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GENERALIZED FOURIER-FEYNMAN TRANSFORMS,
CONVOLUTION PRODUCTS, AND
FIRST VARIATIONS ON FUNCTION SPACE

SEUNG JUN CHANG, JAE GIL CHOI AND DAVID SKOUG

ABSTRACT. In this paper we examine the various rela-
tionships that exist among the first variation, the convolution
product and the Fourier-Feynman transform for functionals
of the form F(z) = f({a1,2),...,{an,z)) with z in a very
general function space Cq 5[0, T1.

1. Introduction. In [11], Kim, Ko, Park and Skoug, working in
the setting of one-parameter Wiener space Cy|0, T] established several
interesting relationships involving the Fourier-Feynman transform, the
convolution product, and the first variation of functionals F' of the form

(11) F(l‘) = f(<0(1,l‘>, cee 7<anal‘>)

where (a,z) denotes the Paley-Wiener-Zygmund stochastic integral
I a(t) da(t).

In this paper, we also study functionals of the form (1.1) but with =
in a very general function space C, (0,7 rather than in the Wiener
space Cy[0,T]. The Wiener process used in [11] is free of drift and is
stationary in time while the stochastic processes used in this paper are
nonstationary in time and are subject to a drift a(t). In turns out, as
is pointed out in Remark 3.1 below, that including a drift term a()
makes establishing various relationships among transforms, convolution
products, and first variations very difficult.

By choosing a(t) = 0 and b(t) = ¢ on [0,T], the function space
Ca,p[0, T] reduces to the Wiener space Cy[0,T7], and so all of the results
in [11] follow immediately from the results in this paper.
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In Section 3 of this paper we establish all seven of the distinct
relationships involving exactly two of the three concepts of “transform,”
“convolution product” and “first variation” where each concept is used
only once. In Section 4 we establish all 11 of the relationships involving
all three of these concepts where each concept is used exactly once.

2. Definitions and preliminaries. In this section we briefly list
the preliminaries from [4] and from [6] that we need to establish the
various formulas in Sections 3 and 4 below; for more details see [4, 6].

Let D = [0,T], and let (€2,B,P) be a probability measure space.
A real-valued stochastic process Y on (Q2,B,P) and D is called a
generalized Brownian motion process if Y (0,w)=0 almost everywhere
and for 0 =ty < t; < --- < t, < T, the n-dimensional random vector
(Y(t1,w), ..., Y (t,,w)) is normally distributed with density function

. n —-1/2
k(@) = (20" [T0) - ey-1) )

2.1 =t
& ox {_1 —(Uj—l—a(tj—l)))2}
172 J) = b(t;-1)

where 7 = (91,...,7n), Mo = 0, £ = (t1,... ,tn), a(t) is an absolutely
continuous real-valued function on [0, T'] with a(0) = 0, a/(¢) € L?[0,T]
and b(t) is a strictly increasing, continuously differentiable real-valued
function with 5(0) = 0 and '(¢) > 0 for each t € [0,T].

As explained in [14, page 18-20], Y induces a probability measure
p on the measurable space (RP,BP) where RP is the space of all
real valued functions z(t), t € D, and BP is the smallest o-algebra of
subsets of R” with respect to which all the coordinate evaluation maps
e:() = z(t) defined on RP are measurable. The triple (R?, BL, 1)
is a probability measure space. This measure space is called the
function space induced by the generalized Brownian motion process
Y determined by a(-) and b(-).

We note that the generalized Brownian motion process Y determined
by a(-) and b(-) is a Gaussian process with mean function a(t) and
covariance function r(s,t) = min{b(s),b(t)}. By Theorem 14.2 [14,
page 187], the probability measure p induced by Y, taking a separable

— ((n; — a(t)))
pt b(t

J
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version, is supported by C, [0, (which is equivalent to the Banach
space of continuous functions z on [0,77] with #(0) = 0 under the
sup norm). Hence, (Cy4[0,7],B(Ca[0,1]), 1) is the function space
induced by Y where B(C, [0, T]) is the Borel o-algebra of C, [0, T'.

A subset B of C, [0, T] is said to be scale-invariant measurable [10]
provided pB is B(C, [0, T])-measurable for all p > 0, and a scale-
invariant measurable set N is said to be a scale-invariant null set
provided p(pN) = 0 for all p > 0. A property that holds except on a
scale-invariant null set is said to hold scale-invariant almost everywhere
(s-a.e.). If two functionals F' and G defined on C, [0, T] are equal s-
a.e., we write F' ~ G.

Let L2,[0,7] be the Hilbert space of functions on [0,7] which
are Lebesgue measurable and square integrable with respect to the

Lebesgue Stieltjes measures on [0, 7] induced by a(-) and b(-); i.e.,
(2.2)

T T
Lz’b[O,T] = {v : / v?(s) db(s) < co and / v2(s) d|a|(s) < oo}
0 0
where |a|(t) denotes the total variation of the function a on the interval
[0,¢].
For u,v € L2 ,[0,T], let

(2.3) (Uy V) p = /0 u(t) v(t) d[b(t) + |a|(¢)]-

Then (-,-)q, is an inner product on L2 [0, 7] and [[uflas = v/(u, w)a,p
is a norm on L? [0, T]. In particular, note that |lu[l,s = 0 if and only
if u(t) = 0 almost everywhere on [0, T]. Furthermore (L2 ,[0,T7, || |la,5)
is a separable Hilbert space.

Let {¢;}72, be a complete orthogonal set of real-valued functions of
bounded variation on [0, 7] such that

| # k
(¢]7¢k) {(; ;fk

and for each v € L2 ,[0,T7, let

(2.4) = (v, 5)ap®;(t)
j=1
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for n = 1,2,.... Then, for each v € Lib[U,T], the Paley-Wiener-
Zygmund (PW?Z) stochastic integral (v, ) is defined by the formula
T
(2.5) (v,z) = lim vn (t) dz(t)
n—oo 0

for all x € C,[0,T] for which the limit exists; one can show that
for each v € L2,[0,T], the PWZ integral (v,z) exists for p-a.e.
S C(L,b[O,T].

We denote the function space integral of a B(C, [0, T])-measurable
functional F' by

(2.6) E[F] = /C P )

whenever the integral exists.

We are now ready to state the definition of the generalized analytic
Feynman integral.

Definition 2.1. Let C denote the complex numbers. Let C; =
{fAeC:Rex>0}and C; = {A € C: A #0and ReX > 0}. Let
F : Cyp[0,T] — C be such that for each A > 0, the function space
integral

= 172 T
JO) = /C o O

exists for all A > 0. If there exists a function J*(\) analytic in C
such that J*(X) = J(XA) for all A > 0, then J*()\) is defined to be the
analytic function space integral of F' over C, [0, T| with parameter A,
and for A € C we write

(2.7) E*[F] = B2 [F(x)] = J* (V).

Let ¢ # 0 be a real number, and let F' be a functional such that
E?™x[F| exists for all A € Cy. If the following limit exists, we call it
the generalized analytic Feynman integral of F' with parameter ¢ and
we write

(2.8) E™a[F] = E2[F(z)] = lim E*™[F]

A——iq

where A approaches —ig through values in C,.
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Next, see [1, 4, 6-9], we state the definition of the generalized
analytic Fourier-Feynman transform (GFFT).

Definition 2.2. For A € C; and y € C, [0, T, let
(2.9) TA(F)(y) = EZ™[F(y + 2))-

For p € (1,2], we define the L, analytic GFFT, T,(p; F) of F, by the
formula (A € Cy)

(2.10) Ty (55 F)(9) = Limor iy T2 (F)()
if it exists; i.e., for each p > 0,
lim I TA(F) (py) — Ty(p; F)(py)[" dpu(y) =0

A—)*iq Ca,b[ovT]
where 1/p+1/p’ = 1. We define the Ly analytic GFFT, T,(1; F) of F,
by the formula (A € C;.)

(2.11) T,(1; F)(y) = lim T5(F)(y)

A——iq

if it exists.

We note that for 1 < p < 2, T,(p; F) is only defined s-a.e. We also
note that if T,(p; F') exists and if F ~ G, then T,(p;G) exists and
Ty(p; G) = To(p; F).

Definition 2.3. Let F and G be measurable functionals on
Cap[0,T]. For A € C, we define their convolution product (if it exists)
by
(2.12) (F*G)a(y)

B { B2 [F((y+2)/vV2)G((y —2)/v2)] AeCy

B [F((y +2)/VDG((y —2)/V2)] A= —ig, g€ R, g #0.

Remark 2.1. (i) When A = —ig, we denote (F * G)x by (F * G)q.

(ii) Our definition of the convolution product is different than the
definition given by Yeh in [13] and used by Yoo in [15]. In [13] and [15],
Yeh and Yoo study relationships between their convolution product and
Fourier-Wiener transform.
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We next give the definition of the first variation of a functional F' on
Cap[0,T7].

Definition 2.4. Let F be a B(C, [0, T])-measurable functional on
Cap[0,T], and let w € Cy 5[0, T]. Then

(2.13) OF (z|w) = (%F(w +hw)|

(if it exists) is called the first variation of F.

Throughout this paper, when working with 6F (z|w), we will always
require w to be an element of A where
(2.14)

A={we Cup[0,T]:w(t) = /Ot z(s) db(s) for some z € L [0, T]}.

Let {a1,... ,,} be an orthonormal set of functions from (L2 , [0, T7, ||-
lla,p). Then for j € {1,... ,n}, let

T T
(2.15) A, = / o;(t) da(t) and B; — / o(t) db(t),

0 0
and note that B; is always positive, while A; may be positive, negative
or zero. Furthermore, for @ € R", we will write f(%) = f(u1,... ,u,)
and f(ﬁ+ <627 y)) = f(ul + <alay>a cee,Up T+ <anay>)‘

Next we state a very fundamental integration formula for the function
space Cy [0, T.

Theorem 2.1. Let {a,...,a,} be an orthonormal set of functions
from (L2 400,71, - [|lap). Let f: R™ — C be Lebesgue measurable, and
let

(2.16) F(z) = f({a1, ), ..., {an, x)) = f(&, z)).

Then
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E[F| = /C  f(@ ) dutz)

_ <j1izw3j>l/2Anf(ﬁ)exP{ i%}da

Jj=1

in the sense that, if either side exists, both sides exist and equality holds.

We finish this section by describing the spaces B(p;m) of the func-
tionals that we will be working with in this paper. Let n be a
positive integer(fixed throughout this paper), and let {as,...,a,}
be an orthonormal set of functions from (L?L,b[O,T], Il - llap)- Let m
be a nonnegative integer(fixed throughout this paper). Then, for
1 < p < oo, let B(p;m) be the space of all functionals of the form
(2.16) for s-a.e. & € C, [0, T] where all of the kth order partial deriva-
tives fj,,. e (U1, .., un) = fiy,. 5. (@) of f : R" — R are contin-
uous and in LP(R") for k € {0,1,...,m} and each j; € {1,...,n}.
Also let B(oo;m) be the space of all functionals of the form (2.16)
for s-a.e. ¢ € Cy[0,T] where for k = 0,1,...,m, all of the kth or-
der partial derivatives fj, . ;. (@) of f are in Cy(R™), the space of
bounded continuous functions on R™ that vanish at infinity. Note that
B(p;m +1) C B(p;m) for m=0,1,....

We will concentrate on the space B(2;m) since the L2-theory is more
relevant in quantum mechanics and other applications than the LP-
theory for 1 < p < 2.

3. Relationships involving two concepts. In this section, we
establish all of the various relationships involving exactly two of the
three concepts of the generalized L, Fourier-Feynman transform, the
convolution product and the first variation for functionals in B(2;m).
These seven distinct relationships are given by equations (3.17)—(3.19),
(3.28), (3.29), (3.33) and (3.37) below.

Remark 3.1. Let F € B(2;m) be given by equation (2.16). In
evaluating E[F(A\~1/2z)] for A\ > 0, the expression
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(3.1) H(\a —exp{ i f“’ A)* }

j=1

occurs with A; and B; given by equation (2.15) above. Clearly for
A>0, [H(A;u)| <1foralld e R"since B >0forall j=1,...,n
But for A € C,, |H(); @)| is not necessarily bounded by 1. Note that
for each A € C, VA = c+di with ¢ > |d| > 0. Hence, for each X € C.,.
(3.2)

" [(¢? — d% + 2edi)u? — 2(c + di)Aju; + A%
H(A,ﬁ):exp{ . ! }7
2 25,
and so
" [(? = d*)u? — 2cAju; + A
(3.3) |H(X\; @) :exp{ - J J }
2. 2B,

Note that for A € Cy, Re(v/A) = ¢ > |d| = |Im (vA)| > 0, which
implies that ¢ —d? > 0. Hence, for each A\ € C,, H(\; @), as a function
of 4, is an element of LP(R™) for all p € [1,4o0]; in fact, H(A; @)
also belongs to Cy(R™), the space of bounded continuous functions on
R"™ that vanish at infinity. However, if A = —iq € é+ — C,, then
VX = \/=iq = ¢+ di with ¢ = /|q|/2 = |d|. Thus, for A = —ig,
geR {0}, c*—d?>=0, and so

" [V2lqlAju; — A3]
3 V24l }

B D) = oo o

j=1

which is not necessarily in LP(R™) for any p € [1,400]. Thus, to obtain
the existence of T4(2; F),T4(2; G), (F * G)4, etc., we will need to put
additional restrictlons on F' and G besides simply requiring them to be
elements of B(2;m).

The inequality
(3.5)

. "\ cAiu; 1+ V2.2 1A
|H()\;u)|§exp{2%}§exp{<%> Z| é.”}’

j=1 J j=1 J
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which holds for all A € C, with ¢ = Re (V) < ((1 + |q|)/2)*/2, is used
several times below.

Remark 3.2. Note that in the setting of [11], a(¢t) = 0 and b(t) = ¢t
implies that A; = 0 and B; = 1 for all j = 1,...,n; and thus
|[H(\;4@)| < 1forall X e Cy.

The following lemma, used in [4], follows easily from the definitions
of 6F (y|w) and B(p; m).

Lemma 3.1. Let 1 < p < 400 be given, let m be a positive integer,
let F € B(p;m) be given by equation (2.16), and let w be an element of
A. Then

n

(3.6) OF (ylw) =) (e, w)f;((y))

i=1

for s-a.e. y € Cup[0,T]. Furthermore, as a function of y, 6F (y|lw) €
B(p;m —1).

Let F € B(2;m) be given by (2.16), let G € B(2;m) be given by

(3.7) G(y) = g({d,9)),

and for A € Cy, let

(3.9 w0 = (11 27;],)1/2,

and let a

B9 =K [ f(gj;)g(gﬁﬁ) H(\ ) da.

Lemma 3.2. Let \ € (~3+ be given. Let G € B(2;m) be given by
(3.7). Let F € B(2;m) given by (2.16) be such that

f(gj;) H(\ )

2
du

(3.10) M(X; €) :/n
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is an element of LY(R™). Then y();-) € L2(R™) where (\; ) is given
by equation (3.9).

Proof. By Hélder’s inequality,

Gy [ P

S aa
<ie [ ][

~ KL P22 gl [ M) dE < o0

[ (55

In order to show that (F * G), exists as an element of B(2;m),
it will be helpful to first show that for each A € C., wil,___,il()\;g)
belongs to L2(R"), as a function of &, for each I € {0,... ,m} and each
ij S {1, ,n}.

since

2

di=2" [ |g(@)}da =2l o

Lemma 3.3. Let A and G be as in Lemma 3.2. Let F € B(2;m)
given by (2.16) be such that

(3.12) /R R <5:/L;> H(\ @)

is an element of L*(R™) for each k € {0,...,m} and each j; €
{1,...,n}. Then 1/)1'17___7“()\;5) is an element of L?*(R™) for each
1 €{0,...,m} and each i; € {1,...,n} and hence ¥ (X; (&,y)) is an
element of B(2;m).

2
du

Proof. This lemma follows immediately from Lemma 3.2 because
Yiy i (A €) is the sum of 2! terms, each of which can be shown to
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belong to L*(R™) using Hélder’s inequality, condition (3.12), and the
fact that all of the jth order partial derivatives of g belong to L*(R"™)
for each j € {0,...,m} because G € B(2;m). Thus, ¥(X;{a,y)) €
B(2;m). O

Theorem 3.4. Let g € R — {0}, let G € B(2;m) be given by (3.7),
and let F' € B(2;m) given by (2.16) be such that

(3.13) / fin (i%“) exp{2<1+TM>l/22n:|Au]|}

as a function of £, is an element of L'(R™) for each k € {0,...,m}
and each j; € {1,... ,n}. Then (F*Q), exists as an element of B(2;m)
and for s-a.e. y € C,[0,T) is given by the formula

(3.14) (F * G)qly) = ¥(—ig; (@, )
with ¢(A;§:§ given by equation (3.9).

Proof. First note that inequality (3.5) together with condition (3.13)
implies that condition (3.12) holds with A\ = —ig. Hence by Lemma 3.3,

¥(—ig; (&, y)) belongs to B(2;m).
Next note that for all A € C with Re (VA) < ((1+ |q])/2)Y/2,

6.15) ‘Kn(k)f<M>H(>\;ﬁ)g<w>‘

V2 V3
< Kn<1+|q>f(%)\

() )

for s-a.e. y € Cup[0,T]. But the right side of (3.15) is independent of A,
and as a function of @, is an element of L!(R") since the product of two
L2-functions is an L'-function. Hence, by the dominated convergence
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theorem,

(F" % G)q(y)

= bp )
- b))
Jim K, () / f <<&’ i’}; ﬁ) (2 %‘ ﬁ) H()\ ) di
Kn(—iQ)/n f<<07’ v+ ﬁ)g (d,y) = ﬁ)H(—iq; @) dii
= P(—ig; (@, y))

for s-a.e. y € Cup0,T]. Thus, (F xG), is an element of B(2;m). o

Theorem 3.5. Let q, G and F be as in Theorem 3.4. Then, for
each w € A, §(F = G)4(y|lw) exists as an element of B(2;m — 1), and
for s-a.e. y € Cy[0,T] is given by the formula

(3.16) O(F % G)q(y|w)

o) |

\
N
QL
<
~
+
3]
N———
M 3
—~
8
£
i
N
—~
Q
<
~
|
IS
N———

Proof. By Theorem 3.4, (F * G), exists as an element of B(2;m)
and is given by equation (3.14). Hence, by Lemma 3.1, 0(F * G)4(y|w)
exists as an element of B(2;m — 1) and is given by the formula

(3.17) O(F * G)y(y|lw) = Z ag, Wiy (—ig; (A, y)).
1=1
Formula (3.16) now follows directly from (3.17) and (3.9). O

Next we obtain formulas for the convolution product of the first
variation of functionals. In Theorem 3.6, we take the convolution with
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respect to the first argument of the variations while in Theorem 3.7,
we take the convolution with respect to the second argument of the
variations.

Theorem 3.6. Let q, G and F be as in Theorem 3.4. Then, for
each w € A, the convolution product (6F (-|w) * §G(-|w))q exists as an
element of B(2;m — 1), and for s-a.e. y € Cy[0,T] is given by the
formula

(3.18)  (0F(-|w) * 6G(- |w))q(y)n ) )
o [, [ s (255)]
: {i@,w)g,(@iyﬂm—iq; ) di.

=1

Proof. The fact that for all 5,1 € {1,... ,n},

n(—ig; &) E/ fg(gj—u)gl<%>ﬂ(—iq;ﬁ)dﬁ

belongs to L2(R") follows from Hélder’s inequality. Also n(—ig; (&, y))
is an element of B(2;m — 1) since 7;, ... ,jk(—iq;g) € L?>(R"™) for each
k € {0,...,m — 1} and each j; € {1,...,n}. Equation (3.18) then
follows immediately using the definition of the convolution product,
equation (3.6) and the formula 6G(y|w) = >, (ou, w)gi((&, y)). o

Theorem 3.7. Let ¢ € R — {0}, F € B(2;m) be given by (2.16),
and let G € B(2;m) be given by (3.7). Then, for each w € A and for
s-a.e. y € Coap[0,T], (6F (y|-) * 6G(y|-))q(w) exists and is given by the
formula

(3.19)
(OF (yl) * 6G(y]-))q(w)
1/2 n

= [srworva + () > Aif(6 )|
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1/2 n

Joched (1) > Aw@)]
. 2%’2:;3:]”:(@ u)a((@))-

Furthermore, as a function of y, (0F (y|-) * 6G(y|-))q(w) is an element
of B(1;m —1).

Proof. Using equation (2.17), together with Definition 2.1, it follows
that

. [ (i/9)A; A J#Fl
(3.20) B (o, @) (au, 7)) = { (i/Q)Bi + (i/q)A? j=1
and that

i 1/2
(3.21) E;"e[(ay,z)] = <;> Aj.

Equation (3.19) now follows from the calculation below:

(6F (y]-) * 0G(yl")) g(w)

-l ol 7)

_EKZ 58 o ) (3 0 i )|

A B (o, w){ar, w) — (@, w){ar, @) + (a;, @ ><al, )]
- E:nf ey, z){au, @ }
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i 1/2 i 1/2
. |:<aj, w><al,w) — (§> Al<aj,w> + <§> Aj<al,w)]

. n

+ o 2 hl@ )@ ) B+ A )]

=1

K| =

Jj=1

S [(awrva - ( q)l/ZAl]gl«a, »)

=1

B QLq ;B,ﬁ((o?, y)ai({d,y))

_ [5F(y|w/\/§) n (%)1/2%(@ y>>]
1/2 n

Jsowrarva - (5) S amtian]
=1
g 2 BAE ) (5,0)
using equations (3.20) and (3.21). O
Our next theorem is a statement of Theorem 5.1 in [4].

Theorem 3.8. Let g € R — {0} be given. Let F € B(2;m) given by
(2.16) be such that

L 1+ g\ &N [Au]) -
(3.22) Anlfal,...,ak(§+“)|eXP{( 2 ; B S

is an element of L?*(R™) for each k € {0,...,m} and each j; €
{1,...,n}. Then T,(2;F) is an element of B(2;m) and is given by
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the formula

(3.23) To(2; F)(y) = (—ig; (@, y))
with
(3.24) (N ) = Kn(N) . fE+@)H(\ @) dd, MeC,.

Remark 3.3. If G € B(2;m) given by (3.7) is such that

1/2 n

S 1+|q Aju;
329 [ o alen{ (5 Z' o aa
is an element of L*(R™) for each k € {0,...,m} and each j; €
{1,...,n}, then T,(2; G) € B(2;m) and for s-a.e. y € Cy[0,T],
(3.26) T4(2,G)(y) = 6(—ig; (d,9))
with
(327) 6N E) = Ka(N) / g+ D)H(N @) di, reC,.

Remark 3.4. In the proof of Theorem 5.1 in [4] we showed that for ¢
given by (3.24),

d(X; E) — ¢(—ig; E) almost everywhere on R",
Ie(Xs )ll2 — lle(—ig; -)ll2,

and hence that
[o(A; ) — @(—ig;-)l[2 — 0

as A — —iq through values in C,. Of course the same conclusions hold
for 8(\; €) given by (3.27).

In our next remark we note that the transform with respect to the
first argument of the variation equals the variation of the transform.
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Remark 3.5. For w € A, ¢ € R—{0} and F as in Theorem 3.8 above,
Corollary 5.2 in [4] implies that

0T4(2; F)(ylw) =T4(2; 0F(-|w))(y)
(3.28) Z aj, w)p;(—ig; (&),

which, as a function of y, is an element of B(2;m — 1).

In our next theorem we take the transform with respect to the second
argument of the variation.

Theorem 3.9. Let g € R—{0} be given, and let F € B(2;m) be given
by equation (2.16). Then, for each w € A and s-a.e. y € Cq[0,T],

.\ 1/2 n
i
329 TiFGI)0) =oFGlo) + (1) S Ak
j=1
which, as a function of y, is an element of B(2;m — 1).

Proof. For all A € C,, using (3.6) we see that
TAOF (yl)(w) = EZ[6F (ylw + z)]

= [ Sl + 50|

Jj=1

=Y (@) E (g, w) + (ay,2)]

j—l
A,
= a aj, + =]
Z fi((@,y) { W) \/X]
Letting A — —iq though value in C; yields (3.29) as desired. O

Theorem 3.10. Let q, F and G be as in Theorem 3.4. Furthermore,
assume that

. 1/2 n A
(3.30) /Rn|z/;j1,___,jk(iq;g+a)|exp{<#> Z\ ugl}
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is an element of L?*(R™) for each k € {0,...,m} and each j; €
{1,...,n} with ¢ given by equation (3.9). Then Ty(2;(F * G)q) is
an element of B(2;m) and is given by the formula

(3.31) Ty(2; (F % G)q)(y) = ¥(—ig; (d,y))

with

(3.32)  U(NE) =K,(\) [ o(NE+@)H(N @) dE, e Ci.
Rn

Proof. By Theorem 3.4 we know that (F x G)4(y) = ¥(—ig; (&, y)) €
B(2; m). Then by Theorem 3.8 with F' replaced with (F'*G)4, we know
that
(3.33)

Ty(2; (F * G)g)(y) = Ty(2;9(—ig;-))(y)
= U(—ig; (d,y))

is an element of B(2;m). o
Theorem 3.11. Let g and F be as in Theorem 3.8. Let G € B(2;m)

be as in Remark 3.3. Furthermore, assume that ¢ given by equation
(3.24) is such that

is an element of L*(R™) for each k € {0,...,m} and each j; €
{1,...,n}. Then the convolution product (Ty(2;F) * T4(2;G))q exists
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as an element of B(2;m) and for s-a.e. y € Cy[0,T] is given by the
formula

(3.35) (T4(2; F) + Ty (25 G))g(y) = 2(—ig; (@, y))
where
(3.36) ) )
- E+u E-u g &
(0 ) = Ka() /RH¢<A, = )0<A, = )H(A,u)du, \ed,

with 6(X\; &) given by equation (3.27). That is to say, for s-a.e. y €
Ca b[oa T])

)

(3.37) (T4(%F) x Ty(2;,G))g(y)
= K, (—i Lig G N ) 8N g a da

Proof. By Theorem 3.8 and Remark 3.4 we know that 7,(2; F)(y) =
d(—ig; (@, y)) and T,(2; G)(y) = ¥(—ig; (@, y)) are elements of B(2; m).

Using inequalities (3.5) and (3.34) we see that

(3.38) /R n

is an element of L'(R"™) for each k € {0,...,m} and each j; €
{1,...,n}. Applying Lemma 3.3 with (3.12) replaced with (3.38),
we also see that ®;, . ; (—ig;(d,y)) belongs to B(2;m) for each I €
{0,...,m} and each i; € {1,... ,n}.

%) H(—ig;u)| da

P i < —ig;
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Note that for all A € C4 with Re (V) < ((1 + |q])/2)*/2,

(3.39) ‘Kn(A)¢<A;< \>f ) % )0<A’< ?\Df >‘

< K1+l o (s ELLT)
o (H5) " S el (20T
<)’ [ (0 )

SR ) £

for s-a.e. y € Cy 5[0, T]. But the last expression of (3.39) is independent
of A\, and as a function of @, is an element of L'(R") since the
product of two L2-functions is an L'-function. Hence, by the dominated
convergence theorem,

(Ta(25 F) % Ty(2; G))q(y)

A——ig

(
= lim K,(\) /Rn¢<)\; <&’y>+ﬁ> ()\; <°7"'\’/>§_ ﬁ)H()\;ﬁ)dﬁ

A——1iq
= ®(—ig; (@, y))

for s-a.e. y € Cy 5[0, T7. o

= lim E™ |:T,\(F)

4. Relationships involving three concepts. In this section, we
examine all of the various relationships involving the transform, the
convolution product and the first variation where each operation is
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used exactly once. There are more than six possibilities since one can
take the transform or the convolution with respect to either the first
or the second argument of the variation. To exhaust all possibilities
we need to take the variation of the expressions in (3.33) and (3.37),
the transform of the expressions in (3.17), (3.18) and (3.19), and the
convolution of the expressions in equations (3.28) and (3.29). It turns

out that there are 11 distinct formulas, and these are given by equations
(4.1) through (4.11) below.

In our first theorem we obtain a formula for the transform with
respect to y of the expressions in equation (3.17). We obtain the same
formula by taking the variation of the expressions in equation (3.33).

Theorem 4.1. Let q, F, G and ¥ be as in Theorem 3.10. Then for
each w € A,

(4.1)  Ty(20(F * G)g) (-|w)(y) = 6T4(2; (F * G)g)(y|w)

n

= K,(—iq) Z(aj, w) /Rn ¥ (—ig; (&, y) + ¥)H(—ig; V) d¥

j=1
which, as a function of y, is in an element of B(2;m — 1).
Proof. The first equality in (4.1) follows from Remark 3.5 with F

replaced with (F % G)g. The second equality in (4.1) follows from
equation (3.33) and Lemma 3.1. O

In our second theorem we obtain a formula for the transform with
respect to w of the expressions in equation (3.17).

Theorem 4.2. Let q, G, F and ¥ be as in Theorem 3.4. Then, for
each w € A,

(4.2)  Ty(2;0(F * G)q(yl)(w)
.\ 1/2 n

=0(F * Q)q(ylw) + <é> ZAJ'%'((&a Y))

which, as a function of y, is an element of B(2;m — 1).
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Proof. This result follows immediately by replacing F' with (F x G),
in equation (3.29). o

Next we take the transform of the expressions in equation (3.18).
Again there are two cases since we can take the transform either with
respect to y (Theorem 4.3 below) or else with respect to w (Theorem
4.4 below).

Theorem 4.3. Let q, F, G and ¥ be as in Theorem 3.10. Then for
each w € A,

(4.3)  Ty(2; (OF (-|w) * 6G(-|w))q)(y)

= K2(—ig) 3 Sy wlon,w) | H(—ig; )

j=11=1 Rn
(@,y) +7+u (d,y) +7—u I N
. f-<7 g | ———— |H(—iq; @) du ) dv
(s (5 vz )
which, as a function of y, is an element of B(2;m — 1).

Proof. A direct calculation using (3.18) shows that (4.3) holds for s-
a.e. y € Cy[0,T]. Now condition (3.30) implies that the righthand side
of (4.3) belongs to B(2;m — 1) because for each j and [ in {1,... ,n},

%Kn(_iQ) / i <£ +\1/7; ﬁ>gz <£ +j§_ ﬁ) H(—ig; @) da

is one of the four terms involved in the calculation of

- 0 (0 -
'(/}j,l(_iQ;é.‘i"l_j) = 8—&<a—§¢(—lq,f+ﬁ)> O

Theorem 4.4. Let q, G and F be as in Theorem 3.4, and let
w € A. Then, taking the Lo analytic transform with respect to the
second argument of the variations of the expressions in equation (3.18)



FUNCTION SPACE 783

yields the formula

(4.4) BR[(0F (Jw + @) * 0G (-|w + ))4(y)]

(
B oo+ () s ()

j=11

which, as a function of y, is an element of B(2;m — 1).

Proof. To obtain formula (4.4), we simply substitute the righthand
side of equation (3.18) into the lefthand side of (4.4) and then evaluate
this analytic Feynman integral using (3.20) and (3.21). u]

Our next goal is to obtain formulas for the transform of the convo-
lution product with respect to the second argument of the variations.
Again, there are two cases since we can take the transform of the expres-
sions in equation (3.19) either with respect to w (Theorem 4.5 below)
or else with respect to y (Theorem 4.6 below).

Theorem 4.5. Let q, F and G be as in Theorem 3.7 above. Then
for each w € A and s-a.e. y € C,[0,T],

(4.5)  Ty(25 (6F (yl-) * 6G(yl"))g) (w)
/

- [5F(y|w/\/§) + (%)1 ziAjfj“&a y))]5G(yw/\/§)

i=1

which, as a function of y, is an element of B(2;m — 1).
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Proof. Using equation (3.19), we obtain that the lefthand side of (4.5)
equals the analytic Feynman integral

sl () - (5) S msen)

j=1

(sas]"7) - ()" aman)

=1

. %;Bl £1(@ v, y>>}

Then, using (3.20) and (3.21) to evaluate the above Feynman integral
yields the righthand side of (4.5). O

We omit the proof of our next theorem because it is very similar to
the last two proofs given above.

Theorem 4.6. Let q, F and G be as in Theorem 3.4, and let w € A.
Then the transform of the expressions in equation (3.19) with respect
to y is given by the formula

(4.6) EZ™[(6F (y + z|) % 6G(y + z|-))q(w)]
n n . 1/2
g ) ()
;; V2 2q !
w i \'?
Lm0+ () 4
[ @) + D) + 1) H (i)
- 2i'qz<n<—iq> SB[ @) + Do((@o) + 1) H (~ig; ) di
=1 "
which, as a function of y, is an element of B(2;m — 1).

In our next theorem we obtain a formula for the variation of the
expressions in equation (3.37).
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Theorem 4.7. Let q, F, G, ¢ and 0 be as in Theorem 3.11. Then
for each w € A,

(4.7)  0(Ty(2; F) * Ty (2; ))q(yl )

i [ o 5 e 529

+0 <iq; MH) i <aj, %>¢j <iq; %)}H(iq; i) di

Jj=1

which, as a function of y, is an element of B(2;m — 1).

Proof. By Theorem 3.11, (T,(2; F) * T4(2; G))4(y) is an element of
B(2;m) and so by Lemma 3.1, §(T4(2; F) * T4(2; G))4(y|w) belongs to
B(2;m —1). Using (3.37) and (3.6) we obtain equation (4.7). o

Next we obtain formulas for the convolution product of the expres-
sions in equation (3.28). Again there are two cases since we can take the
convolution product with respect to the first argument or the second
argument of the variation.

Theorem 4.8. Letq, F, G, ¢, 6 and w be as in Theorem 3.11. Then
(4.8)  (0T4(2; F)(-|w) * 6T4(2; G)(-Iw)) ()

Zq ZZ g, Ww ala

j=11=1

/ ¢j<—iq;%\};ﬁ)91(—iq, ilf > —ig; U

which, as a function of y, is an element of B(2;m — 1).

Proof. By Remark 3.5 we know that 675 (2; F)(-|w) and §75(2; G)(-|w)
are elements of B(2;m — 1). Hence, by Theorem 3.4 their convolution
product is an element of B(2;m — 1). Equation (4.8) now follows by a
direct calculation. O

Theorem 4.9. Let ¢ € R — {0}, let F € B(2;m) be as in
Theorem 3.8, and let G € B(2;m) be as in Remark 3.3. Then, for
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each w € A,
(4.9)  (6T4(2; F)(yl") * 0T4(2; G)(yl-))q(w)

= [6T,(2; F)(y|w/V2) + 21 1/2iAj¢j(*iq; (@)
9/ =

[meowuvn - ()" IZEAlez(—iq; @)

_ 2Lq 3" Bigi(—ig; (& y))0i(~ia; (@, )

which, as a function of y, is an element of B(1;m — 1) where ¢ and 6
are given by equations (3.24) and (3.27), respectively.

Proof. Equation (4.9) follows directly by replacing F, G, f and g in
equation (3.19) with T,(2; F), T,(2; G), ¢ and 0, respectively. O

We finish this section by taking the convolution product of the
expressions in equation (3.29), first with respect to w and then with
respect to y.

Theorem 4.10. Let g € R—{0}, let F € B(2;m) be given by (2.16),
and let G € B(2;m) be given by (3.7). Then, for each w € A,

(4.10)  (T4(2;0F (y|+)) * T4(2; 0G(yl))) g (w)

- (o7 o/ vB) + [(5)/ ; (Q—q)/] ilAjfj«&, ")
(s60h/vE) + [(5>/ - (?q)/} émgl«&,y»)

i 1/2 n
‘(%) " Bufi(d,9)i((d )

=1

which, as a function of y, is an element of B(1;m — 1).

Proof. The conclusions of this theorem follow immediately by using
equations (3.29) and (3.19). o
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Theorem 4.11. Let q, G and F be as in Theorem 3.4. Then for all
w € A, the convolution product with respect to y of the expressions in
equation (3.29) is given by the formula

(4.11) Kn(—iq)/n (z": [<°‘j’w> * (é)mAj] f]<<&y—\/>;ﬁ>>

(S () A (255w

which, as a function of y, is an element of B(2;m — 1).

Proof. Formula (4.11) follows by a direct calculation using the right-
hand side of equation (3.29) and then equations (3.6) and (2.12). O

REFERENCES

1. R.H. Cameron and D.A. Storvick, An L2 analytic Fourier-Feynman transform,
Michigan Math. J. 23 (1976), 1-30.

2. , Feynman integral of variations of functions, in Gaussian random
fields, Ser. Prob. Statist. 1 (1991), 144-157.

3. K.S. Chang, B.S. Kim and I. Yoo, Fourier-Feynman transform, convolution
and first variation of functionals on abstract Wiener space, Integral Transforms

Special Functions 10 (2000), 179-200.

4. S.J. Chang, J.G. Choi, and D. Skoug Integration by parts formulas involving
generalized Fourier-Feynman transforms on function space, Trans. Amer. Math.
Soc. 355 (2003), 2925-2948.

5. S.J. Chang and D. Skoug, The effect of drift on the Fourier-Feynman trans-
form, the convolution product and the first variation, PanAmerican Math. J. 10
(2000), 25-38.

6. ———, Generalized Fourier-Feynman transforms and a first variation on
function space, Integral Transforms Special Functions 14 (2003), 375-393.

7. T. Huffman, C. Park and D. Skoug, Analytic Fourier-Feynman transforms and
convolution, Trans. Amer. Math. Soc. 847 (1995), 661-673.

8. , Generalized transforms and convolutions, Internat. J. Math. Math.
Sci. 20 (1997), 19-32.

9. G.W. Johnson and D.L. Skoug, An L, analytic Fourier-Feynman transform,
Michigan Math. J. 26 (1979), 103-127.

10. , Scale-invariant measurability in Wiener space, Pacific J. Math. 83
(1979), 157-176.




788 SEUNG JUN CHANG, JAE GIL CHOI AND DAVID SKOUG

11. J.G. Kim, J.W. Ko, C. Park, and D. Skoug, Relationships among transforms,
convolutions, and first variations, Internat. J. Math. Math. Sci. 22 (1999), 191-204.

12. C. Park, and D. Skoug, Integration by parts formulas involving analytic
Feynman integrals, PanAmerican Math. J. 8 (1998), 1-11.

13. J. Yeh, Convolution in Fourier- Wiener transform, Pacific J. Math. 15 (1965),
731-738.

14. , Stochastic processes and the Wiener integral, Marcel Dekker, Inc.,
New York, 1973.

15. I. Yoo, Convolution and the Fourier-Wiener transform on abstract Wiener
space, Rocky Mountain J. Math. 25 (1995), 1577-1587.

DEPARTMENT OF MATHEMATICS, DANKOOK UNIVERSITY, CHEONAN 330-714,
KoREA
Email address: sejchang@dankook.ac.kr

DEPARTMENT OF MATHEMATICS, DANKOOK UNIVERSITY, CHEONAN 330-714,
KOREA
Email address: jgchoi@dankook.ac.kr

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEBRASKA, LINCOLN, NE-
BRASKA, 68588-0130
Email address: dskoug@math.unl.edu



	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2010

	Generalized Fourier-Feynman Transforms, Convolution Products, And First Variations On Function Space
	Seung Jun Chang
	Jae Gil Choi
	David Skough

	chang-choi.dvi

