒙𝑃))

= 𝑢(𝒙𝑅) + ‖𝒙 − 𝒙𝑅‖𝑓 (
𝑢(𝒙𝑅) + �̃�(𝒙)

2
) 

(3.40)  

in which the approximation 𝑢(𝒙𝑃) =
𝑢(𝒙𝑅)+𝑢(𝒙)

2
 is made by assuming that the value of 𝑢, 

or �̃�, between 𝒙 and 𝒙𝑅 are close to a linear distribution. �̃�(𝒙) in Eq. (3.40) requires to be 

solved using a nonlinear solver if function 𝑓 is nonlinear. Constraints applied on fictitious 

nodes vary with the solution step. See Figure 3.21 for illustrations of how local Dirichlet 

BCs are enforced in the mirror FNM at each solution step.  

�̃�(𝒙) = 2𝑢(𝒙𝑃) −  𝑢(𝒙𝑅) (3.38)  



 
124 

 

Figure 3.21. Illustration of enforcing a local Dirichlet BC in the mirror FNM (redrawn 

from [32]).  

For the nonlinear robin boundary condition (at the electrode surfaces) in the galvanic 

corrosion problem we are solving (see Section 3.4.2), instead of using a nonlinear solver 

to solve Eq. (3.40), one can replace Eq. (3.40) by: 

�̃�(𝒙) = 𝜙(𝒙𝑅) −
𝑊(𝑤0)

𝑏
 (3.41) 

for 𝒙 ∈ Ω̃R where 𝑦 = 𝑊(𝑤0) is the Lambert 𝑊 function which satisfies 𝑦𝑒𝑦 = 𝑤0 and 

𝑤0 = −
𝑖0 ln 10

2𝜎𝛽
× ‖𝒙𝒙𝑅 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ × 10

(

𝜙(𝒙𝑅)+�̃�(𝒙)
2 −𝜙0
𝛽 )

 
(3.42) 

where 𝑖0, 𝜎, 𝛽 and 𝜙0 are parameters determined by the polarization curve and given in 

Table 3.3. 

Appendix A. Computing effective corrosion depth 

The corrosion depth distribution for a problem with general geometry is usually 

measured, when available, in the direction normal to the original surface. For the 



 
125 

problems considered in this work, that direction is the vertical direction. Therefore, we 

will measure the depth at each horizontal coordinate 𝑥. For a fair comparison of corrosion 

depth obtained by our PD model and by a classical model (analytical or numerical) or 

experiments, we will consider both the fully corroded region ((𝑑(𝒙, 𝑡) = 1) and the 

diffusion-based corrosion layer (𝑑(𝒙, 𝑡) ∈ (0,1)) when computing the total mass loss. 

The effective corrosion depth can then be computed at 𝑥 = 𝑥0 as:  

where 𝜓(𝑥0, 𝑡) = {𝒙(𝑥, 𝑦)|𝑥 = 𝑥0 and 𝑑(𝒙, 𝑡 = 0) = 0 and 𝑑(𝒙, 𝑡) > 0}. The nodes 

with 𝑑(𝒙, 𝑡 = 0) = 0 are those solid at the initial time, while nodes with 𝑑(𝒙, 𝑡) > 0 

include liquid and partially damaged ones at the current time. The schematic of 𝜓(𝑥0) is 

shown in Figure 3.22. 

  

Figure 3.22. A schematic of 𝜓(x0) over which the PD effective corrosion depth is 

computed in this work. 

Appendix B. COMSOL modeling of galvanic corrosion 

In COMSOL MultiPhysics®, the dissolution/corrosion process is modeled through the 

deformation of the boundary using the Arbitrary Lagrangian-Eulerian Method [47]. The 

𝑧ℎ(𝑥0, 𝑡) =
1

𝐶solid − 𝐶sat 
∫ [𝐶solid − 𝐶(𝑥0, 𝑦, 𝑡)]𝑑𝑦
𝜓(𝑥0,𝑡)

 (3.43) 
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deformation is determined by relating the boundary velocity to the electrode corrosion 

velocity, by the following equation: 

where 𝒏 is the normal vector to the boundary, 𝑀𝑗 and 𝜌𝑗 are molar mass and density of 

the species 𝑗, respectively, 𝜗𝑗,𝑘, 𝑖𝑘 and 𝑞𝑘 are the stoichiometric coefficient of species 𝑗, 

local current density, and the number of participating electrons, respectively, associated 

with the electrode reactions of index 𝑘.  

While Eq. (3.44) assumes that deformation/dissolution occurs only in the normal 

direction of the dissolving electrode (anode) boundary, a pointwise constraint is applied 

to non-dissolving boundaries (cathode) to prevent any dissolution in their normal 

directions (zero normal displacement): 

Such treatments may cause challenges for cases with shared nodes at the anode-cathode 

interface (e.g., the galvanic corrosion shown in Figure 3.11 (a)), where the 

deformation/dissolution may grow into the cathode. To resolve this issue, one may extend 

the cathode boundary by introducing a small geometric step at the cathode-anode 

interface, as shown in Figure 3.23. 

𝑉diss,tot =
𝜕𝒚

𝜕𝑡
⋅ 𝒏|

anode
=∑

𝑀𝑗
𝜌𝑗

𝑗

∑
𝜗𝑗,𝑘  𝑖𝑘
𝑞𝑘  𝐹

𝑘

 (3.44)  

d𝒚 ⋅ 𝒏|Cathode = 0. (3.45) 
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To build the geometry with small step incorporated at the anode-cathode interface the 

whole domain was constructed using two separate shapes with a difference in height. The 

two shapes were then connected using the Booleans and Partitions module. For the 

physics of the problem, the secondary current distribution and deformed geometry 

modules were used. Then, the electrolyte domain and two electrode surfaces were defined 

in the model. The cathodic reduction reaction was assigned to the cathode electrode 

surface, while the anodic corrosion reaction and the resulting boundary movement were 

defined at the anode electrode surface. The stoichiometric coefficients for dissolving-

depositing species were defined for the anode part. To apply a constraint for the planar 

non-depositing walls in order to enforce a zero boundary movement in the normal 

direction of surfaces other than the anode, zero normal displacement BC was used in the 

Multiphysics setting. 

For the COMSOL modeling of the galvanic corrosion problem in Figure 3.11 (a), the FE 

mesh at the initial stage is shown in Figure 3.24. There are in total 7 one-node vertex 

elements, 183 two-node edge elements and 7189 three-node triangular elements, while 

 

Figure 3.23. A schematic of the artificial geometric step at the interface between the 

anode and the cathode. 
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the number of mesh points is 3687. As we explained above, the small step-down 

(0.1 mm) at the interface between the anode and the cathode is necessary. 

 

Figure 3.24. Finite element mesh in COMSOL for the galvanic cell shown in Figure 

3.11 (a). Notice the artifical step on the bottom side. 

The height of this vertical geometric step controls the mesh resolution. Table 3.6 

represents the result for maximum corrosion depth as the height of the step decreases, for 

the AE44-AA6063 galvanic couple. 

Table 3.6. Convergence study on the maximum corrosion depth as the height of the initial 

step decreases, for the AE44-AA6063 galvanic couple. 

Step height (mm) No. of elements Max. corrosion depth (mm) 

1 1001 0.236905914 

0.5 1040 0.240754949 

0.2 1078 0.249791228 

0.1 1180 0.255897817 

0.01 1886 0.259696086 

0.001 3850 0.260926697 

0.0001 8464 0.261126347 
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Appendix C. Galvanic corrosion of a AE44-AA6063 couple 

In this appendix, we use the AE44-AA6063 galvanic couple test the PD and COMSOL 

models and compare their results with the experimental data provided in [3]. The 

coefficients used to fit the polarization curve for AA6063 are shown in Table 3.7, while 

those for AE44 can be found in Table 3.3. 

Table 3.7. Data used in the Tafel’s equation for AA6063 [2]. 

 𝑖0 (A/m
2)𝑏𝑐 

(V) 

𝑏𝑐  (V) 
𝜑0 (V, SCE) 

AA6063 
𝜙 ≤ −1.363 0.142 −0.0701 −1.363 

𝜙 > −1.363 0.142 −0.0051 −1.363 

The quantitative comparison of the final corrosion depth between experimental 

measurement, PD simulation and COMSOL simulation (with the artificial step at the 

joint included), after 3 days of corrosion, is shown in Figure 3.25. As we can see, the 

corrosion depth obtained from PD simulation agrees with that from the COMSOL 

simulation. However, they have two significant differences compared with the corrosion 

depth from the experiment. First, in the experiment, the corrosion does not take place 

exactly along the interface between two materials. Some part of the AA6063 (which is 

supposed to be cathode) is also corroded. Second, in the experiment, the corrosion trench 

is localized near the interface, and is very deep, while the computations show a much 

shallower trench and considerable reach of corrosion along the AE44 surface. It is highly 

possible that some other forms of corrosion, such as crevice and micro-galvanic 

corrosions, take place at the interface and play a significant role here. While we did not 

consider these mechanisms into our model here, some of them have been separately 
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investigated with PD formulations (see [35,55]), and future developments will include 

them.  

 

Figure 3.25. Quantitative comparison of the final corrosion depth for AE44-AA6063 

galvanic couple between experimental measurement [3], PD simulation and COMSOL 

simulation. 
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Chapter 4 Construction of a Peridynamic Model for Transient 

Advection-diffusion Problems 

4.1 Introduction and motivation 

The classical advection-diffusion equation (ADE) is present in the mathematical 

description of many phenomena related to heat transfer, fluid dynamics, chemistry, 

biology, environmental sciences, etc. Some of the common practical problems include the 

spread of pollutants in groundwater [1], the transport of drugs in body tissue [2-4]. 

Analytical solutions of the ADE are limited to only a few special cases, while for most of 

such problems one needs to obtain approximate solutions. Various numerical techniques 

have been used to approximately solve the ADE, such as Finite Element Method (FEM) 

[5-9], Finite Difference Method (FDM) [10, 11] and Boundary Element Method (BEM) 

[12, 13]. The classical ADE, however, cannot capture some more general environmental 

conditions such as anomalous diffusion observed in heterogeneous environments, in 

which nonlocal effects play an important role [14]. 

In recent years, peridynamics, a nonlocal method, has received much attention. The 

theory of peridynamics was introduced by Silling [15] as a reformulation of the classical 

continuum mechanics for modeling mechanical behavior in solid materials. The term 

peridynamics comes from the Greek roots for ‘‘near” and ‘‘force”. An important 

generalization of the theory has appeared in [16]. In the peridynamic model, spatial 

integration rather than differentiation is used, and this leads to a mathematically 

consistent formulation, even when strong discontinuities appear due to breaking and 

fragmentation of the material. 
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The peridynamic (PD) theory has been successfully applied to model fracture in brittle 

materials [17-24], rupture of membranes and nanofiber networks [25, 26], damage in 

composite materials [27-32], fatigue failure [33-35], pitting corrosion [36-38], phase 

transformations [39], plastic and viscoplastic deformation [40-42] and hydraulic 

fracturing [43].  

Gerstle et al. [44], Bobaru and Duangpanya [45, 46], extended the ideas of Silling to 

diffusion problems. These models use the bond-based version of peridynamics. Generic 

forms of PD diffusion models have been analyzed mathematically as well [47, 48]. A 

formal derivation for a state-based PD model [49] of heat diffusion appeared in [50], but 

the bond-based approach was adopted for numerical examples. As a generalization of the 

work by Bobaru and Duangpanya, a state-based PD formulation was given in [51] for 

convective single-phase flow in heterogeneous porous media, in which the flow potential 

difference was assumed to cause the fluid to flow only along the bond (pressure driven 

flow). Recently, a state-based peridynamic heat conduction model which considers the 

non-Fourier and nonlocal effects was developed [52]. 

To model problems in which both diffusion and flow are involved, the advection-

diffusion equations need to be considered. A nonlocal model for steady-state advection-

diffusion problems has been introduced in [53] where several examples were solved 

numerically using finite element discretization and results were compared with analytical 

solutions of both the nonlocal model and the corresponding local model. The nonlocal 

upwind kernel proposed in [53] was further discussed in [54]. 
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In this paper, we construct a PD model for the transient advection-diffusion problem, 

following a similar procedure to that used in [45]. In this way we arrive at a different PD 

kernel from the one postulated in [53]. We test our model with examples in both 1D and 

2D and compare PD results with classical solutions. We also evaluate the effectiveness of 

the hybrid model compared with the upwind and central models and find it to perform 

well even in advection-dominated cases. Convergence studies in the limit of the PD 

horizon going to zero show convergence to the classical results. Finally, we use the new 

model to simulate advection-diffusion in complex heterogeneous media, with little extra 

effort. 

4.2 The peridynamic formulation for advection-diffusion problems 

4.2.1 Peridynamic equation for diffusion problems 

The PD equation for diffusion without any sources or sinks has been given in [55]: 

𝜕𝜃(𝐱, 𝑡)

𝜕𝑡
= ∫ 𝐽𝑛(𝐱

′, 𝐱, 𝑡)𝑑𝑉𝐱′
𝐻𝐱

 , (4.1) 

where 𝜃(𝐱, 𝑡) is the concentration at point 𝐱 at time 𝑡, 𝐻𝐱 is the horizon region of 𝐱, 𝐱′ is 

a point inside 𝐻𝐱, 𝑉𝐱′ is the volume (area in 2D, length in 1D) belongs to 𝐱′, and the 

integrand 𝐽𝑛(𝐱
′, 𝐱, 𝑡) usually takes the following form: 

𝐽𝑛(𝐱
′, 𝐱, 𝑡) = {

𝑑(‖𝐱′ − 𝐱‖)
𝜃(𝐱′, 𝑡) − 𝜃(𝐱, 𝑡)

‖𝐱′ − 𝐱‖𝑛
     ‖𝐱′ − 𝐱‖ ≤ 𝛿

0                                                 ‖𝐱′ − 𝐱‖ > 𝛿

 , (4.2) 

where 𝛿 is the horizon size, 𝑛 is a real number (smaller than or equal to 2, see [55]) 

usually selected to be 0, 1, or 2, and 𝑑(‖𝐱′ − 𝐱‖) is the micro-diffusivity function.  
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The constructive approach proposed in [45] gives 𝑛 = 2, while the other usually 

employed values in the literature (𝑛 = 1 and 𝑛 = 0) are postulated. According to Chen 

and Bobaru (see [55]), with one-point Gaussian quadrature used for discretization, when 

the horizon size approaches zero and the ratio m between the horizon size and grid 

spacing is maintained constant (this is the so-called 𝛿-convergence, see [56]), only the 

form with 𝑛 = 2 leads to results that converge to the classical solution. For other values 

of 𝑛, 𝛿-convergence happens but to different values other than the classical one. Notice 

that other forms of discretization (see the asymptotically compatible discretizations in 

[47]), may lead to 𝛿-convergence for other values of 𝑛. In this work, however, we only 

consider the one-point Gaussian quadrature since it leads to a meshfree model, which is 

naturally well suited for capturing damage evolution (see [55]). With 𝑛 = 2, the PD 

diffusion equation reads: 

𝜕𝜃(𝐱, 𝑡)

𝜕𝑡
= ∫ 𝑑(𝐱′, 𝐱)

𝜃(𝐱′, 𝑡) − 𝜃(𝐱, 𝑡)

‖𝐱′ − 𝐱‖2
𝑑𝑉𝐱′

𝐻𝐱

 . (4.3) 

The micro-diffusivity function can have different forms with different horizon-scale 

behaviors. Two popular choices are the “constant” micro-diffusivity: 

𝑑(𝐱′, 𝐱) = {
𝑑0 ‖𝐱′ − 𝐱‖ ≤ 𝛿
0  ‖𝐱′ − 𝐱‖ > 𝛿

 , (4.4) 

which means the interaction between points (when ‖𝐱′ − 𝐱‖ ≤ 𝛿) is independent of the 

distance between them, and the “linear” (also called “triangular”) micro-diffusivity, in 

which the interaction is linearly dependent on the distance (when ‖𝐱′ − 𝐱‖ ≤ 𝛿): 
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𝑑(𝐱′, 𝐱) = {𝑑1(1 −
‖𝐱′ − 𝐱‖

𝛿
) ‖𝐱′ − 𝐱‖ ≤ 𝛿

0 ‖𝐱′ − 𝐱‖ > 𝛿

 . (4.5) 

By matching the PD solution with the classical one for the case of linear concentration 

profile, one obtains the parameters above as follows: for the one-dimensional case, 𝑑0 =

𝐷

𝛿
 and 𝑑1 =

2𝐷

𝛿
; for two-dimensional case, 𝑑0 =

4𝐷

𝜋𝛿2
 and 𝑑1 =

12𝐷

𝜋𝛿2
 (see [55]); For 3-

dimensional case, 𝑑0 =
9𝐷

2𝜋𝛿3
 and 𝑑1 =

18𝐷

𝜋𝛿3
. 

According to [55], the rate of convergence of the nonlocal solution to the classical one, 

under 𝛿-convergence, is better with the linear micro-diffusivity, which will be used in the 

following sections.  

4.2.2 Derivation of peridynamic transient advection equation 

For the derivation of PD advection equation, we assume that diffusion is negligible and 

use the constructive approach similar to the one used in [45]. 

Consider a cylinder bounded by two parallel planes 𝑃 and 𝑃′ with different mass 

concentration 𝜃 and 𝜃′, as shown in Figure 4.1. The cross-sectional area equals 𝑠. It is 

assumed that no mass transfer takes place through the cylinder’s side surface 𝐴 and the 

cylinder is short enough so that the flow field is uniform along it. The quantity of mass 

which flows into the cylinder per unit time equals:  

𝑠(𝜃 − 𝜃′)𝐕 ∙ 𝒆𝐱𝐱′ , (4.6) 

where 𝐕 is the flow velocity of the flow field at 𝐱, in the conventional sense, and 𝒆𝐱𝐱′  is 

the unit vector along the cylinder’s longitudinal axis. 
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Figure 4.1. Mass transfer under a uniform fluid flow in a cylinder bounded by two planes 

which are at different concentrations (redrawn from [45]). 

If 𝜃𝑎 is defined as the average concentration in the cylinder, then the rate of mass change 

equals 

𝑑𝑠
𝜕𝜃𝑎
𝜕𝑡
 . (4.7) 

From mass conservation, Eqs. (4.6) and (4.7) give: 

𝜕𝜃𝑎
𝜕𝑡

= −
𝜃𝐱′ − 𝜃𝐱
‖𝐱′ − 𝐱‖

𝐕 ∙ 𝒆𝐱𝐱′  . (4.8) 

To derive the PD advection equation, a body occupying a region 𝛺 (in 1D, 2D or 3D) is 

considered (see Figure 4.2). The body is composed of material points associated with 

mass and volume. Each point is connected to other points in the body through 

“concentration bonds”. The following derivation is for one-dimensional pure advection in 

a tube. It can be easily extended to multi-dimensional cases.  
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(a) Horizon and bonds connected to a node 

in 1D. 

(c) Horizon region and some PD bonds 

for a node in a 3D body. 

 

  

(b) Horizon region and some PD bonds for 

a node in a 2D body. 
(d) A PD concentration bond. 

Figure 4.2. The PD description of a body (a, b, c) and the concentration bond (d) 

(redrawn from [45]). 

It is reasonable to assume that point 𝐱 only interacts with points located in a certain 

neighborhood of 𝐱 (denoted by 𝐻𝐱), called the horizon region (or simply “the horizon”) 

of 𝐱. For convenience, 𝐻𝐱 is taken to be a sphere/circle of radius 𝛿 (or a line segment with 

length 2𝛿 in 1D), centered at 𝐱 (see Figure 4.2). 

Considering that all bonds are “insulated” from each other so that no mass transfer 

happens between them, and making the analogy with the cylinder that lead to Eq. (4.8), 

then for the bond (𝐱, 𝐱′) we can write: 
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𝜕𝜃𝑎(𝐱,  𝐱
′, 𝑡)

𝜕𝑡
= −𝐕(𝐱, 𝑡) ∙ 𝒆𝐱𝐱′

𝜃(𝐱′, 𝑡) − 𝜃(𝐱, 𝑡)

‖𝐱′ − 𝐱‖
 , (4.9) 

where 𝜃𝑎(𝐱, 𝐱
′, 𝑡) is the average concentration along the bond. Integrating over the 

horizon region of point 𝐱 on both sides of Eq. (4.9) gives 

∫
𝜕𝜃𝑎(𝐱,  𝐱

′, 𝑡)

𝜕𝑡
𝑑𝑉𝐱′

𝐻𝐱

= −∫ 𝐕(𝐱, 𝑡) ∙ 𝒆𝐱𝐱′
𝜃(𝐱′, 𝑡) − 𝜃(𝐱, 𝑡)

‖𝐱′ − 𝐱‖
𝑑𝑉𝐱′

𝐻𝐱

 . (4.10) 

We assume the following relation between the concentration at point 𝐱 and the average 

concentration of all bonds connected to 𝐱: 

∫ 𝜃𝑎(𝐱,  𝐱
′, 𝑡)𝑑𝑉𝐱′

𝐻𝐱

= 𝜃(𝐱, 𝑡)𝑉𝐻𝐱  . (4.11) 

Then we have 

∫
𝜕𝜃𝑎(𝐱,  𝐱

′, 𝑡)

𝜕𝑡
𝑑𝑉𝐱′

𝐻𝐱

=
𝜕𝜃(𝐱, 𝑡)

𝜕𝑡
𝑉𝐻𝐱  , (4.12) 

where 𝑉𝐻𝐱 is the volume/area/length of the horizon region for point 𝐱. Then Eq. (4.10) 

becomes: 

𝜕𝜃(𝐱, 𝑡)

𝜕𝑡
= −∫ 𝐯(𝐱, ‖𝐱′ − 𝐱‖, 𝑡) ∙ 𝒆𝐱𝐱′

𝜃(𝐱′, 𝑡) − 𝜃(𝐱, 𝑡)

‖𝐱′ − 𝐱‖
𝑑𝑉𝐱′

𝐻𝐱

 , (4.13) 

where 𝐯(𝐱, ‖𝐱′ − 𝐱‖, 𝑡) = 𝑤(‖𝐱′ − 𝐱‖)𝐕(𝐱, 𝑡)/𝑉𝐻𝐱 is a weighted flow velocity density at 

x over its horizon region. We call it the “micro-velocity” vector at x, and its dot product 

with the bond direction 𝒆𝐱𝐱′  gives the “micro-velocity” function of the (𝐱, 𝐱′) bond, 

v(𝐱,  𝐱′, 𝑡). The function 𝑤(‖𝐱′ − 𝐱‖) is a weighting function which controls the “shape” 
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of the micro-velocity vector function over the horizon region, and it will be discussed in 

Section 4.2.4. The units for the bond micro-velocity are velocity per length, area or 

volume for the 1D, 2D or 3D cases, respectively. Once a weighting function is selected, 

the micro-velocity can be explicitly found by matching the PD and the classical models 

for the case of constant flow velocity. This is also explained in Section 4.2.4 below.  

The equation above is the PD equation for advection without any sources. If a mass 

source 𝑏(𝐱, 𝑡) is present, Eq. (4.13) becomes: 

𝜕𝜃(𝐱, 𝑡)

𝜕𝑡
= −∫ v(𝐱,  𝐱′, 𝑡)

𝜃(𝐱′, 𝑡) − 𝜃(𝐱, 𝑡)

‖𝐱′ − 𝐱‖
𝑑𝑉𝐱′

𝐻𝐱

+ 𝑏(𝐱, 𝑡) . (4.14) 

By combining Eqs. (4.3) and (4.13), the PD diffusion-advection equation without sources 

can be written as: 

𝜕𝜃(𝐱, 𝑡)

𝜕𝑡
= ∫ 𝑑(𝐱,  𝐱′)

𝜃(𝐱′, 𝑡) − 𝜃(𝐱, 𝑡)

‖𝐱′ − 𝐱‖2
𝑑𝑉𝐱′

𝐻𝐱

−∫ v(𝐱,  𝐱′, 𝑡)
𝜃(𝐱′, 𝑡) − 𝜃(𝐱, 𝑡)

‖𝐱′ − 𝐱‖
𝑑𝑉𝐱′

𝐻𝐱

 . 

(4.15) 

For steady flow, which is assumed in all of the examples solved below, v(𝐱,  𝐱′, 𝑡) 

becomes v(𝐱,  𝐱′). For problems with time-dependent input flow velocity field, one 

replaces the constant velocity vector with its instantaneous value.  

Compared to the kernels given in [53, 54], our kernels have both 𝛿 (contained in the 

micro-diffusivity and the micro-velocity functions, see Section 4.2.4) and ‖𝐱 − 𝐱′‖ in the 

denominator, while the kernels in [53, 54] only have 𝛿 in the denominator.  
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4.2.3 Peridynamic advection-diffusion models 

For the advection part of Eq. (4.15), two basic kernels can be considered: the central 

kernel and the upwind kernel. They came from the classical schemes (see, for example, 

[57]). The upwind type kernel depicted in Figure 4.4 was first considered in a nonlocal 

setting in [53, 54] by Tian et al. With the central kernel, the whole horizon region 

influences the concentration at 𝐱, just as Figure 4.3 shows, and we obtain a central 

peridynamic advection-diffusion model (central model). With the upwind kernel, the 

concentration at 𝐱 is only influenced by the “upwind” region which is only half of 𝐻𝐱 (see 

the shaded area in Figure 4.4), and we obtain an upwind peridynamic advection-diffusion 

model (upwind model). To determine the upwind region, we compute the dot product of 

the given flow direction 𝒆𝐕 at each node 𝐱 and the direction 𝒆𝐱𝐱′  of each bond connected 

to 𝐱. If the result is negative, then 𝐱′ is in the upwind region of 𝐱.  

 

(a) 1-D case 

 

(a) 1-D case 

 

(b) 2-D case 

 

(b) 2-D case 

Figure 4.3. Illustration of the central 

kernel. 

Figure 4.4. Illustration of the upwind 

kernel (shaded area is the upwind region 

𝐻𝐱). 
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4.2.4 Calibration of micro-velocity parameters 

For any point 𝐱′ within the horizon of a given node 𝐱, the micro-velocity for the bond 

connecting them can take different forms through the selection of the weighting function 

𝑤(𝜉). The simplest ones are the “constant” and the “linear” types shown in Figure 4.5. 

 

(a) Constant-type micro-velocity 

 

(b) Linear-type micro-velocity 

Figure 4.5. Two possible types of the weighting function and their variations over the PD 

horizon. 

 

From the physical perspective, a specific weighting function for a material should be 

possible to be obtained by experiments. Here, we determine the micro-velocity in terms 

of the velocity of the flow field through a match or calibration between the PD results and 

the classical solution for a simple case: mass transfer under one-dimensional constant 

flow. 

Consider a one-dimensional constant flow (without diffusion) defined by the velocity V 

and an initial linear concentration 𝜃(𝑥, 𝑡 = 0) = 𝑎𝑥 + 𝑏, with given constants 𝑎 and 𝑏 

(see Figure 4.6). Then the concentration distribution with respect to time is 𝜃(𝑥, 𝑡) =

𝑎(𝑥 − 𝑉𝑡) + 𝑏. 
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Figure 4.6. A constant concentration flux for one dimensional steady flow in the absence 

of diffusion. 

With the classical model, at some point 𝑥 along the tube, we can write: 

𝜕𝜃

𝜕𝑡
= −𝑎𝑉 . (4.16) 

The PD model, assuming the constant-type micro-velocity, can be written as: 

𝜕𝜃

𝜕𝑡
= −∫

𝜃(𝑥′, 𝑡) − 𝜃(𝑥, 𝑡)

𝑥′ − 𝑥
𝑣0𝑑𝑥

′

𝐻𝑥

 . (4.17) 

If the micro-velocity is taken to be the linear-type [45], then the equation will be:  

𝜕𝜃

𝜕𝑡
= −∫

𝜃(𝑥′, 𝑡) − 𝜃(𝑥, 𝑡)

𝑥′ − 𝑥
𝑣1 (1−

|𝑥′ − 𝑥|

𝛿
)𝑑𝑥′

𝐻𝑥

 . (4.18) 

By enforcing a match between Eqs. (4.17) or (4.18) with (4.16), one can obtain the 

undetermined micro-velocity parameters 𝑣0 and 𝑣1. 

For the 2D and 3D cases, the micro-velocity parameters/vectors can be obtained in a 

similar way (see Appendix A). The table below summarizes the micro-velocity 

parameters in different conditions. 

Remark: It is important to note that the micro-velocity parameter for the upwind kernel 

will be twice that used in the central kernel because the integration in Eqs. (4.17) or 



 
147 

(4.18) is over half the horizon region while it still has to match the same rate of change of 

concentration in Eq. (4.16). 

Table 4.1. The micro-velocity parameters for different types of weighting functions 

(constant and linear) under the flow field defined by velocity 𝐕 (𝑉 in 1D), where �̂� and �̃� 

are for the central and upwind kernels, respectively. 

Function “shape” 
Micro-velocity parameters for 

the central kernel 

Micro-velocity parameters 

for the upwind kernel 

1D 

constant �̂�0 =
𝑉

2𝛿
 �̃�0 =

𝑉

𝛿
 

linear �̂�1 =
𝑉

𝛿
 �̃�1 =

2𝑉

𝛿
 

2D 

constant �̂�0 =
2𝐕

𝜋𝛿2
 �̃�0 =

4𝐕

𝜋𝛿2
 

linear �̂�1 =
6𝐕

𝜋𝛿2
 �̃�1 =

12𝐕

𝜋𝛿2
 

3D 

constant �̂�0 =
9𝐕

4𝜋𝛿3
 �̃�0 =

9𝐕

2𝜋𝛿3
 

linear �̂�1 =
9𝐕

𝜋𝛿3
 �̃�1 =

18𝐕

𝜋𝛿3
 

4.3 Numerical methods 

To numerically integrate Eq. (4.15), we discretize the domain using a uniform grid with 

grid spacing Δ𝑥. Each node has a “volume” (length in 1D and area in 2D). Figure 4.7 

shows the 2D discretization around a node 𝐱𝑖. Non-uniform grids are possible in 

peridynamics [58-60], but it is not pursued here. 
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Figure 4.7. Numerical discretization around a node 𝐱i. The nearest-neighbor nodes to 𝐱𝑖 
are used to account for the advection-diffusion within the volume of itself. The circular 

region is the horizon region of 𝐱𝑖. 

The spatial discretization of Eq. (4.15), using the mid-point rule, is 

�̇�(𝐱𝑖 , 𝑡) = ∑𝑑(𝐱𝑖 , 𝐱𝑝)
𝜃(𝐱𝑝, 𝑡) − 𝜃(𝐱𝑖 , 𝑡)

‖𝐱𝑝 − 𝐱𝑖‖
2 𝑉𝑖𝑝

𝑝

−∑v(𝐱𝑖 , 𝐱𝑝)
𝜃(𝐱𝑝, 𝑡) − 𝜃(𝐱𝑖 , 𝑡)

‖𝐱𝑝 − 𝐱𝑖‖
𝑉𝑖𝑝

𝑝

 , 

(4.19) 

where the first summation is after all nodes 𝐱𝑝 inside the horizon of node 𝐱𝑖, and 𝑉𝑖𝑝 is 

the portion of volume of node 𝐱𝑝 covered by the horizon of node 𝐱𝑖. The partial volume 

integration, which was first proposed by [61] and then further discussed by [62, 63], is 

used to approximate the covered portion of 𝑉𝑖𝑝. The second summation is different 

between the central model (v= v̂, the micro-velocity for the central model) and the 

upwind model (v= ṽ, the micro-velocity for the upwind model)  

Note that special care must be taken when computing the term for 𝑝 = 𝑖. Mathematically, 

this term can be computed by taking the limit 𝐱𝑝 → 𝐱𝑖, but note that this can be done only 

if the corresponding volumes of these nodes go to zero, otherwise the principle of non-

interpenetration of matter will be violated. Instead of using the limit approach, we 
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approximate these values as follows: for the 1D dimensional case, we calculate the 

average value from the nearest-neighbors: 

1

2
[𝑑(𝑥𝑖−1, 𝑥𝑖)

𝜃(𝑥𝑖−1, 𝑡) − 𝜃(𝑥𝑖 , 𝑡)

(𝑥𝑖−1 − 𝑥𝑖)2
𝑉𝑖,𝑖−1

+ 𝑑(𝑥𝑖+1, 𝑥𝑖)
𝜃(𝑥𝑖+1, 𝑡) − 𝜃(𝑥𝑖 , 𝑡)

(𝑥𝑖+1 − 𝑥𝑖)2
𝑉𝑖,𝑖+1

− �̂�(𝑥𝑖−1, 𝑥𝑖)
𝜃(𝑥𝑖−1, 𝑡) − 𝜃(𝑥𝑖 , 𝑡)

𝑥𝑖−1 − 𝑥𝑖
𝑉𝑖,𝑖−1

− �̂�(𝑥𝑖+1, 𝑥𝑖)
𝜃(𝑥𝑖+1, 𝑡) − 𝜃(𝑥𝑖 , 𝑡)

𝑥𝑖+1 − 𝑥𝑖
𝑉𝑖,𝑖+1] 

(4.20) 

for the central model, and: 

1

2
[𝑑(𝑥𝑖−1, 𝑥𝑖)

𝜃(𝑥𝑖−1, 𝑡) − 𝜃(𝑥𝑖 , 𝑡)

(𝑥𝑖−1 − 𝑥𝑖)2
𝑉𝑖,𝑖−1

+ 𝑑(𝑥𝑖+1, 𝑥𝑖)
𝜃(𝑥𝑖+1, 𝑡) − 𝜃(𝑥𝑖 , 𝑡)

(𝑥𝑖+1 − 𝑥𝑖)2
𝑉𝑖,𝑖+1

− �̃�(𝑥𝑖−1, 𝑥𝑖)
𝜃(𝑥𝑖−1, 𝑡) − 𝜃(𝑥𝑖 , 𝑡)

𝑥𝑖−1 − 𝑥𝑖
𝑉𝑖,𝑖−1] 

(4.21) 

for the upwind model if the flow direction is from left to right. If the flow direction is 

from right to left, then the 𝑥𝑖−1 in the third term is replaced by 𝑥𝑖+1. 

For 2-D case, we also only employ the nearest (eight or three, see Figure 4.7) neighbors 

of node 𝐱𝑖, and the approximation is given by: 
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1

8
∑ 𝑑(𝐱𝑗 , 𝐱𝑖)

8

𝑗=1

𝜃(𝐱𝑗 , 𝑡) − 𝜃(𝐱𝑖 , 𝑡)

‖𝐱𝑗 − 𝐱𝑖‖
2

𝐴𝑖

−
1

8
∑ �̂�(𝐱𝑗 , 𝐱𝑖)

8

𝑗=1

𝜃(𝐱𝑗 , 𝑡) − 𝜃(𝐱𝑖 , 𝑡)

‖𝐱𝑗 − 𝐱𝑖‖
cos(𝛼) 𝐴𝑖 , 

(4.22) 

for the central model, and by: 

1

8
∑ 𝑑(𝐱𝑗 , 𝐱𝑖)

8

𝑗=1

𝜃(𝐱𝑗 , 𝑡) − 𝜃(𝐱𝑖 , 𝑡)

‖𝐱𝑗 − 𝐱𝑖‖2
𝐴𝑖

−
1

3
∑ �̃�(𝐱𝑗 , 𝐱𝑖)

3

𝑗=1

𝜃(𝐱𝑗 , 𝑡) − 𝜃(𝐱𝑖 , 𝑡)

‖𝐱𝑗 − 𝐱𝑖‖
cos(𝛼) 𝐴𝑖 , 

(4.23) 

for the upwind model. The extension to 3D of this procedure is obvious.  

In a body that undergoes damage, if a mechanical bond (𝑥𝑖 , 𝑥𝑝) gets broken and 

advection and diffusion are both interrupted (or modified in a prescribed way), then the 

contribution from this bond is skipped (or modified in a prescribed way) in the 

summations in Eq. (4.19).  

For the time integration of Eq. (4.19), we use the forward Euler method: 

𝜃𝑖
𝑛+1 = 𝜃𝑖

𝑛 + ∆𝑡�̇�𝑖
𝑛 . (4.24) 

To compare PD solution with the classical solution, we use the relative difference defined 

as: 

‖𝜃classical − 𝜃PD‖2
‖𝜃classical‖2

=
√∑ (𝜃𝑖

classical − 𝜃𝑖
PD)2𝑛

𝑖=1

√∑ (𝜃𝑖
classical)2𝑛

𝑖=1

 , (4.25) 

and the convergence rate defined as: 
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𝑝 ≈
log

𝑒new
𝑒old

log
ℎnew
ℎold

 , (4.26) 

where 𝑒 is the relative difference and ℎ is the grid spacing. 

The time step has to satisfy the condition of stability [17, 50] defined as: 

∆𝑡 <
1

∑
𝑑

‖𝐱𝑗 − 𝐱𝑖‖
2

𝑛
𝑗=1 𝑉𝑗

 . 
(4.27) 

Imposing Dirichlet (concentration) boundary conditions  

For the uniform discretization mentioned at the beginning of this section, the Dirichlet 

boundary conditions can be imposed by assigning the given concentration value to the 

end node/nodes. Another method is adding a boundary layer (with a thickness of 𝛿) 

outside the real boundary. When the horizon size is relatively small (relative to 

geometrical features) there is little difference between these two methods. With the 

horizon size approaching zero (in a 𝑑-convergence approach, which induces the nodal 

volumes to go to zero as well), the PD Dirichlet condition converges to the classical 

boundary condition [64].  

Imposing Neumann (mass flux) boundary conditions 

The implementation of heat-flux boundary conditions in PD was discussed in [46]. 

Imposing mass-flux conditions is identical to the heat-flux conditions.  

4.4 Numerical tests and convergence to classical solutions 

In this section, two examples (1D and 2D, for which analytical solutions for the classical 

model exist) are used to verify the PD model and discuss convergence to the classical 
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solution. We assume a given uniform steady velocity field, and the linear micro-

diffusivity is used. To impose the PD boundary conditions, we add a boundary layer 

(with a thickness of 𝛿) outside the real boundary and assign the given concentration 

values to this boundary layer. 

4.4.1 Test example in 1D 

When the diffusion coefficient is constant, the velocity field describes a uniform steady 

flow, and no sources or sinks exist, classical advection-diffusion equation in 1D can be 

written as: 

𝜕𝜃(𝑥, 𝑡)

𝜕𝑡
= 𝐷

∂2𝜃(𝑥, 𝑡)

∂𝑥2
− 𝑉

∂𝜃(𝑥, 𝑡)

∂𝑥
 , (4.28) 

where 𝜃(𝑥, 𝑡) is the concentration of the substance of interest at position 𝑥 at time 𝑡, 𝐷 is 

the diffusion coefficient and 𝑉 is the velocity of the flow field. 

The initial and boundary conditions of the first example are: 

{

 𝜃(𝑥, 0)   =  0                𝑥 > 0
 𝜃(0, 𝑡)    =  𝐶0               𝑡 ≥ 0

 𝜃(∞, 𝑡)   =  0                 𝑡 ≥ 0

 . (4.29) 

 

 

Figure 4.8. Boundary and initial conditions for 1D advection-diffusion in a semi-infinite 

tube. 

 

The classical solution for this problem can be found in [65] as: 
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𝜃(𝑥, 𝑡) =
𝐶0
2
[erfc (

𝑥 − 𝑉𝑡

2√𝐷𝑡
) + exp(

𝑉𝑥

𝐷
)erfc(

𝑥 + 𝑉𝑡

2√𝐷𝑡
)] , (4.30) 

where erfc(… ) is the complementary error function given by: 

erfc(𝑥) =
2

√𝑥
∫ 𝑒−𝑡

2
𝑑𝑡

∞

𝑥

 . (4.31) 

4.4.1.1 Case 1: Neither diffusion nor advection is dominant 

When the diffusion coefficient 𝐷 = 1 cm2/s and the flow velocity 𝑉 = 1 cm/s , the 

exact classical solution and the PD solutions (with central and upwind models, and the 

constant-type micro-velocity function) for the 1D example shown above are plotted in 

Figure 4.9 at times 𝑡 = 1 s, 2 s, 3 s, 4 s. The PD solutions shown were obtained with a 

horizon size of 0.05 cm and m value (the ratio of δ and ∆𝑥) of 4. 

  

Figure 4.9. The comparison between classical solution and PD solutions for the 1D 

example case 1. 

The match between the PD results (with either central or upwind models) and the classical 

result is excellent, because of the small horizon size used. Section 4.4.3.1 discusses the 𝛿-

convergence in detail and gives reasons for using these values for the horizon size and the 

m value.  
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4.4.1.2 Case 2: Advection-dominated 

In case 1, only the constant-type micro-velocity function was used. When the diffusion 

coefficient 𝐷 = 0.001 cm2/s  and the flow velocity  𝑉 = 1 cm/s  (advection-dominated 

case), we compare results between the constant-type and the linear-type micro-velocity 

functions. From Figure 4.10, the results with the linear type of micro-velocity function are 

closer to the classical result, for both upwind and central models. The results with the 

central model have oscillations (numerical instabilities) near the concentration front, while 

those from the upwind model exhibit no oscillations but some numerical diffusion.  

 

(a) 

 

(b) 

Figure 4.10. Concentration over the tube obtained with PD for the constant-type and 

linear-type micro-velocity functions for the 1D example case 2 (advection-dominated) 

at time 𝑡 = 4 s. (a) with central model, (b) with upwind model. 

The hybrid model 

Because of the observed oscillations (central model) and numerical diffusion (upwind 

model) when solving advection-dominated cases, we now test a hybrid model [57], which 

combines the two basic models. To do so, the parameter 𝜔(∈ [0,1]) is introduced [66] to 

control the weight of each model. Thus, Eq. (4.15) becomes: 
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𝜕𝜃(𝐱, 𝑡)

𝜕𝑡
= ∫ 𝑑(𝐱,  𝐱′)

𝜃(𝐱′, 𝑡) − 𝜃(𝐱, 𝑡)

‖𝐱′ − 𝐱‖2
𝑑𝑉𝐱′

𝐻𝐱

− 𝜔∫ v̂(𝐱,  𝐱′)
𝜃(𝐱′, 𝑡) − 𝜃(𝐱, 𝑡)

‖𝐱′ − 𝐱‖
𝑑𝑉𝐱′

𝐻𝐱

− (1 − 𝜔)∫ ṽ(𝐱,  𝐱′)
𝜃(𝐱′, 𝑡) − 𝜃(𝐱, 𝑡)

‖𝐱′ − 𝐱‖
𝑑𝑉𝐱′

𝐻𝐱

 . 

(4.32) 

The pure central model and the pure upwind model can be obtained by setting 𝜔 = 1 

and 𝜔 = 0, respectively. Through an optimal choice of  𝜔, it is possible to control the 

oscillations and minimize the numerical diffusion. 

For the advection-dominant case in example 1, we test results with 𝜔 = 0, 0.5, 0.8, 1, and 

compare them with the classical solution in Figure 4.11 and Figure 4.12, for the constant-

type micro-velocity and the linear-type micro-velocity, respectively. Table 4.2 gives the 

relative differences computed using Eq. (4.25). 

  

Figure 4.11. The PD results with different 𝜔 using the constant-type micro-velocity 

function compared to classical results (zoomed-in pictures on the right) for example 1, 

advection-dominated case, at time 𝑡 = 4 s. 
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Figure 4.12. The PD results with different 𝜔 using the linear-type micro-velocity 

function compared to classical results (zoomed-in pictures on the right) for example 1, 

advection-dominated case, at time 𝑡 = 4 s. 

Table 4.2. Relative differences in concentration along the tube between the classical 

model and PD solutions at time 𝑡 = 4 s, (advection-dominated case), with 𝛿=0.05cm (∆𝑥 

= 0.0125 cm) for different 𝜔. 

𝜔 Constant-type micro-velocity Linear-type micro-velocity 

0.0 0.095617 0.083922 

0.5 0.070083 0.05935 

0.8 0.046846 0.035418 

1.0 0.043525 0.022552 

The figures show, as expected, that oscillations are most severe when 𝜔 = 1, and 

especially for the constant-type micro-velocity function. By successively decreasing the 

value of 𝜔, the oscillation can be reduced, and are almost completely suppressed 

when 𝜔 < 0.8. Thus, with an appropriate choice of 𝜔, overshooting can be completely 

avoided with only little decrease in numerical accuracy. The optimal selection of 𝜔 

depends on the Peclet number which is the ratio of the strengths of advection and 

diffusion [57]. The convergence study for this advection-dominated case is given in 

Section 4.4.3.2. 
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4.4.2 Test example in 2D 

Transport in a homogeneous and isotropic medium during one-dimensional uniform 

steady flow with two-dimensional diffusion in classical form can be given by: 

𝜕𝜃(𝑥, 𝑦, 𝑡)

𝜕𝑡
= 𝐷 (

∂2𝜃(𝑥, 𝑦, 𝑡)

∂𝑥2
+
∂2𝜃(𝑥, 𝑦, 𝑡)

∂𝑦2
) − 𝑉

∂𝜃(𝑥, 𝑦, 𝑡)

∂𝑥
 , (4.33) 

where 𝐷 is the diffusion coefficient; 𝑉 is the velocity of the one-dimensional flow; 𝑥 and 

𝑦 are positions along the coordinate axes parallel and perpendicular to the direction of 

flow, respectively.  

Assume the solution domain is a half plane with 𝑥 ≥ 0 and the other boundaries at 

infinity. The initial and boundary conditions are:  

{
 
 
 

 
 
 
𝜃(𝑥, 𝑦, 0) = 0          0 < 𝑥 < ∞    − ∞ < 𝑦 < ∞
𝜕𝜃

𝜕𝑥
|
𝑥→∞

= 0                      − ∞ < 𝑦 < ∞     𝑡 > 0

𝜕𝜃

𝜕𝑦
|
𝑦→±∞

= 0                          0 < 𝑥 < ∞     𝑡 > 0

𝜃(0, 𝑦, 𝑡) = 𝐶0                               |𝑦| ≤ 𝑎     𝑡 > 0

𝜃(0, 𝑦, 𝑡) = 0                                 |𝑦| > 𝑎     𝑡 > 0

  , (4.34) 

with prescribed concentration at 𝑥 = 0. The classical solution was given in [67] as: 

𝜃(𝑥, 𝑦, 𝑡) =
𝑥𝐶0

(16𝜋𝐷𝐿)
1
2

∫ 𝜏−
3
2 {erf [

𝑎 + 𝑦

(4𝐷𝑇𝜏)
1
2

]
𝑡

0

+ erf [
𝑎 − 𝑦

(4𝐷𝑇𝜏)
1
2

]} exp{− [
𝑥 − 𝑉𝜏

(4𝐷𝑇𝜏)
1
2

]

2

}𝑑𝜏, 

(4.35) 

which can be computed using Chebyshev–Gauss quadrature.  
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Note that we compute the PD solution using a finite domain (with zero-flux conditions on 

three of the sides, see Figure 4.13). The classical analytical solution is for the semi-

infinite domain. However, if the time duration of the diffusion-advection process is short, 

the difference between the solutions of the finite and semi-infinite domains is negligible.  

 

Figure 4.13. Boundary and initial conditions for 2D advection-diffusion in a semi-infinite 

plate. The top, bottom, and right boundaries have zero flux conditions. 

Note that the velocity field does not have to be uniform steady, and the formula in Eq. 

(4.15) works for any given 2D velocity vector field. 

4.4.2.1 Numerical results 

In Figure 4.14 (a), (b) and (c), we compare the distribution of concentration obtained by 

classical method and PD method at t = 0.5 s. The solution along the center line is also 

given in Figure 4.14 (d). The parameters used here are 𝐷 = 1 cm2/s, 𝑉 = 1 cm/s. For 

the PD solutions, we use a horizon size of 0.0625 cm and m value of 4. The PD results 

match the classical results very well. A convergence study is given in Section 4.4.3.3. 

Like 1-D example, when it is advection-dominant, the 2-D example also encounters the 

numerical oscillation and numerical diffusion for the central and upwind models 

respectively. And by using the hybrid model, the solution becomes much better. The 
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contour of the whole domain and the solution along the center line are given in Figure 

4.15 and Figure 4.16 respectively. 

 

(a) Classical solution. 

 

(b) PD solution (central model). 

 

(c) PD solution (upwind model). 

 

(d) Comparison of solutions along the center 

line 

Figure 4.14. Classical and PD solutions for 𝐷 = 1 cm2/s and V = 1 cm/s. 
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(a) Classical solution. 

 

(b) PD solution (central model). 

 

(c) PD solution (upwind model). 

 

(d) PD Solution (hybrid model, 𝜔 = 0.8). 

Figure 4.15. Classical and PD solutions for advection-dominant case (𝐷 = 0.001 cm2/s 
and V = 1 cm/s). 

 

Figure 4.16. Comparison between classical and PD solutions along the center line for 

advection-dominant case. 
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4.4.3 Convergence study 

We focus the analysis on two types of convergence defined in [56]: the 𝑚-convergence 

(𝑚 is defined as δ/∆𝑥), and the 𝛿-convergence. In the 𝑚-convergence, we consider the 

horizon 𝛿 to be fixed and take 𝑚 → ∞, then the numerical PD approximation will 

converge to the exact nonlocal PD solution for the given 𝛿. In the case of 𝛿-convergence, 

the horizon 𝛿 → 0 while 𝑚 is fixed. For problems with no singularities, the numerical PD 

approximation converges to the classical local solution [47, 55, 68, 69]. The results in this 

section justify the horizon size and m value used in Sections 4.4.1 and 4.4.2. 

4.4.3.1 Convergence with central model in 1D, case 1 

𝒎-convergence: For several different horizon sizes (𝛿 = 𝐿/10, 𝐿/20, 𝐿/40, 𝐿/80), we 

perform the 𝑚-convergence test. In Figure 4.17, we plot the relative difference of the PD 

solutions compared with the classical solution at 𝑡 = 3s, for values of 𝑚 equal to 2, 4, 8 

and 16, for case 1. We see that, when 𝛿 is fixed, the relative difference decreases as 𝑚 

increases, but it converges to a value that is not zero. That can be explained by the fact 

that the nonlocal exact solution, for a given horizon size, is not equal to the classical local 

solution. The smaller the horizon size, the closer the nonlocal solution is to the classical 

local solution, as can be seen from Figure 4.17 by looking at the relative difference for 

decreasing values of the horizon size 𝛿 and a fixed m value.  

𝜹-convergence: Table 4.3 in Appendix B shows the detailed data for fixed 𝑚 and 

varying node spacing (varying horizon size). For a fixed 𝑚 value, as 𝛿 decreases (thus, 

node spacing decreases), the relative difference decreases gradually, with an increasing 

convergence rate, to zero. 
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Figure 4.17. The convergence study of the 1D example, case 1. 

 

4.4.3.2 Convergence with hybrid model in 1D, case 2 with 𝝎 = 𝟎.𝟖 

From the convergence study shown in Table 4.4 in Appendix B we can see that the 

hybrid model with 𝜔 = 0.8 performs very well. The fact that central model (with 𝜔 =

1.0) converges faster for a fixed m is reasonable because the relative difference over the 

whole tube can be very small even with the presence of obvious oscillation at the 

concentration front. However, the local relative difference inside the oscillation region 

can be much larger, according to Figure 4.12 which is the result obtained with 𝛿 = 0.05 

cm and 𝑚 = 4. Through the hybrid model, the local oscillation can be reduced with a 

little sacrifice to the global relative difference. Thus, advection-dominated problems can 

be handled well using PD method with the hybrid model. 

4.4.3.3 Convergence for the 2D example 

Figure 4.18 shows the convergence study of the whole domain for example 2, with 𝐷 =

1 cm2/s and 𝑉 = 1 cm/s (the central and upwind models give almost the same result). It 

can be observed that, for every horizon size, as m increases, the relative difference 

between the PD and the classical solution (which is the limit of the PD solution when the 

horizon goes to zero) decreases at first but then increases when m keeps growing. This is 
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similar to what happened in [55], where it was suggested that simply finding a certain 

horizon and a certain m-value for which there is a good match between the nonlocal 

model and the classical result is a misleading procedure. Instead, when the problem under 

consideration does not have a material length-scale that requires a particular horizon size, 

the 𝛿-convergence and m-convergence need to be tested. Recall that, for a fixed horizon 

size, the numerical approximation of the PD formulation converges, under grid 

refinement (m-convergence) to the exact solution of the analytical nonlocal problem. It 

can easily happen that, for a fixed horizon size, the difference between the PD numerical 

solution and the classical solution is low for some values of m and it becomes larger 

when increasing the m-value (see Figure 4.19). This should come as no surprise, since we 

know that in the limit of m going to infinity we need to approach the analytical solution 

of the nonlocal problem for that particular horizon size, not the classical solution.  

In [55], Chen showed with one dimensional diffusion examples that all 𝑚-convergence 

curves, if they cross with the classical solution, should cross at the same point. From 

Figure 4.19 we notice the same behavior for the advection-diffusion problem, and the 

three m-convergence curves cross with the classical solution at the same point, which 

guarantees 𝛿-convergence to the classical solution, for any 𝑚 value. Notice that this 

behavior is not conserved in the case of elastic wave propagation (see [70]) because of 

the nonlocal wave dispersion. 
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Figure 4.18. Relative difference for the whole domain with different horizon sizes and 𝑚 

values, at 𝑡 = 0.5 s (𝐷 = 1 cm2/s and V = 1 cm/s). 

 

Figure 4.19. Concentration at 𝑥 = 0.5 cm, 𝑦 = 0.5 cm with different horizon sizes and 𝑚 

values, at 𝑡 = 0.5 s (𝐷 = 1 cm2/s and V = 1 cm/s). 

 

4.5 Mass flow over a 2-D heterogeneous medium 

In this section, we use some examples to show the capability of our PD diffusion-advection 

model in the analysis of mass flow in heterogeneous media. Two potential applications of 

this capability include:  

1. Environmental engineering example: flow of polluted water into ground, a 

heterogeneous porous structure with many inclusions (permeable/impermeable 

stones, rocks). The inclusions’ presence influences the flow as well, and the 
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distribution of pollutants can be dramatically different from the homogeneous 

case.  

2. Drug therapy example: delivery of drugs in cancer treatments. The lower transport 

rates through the tumor interstitium influences the distribution of drugs, which 

affects the efficacy of therapy.  

Note that for heterogeneous material, special values for the micro-diffusivity and the 

micro-velocity should be assigned for bonds that cross over different regions. Several 

strategies can be selected for such purpose. One of them uses the arithmetic average 

values of the two nodes connected by the bond. Another option is the harmonic average 

[71], which is more appropriate in this case.  

To demonstrate the ability of the proposed PD model in solving problems set in 

heterogeneous media, we consider the mass flow problem in a 2D domain with randomly 

distributed inclusions (circles or ellipses) as shown in Figure 4.20. The initial 

concentration of the whole domain is zero and there is an inlet for mass flow at the 

middle of the left boundary. Zero flux of concentration is imposed along the other 

boundaries. For simplicity, we set the diffusion coefficient and a 1D uniform steady flow 

velocity to be 1 cm2/s and 1 cm/s in the matrix, respectively. This is a non-physical 

flow (because the flow would be influenced by the inclusions, in reality), but our model 

can use any given flow field. We solve the problem using a horizon size 𝛿 = 0.1 cm 

and 𝑚 = 4. 
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Figure 4.20. Example 3: flow in a heterogeneous medium. Same boundary conditions as 

in Figure 4.13. 

First, for the case with permeable inclusions, we generate five randomly distributed 

circular inclusions with smaller diffusion coefficients and flow velocities than the matrix. 

For each inclusion, we use a random number (from a uniform distribution) within the (0, 

0.1) range to decide its diffusion coefficient and flow velocity (still 1D uniform steady, in 

each inclusion). Figure 4.21 shows the concentration in the domain at 𝑡 = 6 s. The dash-

dot curves indicate the location of inclusions. The randomly assigned diffusion 

coefficients and flow velocities lead to various penetration levels in different inclusions.  

Next, with impermeable inclusions, we generate elliptical inclusions and assign to them 

zero diffusion coefficient and zero flow velocity. Figure 4.22 shows the distribution of 

concentration at 𝑡 = 6 s. We can see that the flow path is restricted to the gaps between 

inclusions. 
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Figure 4.21. Concentration distribution for 

permeable circular inclusions (with 

smaller diffusion coefficients and flow 

velocities) at 𝑡 = 6 s. 

 

Figure 4.22. Concentration distribution for 

impermeable random elliptical inclusions 

at 𝑡 = 6 s. 

 

We note that in these examples, a simple uniform grid (non-conforming to the geometry 

of the inclusions) was used, and that no change in the model was required other than 

changing the input data to account for the heterogeneity in the system.  

4.6 Conclusions 

In this paper we provided a constructive approach to obtain a peridynamic (PD) 

formulation for transient advection-diffusion problems. The advantage of the PD kernel 

we obtained here by construction from physical principles is that, compared with the ones 

postulated in the literature, convergence to the classical model in the limit of the nonlocal 

region size going to zero is guaranteed independent of the fineness of the discretization.  

The model presented here was employed to solve transient advection-diffusion examples 

in 1D and 2D, including transport in heterogeneous media with permeable and 

impermeable random inclusions. The model is versatile in the treatment of complex 
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problems and we demonstrated that by using a simple uniform grid, non-conforming to 

the microstructure geometry.  

We presented two integration kernels for advection: the central kernel and the upwind 

kernel, leading to the central and upwind peridynamic advection-diffusion models, 

respectively. We also introduced a weighted combination between these two models and 

observed elimination of the oscillations at the high-gradient front compared with the 

central model, and reduction of numerical diffusion compared with the upwind model. 

Furthermore, we performed thorough convergence analyses (𝛿-convergence and 𝑚-

convergence) for both 1D and 2D examples. 

In the future, we plan to extend our model to advection-diffusion-reaction problems. 
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Appendix A. Derivation of the micro-velocity parameters for steady flow 

In 2D condition, Eq. (4.8) becomes: 
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𝜕𝜃𝑎
𝜕𝑡

= −
(𝜃′ − 𝜃)

‖𝐱′ − 𝐱‖
(𝑉𝑥 cos 𝛼 + 𝑉𝑦 sin 𝛼) , (4.36) 

where 𝑉𝑥 and 𝑉𝑦 are the components of the velocity in x and y direction, respectively, and 

𝛼  is the angle between 𝒆𝐱𝐱′   and the flow direction at 𝐱 . Assuming linear-type micro-

velocity (like the one used in Eq. (4.18) and shown in Figure 4.5 (b)), we have: 

𝜕𝜃

𝜕𝑡
= −∫

(𝜃′ − 𝜃)

‖𝐱′ − 𝐱‖
(1 −

‖𝐱′ − 𝐱‖

𝛿
) (𝑣𝑥 cos 𝛼 + 𝑣𝑦 sin 𝛼)𝑑𝐴𝐱′

�̂�𝒙

 

= −∫
(𝜃′ − 𝜃)

𝑥′ − 𝑥
(1 −

‖𝐱′ − 𝐱‖

𝛿
)𝑣𝑥 cos

2 𝛼 𝑑𝐴𝐱′
�̂�𝐱

−∫
(𝜃′ − 𝜃)

𝑦′ − 𝑦
(1 −

‖𝐱′ − 𝐱‖

𝛿
) 𝑣𝑦 sin

2 𝛼 𝑑𝐴𝐱′
�̂�𝐱

 . 

(4.37) 

If we only consider one dimensional uniform steady flow in 𝑥 direction, we have 𝑣𝑦 = 0, 

thus, 

𝜕𝜃

𝜕𝑡
= −∫

(𝜃′ − 𝜃)

𝑥′ − 𝑥
𝑣𝑥 (1−

‖𝐱′ − 𝐱‖

𝛿
) cos2 𝛼 𝑑𝐴𝐱′

�̂�𝐱

 . (4.38) 

Assuming that 𝜃 = 𝑎(𝑥 − 𝑉𝑥𝑡) + 𝑏, we have: 

𝑎𝑉𝑥 = 𝑎𝑣𝑥∫ (1 −
‖𝐱′ − 𝐱‖

𝛿
) cos2 𝛼 𝑑𝐴𝐱′

�̂�𝐱

 . (4.39) 

Finally, we obtain the parameter for a linear-type micro-velocity: 

𝑣𝑥  =
𝑉𝑥

∫ (1 −
‖𝐱′ − 𝐱‖

𝛿
)cos2 𝛼 𝑑𝐴𝐱′�̂�𝐱

=
6𝑉𝑥
𝜋𝛿2

 , (4.40) 
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where a conversion between Cartesian coordinate and polar coordinate is used. Similarly, 

if we consider the same one-dimensional uniform steady flow in 𝑦 direction, we have: 

𝑣𝑦  =
𝑉𝑦

∫ (1 −
‖𝐱′ − 𝐱‖

𝛿
)sin2 𝛼 𝑑𝐴𝐱′�̂�𝐱

=
6𝑉𝑦
𝜋𝛿2

 . (4.41) 

For a constant-type micro-velocity, the parameters can be obtained in a similar way: 

𝑣𝑥  =
𝑉𝑥

∫ cos2 𝛼 𝑑𝐴𝐱′�̂�𝐱

=
2𝑉𝑥
𝜋𝛿2

 , (4.42) 

𝑣𝑦  =
𝑉𝑦

∫ sin2 𝛼 𝑑𝐴𝐱′�̂�𝐱

=
2𝑉𝑦
𝜋𝛿2

 . (4.43) 

In 3D condition, Eq. (4.8) becomes: 

𝜕𝜃𝑎
𝜕𝑡

∙ 𝑑 = −(𝜃′ − 𝜃)𝐕 ∙ 𝒆

= −(𝜃′ − 𝜃)(V𝑥 sin 𝛼 cos 𝛽 + V𝑦 sin 𝛼 sin 𝛽 + V𝑧 cos 𝛼) , 
(4.44) 

where 𝑉𝑥, 𝑉𝑦 and 𝑉𝑧 are the components of the velocity in 𝑥, 𝑦 and 𝑧 direction, respectively, 

𝛼 is the angle between 𝒆𝐱𝐱′  and 𝑧 axis, 𝛽 is the angle between the projection of 𝒆𝐱𝐱′  on 𝑥𝑦-

plane and 𝑥 axis, as shown in Figure 4.230. Assuming linear-type micro-velocity, we have: 

𝜕𝜃

𝜕𝑡
= −∫

(𝜃′ − 𝜃)

‖𝐱′ − 𝐱‖
(1

𝐻𝐱

−
‖𝐱′ − 𝐱‖

𝛿
)(𝑣𝑥 sin𝛼 cos 𝛽 + 𝑣𝑦 sin 𝛼 sin 𝛽+ 𝑣𝑧 cos 𝛼)𝑑𝑉𝐱′ 

(4.45) 
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 = −∫
(𝜃′ − 𝜃)

𝑥′ − 𝑥
(1 −

‖𝐱′ − 𝐱‖

𝛿
)𝑣𝑥 sin

2 𝛼 cos2 𝛽𝑑𝑉𝐱′
𝐻𝐱

−∫
(𝜃′ − 𝜃)

𝑦′ − 𝑦
(1 −

‖𝐱′ − 𝐱‖

𝛿
)𝑣𝑦 sin

2 𝛼 sin2 𝛽𝑑𝑉𝐱′
𝐻𝐱

−∫
(𝜃′ − 𝜃)

𝑧′ − 𝑧
(1 −

‖𝐱′ − 𝐱‖

𝛿
)𝑣𝑧 cos

2 𝛼 𝑑𝑉𝐱′
𝐻𝐱

 .  

 

Figure 4.23. The decomposition of vector exx’. 

Assuming that 𝜃 = 𝑎(𝑥 − 𝑉𝑥𝑡) + 𝑏, we have 

𝑣𝑥  =
𝑉𝑥

∫ (1 −
‖𝐱′ − 𝐱‖

𝛿
) sin2 𝛼 cos2 𝛽𝑑𝑉𝐱′�̂�𝐱

=
9𝑉𝑥
𝜋𝛿3

 , 
(4.46) 

and similarly: 

𝑣𝑦  =
𝑉𝑦

∫ (1 −
‖𝐱′ − 𝐱‖

𝛿
) sin2 𝛼 sin2 𝛽𝑑𝑉𝐱′�̂�𝐱

=
9𝑉𝑦
𝜋𝛿3

 , (4.47) 

𝑣𝑧  =
𝑉𝑧

∫ (1 −
‖𝐱′ − 𝐱‖

𝛿
) cos2 𝛼 𝑑𝑉𝐱′�̂�𝐱

=
9𝑉𝑧
𝜋𝛿3

 . (4.48) 

For the constant micro-velocity, we have 
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𝑣𝑥  =
𝑉𝑥

∫ sin2 𝛼 cos2 𝛽𝑑𝑉𝐱′�̂�𝐱

=
9𝑉𝑥
4𝜋𝛿3

 , (4.49) 

𝑣𝑦  =
𝑉𝑦

∫ sin2 𝛼 sin2 𝛽𝑑𝑉𝐱′�̂�𝐱

=
9𝑉𝑦
4𝜋𝛿3

 , (4.50) 

𝑣𝑧  =
𝑉𝑧

∫ cos2 𝛼 𝑑𝑉𝐱′�̂�𝐱

=
9𝑉𝑧
4𝜋𝛿3

 , (4.51) 

where a conversion between Cartesian coordinate and spherical coordinate is used. 

Appendix B. Convergence study for the 1D example 

Table 4.3. 𝛿-convergence results on relative differences and convergence rates between 

classical model and peridynamic using central model (𝑝 is the convergence rate) for 1D 

example, case 1. 

𝑚 = 2   𝑚 = 4   

𝑑𝑥/(cm) ‖𝑒‖𝐿2 𝑝 𝑑𝑥/(cm) ‖𝑒‖𝐿2 𝑝 

0.5 0.148968 - 0.25 0.064594 - 

0.25 0.078692 0.920713576 0.125 0.031553 1.033622982 

0.125 0.040502 0.958223825 0.0625 0.015472 1.028117481 

0.0625 0.020422 0.987868989 0.03125 0.007267 1.090227888 

𝑚 = 8   𝑚 = 16   

𝑑𝑥/(cm) ‖𝑒‖𝐿2 𝑝 𝑑𝑥/(cm) ‖𝑒‖𝐿2 𝑝 

0.125 0.040538 - 0.0625 0.031824 - 

0.0625 0.019032 1.090847736 0.03125 0.014514 1.132670006 

0.03125 0.008935 1.090887542 0.015625 0.006346 1.193525749 

0.015625 0.003405 1.391812931 0.0078125 0.001277 2.313088996 
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Table 4.4. Numerical results on relative differences between classical model and 

peridynamics using the hybrid model for 1D example, advection-dominated case. 

𝜔 = 0.8 𝛿 = 0.5 cm 𝛿 = 0.25 cm 𝛿 = 0.125 cm 𝛿 = 0.05 cm 

𝑚 = 2 0.182509 0.123537 0.083056 0.044723 

𝑚 = 4 0.157839 0.109418 0.071526 0.036613 

𝑚 = 8 0.154758 0.106673 0.068958 0.034448 

𝑚 = 16 0.154052 0.106002 0.068262 0.033732 

𝜔 = 1.0 𝛿 = 0.5 cm 𝛿 = 0.25 cm 𝛿 = 0.125 cm 𝛿 = 0.05 cm 

𝑚 = 2 0.207338 0.145666 0.094438 0.036809 

𝑚 = 4 0.185651 0.131226 0.080393 0.027198 

𝑚 = 8 0.184953 0.129620 0.078200 0.025340 

𝑚 = 16 0.185304 0.129369 0.077631 0.024428 

𝜔 = 0.0 𝛿 = 0.5 cm 𝛿 = 0.25 cm 𝛿 = 0.125 cm 𝛿 = 0.05 cm 

𝑚 = 2 0.224266 0.174730 0.137277 0.095286 

𝑚 = 4 0.199299 0.158561 0.123241 0.083729 

𝑚 = 8 0.193931 0.153892 0.119161 0.080401 

𝑚 = 16 0.192562 0.152679 0.118098 0.079566 
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Chapter 5 Construction of a Peridynamic Model for Viscous Flow 

5.1 Introduction 

Nonlocality plays important roles in many phenomena, including anomalous diffusion 

[1,2] and turbulence in fluid motion [3–5], and effects of microstructure in the 

deformation and fracture of solid materials [6,7]. Classical models based on PDEs have 

difficulties dealing with problems involving nonlocal effects. Fractional calculus is a 

powerful mathematical tool that can describe nonlocal behavior. However, models based 

on fractional calculus are computationally costly because the integrals in fractional 

calculus are defined over the entire space [8]. The peridynamic (PD) theory, which was 

introduced as a nonlocal extension of the classical continuum mechanics [9], provides an 

alternative to fractional calculus. It has been shown that PD operators converge to 

corresponding classical and fractional operators as the nonlocal size 𝛿 approaches zero 

and infinity, respectively [8,10]. Therefore, both classical and fractional operators can be 

seen as limiting cases of PD operators.  

In addition to describing anomalous phenomena, PD models can be advantageous in 

simulating regular/common but complex physical/chemical problems. For example, 

classical local models have difficulties dealing with problems involving discontinuities or 

moving boundaries, such as those occurring in fracture, corrosion, etc. PD models, 

however, do not have such issues because they employ integro-differential equations 

(IDEs) rather than partial differential equations (PDEs), and thus cracks and other forms 

of damage can initiate and propagate naturally and autonomously [9,11,12]. Classical 

formulations also encounter significant challenges for problems that involve complex 

interactions between fluids and solids, such as erosion corrosion and hydraulic fracture, 
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while PD models, due to their generality/flexibility, have the potential to better deal with 

such problems [13,14]. 

While the PD method has been used extensively for mechanical and diffusion-type 

problems involving cracks and damage [15,16], there is very little existing literature on 

formulations or applications of the PD method to fluid mechanics. State-based PD 

models for fluid flow in porous media are presented in [13,14,17] and are coupled with 

mechanical models to simulate the fluid-driven cracks [13,14]. These models are limited 

to porous flows in which the flow is driven by the pressure gradient. Later, more general 

models for fluid flow based on the Navier-Stokes equations (NSEs) have been developed 

in the PD framework to simulate laminar fluid flows at low Reynold numbers. Some of 

them use the PD correspondence model [18], such as the updated Lagrangian particle 

hydrodynamics (ULPH) [19,20] and the PD Moving Particle Semi-implicit (MPS) model 

[21]. According to [22,23], the discretized PD correspondence models are equivalent to 

SPH and RKPM under certain conditions, and thus share some common numerical issues 

such as zero-energy modes. We also note the use of the “PD differential operators” 

[24,25] and the “peridynamic D operators” [26] to compute derivatives using integral 

operators. Integro-differential equations obtained in this way are “translations” of 

classical PDE-based models (like the NSEs), rather than being constructions of nonlocal 

formulations of viscous flow. In other words, the “nonlocality” introduced in the 

translations of PDE-based models to integro-differential ones is merely a computational 

parameter, whereas in true nonlocal formulation, the nonlocal region introduces a length-

scale in the model.  
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It is worth noting that a PD formulation of the Navier-Stokes equations is perhaps a more 

natural model for fluids. First, we note that it is more general (at least formally), in the 

sense that it contains the classical Navier-Stokes equations as a special case (again, at 

least formally) by making a special choice of the PD kernel. Second, while proving (or 

disproving) the existence and uniqueness of global strong solutions to the classical 

incompressible 3D Navier-Stokes equations remains a challenging open problem, there is 

at least some hope that for a nonlocal PD formulation, such as the one presented in the 

present work, will allow for a proof of existence and uniqueness, at least for certain 

kernels. For instance, by analogy, it has been proven in [27] that a certain non-local 

version of the inviscid Burgers equation is globally well-posed, even though the classical 

version develops a singularity in finite time (see also [28] and the references therein). 

Third, on a deeper level, it may be that certain fluid regimes are more accurately 

described by taking into account non-local interactions rather than insisting that a strict 

local balance be maintained at every point in space and time, which in turn necessitates 

that solutions have at least some degree of smoothness (possibly in a weak sense) in order 

to make sense of the equations. For instance, it was noted by Ciprian Foias [29] that since 

(i) one can prove global well-posedness for the (modified) Navier-Stokes equations with 

higher-order diffusion added, (ii) higher-order diffusion modifications have been used 

with some success in certain ocean models, and (iii) higher-order derivatives have larger 

stencils (one pictures larger horizon sizes), there is some indication that including non-

local interactions (in addition to the nonlocal effects of the pressure) could perhaps 

provide a model that more realistically captures the true dynamics of the flow. 
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In this work, we construct, for the first time, a PD bond-based model using the Eulerian 

description for viscous flow, starting from fundamental conservation principles, in order 

to arrive at a PD counterpart of the classical Navier-Stokes equation. A similar 

constructive approach has been used to formulate PD diffusion equations [30,31], 

advection-diffusion equations [32], and elastodynamic equations [33]. We investigate the 

convergence of the terms in the PD continuity equation to their classical counterparts as 

the nonlocal size in PD equations approaches zero. (In forthcoming works, e.g., [34], we 

will study the convergence of solutions of the PD equations to solutions of the classical 

equations.) We test the PD model numerically using examples for which (classical) 

analytical or numerical solutions are available in the literature. This paper is organized as 

follows: in Section 5.2 we introduce the constructive approach to arrive at the PD 

formulation for viscous flow; in Section 5.3 we explain the numerical discretization used; 

in Section 5.4 we verify our model for several problems with classical analytical/SPH 

solutions; conclusions are given in Section 5.5. 

5.2 Peridynamic constructive model for viscous flow 

In the classical theory of fluid mechanics, the motion of Newtonian fluids, in its Eulerian 

form, is described by the following NSEs [35]: 

∂𝜌

𝜕𝑡
= −∇ ⋅ (𝜌𝒗) (5.1) 

𝜕(𝜌𝒗)

𝜕𝑡
= −∇ ⋅ (𝜌𝒗⊗ 𝒗) − ∇𝑝 + 𝜇∇2𝒗 + 𝜌𝒃 (5.2)  

where 𝜌 is the density, 𝒗 is the velocity, 𝑝 is the pressure, 𝜇 is the viscosity and 𝒃 is the 

body acceleration. These equations are derived from conservation principles of mass and 
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momentum [35]. Note that an appropriate constitutive law is required to solve the above 

NSEs (e.g., constant 𝜌 for incompressible fluids or equation of state for compressible 

fluids). 

In this section, we derive an Eulerian PD model for viscous flow from a general PD 

continuity equation, following a procedure similar to that used in the derivation of the 

classical Eulerian Navier-Stokes equations. 

Consider 𝒹 = 2 or 3, and let Ω denote an open bounded subset of ℝ𝒹. Points in ℝ𝒹 are 

denoted by the vectors 𝒙 or 𝒙. Functions from Ω, or subsets of Ω, and time 𝑡 ∈ [0, 𝑇] into 

ℝ or ℝ𝒹 are denoted by Roman or Greek letters, plain-face italic for scalars and lower-

case bold italic for vectors, e.g., 𝜃(𝒙, 𝑡) and 𝒗(𝒙, 𝑡). For notation simplicity, in much of 

the rest of the paper, we omit the spatial and temporal dependencies of these functions. 

For example, we denote 𝜃 and �̂� for 𝜃(𝒙, 𝑡) and 𝜃(𝒙, 𝑡), respectively. 

In PD models, each material point 𝒙 ∈ Ω interacts with other points within its 

neighborhood ℋ𝒙, which is called the horizon region of 𝒙 and is usually selected to be a 

disk when 𝒹 = 2 (or sphere when 𝒹 = 3) centered at 𝒙. For a modification of this 

formulation to allow use of non-spherical horizons, please see [36] The radius of ℋ𝒙 is 

called the horizon size (or simply “the horizon”) and denoted by 𝛿. Objects that carry the 

pairwise nonlocal interactions between points are called PD bonds. Figure 5.1 

schematically shows a peridynamic body with a generic point 𝒙, its family and its 

horizon.  



 
183 

 

Figure 5.1. A peridynamic body with a generic point 𝒙 and its horizon. Nonlocal interactions 

exist through the bond between two points, e.g., point 𝒙 and an arbitrary point �̂� located in its 

horizon ℋ𝒙. 

5.2.1 The peridynamic continuity equation 

To construct a bond-based PD model for fluid motion, we first consider an imaginary 

cylinder in a fluid domain with two points 𝒙 and 𝒙 located at the top and bottom of the 

cylinder, respectively, as shown in Figure 5.2. It is assumed that no mass transfer takes 

place through the cylinder’s side surface. Even if the flow velocity has a component 

perpendicular to the axial direction of the cylinder, it does not participate in the transport 

of mass through the cylinder. Then, the continuity equation for some integrated property 

𝜃 (mass, linear momentum, etc.) associated with the fluid, in the Eulerian form, can be 

expressed by: 

ℎ𝑠
𝜕𝜃𝑎
𝜕𝑡

+ 𝑠(�̂��̂� − 𝜃𝒗) ⋅ 𝒆 = ℎ𝑠𝑟𝑎 (5.3)  

where ℎ and 𝑠 are the height and cross-sectional area of the cylinder, respectively; 𝜃𝑎 and 

𝑟𝑎 are the average 𝜃 and source/sink (taking the source as positive) in the cylinder, 

respectively; 𝒗 is the flow velocity of the fluid; 𝒆 is the unit vector 
𝒙−𝒙

‖𝒙−𝒙‖
. Since ℎ =

‖𝒙 − 𝒙‖, dividing Eq. (5.3) by both ℎ and 𝑠 gives us: 
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𝜕𝜃𝑎
𝜕𝑡

+
�̂��̂� − 𝜃𝒗

‖𝒙 − 𝒙‖
⋅ 𝒆 = 𝑟𝑎. (5.4)  

By taking 𝒙 to 𝒙, we would recover the classical derivation of the conservation equation. 

Instead, we assume the equation to hold for finite distances ‖𝒙 − 𝒙‖. 

 

Figure 5.2. A cylinder in the fluid domain with two points located at the top and 

bottom. It is assumed that nothing can transfer through the cylinder’s side surface. 

In the peridynamic framework, each material point 𝒙 ∈ Ω interacts with points located in 

ℋ𝒙 through PD bonds. For each of these PD bonds, we assume that there is only mass 

transfer between PD points, which allows us to use Eq. (5.4). For the bond connecting 𝒙 

and 𝒙, we can then write: 

𝜕𝜃𝑎
𝜕𝑡

+ 𝛼
�̂��̂� − 𝜃𝒗

‖𝒙 − 𝒙‖
⋅ 𝒆 = 𝑟𝑎 (5.5)  

where 𝛼 is a coefficient which connects the macroscale flow velocity to the bond-level 

flow velocity. It will be determined later by requiring that the PD equation/solution 

converges (see Section 5.2.2) to the classical one as 𝛿 goes to zero. Note that 𝛼 can be 

selected as a function of ‖𝒙 − 𝒙‖ as well [30], but this is not considered in this work for 

simplicity. Integrating Eq. (5.5) over the horizon of point 𝒙 we get: 
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∫
𝜕𝜃𝑎
𝜕𝑡ℋ𝒙

d𝒙 + 𝛼∫
�̂��̂� − 𝜃𝒗

‖𝒙 − 𝒙‖
⋅ 𝒆d𝒙

ℋ𝒙

= ∫ 𝑟𝑎
ℋ𝒙

d𝒙 (5.6)  

We assume the following relation between 𝜃 at point 𝒙 and time 𝑡 and the average 𝜃 in 

all the PD bonds connected at 𝒙: 

where 𝑉ℋ is the volume (area in 2D and length in 1D) of the horizon region, a constant in 

this paper. Then we can write: 

Similarly, we have: 

Therefore, Eq. (5.6) becomes: 

which is the general PD continuity equation in Eulerian form. 

In the next section, we first show that the classical continuity equation is a limiting case 

of the PD form in Eq. (5.6). This is achieved by showing that the PD continuity equation 

converges to that of the classical one as 𝛿 → 0. 

∫ 𝜃𝑎d𝒙
ℋ𝒙

= 𝜃𝑉ℋ (5.7)  

∫
𝜕𝜃𝑎
𝜕𝑡

d𝒙
ℋ𝒙

=
𝜕𝜃

𝜕𝑡
𝑉ℋ (5.8)  

∫ 𝑟𝑎d𝒙
ℋ𝒙

= 𝑟𝑉ℋ (5.9)  

𝜕𝜃(𝒙, 𝑡)

𝜕𝑡
= −

𝛼

𝑉ℋ
∫

𝜃(𝒙, 𝑡)𝒗(�̂�, 𝑡) − 𝜃(𝒙, 𝑡)𝒗(𝒙, 𝑡)

‖𝒙 − 𝒙‖
⋅ 𝒆(𝒙, 𝒙)d�̂�

ℋ𝒙

+ 𝑟(𝒙, 𝑡) (5.10) 
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5.2.2 Convergence of the peridynamic continuity equation to its classical 

counterpart 

To simplify the writing, we use the following notation for the weight function: 

and for the nonlocal gradient and divergence operators: 

𝒢𝜔(𝜙)(𝒙) = ∫ 𝜔(𝜙(𝒙, 𝑡) − 𝜙(𝒙, 𝑡))𝒆d𝒙
ℋ𝒙

 (5.12)  

𝒟𝜔(𝝋)(𝒙) = ∫ 𝜔(𝝋(𝒙, 𝑡) − 𝝋(𝒙, 𝑡)) ⋅ 𝒆d𝒙
ℋ𝒙

 (5.13) 

where 𝜙 and 𝝋 are some arbitrary scalar and vector fields in 𝐿2, respectively. The 

weighted nonlocal operators 𝒢𝜔(𝜙) and 𝒟𝜔(𝝋) have been shown (see Section 5.2 in 

[37]) to converge (in the 𝐿2 norm) to their differential counterparts ∇𝜙 and ∇ ⋅ 𝝋, 

respectively, as 𝛿 → 0 (𝛿-convergence), if the weight function satisfies the following 

condition: 

∫ 𝜔‖𝒙 − 𝒙‖d𝒙
ℋ𝒙

= 𝒹     (5.14)  

in which 𝒹 is the dimension. Substitute Eq. (5.11) into Eq. (5.14) leads to 𝛼 = 𝒹. In 

Appendix A, as an illustration, we use simple Taylor expansions to show that 𝒢𝜔(𝜙) 

converges to ∇𝜙 when 𝛼 = 𝒹. For more detailed proofs of convergence in the 𝐿2 norm 

for both nonlocal gradient and divergence, the reader is referred to [37].  

Using the nonlocal operators defined in Eqs. (5.12) and (5.13), the integral in Eq. (5.10) 

can be written as: 

𝜔 = 𝜔(𝒙, 𝒙) =
𝛼

𝑉ℋ‖𝒙 − 𝒙‖
 (5.11)  
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𝒟𝜔(𝜃𝒗) = ∫ 𝜔(�̂��̂� − 𝜃𝒗) ⋅ 𝒆d𝒙
ℋ𝒙

 

= ∫ 𝜔 (�̂�(�̂� − 𝒗) − 𝜃(�̂� − 𝒗) + 𝜃(�̂� − 𝒗) + 𝒗(�̂� − 𝜃)) ⋅ 𝒆d𝒙
ℋ𝒙

 

= 𝒗 ⋅ 𝒢𝜔(𝜃) + 𝜃𝒟𝜔(𝒗) + 𝒜𝜔(𝜃, 𝒗) 

(5.15)  

in which the last term is 

𝒜𝜔(𝜃, 𝒗) = ∫ 𝜔(�̂� − 𝜃)(�̂� − 𝒗) ⋅ 𝒆d𝒙
ℋ𝒙

 (5.16) 

Therefore, Eq. (10) can be written as: 

We show that 𝒜𝜔(𝜃, 𝒗) → 0 as 𝛿 → 0, as follows: 

𝒜𝜔(𝜃, 𝒗) = ∫ 𝜔(�̂� − 𝜃)(�̂� − 𝒗) ⋅ 𝒆d𝒙
ℋ𝒙

 

≤ ∫ |𝜔(�̂� − 𝜃)(�̂� − 𝒗) ⋅ 𝒆|d�̂�
ℋ𝒙

 

≤ ∫ |𝜔||(�̂� − 𝜃)|‖�̂� − 𝒗‖d�̂�
ℋ𝒙

 

≤
𝒹

𝑉ℋ
∫

1

‖𝒙 − 𝒙‖
|(�̂� − 𝜃)|‖�̂� − 𝒗‖d𝒙

ℋ𝒙

 

(5.18) 

According to Taylor’s theorem and the Cauchy-Schwarz inequality, we have on ℋ𝒙: 

|�̂� − 𝜃|

‖𝒙 − 𝒙‖
≤ ‖∇𝜃‖ +

1

2
‖∇2𝜃‖‖𝒙 − 𝒙‖ + 𝑂(‖𝒙 − 𝒙‖) 

≤ ‖∇𝜃‖ +
𝛿

2
‖∇2𝜃‖ + 𝑂(𝛿) 

(5.19)  

𝜕𝜃(𝒙, 𝑡)

𝜕𝑡
= −𝒗 ⋅ 𝒢𝜔(𝜃) − 𝜃𝒟𝜔(𝒗) + 𝒜𝜔(𝜃, 𝒗) + 𝑟(𝒙, 𝑡) (5.17) 
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and 

‖�̂� − 𝒗‖ ≤ ‖𝐷𝒗‖‖𝒙 − 𝒙‖ + 𝑂(‖𝒙 − 𝒙‖) ≤ ‖𝐷𝒗‖𝛿 + 𝑂(𝛿) (5.20)  

where 

𝐷𝒗 =
𝝏𝑣𝑖

𝝏𝑥𝑗
𝒆𝑖⨂𝒆

𝑗 (5.21)  

If 𝐷𝒗 and ∇𝜃 are bounded in Ω, we have: 

𝒜𝜔(𝜃, 𝒗) ≤ 𝒹 (‖∇𝜃(𝒙)‖ +
𝛿

2
‖∇2𝜃(𝒙)‖ + 𝑂(𝛿)) (‖𝐷𝒗(𝒙)‖𝛿 + 𝑂(𝛿)) →

0    as 𝛿 → 0     
(5.22) 

Comparing the PD form of continuity equation in Eq. (5.17) with its classical form: 

∂𝜃

𝜕𝑡
= −𝒗 ⋅ ∇𝜃 − 𝜃∇ ⋅ 𝒗 + 𝑟, (5.23) 

and considering that 𝒢𝜔(𝜃) → ∇𝜃 and 𝒟𝜔(𝒗) → ∇ ⋅ 𝒗 in the sense of 𝐿2 as 𝛿 → 0, we 

conclude that the PD continuity equation converges to the classical version as 𝛿 → 0. 

5.2.3 The peridynamic formulation for viscous flow 

Starting from the general continuity equation given in Eq. (5.10), we now derive the PD 

governing equations for viscous flow. When the property 𝜃 in Eq. (5.10) is mass, by 

taking 𝑟 = 0, we obtain the PD mass continuity equation without sources/sinks: 

𝜕𝜌

𝜕𝑡
= −

𝒹

𝑉ℋ
∫

�̂��̂� − 𝜌𝒗

‖𝒙 − 𝒙‖
⋅ 𝒆d𝒙

ℋ𝒙

 (5.24) 

where 𝜌 is the mass density. When the property 𝜃 is the linear momentum, we have the 

following PD equation of motion: 



 
189 

𝜕(𝜌𝒗)

𝜕𝑡
= −

𝒹

𝑉ℋ
∫

�̂��̂�⊗ �̂� − 𝜌𝒗⊗ 𝒗

‖𝒙 − 𝒙‖
⋅ 𝒆d𝒙

ℋ𝒙

+ 𝒓 (5.25)  

in which the generic momentum source 𝒓 consists of internal and external forces. The 

internal forces can be decomposed into pressure and viscous forces. To find the 

expression for these forces in the PD framework, we consider again the cylinder shown in 

Figure 5.2. As shown in Figure 5.3, in a viscous flow, the force exerted on the cylinder 

along its axial direction is: 

 

Figure 5.3. Velocity decomposition at 𝒙 and 𝒙 located at the top and bottom, 

respectively, for an imaginary cylinder in the fluid domain. 

 

𝑠(�̂� − 𝑝)𝒆  (5.26)  

The viscous force, inspired by the shear bond force introduced in PD bond-based 

mechanical models [38,39], can be formulated as the shear force exerted on the cylinder 

due to the velocity difference between the two ends of the cylinder: 

𝜇𝑠
(𝐈 − 𝒆⊗ 𝒆)(�̂� − 𝒗)

‖𝒙 − 𝒙‖
 (5.27)  
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in which 𝜇 is the viscosity of the fluid, and (𝐈 − 𝒆⊗ 𝒆)(�̂� − 𝒗) is the portion of velocity 

difference, between the two ends of the cylinder, that is perpendicular to the cylinder’s 

axial direction 𝒆.  

Following a similar procedure used to derive the general PD continuity equation as 

shown in Section 5.2.1, we have: 

𝒓 = −
𝛼𝑝
𝑉ℋ

∫
�̂� − 𝑝

‖𝒙 − 𝒙‖
⋅ 𝒆d𝒙

ℋ𝒙

+
𝜇𝛼𝜇
𝑉ℋ

∫
((𝐈 − 𝒆⊗ 𝒆)(�̂� − 𝒗))

‖𝒙 − 𝒙‖2
d𝒙

ℋ𝒙

+ 𝜌𝒃 (5.28)  

Therefore, the PD governing equations for viscous flow are established as follows: 

𝜕𝜌(𝒙, 𝑡)

𝜕𝑡
= −

𝒹

𝑉ℋ
∫

�̂��̂� − 𝜌(𝒙, 𝑡)𝒗(𝒙, 𝑡)

‖𝒙 − 𝒙‖
⋅ 𝒆(𝒙, 𝒙)d�̂�

ℋ𝒙

 (5.29)  

𝜕(𝜌(𝒙, 𝑡)𝒗(𝒙, 𝑡))

𝜕𝑡

= −
𝒹

𝑉ℋ
∫

𝜌(𝒙, 𝑡)𝒗(𝒙, 𝑡) ⊗ 𝒗(𝒙, 𝑡) − 𝜌(𝒙, 𝑡)𝒗(𝒙, 𝑡) ⊗ 𝒗(𝒙, 𝑡)

‖𝒙 − 𝒙‖
⋅ 𝒆(𝒙, 𝒙)d𝒙

ℋ𝒙

−
𝛼𝑝
𝑉ℋ

∫
𝑝(𝒙, 𝑡) − 𝑝(𝒙, 𝑡)

‖𝒙 − 𝒙‖
⋅ 𝒆(𝒙, 𝒙)d�̂�

ℋ𝒙

+
𝜇𝛼𝜇
𝑉ℋ

∫
((𝐈 − 𝒆(𝒙, 𝒙)⊗ 𝒆(𝒙, 𝒙))(𝒗(𝒙, 𝑡) − 𝒗(𝒙, 𝑡)))

‖𝒙 − 𝒙‖2
d�̂�

ℋ𝒙

+ 𝜌(𝒙, 𝑡)𝒃(𝒙, 𝑡) 

(5.30) 

The PD model for viscous flow contains the pressure field which does not have an 

explicit equation yet. For incompressible Newtonian fluids, because directly solving the 

original incompressible equations creates numerical difficulties in terms of accuracy and 

efficiency, the artificial compressibility method is commonly used in the literature to 

handle the pressure term (see, e.g., [40–42]). This approach treats the incompressible 

fluid as a weakly compressible one and adopts an equation of state to explicitly determine 

the pressure field from the density field [41,43] as follows: 
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where 𝜌0 is the initial density, 𝜌∗ is the predicted density at the current step, 𝛾 is the 

material constant which is 7 for water and 𝑐0 is the sound speed in the initial density. The 

real sound speed is usually not used as it would require a significantly small timestep for 

stability of the numerical model (see Section 5.3). Instead, an artificial, lower sound 

speed 𝑐, which ensures sufficiently accurate solution, is preferred. To keep the density 

variation of fluid to less than 1% of the initial density, the Mach number (M = 𝑣/𝑐) must 

be smaller than 0.1 [41]. This requires the artificial sound speed to be higher than 10 

times of the maximum fluid velocity. 

The PD equations for viscous flow still require determination of the unknown parameters 

in the weight functions. We already know that 𝛼 = 𝒹 from Section 5.2.2. Since 𝛼𝑝 in Eq. 

(5.30) is also a constant coefficient in the PD gradient operator, we have 𝛼𝑝 = 𝛼 = 𝒹. 

We find 𝛼𝜇 by calibration for a simple flow problem, that ensures linear consistency of 

the formulation [31,32]. Consider a steady-state shear-driven fluid flow parallel to the 𝑥-

axis and with a linear distribution of velocity magnitude, i.e., 𝑣 = 𝑣0𝑦. According to 

Newton’s law of viscosity, we have 𝜏𝑥𝑥 = 𝜇𝑣0. The counterpart of 𝜏𝑥𝑥 in PD can be 

formulated as 𝜏𝑥𝑥
PD =

𝛼𝜇𝜇𝑣0

10
 for 3D and 𝜏𝑥𝑥

PD =
3

16
𝛼𝜇𝜇𝑣0 for 2D. The detailed derivation of 

𝜏𝑥𝑥
PD is provided in Appendix A. By letting 𝜏𝑥𝑥

PD = 𝜏𝑥𝑥, it leads to 𝛼𝜇 = 10 for 3D and 

𝛼𝜇 =
16

3
 for 2D. 

𝑝 =
𝜌0𝑐0

2

𝛾
((
𝜌∗

𝜌0
)
𝛾

− 1) (5.31)  
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5.2.4 Boundary conditions 

Unlike classical local methods, “boundary conditions” in peridynamics are “volume 

constraints”, acting through a finite layer under the surface of a body. However, in 

practice, measurements are normally achievable only at the surfaces of a body, thus the 

normal local representation of boundary conditions. For these reasons, imposing local-

type boundary conditions in peridynamic models is usually desired/needed. Various 

methods to impose local boundary conditions in PD models have been investigated in 

[37,44,45]. One such method is the fictitious nodes method (FNM) [44–46]. In FNM for 

peridynamics, certain constraints are specified on the fictitious region Ω̃ =

{𝒙 ∉ Ω|distance(𝒙, 𝜕Ω) < 𝛿} (the “collar” outside of the solution domain Ω shown in 

Figure 5.4), so that desired local boundary conditions imposed at ∂Ω are satisfied or 

approximately satisfied. Figure 5.4 schematically shows the solution domain Ω, its 

boundary ∂Ω, and the fictitious region, Ω̃.  

 

Figure 5.4. Schematic of a peridynamic domain (Ω), its boundary (𝜕Ω), and its 

fictitious region, Ω̃. 

In fluid dynamics, there are a number of different boundaries conditions, such as 

inlet/outlet, free and solid wall boundaries [47]. Various treatments are required for each 

of these types. In this work, we only consider no-slip solid wall boundaries. The 

corresponding boundary conditions then are: 
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𝒗 ⋅ 𝒏 = 0 

𝒗 ⋅ 𝒕 = 0 
(5.32)  

where 𝒏 and 𝒕 are vectors normal and tangential to the boundary, respectively. We use 

the naïve-type FNM (because of its ease of implementation, see [48]) to enforce the 

above boundary conditions, i.e., the velocity assigned to the fictitious points 𝒙 ∈ Ω̃ are 

the same as that of the solid wall: 

𝒗(𝒙) = 𝒗wall = 𝟎 (5.33)  

5.3 Numerical implementation 

For the spatial discretization, we discretize the domain uniformly [49] into cells with 

nodes in the center of those cells. Figure 5.5 shows a 2D uniform discretization with grid 

spacing Δ𝑥 around a node 𝒙𝑖. Non-uniform grids are also possible [50–52], and very 

useful when having to conform to round boundaries [7][53], but this is not pursued in this 

work.  

To discretize the peridynamic integro-differential equations, we use a meshfree method 

with one-point Gaussian quadrature [49] for the approximation of the integral term. For 

the time integration we select the forward-Euler method for simplicity. 

 

Figure 5.5. Uniform discretization for the 2D PD model. The circular region is the 

horizon region of node 𝒙𝑖. 
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The discretized PD equations for viscous flow (Eqs. (5.29) and (5.30)) are as follows: 

𝜌𝑖
𝑛+1 = 𝜌𝑖

𝑛 −
𝒹Δ𝑡

𝜋𝛿2
∑ (

𝜌𝑗
𝑛𝒗𝑗

𝑛 − 𝜌𝑖
𝑛𝒗𝑖

𝑛

𝜉𝑖𝑗
⋅
𝒙𝑗 − 𝒙𝑖
𝜉𝑖𝑗

𝑉𝑖𝑗)
𝑗∈ℋ𝑖
𝑗≠𝑖

 (5.34) 

𝒗𝑖
𝑛+1 = 𝒗𝑖

𝑛 +
Δ𝑡

𝜌𝑖
𝑛

[
 
 
 
 

−
𝒹

𝑉ℋ

(

 
 
∑

(𝜌𝑗
𝑛𝒗𝑗

𝑛⊗𝒗𝑗
𝑛 − 𝜌𝑖

𝑛𝒗𝑖
𝑛⊗𝒗𝑖

𝑛)

𝜉𝑖𝑗
⋅ 𝝃𝑖𝑗𝑉𝑖𝑗

𝑗∈ℋ𝑖
𝑗≠𝑖 )

 
 

−
𝒹

𝑉ℋ
∑ (

(𝑝𝑗
𝑛 − 𝑝𝑖

𝑛)𝝃𝑖𝑗

𝜉𝑖𝑗
2 𝑉𝑖𝑗)

𝑗∈ℋ𝑖
𝑗≠𝑖

+
𝜇𝛼𝜇
𝑉ℋ

∑
1

𝜉𝑖𝑗
2 (𝐈 −

𝝃𝑖𝑗 ⊗𝝃𝑖𝑗

𝜉𝑖𝑗
2 ) ⋅ (𝒗𝑗

𝑛 − 𝒗𝑖
𝑛)𝑉𝑖𝑗

𝑗∈ℋ𝑖
𝑗≠𝑖

+ 𝜌𝑖
𝑛𝒃𝑖

𝑛

]
 
 
 
 

 

(5.35) 

where 𝝃𝑖𝑗 = 𝒙𝑗 − 𝒙𝑖 and 𝜉𝑖𝑗 = ||𝝃𝑖𝑗||. The superscript 𝑛 means 𝑛th load step. The 

subscripts 𝑖 and 𝑗 denote the current node 𝒙𝑖 and its family node 𝒙𝑗 respectively, in the 

discretized domain. ℋ𝑖 is the horizon region of node 𝒙𝑖, 𝑗 ∈ ℋ𝑖 includes all the nodes 

covered by ℋ𝑖 (fully or partially), 𝑉𝑖𝑗 is the area of node 𝒙𝑗 covered by ℋ𝑖. Note that the 

partial volume integration, which was first proposed in [54] and then further discussed in 

[55,56], is used to approximate 𝑉𝑖𝑗. 

For stability of the time-integrator, the time step needs to satisfy several criteria. Here we 

use similar criteria as those in SPH models [42], including a CFL condition [57], the 

additional constraints due to the magnitude of nodal accelerations 𝑎 [58] and the viscous 

diffusion, as follows: 
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∆𝑡 ≤ 0.25
Δ𝑥

𝑐
 (5.36)  

∆𝑡 ≤ 0.25 (
Δ𝑥

𝑎
)

1
2
 (5.37)  

∆𝑡 ≤ 0.125
𝜌Δ𝑥2

𝜇
 (5.38)  

where the value of each right-hand side is the minimum over all nodes. 

A detailed study of the stability, consistency, and convergence of the numerical scheme, 

and higher-order schemes, as well as simulations in the higher Reynolds number case, 

will be the subject of forthcoming work. Our purpose here is just to demonstrate that a 

straight-forward implementation agrees with some standard benchmark cases to a 

reasonable level of accuracy—a first step toward validation of the model. 

5.4 Computational validation 

In this section, we first verify our PD model for viscous flow using the Couette and 

Poiseuille flow problems. We test whether the PD solution converges, in the limit of 

horizon going to zero, to the classical analytical solutions. We also study the flow 

through a periodic array of cylinders to test the wall boundary condition for curved 

geometries and compare with an SPH solution (of the corresponding classical model) 

from the literature.  

5.4.1 Couette flow  

Consider two infinite, parallel plates separated by a distance ℎ. The top one, moves with 

a constant velocity 𝑣0 in its own plane. This generates a unidirectional fluid motion, 
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called Couette flow. The series solution for the classical model of this problem, in terms 

of the velocity in the horizontal direction, is given by [42]: 

𝑣𝑥(𝑦, 𝑡) =
𝑣0
ℎ
𝑦 +∑

2𝑣0
𝑛𝜋

(−1)𝑛 sin (
𝑛𝜋

ℎ
𝑦) exp (−

𝜇

𝜌

𝑛2𝜋2

ℎ2
𝑡)

∞

𝑛=1

 (5.39)  

In our PD simulation of this Couette flow problem, we choose 𝑣0 = 10 μm/s, ℎ =

1 mm, 𝜌 = 103 kg/m3 and 𝜇 = 10−3 kg ⋅ m−1 ⋅ s−1. We make the domain periodic in 

the 𝑥 direction to mimic the infinite domain (see Fig. 16 in [59] for an illustration of how 

this can be achieved).  Figure 5.6 shows the comparison of the velocity profile along 𝑦-

axis between the PD solution (for 𝛿 = 40 μm and 𝑚 = 4) and the analytical series 

solution of the classical model at different times. A 𝛿-convergence study is then 

performed, and results are shown in Table 5.1. Note that the convergence rate of 𝛿-

convergence is linear because we use the naïve FNM to impose the local boundary 

condition [48]. Higher convergence rate should be possible with the mirror-based FNM, 

for example, but this is not pursued here.  
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Figure 5.6. Comparison of PD solutions (for 𝛿 = 40 μm and 𝑚 = 4) and series 

solutions of the corresponding classical model (using the first 50 terms in the series) 

for Couette flow. 

 

Table 5.1. 𝛿-convergence study for the PD solution of Couette flow. 

𝑡 = 0.1 s 𝛿 = 80 μm 𝛿 = 40 μm 𝛿 = 20 μm 

𝜀𝑟 0.0419 0.0184 0.0075 

where 𝜀𝑟 =
√∑ (𝑢𝑖

classical−𝑢𝑖
PD)2𝑛

𝑖=1

√∑ (𝑢𝑖
classical)2𝑛

𝑖=1

, and n is the total number of nodes in the computation. 

5.4.2 Poiseuille flow  

The second test case is Poiseuille flow between stationary infinite plates at 𝑦 = 0 and 

𝑦 = ℎ. The fluid is initially at rest and is driven by an applied body force 𝑏𝑥 parallel to 

the 𝑥-axis for 𝑡 ≥ 0. The series solution of the classical model for this problem give the 

velocity in the horizontal direction as [42]: 

We choose ℎ = 1 mm, 𝜌 = 103 kg/m3, 𝜇 = 10−3 kg ⋅ m−1 ⋅ s−1 and 𝑏𝑥 =

1 × 10−4 m/s2. Again, the PD solution matches the series solution very well, as shown 

in Figure 5.7. 

𝑣𝑥(𝑦, 𝑡) =
𝜌𝑏𝑥
2𝜇

𝑦(ℎ − 𝑦) 

+∑
4𝜌𝑏𝑥ℎ

2

𝜇𝜋3(2𝑛 + 1)3
sin (

𝜋𝑦

ℎ
(2𝑛 + 1)) exp (−

(2𝑛 + 1)2𝜋2𝜇

𝜌ℎ2
𝑡)

∞

𝑛=0

 

(5.40)  
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Figure 5.7. Comparison of PD (for 𝛿 = 40 μm and 𝑚 = 4) and classical series 

solutions (using the first 50 terms in the series) for Poiseuille flow. Note that 𝑣𝑥
∞ =

𝑣𝑥 (
ℎ

2
, ∞) =

𝜌𝑏𝑥ℎ
2

8𝜇
. 

5.4.3 Flow through a Periodic Lattice of Cylinders  

The previous examples have shown the performance of our method for fluid flow 

confined by straight channel walls. Now we verify the model for flow through a periodic 

array of disks/cylinders [42] (see Figure 5.8), to test the wall boundary condition for 

curved geometries. For implementing periodic BCs in PD models, please see [59]. The 

parameters used in this example are given in Table 5.2. Figure 5.9 shows the comparison 

for the velocity magnitude and velocity contour lines at steady state between PD results 

(100 × 100 discretization nodes) and SPH results (50 × 50 particles, plus extra particles 

placed on the circular disk to conform better to the actual geometry) from [60]. In spite of 

using a uniform discretization grid that does not conform with the circular disk geometry, 

the PD results track the SPH solution very well. As mentioned in Section 5.3, PD can 

also be implemented on non-uniform, conforming grids (see, e.g., [53]), but this is not 

pursued here for simplicity. 
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Figure 5.8. Schematic of fluid flow driven by a body force around a disk. The cell is 

repeated by symmetry to represent flow around a periodic array of disks. 

Table 5.2.Parameters for flow through periodic lattice of disks. 

Parameters Value Parameters Value 

𝐿 0.1 m 𝑎 4 × 10−2 m 

𝜇 10−3 kg ⋅ m−1 ⋅ s−1 𝑓 1.5 × 10−7 m ⋅ s−2 

𝜌 1 kg ⋅ m−3 𝑐 5.77 × 10−4 m ⋅ s−1 

 

(a) 

 

(b) 

 

Figure 5.9. Contour plots of velocity magnitude by (a) PD model (for 𝛿 = 40 μm and 

𝑚 = 4); (b) SPH model [60] (contour lines are labeled in units of 10−4 m/s). 
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5.5 Conclusions 

In this paper, we constructed a peridynamic (PD) alternative of the classical Navier-

Stokes equations (in Eulerian formulation) from fundamental conservation principles. 

The formulation is different from “re-casting” of the classical Navier-Stokes equations 

using the so-called “PD differential operator” found in the literature. We showed that the 

classical continuity equation is a limiting case of the PD one with selected weight 

functions. We formulated the viscous force from PD shear bond forces. We determined 

the weight function present in the viscous force by enforcing linear consistency of the 

viscous stress provided by a PD model with that from a corresponding classical model. 

We verified the model against analytical solutions of the classical model for Couette and 

Poiseuille flows, as well as against an SPH approximation of the classical model for 

incompressible flow past a regular lattice of cylinders at low Reynolds numbers. The new 

model can be used to solve fluid-structure interaction problems involving damage and 

degradation, such as erosion, erosion-corrosion and hydraulic fracture, by coupling with 

existing PD models for corrosion and fracture. 
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Appendix A. Convergence of the PD gradient operator to the classical one 

To show the convergence of PD gradient operator 𝒢𝜔(𝑢) to the classical one ∇𝑢, we 

follow a procedure similar to the one used in [61]. Consider an incompressible 



 
201 

Newtonian fluid motion in which 𝜃 is sufficiently smooth in Ω, one can write, for any 

𝒙 ∈ Ω and 𝒙 ∈ ℋ𝒙 that: 

�̂� − 𝑢 = 𝜉𝑖𝑢,𝑖 +
1

2
𝜉𝑖𝜉𝑗𝑢,𝑖𝑗 +

1

3!
𝜉𝑖𝜉𝑗𝜉𝑘𝑢,𝑖𝑗𝑘 +⋯                       𝑖, 𝑗, 𝑘 ∈ [1, 𝒹]     (5.41) 

where 𝝃 = (𝒙 − 𝒙) = 𝜉𝒆 = 𝜉𝑖𝒆𝑖 and 𝒹 is the space dimension. Substitute Eq. (5.41), 

without the remaining terms, into 𝒢𝜔(𝑢) and consider symmetry of ℋ𝒙, we get: 

𝒢𝜔(𝑢) = ∫ 𝜔(�̂� − 𝑢)𝒆d𝒙
ℋ𝒙

=
𝛼

𝑉ℋ
∫

1

𝜉
{𝜉𝑖𝑢,𝑖 +

1

3!
𝜉𝑖𝜉𝑗𝜉𝑘𝑢,𝑖𝑗𝑘}  𝒆d𝒙

ℋ𝒙

 

=
𝛼

𝑉ℋ
∫

𝜉𝑖
𝜉
𝑢,𝑖𝒆d𝒙

ℋ𝒙

+
𝛼

6𝑉ℋ
∫

𝜉𝑖
𝜉

𝜉𝑗
𝜉

𝜉𝑘
𝜉
𝑢,𝑖𝑗𝑘𝒆𝜉

2d𝒙
ℋ𝒙

 

(5.42)  

If 𝒹 = 2, we have 

𝒢𝜔(𝑢)  =
𝛼

𝑉ℋ
∫

𝜉𝑖
𝜉
𝑢,𝑖𝒆d𝒙

ℋ𝒙

+
𝛼

6𝑉ℋ
∫

𝜉𝑖
𝜉

𝜉𝑗
𝜉

𝜉𝑘
𝜉
𝑢,𝑖𝑗𝑘𝒆𝜉

2d�̂�
ℋ𝒙

 

=
𝛼

𝜋𝛿2
∫ ∫ (cos 𝜃

𝜕𝑢

𝜕𝑥
(𝒙) + sin𝜃

𝜕𝑢

𝜕𝑦
(𝒙)) [

cos 𝜃
sin𝜃

] 𝑟d𝑟d𝜃
𝛿

0

2𝜋

0

+
𝛼

6𝜋𝛿2
∫ ∫ (cos3 𝜃

𝜕3𝑢

𝜕𝑥3
(𝒙) + 3 cos2 𝜃 sin 𝜃

𝜕3𝑢

𝜕𝑥2𝜕𝑦 
(𝒙)

𝛿

0

2𝜋

0

+ 3 cos 𝜃 sin2 𝜃
𝜕3𝑢

𝜕𝑥𝜕𝑦2 
(𝒙)

+ sin3 𝜃
𝜕3𝑢

𝜕𝑦3
(𝒙)) [

cos 𝜃
sin 𝜃

] 𝑟3d𝑟d𝜃 

=
𝛼

𝜋𝛿2
𝜋𝛿2

2
 ∇𝜌(𝒙) + 𝑂( 𝛿2) =

𝛼

2
 ∇𝜌(𝒙) + 𝑂( 𝛿2) 

(5.43)  

Similarly, for 𝒹 = 3, we can show that 

𝒢𝜔(𝑢)  =
𝛼

3
 ∇𝜌(𝒙) + 𝑂( 𝛿2) (5.44)  
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Therefore, if we set 𝛼 = 𝒹, the PD operator will converge to the classical one pointwise 

as 𝛿 → 0. For more details, and a proof of convergence in the 𝐿2 norm, the reader is 

referred to [37]. 

Note that boundary effects are not considered here. For those PD points near the 

boundary which do not have a complete horizon region, the above convergence does not 

stand unless special treatments are provided (e.g., fictitious nodes methods [46,48]).  

Appendix B. Computing PD stress component from bond force densities 

To compute the shear stress at an arbitrary point 𝒑 in the PD model, we first consider a 

plane intersecting 𝒑 and normal to the 𝑦-axis and a thin cylinder below 𝒑 with cross-

sectional area 𝑑𝐴 and length 𝛿, where 𝛿 is the horizon of the PD model. Force through 

the plane on the cylinder is carried through the bonds that have one end in the cylinder 

and the other end on the other side of the plane. A typical point 𝒙 in the cylinder is 

located a distance 𝑧 to the bottom of the plane, with 0 <  𝑧 ≤  𝛿. The force density (per 

unit volume square) in a typical bond connecting this point to the other side of the plane 

is given by 𝒇(𝒙, 𝒙). Using a spherical coordinate system in which 𝜙 is the angle from the 

𝑦-axis, and 𝜉 is the bond length, the total force on the cylinder is then (in 3D) [12]: 

d𝑭 = d𝐴∫ ∫ ∫ ∫ 𝒇(𝜉, 𝜙, 𝜃)
cos−1(

𝑧
𝜉
)

0

𝜉

0

𝛿

0

𝜉2 sin 𝜙 d𝜙d𝑧d𝜉d𝜃
2𝜋

0

 (5.45)  
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Figure 5.10. Computation of force per unit area, at a generic point 𝒑, from bond force 

densities (redrawn from [12]). 

The shear stress component at 𝒑 is then given by: 

𝜏𝑥𝑥
𝑃𝐷 =

d𝐹𝑥
d𝐴

= ∫ ∫ ∫ ∫ 𝑓𝑥(𝜉, 𝜙, 𝜃)
cos−1(

𝑧
𝜉
)

0

𝜉

0

𝛿

0

𝜉2 sin 𝜙 d𝜙d𝑧d𝜉d𝜃
2𝜋

0

 (5.46)  

From Section 5.2.3, we know that: 

𝒇 =
𝜇𝛼𝜇
𝑉ℋ

((𝐈 − 𝒆⊗ 𝒆)(�̂� − 𝒗))

‖𝒙 − 𝒙‖2
 (5.47)  

For the fluid flow parallel to the 𝑥-axis and with a magnitude of 𝑣0𝑦, we have 

𝑓𝑥 =
𝜇𝛼𝜇
𝑉ℋ

(1 − sin2 𝜃)

‖𝒙 − 𝒙‖2
𝑣0 (�̂� − 𝑦) (5.48)  

Therefore, we can compute the PD shear stress (flux) from the PD bond density of shear 

force as follows:  
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𝜏𝑥𝑥
PD =

𝜇𝛼𝜇
𝑉ℋ

∫ ∫ ∫ ∫
1

𝜉2
(1 − sin2 𝜃)𝑣0 (�̂�

cos−1(
𝑧
𝜉
)

0

𝜉

0

𝛿

0

2𝜋

0

− 𝑦)𝜉2 sin 𝜙 d𝜙d𝑧d𝜉d𝜃 

= −
3𝛼𝜇𝜇𝑣0
2𝛿3

∫ ∫ ∫ 𝜉 cos3𝜙
cos−1(

𝑧
𝜉
)

0

𝜉

0

𝛿

0

d cos 𝜙 d𝑧d𝜉 

= −
3𝛼𝜇𝜇𝑣0
8𝛿3

∫ 𝜉∫ (
𝑧4

𝜉4
− 1)

𝜉

0

𝛿

0

d𝑧d𝜉 =
3𝛼𝜇𝜇𝑣0
10𝛿3

∫ 𝜉2d𝜉
𝛿

0

=
𝛼𝜇𝜇𝑣0
10

 

(5.49)  

Similarly, for 2D, we have: 

𝜏𝑥𝑥
PD = ∫ ∫ ∫ 𝑓𝑥

cos−1(
𝑧
𝜉
)

0

𝜉

0

𝛿

0

𝜉d𝜃d𝑧d𝜉

=
𝜇𝛼𝜇
𝑉ℋ

∫ ∫ ∫
1

𝜉2
(1 − sin2 𝜃)𝑣0 (�̂� − 𝑦)

cos−1(
𝑧
𝜉
)

0

𝜉

0

𝛿

0

𝜉d𝜃d𝑧d𝜉

=
𝛼𝜇𝜇𝑣0
𝜋𝛿2

∫ ∫ ∫ cos3 𝜃
cos−1(

𝑧
𝜉
)

0

𝜉

0

𝛿

0

d𝜃d𝑧d𝜉

=
𝛼𝜇𝜇𝑣0
𝜋𝛿2

∫ ∫ ((
1
3 sin𝜃

(2 + cos2 𝜃)) |
cos−1 (

𝑧
𝜉
)

0
)

𝜉

0

𝛿

0

d𝜃d𝑧d𝜉

=
2𝛼𝜇𝜇𝑣0
𝜋𝛿2

∫ ∫ (
1

3
√1 − (

𝑧

𝜉
)
2

(2 + (
𝑧

𝜉
)
2

))
𝜉

0

𝛿

0

d𝑧d𝜉

=
2𝛼𝜇𝜇𝑣0
𝜋𝛿2

∫ 𝜉∫ (
1

3
√1 − 𝑥2(2 + 𝑥2)) d𝑥d𝜉

1

0

𝛿

0

=
2𝛼𝜇𝜇𝑣0
𝜋𝛿2

∫ 𝜉∫ (
cos2 𝛼

3
(2 + sin2 𝛼))d𝛼d𝜉

𝜋
2

0

𝛿

0

=
2𝛼𝜇𝜇𝑣0
3𝜋𝛿2

∫ 𝜉∫ (cos2 𝛼 (3 − cos2 𝛼))d𝛼d𝜉

𝜋
2

0

𝛿

0

=
𝛼𝜇𝜇𝑣0
3𝜋𝛿2

9

16
𝜋∫ 𝜉d𝜉

𝛿

0

=
2𝛼𝜇𝜇𝑣0
3𝜋𝛿2

9

16
𝜋
1

2
𝛿2 =

3

16
𝛼𝜇𝜇𝑣0 

(5.50)  
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Chapter 6 An algorithm for imposing local boundary conditions in 

peridynamic models of diffusion on arbitrary domains 

6.1 Introduction  

The peridynamic (PD) theory [1], as an nonlocal extension of classical continuum 

mechanics, allows for a natural treatment of discontinuities/singularities (such as 

cracks/damages [2–5]) by employing integration, over a nonlocal region called the 

horizon region, rather than differentiation. While the PD method has been primarily used 

to deal with mechanical behaviors [2,4,6–9], it has also been employed in diffusion-type 

problems involving cracks and damages, including thermal diffusion [10–13] and mass 

transport (e.g. corrosion) [14–20]. For a nonlocal formulation, associated BCs are of 

nonlocal type as well, and they are sometimes referred to as “nonlocal volume 

constraints” [21,22]. In reality, however, conditions to be imposed (on values and/or 

derivatives of the unknown function) are known (measurable) only at the surface of a 

body, not through a finite thickness layer at the surface. The natural representation of 

such measurement-based conditions is via local boundary conditions. Therefore, 

imposing local BCs in nonlocal/peridynamic models is often desired/needed. Another 

issue caused by nonlocality is the surface effect [23] which appears because, unlike in the 

bulk, points near the free surface/boundary do not have a full horizon region. The surface 

effect leads to slightly different behavior of material points near the surface compared 

with those in the bulk. 

A couple of strategies have been introduced to tackle these issues in the literature. One is 

to get rid of the nonlocality at boundaries, either by decomposing the domain into local 

and nonlocal subdomains where the former is placed in the neighborhood of the boundary 
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[24], or via using a variable horizon which decreases from a constant value in the interior 

of the domain to zero at the boundary [25]. This strategy, however, does not work for 

problems in which nonlocality/discontinuity plays important roles near the boundary 

(e.g., interface problems), not to mention the complexity involved to take care of the 

coupling of local and nonlocal models at the transition zone, or the imbalance of bond 

force/flux between material points induced by variable horizons [26]. Another popular 

strategy is to extend the solution domain by a fictitious layer which has the thickness of 

the PD horizon, so that each point in the solution domain has a full horizon region. Then 

the local BCs (including free BCs) are converted into nonlocal volume constraints to be 

imposed on this fictitious region. This strategy is called fictitious nodes method (FNM), 

or extended domain method (EDM), and can be further classified to different categories 

based on the rule of conversion [11,12,27–31]. Similar ideas have been used in other 

nonlocal numerical models [32,33]. Some of these FNMs require reformulation of 

governing equations for each type of problems [28,29] and are thus may not be suitable 

for general applications. Others which do not involve the modification of governing 

equations has been proven to work efficiently in problems with simple geometries, but it 

is still a challenge to apply them to problems with irregular geometries, such as those 

with curved boundaries, kinks, corners and cracks, due to a lack of algorithms to generate 

necessary data required by these methods. Specifically, for the mirror-based FNM which 

determines the volume constraint at each fictitious node based on the value of its mirror 

node in the solution domain [30,31,34], there is no general algorithm to find the mirror 

nodes (of all fictitious nodes) required by the method.  
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In this work, we introduce a new algorithm that helps us automatically finding mirror 

nodes in the mirror-based FNM for domains of arbitrary geometries, including for those 

with crack surfaces. This algorithm approximates, at each fictitious node, a “generalized” 

normal vector which is perpendicular to the boundary of the solution domain if the 

boundary satisfies the 1st order smooth condition. We select the PD diffusion model to 

test our algorithm. With small modifications, the algorithm presented here is also 

applicable to PD models solving other types of problems, such as fracture and corrosion 

damage. We also investigate two other types of FNMs and compare their results with 

those from the mirror-based FNM: the “naive” version [35], and the Taylor FNM 

[27,32,36]. We compare the performance of different FNMs in enforcing local boundary 

conditions using two problems: one is a simple problem without singularity and the other 

is the Motz’s problem with a singularity (in fluxes) along a boundary where Dirichlet and 

Neumann boundary conditions meet [37,38]. We show the capability of the new 

algorithm, used in the context of mirror-based FNM, by solving examples of diffusion in 

domains with crack surfaces and curved boundaries. 

This paper is organized as follows: in Section 6.2 we review the PD method for diffusion-

type problems; in Section 6.3 we discuss the fictitious nodes method and introduce the 

autonomous algorithm to generalize the mirror-based FNM for arbitrary geometries; in 

Section 6.4we compare the performance of three different types of FNMs using examples 

with and without local singularities, then test the generality and capability of the 

developed algorithm on the mirror-based FNM for more complicated problems with 

cracks; conclusions are finally given in Section 6.5. 



 
213 

6.2 The peridynamic model for diffusion 

Consider the diffusion of a scalar quantity 𝑢 (e.g., temperature) in a homogeneous and 

isotropic body occupying the domain Ω ∈ ℝ𝑑, 𝑑 = 1, 2 or 3, with constant diffusivity 𝜈. 

The classical local model describes the diffusion by using the following PDE-based 

formulation: 

where 𝑠 ∈ ℝ is the source/sink term and 𝐺(𝑢(𝒙, 𝑡)) defines the BCs (which could be 

Dirichlet, Neumann, Robin, or mixed). 

The peridynamic (PD) bond-based diffusion model [10,21,39], on the other hand, is 

written as: 

𝜕𝑢(𝒙, 𝑡)

𝜕𝑡
= 𝜈ℒ𝜔𝑢(𝒙, 𝑡) + 𝑠(𝒙, 𝑡)          ∀(𝒙, 𝑡)  ∈  Ω ×  [0, 𝑇] (6.2)  

where ℒ𝜔 is the PD Laplacian operator which can be expressed as: 

ℒ𝜔𝑢(𝒙, 𝑡) = ∫ 𝜔(𝒙, 𝒚)(𝑢(𝒚, 𝑡) − 𝑢(𝒙, 𝑡))𝑑𝒚
ℋ𝒙

 , (6.3)  

Here ℋ𝒙 is the (nonlocal) horizon region of 𝒙 and is usually selected to be a disk in 2D (a 

line segment in 1D or a sphere in 3D) centered at 𝒙, with the radius denoted by 𝛿 (which 

is called horizon size, or simply horizon). Figure 6.1 schematically shows a 2D PD body 

with a generic point 𝒙, its family and its horizon. Objects that carry the pairwise nonlocal 

interactions between points are called bonds. In the more generalized state-based 

formulation, diffusion in a bond is directly influenced by other bonds which connect to 

{

𝜕𝑢(𝒙, 𝑡)

𝜕𝑡
= 𝜈∇2𝑢(𝒙, 𝑡) + 𝑠(𝒙, 𝑡)                  ∀(𝒙, 𝑡)  ∈  Ω × [0, 𝑇]  

𝐺(𝑢(𝒙, 𝑡)) = 0                                             ∀(𝒙, 𝑡)  ∈ 𝜕Ω × [0, 𝑇]
 (6.1) 
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the same point [12]. This setting may be beneficial for certain problems but is not 

considered here. 

 

Figure 6.1. A peridynamic body with a generic point 𝒙 and its horizon ℋx. Nonlocal 

interactions exist through the bond between point 𝒙 and an arbitrary point 𝒚 located in 

its horizon ℋ𝒙. 

The kernel function 𝜔(𝒙, 𝒚):Ω × Ω → ℝ in Eq. (6.3) denotes a nonnegative symmetric 

mapping, i.e., 𝜔(𝒙, 𝒚) = 𝜔(𝒚, 𝒙) ≥ 0. It has been shown that for 𝑢 ∈ 𝐶2(Ω), ℒ𝜔𝑢 → ∆𝑢 

as 𝛿 → 0, under certain conditions [35,40,41]. A kernel function that leads to good 

convergence properties with the one-point Gaussian quadrature discretization of the 

spatial domain is [35]:  

𝜔(𝒙, 𝒚) =
𝐴

‖𝒚 − 𝒙‖2
 (6.4)  

where 𝐴 is a constant which can be calibrated by matching PD flux to classical flux for a 

linearly distributed field, as shown in [11]. One can also determine 𝐴 by enforcing that 

Eq. (6.2) recovers the classical diffusion equation as 𝛿 → 0 using the approach first 

provided in [25] for 1D linear elasticity, as shown below for 2D diffusion. 

Suppose 𝑢(𝒙) is sufficiently smooth, one can write, for all 𝒙 ∈ Ω𝐼 and 𝒚 ∈ ℋ𝒙: 
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𝑢(𝒚) = 𝑢(𝒙) + 𝜉𝑥
𝜕𝑢

𝜕𝑥
(𝒙) + 𝜉𝑦

𝜕𝑢

𝜕𝑦
(𝒙)

+
1

2!
(𝜉𝑥

2
𝜕2𝑢

𝜕𝑥2
(𝒙) + 2𝜉𝑥𝜉𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
(𝒙) + 𝜉𝑦

2
𝜕2𝑢

𝜕𝑦2
(𝒙))

+
1

3!
(𝜉𝑥

3
𝜕3𝑢

𝜕𝑥3
(𝒙) + 3𝜉𝑥

2𝜉𝑦
𝜕3𝑢

𝜕𝑥2𝜕𝑦 
(𝒙) + 3𝜉𝑥𝜉𝑦

2
𝜕3𝑢

𝜕𝑥𝜕𝑦2 
(𝒙)

+ 𝜉𝑦
3
𝜕3𝑢

𝜕𝑦3
(𝒙))  + 𝑂 ( (𝜉𝑥

2 + 𝜉𝑦
2)
2
) 

(6.5)  

where 𝝃 = 𝒚 − 𝒙 = [ 𝜉𝑥 𝜉𝑦]𝑇. Substitute Eq. (6.5) into Eq. (6.3) and consider 

symmetry, we get: 

ℒ𝜔𝑢(𝒙, 𝑡) =
𝐴

2
∫

𝜉𝑥
2 𝜕

2𝑢
𝜕𝑥2

+ 𝜉𝑦
2 𝜕

2𝑢
𝜕𝑦2

+ 𝑂( (𝜉𝑥
2 + 𝜉𝑦

2)
2
)

𝜉𝑥
2 + 𝜉𝑦

2
𝑑𝒙

ℋ𝒙

=
𝐴

2
(
𝜕2𝑢

𝜕𝑥2
∫ 𝜌𝑑𝜌∫ 𝑐𝑜𝑠2 𝜃 𝑑𝜃

2𝜋

0

𝛿

0

+
𝜕2𝑢

𝜕𝑦2
∫ 𝜌𝑑𝜌∫ 𝑠𝑖𝑛2 𝜃 𝑑𝜃

2𝜋

0

𝛿

0

+ 𝛿2𝑂( 𝛿2))

=
𝜋𝛿2𝐴

4
(
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+ 𝑂( 𝛿2)) 

(6.6)  

One recovers the 2D classical diffusion equation as 𝛿 → 0 when we have: 

𝐴 =
4

𝜋𝛿2
 (6.7)  

Eq. (6.7) agrees with the calibrated values given in [10,11]. With this value, the PD 

model converges to the classical model of order two for 𝒙 ∈ Ω𝐼. However, using Eq. (6.7) 

for 𝒙 ∈ Ω𝑠 (which does not have a full horizon region) would lead to lower diffusivity (or 

a lower stiffness for problems in elasticity (see [23,25])). Moreover, BCs for PD 

equations (e.g., Eq. (6.2)) should be nonlocal (sometimes called “volume-constraints” 
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[21,22]), but usually only the local BCs are available. In the next section we discuss 

FNMs which transforms local BCs to their nonlocal counterparts in PD models. 

6.3 Fictitious nodes methods  

Unlike classical local methods, the boundary conditions in peridynamics are nonlocal. 

However, when solving practical problems, imposing local-type boundary conditions in 

nonlocal/peridynamic models is usually desired/needed because, in most applications at 

the macroscale, conditions (on the unknown function values or its flux) are imposed at 

the surfaces of a body, not through a finite layer near the surface. The natural 

representation of such conditions (based on measurements) is via local boundary 

conditions. Various methods to impose local boundary conditions in PD models have 

been investigated in [12,22,42]. One such method is the fictitious nodes method (FNM) 

[12,30,42]. 

In FNM for peridynamics, certain volume constraints 𝑐(𝑢(𝒙)) = 0 are specified on the 

extended fictitious region Ω̃ = {𝒙 ∉ Ω|dist(𝒙, 𝜕Ω) < 𝛿} (the “collar” outside of the 

solution domain Ω shown in Figure 6.2), so that desired local boundary conditions on 𝜕Ω 

are satisfied or approximately satisfied. Such volume-constrained PD problems are 

defined analogous to boundary value problems with PDEs in the local theory according 

to nonlocal vector calculus [22]. Volume-constrained PD steady-state diffusion (or 

Laplace) problem can be expressed as [22]: 

{
ℒ𝜔𝑢(𝒙) = 0           𝒙 ∈ Ω  

𝑐(𝑢(𝒙)) = 0           𝒙 ∈ Ω̃  
 (6.8)  
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When applied to free boundaries (or crack surfaces), the FNM mitigates the peridynamic 

surface effect [30]. This is a common issue for numerical models using nonlocal 

formulations [22,33]. The surface effect appears because, unlike in the bulk, material 

points near the free boundary/surface do not have a full non-local neighborhood. The 

surface effect leads to slightly different behavior of material points near the surface 

compared with those in the bulk. This could mean a lower diffusivity near the surface for 

diffusion problems, and a lower stiffness for problems in elasticity (see [23]). These 

effects are reduced as one decreases 𝛿 and would be “exact” when 𝛿 is the same as the 

physical nonlocal interaction range, which could be atomistically small. In practical 

modeling, 𝛿 is usually set to match observable physical length-scales (see discussion in 

[43]), and not larger than relevant geometrical features of the domain (notch widths, etc.). 

 

Figure 6.2. Schematic of a peridynamic domain (Ω), its boundary (𝜕Ω) and crack 

surface ( 𝜕Ω𝑐), its fictitious layer (Ω̃), and the region affected by the crack surface (Ω𝛿
𝑐 ), 

the regular-shaped region Ω̂ in which Ω̃ is determined. 

Before implementing FNMs, the explicit 𝜕Ω (including crack surfaces 𝜕Ω𝑐) at the initial 

time is needed to determine the initial configuration of discretized Ω and Ω̃ (see 



 
218 

Appendix A). Note that if a node 𝒙 sits on 𝜕Ω, we let 𝒙 ∈ Ω. Then the boundary 𝜕Ω\𝜕Ω𝑐  

will be implicitly tracked by bonds connecting points in Ω and those in Ω̃, and 𝜕Ω𝑐 is 

tracked by broken bonds. A regular-shaped region Ω̂ is usually placed outside Ω in which 

Ω̃ is determined, and the Ω̃ determined after discretization is usually larger than the one 

before discretization to assure ℋ𝒙 is complete ∀𝒙 ∈ Ω in the discretized configuration. In 

this section, we review three different types of FNM from literature. 

6.3.1 Naïve FNM 

A naïve type of FNM is often used in the literature to impose local Dirichlet and 

homogeneous Neumann (no flux) BCs. This method enforces Dirichlet BCs by assigning 

the same values to all fictitious points corresponding to a boundary point, while 

homogeneous Neumann BCs are enforced by simply neglecting all corresponding 

fictitious points [35]. See Figure 6.3 for an illustration of how a Dirichlet BC 𝑢(𝒙𝑏) = 𝑢𝑏 

at 𝒙𝑏 ∈ 𝜕ΩD (boundary subjected to Dirichlet BC) is enforced at 𝒙 ∈ Ω̃D (fictitious region 

subjected to Dirichlet volume-constraint). An even simpler version of “enforcing” local 

Dirichlet BCs in the nonlocal model is to dispense entirely with the fictitious points and 

subject only the surface points to the values of local boundary conditions [10]. Previous 

work has shown that results by both versions converge to local solutions as the horizon 

size approaches zero [13,35].  

Remark: The naïve FNM has the advantage of featuring the simplest implementation 

and is the most efficient (see Section 6.4.1). However, a jump-discontinuity in the 

solution at the boundary may be generated, leading to possible errors in fluxes near the 

boundary (see the result in section 6.4.1 for an example). 
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Figure 6.3. Illustration of using the naïve FNM to enforce the local (a) Dirichlet and (b) 

homogeneous Neumann BCs. 

6.3.2 Taylor-based FNM 

The second FNM, used in the PD context first in [27], requires a Taylor expansion (to 

linear terms) for 𝒙 ∈ Ω̃ ∪ Ω𝛿, in which Ω𝛿 = {𝒙 ∈ Ω|dist(𝒙, 𝜕Ω) < 𝛿}. We call it Taylor-

based FNM or simply Taylor FNM. To impose the local Dirichlet BC 𝑢(𝒙) = 𝑢D(𝒙) for 

𝒙 ∈ 𝜕ΩD using Taylor FNM, for each 𝒙 ∈ Ω𝛿, 𝒚 ∈ Ω̃D ∩ℋ𝒙 and 𝒙𝑏 = 𝜕ΩD ∩ 𝒙𝒚 ⃗⃗⃗⃗⃗⃗ , �̃�(𝒚) 

is extrapolated from 𝑢(𝒙) as: 

�̃� = 𝑢 + (
𝜕𝑢

𝜕𝝃
)𝝃 + 𝒪(𝛿2) ≈ 𝑢 +

(𝑢𝑏 − 𝑢)

𝑑
(𝑑 + �̃�) = 𝑢𝑏 +

�̃�

𝑑
(𝑢𝑏 − 𝑢) (6.9)  

where �̃� = �̃�(𝒚), 𝑢 = 𝑢(𝒙), 𝑢𝑏 = 𝑢D(𝒙𝑏), 𝝃 = 𝒚 − 𝒙, 𝑑 = dist(𝒙, 𝒙𝑏) and �̃� =

dist(𝒚, 𝒙𝒃) (“dist” denotes distance).  
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Figure 6.4. Illustration of enforcing the local Dirichlet BC by using the Taylor FNM 

(redrawn from [33]). 

Eq. (6.9) may lead to unstable results when 𝒙 ∈ Ω𝛿 is very close to 𝜕Ω (𝑑 ≈ 0) and a 

further modification may be required as follows [36]: 

�̃� = 𝑢 + (𝑢𝑏 − 𝑢) × min {𝜆, (1 +
�̃�

𝑑
)} (6.10)  

where 𝜆 is a parameter determined from numerical tests. Normally 𝜆 =1.5 leads to good 

results [36]. 

To impose a local Neumann or Robin BC ∇𝑢𝑏 ∙ 𝒏 = 𝑓(𝑢𝑏) for 𝒙𝑏 ∈ 𝜕ΩNR (boundary 

subjected to Neumann or Robin BC), where 𝑓 is a given function, for each 𝒙 ∈ Ω𝛿, 𝒚 ∈

Ω̃NR ∩ℋ𝒙 and 𝒙𝑏 = 𝜕ΩNR ∩ 𝒙𝒚 ⃗⃗⃗⃗⃗⃗ , �̃� can be approximated by 𝑢 and 𝑢𝑏 by the following 

Taylor expansions [27]:  

�̃� = 𝑢 + 𝝃 (
𝜕𝑢

𝜕𝝃
) + 𝒪(𝛿2) ≈ 𝑢 + 𝝃 (

𝜕𝑢𝑏
𝜕𝒏

) = 𝑢 + (𝑑 + �̃�)𝑓(𝑢𝑏) (6.11) 

in which 𝑢𝑏 is not given and needs to be approximated from the following equation: 

�
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𝑢𝑏 ≈ 𝑢 + 𝑑𝑓(𝑢𝑏) (6.12)  

If 𝑓(𝑢𝑏) is a nonlinear function, a nonlinear equation solver, such as Newton’s method, is 

needed to solve for 𝑢𝑏 [44]. 

Remark: In this Taylor approach, in the same solution step, �̃� at each 𝒚 ∈ Ω̃ changes, 

even in the same solution step, changes and needs to be computed anew for each 𝒙 ∈

Ω𝛿 ∩ℋ𝒚 at which an integration over ℋ𝒙 is performed (see Eqs. (6.9) & (6.12)). This is 

illustrated in Figure 6.4, where for 𝒙𝑖 ∈ Ω𝛿  and 𝒙𝑏 ∈ 𝜕ΩD ∩ℋ𝒙𝑖, �̃�𝑖 is the distribution of 

�̃�(𝒚) ∀𝒚 ∈ {𝒚 ∈ Ω̃D|𝜕ΩD ∩ 𝒙𝑖𝒚⃗⃗⃗⃗ ⃗⃗ = 𝒙𝑏}. The solution step refers to each call to the 

Conjugate Gradient (CG) solver (see Figure 6.24 in Appendix A for the flowchart of the 

simulation). Moreover, for boundaries with irregular geometries such as corners, those 𝒙 

and 𝒚 nearby also have variable 𝑑 and �̃� associated with them, because for each pair of 𝒙 

and 𝒚, 𝒙𝒚 ⃗⃗⃗⃗⃗⃗  may intersect with different segments of the boundary. 

6.3.3 Mirror-based FNM 

If 𝑑 = �̃� in Eqs. (6.9) and (6.12), the Taylor-based FNM degenerates to the mirror-based 

FNM, or simply “mirror FNM”. As shown in Figure 6.5, the mirror FNM assigns the 

constraint �̃�(𝒙) at each 𝒙 ∈ Ω̃ based on 𝑢(𝒙𝑅) and 𝑢(𝒙𝑃) in which 𝒙𝑃 = OProj𝜕Ω(𝒙) is 

the orthogonal projection of 𝒙 onto 𝜕Ω and 𝒙𝑅 = Ref𝜕Ω(𝒙) = 𝒙 + 2(𝒙
𝑃 − 𝒙) is the 

reflection, or mirror point, of 𝒙 through/across 𝜕Ω. For 𝒙 ∈ Ω̃, when 𝜕Ω𝒙 = {𝜕Ω ∩ℋ𝒙} is 

continuous and the normal to 𝜕Ω𝒙 at each 𝒚 ∈ 𝜕Ω𝒙 is unique (i.e., 𝜕Ω𝒙 ∈ 𝐺
1), we have 

𝒙𝒙𝑃⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑘𝒏(𝒙𝑃), in which 𝑘 ∈ ℝ− and 𝒏(𝒙𝑃) is the outward unit normal vector at 𝒙𝑃. 
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Figure 6.5. A schematic of mirror points in mirror-based FNM [12]. 

In the mirror FNM, to impose the local Dirichlet BC 𝑢(𝒙) = 𝑢D(𝒙) for 𝒙 ∈ 𝜕ΩD and the 

Neumann BC 𝛁𝒏𝑢(𝒙) = −𝑞(𝒙) for 𝒙 ∈ 𝜕ΩN, �̃�(𝒙) at 𝒙 ∈ Ω̃D is assigned as: 

�̃�(𝒙) = 2𝑢(𝒙𝑃) −  𝑢(𝒙𝑅) (6.13)  

and �̃�(𝒙) at 𝒙 ∈ Ω̃N is assigned as: 

�̃�(𝒙) = 𝑢(𝒙𝑅) − ‖𝒙 − 𝒙𝑅‖𝑞(𝒙𝑃) (6.14)  

respectively. For the local Robin BC 𝛁𝒏𝑢(𝒙) = 𝑓(𝑢(𝒙)) for 𝒙 ∈ 𝜕ΩR, we have, for 𝒙 ∈

Ω̃R: 

�̃�(𝒙) = 𝑢(𝒙𝑅) − ‖𝒙 − 𝒙𝑅‖𝑓(𝑢(𝒙𝑃))

= 𝑢(𝒙𝑅) − ‖𝒙 − 𝒙𝑅‖𝑓 (
𝑢(𝒙𝑅) + �̃�(𝒙)

2
) 

(6.15)  

in which the approximation 𝑢(𝒙𝑃) =
𝑢(𝒙𝑅)+𝑢(𝒙)

2
 is made because the distribution of 𝑢 

should be close to linear between 𝒙 and 𝒙𝑅. Note that �̃�(𝒙) requires to be solved using a 

nonlinear solver if function 𝑓 is nonlinear. 

Remark: In the mirror FNM, �̃�(𝒙) at each 𝒙 ∈ Ω̃ does not change in the same solution 

step because it only depends on 𝒙𝑅 and 𝒙𝑃 which can be uniquely determined for each 𝒙. 
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See Figure 6.6 for illustrations of how local Dirichlet BCs are enforced in the mirror 

FNM. 

 

Figure 6.6. Illustration of enforcing a local Dirichlet BC in the mirror FNM (redrawn 

from [12]). 

Remark: Note that in the Taylor and mirror FNMs described in this section, all the 

information for 𝒙 ∈ Ω𝛿 ∪ Ω̃, such as dist(𝒙, 𝜕Ω), Ref𝜕Ω(𝒙) are considered as given, 

which works for simple geometries. However, for general cases, such information is not 

straightforward and cannot be provided as input. For example, for shapes with corners of 

various angles, cusps and crack tips, etc., the tangent line (and normal vector) is not well 

defined everywhere. While some ad-hoc choices can be made for overcoming this issue, 

we aim for a general strategy which assures all the information required to implement the 

FNM can be determined without ambiguity. Moreover, the enforcement of local BCs on 

surfaces of thin cracks is not considered till this point, mainly because fictitious regions 

are not clearly defined for such “inner” surfaces yet. In the next section we introduce an 

automatic algorithm specifically for the mirror FNM so that local BCs, including those 
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imposed on crack surfaces, can be enforced in PD for problems with arbitrary 

boundary/surface shapes.  

6.3.4 An algorithm to find mirror nodes for the mirror-based FNM 

In order to use the mirror FNM to impose local BCs on surfaces of thin cracks 𝜕Ω𝑐, we 

let Ω𝛿
𝑐 = {𝒙 ∈ Ω|dist(𝒙, 𝜕Ω𝑐) < 𝛿} and Ω̃ = Ω̃ ∪ Ω𝛿

𝑐 , so that 𝒙 ∈ Ω𝛿
𝑐  on one side of the 

crack surface can serve as fictitious points for 𝒙 ∈ Ω𝛿
𝑐  on the other side of the crack 

surface. 

Using the mirror FNM for arbitrarily shaped boundaries/surfaces (with corners, cusps, 

etc.) requires finding both 𝒙𝑃 and 𝒙𝑅 ∀𝒙 ∈ Ω̃. Since 𝒙𝑅 = 𝒙 + 2(𝒙𝑃 − 𝒙), as shown in 

Figure 6.5, once 𝒙𝑃 is known, 𝒙𝑅 can be determined. Starting from 𝒙 ∈ Ω̃, one could 

determine 𝒙𝑃 as argmin
𝒚∈ℋ𝒙∩𝜕Ω

dist(𝒚, 𝒙). However, the uniqueness of the solution is not 

guaranteed. Moreover, for 𝒙 near corners with an angle smaller than 90° (see regions Ω̃1 

in Figure 6.7), it may lead to 𝒙𝑅 ∉ Ω.  

 

Figure 6.7. Schematic of Ω̃1 ⊂ Ω̃ near an acute corner where 𝒙𝑅 = Ref𝜕Ω(𝒙) ∉ Ω for 

𝒙 ∈ Ω̃1, when 𝒙𝑃 = argmin
𝒚∈ℋ𝒙∩𝜕Ω

dist(𝒚, 𝒙) 

We introduce an algorithm to resolve all these issues. First, we compute �̃�(𝒙) =

𝒙𝒙𝑃⃗⃗ ⃗⃗ ⃗⃗  ⃗/ ‖𝒙𝒙𝑃⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ for 𝒙 ∈ Ω̃ using similar ideas to that of [29]: 
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�̃�(𝒙) =

{
 
 
 

 
 
 ∫ (𝒚 − 𝒙)𝑑𝒚

ℋ𝒙∩Ω

‖∫ (𝒚 − 𝒙)𝑑𝒚
ℋ𝒙∩Ω

‖
                    for 𝒙 ∈ Ω̃\Ω𝛿

𝑐

−
∫ 𝜇(𝒙, 𝒚)(𝒚 − 𝒙)𝑑𝒚
ℋ𝒙

‖∫ 𝜇(𝒙, 𝒚)(𝒚 − 𝒙)𝑑𝒚
ℋ𝒙

‖
               for 𝒙 ∈ Ω𝛿

𝑐               

 (6.16)  

where 𝜇(𝒙, 𝒚) is the binary function which equals 0 if the mechanical bond connecting 𝒙 

and 𝒚 is broken, and 1 otherwise. �̃�(𝒙) given by Eq. (6.16) points inward (toward Ω). 

Since �̃�(𝒙) is unique for each 𝒙 ∈ Ω̃, it allows us to locate 𝒙𝑃 and 𝒙𝑅 uniquely. For each 

𝒙 ∈ Ω̃, if 𝜕Ω𝒙 = (𝜕Ω ∩ℋ𝒙) ∈ 𝐺
1, we have �̃�(𝒙) = 𝑘𝒏(𝒙𝑃) in which 𝑘 ∈ ℝ− and 𝒏(𝒙𝑃) 

is the outward unit normal vector at 𝒙𝑃. On the other hand, if 𝜕Ω𝒙 ∉ 𝐺
1, 𝒏(𝒙𝑃) may not 

exist, and even if it exists, we only have �̃�(𝒙) ≈ 𝑘𝒏(𝒙𝑃). 

Note that for Ω̃ near sharp (relative to the horizon size) convex corners, Eq. (6.16) may 

still lead to 𝒙𝑅 ∉ Ω for 𝒙 ∈ Ω̃2 ⊂ Ω̃, as shown in Figure 6.8, although Ω̃2 covers a much 

smaller area than that of Ω̃1 in Figure 6.7. This issue can be reduced by using smaller 

horizon sizes but not fully resolved. In practice, if 𝒙𝑅 ∉ Ω for 𝒙 ∈ Ω̃2, we let 𝒙𝑅 =

argmin
𝒚∈ℋ𝒙𝑅∩Ω

dist(𝒚, 𝒙𝑅). Other options include approximating �̃�(𝒙) by 𝑢(𝒚) at 

argmin
𝒚∈ℋ𝒙∩Ω̃

dist(𝒚, 𝒙), or using Naïve FNM if it is possible. Since Ω̃2 only covers a very 

small fraction of Ω̃ around the corner, the error introduced by these approximations 

should be trivial. 
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Figure 6.8. Schematic of Ω̃2 ⊂ Ω̃ near an acute corner for which 𝒙𝑅 = Ref𝜕Ω(𝒙) ∉ Ω 

for 𝒙 ∈ Ω̃2, when Eq. (6.16) is used to determine 𝒙𝑅. 

Before implementing the algorithm, the explicit 𝜕Ω (including crack surfaces 𝜕Ω𝑐) at the 

initial time is needed to determine the initial configuration of discretized Ω and Ω̃ (see 

Appendix A). Note that if a node 𝒙 sits on 𝜕Ω, we let 𝒙 ∈ Ω. Then the boundary 𝜕Ω\𝜕Ω𝑐  

will be implicitly tracked by bonds connecting points in Ω and those in Ω̃, and 𝜕Ω𝑐 is 

tracked by broken bonds. A regular-shaped region Ω̂ is usually placed outside Ω in which 

Ω̃ is determined, and the effective Ω̃ determined after discretization is usually larger than 

the one before discretization to assure ℋ𝒙 is complete ∀𝒙 ∈ Ω in the discretized 

configuration. Re-finding 𝒙𝑃 and 𝒙𝑅 is required every time Ω̃ evolves (Ω̃new ≠ Ω̃old), 

which happens in problems such as corrosion or fracture, but only for those 𝒙 ∈

{𝒙 ∈ Ω̃new|ℋ𝒙 ∩ {Ω̃
new ∪ Ω̃old}\{Ω̃new ∩ Ω̃old} ≠ ∅}. 

The algorithm to find mirror nodes for each 𝒙 ∈ Ω̃ is as follows: 

(1) Compute �̃�(𝒙) using Eq. (6.16). 

(2) Search for 𝒙𝑃: 

a. if 𝒙 ∈ Ω̃\Ω𝛿
𝑐 , then search in (ℋ𝒙 ∩ Ω) in the direction of �̃�(𝒙) for the node closest 

to 𝒙, i.e., 𝒙𝑃 = argmin
𝒚∈ℋ𝒙∩Ω

dist(𝒚, 𝒙), subject to dist(�̃�(𝒙), 𝒚) < Δ𝑥/2; note that: 
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 dist(�̃�(𝒙), 𝒚) = √(𝒚 − 𝒙) ⋅ (𝒚 − 𝒙) − ((𝒚 − 𝒙) ⋅ �̃�(𝒙))
2
; (6.17)  

b. elseif 𝒙 ∈ Ω𝛿
𝑐 , then 𝒙𝑃 = argmin

𝒚∈ℋ𝒙∩Ω
dist(𝒚, 𝒙), subject to dist(�̃�(𝒙), 𝒚) < Δ𝑥/2 and 

𝜇(𝒙, 𝒚) = 0;  

c. if 𝒙𝑃 is not found, let 𝒙𝑃 = argmin
𝒚∈Ω

dist(𝒚, 𝒙), subject to dist(�̃�(𝒙), 𝒚) < Δ𝑥/2; 

d. if two or more 𝒙𝑃 are found, selecting either one of them is acceptable. 

(3) Search for 𝒙𝑅: 

a. compute 𝒙′ = 𝒙 + (2‖𝒙𝑃 − 𝒙‖ − Δ𝑥)�̃�(𝒙);  

b. since 𝒙′ may not coincide with a node’s coordinates in the domain, we have 𝒙𝑅 =
argmin
𝒚∈ℋ𝒙′∩Ω

dist(𝒚, 𝒙′). 

Some examples for this searching process are shown in Figure 6.9.  

 

Figure 6.9. Schematic diagram of determining 𝒙P and 𝒙R for a generic 𝒙 ∈ Ω̃ given four 

different �̃�(𝒙). 

Remark: By using this algorithm, regardless of the smoothness of 𝜕Ω, 𝒙𝑃 and 𝒙𝑅 will 

converge, for a certain choice of 𝛿, as 𝛿/Δ𝑥 approaches infinity. If 𝜕Ω ∈ 𝐺1, the 

converged value will be the analytical one. Before the development of this algorithm, one 

needs to make assumptions (which can vary from one paper to another) about 𝒙𝒙𝑃⃗⃗ ⃗⃗ ⃗⃗  ⃗ at 
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sharp corners when using the mirror FNM [12,30] and the local BCs at free crack 

surfaces are usually treated by the naïve FNM. Now, by using this algorithm, 𝒙𝑃 and 𝒙𝑅 

are found automatically and consistently ∀𝒙 ∈ Ω̃, including 𝒙 near sharp corners and 

crack surfaces. For problems with complex shapes, the algorithm leads to important time-

savings compared to manually determining 𝒙𝑃 and 𝒙𝑅 ∀𝒙 ∈ Ω̃. Since the number of 

fictitious nodes usually only accounts for a small portion of the total number of nodes, the 

computational cost to locate 𝒙𝑃 and 𝒙𝑅 ∀𝒙 ∈ Ω̃ is trivial compared with the cost of a 

complete simulation.  

Some real examples of 𝒙𝑅 found by the algorithm are shown in Figure 6.10, where those 

arrows start from 𝒙 ∈ Ω̃ and end at 𝒙𝑅 ∈ Ω. Note that 𝒙𝒙𝑅⃗⃗ ⃗⃗ ⃗⃗  ⃗ ≈ 𝑘�̃�(𝒙) (with 𝑘 ∈ ℝ+) and 

there is a transition of direction for 𝒙𝒙𝑅⃗⃗ ⃗⃗ ⃗⃗  ⃗ between that of the normal vectors on two edges 

of the corner (or inner crack tip). The transition zone will narrow down as the horizon 𝛿 

shrinks (𝛿-convergence) and the transition will be smoother as 𝑚 = 𝛿/Δ𝑥 increases (m-

convergence). It may be possible that this transition of the 𝒙𝒙𝑅⃗⃗ ⃗⃗ ⃗⃗  ⃗ be used to detect/track 

crack tips, on the fly, but this idea will be pursued elsewhere. Although only the 2D 

implementation using uniform grid is considered in this work, extension of this algorithm 

to non-uniform grids and 3D cases and is straightforward and can be easily achieved. 
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(a) 

 

(b) 

 

(c) 

Figure 6.10. Real examples of some 𝒙 and their corresponding 𝒙R ∈ Ω, connected by 

arrows, computed by the new algorithm: (a) at the corner; (b) at the inner crack tip; (c) 

at the edge crack tip. Note that the direction of arrow for each 𝒙 is not exactly the 

samse as �̃�(𝒙) computed by Eq. (6.16) due to discretization. 

In the following section, the performance of the mirror FNM will be compared with the 

naïve and the Taylor FNMs. We will also show the capability of the autonomous mirror 

FNM using problems with curved geometry and cracks. 

6.4 Results and discussion 

In this section, we first show how previously discussed three different FNMs perform in 

enforcing local BCs through the steady-state diffusion in a square domain. Then we will 

show how these FNMs perform in a problem with a singular point on its boundary. 

Finally, we are going to show the capability of the autonomous mirror FNM in problems 

with curved geometry and cracks. 

6.4.1 The performance of the three FNM versions in enforcing local BCs in 

peridynamics for problems without singularities 

In the first problem, we consider a square domain with its side equal to 0.1, subject to the 

following local boundary conditions: 
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 as shown in Figure 6.11. The classical solution to this problem is a linear function 

written as: 

In the PD simulations for this problem, we first take 𝛿 = 0.004 and Δ𝑥 = 0.001, 

respectively. This leads to about 10,000 nodes for a uniform discretization.  

 

Figure 6.11. The geometry and boundary conditions for diffusion in a square domain 

used to compare different FNMs’ capability in enforcing local BCs in the PD 

formulation. 

The solution, obtained with the different FNMs, along the dashed mid-line in Figure 6.11 

is shown in Figure 6.12. All three results match the classical solution very well. However, 

if we zoom in near the boundary, we can see clearly that the result obtained with the 

mirror FNM matches the classical analytical solution much better than results obtained 

with the other two FNMs. The simulation times for the three FNMs are given in Table 

6.1. The simulation with the naïve FNM is at least 10 times faster than other two types of 

FNM, while the efficiency of Taylor and the mirror FNMs are similar to one another. 

Therefore, for such a simple problem, if the accuracy of the solution near the boundary is 

{

𝑢(𝑥 = −0.05, 𝑦) = 0.1

𝑢(𝑥 = 0.05, 𝑦) = 0.6
∇𝒏𝑢(𝑥, 𝑦 = ±0.05) = 0

 (6.18)  

𝑢(𝑥, 𝑦) = 5𝑥 + 0.35 (6.19)  
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not critical, the naïve FNM could be taken as the “best” option. If accuracy is needed, 

then the mirror FNM should be used. 

 

Figure 6.12. The classical analytical solution and PD solutions with different FNMs for 

the steady-state diffusion problem in Figure 6.11, along the dashed line shown there. 

Table 6.1. Computational time of the simulation using the three different FNMs, when 

𝛿 = 0.004 and Δ𝑥 = 0.001. 

Notice that in [27], Eq. (6.10) is not considered in the Taylor FNM and there are no 

stability issues. However, for the example shown in Figure 6.11, as well as the next 

example shown below, the solution obtained with the Taylor FNM would diverge without 

using Eq. (6.10). Since a dynamic solver is used in [27] while a static one (CG solver) is 

employed in this work, this stability issue is possibly related to the solver being used. 

Another factor which might also affect the stability of the Taylor FNM is the 

discretization being selected. The mirror FNM, on the other hand, has not shown any 

stability issues and is thus more robust. 

 FNM 

 naïve Taylor-based mirror-based 

Time (s) 2.0 20.1 20.6 
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The next example has a singular point along a straight boundary, and we will use it to 

further test the performance of different FNMs types. 

6.4.2 The performance of the three FNMs for Motz’s problem 

To test the capability of the different FNMs in handling local singularities along the 

boundary, we choose Motz’s problem [37,38], which can be seen as a steady-state 

diffusion problem with the following local boundary conditions: 

as shown in Figure 6.13. This classical solution for this problem has a strong local 

singularity 𝑂(𝜌1/2) at the origin 𝑂. 

 

Figure 6.13. Domain and boundary conditions for an example of Motz’s problem. 

The classical solution for Motz’s problem can be written as [38]: 

where 𝐷𝑖’s are analogous to the stress intensity factors in linear elastic fracture 

mechanics, sometimes called “generalized flux intensity factors” [45]. Here we choose 34 

terms, as in [46]. 

{
 
 

 
 
∇𝒏𝑢(𝑥 = −1, 𝑦) = 0

∇𝒏𝑢(𝑥, 𝑦 = 1) = 0

∇𝒏𝑢(𝑥 > 0, 𝑦 = 0) = 0

𝑢(𝑥 < 0, 𝑦 = 0) = 0

𝑢(𝑥 = 1, 𝑦) = 500

 (6.20)  

𝑢(𝜌, 𝜃) =∑𝐷𝑖𝜌
𝑖+1/2 cos [(𝑖 +

1

2
) 𝜃]

∞

𝑖=0

 (6.21)  
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In Figure 6.14 (a) we show the contours for the classical solution. The point-wise relative 

differences between the PD solutions and the classical solution are given in Figure 6.14 

(b)-(d). For the PD simulations, we used 𝛿 =0.04 and Δ𝑥 = 0.01, respectively. Notice 

that for the mirror FNM, the non-trivial relative difference (> 5%) is restricted to the 

horizon region of the singular point (point 𝑂) and the left-bottom corner (point D). As the 

horizon size approaches zero (with 𝛿/Δ𝑥 not decreasing), these areas also converge to 

zero. For the other two types of FNMs, the relative difference is large not only near the 

singular point or the corner, but also at locations far away from them. A quantitative 

comparison of the solutions along the vertical dash line shown in Figure 6.13 between the 

three types of FNMs is shown in Figure 6.15. As we can see in the zoomed-in image, the 

PD solution obtained with the mirror FNM matches the classical solution much better 

than the PD solutions obtained with other two FNMs. 

(a)
  

(b)
  

(c)
  

(d)
  

Figure 6.14. (a) Contours for the classical solution for Motz’s problem; (b)-(d) Relative 

difference (Rel. Diff.) to classical solution of Motz’s problem using the PD model with 

the naïve, the Taylor and the mirror FNMs, respectively. 
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Figure 6.15. The classical and PD solutions with different FNMs for Motz’s problem 

along the vertical dashed line at 𝑥 = −𝐿/2 + Δ𝑥/2, as shown in Figure 6.13. 

The 𝛿-convergence [47] (with 𝛿/Δ𝑥 fixed to be 4) to the classical solution for the three 

PD solutions at point P (-0.5, -0.48) (see Figure 6.13), is provided in Figure 6.16 with the 

relative difference in log scale. We do not choose a point on the boundary because the 

analytical solution there is zero (i.e., relative difference does not exist). Notice that as the 

horizon size changes, the grid also changes and there may not exist a node at point P. In 

such cases, we simply obtain the value at point P by averaging the value at four nearest 

nodes around P. Figure 6.16 demonstrates that, as the horizon size decreases, solutions 

obtained with all three types of FNM approach the classical solution. However, the 

mirror FNM produces relative differences from the classical solution that are two orders 

of magnitude smaller than those from the other two FNMs. Moreover, the mirror FNM 

solution exhibits a convergence rate that is increasing faster than the other two, as the 

horizon size decreases.  
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Figure 6.16. 𝛿-convergence of PD solution (using the different FNMs) to the classical 

solution at point P (-0.5, -0.48) in Figure 6.16. 

The above two examples show that the mirror FNM works best at accurately enforcing 

local boundary conditions in PD models, especially for problems with singularities (in 

local models) along the boundary. In the following section, we will test the autonomous 

algorithm developed for the mirror FNM for problems with more complex geometries. 

6.4.3 Steady-state diffusion in disks with single and multiple pre-cracks 

In this subsection, we will apply the autonomous mirror FNM to solve the PD 

formulation for diffusion in disks with cracks under Dirichlet boundary conditions. Using 

the algorithm developed in Section 6.3.4, the mirror FNM can be easily implemented for 

curved boundaries and cracks. 

6.4.3.1 Disk with a single crack 

We first consider a disk with a single crack and boundary conditions imposed as shown 

in Figure 6.17. The mirror node for each fictitious node, required by the mirror FNM, is 

determined by the algorithm described in Section 6.3.4. See Figure 6.10 for how mirror 

nodes are found for those nodes near the crack tip. 
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Figure 6.17. Local boundary conditions imposed for diffusion in a disk with a pre-

crack at the center. 

For verification, we also run a simulation of the corresponding PDE-based problem using 

the steady-state thermal solver in ANSYS workbench. Details of the ANSYS simulation, 

including how the “crack” is simulated, can be found in Appendix B. In the PD model, 

the crack is inserted by cutting all bonds that intersect with the pre-crack segment. The 

differences between the slightly different approaches as representing a crack between the 

two models should only have a trivial effect on the results.  

Contours of the results obtained by ANSYS and PD, with zoomed-ins around the crack 

region, are given in Figure 6.18. The PD results match the FEM results closely, which 

shows that the autonomous mirror FNM works very well for problems with a curved 

boundary and with cracks. The jagged shape in the contours of the PD results appears 

because no smoothing interpolation technique is used in the visualization, we simply plot 

the obtained values at each PD node.  
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(a)
   

(c)
  

(b)
 

(d)
  

Figure 6.18. Contours for the solution to problem shown in Figure 6.17 obtained with: 

(a) ANSYS and (b) PD. In (c) and (d) we show zoomed-in regions around the crack for 

the corresponding solutions. 

In practical simulations, the crack surface may have an angle with respect to the 

(uniform) discretization grid, whether it is a pre-crack or a new crack formed during the 

simulation. In order to demonstrate the generality of our algorithm for the mirror FNM, 

we solve the same problem but we rotate the uniform grid in the counterclockwise 

direction by 30° and 45° relative to the coordinates shown in Figure 6.17, respectively, as 

shown in Figure 6.19. Notice that when the crack is not aligned with the lattice, it may 

intersect with some PD nodes. These nodes are considered as free nodes (fully damaged) 

at which the constraint is the average of their family nodes (those not fully damaged). 

The PD solution with 30°-rotated and 45°-rotated grids are shown in Figure 6.20. They 

match very well the solution obtained with the original lattice shown in Figure 6.18. 
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Therefore, the autonomous algorithm can deal with arbitrarily oriented uniform grids 

effectively. 

(a) 

 

(b) 

 

Figure 6.19. Part of the crack segment, shown by the red segment, and the PD grid 

after counterclockwise rotation by (a) 30° and (b) 45°. 

 

(a)
  

(c)
  

(b)
  

(d)
  

Figure 6.20. Contours of PD solutions obtained with the mirror FNM for 

counterclockwise-rotated grids by (a) 30° and (b) 45°. In (c) and (d) we show zoomed-

in views around the crack for the corresponding solutions. 
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6.4.3.2 Diffusion in a disk with crossing cracks 

A diffusion problem in a disk with two intersecting cracks is shown in Figure 6.21. We 

use the same autonomous algorithm introduced in Section 6.3.4 without any changes to 

treat this case. A contour-plot for the PD solution and the zoomed-in picture around the 

two cracks with imposed Dirichlet BCs are shown in Figure 6.22.  

 

Figure 6.21. Diffusion in a disk with two intersecting cracks and associated local 

boundary conditions. 

 

(a) 

 

(b) 

  

Figure 6.22. Contour-plot for the PD solution obtained with the mirror FNM (with the 

new algorithm) (a) over the disk and (b) over the zoomed-in area around the 

intersecting cracks (crack lines are drawn only approximately on top of the plot). 
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The examples shown in this section demonstrated that the autonomous algorithm for the 

mirror FNM works very well to enforce local BCs for complex geometries, including 

crack surfaces. Moreover, it can be readily employed for problems with moving 

boundaries such as corrosion damage, crack propagation, etc. 

6.5 Conclusions 

We introduced a new algorithm for the mirror-based fictitious nodes method (FNM) to 

deal with arbitrary geometries, including domains with cracks. Starting from computing, 

at each fictitious node, the peridynamic (PD) “generalized” normal vector which is 

perpendicular to the boundary of the solution domain if the boundary satisfies the 1st 

order smooth condition, this algorithm autonomously finds mirror nodes for all fictitious 

nodes. This algorithm allows us to easily generate the necessary data for mirror-based 

FNM in PD diffusion models to correctly impose the desired local BCs and 

reduce/eliminate the surface effect caused by incomplete nonlocal region near the free 

boundary/surface.  

We compared the mirror-based FNM with the naïve and the Taylor-based FNMs for 

problems with or without singularities (in the corresponding local models) along the 

boundary, and we showed that the peridynamic solution with the mirror-based FNM 

agrees with the classical solution best, especially for the problem with a singularity in the 

corresponding classical formulation. The other two methods showed “pollution” of the 

solution far from the location of the singularity. We applied the new algorithm to 

diffusion problems in domains with a curved boundary and with cracks. In these cases 

too, the peridynamic solution obtained with our mirror-based FNM matched well the FE 

solution obtained in ANSYS. The same algorithm, with few modifications, should also 
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work with the mirror-based FNM for other types of PD models to enforce local-type BCs, 

including those with moving boundaries and growing cracks. 

The new algorithm, which enables a FNM imposition of local BCs in PD models on 

arbitrary domains, will allow for more accurate peridynamic solutions near the 

boundaries. High accuracy near arbitrarily-shaped boundaries and material interfaces is 

crucial in, for example, problems that involve crack initiation and propagation, or 

evolution of corrosion fronts. In such problems, the new algorithm introduced here will 

have a great impact.  
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Appendix A. Numerical implementation of peridynamic diffusion model with 

the fictitious nodes method 

For spatial discretization, we discretize the whole PD interaction region Ω ∪ Ω̃ uniformly 

[2] into cells with nodes in the center of those cells. Figure 6.23 shows a 2D uniform 

discretization with grid spacing 𝛥𝑥 around a node 𝒙𝑖. Non-uniform grids are also possible 

[23,48,49], which may conform better for shapes with, for example, rounded boundaries 

[50], but this is not pursued in this work. Although only 2D problems are considered 

here, the extension to 3D cases should be straightforward.  
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To discretize the peridynamic integro-differential equations, we use a meshfree method 

with one-point Gaussian quadrature [2] for the approximation of the integral term. Faster 

numerical methods such as the boundary-adapted spectral method [31][51] can be 

alternative options. 

 

Figure 6.23. Uniform discretization for a peridynamic model. The circular region is the 

horizon region of node 𝒙𝑖. 

The discretized PD Laplace’s equation (see Eq. (6.4)) for each 𝒙𝑖 ∈ Ω at 𝑛th load step 

becomes: 

∑
𝑢𝑗
𝑛 − 𝑢𝑖

𝑛

𝜉𝑖𝑗
2 Δ𝐴𝑖𝑗

𝑗∈ℋ𝑖
𝑗≠𝑖

= 0 
(6.22) 

where the superscript 𝑛 means 𝑛th load step; the subscripts 𝑖 and 𝑗 denote the current 

node 𝒙𝑖 and its family node 𝒙𝑗 respectively, in the discretized domain; ℋ𝑖 is the horizon 

region of node 𝒙𝑖 and 𝑗 ∈ ℋ𝑖 includes all the nodes covered by ℋ𝑖 (fully or partially); 

𝜉𝑖𝑗 = ‖𝒙𝑗 − 𝒙𝑖‖ and Δ𝐴𝑖𝑗 is the area of node 𝒙𝑗 covered by ℋ𝑖. The discretized versions 

for other equations are similar to Eq. (6.22). 

In Taylor-based and mirror-based fictitious nodes methods, the equilibrium system can be 

solved iteratively using the linear Conjugate Gradient (CG) solver combined with 
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additional criteria to check for the convergence of the solution. At each iteration or 

solution step, the CG solver is called and the solution in the domain and fictitious region 

is updated, respectively. For the purpose of minimizing the overall computational cost, 

the tolerance in the CG solver is set to be 1e-2 at first and then decreased with solution 

steps by a factor until it reaches 1e-6. This treatment could make the simulation 50% 

more efficient than fixing the tolerance in the CG solver to be 1e-6 during the whole 

simulation. The system converges when the solution in the domain obtained between two 

sequential solution steps differ, in terms of norm-2 relative difference, by less than a 

given tolerance (1e-6 in this work). The detailed workflow for a complete simulation is 

shown in Figure 6.24. 

 

Figure 6.24. Workflow for the peridynamic simulation with Taylor/mirror FNM. 
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Appendix B. FEM modeling of the steady-state thermal problem 

To obtain the classical FEM-based solution for the problem shown in Figure 6.17, 

ANSYS Workbench Steady-State Thermal solver is used. In the FE model, the two crack 

surfaces are generated by two arcs with the same small curvature and the maximum space 

between them is 0.01, which equals the grid size in the corresponding PD model. For the 

mesh, as shown in Figure 6.25, the element order is selected to be program controlled and 

all elements are triangles with the maximum size equals 0.05. The total number of nodes 

and elements are 9312 and 4548, respectively. All other options in the solver are set to be 

defaults.  

 (a) 

 

(b) 

 

Figure 6.25. FEM mesh (a) over the whole disk; (b) near the crack tip. 
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Chapter 7 Conclusions and future work 

In this dissertation, we introduced novel peridynamic (PD) models for fracture, corrosion, 

diffusion-advection and fluid flow, all of which are important ingredients involved in 

material degradation and the subsequent structure failure, as demonstrated by the 

shocking collapse of the condo building in Surfside, Florida, on June 24, 2021. Moreover, 

we developed a new algorithm to impose local boundary conditions in PD models to 

improve the accuracy. These models significantly enhanced our capability for solving 

complex fracture problems involving multiple physics, which are difficult for traditional 

PDE-based models to deal with. 

The PD model for concrete fracture used the volume fraction of different phases (mortar 

and aggregate) in the concrete to generate a stochastic model with homogenized 

properties over the whole domain. This model balanced the accuracy of fracture 

prediction in concrete from (expensive) models that use an explicit representation of 

aggregates, with the efficiency of traditional homogeneous models. The model was used 

to simulate concrete fracture induced by the corrosion expansion of reinforced bars. For 

simplicity, instead of modeling the corrosion expansion process, a predefined 

displacement profile was used as the boundary condition around the rebar holes. In the 

future, the corrosion of rebars and expansion of corrosion products can be added in the 

model for complete multi-physics simulations. This can help us better understand the 

interactions between corrosion, expansion, and fracture, such that better designs of the 

concrete structure may be accomplished. The idea of partial or intermediate 

homogenization can also be easily applied to other heterogeneous materials. However, it 

should be noticed that some materials, unlike concrete, are not homogeneous at the larger 
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scale. For these materials, certain correlations between the bond type and bond features 

(e.g., length and angle) should be established in the IH-PD model to capture their large-

scale heterogeneities.  

The new PD corrosion model reformulated the existing corrosion model, leading to a 

simplified implementation with decreased computational cost, and integrated a PD 

electrostatic solver which updates, on the fly, the distribution of corrosion rate along the 

corrosion surface. This new model is applicable to a larger class of corrosion problems 

with arbitrary distribution of current densities along arbitrary-shaped corroding surfaces. 

The simulation results for two galvanic corrosion problems were validated against 

experimental results available from the literature and compared with numerical results 

from an FEM-based corrosion model (based on PDEs) built in COMSOL. It was found 

that artificial modification of the geometry at the interface of the galvanic couple is 

required for the COMSOL model to correctly initialize the motion of the corrosion 

surface, while the PD model introduced here does not require such changes. Such 

artificial modifications would lead to incorrect stress profile when the structure is under 

mechanical loadings and thus incorrect corrosion pattern when the corrosion rate depends 

on stress. A corrosion-fracture problem was solved by coupling this new PD corrosion 

model with existing PD fracture model to show how fracture can initiate and grow from 

the sharp trench created by galvanic corrosion. This example demonstrated the potential 

of PD models to simulate failure caused by the combined corrosion attack and 

mechanical loadings. In the future, this new corrosion model can be applied to other 

complex corrosion problems, especially those involving simultaneous corrosion and 

fracture such as the corrosion-induced concrete fracture. These problems are difficult for 
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traditional methods to solve but very important in terms of safety and cost in engineering 

industries. 

The new PD formulation for transient advection-diffusion was constructed from mass 

conservation. The model was verified by examples with classical analytical solutions in 

both 1D and 2D. Thorough convergence analyses (𝛿-convergence and 𝑚-convergence) 

were also performed. Two integration kernels were presented for advection: the central 

kernel and the upwind kernel, leading to the central and upwind peridynamic advection-

diffusion models, respectively. A weighted combination between these two models 

eliminated the oscillations at the high-gradient front compared with the central model, 

and reduction of numerical diffusion compared with the upwind model. To demonstrate 

the versatility of the model, mass transport in heterogeneous media with permeable and 

impermeable random inclusions was solved by this model using only a simple uniform 

grid, non-conforming to the microstructure geometry. In the future, this model can be 

extended to advection-diffusion-reaction and applied to simulate the mass transport in 

corrosion problems, because transportation rates of the substances involved in corrosion 

reaction can affect the corrosion rate significantly 

The new PD formulation for viscous flow (in Eulerian formulation) was derived from 

mass and momentum conservation laws, which is different from translating the classical 

Navier-Stokes equations to their integro-differential forms using the “PD differential 

operator” in the literature. Specifically, the “nonlocality” introduced in these translations 

is merely a computational parameter, rather than a length-scale in true nonlocal models. 

The classical continuity equation was shown to be a limiting case of the constructed PD 

one with selected weight functions. The viscous force in the new model was formulated 
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from PD shear bond forces, and its weight function was determined by enforcing linear 

consistency of the viscous stress provided by a PD model with that from a corresponding 

classical model. The constructed model was verified against examples with analytical or 

numerical solutions of the classical model for incompressible flows at low Reynolds 

numbers. In the future, to extend this model for practical problems, Lagrangian 

formulation of this model needs to be derived, and compressible flow and flow at high 

Reynold numbers should be investigated. Moreover, the new model will have advantages 

solving fluid-structure interaction problems such as erosion, erosion-corrosion and 

hydraulic fracture, by coupling with existing PD models of fracture, corrosion and mass 

transport. These fluid-structure interaction problems are of great interest in many areas, 

including aircraft industry, ocean engineering, environmental engineering, etc. 

The new algorithm introduced for the mirror-based fictitious nodes method (FNM) 

enabled it to impose local boundary conditions more accurately in PD models for 

arbitrary geometries and reduce/eliminate the surface effect caused by incomplete 

nonlocal region near the free boundary/surface. The new algorithm introduced here will 

have a great impact for problems that involve crack initiation and propagation, or 

evolution of corrosion fronts, in which high accuracy near arbitrarily-shaped boundaries 

and material interfaces is crucial. We applied the new algorithm to diffusion problems in 

domains with a curved boundary and with cracks. The peridynamic solution matched 

well the FE solution obtained in ANSYS. In the future, this algorithm can be modified for 

other types of PD models to enforce local-type BCs, including mechanical problems with 

moving boundaries and growing cracks. It will help us improve the accuracy of PD 

simulations and promote its application in solving practical engineering problems. 
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All PD models in this dissertation are 2D. In the future, to solve real engineering 

problems, it is necessary to extend them to 3D. The extension should be straightforward, 

but it will significantly increase the computational cost, because both computational 

complexity and memory allocation of the currently used meshfree discretization scale 

with 𝑂(𝑁2) in which 𝑁 is the total number of discretization nodes. Fortunately, the 

recently developed fast convolution-based method (FCBM) for peridynamics can reduce 

the computational complexity to 𝑂(𝑁 log2𝑁) and memory allocation to 𝑂(𝑁). The 

FCBM can be implemented for these PD models in the future to make 3D simulations 

affordable.  
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