
tions, would be a reasonable representative of any
other station in the region and for the regional average.

To solve the problem before us we appeal to math-
ematical graph theory. Temperature segments and their
overlaps are modeled as a directed graph. A directed
graph is a finite set of points, called vertices, some of
which are connected by directed lines, called edges.
Each edge may have a set of values associated with it
describing relationships between the vertices it con-
nects. In our case, each segment represents a vertex and
an edge connects two segments that overlap. If segment
Si overlaps segment Sj, the vertex corresponding to Si is
connected by a directed line to the vertex correspond-
ing to Sj. With each directed edge are associated five
statistical parameters:

• the average of the daily temperature differences �ij

between the overlapping portions of the segments Si

and Sj (� of TMax and TMin are separately done),
• the number N of daily differences,
• the standard deviation �ij of the differences,
• the autocorrelation of the difference series, r1ij so that

Neff � N(1 � r1ij)/(1 � r1ij), and
• the standard error �ij � �ij/	Neff of the differences.

To compute �ij, the temperatures on concurrent days of
Si and Sj are subtracted and all such differences for Si

and Sj averaged. The Si to Sj statistics are identical to
those of Sj to Si except for the algebraic sign of the bias.

The graph model provides a convenient way to esti-

mate these statistics for two vertices that are not con-
nected by an edge but by a succession of edges (a path).
This is similar to estimating the hypothetical outcome
of a game between two sports teams who did not play
each other head to head by looking at how they fared
against common opponents. If Si is connected to Sj and
Sj to Sk, but not Si to Sk, then we can estimate �ijk, �ijk,
and �ijk for the Si–Sk combination as follows:

�ijk � �ij � �jk,

�ijk � 	�ij
2 � �jk

2 ,

�ijk � 	�ij
2 � �jk

2 .


1�

If vertex Sm provides an alternate path from Si to Sk, we
take the best estimate of the bias from Si to Sk to be the
one given by the path with the smaller standard error:

�ik � �
�ijk if �ijk � �imk

avg
�ijk, �imk� if �ijk � �imk

�imk if �imk � �ijk

�ik � min
�ijk, �imk�.


2�

The approach shown in (1) can be generalized for paths
of any length:

�ijk...mn � �ij � �jk � · · · � �mn,

�ijk...mn � 	�ij
2 � �jk

2 � · · · � �mn
2 ,

�ijk...mn � 	�ij
2 � �jk

2 � · · · � �mnk
2 .


3�

FIG. 3. Example of WB Form 530–1 describing the history of the station at North Fork Ranger Station
beginning in March 1904. Note under “Remarks” the statement that the Cotton Region Shelter (CRS)
was moved 20 ft W to reduce effect of lawn sprinkling.
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If there are multiple paths of possibly varying lengths
from Si to Sj, we consider the “least” path to be the one
with the smallest composite standard error, even if the
number of its edges exceeds the number of edges in
other paths. Figure 6 illustrates these concepts with a
simple example. To find the biases between every pos-
sible pair of vertices, we use Dijkstra’s shortest-path
algorithm (Dijkstra 1959, as implemented by Standish
1995), where for our purpose “shortest” means “least”
in the sense just described.

Once the biases and standard errors have been de-
termined for every possible pair of vertices, the results
can be written as two n � n matrices, �, for the biases,
and E for the standard errors. Each row or column
corresponds to a vertex (data segment). In �, the inter-
section of row i and column j is �ij. Since �ji � ��ij for
each possible pair, i and j, and �ii � 0 for each i, � is

FIG. 4. Unadjusted DJF TMin data for Sierra stations above
900-m elevation. Time series have been subdivided into homoge-
neous segments according to metadata only. Label abbreviations
are of stations identified in Table 1, and the concatenated numeral
is the segment number. Note in particular the unusual behavior of
CaHS1 and Hunt2 as described in the text.

FIG. 6. A directed graph with vertices i, j, k, p, and q. There are
two paths from vertex i, marked with an open circle, and vertex j,
marked with an open square. One is through vertex k; the other
through vertices p and q. The edges of the graph are labeled with
the bias (�) and the standard error (�). Using the definitions and
conventions of Eqs. (1)–(3), we determine that the standard error
of the path through vertex k is 0.33, whereas the standard error of
the path through vertices p and q is 0.20. Hence, the least path
from vertex i to vertex j is the one through vertices p and q, and
we take the bias between vertices i and j to be the sum of the
biases along the path through p and q, which is �0.14. For sim-
plicity, we have not shown the edges as arrows but assume that
when the direction of traversal between two vertices changes, the
algebraic sign of � is reversed.

TABLE 3. List of breakpoints determined from consolidated
information of Table 2.

Madera Segment Year Month Day Reason

45233 1 1899 6 1 Begin
45233 2 1933 12 4 Moved 1.4 mi SW;

Tobs to 0800
45233 3 1937 4 21 New Mx installed
45233 4 1939 2 11 Moved 1.5 mi W
45233 5 1944 10 5 Moved 0.3 mi NW
45233 6 1953 8 1 Moved 0.4 mi SE;

Tobs to 1700
45233 7 1957 6 1 Tobs to 0800
45233 8 1963 2 7 Moved 350 ft SE
45233 9 1974 11 14 Moved 2.0 mi SE
45233 10 1985 9 19 MMTS installed

FIG. 5. As in Fig. 4, except the quantity plotted is the first
difference of the time series in Fig. 4. Note the consistent char-
acter of the variations after 1926. Circled values were identified as
additional segment breakpoint events.
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antisymmetric. The bias �ij is the additive adjustment
for the temperatures of Sj to remove their bias relative
to Si. In addition, E is symmetric since �ij � �ji for each
pair, i and j, while �ii � 0 for each i. Finally, E is irre-
ducible since �ij � 0, i � j (see Keener 1993). We shall
use this fact later.

To motivate the next step, we consider a very simple
case. In the example, we will construct a single, consis-
tent temperature time series for a single station whose
temperature record can be subdivided into four homo-
geneous segments, S1, . . . , S4. Since these segments are
derived from the same station, they are nonoverlap-
ping. We assume we have applied the procedure de-
scribed above, with the help of overlapping segments
from other, nearby stations, to determine the biases,
�ij, i, j � 1, . . . , 4, for the possible pairings of these
four segments. These biases form a square matrix � of
order 4.

Let the adjusted time series be denoted by Sj � �ij.
Also, denote the operator for concatenating two non-
overlapping time series by �. Then the time series S2,

S3, and S4 can be brought into alignment with S1 as
follows:


S1 � 0� � 
S2 � �12� � 
S3 � �13� � 
S4 � �14�. 
4�

This is one estimate of the total time series at the sta-
tion. Three other estimates could be formed by choos-
ing S2, S3, or S4 as the reference segment. Thus,


S1 � �21� � 
S2 � 0� � 
S3 � �23� � 
S4 � �24�,


S1 � �31� � 
S2 � �32� � 
S3 � 0� � 
S4 � �34�, and


S1 � �41� � 
S2 � �42� � 
S3 � �43� � 
S4 � 0�. 
5�

It is important to realize that each of the �ij were gen-
erated through different, least error paths, so that there
is no constraint requiring all four estimates of the re-
constructed time series to be identical. How do we
know which realization is the “best” estimate?

One best estimate of the reconstructed time series for
the station is simply the average of the four estimates
shown in (4) and (5):

�S1 �
1
4 � �i1� � �S2 �

1
4 � �i2� � �S3 �

1
4 � �i3� � �S4 �

1
4 � �i4�. 
6�

Observe that the adjustments to each segment are just
the averages of the biases in columns 1, 2, 3, and 4 of the
bias matrix � for this station. We could generalize the
adjustments by making them weighted averages, taking
into account the possibility that some of the �ij are more
robust than others because, for instance, they are de-
rived from sets of differences with smaller standard er-
rors. We can also generalize the example to the case of
n nonoverlapping segments at the station. In this case
the adjustment aj to segment Sj is given by

aj �
1
n �

i�1

n

�ij, 
7�

or more generally by

aj � �
i�1

n

wi�ij, 
8�

where wi � 0, i � 1, . . . , n, and �n
i�1wi � 1. The n

adjustments of Eqs. (7) or (8) form the bias adjustment
vector a � (a1, . . . , an).

In Christy (2002) a was determined by a cumulative
procedure in which the columns of � were combined
into a single column by a weighting scheme dependent
upon the pooled estimate of the standard errors. In this

study we use the adjustments as defined by (8) where
the weights are computed in a different way.

To obtain the weights wi in Eq. (8), we rank the Si

according to their ability to produce robust biases, that
is, by the associated value of �ij that represents each Si’s
ability to generate overlaps having differences with
small errors. We can think of �ij as being the “score”
when Si “competes” against Sj. Lower scores represent
less error and all possible pairs are contained in E. Let
r be a ranking vector of the Si. Then we would expect
the ranks of the segments to be proportional to their
scores:

Er � �r, 
9�

where � is the constant of proportionality. Equation (9)
shows that r is an eigenvector of the matrix of standard
errors associated with the eigenvalue �. Because lower
scores are more desirable, the segments with lower
rankings are superior. Now we use the fact that E has
nonnegative entries. The Perron–Frobenius theorem
(see Keener 1993) states that if E is irreducible, r has
strictly positive entries and � is the largest eigenvalue of
E in absolute value.

To compute r we use the power method (Burden and
Faires 1985). Since we would like for the larger weights
to be applied to the segments producing the most reli-
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able biases, we take the weights to be the reciprocals of
the entries of r, normalized so that the sum of the scaled
reciprocals is 1. Therefore, the ith weight is

wi � �1
ri
���

j�1

n �1
rj
�. 
10�

Once the weights are known and the bias adjustment
vector a has been computed, the construction of the
regional time series is straightforward. First, we debias
each segment using the applicable entry from a. At this
point, the data are still in daily resolution. To determine
the temperature of the regional series for a particular
day, we average the temperatures from every debiased
segment that includes that day. From the resulting daily
time series, we construct the seasonal means.

5. Error analysis

Before analyzing the results, we tested the probabil-
ity distribution of each time series in a number of ways
to understand the errors associated with the data and
method. We will focus on the linear trend (least squares
regression) because this metric is the most sensitive to
changes in the procedures used and is a metric of in-
terest for long-term changes.

a. Segment uncertainty

Do we have an adequate number of segments that
are (a) consistent with each other and (b) temporally
distributed in a manner that allows us to construct a
robust, reproducible time series? Perhaps our set just
happens to be pathologically arranged so that the final
outcome contains significant error. In other words, per-
haps our unique set of segments assigns great reliance
on a few critical segments that, if not available or hav-
ing large error, could lead to a very different solution.

1) SEGMENT UNCERTAINTY: RANDOM REMOVAL

OF SEGMENTS

To test this aspect of the basic structure of our
method, we randomly removed 20%, 15%, 10%, and
5% of the segments 1000 times and generated time se-
ries without them. We note that at 15% elimination,
some of the 1000 trials could not be completed back to
1910; hence, we stopped at 20%. We then compared the
median trend of each of these four reduced-segment
trials with the trend of the full-segment dataset. The
magnitudes of the median’s deviations from the full-
segment trend ranged from 0.002° to 0.073°C decade�1

in the 16 time series with a median of the median-
deviation values of 0.017°C decade�1. For the extreme

case (Sierra TMin for June–August (JJA)] the median
trend for 20% missing trials was �0.172° compared
with �0.245°C decade�1 for the full set of segments.
We conclude here that for the most part, the basic char-
acter of each time series is reproducible from random
subsets of the data. There were two specific segments,
however, which exerted substantial impact and we shall
examine them below.

2) SEGMENT UNCERTAINTY: NONRANDOM

REMOVAL OF SEGMENTS

To further understand the uncertainty, we repeated
the calculation of composite trends for all 16 cases with
the removal of each segment, one at a time. There were
137 Sierra and 112 Valley segments to eliminate indi-
vidually, so we generated as many new time series for
each case. The trends of the resulting time series were
determined and compared with the full-segment trends.
In this way we are able to determine the impact of
every single segment on the trend of the entire time
series.

Not surprisingly, those cases with the largest varia-
tion in trends in the randomly reduced segment trials
above also were characterized by one or two segments
that, when eliminated, had a significant impact on the
calculation of the trend. For example, in the case of
Sierra TMin JJA we discovered that one segment (Hun-
tington Lake 1938–70), when removed, shifted the
trend to be more positive by 0.25°C decade�1. Simi-
larly, a trend increase for Sierra TMin of 0.17°C de-
cade�1 was caused when the same segment was elimi-
nated from September–November (SON). These two
cases were by far the most extreme examples of influ-
ence by a single segment on the computed time series
trend. There was only one other segment that, when
eliminated, shifted the trend by more than 0.1°C de-
cade�1: Visalia 1927–64, which affected Valley TMin
JJA and Valley TMin SON. (In these four extreme
cases, the recalculation of the time series without these
segments caused all their associated trends to be more
positive. Thus, their impact on the final results of this
study regarding the difference in Valley versus Sierra
TMin trends is negligible.)

With a set of trends calculated with every segment
removed individually, we employ a resampling, or jack-
knife, method for estimating the standard deviation of
the trend deviations (our test statistic) from the full-
segment trend for each of the 16 time series (von Storch
and Zweirs 1999). We shall focus on the time series with
the largest error magnitude, Sierra TMin JJA, recog-
nizing that the remaining time series are characterized
by error magnitudes that are smaller by a factors rang-
ing from 1.5 to 6.
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We initially found that it was unreasonable to assume
that every segment was an equally contributing element
to the jackknife error calculation. Many segments were
relatively short and therefore had little impact no mat-
ter what their error might be and therefore skewed the
resulting error range to be very small by implying a
large sample. We therefore reduced our sample size to
those 30 segments that exhibited the largest impact on
the time series, about 0.001°C decade�1 or greater. This
will reduce the number of segments and therefore will
increase the magnitude of the error statistic. For Sierra
TMin JJA, the 95% confidence interval (CI) was
�0.127°C decade�1 and the range for the other 15 time
series was �0.018 to �0.085, with median �0.041°C
decade�1. These error values will be included in the
results later.

b. A nonparametric error analysis

To calculate the magnitudes of the trend errors in a
different way, we performed another test employing
only those segments whose influence on the full seg-
ment trends was at least 0.02°C decade�1 (nine Valley
and eight Sierra). Because these are likely, but not nec-
essarily, contributing error to the full-segment results,
we may determine a sense of their effect by removing
them in all combinations.

We therefore create all possible combinations of
these critical segments (512 for Valley and 256 for
Mountain) and remove these and regenerate the time
series for each case. We expect that with the removal of
these subsets in all combinations, an improved time
series is more likely to result from the median of the
cases. Thus, we include in our results presented later
the median of these reduced-segment trials as a sepa-
rate trend estimate.

c. Temporal sampling error

Finally, there is the issue of temporal sampling error.
We are examining various seasonal time series of length
94 yr. Sampling error provides information on how
much confidence one may have in the notion that the
present 94-yr period is truly representative of any 94-yr
period randomly selected from a large population of
time series experiencing the same climate conditions.
(There will be temporal sampling error even though the
measurements may be perfect.) Results indicate that in
only 3 of the 24 cases (16 seasonal time series and 8
difference time series) did the 95% trend sampling er-
ror exceed �0.06°C decade�1. To determine the total
confidence interval or error range of the trends, we
shall combine the segment uncertainty errors and tem-
poral sampling errors to create the error bars on the
trends of the original, full-segment method. (Again, the

nonparametric results will be presented as a separate
trend alongside.)

In summary, our view is that the trend values of the
full-segment experiment represent the best guess of the
actual trends, as they were produced by the algorithm
that searches for the least error path. However, we also
view the difference in trend values between the full-
segment method and the median of the reduced-
segment trials as an indication of the likely direction of
error, but perhaps not the magnitude, to which this
method might be susceptible. (The magnitude of trend
differences in the reduced trials is not truly represen-
tative of an unbiased value as we preselected the seg-
ments based on their large, individual impact.) The
largest magnitude of this difference (median of re-
duced-segment minus full-segment result) occurs, as ex-
pected, for Sierra TMin JJA (�0.151°C decade�1), with
the range of the others being �0.091° to �0.081°C de-
cade�1). We conclude that the error bars displayed
later for the eight difference time series are reasonable
as they capture error magnitudes from all the tests per-
formed.

6. Results

Figures 7a–e display the time series of the two eleva-
tion strata and in Fig. 8 the trend values for each time
series and the trends of the difference time series are
shown. It is immediately apparent that Valley TMin
time series are significantly positive in all seasons and
especially so in JJA and SON. Sierra trends are small
(Sierra TMax trends near zero) though Sierra JJA
TMin shows a tendency for significant cooling.

The trends of the differences between the Valley and
the Sierra time series are also significant and provide
the key results for this research (Fig. 8, right). The
TMax differences are greatest in JJA with the Valley
trend being more negative than that of the Sierra sta-
tions. The most striking result is the highly significant
relative positive Valley TMin trends, peaking in JJA, at
over �0.5°C decade�1 in the trend of the differences.
This amounts to a relative warming of 5°C in Valley
JJA TMin versus the Sierra stations over the 94-yr pe-
riod.

The correlations of seasonal anomalies between Val-
ley and Sierra time series for the 1910–2003 period are
given in Table 4. The TMax anomalies are highly cor-
related in March–May (MAM) and SON. The TMax
correlation is lower in DJF when multiday periods of
inversion events occur that are characterized by valley
fog and low cloudiness (“high” fog or tule fog), decou-
pling the Valley and Sierra temperatures. The JJA
TMax correlation is low due to smaller variance mag-

15 FEBRUARY 2006 C H R I S T Y E T A L . 559



nitudes in this season and the relatively greater magni-
tude of the variance contained in the trend differences
(negative for Valley, neutral for Sierra), which begin to
overwhelm the interannual variabilty. The TMin
anomalies are poorly correlated in JJA and SON as,
again, the magnitude of the variance carried by the
differing long-term trends approaches that of the small
interannual fluctuations. However, when detrended the
time series are highly correlated (Table 4).

a. Hypotheses to explain results

The purpose of this paper is to present a methodol-
ogy that generates a regional temperature record for
climate applications using a technique that adjusts for
the numerous discontinuities in the individual station
records. In viewing the results we see the robust signifi-

FIG. 8. Seasonal trends for each time series of Figs. 7a–d and
trends of the difference time series. Solid gray bars represent
trends from the original, full-segment calculations with error bars
deduced from the combination of the 30-segment jackknife
method and temporal sampling error. The lightly hashed bars
represent the median trends of the nonparametric experiments.

FIG. 7. (a)–(d) Time series of seasonal anomalies of Valley and
Sierra TMin and TMax through 2003. (e) Time series of annual
anomalies of mean temperature for Valley and Sierra stations.

FIG. 7. (Continued)
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cance of the Valley versus Sierra trend differences,
which beg explanations. The results are consistent with
the hypothesis that the massive growth of irrigation in
the San Joaquin Valley has impacted long-term trends
and an inspection of Fig. 1 and Figs. 7a,b shows the
irrigated acreage versus temperature correspondence,
especially in the warmer seasons. One would expect the
seasonal cycle of trend differences to coincide with ir-
rigation deliveries, which are largest in JJA; further-
more, irrigation would be expected to have its largest
impact in JJA due to the phase of solar forcing. Like-
wise, our largest trend differences between Valley and
Sierra for both TMax and TMin were in JJA.

If our results accurately reflect the near-surface air
temperature changes over the past century, we may
hypothesize here about the causes for the dramatic
warming observed in Valley TMin relative to nearby
Sierra. (Though our hypothesis focuses on irrigation as
an obvious cause, we have not ruled out the effects of
subtle circulation changes that might differentially af-
fect the Valley and Sierra stations.) Agricultural devel-
opment with irrigation is the one most likely to do so,
since it is prevalent around the Valley stations but not
the Sierra stations, in the following ways:

1) enhanced greenhouse warming due to increased wa-
ter vapor concentrations in the atmosphere from
evaporation and evapotranspiration into the valley
boundary layer,

2) enhanced nighttime downward infrared flux due to
swelling of aerosols as humidity increases toward
morning, and

3) enhanced nighttime sensible heat flux from the sur-
face due to the increased heat capacity of the veg-
etation and moist soil, both of which more readily
absorb and store solar energy due to lower albedo,
relative to the original desert surface, and a larger
heat storage capacity due to existing water mass.

We have calculated trends of the 3-h, synoptic dew-
point observations for the period 1950–2001 at Fresno/
Yosemite International Airport (Table 5). In all synop-
tic times, the dewpoint trends are positive during this
period, with general maxima in the warm season after-
noons (� �0.4°C decade�1) while Valley JJA TMax fell

–0.26°C decade�1. Daytime moistening and dry-bulb
cooling are thus observed and support the results of
studies cited earlier.

It is important to note that the time series of surface
moisture for Fresno contains some uncertainties. For
instance, the instruments that measure moisture con-
tent have changed from manual psychrometers to ana-
log-to-digital hygrometers, and observations of mois-
ture were taken at different times in different periods.
In other words, the time series is not truly homoge-
neous. In addition, the increase in dewpoint tempera-
tures (if any) may be near the absolute precision of a
single instrumental time series as deployed here (a
shortcoming of our homogeneous segment technique is
that it may not be applied to a single station). Further-
more, it is difficult to conclude from observations at one
station, which is situated in a metropolitan area that has
grown 10-fold over this period to �500 000 population,
that large-scale agricultural irrigation is the direct cause
of any moisture increase. In short, moisture trends pre-
sented here should be viewed with caution. (As a side
note, it is evident that with increasing background dew-
points, the efficiency of household evaporative cooling
systems, widespread when the lead author grew up in
Fresno, will have declined.)

Our initial look at the three hypotheses indicates the
most likely explanation is option 3 above, though all
may contribute to some extent. Regarding the en-
hanced water vapor greenhouse effect (option 1), the
additional moisture seems to be of a small enough
amount in a relatively shallow layer that there would be
little impact, and certainly not as much as 5°C. For
option 2, the valley generally does not experience rela-
tive humidities greater than 80% in the warmer sea-
sons, which is the general threshold at which aerosols
begin to swell. At present, therefore, we hypothesize
that the significant increases in Valley TMin are related
to the darkening and moistening of the formerly dry,
high-albedo desert surface (option 3). The darker sur-
face allows for more absorption of solar energy while
the additional water mass in plant material and wet
ground increases the heat capacity, providing a daytime
repository of energy to be lost via sensible heat flux at

TABLE 4. Correlation (Pearson product moment) of seasonal
anomalies between Valley and Sierra time series, 1910–2003 (de-
trended in parentheses).

DJF MAM JJA SON

Tmin 0.81 (0.85) 0.60 (0.87) �0.10 (0.81) 0.12 (0.76)
Tmax 0.72 (0.72) 0.95 (0.97) 0.25 (0.93) 0.86 (0.91)
Tmean 0.80 0.93 0.84 0.74

TABLE 5. Decadal trends (°C decade�1) of hourly dewpoint
temperatures for 1950–2001 at Fresno/Yosemite International
Airport. Columns are local hour [Pacific standard time (PST)].

0200 0500 0800 1100 1400 1700 2000 2300

DJF 0.26 0.24 0.25 0.16 0.23 0.15 0.16 0.25
MAM 0.33 0.32 0.32 0.32 0.45 0.42 0.23 0.30
JJA 0.34 0.36 0.26 0.23 0.28 0.44 0.35 0.46
SON 0.30 0.37 0.30 0.21 0.18 0.18 0.18 0.28
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night. In future work, it is our intent to test these hy-
potheses with a high-resolution, boundary layer model
to quantify the possible impacts of these irrigation-
related perturbations.

b. Related findings

We note that Cayan et al. (2001) examined hydro-
logic data beginning in 1950 and discovered a trend
toward earlier spring snowmelt, or peak discharge
dates, in the Sierra Nevada. The Sierra trends for MAM
TMax (�0.18°C decade�1) and TMin (�0.14°C de-
cade�1) for 1950–2003 in our dataset are highly consis-
tent with Cayan et al.’s result. The MAM Sierra trend in
TMean (�0.16°C decade�1) is the most positive of all
seasons since 1950. However, as implied in Fig. 8, once
the entire century is considered, the Sierra MAM mean
trend (�0.01°C decade�1) is not significantly different
from zero.

Even though our century-scale Sierra trends are
fairly unremarkable, there is clear indication of change
in this region. Figure 9 displays photographs taken in
1908 and 2003 from the same view of Darwin Glacier
(37.1702°N, 118.6771°W) near the crest of the Sierra
Nevada in Fresno County. The elevation of the upper
ice line is approximately 3960 m. The reduction in ex-
tent is obvious and indicates that the conditions that
support this glacier have changed during the twentieth
century. As there is no evidence of significant long-
term temperature changes in our Sierra time series,
though trends may be different at 4000 m for unknown
reasons, other factors are likely involved, for example,
decreases in cloudiness or precipitation. However,
some proxy indicators suggest the twentieth century
was wetter than previous centuries (Graumlich 1993)
while measurements show a general increase since 1900
(USGCRP 2000). In any case, the causes of glacial mass
balance changes in this region are evidently more com-
plex than can be inferred from simple temperature
records.

Finally, we note that our TMean trends of both Val-
ley and Sierra composites are less positive than implied
by assessments based on larger-scale analyses for this
region (e.g., USGCRP 2000; Folland et al. 2001). In-
deed, our trends are in closer agreement with unforced
model hindcasts of twentieth-century climate than with
human-enhanced forcing (e.g., Tett et al. 2002). A com-
parison of the time series of six stations common to this
study and version 1 of the United States Historical Cli-
matology Network (USHCNv1) dataset [Fresno, Han-
ford, Merced, Visalia, Yosemite Valley, and Lemon
Cove; Karl et al. (1990)] indicate the composite
USHCNv1 TMean trend is 0.10°C decade�1 more posi-
tive than calculated here. [A similar comparison for the

JJA TMax trend in North Alabama also indicates a
0.10°C decade�1 more positive trend in USHCNv1 than
Christy (2002).] This suggests that utilizing as much
data as possible, and applying site-specific adjustments,
may yield lower rates of surface temperature increases,
though our sample here is small. In any case, the highly
significant warming in Valley TMin does suggest that
land use changes have had a substantial impact on the
local climate.

7. Conclusions

We have demonstrated a technique to create region-
ally consistent time series of temperature data based on

FIG. 9. Southward looking views of Darwin Glacier (37.1702°N,
118.6771°W) near the crest of the Sierra Nevada, Fresno County,
CA, taken in (top) 1908 and (bottom) 2003. The elevation of the
upper ice line is approximately 3960 m. The 1908 photo was
merged from two USGS file photographs by H. Basagic, Portland
State University. The 2003 photo was taken by N. L. Stephenson,
Research Ecologist, USGS Western Ecological Research Center,
Three Rivers, CA.

562 J O U R N A L O F C L I M A T E VOLUME 19



the assumptions that we are able to identify all signifi-
cant discontinuities in station records and that the sta-
tions are situated in a climatologically homogeneous
region. We composited the temperature records of 18
stations in the San Joaquin Valley of central California
and 23 stations in the adjacent Sierra Nevada into, re-
spectively, two regional time series for each season.
Our analysis of trends begins in 1910 though records
are available in earlier years from fewer stations. Our
results indicate that the central San Joaquin Valley has
experienced a significant rise of minimum temperatures
(�3°C in JJA and SON), a rise that is not detectable in
the adjacent Sierra Nevada. Our working hypothesis is
that the rapid valley warming is caused by the massive
growth in irrigated agriculture. Such human engineer-
ing of the environment has changed a high-albedo des-
ert into a darker, moister, vegetated plain, thus altering
the surface energy balance in a way we suggest has
created the results found in this study. Additionally, if
these results are confirmed, the lack of long-term
warming in the generally undeveloped Sierra Nevada
(annual mean trend, 1910–2003, �0.02° � 0.1°C de-
cade–1) coupled with significant, nighttime-only warm-
ing in the valley, suggests a regional inconsistency com-
pared with twentieth-century simulations of climate
forced by human influences other than land use
changes.
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