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Textual understanding is the process of automatically extracting accurate high-quality

information from text. The amount of textual data available from different sources

such as news, blogs and social media is growing exponentially. These data encode

significant latent information which if extracted accurately can be valuable in a vari-

ety of applications such as medical report analyses, news understanding and societal

studies. Natural language processing techniques are often employed to develop cus-

tomized algorithms to extract such latent information from text.

Journalistic 5Ws refer to the basic information in news articles that describes an

event and include where, when, who, what and why. Extracting them accurately

may facilitate better understanding of many social processes including social unrest,

human rights violations, propaganda spread, and population migration. Furthermore,

the 5Ws information can be combined with socio-economic and demographic data to

analyze state and trajectory of these processes.

In this thesis, a data driven pipeline has been developed to extract the 5Ws from

text using syntactic and semantic cues in the text. First, a classifier is developed to

identify articles specifically related to social unrest. The classifier has been trained

with a dataset of over 80K news articles. We then use NLP algorithms to generate

a set of candidates for the 5Ws. Then, a series of algorithms to extract the 5Ws are

developed. These algorithms based on heuristics leverage specific words and parts-



of-speech customized for individual Ws to compute their scores. The heuristics are

based on the syntactic structure of the document as well as syntactic and semantic

representations of individual words and sentences. These scores are then combined

and ranked to obtain the best answers to Journalistic 5Ws. The classification accuracy

of the algorithms is validated using a manually annotated dataset of news articles.
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Chapter 1

Introduction

The world has been a conglomeration of different people who interact with each other

on daily basis as a society using various resources. Understanding the growth and

change in a society is essential in making rapid decisions. With the rapid growth of

the Internet and connectivity, data about human interactions is now being available

in various forms such as structured data in the form of text from newspapers, and

unstructured data in the form of tweets, posts from social media. This large amount

of data can be used for analyzing a social process and for extracting information,

which help in making quick decisions to emerging changes. This analysis can also be

useful for capturing the dynamics of a society that are connected across geographical

regions and time.

A group of people might show their dissatisfaction against a particular policy, idea

or movement by either public demonstrations or disorder, which is termed as a social

unrest event. These types of unrest events can usually be found in newspapers or

social media and be considered as data. Understanding different pieces of information

from this data can provide valuable insight into the different factors responsible for

an unrest event and can also help in taking preventative measures. However, under-

standing textual data requires human expertise and isn’t feasible on large datasets.

By the advent of natural language processing (NLP) techniques, machines can now
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begin to extract useful information and help us understand the data more effectively

and efficiently. This research focuses on extracting useful information from textual

data with the use of various natural language processing techniques.

1.1 Overview of the 5Ws Analysis

Understanding textual data is a fundamental task for a variety of use cases. For

instance, Google News tries to cluster similar articles based on information in the

news articles. News summarization condenses news articles by incorporating only the

important information in it. Other disciplines also make use of information extraction

for analyzing textual data, e.g., medical reports are analyzed to obtain information

pertaining to a condition, social scientists analyze news articles to understand how

media report on certain events [104]. Information extraction techniques are also used

to obtain related scientific research articles in digital libraries.

Any event which is reported in news tries to answer the Journalistic 5Ws which

are: where, when,who, what and why. The answers to these 5Ws provide most of

the details required to understand an event and also provide meaningful insights to

an event. This research focuses on extracting the answers to these Journalistic 5Ws

using syntactical and semantic relationships within the text.

A data driven pipeline is developed in this approach to extract 5Ws candidates

corresponding to an event reported in text. Several heuristics based on the syntactic

structure as well as the semantic context of text documents are used for scoring

the extracted candidates. Extraction of these 5Ws can be extended to incorporate

different sources. The extracted results can be used for assessing the similarity among

events, analyzing the evolution of an event over time or grouping related events to

predict future events.
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1.2 Research Challenges

There are several challenges associated with the analysis of unrest data. Data related

to unrest events can be obtained from different sources but, it might contain unstruc-

tured data, irrelevant and duplicate events. The syntactic structure of text can vary

across geographical regions and news sources. Understanding text might require the

semantic context of words which is difficult while analyzing text from various lan-

guages. Also, it isn’t guaranteed that each of the articles being analyzed has all the

5Ws listed in them or may even contain multiple 5Ws corresponding to more than

one event. Development of 5Ws extraction algorithm (5WE) has many challenges as

listed below:

• Data collection: News articles data related to unrest events is not readily

available and depends on the credibility of existing data sources like GDELT

[68], ICEWS which contains many false positives [115]. Downloading textual

data of these events might be not feasible in some cases because of bad url

provided and network connectivity issues.

• Lack of ground truth: No standard dataset with annotations for 5Ws exists

which poses a significant challenge to the evaluation of developed techniques.

• NLP dependency: Many of the extraction algorithms depends on existing

NLP algorithms which are not perfect for all tasks. These algorithms depend on

the linguistic features of data, which differ for different languages. For example,

verb coming before noun phrases in some languages poses a significant challenge

in analyzing text.
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1.3 Problem Definition

The aim of this thesis is to build a generalized pipeline which extracts the Journalistic

5Ws from an article. Given a document D corresponding to a topic T , the pipeline

decides whether D belongs to topic T and then extract the 5Ws related to an event

mentioned in D. Current approaches do not have a standard dataset for evaluating

and focus only on certain event descriptors in the text. In response to this problem, we

develop an automated extraction pipeline to extract latent information and evaluate

them on a manually annotated dataset.

This thesis focuses on articles related to social unrest and customize the general-

ized approach to the social unrest domain.

1.4 Approach

We first evaluate a diverse set of classification algorithms on unrest articles and de-

scribe their results. We then describe the 5WE for extracting 5Ws from an unrest ar-

ticle by leveraging the syntactic and semantic cues within an article. This is achieved

by making use of existing NLP techniques like parts-of-speech tagging, named entity

recognition and co-reference resolution. 5WE also considers a list of topic/domain-

specific words which help in identifying the 5Ws pertaining to an unrest event. Lastly,

we evaluate 5WE on a manually annotated dataset.

1.5 Contributions

The contributions of this thesis are:

• A systematic evaluation of a diverse set of document classification algorithms

to determine the classification accuracy on articles related to social unrest.
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• An algorithm to obtain Journalistic 5Ws from text (5WE) leveraging a set of

domain-specific keywords.

• Evaluation of the 5WE using a manually annotated 5Ws dataset of social unrest

articles.

5WE can be easily extended to other domains and languages by using appropriate

NLP models.

1.6 Thesis Outline

This Section describes the organization of the remainder of this thesis. In Chapter

2, we provide background about the various natural language processing techniques

used in this thesis and discuss the related work in the field of document classification

and 5Ws extraction. Chapter 3 provides a formal outline about the framework used

in this thesis and then we describe the document classification techniques used and

also describe in detail about 5WE. Chapter 4 describes the datasets used in this thesis

and then analyzes the results obtained on these datasets. Chapter 5 concludes the

report and suggests potential ideas for future work.
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Chapter 2

Related Work

The first step for extracting 5Ws from text is to decide whether it is related to a

specific domain or not using document classification algorithms. Section 2.1 describes

various document classification algorithms. The 5WE utilizes the syntactic structure

of a sentence and an entire document and other linguistic information related to it.

Section 2.2 describes the natural language processing techniques used in our approach.

Finally, Section 2.3 presents previous work in the field of information extraction, 5Ws

extraction and causal relation ship extraction.

2.1 Document Classification

The amount of text that in the digital world is ever increasing and several automatic

information extraction techniques are widely used to obtain important information

from these structured and unstructured texts. Unstructured data is easily processed

and understood by humans, but automatic processing requires advanced techniques

that effectively analyze the text in regard to context.

Text classification has been widely studied in various communities such as data

mining, machine learning and information retrieval. It is also used in various domains

ranging from image processing, medical diagnosis to information retrieval, page rank-
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ing. Text classification classifies documents into a predefined set of classes by learning

contextual representations from textual data. The problem of classification is defined

as follows. We have a training set D = {d1, d2, d3, ...., dn} of documents, such that

each document di is labeled with a label li from a set L = {l1, l2, l3, ..., lk}. The task

is to find a classification model f , which can assign correct label to a new document

d (test instance).

2.1.1 Machine Learning Techniques

Machine learning is a branch of artificial intelligence that uses a set of hypotheses to

find patterns in data. These patterns are then used to predict future patterns. It

is widely divided into three approaches namely, Supervised learning, Unsupervised

learning and Semi-supervised learning. Supervised learning methods tries to infer a

function or learn a model from training data. Unsupervised learning methods try to

find hidden structures from unlabeled data. Semi-supervised learning models tries to

predict patterns in data by making use of both labeled and unlabeled data.

Naive Bayes probabilistic classifiers [78] based on statistical analysis received

great interest across research communities and worked exceptionally on document

classification tasks. These models learn a probabilistic assumption about how the

words in a document are generated. They use a set of training data to estimate the

parameters of a model and the entire model is based on the Bayes rule. The Naive

Bayes classifier is perhaps the simplest model which assumes that the distribution

of different words are independent from each other and aims at finding the posterior

probability of a class based on the distribution of words in a document.

Nearest neighbor classifier [30] is a proximity based classifier which uses cer-

tain distance measures to perform classification. Decision tree is another supervised

learning method which tries to classify documents by subdividing the document based
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on the presence or absence of a term (word). These subdivisions of a document can

be visualized as a hierarchical tree branching based on certain terms in a document.

Normally, decision trees have been used in combination with boosting techniques to

improve the accuracy of the classifier.

Support Vector Machines (SVM) are supervised learning classification meth-

ods make classification based on linear combinations of document features. Word fre-

quency vectors are considered as features of a document and the model tries to learn

the coefficients for these features. We can interpret the prediction model as a hyper-

plane separating different classes. This algorithm tries to find a hyperplane with the

maximum distance ε (also called as margin) from both positive and negative samples.

Since it consists of only linear combinations of a feature vector, it can distinguish

among only two classes. However, it can be easily extended for multiple classes using

either one vs one or one vs rest approach. Joachims et al [57] has described that text

data is an ideal choice for SVM classification due to sparse dimensional nature of text

with few irrelevant features.

Ensemble learning combines multiple learning models to improve the accuracy

of a problem [62]. It can either contain all learning models of the same method (all

decision trees) called as homogeneous ensemble method or learning models of differ-

ent methods that are stacked on top of one other called as heterogeneous ensemble

method. Some strategy like max voting scheme or boosting approaches are used for

combining these multiple learners in an ensemble method.

Bagging is based on bootstrap sampling where m samples of data are randomly

sampled with replacement from a dataset of size m [15]. Boosting is an iterative

process where multiple weak learners are combined to become a strong learner [38, 39].

In this technique, the weak learners later in the iteration tries to pay higher attention

to the mistakes made by former base learners. Next, it combines the outputs from all
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the weak learners in a certain way. Several techniques of combining the results from

multiple weak learners exist like AdaBoost [38], XGBoost[23], Gradient Boosting

which consider either a different voting rule or trained on different samples of the

training data or using gradient descent and updating predictions based on a learning

rate.

2.1.2 Deep Learning Techniques

In supervised learning, the training data is associated with a desired response, called

labels. A machine learning algorithm classifies the input data into categories by

learning discriminant features or attributes based on observed training data. Ar-

tificial neural networks (ANN) are one well-known instance of supervised learning

algorithms which consists of a multi-layered perceptron (MLP) network. A percep-

tron (linear threshold units) is a processing unit inspired by biological neurons and

multiple perceptrons are connected across layers which try to learn the representations

of an input data. These ANNs are the basic building blocks of deep learning which is

a modern machine learning technique. Deep learning models have achieved remark-

able successes in various applications such as classification [50], object detection [67],

natural language processing [27] etc.

The key concept of a deep neural network is learning high-level features from

low-level features that can used for various downstream tasks like classification. The

first layers of a network represent simple and basic features of the training data

and the deeper layers build a complex representation using these low level features.

There are multiple deep neural networks available for a wide variety of tasks like

Convolution Neural Networks [63] for Image classification, detection, analysis and

Recurrent Neural Networks [81] for time series analysis, textual analysis.

A MLP includes one input layer, one or more linear threshold unit layers (LTU
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or hidden layers) and one output layer. The information flows from the input layer

towards the output layer, hence called feed forward neural networks. Every neuron

in a hidden layer receives a weighted input from every neuron within a layer before

it. Figure 2.1 demonstrates a MLP with one hidden layer where x1 and x2 represent

the input features, W1,1, W1,2 and W2,1 represent weights from the weight matrices

W1 and W2. These matrices associated with the hidden layers(h1, h2, h3) and output

layer are used by all the links between two consecutive layers. The vectors b1 and b2

represent associated biases. Output of the entire network is represented by Y ′. The

optimum values for the weight parameters are obtained by an optimization algorithm

called backpropagation using gradient descent. The goal is to find the parameters of

a network that minimizes the global loss function.

Figure 2.1: A single hidden layer perceptron network.

The backpropagation algorithm [51] uses gradient descent to find the local min-

ima of the convex error function. It considers the chain rule of calculus to compute

the contribution of hidden layers to output and updates the weights associated with
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hidden layers accordingly. The processing at each neuron can be non-linear and ob-

tained by using different activation functions like rectified linear unit (ReLU)[85] or

sigmoid units which are differentiable.

Convolution neural networks (CNNs) [63] are a type of deep neural net-

works which are widely used in the areas of object recognition, face recognition, hand-

writing recognition, speech recognition and natural language processing. Generally,

CNNs consist of convolution layer, pooling layer and fully connected layer. Con-

volution layers uses convolutions instead of multiplication to compute the output,

resulting in much less inter-connections between layers. The neurons are specialized

to respond or activate to stimuli corresponding to a specific location and structure

using a set of learnable filters. The output of a neuron is computed by the dot product

of the filter and connected local area followed by a non-linear activation. The biggest

problem for CNN is that it accepts only fixed length input vector and cannot handle

sequences of input of varying length. Figure 2.2 demonstrates the architecture of a

Convolution neural network.

Figure 2.2: A convolutional neural network model
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Recurrent neural network (RNN) [81] can not only operate over sequences

of input vector, but also generate sequences of output vectors. In contrast to tra-

ditional feed forward neural networks, RNN keeps track of its hidden state through

recurrent connections which makes it suitable for textual data. In some applications,

information in future is also useful and the RNNs can consider future information

with a backward pass. Bi-directional RNN considers information from both direc-

tions which make a prediction at a certain time step. Figure 2.3 represents a Jordan

RNN unit [58] where the hidden states depend on the outputs from previous time

steps. The hidden state and output state values are computed using the Equations

2.1 and 2.2.

ht = fh(Wh.ot−1 +Wx.xt + bh) (2.1)

ot = fo(Wy.ht + bo) (2.2)

• xt : input at time step t

• ht : hidden state in time step t

• Wh, bh : Weight and bias parameters corresponding to previous state inputs.

• Wy, bo : Weight and bias parameters corresponding to output state ot

• Wx : Weight matrix corresponding to current input xt

• ot : output at time step t

• fh : activation function for hidden state

• fo : output function



13

Figure 2.3: Recurrent neural network unit across multiple time steps t

Long Short Term Memory networks (LSTMs)[41] are a type of RNN that

can connect previous information to current task. vanilla RNNs suffers from the

problem of vanishing/exploding gradient in practice where the information is lost

on long sequences. LSTM network better captures the long-term dependencies by

using a memory block. This memory block consists of three gates (Input, output and

forget) and one cell state. Each gate decides how much information to pass through

them using a value between zero and one. The output of each LSTM cell at a time

step t is computed using the Equations 2.3 through 2.8.

InputGate : it = σ(Wi.[xt, ht−1] + bi) (2.3)

ForgetGate : ft = σ(Wf .[xt, ht−1] + bf ) (2.4)

OutputGate : ot = σ(Wo.[xt, ht−1] + bo) (2.5)

CandidateState : Ĉt = tanh(Wc.[xt, ht−1] + bc) (2.6)

CellState : Ct = ft ∗ Ct−1 + it ∗ Ĉt (2.7)
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output : ht = ot ∗ tanh(Ct) (2.8)

Wi,Wf ,Wo are gate coefficients and bi, bf , bo are bias parameters. xt represents

the input at time step t, ht−1 represents the hidden state at time step t-1. The forget

gate ft uses a weight matrix Wf to forget some of the data from the previous time

step t. The output gate combines the information from previous time step with the

current cell state Ct. The intermediate candidate state Ĉt, which is the information

considered from the current time step input using weight matrix Wc and a non-linear

function tanh.

Generally, in sequence to sequence problems, there is some correspondence be-

tween the items in the output and input sequences. However, a generic LSTM network

provides equal importance to all items in the input sequence regardless of the output

item to be predicted. Attention mechanism [9] tries to solve this issue by providing

more importance to certain inputs in the input sequence while predicting an output

in the output sequence. This mechanism inherently captures the relations between

items in input and output sequences which can be exploited for certain downstream

tasks like language translation or textual classification.

Figure 2.4: Self attention mechanism adapted from Bahadanu et.al.[9]
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Self-attention [113] as shown in Figure 2.4 is an attention mechanism which

computes a representation of a sequence using different weights to certain portions of

the input sequence and has been used successfully in a wide variety of tasks including

reading comprehension, textual entailment and task-independent sentence representa-

tions. The goal of self attention in natural language processing algorithms is to learn

the dependencies between words in a sentence and use that information to capture

the internal structure of a sentence. With a self attention mechanism, the network

can attend to a state produced many time steps earlier which means that the latest

state does not need to store all the information.

These deep learning and machine learning algorithms are utilized for analyzing

text. In particular, these algorithms are used for classifying text documents using a

sequential model like RNN or using context level information in text using attention

mechanisms. Sections 3.2.2 and 3.2.3 describe in detail about the usage of these algo-

rithms for text classification. Also, many of the existing natural language processing

(NLP) techniques use these models and algorithms for classifying words in to entities

as described in Section 2.2.2, or for obtaining dependency relations among words in

a sentence as described in Section 2.2.3.

2.2 Natural Language Processing Techniques

Natural language processing (NLP) is the study of a variety of topics ranging from

computational processing to understanding human languages. These techniques are

widely used in many domains such as health care document analysis [56], event ex-

traction [117], language translation [9], and Image understanding [123]. Previous

techniques focused on the usage of human-crafted rules and certain linguistic features

but with the advent of data driven computing, current techniques use statistical
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models, and advanced artificial neural networks for language understanding [89]. The

deep neural network models have significantly performed better than previous mod-

els across various tasks like named entity recognition [84], text summarization [10],

dependency parsing [22].

2.2.1 Word Embeddings

The representation of words and documents as dense, distributed, fixed-length word

vectors built using word co-occurrence statistics as per the distributional hypothesis

[48] that have an appealing and intuitive interpretation are called word embeddings

[5]. These representations encodes the syntactic and semantic relationships among

words and are used in many machine learning algorithms and strategies. The vector

space model (VSM) [101] was the most influential model for encoding words and

documents, but recent models try to capture the semantics of a word based on its

usage using advanced neural networks.

Word Embeddings are generally categorized into two types, methods which use

local data (context) and methods that use global data (words counts and frequen-

cies) [16]. Embedding models derived from neural network models leverage language

models, which predicts the next word given its context also called as prediction based

models [82]. Statistical techniques model the probabilistic distribution of words [8]

in a language using co-occurrence matrices or frequency counts of words also called

as count based models.

Word2Vec [82] is a simple and efficient architecture that provides interesting

semantic properties. Continuous bag of words (CBOW) and skipgram are the two

widely used Word2Vec models. The CBOW architecture consists of a feed forward

neural network model that aims at predicting the current word based on its surround-

ing context as shown in Figure 2.5. The architecture consists of an input layer of size
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of the word vocabulary, which encodes a target word based on the combinations of

one hot vector representations of surrounding words. The output layer contains a

one-hot vector of target word and has same size as input layer.

The skip-gram model tries to predict the surrounding context words given a target

word and is similar to CBOW model in training and representation vector sizes.

Figure 2.6 represents the visualization of words reduced to two dimensions using t-

SNE. These representations can capture the semantics of a word and are widely used

in a variety of downstream NLP tasks.

Figure 2.5: A word2vec model adapted from Mikolov et.al. [82]

GloVe [92] is another prominent word embedding architecture which combines

the best of both prediction based and count based models. It combines global ma-

trix factorization and local context window methods through a bi-linear regression

model. Recent models exploit various lingustic features like dependency parse-trees,

symmetric patterns, leveraging subword patterns, representing words as probability

distributions, or character based embeddings [3, 19, 29].

Recent NLP works, include the usage of pre-trained sentence level embeddings for

strong prediction models on various downstream tasks like classification using transfer
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learning. The universal sentence encoder [19] uses transformer networks introduced

in [113] to obtain higher accuracy for semantic textual similarities task. Infersent [29]

is another sentence level embedding network that is trained using natural language

inference data using self-attentive bi-directional LSTM network.

Figure 2.6: Visualization of word embeddings in 2 dimensions using T-SNE

2.2.2 Named Entity Recognition

Named entity recognition (NER) is a sub-task of information extraction that identifies

named entities and classify them into categories such as person, location, organization,

time etc. NER systems are often used for question answering, information retreival,
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co-reference resolution etc. Early NER systems focused on the usage of linguistic

rules, lexicons and ontologies [124]. They were followed by NER systems developed

using feature engineering and supervised machine learning models [84].

Hidden markov models (HMM) [95], support vector machines (SVM) [57], condi-

tional random fields (CRF) [65] are the common machine learning systems for NER

which are trained on example inputs along with expected outputs. Malouf et.al. [75]

considered HMM with multiple features like capitalization, whether a word was first

in a sentence, a collection of first and last names from various dictionaries. Car-

reras et.al. [18] used bag of words, trigger words, binary relations among previously

predicted labels as additional features. A SVM model with multiple window sizes,

features (orthographic, prefixes, suffixes) from neighboring words, weighing neighbor-

ing word features based on their position for prediction was proposed by Li et.al.

[69].

Stanford NER [36] uses a linear chain of CRF sequence models based on viterbi

algorithm [37] for predicting labels to entities. Recent models are based on recurrent

neural networks (Bi-LSTMs) using word embeddings and POS tags for NER predic-

tion [53, 102]. Character level architectures predict labels for each character using

CNN models which are then transformed to word labels using another LSTM network

or CRF [64, 70] . Current state-of-the art models combine both character level and

word context for predicting NER labels [34]. Yadav et.al. [125] implemeted a model

that augments character+word NN architecture with affix features.

Akbik et.al. [3] proposes contextual string embeddings for annotating named

entities. The model represented in Figure 2.7 takes a sequence of characters as input

to a bidirectional character level neural language model which provides contextual

string embeddings. These embeddings are then used in a Bi-LSTM CRF sequence

labeling model to obtain named entities.
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Figure 2.7: Model overview for NER adapted from Akbik et.al. [3]

2.2.3 Dependency Relations

Dependency structure of sentences describe the relationship between words as a tree

structure depicted as arrows going from the head to the dependent as shown in Figure

2.8. Dependency parsing is the task of analyzing the syntactic dependency structure

of an input sentence. Transition-based parsing and neural dependency parsing are two

widely used models for obtaining a dependency tree [76]. A transition-based parsing

tries to learn a model which can predict the next transition in the state machine

based on the transition history such that these sequence of transitions can construct

a dependency tree for an input sentence. A greedy deterministic transition based

parsing mechanism using shift and arc-standard operations was proposed by Nivre

et.al [86].
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Figure 2.8: Dependency tree for the sentence: A 35 year old woman was found
murdered in a farm near Kosamada village in Kamrej district of Surat on Monday.

Greedy, transition-based neural dependency parsers perform significantly better

compared to other traditional feature based discriminative dependency parsers [76].

Model proposed by Chen et.al. [22] uses various input features like vector represen-

tations of words, parts-of-speech (POS) tags for those words and the arc labels for

some words in a sentence S. Graph-based dependency parsers compute a score for

every possible dependency from every word to every other word [76].

2.2.4 Coreference Resolution

Coreference resolution is the task of finding all expressions that refer to same entity in

a text and grouping them, which is essentially a clustering problem [74]. It is useful for

a lot of higher level NLP tasks such as document summarization, question answering

and information extraction. Mention detection is the first step of coreference resolu-
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tion where spans of text (pronouns, Named entities, Noun phrases) referring to an

entity are identified. The second step is to link these entities using either rule-based

methods or other clustering-based mention ranking methods.

Many coreference systems operate by linking pairs of entity mentions together

using a binary classifier that predicts whether an entity is co-referent to every other

entity. Current research [26, 35, 120] use a neural network model to build distributed

representation of pairs of coreference clusters. It follows an incremental approach

where each entity is considered as its own cluster at the start and the network decides

to merge different clusters using cluster ranking procedures [96, 105].

2.3 5Ws Extraction Techniques

Analyzing text to extract information corresponding to an event is a fundamental

task for various use cases. News summarization [88], event linking [111] and news

aggregation are used by researchers from social sciences to better understand an event.

Main event extraction from news is a fundamental task in news analysis [90] where

some techniques use explicit descriptors by employing topic modeling and clustering

[108]. Other approaches include using polarity, sentiment [40] to capture an end user’s

perspective. Other approaches use event linking [32] to group shared events or focus

on specific information like crisis monitoring [108].

Event extraction is used to automatically identify events in text and to derive

detailed information such as time, location, participants and their roles in the events

[33]. Journalistic 5Ws extraction tries to answer the 5W questions: where, when, who,

what and why corresponding to an event and are closely related to domain question

answering systems. The 5Ws task is closely related to semantic role labeling (SRL)

[17] which identifies arguments in an article and tries to assign roles to them [91].
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Most approaches follow the model proposed by Gildea et.al. [43] which uses heuris-

tics to resolve inconsistencies. Multiple models [79, 106] are available for SRL in

various languages which are built using supervised learning techniques. Message un-

derstanding conference (MUC) consists of research related to information extraction

from events using knowledge engineering, statistical machine learning and natural

language processing.

Previous work on 5Ws extraction included verb-driven approach [32, 91] to extract

event semantic information. Assigning semantic role labels to nouns was proposed by

Wang et.al. [116] for chinese text. Other approaches use lexico-syntactic features like

POS and morphological features for identication of 5Ws [31]. Hierarchical clustering

approach to groups news articles based on content similarity and use two-stage SRL

[71] was proposed by Parton et.al [91]. A visualization-based system [31] that tracks

sentiment with textual summary and polarity was also used to better understand an

event. 5WTAG [128] is an algorithm for detecting microblog topics based on model

of 5Ws. Sharma et.al. [103] developed a fine grained approach for extracting 5Ws

using named entities, co-reference resolution and supervised classifiers. The concept

of 5Ws introduced in [33] are described below.

• Where? The location of an action/event.

• When? The temporal component about an event.

• Who/Whom? Animate/inanimate agents involved in an event.

• What? The resulting action of an event.

• Why? The semantic concept for the occurrence of an event.

A combination of supervised learning approaches are also used for event extraction

by dividing the extraction task into a series of supervised machine learning sub-
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tasks to evaluate importance and difficulty of each task [2]. Yaman et.al. [126]

uses three independent subsystems to extract 5Ws answers which are then combined

using a trained SVM model. Even though many models [60, 126] utilize supervised

learning models for 5Ws question answering, it is difficult to obtain ground truth

data for domain-specific articles. In this thesis, we focus on lexico-syntactic features

in combination with domain knowledge to better extract the 5Ws corresponding to

an event from text.

Where extraction has been widely researched as discussed below. Forecasting

civil unrest by extracting information from textual data including news articles, tweets

and facebook has been studied in [122] and [28]. Embers [83, 97] is a forecasting

system developed using various data sources and human analysts for preparing a Gold

Standard Report (GSR). This system uses a probabilistic approach for predicting

future events by extracting location and time information from text. Geocoding is

done using the location information provided by either tweets or facebook posts. For

news articles a probabilistic model that uses a gazetteer and a set of rules is used. The

information extracted from an article is then cross-references with all similar articles

using a clustering approach. This thesis focuses on extracting location information

rather than geocoding it.

Extracting why is hard using only domain knowledge and is based on implicit

causal relationships [7]. Causality has been extensively studied in multiple disciplines,

including psychology [121], linguistics [107], philosophy [119] and computer science [6]

classified causal links into four types: adverbial links (so, hence), prepositional links

(because of, on account of), subordination (because, as, since) and clause integrated

links (that’s why, the result was). Causation adverbs, causal links, causative verbs

are used as indicators for causal relationships in text [61]. Some approaches use

classification of syntactic representations of causal relations [13, 44] wheras some other
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approaches use semantic analysis[100]. Automatically discovering lingustic patterns

expressing causal relations by focusing on explicit syntactic patterns of the form

NP1-CausativeVerb-NP2 is studied in Girju et.al [44]. NP1 and NP2 are the noun

phrases which are connected by a causative verb. Further information about causal

relationship extraction can be found in [7].



26

Chapter 3

Methodology

Current methods to extract 5Ws typically involve manual analysis of text to obtain

related information or automated approaches which are domain independent. In this

thesis, we developed an approach that obtains the Journalistic 5Ws customized for

the specific domain of social unrest. It should be noted that much of our proposed

approach is domain independent. Therefore, the approach can be extended to any

domain that can be represented by a vocabulary, e.g., human rights violation.

Section 3.1 describes an overview of the entire pipeline for extracting 5Ws. Sec-

tion 3.2 includes details about the classifiers used for classifying social unrest related

articles and Section 3.3 outlines the approach for extracting each individual W in

detail.

3.1 A Framework to Extract Journalistic 5Ws

Our framework is based on a set of heuristics derived from the structure of the articles,

linguistic features of the sentences in the article and journalistic principles. These

principles are briefly described below. Our goal is to make our approach automated

with little or no user interaction.
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• Domain specific cues: Uses a list of domain-specific keywords to better capture

the importance of a W candidate to the domain. If a candidate is surrounded

by more domain-related words, then it is more likely to better represent the W .

• Document structure: Generally, sentences at the top of a document contain

more important, related information. This approach leverages this principle as

a heuristic while ranking candidates.

• Linguistic cues: Semantic similarity and the dependency structure of a sen-

tence provide linguistic features that are utilized for identifying and ranking

candidates.

• Journalistic principles: The important information is described at the top of

a document by journalists. Certain principles used by journalists for reporting

an event are incorporated while ranking candidates.

Figure 3.1: Overview of the 5Ws extraction framework

A schematic of our framework for Journalistic 5Ws extraction is shown in Figure

3.1. The framework is divided into two major steps.
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• Document classification: Decides whether the text is related to a specific topic

or not using a pre-trained classifier. If it doesn’t belong to a specific topic, it

isn’t analyzed any further.

• 5Ws extraction: Consists of a combination of multiple NLP techniques which

outputs the Journalistic 5Ws corresponding to the input text which is further

divided in 5 different sub-steps for each W, which interact with each other.

Algorithm 1 provides the pseudo code for our overall approach. In the remainder

of this thesis, we use document and news articles interchangeably.

Algorithm 1 5Ws Extractor (5WE)

1: D: Document
2: V : List of Domain-specific words
3: G: Gazetteer (List of Locations)
4: Pwhere: Preposition Scores for where
5: Pwho: Preposition Scores for who
6: Dt: Published date
7: Cv: Causal verbs and adverbs
8: T : Title
9: Tp: Topic/Domain

10: R: Domain specific neighborhood radius
11: SU : List of place suffixes
12: procedure 5Ws Extractor(D, V,G, Pwhere, Pwho, Dt, Cv, T, Tp,R, SU)
13: D′ ← preprocess(D)
14: Class← documentClassifier(D′)
15: if Class = Tp then
16: where← whereExtractor(D, V,G, Pwhere, T, R, SU)
17: Dw ← best(where)
18: who← whoandwhatExtractor(D,Dw, T, Pwho, V, R)
19: when← whenExtractor(D,Dt, Dw)
20: why ← whyExtractor(D,Cv, Dw)
21: end if
22: 5Ws← {where, when,who, what, why}
23: return 5Ws
24: end procedure
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3.2 Development of a Social Unrest Document Classifier

Document classification is the process of classifying a document based on its contents

into two or more classes. A typical document classification process involves collection

of documents from a multitude of data sources, pre-processing the documents, fea-

ture selection and representation, classification and evaluation. Next, we describe a

collection of statistical and deep neural networks that are used for classifying textual

documents.

Preprocessing involves representing text in clear word format which is obtained

by removing insignificant characters, commonly used stop words (a, an, the, and),

converting a word to its canonical form using a stemming algorithm, and converting

the data to unicode string format. Tokenization and Lemmatization are the two major

algorithms used in the preprocessing step. In the next subsections, we describe about

the ways of representing documents and two of the classification approaches that are

used for evaluation of social unrest classifier because of their potential improvements

from traditional approaches described in Chapter 2.

3.2.1 Document Representations

Textual data in a document must be represented as numerical data for the purpose

of classification using traditional machine learning algorithms. Word representations

as described in Chapter 2 can be used for representing documents which also capture

the semantic context of words in a document. Different ways of representing an entire

document are described below:

• Term frequency - Inverse document frequencies (TF-IDF) are used for repre-

senting a document in a corpus.
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• Word2Vec [81] and GloVe [92] embeddings of words can be combined by either

averaging or taking the maximum of all word representations in a document.

• Doc2Vec [66] is used for representing an entire document as fixed length vector.

The next step involves using a classification algorithm on the pre-processed vector

space data. The simplest classification algorithm would be to classify documents

based on domain-specific vocabulary. If a document contains at least k domain-

specific words, then it is classified as belonging to that domain. The drawback of

this approach is that it doesn’t consider the context of a document and fails to

interpret homonyms. Other techniques like latent dirichlet allocation (LDA) and

latent semantic analysis (LSA) include using word document frequencies in the form

of a matrix and using singular vector decomposition (SVD) to classify documents.

[94, 110, 118]

Modern classification algorithms use machine learning techniques to com-

bine different words in a document and make a prediction based on the combined

features. The inputs provided to a machine learning model can be either TF-IDF

vectors or word embeddings (Word2Vec, GloVe, Doc2Vec) which are then combined

to produce a final representation of the entire document used for classification. Differ-

ent ensemble techniques like majority vote bagging, boosting and stacked classifiers

can also be used for increasing the performance of a classifier. Some classifiers even

consider the sentiment (vader [54], textblob[73]) as an additional feature while clas-

sifying documents.

3.2.2 Fasttext Classification

Many continuous representation of words models represent words using a distinct

vector, without parameter sharing and ignore the internal structure of words. [14]
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proposed to learn representations from character n-grams which considers subword

information. Joulin et.al. [59] proposed a hierarchical model for text classification

named Fasttext with a fast loss approximation. Their model consists of a classifier

with shared parameters so as to generalize in the context of large output space. A

softmax function is used to compute the probability distribution, for minimizing the

negative log likelihood over classes as shown in Equation 3.1.

−1

N

N∑
n=1

ynlog(f(BAxn)) (3.1)

where xn is the normalized bag of features, N is the number of documents, yn is

the label, A and B are the weight matrices of size n×n and f is the softmax function

to compute the probability distribution over predefined classes. This model uses a

hierarchical softmax function for reducing the training and inference time. Each node

in the network is associated with a probability that is the probability of the path from

root to that node. If a node is at depth l + 1 with parents n1, ....., nl, its probability

is given by Equation 3.2.

P (nl+1) =
l∏

i=1

P (ni) (3.2)

3.2.3 Hierarchical Attention Network

An effective neural network based approach for document classification based on

attention mechanism was proposed in [127]. Their model takes advantage of the

inherent structure of a document, where a set of words form a sentence and a group

of sentence form a document. It also considers the importance of certain words and

sentences depending on the context for classification using an attention mechanism

[113] at both word level and sentence level. The architecture of Hierarchical attention

network (HAN) is shown in Figure 3.2 which consists of a word level attention layer,
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a sentence encoder, a sentence level attention layer and a softmax unit at the end

for classification. Gated recurrent units (GRU) [25] are used to track the state of

sequences and consists of two gates: reset gate rt and update gate zt which together

control how information is updated at each time step ht.

Figure 3.2: Model architecture of hierarchical attention network

Since not all words contribute equally to a sentence meaning, attention mechanism

to extract important words is used and the aggregation of these informative words

form a sentence vector. First a word representation hit is fed to a one layer MLP

to get uit. Then the importance of this word uit with respect to the word level

context vector uw is calculated to obtain a normalized weight αit through a softmax
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function. Finally, the sentence level representation is obtained by the weighted sum of

all word representations. All the representations uw, uit are jointly learned during the

training process. Sentence level attention is also done using the similar process with a

sentence level context vector us. The final document vector v is used for classification

based on a softmax function and trained using negative log likelihood. The attention

mechanism used in this model is given by the Equations 3.3 through 3.5.

uit = tanh(Wwhit + bw) (3.3)

αit =
exp(u>ituw)∑
t exp(u

>
ituw)

(3.4)

si =
∑
t

αithit (3.5)

The approaches discussed in the Section 3.2.2 and 3.2.3 are used for document

classification tasks to provide better accuracies. The Fasttext model described has

fast inference time with high accuracy values for most text classification tasks. The

HAN model considers the inherent document structure in the classification process.

These models are developed and tested using an unrest related documents dataset in

Section 4.2.1.

3.3 5Ws Extraction (5WE) Approach

The extraction of Journalistic 5Ws is performed one W at a time. The input to

this step is a text document classified as relevant to a specific topic/domain. The

entire process begins with co-reference resolution where all the pronouns in an article

are replaced with their corresponding noun phrases as described in Section 2.2.4.

This step is important as it helps the model in better understanding the importance
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of a word in the entire article. The output of this step are the phrases that best

represents the answers to Journalistic 5Ws as represented in Figure 3.3. The other

inputs that the extraction process considers are specific to individual Ws as described

in Algorithm 1.

• Meta data: Date of publication Dt of the article.

• Gazetteer G: A list of locations corresponding to a geographical region.

• Preposition scores Pwhere: Weights for prepositions located before locations.

• Preposition scores Pwho: Weights for prepositions located before person names.

• Causal verbs, conjunctions Cv: A curated list of verbs and conjunctions associ-

ated with causation.

• Domain-specific vocabulary V : A list of keywords related to the domain.

Figure 3.3: A sample article representing the annotation of 5Ws. Blue color represents
the who, purple color represents the when, red color represents the where, light blue
color represents what and black color represents why. [87]
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Extraction of individual Ws consists of two tasks:

• Candidate identification task is the extraction of potential candidates for a

Journalistic W from text. This task makes use of several existing techniques

like Named Entity Recognition, Parts-of-Speech tagging, Dependency Parsing

and Co-reference Resolution for identifying candidates.

• Candidate ranking is ranking these potential candidates and identifying the best

candidate that closely represents the answer to a specific Journalistic W using

semantic cues, other topic/domain-specific pointers in the text document. Some

sub-steps make use of the results from the previous sub-steps to obtain accurate

results as shown in Figure 3.1.

Using prepositions for providing additional weights to where and who candidates

is useful as it provides additional confidence about a candidate being a W based

on the syntactic structure of a sentence. The presence of a word after a certain

preposition in a sentence provides a sense about the meaning of the word and its

context. For example, in most cases near is a preposition most likely to be associated

with a location. Our approach leverages this intuition about prepositions for scoring

candidates. The preposition scores are collected using a large customized set of articles

related to the domain that are being examined.

These scores are customized as different sources might use different prepositions

and some prepositions have become obsolete with time. For example, near is most

likely to be used by New York Times compared to The Hindu. These insights to

preposition likelihood scores should be obtained by using a customized set of articles

related to the domain and geographical scope. If a word is tagged as the required en-

tity by a Named Entity Recognizer then a preposition preceding the word is analyzed

to get a score as described. This score calculates the conditional probability that a
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word is a specific entity we when preceded by a preposition p. The score is defined

as: How often is the word following a particular preposition p a specific entity e is

represented by P as shown in Equation 3.6.

P =
Np,we

Np
(3.6)

where Np,we is the number of times a preposition p occurs before a word we of

entity type e. Np is the number of times preposition p occurs in the entire set of

articles.

The results from this process can be improved by using a better co-reference

system, including additional weighted domain-specific words, using techniques of the

question answering systems [114].The remaining subsections describe in detail the

candidate identification and ranking for individual Ws.

3.3.1 Extraction of Where

In this step, we derive an ordered set of locations that best represents the answer to

the first Journalistic W, i.e., where in an article. The inputs to this step are the text

document D, a list of topic/domain-specific words V , a list of locations G and a list

of prepositions Pwhere along with their likelihoods that are closely associated with a

location. It produces an ordered set of location candidates and their scores. However,

this sub-step doesn’t correspond every ranked location to a specific event if multiple

events are mentioned in a single article.

The candidate identification task identifies potential candidates for where. We

first perform a customized Named Entity Recognition on the entire article and obtain

words that are tagged as either Location or Organization. We then consider words

that contain a suffix from a specific set of suffixes as candidates. This set of suffixes is
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Algorithm 2 Where Candidate Identification

1: D: Document
2: SU : List of place suffixes
3: procedure Candidate Identifier(D,SU)
4: D′ ← preprocess(D).
5: C ← {}
6: Words : W ← wordTokenizer(D′)
7: Sentences : S ← sentTokenizer(D′)
8: N ← length(W )
9: for each wi ∈ W do

10: if NER(wi) is LOC or ORG then
11: C ∪ {{wi, i, S(wi)}}
12: end if
13: if suffix(wi) in SU then
14: C ∪ {{wi, i, S(wi)}}
15: end if
16: end for
17: return C
18: end procedure

prepared by analyzing the location names from a specific geographical area of focus.

We then merge adjacent candidates to obtain candidate phrases and add them to the

set of candidates for where. The output of the first task will be a set of candidates for

where along with some additional information like the word number of a candidate,

the sentence number in which a candidate is present, and the source from which it is

obtained (Named entity recognition or Suffix list).

The candidate ranking task ranks these potential candidates. We consider several

factors for scoring a candidate and assume that the most important candidate will

be mentioned early and often in the text document. We also assume that the most

important candidate will be surrounded by some specific set of words from a vocabu-

lary that are specific to a topic/domain. We consider six different factors for scoring

a candidate as described below.
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Algorithm 3 Extraction of Where

1: D: Document
2: V : Vocabulary (List of Domain-specific words)
3: G: Gazetteer (List of Locations)
4: SU : List of place suffixes
5: Pwhere: Preposition likelihood scores for where
6: T : Title of the document
7: R: Neighborhood radius
8: procedure whereExtractor(D, V,G, Pwhere, T, SU,R)
9: D′ ← preprocess(D).

10: Words : W ← wordTokenizer(D′)
11: Sentences : S ← sentTokenizer(D′)
12: N ← length(W )
13: C ← candidateIdentifier(D,SU) . Algorithm 2
14: Finalscores : FS ← {}
15: for each candidate ci ∈ C do
16: sw ← 1− i

N

17: ss ← cosinesimilarity(Si, T )
18: if ci ∈ T then
19: st ← 1
20: end if
21: if ci ∈ L then
22: sg ← 1
23: end if
24: if W [i− 1] ∈ Pwhere then
25: sp ← Pwhere[W [i− 1]]
26: end if
27: V words← {}
28: for r in range(1, R) do
29: if W [i+ r] or W [i− r] in V then
30: V words+ = {W [i+ r], r}
31: end if
32: end for
33: sv ← Sum(V words) . weighted sum function
34: FS+ = {ci, Locationscore(sp, sg, st, sw, ss, sv)}
35: end for
36: return FS
37: end procedure
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Word position score sw is used for ordering candidates ci based on their position

in the entire document. Based on inverse pyramid concept [24], important things

tend to be mentioned at the top of an article and hence must receive higher score

compared to candidates later in the article. This principle is captured by this score

and shown in Line 16 of Algorithm 3.

sw(ci) = 1− i

N
(3.7)

where i represents the position of a candidate and N represents the total number

of words in a text document.

Sentence similarity score ss captures the importance of the sentence sci in which

a candidate ci is present with respect to the entire document. As title T , better

represents the overall summary of a text document, we use the semantic similarity

between a sentence sci and the title T . We use cosine similarity to compute the

similarity between different embeddings. These embeddings can be obtained using

any context level emebedding techniques such Universal sentence encoder (USE) [19]

which is pre-trained on a large dataset collected from various sources like wikipedia,

discussion forms and web news. This score is shown in Line 17 of Algorithm 3.

ss(ci) = similarity(USE(sci), USE(T )) (3.8)

Title score st captures the existence of a candidate in the title of a document T .

The underlying principle is that important actors, locations related to an event are

usually mentioned in the title of a document. If the candidate ci is present in the title,

then a Boolean score of 1 is assigned, 0 otherwise. The title score st for a candidate
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ci is calculated as shown in Lines 18-20 of Algorithm 3 :

st(ci) =


1 ci ∈ T

0 ci /∈ T
(3.9)

Gazette score sg captures the existence of a candidate in a list of location G.

If a candidate ci which is not actually a recognized location is extracted as candi-

date, then a lower score is assigned to it based on this gazetteer G. Since, location

names might be misspelled or modified over time, we use a fuzzy string matching

approach[45] for searching a candidate in the gazetteer. This fuzzy string matching

tries to capture location names which differ by only 1 or 2 characters and generalizes

to almost all locations. For example, Bangalor and Bengalur are both considered a

legitimate candidates and they both differ in just 2-3 characters to the actual location

Bangalore. The list of location G can be prepared by combining available national

gazetteers or other sources like Google maps. We use a customized set of locations ob-

tained from the census of India and National Geo-spatial Intelligence Agency (NGIA).

The gazette score sg is computed as shown in Lines 21-23 of Algorithm 3:

sg(ci) =


1 ci ∈ G

0 ci /∈ G
(3.10)

Where preposition scores sp are computed using a list of prepositions Pwhere com-

puted using a data driven approach. This score provides additional confidence to

candidates ci based on the preposition preceding it. This score helps in avoiding

candidates which aren’t exactly locations but are recognized as candidates in the

candidate selection process. If a candidate ci is preceded by a preposition pj from a
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list of prepositions Pwhere, then the score corresponding to pj is provided to ci. Some

of the common prepositions associated with locations are near, at as presented in

Section 4.2.2. The process for computing preposition scores is described in detail at

the start of this section and represented in Lines 24-26 in Algorithm 3

Vocabulary density score sv captures the importance of a candidate by analyzing

the density of domain-specific words V around it. If a candidate ci has more domain-

specific words around it in a neighborhood radius of R, then it is considered more

relevant to the domain. First, the distance from a candidate ci to every vocabulary

word vw ∈ V present in the text is calculated. Then scores to each candidate ci

are provided based on the density of vocabulary words around a candidate with in

a neighborhood distance R. The neighborhood distance can be chosen based on the

analysis of a document or can also be modified such that the vocabulary words vw

that occur in the same sentence as that of a candidate ci are weighted more compared

to other vocabulary words. If scores about the importance of a vocabulary word are

available, then the vocabulary words vw surrounding a candidate can be weighted

accordingly. Lines 27-33 in Algorithm 3 describes this process.

sv(ci) =
∑
vw∈V

Score(ci, vw, R) (3.11)

After obtaining all individual scores, a weighted average of all the scores is consid-

ered to obtained a combined final score for all the where candidates. The candidates

are then ranked (sorted) based on their final location candidate scores (FS) to obtain

the best candidate that closely corresponds to the answer for where.

FS(ci) =
α1.sw + α2.ss + α3.st + α4.sg + α5.sp + α6.sv

α1 + α2 + α3 + α4 + α5 + α6

(3.12)
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3.3.2 Extraction of When

In this step, we derive an ordered set of date and time candidates that best represents

the answer to the second Journalistic W, i.e., when in a article. The inputs to this step

are a text document D, meta data associated with an article Dt, sentence number of

the best where candidate Dw and returns the scores corresponding to every date/time

mention in the article. The highest scored date/time mention is considered as when

corresponding to an event.

Candidate identification task identifies candidates representing either date or time

entities are obtained using a named entity recognition system or Stanford time tagger

[21]. Additional temporal extraction techniques like syntactic rules can also be used

for obtaining candidates. Information regarding these candidates such as the word

number, sentence number in the document, and its resolution to common date format

(YYYY-MM-DD) is obtained. The time tagger used in this process also converts

relative time mentions (e.g. today) to absolute time mentions (a particular date

value) based on the article publishing date which is provided as a parameter to the

time tagger function.

The information about the potential candidates is used for scoring/ranking them

using several factors such as its position in the document (word score) sw, its differ-

ence to the reference date sd, its distance from the best where candidate swd, and

its frequency in the entire article sf . Factors that are unique for this sub-step are

discussed below:

Difference score sd captures the importance of a candidate ci to the actual occur-

rence of an event time. If an event occurs, then it is usually reported immediately. In

general, the importance of a candidate decreases over time and this normalized score

tries to capture the same. If a candidate ci is more closer to the publishing date, then
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Algorithm 4 Extraction of When

1: D: Document
2: Dt: Date of publishing.
3: Dw: Best where candidate (sentence number)
4: procedure whenExtractor(D,Dt, Dw)
5: D′ ← preprocess(D).
6: C ← {}
7: Words : W ← wordTokenizer(D′)
8: Sentences : S ← sentTokenizer(D′)
9: N ← length(W )

10: for each wi ∈ W do
11: if NER(wi) is PERSON or ORG then
12: C ∪ {{wi, i, resolve(wi)}}
13: end if
14: end for
15: Finalscores : FS ← {}
16: for each candidate ci ∈ C do
17: sw ← 1− i

N

18: sd ← datediff(ci, Dt)
19: swd ← ci[2]−Dw

20: sf ← count(ci[3])
21: FS+ = {ci, whenscore(sw, sd, swd, sf )}
22: end for
23: return FS
24: end procedure

it has a higher chance of being the actual when candidate. The difference between a

date/time candidate ci and the article’s publishing date is calculated and represented

as difference scores sd. These scores are then resolved to absolute time sd to capture

the importance of a date/time candidate in an article.

sd(ci) =
diff(ci, rd)

maxci∈Cdiff(ci, rd)
(3.13)

Where distance score 1: swd is used for capturing the importance of a when candi-

1Distance to best when candidate can also be used in computing the final scores for where. Our
approach mainly focuses on the spatio-temporal aspect of events. So, we consider distance to best
where candidate for computing final scores to all the other Ws.
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date to the best where candidate Dw. In general, all information related to an event

tend to occur near one other. This score provides additional confidence to a candidate

ci if it occurs near to Dw. The number of sentences between a when candidate ci and

the best where candidate W (sentence number of best where candidate) is computed

as swd.

swd(ci) =
diff(i,Dw)

maxci∈Cdiff(i,W )
(3.14)

Frequency score: sf captures the number of occurrences of a resolved date/time

candidate in the entire document D. If a word is mentioned multiple times in an

article, then it carries more weights in the context of an article. This score captures the

same, by providing higher scores to resolved candidates. All candidates are resolved

to absolute time using the publishing date as the reference. Also, if a candidate

cannot be parsed to a date format, then it is provided a lesser score [47].

sf (ci) =
freq(ci)

maxci∈Cfreq(ci)
(3.15)

A weighted average of all the scores is considered to obtained a combined final

score for all the when candidates. The candidates are then ranked (sorted) based on

their final date/time scores (FS) to obtain the best candidate that closely corresponds

to the answer for when.

FS(ci) =
α1.sw + α2.sd + α3.swd + α4.sf

α1 + α2 + α3 + α4

(3.16)

3.3.3 Extraction of Who and What

In this step, we derive the phrases which best represents the answers to the third and

fourth Journalistic W’s i.e., who and what in a article. The procedures for obtaining

who and what candidates are merged together as there is a lot of interdependence
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between the two as mentioned in [47]. For example, a sentence ’Protesters gathered

to submit an appeal to the government.’ has both actors and the action mentioned

in it. The candidates for what include certain action verb phrases (subject, object

phrases) that represent the actual occurrence of an event. As most journalistic ar-

ticles try to describe an event in the form who-did-what-to-whom [20], our model

tries to leverage this syntactic structure to obtain candidates for what based on who

candidates. Hence, we combine the extraction of who and what.

This step takes the text document D, a set of common name prefixes and suffixes,

a list of preposition scores Pwho and a list of domain-specific words V . The output of

this sub-step are a list of ranked candidates for both who and what corresponding to

an event in an article. The list of preposition scores are obtained using the Equation

3.6 described in Section 3.3.

Algorithm 5 Who and What Candidate Identifier

1: D: Document
2: procedure Who and What Candidate Identifier(D)
3: D′ ← preprocess(D).
4: Cwho, Cwhat ← {}
5: Words : W ← wordTokenizer(D′)
6: Sentences : S ← sentTokenizer(D′)
7: N ← length(W )
8: for each wi ∈ W do
9: if NER(wi) is PER or ORG then

10: Cwho ∪ {{wi, i, si}}
11: end if
12: end for
13: for each ci ∈ Cwhat do
14: if root(deptree(ci[3])) ∈ V then
15: Cwhat ∪ {{rightsibling(deptree(ci[3])), i}}
16: end if
17: end for
18: return Cwho, Cwhat

19: end procedure
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Algorithm 6 Extraction of Who and What

1: D: Document
2: Dw: Best where candidate (sentence number)
3: T : Title of the article
4: Pwho: Preposition likelihood scores for who
5: V : Vocabulary (List of Domain-specific words)
6: R: Neighborhood radius
7: procedure Who and WhatExtractor(D,Dw, T, Pwho, V, R)
8: D′ ← preprocess(D).
9: Cwho, Cwhat ← {}

10: Words : W ← wordTokenizer(D′)
11: Sentences : S ← sentTokenizer(D′)
12: N ← length(W )
13: Cwho, Cwhat ← whoandWhatCandidateIdentifier(D) . Algorithm 5
14: Finalscores : FS, FWS ← {}
15: for each candidate ci ∈ Cwho do
16: sw ← 1− i

N

17: ss ← cosinesimilarity(Si, T )
18: if ci ∈ T then
19: st ← 1
20: end if
21: if W [i− 1] ∈ Pwho then
22: sp ← Pwho[W [i− 1]]
23: end if
24: V words← {}
25: swd ← diff(ci[3], Dw)
26: for r in range(1, R) do
27: if W [i+ r] or W [i− r] in V then
28: V words+ = {W [i+ r], r}
29: end if
30: end for
31: sv ← Sum(V words) . weighted sum function
32: FS+ = {ci, actorscores(sw, ss, st, sp, sv, swd)}
33: end for
34: for each candidate ci ∈ Cwhat do
35: sw ← 1− ci[2]

N

36: ss ← cosinesimilarity(Sci[2], T )
37: sd ← diff(i, best(Cwho), Dw)
38: FWS+ = {ci, actionscores(sw, sd)}
39: end for
40: return FS, FWS
41: end procedure
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The candidate identification task for who is the same as the candidate extraction

process for where as described in Algorithm 5. However, instead of using locations

as where we use people and organizations as entities in NER process. Our generic

approach can be improved by using a curated list of prominent people, organization

names can also be used to improve the results of this extraction process. A single

event might contain multiple who candidates as opposed to where which contain only

a single candidate. The scoring of the candidates for who is also exactly the same

as where with the exception of gazette score. An additional score that obtains the

distance of a who candidate to the best where candidate Dw is also includes while

ranking the candidates for who as described in Section 3.3.2. The scores that are

used for ranking who candidates are the word position score sw, sentence similarity

score ss, title score st, preposition score sp, vocabulary density score sv and where

distance score swd as discussed in Lines 15-30 in Algorithm 6.

Figure 3.4: A sample dependency tree showing action related verb and what candi-
date.
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Candidate identification task for what candidates uses a neural dependency parser

to obtain the dependency tree for all the sentences that contain a who candidate as

described in Lines 13-17 of Algorithm 5. These dependency trees are then parsed

to obtain phrase candidates for what based on a domain-specific vocabulary V . If

a dependency tree consists of an action verb similar to those in V , then the right

sibling of that node including the verb is considered as a candidate for what. Figure

3.4 represents a sample dependency tree. Node2 represents the root of the tree which

is an action verb. The right sibling of the verb node along with the verb is a candidate

for what.

The candidates for what are ranked based on three different factors, its position

in an article sw, its similarity to the title ss and its distance to the best who and

where candidate sd. The scoring mechanisms for these candidates are similar to

those described for where and when extraction from Sections 3.3.1 and 3.3.2 and

described in Lines 33-38 in Algorithm 6.

3.3.4 Extraction of Why

In this step, we extract the phrases that represents the answer to the final Journalistic

W, i.e., why which corresponds to the reason for occurrence of an event if one exists

in a document. This step considers a text document D, a set of action-related verbs

[44, 6] and adverbs that best describe causal phrases Cv, best where candidate W and

outputs a phrase that details the reason for occurrence of an event[47]. Obtaining

the exact information for what and why is a challenging task as it depends on the

linguistic features which can vary among various languages, this model can be easily

extended for multiple languages by modifying the rules that analyze the dependency

tree.

Why represents the reason for occurrence of an action. Not all articles might
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contain the candidates for why even if an event is mentioned in it. For example, if

an event occurs it is reported in an article immediately even if the reason is unknown

which might be available at a later time and the article is updated. The reason for

an action is usually linked using causal verbs or conjunctions in a sentence. Our

approach leverages a list of causal verbs, adverbs and conjunctions from [44] which

are obtained using a data driven approach.

Algorithm 7 Extraction of Why

1: D: Document
2: Cv: List of causal verbs, adverbs, conjunctions.
3: Dw: Best where candidate (sentence number)
4: procedure WhyExtractor(D,Cv, Dw)
5: D′ ← preprocess(D).
6: C ← {}
7: Words : W ← wordTokenizer(D′)
8: Sentences : S ← sentTokenizer(D′)
9: N ← length(W )

10: for each si ∈ S do
11: if root(si) ∈ Cv then
12: C ∪ {{Nounphrase(si), i}}
13: end if
14: end for
15: Finalscores : FS ← {}
16: for each candidate ci ∈ C do
17: sw ← 1− i

N

18: swd ← ci[2]−Dw

19: FS+ = {ci,Whyscore(sw, swd)}
20: end for
21: return FS
22: end procedure

First, all the phrases that either contain a verb (or verb form) from the Table 3.1

or adverbs from Table 3.2 are considered as candidates. These candidates are further

filtered based on their syntactic structure: only candidates that have a noun phrase

after the verb/adverb are retained. Some articles might not contain any of the verbs

or adverbs from Tables 3.1 and 3.2 which indicates that the cause for an event is
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not explicitly mentioned in the article. Not all news articles report why related to

an event in the title of an article. So, using sentence similarity score to title doesn’t

contribute to ranking why candidates. Also, preposition scores are ignored because

the candidates for why are often associated with causal verbs or conjunctions but not

prepositions.

The position scores sw and the distance to best where candidates swd as described

in Sections 3.3.1 and 3.3.2 are used for computing the final why scores. This why

extractor might also consider weighted scores for various verbs and adverbs to better

rank the candidates.

Table 3.1: A list of causation verbs [44]

Causal Verbs

give rise (to) stir up create start
induce entail launch make
produce contribute (to) develop begin
generate setup bring rise
effect trigger off stimulate
bring about commence call forth
provoke set off unleash
arouse set in motion effectuate
elicit bring on kick up
lead (to) conduce (to) give birth (to)
trigger educe
derive (from) originate in call down
associate (with) lead off put forward
relate (to) spark cause
link (to) spark off
stem (from) evoke
originate link up
bring forth implicate (in)
lead up activate
trigger off actuate
bring on kindle
result (from) fire up
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Table 3.2: A list of adverbial indicators and causal conjunctions [6]

Adverbial Indicators Causal Conjunctions

therefore consequence (of)
hence effect (of)
thus result (of)
consequently outcome (of)
accordingly stemmed (from)

because
hence
stemmed
due

These candidates are ranked based on factors like sentence position score as de-

scribed in Section 3.3.1 and its distance to best where candidate as described in

Section 3.3.2. If weights for causal verbs/adverbs are available, then they can also be

utilized in computing the final score.



52

Chapter 4

Implementation and Results

The 5WE and associated algorithms are implemented using Python and requires

minimal human intervention. The inputs to these algorithms are textual data in

English and its corresponding meta data. These set of algorithms depend on various

other packages available for python such as beautifulsoup [99], tensorflow [1], flair [4],

nltk [72], corenlp [77], fuzzywuzzy [45], various pre-trained neural network models and

pandas[80]. The corenlp framework [77] should be started separately in a terminal

and appropriate connections must be made in the Python program so as to use the

co-reference system and SU-time.

4.1 Datasets

Global Database of Events, Language and Tone (GDELT) [68] is a database of global

human society which monitors world’s broadcast, print and web news from nearly

every corner in over 100 languages. Tracing events back to 1979, GDELT database

utilizes 20 categories to define events including, but not limited to, protests, threats

and uses of unconventional mass violence [11]. The selected categories for this research

are: Appeal, Demand, Threaten, Coerce, Protest, Assault, Fight and Engage in

Unconventional Mass Violence (UMV).
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The geographic scope of this thesis is limited to India for the year 2017. The

GDELT events from January, 2017 to December, 2017 corresponding to the cate-

gories listed above from India (IN) are collected and filtered. These events are then

filtered based on the URL field, such that if an URL consists of either Times of India

or Indian Express [55, 109], then those events are considered. Any duplicate men-

tions of the same event are discarded based on the date and location provided by

GDELT. However, one drawback of this approach is that multiple unrelated events

that are reported on the same date and location are considered as duplicates and

hence discarded.

The URLs of the cleaned dataset are used for downloading the content, meta data

of news articles corresponding to that event using beautifulsoup[99] in Python. If a

URL is unresponsive or the data returned is null, then that event is dropped from

the dataset. A final social unrest (52,000) articles dataset consisting of the latitude,

longitude of the event provided by GDELT, date, content of the news article and its

category is prepared.

4.1.1 Classification Dataset

Since classification require other articles which are not related to social unrest, a

dataset consisting of (360,000) articles related to sports, finance, technology and

travel are downloaded from BBC news [12] and various other sources. Any article

which consists of fewer than 7 lines of data is discarded resulting in a balanced,

combined dataset of 87,500 articles made up of both social unrest and other articles.

This dataset is further divided into training and test data using an 80-20 split. All

of the models are trained using 10-fold cross validation.

The sentiment analysis task is used to obtain the attitude of an article to a social

unrest event. Most sentiment analysis tools consider the syntactic structure of a
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Figure 4.1: Sentiment scores visualization

sentence to obtain the sentiment. Some, recent deep learning techniques consider the

semantic relation among words to capture the sentiment of a document. We use vader

sentiment analysis and textblob tools to obtain the sentiment of a document which

use the syntactic structure of a sentence and some pre-defined sentiment scores for

certain words to obtain the overall sentiment score for a document. We modify and

add some sentiment scores for social unrest keywords to the vader sentiment tool [54].

Figure 4.1 represents the distributions of sentiment scores for both social unrest and

other articles. Figure 4.2 represent the heat map obtained by plotting the sentiments

of all social unrest related articles.

4.1.2 Evaluation Dataset

A standardized dataset for 5Ws corresponding to textual data is not readily available

which poses a significant challenge in our research. A 5Ws evaluation dataset is

manually prepared with the help of 6 human coders. In Phase 1, a group of 10

social unrest related documents are given to all 6 coders so as to gain familiarity with

social unrest related documents. Additional information about common city names,

acronyms, major organizations, geographical and demographic structure about Indian

sub-continent is provided to help in the annotating process.
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Figure 4.2: Visualization of social unrest related articles

The annotations for these 10 sample documents are collected and analyzed man-

ually such that the annotations match among all the coders. If any ambiguous cases

exist, then they are discussed so as to either include all the annotations or ignore some

of them that aren’t agreed by majority of the coders. For example, if a long sentence

is annotated as why, then it is analyzed further to include only the corresponding

cause/reason. The intercoder reliability (ICR) [52] metric among different coders in

Phase 1 is presented in Table 4.1. This metric computes the reliability measure of

the human coders by observing the number of annotations that overlap among two

coders. One coder during Phase 1 didn’t annotate most of the answers to 5Ws. So,

we removed that coder and computed the ICR values as presented in Table 4.2.
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Table 4.1: ICR measures among human coders in Phase 1

W Minimum ICR Maximum ICR Average ICR

Where 0.22 0.76 0.43
When 0.00 0.87 0.31
Who 0.07 0.57 0.28
What 0.14 0.58 0.31
Why 0.00 0.26 0.13
All Ws 0.29

Table 4.2: ICR measures among 5 human coders in Phase 1

W Minimum ICR Maximum ICR Average ICR

Where 0.28 0.76 0.46
When 0.00 0.87 0.35
Who 0.10 0.57 0.31
What 0.14 0.58 0.33
Why 0.00 0.26 0.14
All Ws 0.32

We can observe that the minimum ICR for when and why are 0. The low ICR

values can be attributed to ambiguous phrases in the document. Also, the ICR

measure used here considers only perfect match among various annotations. For

example, a location Chennai city is annotated by coder A and Chennai is annotated

by coder B. Even though both of them relate to the same location, they are considered

as different annotations. These comparisons impact the ICR computation of what

and why scores as one coder might annotate an entire phrase P1 for why, whereas

other coder might annotate only a sub-phrase with in the phrase P1. Adjusted ICR

values are computed by considering these cases and is presented in Tables 4.3 and

4.4.

After all coders agree on the annotations for these sample documents. A single set

of 100 documents is sampled from a large (500) unrest related news articles dataset.

This single set is assigned to two human coders. However, we were able to obtain
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Table 4.3: Adjusted ICR measures among human coders in Phase 1

W Minimum ICR Maximum ICR Average ICR

Where 0.22 0.87 0.51
When 0.18 0.94 0.48
Who 0.21 0.78 0.50
What 0.20 0.64 0.38
Why 0.00 0.89 0.35
All Ws 0.44

Table 4.4: Adjusted ICR measures among 5 human coders Phase 1

W Minimum ICR Maximum ICR Average ICR

Where 0.32 0.87 0.56
When 0.18 0.94 0.62
Who 0.23 0.78 0.56
What 0.20 0.64 0.39
Why 0.11 0.89 0.37
All Ws 0.50

annotations for only 74 documents. The coders annotate the best 5Ws corresponding

to an event in the news article using Dataturks [112] as shown in Figure 3.2. The

ICR values for the final annotated dataset consiting of 74 documents by 2 coders

are presented in Table 4.5. The adjusted ICR has a value of 0.75 which asserts the

robustness of ground truth.

Table 4.5: ICR measures for documents in Phase 2

W Traditional ICR Adjusted ICR

Where 0.38 0.74
When 0.51 0.83
Who 0.42 0.76
What 0.41 0.76
Why 0.38 0.66
All Ws 0.42 0.75
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4.2 Results

The results for each of the steps in the 5Ws extraction pipeline are presented in this

section. First, accuracies of various machine learning and deep learning approaches on

social unrest related news articles dataset is described in Section 4.2.1. Section 4.2.2

describes about the results for individual Ws on the manually annotated dataset.

4.2.1 Document Classification Results

Several experiments were ran using various machine learning algorithms on the bal-

anced dataset. First, all stop words are removed and the words in a document are

converted into vector representations using pre-trained Word2Vec or GloVe embed-

dings (300 dimensions). These embeddings are then converted to a fixed length for

the entire document by either averaging them or considering the minumum or max-

imum of those embeddings. TF-IDF vectors that are generated based on a corpus

of documents are also used for representing words. Averaging all word embeddings

provides a better representation for the entire document compared to min/max rep-

resentations. Table 4.6 represents the classification accuracies of various machine

learning algorithms with different embeddings. The underlined values represent the

best classification accuracies using a specific algorithm and the bold value represent

the best classification accuracy among all values.

Table 4.6: Classification accuracies using 10-fold cross validation

Classifier Name TF-IDF (%) word2vec GloVe word2vec GloVe
(avg)(%) (avg)(%) (min+max)(%) (min+max(%))

Logistic Regression 85.55 78.43 74.08 78.85 75.41
Multinomial Naive Bayes 75.57 69.95 63.36 70.10 62.30
Random Forest (n=200) 70.29 73.45 71.71 73.20 73.10
Support Vector Machine 75.34 74.40 73.16 75.24 73.38

In general, the classification methods performed better while using Word2Vec em-
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beddings. Logistic regression using TF-IDF embeddings has the highest classification

accuracy compared to all other classifiers. Representing the entire document using

either averaging of word embeddings or combining minimum and maximum didn’t

impact the classification results.

Next, we explore a different type of embedding which is obtained by using the

entire document called Doc2Vec embeddings [66]. A Doc2Vec model from gensim

[98] which is already trained on a large dataset of IMDB paragraphs is used to obtain

embeddings for every article. Table 4.7 represents the accuracies obtained using

Doc2Vec embeddings of size 100 and 1000 on machine learning classifiers. Changing

the size of embeddings had a little impact on the classification accuracies. All of these

methods were also tried using sentiment value of the entire document as an additional

feature in the embeddings, which had no impact on the classification results.

Table 4.7: Classification accuracies using Doc2Vec embeddings of 100 and 1000 di-
mensions.

Classifier Name Doc2Vec Doc2Vec
(100)(%) (1000)(%)

Logistic Regression 73.50 73.70
Multinomial Naive Bayes 59.10 60.80
Random Forest (n=200) 68.74 68.67
Support Vector Machine 68.80 68.17

To improve the accuracies, we tried ensemble methods where different models are

combined so as to learn from the mistakes made by previous classifiers. The output of

these classifiers are combined using majority voting scheme and trained using GloVe

(avg) embeddings as these seem to perform better compared to other embeddings. An

additional stacking approach consisting of K-nearest neighbors, XGBoost and Extra

trees classifer with logistic regression as meta classifier is also tested on the balanced

dataset. A majority voting ensemble method of logistic regreesion, extra trees and
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SVM is also considered. The results of these boosting and additional approaches is

presented in Table 4.8.

Table 4.8: Classification accuracies using ensemble methods

Classifier Name GloVe
(avg) (%)

Extra Trees Classifier[42] 79.76
Adaboost (100 trees)[49] 79.07
Xgboost[23] 79.39
K-nearest neighbors[30] 79.39
Majority voting [93] 78.90
Stacked[46] 80.57

We can observe minor improvements in accuracies compared to single machine

learning algorithms. K-Nearest Neighbors (KNN) approach is a simple algorithm

but performs significantly better compared to various boosting approaches. Stacked

classifer has the highest classification accuracy among all ensemble methods. Even

though the boosting approaches performed better to traditional machine learning

approaches, these methods require additional computational resources and time on a

large dataset.

Fasttext [59] classification on the balanced dataset produced better accuracies

compared to previous methods. First, the dataset is divided into training and test

sets consisting of 60,000 and 8,000 articles, respectively. Several experiments with

varying regularization parameter values, loss functions and test sets are evaluated

while training for 25 epochs. Test sets containing social unrest related keywords and

without keywords were considered for evaluating the impact of the presence of those

keywords in classification process. Table 4.9 presents the various results and it can be

observed that this model performs better even in the absence of social unrest related

keywords.
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Table 4.9: Classification accuracies using fasttext classifier

Model Classification accuracy (%)

Softmax loss, ngrams size 1 81.94
Softmax loss, ngrams size 2 90.21
Hierarchical loss, ngram size 1 99.95
Hierarchical loss, ngram size 2 99.98
Hierarchical loss, test set with no keywords 99.63

Recurrent neural network architectures with and without attention mechanisms

were also trained for 10 epochs and tested using Keras framework. Simple bi-

directional neural network with a single layer attention is trained using adam op-

timizer on a subset of data consisting of 18k articles. Several other models with two

layers of attention, one at the word level and other at sentence level were also used

with both LSTM and GRU type recurrent units. A final model with Bi-directional

LSTM units with hierarchical attention is trained on a larger dataset of 70,000 articles

and tested on 18,000 articles, Bi-LSTM2, the results of all these models are presented

in Table 4.10.

Table 4.10: Classification accuracies using recurrent neural network architectures

Model Classification accuracy (%)

Bi-LSTM (single attention) 84.63
Bi-GRU (hierarchical attention) 88.20
Bi-LSTM (hierarchical attention) 88.35
Bi-LSTM2 (hierarchical attention) 99.55

Figure 4.3 represents the loss graphs for a Bi-LSTM network with single atten-

tion and hierarchical attention. We can observe that using hierarchical attention

provides better accuracies as it analyses the document by sentence structure which

takes important words into consideration. Similarly, using a large dataset significantly

increases the classification accuracy value for this architecture.



62

Figure 4.3: Bi-LSTM network loss values

The classification of social unrest related documents is almost perfect using Fast-

text classifier. After evaluating several classification techniques, we can say that

models which consider the contextual information rather than traditional approaches

perform better. The embeddings obtained at the final layer of either Fasttext or the

Bi-LSTM models can be used further in the 5W extraction process. For example, an

additional similarity score which calculates the cosine similarity between a sentence

and the obtained document embeddings from these processes can be utilized in the

candidate ranking task. Overall, the classification processes discussed in this section

can be incorporated in to the 5Ws extraction framework.

4.2.2 Evaluation of the 5WE approach

The results obtained by the 5Ws extraction process are described below. Since, most

of these algorithms depend on the usage of preposition scores obtained from a large

set of documents. We describe the process of obtaining those scores and present the

distributions of those scores. Then we describe the annotation dataset and the evalu-

ation methods used for obtaining accuracies. We also discuss the failures/drawbacks
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of our 5Ws extraction process. Finally, we present the correlation among individual

scores that are used for calculating final scores.

Preposition scores are used in where and who extraction processes. These scores

are extracted using a large social unrest related news articles dataset consisting of

24000 articles using the approach described in Section 3.3. The prepositions ordered

by their likelihood scores are then utilized in scoring the candidates. The prepositions

for where and who are obtained independently and their distributions are presented

in Figures 4.4 and 4.5. This data driven approach can be easily tailored for other

domains like human rights violation by considering articles related to that specific

domain.

Figure 4.4: Preposition weights associated with locations.
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Figure 4.5: Preposition weights associated with who candidates

Also, the number of occurrences of the prepositions for where was much lower

compared to who. So, even though towards appears less frequently, it is strongly

associated with a location candidate whenever it occurs. But the same cannot be said

about at for who candidates as the likelihood of at before a name or organization is

much lower.

In this study, we evaluated 74 manually annotated news articles for 5Ws by two

human coders whose ICR values are presented in Table 4.5. All of the news articles

were annotated by at least 2 human coders. If the two coders agree on a W annota-

tion, then it is considered as ground truth. If they do not agree, then the union of

annotations by both coders is considered as ground truth. Some news articles doesn’t

contain any annotation for why and the ground truth for those articles is given as

nan (not available). All of these articles were given as inputs to the 5Ws extraction
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processes and evaluated using three evaluation methods as discussed below.

• Exact Match: The candidate with the highest score produced by the 5Ws ex-

traction processes should match the ground truth annotation.

• Top-3 Match: The ground truth annotation for a W is present in the set of

top-3 candidates ordered by scores.

• Candidate Check: The ground truth annotation is present in the set of all

extracted candidates. It captures the accuracy of the candidate identification

task.

The accuracies obtained for each individual 5Ws extraction process using each

of the three evaluation methods are presented in Table 4.11. The numbers in the

parenthesis represent the number of ground truth annotations for 74 documents. To

better improve the accuracies two additional verbs (demand, against) are included for

extracting why. Extracting candidates for why is significantly challenging compared

to other W candidates as an article might or might not contain a reason/cause men-

tioned in it. Our approach was able to extract why candidates for only 43 articles

and return nan for remaining articles. It is even challenging for human annotators for

identifying why as different articles might report it using different syntactic styles.

Table 4.11: Accuracies of the 5Ws extraction processes

W Exact Top-3 Candidate
Match (%) Match (%) Check (%)

Where (139) 68.9 82.4 85.1
When (98) 71.6 91.8 91.8
Who (144) 48.6 74.3 97.2
What (84) 67.5 83.8 89.1
Why (61) 32.4 32.4 33.8
All 5Ws 57.8 72.9 79.4
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The candidate identification task was successful in all Ws expect why. Next,

we report the accuracies obtained by considering only the articles for which at least

one candidate is generated for every W (42 articles) in Table 4.12. The number of

ground truth annotations for these 42 articles are presented in the parenthesis in Table

4.12. We can observe that the accuracy for why increases if at least one candidate is

produced.

Table 4.12: Accuracies of the 5Ws extraction processes if at least one candidate is
extracted for every W .

W Exact Top-3 Candidate
Match (%) Match (%) check (%)

Where (67) 61.9 80.9 85.7
When (56) 78.5 88.1 88.1
Who (82) 40.5 64.3 95.2
What (57) 80.9 80.9 85.7
Why (48) 57.1 57.1 59.8
All 5Ws 63.8 74.3 82.9

Comparing Tables 4.11 and 4.12, we can observe that the overall accuracy of

5WE increases if at least one candidate is extracted for every W . There is a slight

improvement in accuracy for where and a significant improvement for why. However,

the accuracies for when, who and what decrease slightly. 5WE was able to extract

candidates with high accuracy and was also able to rank candidates with comparable

accuracy to the ICR value. The top-3 match and the candidate check strategies were

surprisingly better than our human coders.

However, comparing the performance of this approach to existing approaches is not

feasible because of the lack of a publicly available dataset. Other proposed approaches

have either used a non-disclosed dataset or conducted experiments only on a specific

W . The Giveme5W approach [47] obtains an average precision of 0.70 which is equal

to the top-3 match accuracy value by 5WE.
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The results for when and what that have either simple phrases as answers or a

well defined structure have higher accuracies. The accuracies for where and who are

lower compared to when and what because, the candidates for where and who are

proper nouns which are specific to a particular geographical region. For example,

Ex-MLA should be candidate for who, but is not captured by the who extraction

process as it isn’t included in the list of persons/organizations. Several other person

names in India are similar to certain location names which aren’t captured by the

NER process.

4.3 Additional Considerations Regarding 5Ws

5WE performed better for all Ws except why as shown in Table 4.11. The accuracies

of 5WE depend on the performance of different natural language processing tech-

niques utilized in the process. The where extraction algorithm was able to extract

the candidates but wasn’t able to rank them according to their importance to the

article which might be due to the absence of specific locations in the gazetteer. For

example, a small street named Hydernagar has been extracted but wasn’t present in

the gazetteer, then it receives a lower score compared to other candidates. Another

failure case, might be where the algorithm failed to extract a candidate because it

is annotated as other by the NER. This process can be improved by using a better

NER system that is specifically trained on location from a certain region, and using

an extensive list of locations as gazetteer.

Table 4.13 presents the correlation among the individual scores used for obtaining

a final where score. We can observe that position score and sentence score are closely

related. This analysis can be useful for ignoring some of the scores or providing appro-

priate weights to individual scores in the computation of final score. The preposition
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scores that were used in the where extraction process had little impact on the final

score because the scores for most of the prepositions are less than 0.4 which can be

observed in Figure 4.4. Also, when the evaluation dataset is manually observed, the

prepositions preceding location names have very low scores.

Table 4.13: Correlation among individual scores used for computing where final score

Scores
position sentence gazettee title unrest preposition final

position 1 -0.0373 0.5708 0.0445 0.1052 -0.0505 0.7275
sentence -0.0373 1 -0.0562 0.7859 0.1017 0.0276 0.2993
gazetttee 0.5708 -0.0562 1 0.1490 0.0374 0.0733 0.8079
title 0.0445 0.7859 0.1490 1 0.0503 -0.0316 0.4697
unrest 0.1052 0.1017 0.0374 0.0503 1 -0.3119 0.3614
preposition -0.0505 0.0276 0.0733 -0.0316 -0.3119 1 0.0632
final 0.7275 0.2993 0.8079 0.4697 0.3641 0.0632 1

The when extraction algorithm performs better compared to all the other ap-

proaches based on the results from Tables 4.11 and 4.12 because, an article usually

contains very few candidates for when which are represented using a standard format.

The SU-Time was able to extract almost all candidates present in an article. The

failure cases for this method might include extracting locality specific event dates

like state formation day, state specific festival day etc. Additional lists consisting of

locality-specific dates can be provided to the algorithm to better improve its accuracy.

Table 4.14 represents the correlation among the scores used for computing the final

when score. We can observe that the date difference score and the distance to where

score have high correlation compared to the frequency scores. As a news article usu-

ally mentions a date just once, the frequency score didn’t help much in computing

the final score.
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Table 4.14: Correlation among individual scores used for computing when final score

Scores
date difference frequency distance to where final

date difference 1 -0.0461 0.1790 0.7930
frequency -0.0461 1 -0.1827 -0.1297
distance to where 0.1790 -0.1827 1 0.7411
final 0.7930 -0.1297 0.7411 1

The who extraction algorithm was able to identify candidates with high accuracy

but failed to rank them based on their importance in a document and can be viewed

in the Table 4.11. This failure can be attributed to the limitations of the co-reference

resolution system used. Since, an article usually contain more proper nouns corre-

sponding to either people or organization, it is common for a co-reference resolution

system to make more mistakes in distinguishing the pronouns as shown in Figures 4.6

and 4.7. This failure in turn affects the frequency and the domain-specific scores used

for computing the final scores. The failure cases for this method includes extracting

common designated person names like Governor, Manager, Leader of a Corporation

etc., as the NER system annotates these words as other category. Additional list of

person names, designations can be used for improving the results of who. Table 4.15

includes the correlation among different individual scores used in computing the final

score for who.

Figure 4.6: Correct coreference resolution
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Figure 4.7: Coreference resolution by CorefAnnotator [26]

Title score was not more useful in computing the final score for who candidates.

Also, an interesting observation is that preposition scores were more useful for rank-

ing who candidates but not for where candidates as shown in Table 4.12. Also,

unrest scores were more useful for ranking who candidates as sentences are usually

mentioned in the form who-did-what-to-whom. If the what phrase contains an unrest

related word, then the associated who candidate receives higher unrest score. An-

other important thing to note is that even though unrest scores are highly correlated

with final scores, the accuracy for who using exact match strategy is less as shown in

Tables 4.11 and 4.12. This means that unrest scores might have negatively impacted

ranking who candidates.

Table 4.15: Correlation among individual scores used for computing who final score

Scores
position sentence frequency title unrest preposition final

position 1 0.0403 0.0100 -0.0679 0.0404 -0.2162 0.5388
sentence 0.0403 1 0.1479 -0.0137 1 -0.0960 0.6448
frequency 0.0100 0.1479 1 -0.0322 0.1479 -0.0467 0.3654
title -0.0679 -0.0137 -0.0322 1 -0.0137 0.0872 -0.0154
unrest 0.0403 1 0.1479 -0.0137 1 -0.0960 0.6448
preposition -0.2162 -0.0960 -0.0467 0.0872 -0.0960 1 0.3037
final 0.5388 0.6448 0.3654 -0.0154 0.6448 0.3037 1

The what extraction algorithm performs reasonably better compared to who ex-

traction. Even though the extraction process for what is dependent on who, it ob-

tained better results because of the syntactic structure of sentences in an article. For
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example, if a sentence consists of two actors and an action phrase. The who extraction

algorithm might provide higher score to just one actor and hence receive lower exact

match accuracy, but the what algorithm considers the entire action phrase which

matches with the ground truth. Since the action phrases are matched based on the

presence of a vocabulary related word in them, the algorithm is dependent on the

vocabulary. For example, if a phrase ’sought asylum at local church’ is annotated as

ground truth and the verb seek is not present in the domain-specific vocabulary, then

the algorithm fails to extract the correct candidate. This process can be improved by

using a sophisticated vocabulary with a better dependency parser.

Table 4.16 includes the correlation among different individual scores used in com-

puting the final score for what. We can observe the high correlation between the

distance to best where and who candidates and the final scores as important infor-

mation tend to occur closely in a document. Also, since our what extraction approach

considers the verb phrase around who candidates, the distance score is more corre-

lated.

Table 4.16: Correlation among individual scores used for computing what final score

Scores
similarity distance to where position final

and who

similarity 1 0.1297 0.3739 0.3089
distance to where and who 0.1296 1 0.3011 0.9812
position 0.3739 0.3011 1 0.4110
Final 0.3089 0.9812 0.4110 1

Lastly, the why extraction algorithm performs worse compared to all the remaining

W extraction approaches because extracting causal relationships from text itself is an

arduous task. Using additional list of causal verbs and conjunctions can improve the

accuracies of this extraction process. Identifying candidates for why depends on the
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context of an event mentioned in an article and not only on the syntactic structure of

a sentence. Table 4.17 includes the correlation among different individual scores used

in computing the final score for why. Since only 2 scores are used for computing the

final score for why, both of them are highly correlated. As most of the information

tends to occur at the start of text, all of the 5Ws scores are either moderately or

highly correlated to their final scores.

Table 4.17: Correlation among individual scores used for computing why final score

Scores
position distance to where final

position 1 0.9477 0.9926
distance to where 0.9477 1 0.9793
Final 0.9926 0.9793 1

Overall, the 5WE performed well in extracting the answers to Journalistic 5Ws

with accuracies in the range 63% to 83% as shown in Table 4.12. Furthermore, most

of the component scores have been shown to be useful in ranking the candidates.
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Chapter 5

Conclusion and Future Work

Extracting Journalistic 5Ws from text is important for understanding many social

processes. In this thesis, we focused on developing a generalized framework for au-

tomatically extracting 5Ws using syntactic and semantic cues present in text. First,

a classifier to identify articles related to a domain is developed. Several machine

learning and deep learning algorithms are evaluated on a dataset consisting of social

unrest articles.The impact of domain specific keywords in the process of classification

using fasttext is discussed in Section 4.2.1.

The domain specific articles are then analyzed through a set of algorithms for

extracting 5Ws based on heuristics that leverage specific words and their semantic

representations. Challenges associated with the extraction of each W and the different

principles used for ranking the 5W candidates are discussed in Section 3.3. Extending

this generalized approach to a specific domain is studied in detail using a manually

annotated 5Ws dataset of social unrest related articles. The entire 5W extraction

approach is evaluated using 3 strategies and the results obtained by 5WE are closer

to the ICR values by human coders. We further discuss the correlation among the

individual scores used in computation of final scores. The drawbacks related to these

approaches and ways to improve them in Section 4.3.

This approach can be improved using better NER, coreference resolution systems.
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Further analysis about the individual scores can be conducted to determine the opti-

mal set of weights for computing final scores. The potential future research directions

include:

• These results can be used for clustering news articles based on 5Ws context and

also for linking events across multiple sources. The where extraction process can

be extended to obtain geographic coordinates which can be used for visualizing

all related events on a map.

• The obtained 5Ws can be combined with socio-demographic features to simulate

and forecast future events.

• The same approach can be customized to extract event details from social media

like tweets, posts across multiple languages to perform real-time analysis.

• The 5WE can be further extended to include the event descriptor how.

• Developing an integrated 5WE using confidence measures for ranking a W can-

didates based on other Ws. For example, in this process we use the distance

to where candidate as an individual score in all the subsequent W extraction

processes. This can be made an iterative process so as to use all other W scores

while scoring a specific W .
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[5] Felipe Almeida and Geraldo Xexéo. Word embeddings: A survey. arXiv preprint

arXiv:1901.09069, 2019.

[6] Bengt Altenberg. Causal linking in spoken and written english. Studia linguis-

tica, 38(1):20–69, 1984.

[7] Nabiha Asghar. Automatic extraction of causal relations from natural language

texts: a comprehensive survey. arXiv preprint arXiv:1605.07895, 2016.



76

[8] Ben Athiwaratkun, Andrew Gordon Wilson, and Anima Anandkumar.

Probabilistic fasttext for multi-sense word embeddings. arXiv preprint

arXiv:1806.02901, 2018.

[9] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint

arXiv:1409.0473, 2014.

[10] Regina Barzilay and Michael Elhadad. Using lexical chains for text summariza-

tion. Advances in automatic text summarization, pages 111–121, 1999.

[11] Sudeep Basnet, Leen-Kiat Soh, Ashok Samal, and Deepti Joshi. Analysis of mul-

tifactorial social unrest events with spatio-temporal k-dimensional tree-based

dbscan. In Proceedings of the 2nd ACM SIGSPATIAL Workshop on Analytics

for Local Events and News, page 2. ACM, 2018.

[12] BBC. BBC news dataset. http://mlg.ucd.ie/datasets/bbc.html/, 2005.

[13] Eduardo Blanco, Nuria Castell, and Dan I Moldovan. Causal relation extrac-

tion. In Lrec, 2008.

[14] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. En-

riching word vectors with subword information. Transactions of the Association

for Computational Linguistics, 5:135–146, 2017.

[15] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[16] Jose Camacho-Collados and Mohammad Taher Pilehvar. From word to sense

embeddings: A survey on vector representations of meaning. Journal of Artifi-

cial Intelligence Research, 63:743–788, 2018.



77
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