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Regulation of Expression of Citrate Synthase by the
Retinoic Acid Receptor-Related Orphan Receptor a
(RORa)
Christine Crumbley, Yongjun Wang, Subhashis Banerjee, Thomas P. Burris*

Department of Molecular Therapeutics and Center for Diabetes and Metabolic Disease, The Scripps Research Institute, Jupiter, Florida, United States of America

Abstract

The retinoic acid receptor-related orphan receptor a (RORa) is a member of the nuclear receptor superfamily of transcription
factors that plays an important role in regulation of the circadian rhythm and metabolism. Mice lacking a functional RORa
display a range of metabolic abnormalities including decreased serum cholesterol and plasma triglycerides. Citrate synthase
(CS) is a key enzyme of the citric acid cycle that provides energy for cellular function. Additionally, CS plays a critical role in
providing citrate derived acetyl-CoA for lipogenesis and cholesterologenesis. Here, we identified a functional RORa
response element (RORE) in the promoter of the CS gene. ChIP analysis demonstrates RORa occupancy of the CS promoter
and a putative RORE binds to RORa effectively in an electrophoretic mobility shift assay and confers RORa responsiveness to
a reporter gene in a cotransfection assay. We also observed a decrease in CS gene expression and CS enzymatic activity in
the staggerer mouse, which has a mutation of in the Rora gene resulting in nonfunctional RORa protein. Furthermore, we
found that SR1001 a RORa inverse agonist eliminated the circadian pattern of expression of CS mRNA in mice. These data
suggest that CS is a direct RORa target gene and one mechanism by which RORa regulates lipid metabolism is via
regulation of CS expression.
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Introduction

The Retinoic Acid Receptor-Related Orphan Receptors (RORs)

belong to the nuclear hormone receptor superfamily. Like all nuclear

hormone receptors, the RORs possess a canonical domain structure

composed of a unique N-terminal region, a highly conserved DNA

binding domain of two zinc fingers, a hinge region, and a ligand

binding domain that binds to ligands and interacts with transcrip-

tional coregulatory proteins. RORa has been shown to bind to

cholesterol and cholesterol sulfate [1,2], and our recent work has

demonstrated that 7-oxysterols as well as other oxysterols bind to

RORa with high affinity (,50 nM Ki) and suppress their

transcriptional activity [3,4]. Most recently, we have identified both

syntheticagonistsand inverseagonists that targetRORa thatwehave

begun to use as chemical probes to understand RORa function

[5,6,7,8,9].

RORa is well known for its role in regulation of the circadian

rhythm, given that core clock components such as BMAL1 and

NPAS2 are direct target genes of RORa [10]. However, RORa also

plays an important role in regulation of metabolism [10]. Several

studies have identified genes important in regulation of lipid and

glucose metabolism as RORa target genes including apolipoprotein A1

[11], Cyp2C8 [12], Cyp7b1 [13] and glucose 6-phosphatase [14]. Staggerer

(sg/sg) mice that have an inactivating mutation in the Rora gene

display metabolic abnormalities including decreased serum choles-

terol [15] and plasma triglycerides [16]. Additionally, sg/sg mice

display lower levels of hepatic expression of Srebp-1c and are resistant

to diet induced obesity [17].

Citrate synthase (CS) catalyzes the first step of the citric acid

cycle. Oxaloacetate and acetyl-CoA produced from pyruvate are

converted to citrate by CS. This citrate can then continue in the

citric acid cycle to produce ATP for the cell or it can be

transported to the cytosol, where it is converted back to acetyl-

CoA. In the cytosol, this citrate-derived acetyl-CoA is converted to

malonyl-CoA by acetyl-CoA carboxylase, which is the committed

step in lipid synthesis, or to acetoacetyl-CoA, which is a step in the

cholesterol synthesis pathway. Here, we describe our studies where

we have found that this enzyme that plays a critical role in energy

production and lipid biosynthesis is regulated by RORa.

Methods

Reagents
The RORa pTREX vectors were a gift from Phenex Pharma-

ceuticals AG (Ludwigshafen, Germany). The RORa pcDNA3.1+
constructs were generated by amplifying the ROR sequence from

ROR-pSport6 vectors, digesting the products with HindIII and

BamHI (Promega), gel purifying (Qiagen), and ligating overnight at

room temperature using T4 DNA ligase (Promega). The ROR-

pSport6 vectors were a gift from the Cell-based Screening Center at

The Scripps Research Institute ( Jupiter, FL). The CS luciferase

reporter construct was generated by amplifying a fragment of the CS
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promoter using primers designed Kraft et al [18]. The mutant CS

reporter was generated by deleting two nucleotides from the ROR

response element using the QuikChange XL kit, according to the

manufacturer’s instructions (Stratagene). All constructs were

confirmed by sequencing. The adenoviral vector for RORa was

described previously [5].

Cell Culture and Transfection
HepG2 cells (ATCC, Manassas VA) were maintained in

minimal essential medium with 10% fetal bovine serum at 37C

with 5% CO2. 24 hours prior to transfection, HepG2 cells were

plated at a density of 156103 cells/well in a 96-well plate.

Lipofectamine 2000 (Invitrogen) was used as the transfection

reagent. Per well, transfection mixtures contained 50 ng of the

Renilla luciferase (internal control), 100 ng of the appropriate

CS::Luciferase construct, and 100 ng of the appropriate ROR-

pTREX expression construct. 24 hours after transfections, cells

were harvested to determine luciferase activity, which was

measured using the Dual-Glo assay system (Promega). During

analysis, each luciferase reading was normalized by well to the

Renilla readings.

ChIP/chip Screening
HepG2 cells were infected with RORa adenovirus and

harvested for ChIP/chip screening as previously described [5].

ChIP
HepG2 cells were cultured in a 10 cm dish until ,80%

confluency. Cells were fixed using 37% paraformaldehyde (Sigma).

The ChIP-It Express kit (Active Motif) was used to perform the ChIP

assay. Cells were lysed and sonicated. Immunoprecipitations were

incubated at 4C overnight. The ChIP reactions contained the

following antibodies: IgG (Active Motif), anti-RNA Pol II (Active

Motif), anti-hRORa (Santa Cruz Biotechnology, sr-6062X). The

ChIP reactions also contained salmon sperm DNA (2.5 ug/uL) and

BSA (2.5 ug/uL). ChIP reactions were washed and chromatin was

eluted, according to manufacturer’s instructions. Chromatin was

purified using PCR clean up columns (Qiagen). PCRs were

performed using Supermix High Fidelity (Invitrogen), 1.5 uL of

each primer (10 uM), and 10 uL of chromatin. The CS primer

sequences are CS_RORE1_ChIP_F: CTCCAGAGGAGCACT-

GACCT and CS_RORE1_ChIP_R: ACCCTGTCGA-

GAGGCTTAGA. PCR products were analyzed using ethidium

bromide staining and electrophoresis.

Electrophoretic Mobility Shift Assay (EMSA)
The RORa pcDNA3.1+ constructs contain a T7 promoter that

allows for transcription and translation to occur in vitro. Protein

was produced using the TNT T7 Quick Coupled kit (Promega),

according to manufacturer’s instructions. DNA containing puta-

tive ROREs was annealed, labeled with T4 Polynucleotide Kinase

(Promega) and c-P32-ATP (Perkin Elmer Life and Analytical

Sciences), and purified using Sepharose columns (Roche). Binding

reactions contained binding buffer (Promega), labeled probes, and

protein. For competition experiments, unlabeled probes were used

at 10-, 50-, and 100-fold molar excess. Binding reactions were

loaded onto pre-cast 5% TBE gels (Biorad) and analyzed by

autoradiography.

mRNA Extraction, cDNA Synthesis, and Quantitative PCR
The mRNA extraction, cDNA synthesis, and quantitative PCR

were performed as described previously [19]. For qPCR, the

cyclophilin B (M60857) served as the control gene. All primers were

designed for human genes. The sequences of qPCR primers

are: hCycB_F: 59-GGAGATGGCACAGGAGGAAA-39, hCyCB_

R:59-CGTAGTGCTTCAGTTTGAAGTTCTCA-39, hCS_F:59-

TAGTGCTTCCTCCACGAATTTG-39, and hCS_R: 59-CCAC-

CATACATCATGTCCACAG-39.

Adenovirus Infection
HepG2 cells were plated 24 hours prior to infection. Adenovi-

rus was added to the cells for 24 hours and then media was

changed to fresh MEM media. The cells were harvested 24 hours

after media change.

CS Enzymatic Activity Assays
HepG2 cells were cultured then infected with adenovirus.

HepG2 cells were lysed with CelLytic M buffer with added

protease inhibitor (1:100 concentration, Sigma). Total protein

concentration was determined using a Bradford assay. The assay

contained 40 mg total protein per well (120 mg used in the master

mix, which was aliquoted into three wells). Enzymatic activity was

determined using the CS assay kit (Sigma). The A412 readings

were taken on a Spectramax5 plate reader (Molecular Devices)

with 7 readings over the 1.5 min time span. These readings were

in the linear range of enzymatic activity. The difference between

baseline and OAA-treated samples was obtained and used to

calculate total CS activity according to the formula provided in the

manual.

Mouse Experiments
The livers from staggerer mice, a naturally occurring RORamutant

were purchased from Jackson laboratories. Liver was homogenized

on ice. mRNA was prepared by the Trizol method. For the qPCR,

cyclophilin B was the control gene. qPCR was performed using the

followingprimers:mCycB_F:59-GCAAGTTCCATCGTGTCAT-

CAAG-39, mCycB_R: 59-CCATAGATGCTCTTTCCTCCTG-

39, mCS_F: 59-GGACAATTTTCCAACCAATCTGC-39, and

mCS_R: 59-TCGGTTCATTCCCTCTGCATA-39. For CS assays

liver was homogenized on ice using CelLytic MT buffer with added

protease inhibitor (1:100concentration,Sigma).Proteinquantitywas

determined using a Bradford assay. The assay contained 4 mg protein

per well (12 mg total in the master mix, which was aliquoted into 3

wells). Enzymatic activity was determined using the CS assay kit, as

described above. For circadian gene expression experiments male

C57BL6 mice (8–10 weeks of age) were either maintained on a L:D

(12h:12h) cycle or on constant darkness (1 day). At circadian time

(CT) 0 animals were administered a single dose of 25 mg/kg SR1001

(i.p.)andgroupsofanimals (n = 6)weresacrificedatCT0,CT6,CT12

and CT18. Gene expression was determined by real time QPCR.

Gene expression was normalized to Cyclophin b in all experiments.

These studies were carried out in strict accordance with the

recommendations in the Guide for the Care and Use of Laboratory

Animals of the National Institutes of Health. The protocol was

approved by the Institutional Animal Care and Use Committee of

The Scripps Research Institute.

Statistical Analysis
In the co-transfection assays, 8 wells were transfected per

condition per experiment. For gene expression assays, 3 to 4

experimental replicates and 3 technical replicates were used.

Experiments were repeated 3 times and data are shown as

mean6SE. Student’s t-test was used to evaluate potential

significant differences between the groups.

RORa Regulates Citrate Synthase
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Results

A ChIP/chip screen was performed as previously described to

identify regions within the genome bound by RORa [19]. We

observed significant RORa occupancy in the CS promoter region

(Fig. 1A). The CS promoter was examined using the Evolutionarily

Conserved Region Browser (TRANSFAC professional V10.2

library) [20], revealing a consensus ROR response element (RORE)

,1.5 kb upstream that is absolutely conserved between mice and

humans (Fig. 1B). The putative CS RORE aligns well with other

ROREs from RORa target genes (Fig. 1B). We confirmed our

ChIP/chip data using a standard ChIP assay and as illustrated in

Fig. 1C, we observed strong RORa occupancy of the CS promoter.

We sought to determine if RORa played an important role in

regulation of CS gene expression and activity by first examining

the CS in staggerer (sg/sg) mice that harbor a mutant Rora gene that

renders the RORa protein inactive. We first examined the

expression of CS gene in wt mice and compared the levels to sg/sg

mice. In the sg/sg mice, CS mRNA expression in liver was

decreased by 42% compared to wild-type liver (Fig. 2A). This

correlated with reduced enzymatic activity, as the CS enzymatic

activity was 29% lower in the sg/sg liver compared to the wild-type

liver (Fig. 2B). These data suggest that RORa does indeed play a

role in regulation of CS expression and along with the ChIP data,

indicates that CS is likely a direct RORa target gene.

After examining CS expression and activity in a RORa loss-of-

function model, we performed the converse experiment with a

RORa gain-of-function model where we overexpressed RORa in

HepG2 cells. We used an adenovirus encoding RORa to elevate

the levels of RORa. Forty-eight hours after infection, mRNA was

isolated and CS gene expression was examined. Overexpression of

RORa (5-fold, data not shown), led to a 94% increase in CS mRNA

levels (Fig. 3A). We also assessed CS enzyme activity in HepG2 cells

infected with the RORa adenovirus and observed a 98% increase

in enzyme activity relative to HepG2 cells infected with control

LacZ adenovirus (Fig. 3B).

Our data suggests that the CS gene is a direct target gene of

RORa thus we sought to identify the RORE within the promoter

that confers RORa responsiveness. We identified a putative

RORE that was absolutely conserved between the mouse and

human genes using the Evolutionary Conserved Region Browser

[20] (Fig. 1B). We evaluated that ability of this putative RORE

sequence to bind to in vitro translated RORa using an EMSA.

Figure 1. Identification of Citrate Synthase as a Putative RORa Target Gene. A. Screen shot from Genome Browser illustrating the RORa
binding signal. Using HepG2 cells over-expressing RORa using adenovirus, a ChIP-on-chip screen identified a region of RORa binding in the hCS
promoter. The hCS gene is located on chromosome 12. Positive signal intensity reflecting RORa occupancy is indicated on the top by the vertical
lines. Horizontal lines just below the signal intensity refer to areas of chip coverage. Position within the chromosome is indicated by the numbered
scale. On the bottom, the gene structure is illustrated showing the first exon and first intron of the CS gene. RORa binding was detected in the
promoter in ,2.5 kb region upstream of the first exon. ChIP primers used for confirmation of binding to the promoter are indicated in blue. The
putative RORE is indicated in red. B. Conserved RORE sequence was identified in the human and mouse CS promoter on the Evolutionarily Conserved
Region Browser. The putative RORE is positioned at 54,982,065–54,982,077; whereas the start site is positioned at ,54,980,442. C. Endogenous levels
of RORa in HepG2 cells can be detected at the hCS promoter region containing the identified putative RORE. The beads and IgG serve as negative
controls, whereas the input and RNA Pol II serve as positive controls.
doi:10.1371/journal.pone.0033804.g001

RORa Regulates Citrate Synthase
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Clearly RORa was able to bind to the radiolabeled CS RORE as

shown in Fig. 4A. We examined the specificity of binding of

RORa to the RORE by comparing binding with a mutated

RORE where we eliminating 2 nucleotides within the core RORE

sequence. RORa failed to bind to the mt RORE (Fig. 4B).

Furthermore, we observed competitive binding with unlabeled wt

RORE probe as would be expected. When the unlabled wt

RORE was added to the binding reaction at 10-, 50-, and 100-

fold molar excess, the labeled RORE probe was displaced from

the binding complex (Fig. 4C).

To further examine the direct regulation of the CS gene by

RORa, we transfected a luciferase reporter gene driven by the CS

promoter in HepG2 cells. The reporter construct was composed of a

,1 kb fragment of the CS promoter that contains the putative

RORE. We also constructed a similar reporter construct that was

identical except for mutation of the RORE as described in the

EMSA experiment. As shown in Fig. 5, expression of RORa along

with the wt CS::luc reporter yielded a 76% increase in reporter

transcription while the mt CS::luc reporter was unresponsive to

Figure 2. Citrate Synthase Expression and Enzyme Activity is Suppressed in RORa-Deficient Staggerer Mice. A. The mRNA expression of
CS in liver is reduced by 42% in the staggerer mice relative to the wild-type mice. The mRNA expression was determined using RT-PCR and normalized
to cyclophilin B expression. B. CS enzyme activity in sg/sg mice vs. wt mice. Liver was homogenized and the protein extract was used to perform a
colorimetric assay to determine CS activity. The activity of the CS protein is reduced by 29% in the staggerer mice relative to the wild-type mice. Data
are shown as mean 6 standard error (n = 4); an asterisk (*) indicates a p-value of ,0.05.
doi:10.1371/journal.pone.0033804.g002

Figure 3. Overexpression of RORa Leads to Elevated CS gene expression and CS Enzyme Activity. A. CS mRNA expression in HepG2 cells
is increased by 94% in the cells infected with RORa adenovirus relative to cells infected with LacZ adenovirus. mRNA expression was determined
using RT-PCR and normalized to cyclophilin B expression. B. CS enzymatic activity is increase in HepG2 cells overexpressing RORa. HepG2 cells were
homogenized and the protein extract was used to perform a colorimetric assay to determine CS activity. The activity of the CS protein is increased by
98% in the cells infected with RORa adenovirus relative to cells infected with LacZ adenovirus.
doi:10.1371/journal.pone.0033804.g003

RORa Regulates Citrate Synthase
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RORa confirming that this RORE is a functional RORE within the

CS promoter.

Metabolic processes are tightly coupled to the circadian clock and

the expression of many genes involved in carbohydrate and lipid

metabolism follow a circadian pattern of expression [21,22]. In fact,

the enzymatic activity of CS has previously been reported to display a

circadian rhythm [23]. As illustrated in Fig. 6, we also observed a

circadian pattern of expression of CS mRNA in mice. When these

mice were injected with SR1001, an inhibitor of RORa activity the

circadian rhythm of CS expression was eliminated suggesting that

RORa plays an important role in regulation of the circadian pattern

of expression of this gene.

Figure 4. In vitro characterization of RORa Binding to the Putative CS RORE. Using an EMSA assay, it is determined that RORa binding to the
CS RORE is specific and competitive. A. The blank lysate does not contain any proteins that are capable of binding to the radiolabeled RORE
sequence. When a protein expression construct encoding RORa was added to the lysate, the produced RORa protein is capable of binding to the
radiolabeled RORE sequence. The wt RORE DNA probe and the mutant DNA probe are indicated. Note that the mutant probe has a 2 bp deletion
within the 59 half site extension that is required for ROR recognition of its half site. B. The binding of the radiolabeled RORE is specific for RORa. When
a mutant RORE containing a 2 bp deletion was incubated with both blank and RORa lysates, no binding was detected with either sample. C. The
amount of RORa protein and radiolabeled RORE were held constant, but the concentration of unlabeled RORE was increased. As the concentration of
the unlabeled RORE was increased from 0x to 100-fold molar excess, the binding of the radiolabeled RORE was reduced due to competition from the
unlabeled RORE.
doi:10.1371/journal.pone.0033804.g004

Figure 5. The Citrate Synthase RORE is Functional in a
Cotransfection Assay. Cotransfection assays in HepG2 cells demon-
strate that expression of RORa can stimulate luciferase gene expression
from the CS::luc construct. When the CS::luc construct contains a 2 bp
deletion in the RORE, co-transfection of RORa does not stimulate
luciferase gene expression. Data are shown as mean 6 standard error
(n = 8); an asterisk (*) indicates a p-value of ,0.05. The mutant RORE
was identical to that used in Fig. 4.
doi:10.1371/journal.pone.0033804.g005

Figure 6. RORa plays an important role in the circadian pattern
of expression of citrate synthase mRNA in the liver. Mice were
treated with either vehicle or SR1001 at CT0and groups of mice were
sacrificed at CT0/24, CT6, CT12 and CT18 followed by assessment of CS
gene expression by QPCR. The light/dark bar on the bottom of the
graph reflects daytime vs. nighttime. Data has been double plotted for
clarity. An asterisk (*) indicates a p-value of ,0.05.
doi:10.1371/journal.pone.0033804.g006

RORa Regulates Citrate Synthase
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Discussion

Our study demonstrates that the CS gene is a direct target gene

of RORa. We identified CS as a putative target gene using a

ChIP/chip screen and confirmed RORa occupancy of the

promoter by ChIP. Futhermore, RORa appears to play an

important role in regulation of CS in vivo since mice that lack

functional RORa display reduced hepatic CS gene expression and

CS enzyme activity. Our results also identify a functional RORE

within the CS promoter that is absolutely conserved between the

mouse and human genes.

CS plays an essential role in lipogenesis and cholesterologenesis

where citrate produced by CS is transported to the cytosol through

the pyruvate-citrate shuttle. Cytosolic citrate is converted to acetyl-

CoA by ATP citrate lyase and this reaction is the source of

cytosolic acetyl-CoA that is used for cholesterol and lipid

biosynthesis. Our observation that CS is regulated by RORa is

interesting given the phenotype of the staggerer mice with respect to

their plasma lipid levels. Both cholesterol and triglyceride levels

are reduced in these mice [15,16], which is consistent with CS

levels being reduced as we have observed. Thus, RORa regulation

of CS expression may be one mechanism by which RORa
regulates lipid and cholesterol homeostasis. Many genes encoding

metabolic enzymes are regulated in a circadian fashion and

provide a link between circadian behavior and circadian

regulation of metabolic processes. CS enzyme activity in the rat

follows a circadian pattern with elevated levels of activity during

the dark in both the heart and liver [23]. We observed a similar

pattern of expression of CS mRNA and found that blocking

RORa action with the synthetic ligand SR1001 [8] eliminated the

rhythmicity of expression of the mRNA in the liver suggesting that

RORa plays a critical role in maintenance of this rhythm. RORa,

of course, is well characterized for its role in regulation of the

circadian clock and expression of an array of genes involved in

carbohydrate and lipid metabolism [10] [19,24,25,26,27] and thus

appears to be one link by which circadian regulation of these genes

may be controlled. CS also plays an essential role in energy

production and the implications of RORa regulation of the citric

acid cycle is less clear at this point.

RORa regulates myriad metabolic pathways and based on the

phenotype of the staggerer mice as well as the RORa null mice,

RORa is a potential target to treat diseases such as atherosclerosis,

diabetes, and osteoporosis as well as disorders associated with

disruption of the circadian rhythm. Our recent development of

multiple synthetic RORa ligands offers the opportunity to

modulate the metabolic pathways regulated by RORa and the

ability to validate RORa as a drug target using a chemical biology

approach [5,6,7,8,9].
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