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 The rising demand for soybean [Glycine Max (L.) Merrill] taken in 

consideration with current climatic trends accentuates the importance of improving 

soybean seed yield response per unit water (WP). To further our understanding of the 

quantitative WP trait, a multi-omic approach was implemented for improved trait 

identification and predictive modeling opportunities. Through the evaluation of two 

recombinant inbred line populations jointly totaling 439 lines subjected to contrasting 

irrigation treatments, informative agronomic, phenomic, and genomic associations were 

identified. Across both populations, relationships were identified between lodging at 

maturity (r = -0.58, H = 0.86), canopy to air temperature differential at the V5 growth 

stage (r = -0.31, H = 0.39), the SR680 spectral index collected at the R5 growth stage, (r 

= 0.62, H = 0.39), and a quantitative trait loci at approximately 30 centimorgans on 

chromosome 19 (r = 0.27) to WP. Through the integration of significant agronomic, 

phenomic, and genomic traits, predictive models of WP were developed across 

environments on an entry mean basis (r = 0.72, RMSE = 0.67 kg ha-1 mm-1) and on a per 

plot basis (r = 0.95, RMSE = 0.39 kg ha-1 mm-1) using machine learning algorithms. Our 

results highlight the value of integrating multiple dataset types to study and model 

quantitative traits. Through the application of our findings, soybean breeders can 



 
 

potentially deploy multi-omic selection models in early generation screening stages to 

increase the rate of genetic gain in relation to soybean WP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



iv 
 

ACKNOWLEDGMENTS 
 

I have many people to thank and acknowledge for their support throughout my 

time at the University of Nebraska-Lincoln. Thank you to Dr. George Graef for the 

research opportunities, mentorship, and ability to grow and learn within his breeding 

program. I acknowledge my committee members for taking the time to work with me and 

for providing extra expertise throughout this undertaking: Dr. Yufeng Ge, Dr. David 

Hyten, Dr. Kent Eskridge, and Dr. Patricio Grassini. Thank you to Dr. Geng Bai, Dr. Luis 

Posadas, Wenan Yuan, Dr. Haichuan Wang, Dr. Trenton Franz, William Avery, Tyler 

Frederick, Aaron Hoagland, Cody Oswald, Rebecca Ott, Les Korte, Dr. Diego Jarquin, 

Dr. James Specht, Dr. Bo Zhang, Ravi Mural, Justin Loeffelholz, Dr. Nonoy Bandillo, 

Leah Maeder, Herbert Sserunkuma, Mary Happ, Samantha McConaughy, Sarah Johnson, 

Michael Greene, Greg Teichmeier, and Jenny Stebbing for their technical support and 

guidance throughout the project. Thank you to all the student research assistants that have 

worked for the soybean breeding project over the past four years especially Adam 

Mackley, Kyle Linders, and Logan Scheitel for their extra assistance in pushing the 

phenotyping platform. Lastly thank you to my wife, parents, and family for their 

patience, love, and support during my time at UNL. This work was supported through 

funding from the Nebraska Soybean Board and was completed utilizing the Holland 

Computing Center of the University of Nebraska, which receives support from the 

Nebraska Research Initiative.  

 



v 
 

TABLE OF CONTENTS 

LIST OF TABLES ........................................................................................................... VII 

LIST OF FIGURES .......................................................................................................... XI 

LIST OF APPENDIXES.................................................................................................. XV 

LITERATURE REVIEW ................................................................................................... 1 

Introduction ................................................................................................................. 1 

Soybean Response to Water ........................................................................................ 3 

Soybean Genotypic Variation in Response to Limited Water..................................... 6 

Breeding for Improve Response to Water in Soybean ................................................ 9 

Field Based Phenomic Platforms ............................................................................... 13 

Soybean Leaf Reflectance Parameters ...................................................................... 15 

Field Phenomics for Soybean Water Stress Categorization ...................................... 18 

RESEARCH OBJECTIVES ............................................................................................. 20 

MATERIALS AND METHODS ...................................................................................... 21 

Soybean Population Development ......................................................................... 21 

Preliminary Evaluation .......................................................................................... 22 

Power Analysis ...................................................................................................... 25 

Water Response Experiment .................................................................................. 26 

Irrigation Treatment Methods ................................................................................ 27 

Environmental Measurements ............................................................................... 29 

Phenotypic Data Collection ................................................................................... 29 

Phenomic Data Processing ..................................................................................... 31 

Genomic Data Collection ....................................................................................... 32 



vi 
 

Genotypic Data Processing and QTL Mapping ..................................................... 34 

Data Analysis ......................................................................................................... 36 

Predictive Modeling ............................................................................................... 38 

Classification and Regression Trees ...................................................................... 39 

Artificial Feed Forward Neural Networks ............................................................. 40 

Generalized Linear Models with Elastic Net Regulation ...................................... 42 

RESULTS AND DISCUSION ......................................................................................... 44 

Agronomic Response to Irrigation ......................................................................... 44 

Phenomic Associations to Water Productivity ...................................................... 56 

Genomic Associations to Water Productivity ........................................................ 63 

Predictive Analytic Modeling of Water Productivity ............................................ 68 

CONCLUSION ................................................................................................................. 76 

REFERENCES ................................................................................................................. 78 

TABLES ........................................................................................................................... 93 

FIGURES ........................................................................................................................ 133 

APPENDIX ..................................................................................................................... 171 

 

  



vii 
 

LIST OF TABLES 

Table 1. Soybean lines used as parents of the two RIL populations, UX3000 and 
UX3036; parental pedigrees, descriptor information, and metrics of genetic 
similarity to the common parent U11-614093 included ............................................ 93 

Table 2. Spatial characteristics, soil characteristics, growth parameters and management 
metrics of environments used in the study ................................................................ 94 

Table 3. Sensors modules information, field of view, and associated canopy traits 
measured through the field phenomic platform......................................................... 95 

Table 4. Spectral indices, acronyms, calculation formation, biological trait estimation and 
sources of spectral indices calculated from field phenomic platform ....................... 96 

Table 5. RIL parent and population least square mean estimations for seed, water 
response, and plant characteristic metrics based on two replications across two 
irrigation treatments and four environments for 2017-2018 water response 
experiment ................................................................................................................. 97 

Table 6. Environmental agronomic means across both populations for environments used 
in the study including 2016 preliminary evaluation and 2017-2018 water response 
experiment environments .......................................................................................... 98 

Table 7. Environmental agronomic means for the UX3000 population for environments 
used in the study including 2016 preliminary evaluation and 2017-2018 water 
response experiment environments ........................................................................... 99 

Table 8. Environmental agronomic means for the UX3036 population for environments 
used in the study including 2016 preliminary evaluation and 2017-2018 water 
response experiment environments ......................................................................... 100 

Table 9. Agronomic means by environment, treatment, and maturity grouping across 
populations for 2017-2018 water response experiment environments .................... 101 

Table 10. Agronomic means by environment, treatment, and maturity grouping within the 
UX3000 population for 2017-2018 water response experiment environments ....... 102 

Table 11. Agronomic means by environment, treatment, and maturity grouping within the 
UX3036 population for 2017-2018 water response experiment environments ....... 103 

Table 12. Ranges of reproductive period attributes by environment, population, and 
maturity grouping for 2017-2018 water response experiment environments; ranges of 
overall location represent the mean of four environments ...................................... 104 



viii 
 

Table 13. Agronomic irrigation treatment effects by environment and population for 
2017-2018 water response experiment environments; values represent the response 
to irrigation .............................................................................................................. 105 

Table 14. 2017 – 2018 water response experiment ANOVA mean squares across both 
UX3000 and UX3036 RIL populations and parental lines and irrigation treatments
 ................................................................................................................................. 106 

Table 15. 2017–2018 water response experiment ANOVA mean squares for the UX3000 
RIL population and parental lines across irrigation treatments ............................... 107 

Table 16. 2017–2018 water response experiment ANOVA mean squares for the UX3036 
RIL population and parental lines across irrigation treatments ............................... 108 

Table 17. Overall Pearson correlations coefficients of agronomic means across 
populations and environments within the 2017-2018 water response experiment; 
correlation coefficients representative of the irrigated treatment above the diagonal 
and correlation coefficients of rainfed treatment listed below the diagonal ........... 109 

Table 18. Overall Pearson correlations coefficients of agronomic means across 
environments within the 2017-2018 water response experiment for the UX3000 
population; correlation coefficients representative of the irrigated treatment above 
the diagonal and correlation coefficients of rainfed treatment listed below the 
diagonal ................................................................................................................... 110 

Table 19. Overall Pearson correlations coefficients of agronomic means across 
environments within the 2017-2018 water response experiment for the UX3036 
population; correlation coefficients representative of the irrigated treatment above 
the diagonal and correlation coefficients of rainfed treatment listed below the 
diagonal ................................................................................................................... 111 

Table 20. Overall Pearson correlations coefficients of agronomic means across 
populations and environments within the 2017-2018 water response experiment for 
reproductive timing intervals; correlation coefficients representative of the irrigated 
treatment above the diagonal and correlation coefficients of rainfed treatment listed 
below the diagonal ................................................................................................... 112 

Table 21. Genetic variances (σG
2) and least square mean Pearson correlation coefficients 

(r) with 95% confidence intervals of agronomic traits across populations during 
2017-2018 water response experiment; treatments were denoted through the 
following subscripts (1 = irrigated treatment, 2 = rainfed treatment, 3 = response 
between treatments, 4 = overall response). ............................................................. 113 

Table 22. Genetic variances (σG
2) and least square mean Pearson correlation coefficients 

(r) with 95% confidence intervals of agronomic traits for the UX3000 population 
during 2017-2018 water response experiment; treatments were denoted through the 
following subscripts (1 = irrigated treatment, 2 = rainfed treatment, 3 = response 
between treatments, 4 = overall response) .............................................................. 114 



ix 
 

Table 23. Genetic variances (σG
2) and least square mean Pearson correlation coefficients 

(r) with 95% confidence intervals of agronomic traits for the UX3036 population 
during 2017-2018 water response experiment; treatments were denoted through the 
following subscripts (1 = irrigated treatment, 2 = rainfed treatment, 3 = response 
between treatments, 4 = overall response) .............................................................. 115 

Table 24. Genetic (σG
2), genotypic by environment (σGE

2), and environmental variance 
(σE

2) estimations with 95% confidence intervals of agronomic traits across 
populations during 2017-2018 water response experiment; treatments were denoted 
through the following subscripts (1 = irrigated, 2 = rainfed, 3 = response between 
treatments, 4 = overall response) ............................................................................. 116 

Table 25. Agronomic trait broad sense heritability (H) on an entry mean basis and 95% 
confidence intervals across populations during 2017-2018 water response 
experiment; treatments were denoted through the following subscripts (1 = irrigated, 
2 = rainfed, 4 = overall response) ............................................................................ 117 

Table 26. Least square means estimates of positive and negative water productivity 
transgressive segregates and parental lines for the UX3000 and UX3036 populations 
over the 2017-2018 water response experiment across irrigation treatments; 
transgressive segregant groupings were determined through comparison of WP 
LSMEANS over irrigation treatments and environments for the 2017-2018 water 
response experiment to parental values ................................................................... 118 

Table 27. Pearson correlation coefficients and 95% confidence intervals of canopy 
reflectance parameters to plot water productivity collected at V5, R3, and R5 growth 
and reproductive stages during 2017-2018 water response experiment across 
irrigation treatments................................................................................................. 119 

Table 28. Broad sense heritability on an entry-mean basis estimations and 95% 
confidence intervals of canopy reflectance parameters at V5, R3, and R5 growth and 
reproductive stages during 2017-2018 water response experiment across irrigation 
treatments ................................................................................................................ 120 

Table 29. RIL parent and population least square mean canopy reflectance parameter 
estimations across irrigation treatments and environments for 2017-2018 water 
response experiment ................................................................................................ 121 

Table 30. Broad sense heritability (H) on an entry-mean basis and phenotypic Pearson 
correlations coefficients (rp) with 95% confidence intervals by growth stage of RGB 
reflectance indices during the 2017-2018 water response experiment across irrigation 
treatments and environments; H estimates larger than 0.50 highlighted in grey .... 122 

Table 31. Broad sense heritability (H) on an entry-mean basis and phenotypic Pearson 
correlations coefficients (rp) with 95% confidence intervals by growth stage of 
spectral reflectance indices during the 2017-2018 water response experiment across 
irrigation treatments and environments ................................................................... 123 



x 
 

Table 32. Water productivity QTL identified by inclusive composite interval mapping 
(ICIM) by population across irrigation treatments and environments in 2017-2018 
water response experiment ...................................................................................... 124 

Table 33. Water productivity QTL identified by inclusive composite interval mapping 
(ICIM) by population and irrigation treatment across environments in 2017-2018 
water response experiment ...................................................................................... 125 

Table 34. Water productivity QTL identified by inclusive composite interval mapping 
(ICIM) by population across irrigation treatments and environments in 2017-2018 
water response experiment; QTL Trait Identifier lists trait names of QTL with 
overlapping genetic confidence intervals identified by population and irrigation 
treatment across environments in 2017-2018 water response experiment .............. 126 

Table 35. Water productivity QTL identified by inclusive composite interval mapping 
(ICIM) by population across irrigation treatment and environments in 2017-2018 
water response experiment; SoyBase QTL Trait Identifier list unique object types of 
reported QTL with estimated positions within confidence interval of corresponding 
water productivity QTL ........................................................................................... 127 

Table 36. Summary of water productivity LSMEANS ENET algorithm models over 
irrigation treatments with observed to predicted Pearson correlation coefficients (r) 
estimated through CV1 scheme; root mean square error (RMSE), mean absolute 
error (MAE) and data subset size (n) reported ........................................................ 128 

Table 37. Summary of per-plot water productivity NET algorithm models using 2017-
2018 water response experiment observations; observed to predicted Pearson 
correlation coefficients (r) estimated through CV1 scheme, and root mean square 
error (RMSE), mean absolute error (MAE) and data subset size (n) reported ........ 129 

Table 38. Summary of per-plot water productivity CART algorithm models using 2017-
2018 water response experiment observations; observed to predicted Pearson 
correlation coefficients (r) estimated through CV1 scheme, and root mean square 
error (RMSE), mean absolute error (MAE) and data subset size (n) reported ........ 130 

Table 39. Summary of water productivity on a per-plot basis CART algorithm model 
using 2017-2018 water response experiment observations; observed to predicted 
Pearson correlation coefficients (r) estimated through CV2 scheme, and root mean 
square error (RMSE), mean absolute error (MAE) and data subset size (n) reported
 ................................................................................................................................. 131 

Table 40. Summary of per-plot water productivity NET algorithm models using 2017-
2018 water response experiment observations; observed to predicted Pearson 
correlation coefficients (r) estimated through CV2 scheme, and root mean square 
error (RMSE), mean absolute error (MAE) and data subset size (n) reported ........ 132 



xi 
 

LIST OF FIGURES 

Figure 1. Least square mean estimations of parental lines for the study under limited and 
full irrigation treatments from 2013-2014 Chile drip and Lincoln campus irrigation 
evaluation ................................................................................................................ 133 

Figure 2. Mead 2018 water response experiment field layout and experimental design.134 

Figure 3. t-distributed stochastic neighbor embedding dimensionality reduction on SNP 
markers information for RILs and parental lines .................................................... 135 

Figure 4. Comparison of genetic map created through Haldane’s mapping function versus 
genetic map created using SNP genetic positon interpolation from Wm82.a2.v2 
reference genome for the UX3000 population ........................................................ 136 

Figure 5. Comparison of genetic map created through Haldane’s mapping function versus 
genetic map created using SNP genetic positon interpolation from Wm82.a2.v2 
reference genome for the UX3036 population ........................................................ 137 

Figure 6. Genetic map of UX3000 population used for QTL mapping from Wm82.a2.v2 
reference genome interpolation ............................................................................... 138 

Figure 7. Genetic map of UX3036 population used for QTL mapping from Wm82.a2.v2 
reference genome interpolation ............................................................................... 139 

Figure 8. Pubescence color segregation ratio interpolated from hilum color in UX3036 
population compared to the expected 9:7 segregation ratio through Chi-square test.
 ................................................................................................................................. 140 

Figure 9. Estimated QTL position of pubescence color trait in UX3036 population 
compared to reported position of T locus on SoyBase; QTL position estimated 
through inclusive composite interval mapping. ....................................................... 141 

Figure 10. Violin plot of water productivity least square mean estimate (LSMEANS) 
distributions for RILs and parental lines in the 2017- 2018 water response 
experiment across environments and irrigation treatments.. ................................... 142 

Figure 11. SoyWater water use chart representing irrigated treatments of the 3.0 maturity 
grouping within the 2017 Mead environment of the 2017-2018 water response 
experiment ............................................................................................................... 143 

Figure 12. SoyWater water use chart representing rainfed treatments of the 3.0 maturity 
grouping within the 2017 Mead environment of the 2017-2018 water response 
experiment ............................................................................................................... 144 



xii 
 

Figure 13. SoyWater water use chart representing irrigated treatments of the 3.0 maturity 
grouping within the 2018 Mead environment of the 2017-2018 water response 
experiment ............................................................................................................... 145 

Figure 14. SoyWater water use chart representing rainfed treatments of the 3.0 maturity 
grouping within the 2018 Mead environment of the 2017-2018 water response 
experiment ............................................................................................................... 146 

Figure 15. SoyWater water use chart representing irrigated treatments of the 3.0 maturity 
grouping within the 2017 Lincoln environment of the 2017-2018 water response 
experiment ............................................................................................................... 147 

Figure 16. SoyWater water use chart representing rainfed treatments of the 3.0 maturity 
grouping within the 2017 Lincoln environment of the 2017-2018 water response 
experiment ............................................................................................................... 148 

Figure 17. SoyWater water use chart representing irrigated treatments of the 3.0 maturity 
grouping within the 2018 Lincoln environment of the 2017-2018 water response 
experiment ............................................................................................................... 149 

Figure 18. SoyWater water use chart representing rainfed treatments of the 3.0 maturity 
grouping within the 2018 Lincoln environment of the 2017-2018 water response 
experiment ............................................................................................................... 150 

Figure 19. Correlogram of agronomic means of 2017-2018 water response experiment 
across populations, environments and irrigation treatments.. ................................. 151 

Figure 20. Correlogram of agronomic means of 2017-2018 water response experiment 
within the UX3000 population across environments and irrigation treatments.. .... 152 

Figure 21. Correlogram of agronomic means of 2017-2018 water response experiment 
within the UX3036 population across environments and irrigation treatments.. .... 153 

Figure 22. Correlogram of least square means 2017-2018 water response experiment 
across populations, environments and irrigation treatments. . ................................ 154 

Figure 23. Correlogram of least square means of 2017-2018 water response experiment 
within the UX3000 population across environments and irrigation treatments. 
Number values represent Pearson correlation coefficients.. ................................... 155 

Figure 24. Correlogram of least square means of 2017-2018 water response experiment 
within the UX3036 population across environments and irrigation treatments. 
Number values represent Pearson correlation coefficients.. ................................... 156 

Figure 25. Red green and blue digital image channels relationship with growth stage at 
time of phenotyping and broad sense heritability and 95% confidence intervals on an 
entry mean basis during 2017-2018 water response experiment across populations, 
environments, and irrigation treatments .................................................................. 157 



xiii 
 

Figure 26. Water productivity least square means quartile group average and 95% 
confidence interval of spectral wavelength least square means across environments, 
populations, and irrigation treatments during the 2017-2018 water response 
experiment collected at the V5 growth stage; broad sense heritability on an entry 
mean basis of spectral wavelengths indicated through dark grey bars .................... 158 

Figure 27. Water productivity least square means quartile group average and 95% 
confidence interval of spectral wavelength least square means across environments, 
populations, and irrigation treatments during the 2017-2018 water response 
experiment collected at the R5 growth stage; broad sense heritability on an entry 
basis of spectral wavelengths indicated through dark grey bars ............................. 159 

Figure 28. Manhattan plot for UX3000 population considering least square means of 
water productivity over environments and irrigation treatments (Overall), over 
environments within the irrigated treatment (Irrigated), and over environments 
within the rainfed treatment (Rainfed) during the 2017-2018 water response 
experiment ............................................................................................................... 160 

Figure 29. Manhattan plot for UX3036 population considering least square means of 
water productivity over environments and irrigation treatments (Overall), over 
environments within the irrigated treatment (Irrigated), and over environments 
within the rainfed treatment (Rainfed) during the 2017-2018 water response 
experiment ............................................................................................................... 161 

Figure 30. Summary of 2,319 unique phenomic trait QTL by growth stage and population 
across irrigation treatments and environments during the 2017-2018 water response 
experiment ............................................................................................................... 162 

Figure 31. Identified water productivity QTL across irrigation treatments and 
environments during the 2017-2018 water response experiment heatmap and 
hierarchical clustering dendrogram to phenomic trait categories.. .......................... 163 

Figure 32. Identified water productivity QTL across irrigation treatments and 
environments during the 2017-2018 water response experiment heatmap and 
hierarchical clustering dendrogram to reported QTL object type categories on 
Soybase (soybase.org). ............................................................................................ 164 

Figure 33. Regression coefficients of generalized linear regression with elastic net 
regulation (ENET) model variables by population using least square means 
(LSMEANS) of water productivity across environments and irrigation treatments 
during 2017-2018 water response experiment in combination with genomic data and 
phenomic data collected at the V5 growth stage; flanking SNP markers of detected 
WP QTL indicated with orange dot......................................................................... 165 

Figure 34. Regression coefficients of generalized linear regression with elastic net 
regulation (ENET) model variables by population using least square means 
(LSMEANS) of water productivity across environments and irrigation treatments 
during 2017-2018 water response experiment in combination with genomic data and 



xiv 
 

phenomic data collected at the R5 growth stage; flanking SNP markers of detected 
WP QTL indicated with orange dot......................................................................... 166 

Figure 35. Predicted to observed Pearson correlation coefficient estimations and 95% 
confidence intervals of generalized linear regression with elastic net regulation 
(ENET) model over phenomic data collection growth stages and data subsets across 
environments and irrigation treatments in the 2017-2018 water response experiment 
using CV1 scheme.. ................................................................................................. 167 

Figure 36. Predicted to observed Pearson correlation coefficient estimations and 95% 
confidence intervals of generalized linear regression with elastic net regulation 
(ENET) model over phenomic data collection growth stages, populations, 
environments and irrigation treatments in the 2017-2018 water response experiment 
using CV2 scheme... ................................................................................................ 168 

Figure 37. Relative predictor importance estimations and 95% confidence intervals 
estimated from interaction curvature method and CART algorithm from plot data of 
2017-2018 water response experiment within the UX3000 population..  ............... 169 

Figure 38. Relative predictor importance estimations and 95% confidence intervals 
estimated from interaction curvature method and CART algorithm from plot data of 
2017-2018 water response experiment within the UX3036 population.. ................ 170 

 



xv 
 

LIST OF APPENDIXES 

1. Image Processing Script .............................................................................................. 171 

2. Spectrum Processing Script ........................................................................................ 176 

3. Example RQTL genomic data quality control script .................................................. 183 

4. Example CART Script ................................................................................................ 186 

5. Example NET Script ................................................................................................... 197 

6. Example ENET Script................................................................................................. 216 

7. Hyperlink to variable categories spreadsheet for individual traits collected during the 
2017-2018 water response experiment for QTL and predictive analytic summary 
figures ...................................................................................................................... 221 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

LITERATURE REVIEW 

Introduction 

 Availability of water is the primary abiotic factor influencing global food 

production (Matiu et al., 2017). In intensive crop production regions such as the 

Midwestern United States, the Chinese Corn Belt, Western Europe, and Australia, 

approximately two-thirds of the annual yield variability is dictated by fluctuating levels 

of precipitation and heat (Ray et al., 2013). Amplifying this substantial effect, crop land 

area limited by precipitation is projected to increase three-fold during the 21st century (Li 

et al., 2009).  Modeling future weather trends on their impact to crop production, annual 

yield losses from limited precipitation are expected to increase 10.5%, 6.0%, 18.8%, and 

15.6% for wheat, maize, soybean, and rice respectively during the next 80 years (Leng 

and Hall, 2019). As a result of the future climate and increasing populations, 20 - 60 

million irrigated hectares of cropland are expected to be converted back to rainfed 

production during the 21st century (Elliott et al., 2014). This reversion of cropland in 

combination with unfavorable precipitation patterns is projected to limit the global food 

production during the year 2100 to levels 8 – 43% below current day totals (Elliott et al., 

2014). With global food demands expected to approximately double by 2050 (Godfray et 

al., 2010; Tilman et al., 2011), current patterns relative to crop production and water 

foretell dire impending socioeconomic consequences without immediate intervention 

focused on crop water productivity.  

 A major global food crop demanding the greatest concern to the imminent 

limitation in production due to water is soybean [Glycine Max (L.) Merrill]. With 

estimated yield losses from limited precipitation to be roughly double that of maize, 
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soybean production has the highest potential to be restricted from climatic trends in the 

current century (Leng and Hall, 2019; Matiu et al., 2017). As the world’s primary oilseed 

crop with over 126 million hectares projected to be planted and an estimated 360 million 

metric tons harvested in 2018-2019, climatic and agricultural patterns put production of 

the world’s most important food, oil, and protein crop under danger (OECD-FAO, 2019; 

Singh, G., 2010).  

 As the world’s largest producer of soybean, the United States has been identified 

as being especially at risk from climate changes (Elliott et al., 2014; Leng and Hall, 2019; 

Li et al., 2009; OECD-FAO, 2019; Zipper et al., 2016). Projected future irrigation 

limitations in combination with elevated risk of variable precipitation in the United States 

corn belt greatly increases the magnitude of future losses associated with annual rainfall 

amounts compared to other global soybean production environments (Elliott et al., 2014; 

Leng and Hall, 2019; Zipper et al., 2016). Compounding this looming unfavorable trend, 

soybean has experienced rapid growth in the United States over the past 100 years. 

Harvested hectares have increased from 181,300 in 1924 to approximately 35,751,140 

hectares in 2018; even in the past decade, from 2008 to 2018, there has been an increase 

of approximate 60% in overall soybean production in the United States (USDA, National 

Agricultural Statistics Service, 2018). This swift trend is expected to continue as the 2050 

projected demands will necessitate an approximate 70% increase in hectares harvested 

compared to year 2000 levels (Kruse, 2010). Coinciding with increased land production 

demands, annual soybean yield gains must increase approximately 100% from the current 

1.3% rate to 2.4% annually (Hertel, 2011; Kruse, 2010; Ray et al., 2013). This demand 

requires an annual increase of 47.1 kg ha-1 yr-1 from current levels of United States 
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soybean production (Hertel, 2011; Nelson, 2010). Continuation with current soybean 

yield advances is projected to result in extensive global shortages as soon as 2050 (Ray et 

al., 2013). 

 The increasing demand for soybean taken in consideration with negative climatic 

and irrigation trends accentuates the importance of improving soybean yield response to 

water. To overcome the unfavorable patterns and meet future production demands, a 

multidisciplinary and collaborative approach is essential to sustain soybean production. 

To address the approaching concerns, an increased understanding of soybean responses to 

water, improved characterization and deployment of soybean water response traits, and 

increased rates of genetic gain through breeding innovation are demanded. Only through 

such achievements will the great challenge of meeting future demands be realized.  

Soybean Response to Water 

 To further our understanding of soybean response to water, a foundation of 

current knowledge is needed. Soybean response to water has been shown to be a highly 

variable trait heavily influenced by both environmental and genotypic factors (Irmak et 

al., 2014; Specht et al., 2001). Reports of yield to seasonal water supply, or water 

productivity (WP), have been reported to be approximately 13.1 kg ha-1 mm-1 in high 

yielding Nebraska environments with statewide averages reported as 9.9 kg ha-1 mm-1 

(Irmak et al., 2014; Grassini et al., 2015). When calculated as the linear regression 

coefficient between limited and rainfed environments, additional water supplied through 

irrigation has been reported to increase soybean yield anywhere from 1.32 kg ha-1 mm-1 to 

11.49 kg ha-1 mm-1 depending on environment and genotype (Irmak et al., 2014; Specht et 

al., 2001). A seasonal water supply of approximately 650 mm has been estimated to be 
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sufficient in maximizing seed yield of soybean in the U.S. Corn belt (Grassini et al., 

2015). Of this 650 mm seasonal water supply, approximately 250 - 500 mm will be 

utilized by the soybean plant through evapotranspiration, and the remaining amount will 

remain in the soil profile or leach to depths unreachable by the soybean plant (Grassini et 

al., 2015; Irmak et al., 2014; Payero et al., 2005).  

 In production environments were seasonal water supplies do not exceed 

evapotranspiration demands, genotypic mechanisms to overcome water stress and 

maintain elevated WP become especially desirable (Carter, 1989; Specht et al., 2001). 

Historically, soybean genotypic mechanisms to manage stress imposed by limited water 

have been separated into two categories, drought escape and drought tolerance (Levitt, 

1980). Drought escape encompasses attributes that allow the soybean plant to complete 

critical life cycle stages before the onset of limited water; drought tolerance pertains to 

traits that allow the soybean plant to maintain high water status, turgor pressure, and 

water use efficiency during periods of inadequate water (Manavalan et al., 2009).  

 In relation to drought escape traits, the timing of water stress and stage of 

development are indicative to the final magnitude of response in soybean. Drought stress 

during the pod elongation (R3-R4) and the seed filling (R4–R5) stages are estimated to 

have the largest impact on final seed yield (Desclaux et al., 2000; Eck et al., 1987; 

Kadhem et al., 1985; Korte et al., 1983; Smiciklas et al., 1992). Water stress during pod 

elongation has the largest influence on the number of pods, and drought stress occurring 

during seed filling most significantly influences seed weight and quality (Desclaux et al., 

2000; Kadhem et al., 1985; Smiciklas et al., 1992). Stress during flowering stages (R1-

R2) reduces pod number by increasing the frequency of aborted flowers (Korte et al., 
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1983; Westgate and Peterson, 1993). Water stress during vegetative growth reduces 

internode length and most significantly alters final plant height (Desclaux et al., 2000; 

Hoogenboom et al., 1987).  

 In general, soybean is most sensitive to limited water during the following growth 

and developmental stages ranked in decreasing order of scale: (R3-R4), (R5-R6), (R1-

R2), (V1-V5), (R7-R8) (Desclaux et al., 2000; Eck et al., 1987; Kadhem et al., 1985; 

Korte et al., 1983). Drought stress in soybean tends to hasten maturity, and reduce plant 

height, lodging severity, seed quantity, seed protein concentration, seed size, and harvest 

index, yet large differences among genotypes have been reported (Dornbos and Mullen, 

1992; Kadhem et al., 1985; Korte et al., 1983; Specht et al., 1986). The large genotypic 

influence of soybean response to limited water can primary be attributable to the presence 

of drought tolerance traits if development differences are kept constant. 

 When considering response to water in soybean, an equation developed by 

Passioura in 1977 is commonly used to explain the degree of water use efficiency 

exhibited by an individual plant. Under water stressed environments, the grain yield (Y) is 

a linear function of amount of water transpired (T), water use efficiency (WUE), and 

harvest index (HI):  (Passioura, 1977). A wide number of traits in 

soybean have been shown to play directly into this equation. Beneficial traits associated 

with WUE have been linked to variation in soybean leaf pubescence, stomatal closure 

intervals, ureide accumulation in petioles, leaf osmotic adjustments, abscisic acid (ABA) 

accumulation, maximum transpiration rate, flower abortion rates, and drought tolerant 

nitrogen fixation levels (Jiang and Egli, 1993; Manavalan et al., 2009; Sinclair, Thomas 

R. et al., 2010). Traits associated with T have been linked to variation in relative water 
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content, phenology, photoperiod sensitivity, development plasticity, heat tolerance, 

osmotic adjustment, epidermal conductance, early vigor, lateral root development, 

atmospheric vapor pressure deficit (VPD) responses, and tap root development (Fletcher 

et al., 2007; Purcell and Specht, 2004; Sadok and Sinclair, 2009). At field scale in applied 

agronomic research, WUE has often been estimated and referred to as water productivity 

(WP) (Grassini et al., 2011; Irmak et al., 2014). Due to the limitations of estimating T and 

HI at field scale, WP commonly calculated through the ratio of yield to unit water or 

effective unit water offers a quite estimation of WUE of value in comparative field 

experiments (Grassini et al., 2011; Irmak et al., 2014). 

 The large number of phenotypic traits associated with soybean response to limited 

water and their interaction with developmental timing illustrate the trait’s complex and 

highly quantitative nature. Soybean can overcome limited water availability using a 

myriad of phenotypic traits or simply through drought avoidance. To make significant 

gains with such a highly quantitative trait, genotypic variation within soybean breeding 

populations must first be characterized. Through the construction and categorization of 

divergent breeding populations or population samples, researchers can better understand 

the genotypic variation present within soybean.   

Soybean Genotypic Variation in Response to Limited Water 

 To effectively characterize and understand the impact of an altered water response 

trait, there first must be sufficient initial variation in the sample population. Considerable 

genetic variation in relation to T, whole-plant WUE, leaf epidermal conductance, leaf 

tissue relative water content (RWC), root development, and drought tolerance nitrogen 

fixation levels have been reported by numerous researchers (Carpentieri-Pipolo et al., 
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2012; Hufstetler et al., 2007; James, A. et al., 2008; King and Purcell, 2001; Mian et al., 

1998; Purcell and Specht, 2004).  

 First, significant variation in T and its interaction with VPD have been reported 

among both commercial soybean cultivars and plant introduction (PI) soybean 

germplasm sources (Bunce, 1981; Fletcher et al., 2007; Sadok and Sinclair, 2009). 

Commercial soybean cultivars have been reported to have nearly double the rate of T 

compared to PIs during high VPD growth conditions with measurable lower canopy 

temperatures (> 2°C) during conditions eliciting this response (Fletcher et al., 2007; 

Sadok and Sinclair, 2009). Plant introduction genotypes were observed to clearly limit 

transpiration when VPD approached 2.0 kPa and above, yet commercial soybean 

cultivars exhibited no such limitation (Fletcher et al., 2007; Sadok and Sinclair, 2009). 

Limiting T during periods of high VPD has been theorized to be a key trait in water 

conservation during the growing season therefore potentially increasing both WUE and 

yield in certain water limiting environments (Fletcher et al., 2007). This water response 

trait has been modeled to improve soybean yield in approximately 70% of U.S. growing 

conditions over years (Sinclair et al., 2010). 

 In addition to transpiration rate variation, significantly different WUEs, leaf 

epidermal conductance values, leaf osmotic potential values, and RWC have been 

reported in soybean. Investigating commercial cultivars across water treatments, ranges 

of approximately 25% of maximum WUE have been reported along with a significant 

negative relationship between leaf epidermal conductance and WUE (Hufstetler et al., 

2007) . Reports of at least a two-fold range in leaf epidermal conductance values, a 2.10 

MPa range in leaf osmotic potential values (52% range from maximum), and a 12-
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percentage point range in RWC (20% range from maximum) during periods of drought 

stress have also been estimated between cultivated soybean varieties with an even greater 

variation among Glycine soja (James, A. et al., 2008). With increased leaf epidermal 

conductance both T and leaf RWC are anticipated to be increased along with an increased 

photosynthetic rate (Farquhar and Sharkey, 1982). Similar to the benefits of VPD limited 

T, genotypes with lower leaf epidermal conductance and lower leaf RWC likely conserve 

water during times of stress thereby improving WUE. In environments with extreme 

drought stress, these traits can be viewed as beneficial, yet in optimum environments, 

they would likely limit maximum yield (Blum, A., 2009; Buttery et al., 1993; Roche, 

2015; Sinclair, Thomas R. et al., 2010).  

  Along with genotypic variation in water response traits associated with the plant 

canopy, variation exists among root responses. In two connected studies, variation as 

great as 1.3 cm day-1 among 105 diverse soybean lines for taproot elongation was 

estimated in greenhouse environments, and in the associated field study, cultivars with 

greater taproot elongation were able to extract water at depths over 120 cm (Kaspar et al., 

1984). Greater root dry weight and total length has been found to be significantly 

correlated to water productivity in water-limited environments (Goldman et al., 1989; 

Hudak and Patterson, 1996; Read and Bartlett, 1972). Along with rooting traits, variation 

in nitrogen fixation during periods of drought stress have been shown to result in 

correlated variation in yield increase even at moderate levels of water deficit  (King and 

Purcell, 2001; Sinclair, Thomas R. et al., 2007). Through extracting water from deeper 

soil depths and maintaining high levels of nitrogen fixation during water stress, growth 

and development remains relatively unchanged in periods of moderate stress.  
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  With substantial genotypic variation among even commercial soybean cultivars, 

there is great opportunity for improving soybean response to water. Through the 

construction of breeding populations from parents with complementary water response 

traits, the likelihood of obtaining transgressive segregation and improved genetic gain is 

increased (Bernardo, 2002; Falconer and Mackay, 2009). Development of such soybean 

cultivars with improved response to water better equips producers to meet future 

demands despite unfavorable climatic and irrigation trends.  

Breeding for Improved Response to Water in Soybean 

 Breeding for improved response to water has long been recognized as an area of 

concern in soybean breeding programs; the importance of drought on soybean’s 

expansion into the Western United States was discussed as early as 1939 (Primmer, 

1939). In 1956, the basis of drought resistance in soybean and benefits of exploiting the 

natural variation in limited water response traits was highlighted (Clark and Levitt, 1956). 

In 2010, the benefit of soybean drought traits was estimated to result in significant yield 

gains, up to 1000 kg ha-1, in all major soybean production areas (Sinclair et al., 2010). 

Despite the longstanding knowledge of the benefits of drought tolerance to soybean yield 

and quality, most soybean breeding programs do not directly select for improved 

response to water (Carter, 1989; Sleper and Poehlman, 2006). 

 Breeding for increased levels of seed yield is often of main concern for public and 

private soybean breeding programs with continual focus on maximizing the amount of 

genetic gain per year. Releasing soybean lines with increased yield performance is 

commonly achieved through developing F2 populations from elite parents and advancing 

these populations through single seed descent, progeny evaluation, and yield trial 
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evaluation over a period of six to seven years (Bernardo, 2002; Fehr, Walter R., 1987; 

Lynch and Walsh, 1998; Sleper and Poehlman, 2006). Yield evaluation of the progeny 

usually begins around the F5 generation in testing sites representative of the intended 

production market (Bernardo, 2002; Fehr, Walter R., 1987). The highly quantitative 

nature of soybean seed yield complicates yield evaluation as both genotypic and 

environmental factors such as abiotic stress tolerance govern performance. Even with the 

great progress in soybean breeding over that past 20 years obtained through leveraging 

transgenic technologies, winter nurseries, marker assisted selection (MAS), data 

management technologies, genotyping array technologies, and genotyping by sequencing 

(GBS) methods, confounding environmental effects still complicate yield estimates 

(Blum, Abraham, 2018). The interaction that soybean seed yield exhibits with abiotic 

environmental factors has caused divergence in approaches for addressing these 

environmental limitations. Commonly, soybean breeding programs either directly address 

and breed for abiotic stresses such as limited water availability, or solely focus on overall 

yield improvement in optimum environments.  

 When breeding for improved drought tolerance or water productivity in limited 

environments in soybean, it follows that the term drought tolerance must first be clearly 

defined. Definitions for drought tolerance can be classified into two categories, 

mechanistic and empirical (Specht et al., 2001; Wilhite and Glantz, 1985). Mechanistic 

tolerance selection involves identifying and selecting for physiological soybean traits that 

are highly correlated to survival under drought stressed conditions (drought escape, 

dehydration avoidance, and dehydration tolerance) yet may be associated with lower seed 

yields in optimum environments (Jones, 1993; Kramer, 1980; Ludlow and Muchow, 
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1990; Nilsen and Orcutt, 1996). Empirical selection for drought tolerance involves 

selecting the highest-yielding genotypes in environments where drought is recurrent, or 

genotypes with the smallest yield decline per unit of reduced rainfall (Specht et al., 1986; 

Specht et al., 2001).  

 Determining whether to follow either a mechanistic or an empirical approach in 

breeding for improved water productivity in limited environments proves to be a difficult 

decision. Proponents of both methods have demonstrated success, yet because water 

productivity is a highly quantitative trait, choosing a clear superior method is 

problematic. Traditionally many soybean breeders have chosen to take the empirical 

approach, and focus on mean performance over environments even though the benefits of 

improved tolerance to drought are widely known (Carter, 1989). Even without a clear 

abiotic stress breeding objective, minor and recurrent environmental stresses at yield 

evaluation environments will result in continual empirical stress selection (Parlevliet, 

1994). Using this viewpoint, the advantages of empirical selection for stress tolerance has 

been supported by the theory; with minor stresses even in optimum environments, yield 

performance across stress and non-stressed environments is best achieved when selection 

is performed in locations that maximize genetic variation (Rosielle and Hamblin, 1981). 

Without segregation of major drought tolerance traits, the increased genetic variation 

anticipated in optimum environments allows for improved selection across both optimum 

and stressed locations (Rosielle and Hamblin, 1981). This empirical approach has been 

supported with studies investigating water productivity improvement in multiple crops 

(Calderini and Slafer, 1998; Perez Arocho, 2017; Rizza et al., 2004; Specht et al., 2001) . 

When global yield increases in wheat are expressed as a percentage, no significant 
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advantaged arises between yield advancements in optimum and water limited regions 

(Calderini and Slafer, 1998). In soybean, empirical selection for drought tolerance in a 

diverse soybean panel has proven to effectively identify genotypes with improved 

performance in water-limited environments (Perez Arocho, 2017) 

  Irrespective of empirical drought tolerance selection successes, advances in 

genomic techniques over the past 20 years have increasingly challenged the empirical 

breeding approach. The availability of high-density genetic maps of soybean and marker 

assisted selection (MAS) techniques have increased the practicality of mechanistic 

selection. Through the application of the high-density genetic maps, 28 water response 

related quantitative trait loci (QTL) have been reported in soybean (Bhatnagar et al., 

2005; Carpentieri-Pipolo et al., 2012; Du et al., 2009; Mian et al., 1996; Mian et al., 

1998; Monteros et al., 2006; Specht et al., 2001). By characterizing soybean response to 

water and identifying associated molecular markers, a molecular mechanistic breeding 

approach is anticipated to improve accuracy, efficiency, and precision of drought 

tolerance progress in soybean (Pathan et al., 2007). However, the complex and highly 

quantitative nature of soybean seed yield limits the immediate application. With nearly 

half of the reported QTL explain less than 10% of the total phenotypic variation, a 

combination of both mechanistic and empirical selection methods or genome wide 

selection may prove to be most beneficial (Pathan et al., 2007).    

 A potential method to leverage the benefits of both empirical and mechanistic 

selection for drought tolerance in soybean is to focus on the response to water between 

two irrigation treatments (Perez Arocho, 2017; Ruff, 2016; Specht et al., 1986; Specht et 

al., 2001). Due to the linear response of soybean yield to varying levels of water received, 
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only two water treatments are needed (Specht et al., 2001). A limited and an optimum 

irrigation treatment will allow for yield selection under optimum conditions, mechanistic 

trait identification in the limited treatment, and an empirical quantification of response 

through the change in yield between the two extreme treatments (Grassini et al., 2015; 

Specht et al., 2001). Through this approach, traits correlated with significant changes in 

drought stress tolerance may be identified in the limited treatment and estimates of water 

productivity can be evaluated over treatments increasing the inference space of the 

experiment.  

 Combining such a drought tolerance experiment with high-density genetic 

information further improves mechanistic trait identification as QTL can be associated 

with yield performance in limited irrigation treatments, yield response between 

treatments, or water productivity over treatments. However, to fully leverage the high-

dimensional genotypic data, equally high dimensional phenotypic information should be 

collected and paired. To effectively collect the amount of high quality phenomic 

information mandatory to leverage the genotypic data, high-throughput field based 

phenomic platforms are needed.  

Field Based Phenomic Platforms 

 The large-scale systematic collection of high dimensional and high throughput 

phenotypic data has been considered imperative for advances in the genomic era (Bilder 

et al., 2009; Freimer and Sabatti, 2003; Houle et al., 2010; Schork, 1997). Through the 

union of high-dimensional phenotypic and genotypic data, rare genetic variations can be 

associated with phenotypic response, pleiotropy can be studied, and our knowledge of 

complex biological systems can be increased (Brown et al., 2014; Houle et al., 2010; 
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Pendergrass et al., 2011). In relationship to plant breeding, while many programs have 

readily adopted genomic technologies, relatively few have incorporated high-dimensional 

phenotypic data (Awada et al., 2018). The need to efficiently and accurately characterize 

plant phenotypes to keep pace with current DNA sequencing technologies has therefore 

piloted the development of high throughput field-based phenomic platforms (Scheben et 

al., 2018; White et al., 2012).  

 Field phenomic platforms leverage an array of visible light, thermal infrared, near 

infrared (NIR), ultrasonic, hyperspectral, and light detection and ranging (LIDAR) 

sensors to quantify crop growth and status (Andrade-Sanchez et al., 2014; Bai et al., 

2016; Barker et al., 2016; Busemeyer et al., 2013; Svensgaard et al., 2014; Virlet et al., 

2017; White et al., 2012). Compared to traditional phenotypic data collection processes in 

plant breeding programs, field phenomic platforms enable a step change in data 

resolution, repeatability, and dimension along with indirect quantification of phenotypes 

previously unfeasible to collect on a large scale (Awada et al., 2018). Through 

quantification of leaf reflectance parameters, biologically important yet traditionally 

unobtainable metrics such as chlorophyll concentration, photosynthetic rates, and canopy 

architecture can be rapidly collected (Chappelle et al., 1992; McKinney et al., 1989; 

Rainey et al., 2018). In relation to a complex and highly quantitative trait such as 

response to water, field phenomics provide a high-dimensional canopy reflectance dataset 

to identify an increased number of genes with small effect influencing the response 

(White et al., 2012).  
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Soybean Leaf Reflectance Parameters 

 Field phenomic platforms utilize the high correlation of many canopy reflectance 

parameters to biological properties of the crop. In soybean, spectral reflectance patterns 

offer valuable insights into both leaf structure and photosynthetic pigment concentrations. 

In previous studies, the amount of visible and NIR light reflected has been associated 

with leaf cellular structure and photosynthetic pigment concentrations (Kumar and Silva, 

1973; Sinclair, TR et al., 1971; Woolley, 1971). In soybean, wavelengths relating to 

visible light region (400 – 700 nm) generally have lower reflectance due to the strong 

absorption of blue and red light by the photosynthetic pigments chlorophyll a, 

chlorophyll b, and carotenoids in the leaf chloroplast (Curran, 1989). As the frequency of 

light increases into the NIR region (700 – 1250 nm), an increase in reflectance is 

expected from the scattering of light through the spongy mesophyll and parenchyma cells 

(Gates et al., 1965; Knipling, 1970); photosynthetic pigments are also unable to use these 

higher energy wavelengths in the NIR region thereby increasing reflectance (Gates et al., 

1965; Knipling, 1970). 

  The spectral reflectance curve common to plants has been used to create a 

multitude of reflectance indices that estimate photosynthetic pigment concentrations and 

activity. Through comparison of the green and red regions of the reflectance spectrum, 

leaf pigment concentrations can be estimated for a myriad of crop species (Rascher et al., 

2011; Sims and Gamon, 2002). In soybean, reflectance differences between blue and red 

light wavelengths has been used to predict chlorophyll concentration and β carotene 

concentration with high accuracy, R 2 = 0.93, and 0.94 respectively (Chappelle et al., 

1992). Indices related to these photosynthetic pigment concentrations have proven useful 
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in predicting agronomically important phenotypes in soybean such as yield and biomass. 

Using canopy reflectance measurements, R2 greater than 0.80 have been reported for in 

season canopy reflectance parameters to yield (Babar et al., 2006; Ma, B. et al., 2001). In 

addition to associations with yield, recent research comparing reflectance in the visible 

light spectrum has shown useful for quantifying nitrogen fixation and effects of 

nodulation in soybean (Vollmann et al., 2011). 

 In conjunction with general wavelength regions of interest, the very specific 

Fraunhofer lines have shown promise in quantifying photosynthetic pigment 

concentrations (Liu, Liang-yun et al., 2006). Fraunhofer lines represent absorption 

wavelengths in the solar reflectance curve caused by the interaction of various elements 

to the sun’s photosphere and the earth’s atmosphere with the incoming solar radiation 

(Meroni et al., 2010). Due to the greatly reduced solar reflectance noise from plant 

canopies at Fraunhofer lines, the series of wavelengths related to chlorophyll fluoresce 

(656.7 nm, 686.7 nm, and 759.4 nm) has been investigated successfully for quantifying 

photosynthetic pigments in wheat with correlation coefficients of 0.99 to handheld 

chlorophyll meters (Liu, Liangyun et al., 2005; Liu, Liang-yun et al., 2006). Fraunhofer 

lines of 656.7 nm, 686.7 nm, and 759.4 nm have even been shown to effectively identify 

the presence of drought stress in the Williams 82 soybean line under controlled growing 

conditions with prediction accuracy of 0.96 (Mo et al., 2015).  

 In addition to spectral reflectance, thermal properties of the crop canopy have 

proven beneficial for investigating photosynthetic rates, stomatal resistance, and yield 

performance (Amani et al., 1996; Farquhar and Sharkey, 1982; Fischer et al., 1998; 

Pietragalla and Pask, 2012) . Through transpiration’s evaporative cooling effect on the 
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surface of leaf tissue, canopy temperature serves as an indirect quantification of T. As 

leaf transpiration increases, more liquid H2O is converted to gas, thereby more heat 

energy from surrounding leaf surfaces is absorbed, and the effective temperature is 

thereby lowered (Farquhar and Sharkey, 1982; Roche, 2015). Using this biological 

rationale, soybean researchers have identified significant relationships between leaf 

canopy temperature to air temperature differential (CATD), water status, and yield 

(Harris et al., 1984; Jackson, 1982; McKinney et al., 1989; Valle et al., 1985). General 

trends of lower canopy temperature values relative to the environment has been shown to 

be positively correlated with yield, and positively correlated with leaf water potential, 

stomatal conductance, and transpiration rates (McKinney et al., 1989; Ries et al., 2012; 

Roche, 2015; Valle et al., 1985). As the primary mechanism for plants to acquire CO2 

and fix into biomass, increases in stomatal conductance and transpiration rates indirectly 

assessed through canopy temperature measurements offer great potential for researchers 

to improve yield potential, biotic stress tolerance, harvest index, and radiation use-

efficiency (Roche, 2015).  

 Previous research has established that numerous soybean physiological and 

agronomic traits can be assessed from canopy reflectance parameters. Leveraging these 

previously identified associations, field phenomic platforms allow researchers to rapidly 

collect a wealth of relevant phenotypes on a per plot basis. Armed with this abundance of 

relevant phenotypes, researchers are better equipped to identify small variations 

associated with complex traits such as water stress tolerance and response (White et al., 

2012).  
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Field Phenomics for Soybean Water Stress Categorization 

 Even though researchers have made progress in improving response to water in 

multiple crops using field phenomics, the use of field phenomics to identify water stress 

tolerance and response traits in soybean is lacking (Beebe et al., 2013; Masuka et al., 

2012; Passioura, 2012; Spindel et al., 2018; Thompson et al., 2018). Recent research 

using greenhouse phenomic systems have distinguished differences in WUE, transpiration 

rate efficiency, and T among soybean genotypes using imagery data (Peirone et al., 2018; 

Pereyra-Irujo et al., 2012). Nevertheless, many of these traits identified in greenhouse 

conditions were shown to have little relationship to performance in field trials, suggesting 

a large genotype by greenhouse environmental interaction (Peirone et al., 2018). Possibly 

due to soybean’s altered growth in greenhouse environments, few reports of phenotypic 

measurements collected in greenhouses have shown high correlation to field performance 

(Peirone et al., 2018). With the apparent limitations of greenhouse phenotyping systems, 

the use of field phenomics seem most adaptable to measuring water stress tolerance and 

response in soybean, yet few studies have been conducted.  

 Early work in soybean field phenomics using canopy coverage and light 

interception measurements from digital imagery has shown promise in evaluating 

soybean growth and yield in optimally irrigated experiments (Purcell, 2000). Building 

from this study, digital imagery of canopy development between two soybean cultivars 

under four irrigation treatment regimens allowed for the construction of indices with 

correlation coefficients of over 0.80 to yield across water treatments (Hoyos-Villegas et 

al., 2014). In addition to yield prediction, canopy coverage estimates have also proven 

useful for identifying QTL associated with yield across a diverse nested association 
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mapping panel in soybean (Xavier et al., 2017). Implementation of these phenomic-

derived QTL has improved the accuracy of genomic selection, compared to traditional 

methods (Jarquín et al., 2014).  

 Despite these helpful early findings, to our knowledge, field phenomics has yet to 

be used for identifying traits in large soybean mapping populations under water treatment 

regimes. Although previous studies have been conducted investigating the relationship of 

agronomic traits between limited and optimally irrigation environments, work has yet to 

be done incorporating large phenomic and genomic datasets into such an experiment. 

Through the incorporation of agronomic, phenomic, genomic, and environmental datasets 

into experiments with contrasting irrigation treatments, improvements in mechanistic trait 

identification is expected. Our research investigates the feasibility of paring agronomic, 

phenomic, and genomic data to improve trait identification and prediction performance in 

soybean breeding programs.  
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RESEARCH OBJECTIVES 

The objectives of this research are to 1) quantify two soybean recombinant inbred 

line (RIL) populations for water productivity and identify informative agronomic, 

phenomic, and genomic associations; and 2) integrate agronomic, phenomic, genomic, 

and environmental information to develop predictive models of water productivity.   
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MATERIALS AND METHODS 

Soybean Population Development 

 Three maturity group (MG) III lines were selected to develop two recombinant 

inbred line (RIL) mapping populations based on their varying responses to water stress 

from an experiment conducted in Los Andes, Chile (-32.796 latitude, -70.626 longitude) 

during the winter of 2013-2014 (Figure 1). University of Nebraska-Lincoln (UNL) line 

U11-614093 was selected based on favorable yield under both optimal and water stressed 

irrigation treatments. University of Nebraska-Lincoln line U09-312115 was selected 

based on favorable yield under optimal irrigation and genetic distance from U11-614093, 

and University of Illinois line LD02-4485 was selected for its relatively small response to 

increasing amounts of water (Ruff, 2016). Breeding line U11-614093 was derived from 

the initial crossing of UNL line U02-242055 and Illinois line LD04-13265 (Table 1). 

U09-312115 was selected from the cross of UNL lines U02-242055 and U03-300134, 

and LD02-4485 resulted from the crossing of M90-184111 and IA3010 (Table 1) 

(Crochet and Hughes, 2014; Schlueter and Scofield, 2015).  

 The three parental lines were crossed the summer of 2013 to form two distinct 

RIL populations; the U11-614093 x LD02-4485 population denoted as UX3036 and the 

U09-312115 x U11-614093 population denoted as UX3000 at UNL’s East Campus 

Research Farm (40.836 latitude, -96.667 longitude). Hybridity of successful crosses was 

assessed through DNA extracted from F1 seed using the BioSprint 96 plant DNA 

extraction method and a Qiagen DNeasy Plant 96 kit (DNeasy, QIAGEN, Hilden, 

Germany) (Ruff, 2016). True F1 seed was confirmed through the comparison of simple 

sequence repeat (SSR) markers polymorphic between parental lines (Ruff, 2016). 
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Confirmed F1 hybrid seeds and parental lines were then planted in 1.0-meter length three 

row plots in Los Andes, Chile during the winter of 2013-2014. Bulked F2 seed from Los 

Andes was then grown in 2.9-meter length four row plots at the UNL East Campus 

Research Farm during the summer of 2014. Seed was bulked from these plots and planted 

in 3.0-meter length four row plots at Los Andes during the winter of 2014-2015. Bulked 

F4 seed from Los Andes was then planted in 6.0-meter length four row plots at UNL and 

single plants were pulled based on maturity grouping for progeny row increase. Progeny 

row increases of the F4:5 recombinant inbred lines took place at Los Andes in single row 

1.0-meter length plots. All seed was harvested from progeny row increases to form a total 

of 872 F4:6 RILs. The total size of the UX3036 population was 403 individuals, and the 

total size of the UX3000 population was 469 individuals. 

Preliminary Evaluation 

 All 872 F4:6 RILs were then evaluated for preliminary yield and water 

productivity performance across four representative and uniform south eastern and 

central Nebraska testing environments (Table 2). An augmented incomplete block 

experimental design, with parental lines used as chaining mechanisms between 

incomplete blocks, was used to arrange RILs within each testing environment. 

Incomplete blocks were determined from first dividing the 876 RILs into three groups 

based on MG range (I, II, and III), and then randomly partitioning MGs in sub groupings 

of approximately 35 lines. RILs in MGs I and II were evaluated at Cotesfield and Mead 

whereas RILs in MGs III were grown in Clay Center and Wymore environments. Within 

each testing environment, RILs were planted in un-replicated 2.9 m length two-row plots 
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with 0.76 m row spacing and 0.91 m alley width. All testing environments were 

optimally irrigated to maximize seed yield. 

 During the 2016 preliminary evaluation, individual plots were phenotyped at the 

V5 and R5 stage with a multi-sensor high throughput field phenotyping platform 

developed at the University of Nebraska-Lincoln (Bai et al., 2016; Fehr, Walter R. et al., 

1971). The field phenomic platform (FPP) is equipped with twenty independent sensors 

measuring an array of canopy traits including height, temperature, spectral reflectance, 

and digital imagery for three 0.76 m spaced two-row plots simultaneously (Table 3) (Bai 

et al., 2016; Yuan et al., 2018). With the large array of sensors and potential to be 

influenced by changing temporal and spatial factors, the starting position and movement 

of the FPP through each environment was randomized for each phenotyping event. 

Phenomic information was collected from all plots during both the V5 and R5 growth 

stage in 2016 apart from R5 information at Cotesfield, NE. Phenomic information was 

not collected during the R5 stage at Cotesfield due to concerns of damaging lodged plants 

from an earlier violent thunderstorm with high winds. 

 In addition to phenomic information collected at key developmental stages, final 

plant height at maturity, lodging, maturity date, seed yield, seed weight, seed quality, 

protein composition, and oil composition was collected for 2016 plots. Final plant height 

was recorded in centimeters as the average distance from the ground to tip of main stem 

height of mature plants in the center of the plot. Lodging was recorded at maturity 

according to the following 1-5 scale: 1 (almost all plants erect), 2 (all plants leaning 

slightly), 3 (all plants learning, 25% - 50% down), 4 (all plants leaning, 50%-80% down), 

and 5 (almost all plants down) (Schlueter and Scofield, 2015). Maturity date was 
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recorded as the day at which 95% of pods on the main stem first reach maturity 

(Schlueter and Scofield, 2015). Seed yield was recorded as the plot seed yield in kg ha-1 

adjusted to 13% moisture (Schlueter and Scofield, 2015). Seed weight was reported as 

the weight in grams of 100 seeds, and seed quality was assessed using an iterative 1-5 

scale representative of the 1 (no blemishes, ideal seed quality) to 5 (very poor seed 

quality, greater than 80% of seed area blemished) range (Schlueter and Scofield, 2015). 

Seed composition metrics were estimated through an Infratec™ 1241 whole seed grain 

analyzer (Infratec™ 1241, FOSS, Hillerød, Denmark) with a transmittance scanning 

monochromator spectrometer. Reflectance values were transformed through SB201301 

soybean bulk seed and SB201304 soybean sample transport module calibrations provided 

by the Iowa Grain Quality Laboratory, Iowa State University to output protein, oil and 

fiber compositions by weight adjusted to 13% moisture (Rippke et al., 1995). Ten 

subsamples were used throughout the project when analyzing plot seed samples and 

values were reported as the ten-subsample average.  

 Along with phenomic and agronomic information, estimated processed values, 

estimated yield WP to in season effective water (estimated evapotranspiration), and 

weather station information relative to testing environments was collected. Estimates for 

processed meal protein concentration, crude oil yield, and estimated processed value 

were determined from the soybean processing (SPOC) program and seed composition 

values (Brumm and Hurburgh, 1990). October 2013 to October 2018 average Chicago 

Mercantile Exchange (CME) group end of day settlement prices for soybean oil, soybean 

meal, and soybean hulls were used as inputs for the SPROC program (Brumm and 

Hurburgh, 1990). Environmental information for 2016 testing environments was 
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download from the High Plains Regional Climate Center (CLIMOD) webpage 

(http://climod.unl.edu/). From the online resource, daily maximum temperature in 

degrees Celsius, minimum temperature in degrees Celsius, and precipitation in 

millimeters was used to estimate accumulated growing degree days (GDD), and 

accumulated precipitation during the growing season. Precipitation and temperature 

information from CLIMOD was inputted into the soybean growth and water use crop 

model, SoyWater (http://hprcc-agron0.unl.edu/soywater), to estimate soybean growth, 

estimate cumulative effective water, estimate cumulative water depletion and schedule 

irrigation timing throughout the growing season relative to each production environment 

and maturity grouping (Specht et al., 2010). Water productivity (WP) was calculated by 

dividing total plot seed yield by the seasonal cumulative effective water estimated by 

SoyWater. Within SoyWater, seasonal cumulative effective water is an estimation of total 

transpiration influenced by weather metrics, irrigation timing and amount, soil water 

holding capacity, and maturity grouping (Specht et al., 2010).  

Power Analysis  

 After the 2016 preliminary yield evaluation, a power analysis was conducted to 

approximate the sample size needed to estimate QTL effects and treatment differences in 

a water response experiment. The R package “qtlDesign” was used to estimate the sample 

size needed to detect QTL over critical likelihood of odds (LOD) threshold values, given 

estimated effect size, genotypic variance, environmental variance, and number of 

replications (R-Core Team, 2018; Sen et al., 2007). The PROC power procedure of SAS 

9.3 (SAS Institute, 2014) was used to estimate power for yield differences between full 

and rainfed irrigation treatments. With large population sizes, a 50% random sample of 
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each RIL population was determined to provide sufficient power to detect QTL and 

identify treatment differences while conserving resources. With a reduced population size 

of 235 lines (50% of 469), replicated twice within location over two environments, the 

UX3000 population was estimated to have 80% power in detecting a 194 kg ha-1 yield 

difference and identify water response QTL with LOD scores greater than 2.17. The 

sampling of 202 lines (50% of 403) from the UX3036 population was estimated to 

provide 80% power in detecting a 209 kg ha-1 yield difference and identify water 

response QTL with LOD scores greater than 2.65. Previous QTL mapping studies 

involving soybean yield and drought responses have been unsuccessful in identifying 

QTL with LOD scores less than 2.9 (Carpentieri-Pipolo et al., 2012; Du et al., 2009; 

Mian et al., 1998; Specht et al., 2001). Standard errors of entry least square mean 

estimates across environments in the 2016 preliminary evaluation experiment averaged 

146 kg ha-1. Based on this information, and the variation of genetic yield potential 

identified in the preliminary yield analysis, power was deemed sufficient to accomplish 

this projects objectives. 

Water Response Experiment 

 After determining the minimum sample size needed to accomplish objectives, the 

experimental design of the water response experiment was devised. Through 

consideration of both resource constraints and the importance of RIL estimates compared 

to estimates of overall irrigation effect, a split plot experimental design was determined to 

be most suitable. Using whole plot irrigation treatments and sub-plot RIL treatments 

provides an effective way to deliver and manage irrigation treatments while allowing 

increased power to identify RIL treatment effects (Mead et al., 2012).  
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 Based on previous knowledge of soybean’s linear response to water, only two 

water treatments, optimally irrigated and rainfed, were used as whole plot treatments 

(Specht et al., 2001). Sub-plots, representing a 2.9 m length two-row plot with 0.76 m 

row spacing and a 0.91 m alley width, were arranged in augmented incomplete blocks 

with parental lines serving as chaining mechanisms. To aid in the power of identifying 

RIL treatment effects, incomplete blocks were replicated within each whole plot 

treatment. As in the preliminary yield analysis, incomplete blocks were determined from 

first dividing the RILs into MG ranges. With the previous knowledge of the impact of 

irrigation timing and drought avoidance in soybean, four maturity groupings (2.0-2.5, 

2.5-3.0, 3.0-3.5, and 3.5-4.0) were used to minimize the developmental influence of water 

productivity. Maturity group ranges were nested within whole-plot treatments so that 

irrigation could be applied independently to increase application efficiency and avoid 

developmental effects (Figure 2). Once RILs were partitioned into maturity group ranges, 

individuals were randomly assigned to sub groupings of approximately 25 lines 

representing the incomplete block. Incomplete blocks were then randomly assigned to a 

location within the whole plot irrigation treatment and environment. Randomization of 

RILs to incomplete blocks within maturity groups was repeated for each replication 

within irrigation treatment, each irrigation treatment, each environment, and each year to 

alleviate concerns of confounding to external effects.  

Irrigation Treatment Methods 

 Water to optimally irrigated whole plots was delivered through 7/8” surface drip 

irrigation tape (Eurodrip Classic, Rivulis Irrigation Ltd., Gvat, Israel) with 15 mm 

thickness and 60 cm emitter spacing operating at 12 psi for 0.25 gallons per minute per 
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30.48 meters of tape output. The irrigation tape was placed next to the base of each plant 

and secured with ground staples to ensure water infiltrated directly to the roots. Water 

depletion for each whole plot treatment was monitored through granular matrix soil 

moisture sensors (200SS; Irrometer, Co., Riverside California, USA) connected to a 

datalogger (Watermark® 900; Irrometer, Co., Riverside California, USA) installed at 

depths of 30 cm, 60 cm, 90 cm and 120 cm below the soil surface in plots representing 

the mean of the maturity group range. For each maturity group range, the same entry was 

used across irrigation treatments, environments, and years for later comparisons; entries 

U16-603042, U16-604072, U16-612276, and U16-612286 with relative maturities of 2.3, 

2.6, 3.2, and 3.7 respectively were targeted over years and environments. Water 

depletion, measured in soil centibars, was recorded every four hours from the V3 

development stage onward to maturity.  

 Along with monitoring water depletion, irrigation timing and quantity was 

determined through the online irrigation scheduling and growth modeling tool SoyWater  

(http://hprcc-agron0.unl.edu/soywater/) (Specht et al., 2010). Using daily precipitation, 

solar radiation, temperature, humidity and wind speed information retrieved from weather 

stations installed directly at the testing location, daily crop water use, water depletion, 

and irrigation timing was calculated and validated with soil moisture sensors. A water 

depletion irrigation trigger of 35% from 100% field capacity based on soil type was used 

throughout the experiment to eliminate any potential water stress. Once the 35% trigger 

was reached in optimally irrigated treatments, irrigation was applied to bring the 

treatment back to 95% field water holding capacity.  
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Environmental Measurements 

 To aid in the comparison of RIL treatment effects, environmental information 

relative to soil electrical conductivity and weather station parameters were collected. Soil 

electrical conductivity (EC) measurements were estimated using a Dualem-1S ground 

conductivity instrument (Dualem, Milton, Ontario, Canada) and georeferenced with a 

Trimble ProXT GPS unit (Trimble, Sunnyvale, California, USA) (Abdu et al., 2008; Lv 

et al., 2014)in methods described in Abdu et al. (2008). Collected EC data was then 

corrected using normal score transformation and kriging to provide independent 

measurements with resolution of 3.0 m2 for all testing environments. Weather station 

information including temperature, humidity, wind speed, solar radiation, and 

precipitation was collected every four hours with two comparable weather stations at both 

environments; a Vantage Pro (Vantage Pro2 Plus, Davis Instruments, Hayward, 

California, USA) at the Lincoln environment and a WatchDog (WatchDog 2900ET, 

Spectrum Technologies, Aurora, Illinois, USA) at the Mead environment. Based on 

previous knowledge of soil EC’s high dependence on soil water holding capacity and 

soybean developmental influence from environmental parameters, environmental 

measurements were investigated as random covariates when estimating genotypic values 

to account for potential confounding environmental effects (Friedman, 2005; Setiyono et 

al., 2009).  

Phenotypic Data Collection 

 As in the preliminary evaluation experiment, individual plots were phenotyped at 

the V5 and R5 stage with a multi-sensor high throughput field phenotyping platform 

developed at the University of Nebraska-Lincoln in methods described in the preliminary 
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yield analysis experiment. Phenomic information was collected from all plots in the water 

response experiment during both the V5 and R5 growth stages apart from R5 information 

at Lincoln, NE in 2017. Phenomic information was not collected during the R5 stage at 

Lincoln in 2017 due to excessive lodging. To address concerns with missing later 

developmental stages due to excessive lodging, additional phenotyping events were 

conducted at the R3 stage in 2018.  

 In addition to phenomic information collected at key developmental stages, final 

plant height at maturity, lodging, maturity date, seed yield, seed weight, seed quality, 

protein composition, oil composition, meal protein concentration, crude oil yield, 

estimated processed value and estimated WP was collected or estimated for all water 

response experiment plots in methods described in the preliminary evaluation 

experiment. Along with these agronomic variables, R1 date, R3 date, R5 date, wilting 

score, and yield to effective cumulative water during the reproductive period (RWP) was 

recorded or estimated in water response experiment plots. The R1 date was recorded as 

the day at which 50% of the plants in the center 1.0 m of both two rows had one emerged 

flower on any node on the main stem. The R3 date was recorded when 50% of the plants 

in the center 1.0 m of both rows have one pod on the upper four nodes at least 0.5 cm 

long. The R5 date was recorded when 50% of the plants in the center 1.0 m of both rows 

have at least one pod in the upper four nodes with one seed greater than 0.3 cm long. 

Wilting score was assessed using an iterative 1-5 scale representative of 1 (no wilting, no 

visual water stress) to 5 (permeant wilting point, plant death). Due to unseasonably high 

late season precipitation in both 2017 and 2018 wilting scores were only able to be 

collected on 2018 Mead rainfed treatment plots.  
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Phenomic Data Processing 

 After collecting in season phenomic, environmental and agronomic information 

for both preliminary yield evaluation and water response experiments, phenomic 

information was processed and correctly matched to other plot records. From easting and 

northing geographic Cartesian coordinate information recorded for each individual plot 

measurement in the FPP output, GRASS GIS version 7.2.2 was used to overlay plot 

range and row information enabling the correct pairing of phenomic records to unique 

plot record identifiers (Neteler et al., 2012). After pairing phenomic outputs to plot record 

identifiers, plot output files and digital images collected during each phenotyping event 

were renamed with the appropriate plot record identifier value to ensure accurate 

information flow through image processing and analysis. 

 Once renamed with the appropriate plot record identifier, digital images collected 

on a per plot basis were analyzed within various toolboxes of MATLAB version r2018b 

(Mathworks, 2018). First using the Color Thresholder application, a script for converting 

images to HSV (hue, saturation, and lightness) colorspace and filtering H, S, and V 

values to effectively separate plant tissue from background soil and crop residue was 

developed for each phenotyping event. Once an appropriate HSV thresholding script was 

established, the Image Batch Processor application within MATLAB was used to 

threshold all images collected during phenotype collection event. After thresholding, 

custom MATLAB scripts developed in collaboration with Wenan Yuan in the Biological 

Systems Engineering department at UNL were used to extract 212 variables consisting of 

color channel values, indices and texture metrics for each RGB image (Yuan et al., 2019) 
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(Appendix 1). Each variable was then correctly matched to plot records based on record 

identifier specified in image filenames for later analysis.  

 Similar to RGB image processing, handling of spectral information was facilitated 

through MATLAB r2018b. Through a MATLAB script developed with help from Dr. 

Geng Bai in the Biological Systems Engineering department at UNL, reflectance values 

were corrected for solar radiance and calibration target ground truths (Appendix 2). 

Using multiple reflectance calibration measurements for each phenotyping event 

collected with a MAPIR ground target (MAPIR V2, MAPIR Camera, San Diego, CA) 

and per plot up looking spectral reflectance information, corrected reflectance values 

were calculated on a per plot basis. Corrected wavelength reflectance from 500 – 950 

nanometers with 0.167 nanometer resolution was then used to calculate 34 unique 

spectral indices (Table 3, 4). In total 2,739 variables were calculated from the spectral 

data set.  

Genomic Data Collection 

 Leaf tissue samples collected from a newly emerging trifoliate of F4 plants at the 

V4 growth stage during the summer of 2015 at UNL’s east campus research farm (40.836 

latitude, -96.667 longitude) served as the means to acquire genotypic information relative 

to each RIL. Shortly after tissue collection, samples were promptly transferred to a -20°C 

freezer and stored until DNA was extracted in the spring of 2019. DNA was extracted 

through the assistance and guidance of Dr. Luis Posadas and Dr. Haichuan Wang using a 

modified CTAB extraction protocol adapted for a 96 well plate (Keim, 1988). DNA 

quantity was assessed using a QuantiFlour dsDNA system (Promega Corporation, 

Madison, Wisconsin, USA), and DNA quality was evaluated through electrophoresis on a 
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1% agarose gel. After extraction and quality checks, extracted DNA for each RIL was 

then diluted to a standard concentration of 12 ng μL-1 for genotyping using molecular 

inversion probes (MIPs).  

 Molecular inversion probes (MIPs) were used to genotype all RIL and parental 

lines in the study (Hardenbol et al., 2003; Wang, Y. et al., 2012). Genotyping procedures 

were coordinated and conducted by Dr. Haichuan Wang. The general procedure of 

genotyping using MIPs involves six steps: probe phosphorylation, hybridization, 

extension and ligation, digestion of uncirculized DNA, amplification of DNA by PCR, 

and DNA sequencing. First to initiation probe phosphorylation, 84 μl of pooled MIPs 

were combined with 10.0 μl of 10x T4 DNA ligase bufferA, 5.0 μl of T4 polynucleotide 

Kinase (50U), and 1.0 μl of ATP (10 mM) for a total volume of 100 μl. The mixture was 

then first heated to 37°C for 30 minutes, then 80°C for 20 minutes for effective 

phosphorylation. After probe phosphorylation, hybridization was accomplished by 

mixing 5 ng of the phosphorylated probes with 40 ng of standardized DNA, 10x 

ampligase buffer (Ampligase Thermostable DNA Ligase, Epicentre Biotechnologies, 

Madison, Wisconsin, USA), 0.5 μl of betaine (5M) and nuclease free water to total 6.25 

μl. The resulting mixture was then first heated to 95°C for 10 min, then 60°C for 24 hours. 

Next for extension and ligation, the hybridized solution was combined with 25 units of 

DNA ampligase (Ampligase Thermostable DNA Ligase, Epicentre Biotechnologies, 

Wisconsin, USA), 10x ampligase buffer (Ampligase Thermostable DNA Ligase, 

Epicentre Biotechnologies, Madison, Wisconsin, USA), 5 units of AmpliTaqDNA 

polymerase (Epicentre Biotechnologies, Madison, Wisconsin, USA), 0.25 mM of dNTP , 

and denatured water for a total volume of 7.7 μl; the resulting mixture was heated at 60°C 
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for 24 hours for extension and ligation. Following the extension and ligation steps, 

uncirculized DNA was removed through adding 0.32 μl of ExoI (20U/μl) and ExoIII 

(100U/μl) exonuclease enzymes (New England Biolabs Inc., Ipswich, Massachusetts, 

USA) and heating at 37°C for 30 minutes then 95°C for 2 minutes. Next circulized DNA 

was amplified by PCR using custom primers and barcodes through 21 cycles of 

denaturation, annealing and extension at 95°C for 10 seconds, 60°C for 30 seconds, 72°C 

for 1 minute, and 72°C for 1 minute respectively using a Bio-Rad C1000 thermo cycler 

(C1000 Touch Thermal Cycler, Bio-Rad Laboratories, Inc., Hercules, California). 

Finally, amplified DNA was pooled together and diluted to a 1.5 pM standard pooled 

library concentration. Single-end sequencing was performed through an Illumina Next 

Seq 500 sequencer using custom sequence primers, 150 nucleotide single reads, a 

(500/550) buffer cartridge, and a NextSeq 500/550 medium output reagent cartridge 

(Next Seq 500, Illumina, San Diego, California, USA).  

Genotypic Data Processing and QTL Mapping 

 Sequencing data outputted from the Illumina Next Seq 500 was first converted to 

the FastQ format and checked for quality using FastQC and sickle by Dr. Haichun Wang 

(Andrews, 2010; Joshi and Fass, 2011). Sequencing reads with phred scores greater than 

30 were selected and mapped using a SNP specific reference database within Bowtie2 to 

produce sequence alignment map files and binary alignment map files (Langmead and 

Salzberg, 2012). Single nucleotide polymorphism (SNP) reads were then called using the 

Genome analysis tool kit (GATK version 4.1) through HaplotypeCaller and 

VariantFiltration commands (McKenna et al., 2010). SNPs with over eight heterozygous 

reads were called as heterozygous within GATK using default settings (McKenna et al., 
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2010). Resulting variant call format files were then combined through the vcf-merge 

command of GATK and exported. Genotypic data in vcf file format was then converted 

to “A”, “H”, “B” parental base format in TASSEL (TASSEL 5 version 20190725) and 

processed for quality control in the “qtl” package of R (Broman et al., 2003; Glaubitz et 

al., 2014; R-Core Team, 2018). Lines with 10% or greater missing markers, markers 

unable to genotype 60% or more of the lines in the population, one line of a pair more 

than 98% similar, and markers with excessive segregation distortion (p > 0.001) from the 

expected 1:1 Mendelian inheritance ratio after excluding heterozygotes were omitted 

from the dataset (Appendix 3). The vcf hapmap file was also reduced using t-distributed 

stochastic neighbor embedding to examine population structure and identify possible 

outliers of each population (Figure 3) (Li, Wentian et al., 2017). After filtering for the 

previously mentioned conditions, pairwise recombination fraction versus LOD scores, 

and allelic frequencies were used to assess the quality of genotypic data and check for 

switched alleles within the “qtl” package of R (Appendix 3). 

For additional quality control measures, genetic maps constructed based on 

marker recombination fractions versus genetic maps constructed through reference 

genome position interpolation were compared (Figure 4, 5). Genetic maps based on 

marker recombination fraction were constructed through the orderMarkers function 

within the “qtl” package of R using Haldane’s mapping function and a window size of 

eight. Interpolated genetic positons from the Wm82.a2.v2 reference genome were 

provided by Mary Happ to assign genetic positon to markers (Figure 6, 7). In the 

UX3036 population, hilum color was also recorded and used to interpolate pubescence 

color. Interpolated pubescence color was then compared to the expected segregation ratio 
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and tested through a chi-square analysis (Figure 8). The genetic position of the T locus 

responsible for pubescence color was also mapped to investigate the accuracy of 

interpolated genetic positions (Figure 8, 9) (Palmer et al., 2004).  

Interpolated genetic positions were then used to map QTL. Phenotypic values of 

quantitative traits, evaluated as least square mean estimates over environments, were 

mapped within the IciMapping integrated software for linkage analysis and genetic 

mapping in biparental populations (Li, Huihui et al., 2008; Li, H. et al., 2007; Meng et 

al., 2015). Inclusive composite interval mapping (ICIM) with additive effect mapping 

methods and RIL population structure were set as defaults for all QTL mapping analysis 

(Li, Huihui et al., 2008; Li, H. et al., 2007; Meng et al., 2015). Heterozygous markers 

were considered as missing through the ICIM mapping software, and logarithm of the 

odds (LOD) significance within the program was determined through 1,000 permutations 

and an α = 0.05 significance threshold (Li, Huihui et al., 2008; Li, H. et al., 2007).  

Data Analysis 

 After phenotypic data was collected from the experiment, the dataset was first 

investigated for outliers using the PROC UNIVARIATE procedure of SAS 9.3 (SAS 

Institute Inc, 2011). Plot observations more than three standard deviations away from the 

mean were investigated. If no other observation or field note seemed to be in agreement 

with the outlier, the observation was removed from the dataset. Along with outliers, plots 

with field notes describing damage from outside sources such as sprayer track damage or 

poor emergence where omitted from the analysis. The final 2017 – 2018 phenotypic 

dataset contained approximately 18,000 observations and roughly 0.1% of the original 

observation were omitted due to the previously mentioned conditions.  
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 The analysis of variance to investigate overall factor significance for preliminary 

yield evaluation and water response experiments was performed using the PROC 

ANOVA procedure of SAS 9.3. With one replication per environment, environment and 

line effect were investigated in the 2016 preliminary yield evaluation experiment. 

Environment, irrigation treatment, line effect and their respective interactions along with 

replication within environment and irrigation treatment by replication within environment 

effects were examined for the 2017-2018 water response experiment. When calculating f-

value ratios, replication within environment was used as an error term for the estimation 

of environmental effect’s significance, irrigation treatment by replication within 

environment was used as an error term to estimate f-values for irrigation treatment and 

irrigation treatment by environment effect, and the residual error was used to estimate 

significance for all other effects.  

 The analysis of variance to obtain least square mean estimates of phenotypes on a 

RIL basis was performed using the PROC MIXED procedure of SAS 9.3. To determine 

the model most appropriate for estimating genotypic values, six model’s Akaike 

information criterion (AIC) were compared using various environmental variables as 

random covariates for each population. The model with the lowest AIC treats 

environment, irrigation treatment and line as fixed effects, and individual plot maturity 

date within environment, replication within environment, incomplete block within 

replication by environment as random effects. With unequal variation expected between 

whole plot and subplot factors, degrees of freedom were approximated with 

Satterthwaite’s formula, and least square mean estimations are calculated through the 

LSMEANS statement.  
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 Broad sense heritability estimations on an entry mean basis were calculated 

through the following formula: 

 

Where  represents genetic variance,  denotes genotypic by environmental variance, 

 represents environmental variance, e signifies the number of environments, and r is 

the number of replications (Fehr, Walter R., 1987). Estimates of variance and confidence 

intervals were calculated through a restricted maximum likelihood approach within the 

“lme4” package of R (Bates et al., 2015).  

Predictive Modeling 

 Predictive models of RIL water response were built within MATLAB r2018b 

using scripts processed remotely at the Holland Computing Center of the University of 

Nebraska-Lincoln (Mathworks, 2018). To determine if parametric or nonparametric 

models would be most appropriate, the normality and multicollinearity of response 

variables in the dataset were investigated with the Lilliefors and collintest procedure 

within MATLAB r2018b. Due to the large portion of response variables failing to have a 

normal distribution and high correlation to other response variables, nonparametric 

multivariate analysis methods were explored. Three nonparametric statistical learning 

methods were used in the experiment: ensembled classification and regression trees with 

bootstrap aggregation and random predictor selection at each split (CART), feed forward 

artificial neural networks with Bayesian regulation (NET) and generalized linear 

regression with elastic net regulation (ENET). All three methods are especially adaptable 
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to non-linear datasets, datasets with excessive multicollinearity, and datasets where the 

number of response variables approaches or exceeds the number of observations (p > n) 

(Hastie et al., 2005; James, G. et al., 2013). Due to the suitability of the CART, NET and 

ENET models to datasets associated with this research, and the inability of more 

traditional dimension reduction techniques such as stepwise linear regression to 

converge, CART, NET and ENET models were solely used for predictive modeling in 

this study.  

Classification and Regression Trees 

 Predictive CART models were built for datasets associated with the experiment 

using the fitrensemble command of MATLAB r2018b. Ten-fold cross validation (CV), a 

minimum leaf size of five, 500 learning cycles, and bootstrap aggregation were used as 

input settings for the fitrensemble command (Appendix 4). The CART algorithm with the 

above settings can be generalized as follows: 

1. Randomly select one-third the number of samples using bootstrap aggregation 

(uniformly and with replacement) from the first nine of the ten CV datasets 

(Breiman, 1996).  

2. Construct a regression tree with each split being chosen from the best split of a 

random sample of the predictors (random forest) limiting the minimum leaf size 

to five observations and limiting the number of ensembled learning cycles to 500 

to avoid overfitting. The best split is selected based from minimizing the overall 

MSE of the model (Breiman, 1996; Breiman, 2001). For simplicity the split 

location between subsets C and D would be determined through minimizing the 

equation below:   
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Where  represents response value i, and  represents the sample mean 

of all response values in the clustered subset C and  represents the 

sample mean of all response variables in the D subset  (Sutton, 2005). 

3. Aggregate the composite regression tree from nine CV fold average and apply to 

the predict the tenth CV fold dataset. 

4.  Assess performance based on the Pearson correlation coefficient between the 

observed and predictive response variable of interest 

5. Repeat steps one through four for each of the ten CV datasets without 

replacement.  

The performance of the final model was assessed based on the Pearson correlation 

coefficient between the observed and predictive response variable of interest, 95% 

confidence interval calculated for the Pearson correlation of each CV, mean absolute 

error (MAE), and the root mean square error (RMSE) between the observed and 

predicted response.  

Artificial Feed Forward Neural Networks 

 Predictive NET models were built for datasets associated with the experiment 

using the feedforwardnet command of MATLAB r2018b. A 70% training, 15% 

validation, and 15% testing ratio was used to train the feed forward neural network with 1 

hidden node and Bayesian regularization (Appendix 5). The NET algorithm with the 

above settings can be generalized as follows: 
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1. Randomly partition the dataset of interest into training, validation and 

testing sets using a 70/15/15 ratio respectively.  

2. Train neural network using Levenberg-Marquardt optimization algorithm 

minimizing a linear combination of squared errors and weights (Foresee 

and Hagan, 1997; MacKay, 1992; Mathworks, 2018) . The neural network 

with the aforementioned optimization algorithm can be summarized in the 

following equation: 

 

Where x and w denote the input vector and corresponding weights 

respectively, and  signifies the activation function (Schalkoff, 1997). 

3. Validate the trained network on the validation set and calculate MSE. 

4. Adjust Marquardt adjust parameter and repeat steps 1 through 3. 

Terminate the algorithm if MSE increases from previous iteration or if the 

number of iterations exceeds 1,000.  

5. Calculate performance by inputting testing dataset into final trained 

model.  

As in the CART model, the performance of the final NET model was assessed based on 

the Pearson correlation coefficient between the observed and predictive response variable 

of interest, 95% confidence interval calculated for the Pearson correlation of each CV, 

mean absolute error (MAE), and the root mean square error (RMSE) between the 

observed and predicted response. 
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Generalized Linear Models with Elastic Net Regulation 

 Predictive ENET models were built for datasets associated with the experiment 

using the lasso command of MATLAB r2018b. Ten-fold CV and an alpha of 0.75 were 

used as input settings for the lasso command (Appendix 6). The ENET algorithm with the 

above settings can be simplified as follows: 

1. Perform generalized linear regression from input data with a tuning parameter, λ 

minimizing the following problem: 

 

Where n is the number of observations, yi is the response at observation i, 

xi is data, a vector of length p at observation i, λ is a nonnegative 

regularization parameter corresponding to one value of lambda and the 

parameters β0 and β are a scalar and a vector of length p, respectively, and  

is the elastic net penalty term.  

2. Calculate MSE of trained regression model  

3. Modify lambda and repeat steps one and two until MSE is minimized or 1,000 

iterations have been performed. 

4. Identify lambda value corresponding to model with MSE value one standard error 

above minimum MSE model and output as final model. 

5. Quantity performance based on the Pearson correlation coefficient between the 

observed and predictive response variable of interest.  
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6. Repeat steps one through five for each of the ten CV datasets without 

replacement. Calculate final model by average variable coefficients over the ten 

CV folds.  

 

 



44 
 

RESULTS AND DISCUSION 

Agronomic Response to Irrigation 

 To evaluate the agronomic response to water of both the recombinant inbred line 

(RIL) populations and parental lines in the study, experimental units were subjected to 

yield evaluation trials over two locations with two irrigation treatments for two years. As 

expected, population means for most agronomic traits were normally distributed, with 

least square means close to mid-parent values (Table 5, Figure 10). The magnitude and 

direction of agronomic responses remained similar across both populations in the study 

yet remained marginal due to well-timed precipitation events reducing the stress imposed 

in the rainfed treatment (Table 6, Figure 11, 12, 13, 14, 15, 16, 17, 18). The timing of 

precipitation in relationship to developmental stage resulted in varying levels of irrigation 

response across environments and years. Precipitation events near the overall mean R3 

reproductive stage occurred for all environments negating water stress during the most 

critical stage of development (Figure 12, 14, 16, 18). In both the 2017 Lincoln and 2018 

Mead environments, rainfall during the R3 stage was followed by a dry period resulting 

in an overall significant irrigation treatment effects for yield and water response traits 

(Table 6). In contrast, the 2018 Lincoln and 2017 Mead environments received large 

rainfall events again near the R5 stage reducing the overall effect of water stress on yield 

(Table 6, 7, 8). 

 When investigating both maturity groupings and populations separately within 

environments, the apparent connection between precipitation timing and magnitude of 

water stress becomes less clear. Over populations significant irrigation treatment effects 

within maturity groups do not follow a clear pattern (Table 9). Within the UX3000 
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population, significant (α = 0.05) yield irrigation treatment effects were observed for all 

maturity groupings within the 2017 Mead environment, all maturity groupings except 3.5 

in the 2018 Mead environment, the 3.0 maturity group (MG) in the 2017 Lincoln 

environment, and no groups within the 2018 Lincoln environment (Table 10). For the 

UX3036 population, significant (α = 0.05) irrigation treatment effects for yield were 

observed for MG 2.5 in the 2017 Mead environment, MG 3.0 in 2018 Mead and 2017 

Lincoln environments, and no MGs in the 2018 Lincoln environment (Table 11). 

 A possible explanation for the disconnect between MG timing and irrigation yield 

response can be gleaned from examining mean reproductive period attributes in 

comparison to reproductive period ranges (Table 9, 12). Between maturity groupings 

assigned in the experiment, R1, R3, R5, and maturity timings differed approximately 1, 1, 

1, and 4 days respectively over environments and populations (Table 9). However, ranges 

of reproductive stage timings differed approximately 7, 5, 5, and 13 days for R1, R3, R5, 

and maturity timings respectively over environments, populations and maturity groupings 

(Table 12, 13). Within each MG, RILs likely experienced water stress differently 

depending on individual rates of development in relation to precipitation timing. For 

example, the mean timing difference of R1 date between maturity groupings was 

approximately 1 day, yet the range within each maturity grouping was 7 days (Table 13). 

This relatively large reproductive timing range taken in consideration with marginal 

treatment effects supports aggregating maturity groupings together. With similar 

population responses and marginal treatment effects influenced by the timing of 

precipitation, investigating agronomic means across populations and maturity groupings 
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allows for more robust estimations of treatment effects within environments due to 

increased sample size. 

 When investigating analysis of variance (ANOVA) mean squares across 

populations and maturity groups, significant (α = 0.05) sources of variation were 

observed for nearly all agronomic traits (Table 14). The only expectations include the 

significance of the irrigation treatment effect on R1 timing and final plant height at 

maturity, the significance of the environmental by irrigation treatment effect on R1 

timing, final plant height at maturity, seed quality, and lodging, and the significance of 

the irrigation treatment by strain effect on seed quality (Table 14). By population similar 

results were observed, yet a larger number of non-significant sources of variation were 

identified (Table 15, 16). In agreement with the trend reported earlier, investigating 

agronomic means across populations and maturity groupings allows for more robust 

estimations of treatment effects within environments due to increased sample size. 

 Across both populations, mean seed yield over environments and irrigation 

treatments ranged from 4148 kg ha-1 in the 2018 Lincoln rainfed treatment to 5307 kg ha-

1 in the 2017 Mead rainfed treatment (Table 6). Significant (α = 0.01) irrigation 

treatments in relation to seed yield were observed for two of the four environments tested 

(Table 6). The effect of the irrigation on seed yield ranged from 307 kg ha-1 in the 2018 

Mead environment within the UX3000 populations to -37.2 kg ha-1 in the 2017 Mead 

environment within the UX3000 population (Table 13). Taken as a whole, irrigation was 

observed to significantly increase seed yield and weight over rainfed treatments on 

average approximately 126 kg ha-1 and 0.3 grams per 100 seeds respectively within the 
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UX3000 population and 119 kg ha-1 and 0.2 grams per 100 seeds respectively within the 

UX3036 population (Table 13).  

Like seed yield and weight, the seed quality characteristics relative to seed coat 

quality, protein concentration, oil concentration, estimated processed value, and 

estimated meal product protein were all found to be significantly influenced by irrigation 

treatment within the experiment (Table 13). In both the UX3000 and UX3036 

populations, seed coat quality and seed oil concentrations decreased with increased water 

availability. However, seed protein concentration, estimated processed value, and 

estimated meal product protein concentration were observed to be positively influenced 

by the irrigation treatment (Table 13). Regardless of population, optimally supplying 

water at key growth stages to the RIL and parental lines was observed to increase seed 

protein concentration by roughly 6 g kg-1 and decrease seed oil concentration by 2 g kg-1 

resulting in slightly higher estimated processed values (+$0.1 $ kg-1) and estimated meal 

product protein concentrations (+5 g kg-1) (Table 13).  

 Unlike seed yield and quality characteristics, whole plot agronomic variables 

representing developmental stages and traits at maturity were not all significantly (α = 

0.05) influenced by irrigation across the experiment. Slight differences in R1, R3 and R5 

date were noted for specific environments and population combinations, but overall 

irrigation treatment did not significantly influence flowering date or pod elongation date 

timing in the experiment (Table 9, 10, 11). Detectable differences in reproductive stage 

development timing was only evident when investigating maturity date and the length of 

the reproductive period (Table 9, 10, 11). Greatest differences in reproductive timing 

were observed when considering the length of the entire reproductive period (R1-R8) for 
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each plot measured in days. Over populations in the rainfed treatment, the reproductive 

period averaged 2 days less as a result of the rainfed treatment (Table 13). Along with 

reproductive length, lodging measured at maturity was found to significantly worsen with 

an increased effective seasonal water supply. On average lodging severity increased by 

0.4 in the 1-5 scale through the application of irrigation compared to the rainfed treatment 

(Table 13).  

 Much like the sensitivity of lodging to irrigation, the ratio of seed yield to 

estimated seasonal effective cumulative water, or water productivity (WP), and the ratio 

of seed yield to estimated effective cumulative water during the reproductive period, or 

reproductive water productivity (RWP), were observed to have significant differences 

across treatments in all environments associated with the study. Environmental estimates 

for WP ranged from 12.4 kg ha-1 mm-1 under irrigation at the 2018 Mead site to 20.6 kg 

ha-1 mm-1 in the rainfed 2017 Lincoln environment (Table 6). When considering RWP, 

differences between environmental estimates were even larger ranging from 14.0 kg ha-1 

mm-1 under irrigation at the 2018 Mead environment to 27.2 kg ha-1 mm-1 in the rainfed 

2017 Lincoln location (Table 6). Population treatment effect averages indicated a 

decrease of approximately 3.0 kg ha-1 mm-1 and 5.5 kg ha-1 mm-1 to WP and RWP 

respectively, when supplied with water equal to evapotranspiration demands (Table 13).  

 Agronomic responses to irrigation identified in the study agree with similar 

research investigating soybean’s response to limited water. Previous studies coincide 

with this experiment’s outcomes in that water stress reduces seed yield, days to maturity, 

lodging severity, seed size, and seed protein concentration while increasing seed coat 

quality and seed oil concentration (Dornbos and Mullen, 1992; Korte et al., 1983; Specht 
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et al., 1986; Specht et al., 2001). With detectable agronomic responses to irrigation in 

agreement with previous research, the primary focus of the study is to investigate 

associations leverageable to soybean breeding programs.   

 Through the consideration of both yield and effective seasonal water, water 

productivity metrics are especially valuable in our study where irrigation treatments were 

marginal and influenced by development. Because both developmental timing and 

environmental factors are acknowledged in the calculation of effective seasonal water, 

water productivity metrics enable breeders to access genotypic performance more 

precisely than focusing on yield between treatments in our situation. As the amount of 

seasonal effective water is altered through both irrigation treatments and environmental 

constraints, water productivity changes through yield performance, water supply, and 

estimated transpiration demands. The effectiveness of utilizing WP in comparison to 

yield between treatments is evident when comparing significance between irrigation 

treatments within and across environments, populations, and maturity groups within the 

study (Table 6). Due to this reasoning, WP is the primary performance metric of interest 

when identifying trait associations to water response in our study.  

Agronomic Associations to Water Productivity 

 When determining the value of individual trait associations, the merit of 

correlated response in relation to direct selection of the trait of interest is of high value to 

plant breeding programs. The efficiency of indirect selection between two traits, trait X 

and Y, can be represented through the following formula:  
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Where  is equal to the correlated response of trait X,  is the direct response of trait 

X, h represents the accuracy of individual selection, and denotes the additive genetic 

correlation between traits (Falconer and Mackay, 2009). Because phenotypic correlation 

encompasses both genetic and nongenetic factors, traits leverageable for indirect 

selection must exhibit significant phenotypic and genotypic correlations along with 

relatively high heritability. Therefore, when examining trait associations to metrics of 

interest, attributes with strong association useful to cultivar development institutions 

exhibit significant phenotypic correlation, genotypic correlation, and relatively high 

heritability (Fehr, 1991).  

 For the agronomic traits measured in the study, significant pairwise phenotypic 

Pearson correlation coefficients were found for nearly all trait combinations in both 

irrigated and rainfed treatments over populations (Table 17). In the irrigated treatment, 

WP was observed to be significantly correlated to agronomic traits related to days 

between planting and specific reproductive development stage timing with no association 

to traits pertaining to seed quality and oil composition (Table 17, 18, 19). In contrast, 

seed quality and oil composition traits displayed significant correlation to WP in the 

rainfed treatment with reproductive timing metrics showing slightly larger correlations to 

WP than in the irrigated treatment (Table 17). When further investigating the influence of 

reproductive stage intervals over populations, a similar trend is observed (Table 20). 

Increase pod elongation and seed setting intervals (R3-R5) was noted to have large 

positive correlations to WP, RWP, seed weight, seed protein, and estimated processed 

value regardless of irrigation treatment (Table 20). In contrast, longer flowering (R1-R3) 

or seed filling and maturity intervals (R5-R8) were observed to have negative correlations 
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to WP, RWP, and seed weight in both irrigation treatments (Table 20). By population, 

phenotypic correlations were consistent with overall trends (Table 17, 18, 19). Both 

populations were observed to have no significant correlation between seed quality and 

seed oil concentration to WP in the irrigated treatment, yet significant correlations were 

observed in the rainfed treatment (Table 18, 19).  

 With contrasting phenotypic associations observed between treatments, confusion 

can arise as to which treatment or combination should be emphasized to improve water 

productivity. When making advancement decisions, should the breeder place emphasis on 

performance in the irrigated treatment or the rainfed treatment? The primary objective of 

any cultivar development program is to deploy products with improved mean 

performance over a target region for specific traits of interest. Determining what 

environment or set of environments to use for evaluation of material therefore demands 

consideration of both the target production region and the effectiveness of improving 

mean performance over time. Ratios of genetic variance and genetic correlation between 

contrasting environments have been proposed as one way to gauge the effectiveness of 

selection between or over divergent treatments (Rosielle and Hamblin, 1981). Through 

the ratio of total genetic variance within the rainfed environment (σG
2

2) to the total 

genetic variance within the irrigated environment (σG
2

1), an approximation of the relative 

effectiveness in selecting between environments (K2
G) can be estimated. Ratios larger 

than 1.0 indicate improved efficiency in selecting in stressed environments, whereas 

ratios less than 1.0 support greater selection efficiency in irrigated environments (Rosielle 

and Hamblin, 1981).  
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 Across populations, K2
G values significantly (α = 0.05) different than 1.0 were 

observed for estimated processed value (EPV), meal product protein (MPP), reproductive 

water productivity (RWP), and R3 stage timing (Table 21). Within populations, the R3 

stage timing and lodging score at maturity traits showed significant preference for 

selection in the irrigated treatment within the UX3000 populations, and selection for 

RWP was estimated to be superior within the rainfed treatment within the UX3036 

population (Table 22, 23). With significantly greater RWP genetic variance calculated 

within the rainfed treatment, improving RWP within the UX3036 is estimated to be most 

efficient through evaluated performance in rainfed environments (Table 23). However, 

unlike RWP in the UX3036 population, estimated K2
G for RWP in the UX3000 

population was not significantly different than 1.0 (Table 22).  

 In agreement with trends of genetic variance across populations, genotypic by 

environmental interaction variance components differed significantly (α = 0.05) between 

irrigation and rainfed treatments for meal product protein (MPP), reproductive water 

productivity (RWP), and R3 stage timing (Table 24). In contrast, unlike relationships 

reported when comparing genetic variance components, significant differences were 

identified when comparing genotypic by environmental interaction variance components 

for seed weight, seed quality, and water productivity (Table 24). No significant 

differences were reported for environmental variance component estimations in our study 

(Table 23).  

 As no clear advantage arises for WP selection in irrigated versus rainfed 

environments, focusing on the mean WP over contrasting treatments emerges as the most 

sensible evaluation method in our study. With large and positive correlations estimated 
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between least square means for irrigated and rainfed environments (r12), and increased 

broad sense heritability estimates (Table 21, 22, 23, 25), selection for mean WP can be 

expected to result in gains in both water treatment regimes. Selection for mean WP over 

irrigation treatments will likely also increase stability of the trait over periods of selection 

in comparison to focusing on a single treatment (Hohls, 2001). In a study with marginal 

irrigation treatment effects influenced by the individual reproductive stage timing of lines 

within environments, focusing on mean performance allows for increased power in 

detecting true differences between RILs as a result of increased sample size. Finally, 

through considering the mean WP across treatments of primary importance, the inference 

space of the experiment is expanded to include both rainfed and irrigation production 

environments. In soybean production states like Nebraska, this is especially important 

given approximately half of soybean acres are irrigated and half are rainfed (UNL 

Cropwatch, 2018). 

 When investigating WP across treatments as primary importance, the negative 

correlation between reproductive stage timing traits and WP quickly becomes noticeable 

(Figure 19, 20, 21). Lines with earlier reproductive and maturity dates show strong 

association with improved WP across both populations and treatments (Figure 19) 

Because WP is calculated through the ratio of seed yield to the estimated seasonal 

effective cumulative water, RILs with similar seed yield but different growing season 

lengths will have dissimilar WP levels. Lines with increased maturity have an estimated 

higher effective cumulative water requirement as a longer period is required to maintain 

the water intensive tasks of growth and development. In contrast to conventional wisdom, 

this increased cumulative water requirement resulting from an extended growing season 
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does not immediately necessitate an increase in yield. Results from this study and others 

suggest little to no positive relationship between maturity date and final seed yield over 

MG 1.0 – 4.0 lines in Nebraska production environments (Table 10) (Posadas et al., 

2014). With no strong relationship between yield and maturity date, removing maturity 

date’s inherent influence on WP allows for identification of traits specifically critical to 

water use efficiency or ability to extract water irrespective of growing season length. 

Given the intrinsic implications of maturity to the definition of WP, and the importance 

of identifying superior yielding lines across a range of maturity groups to soybean 

breeding programs, the influence of maturity date was removed when estimating least 

square means estimates (LSMEANS) for genotypic values.  

 After removing the influence of maturity date on WP, a near identical relationship 

between WP and seed yield becomes obvious (Figure 19, 20, 21). With an overall 

Pearson correlation coefficient of 1.0, seed yield and WP LSMEANS largely coincided. 

However as discussed earlier, because both effective seasonal water and seed yield are 

considered in WP, water productivity metrics enable breeders to quickly approximate 

genotypic performance across different irrigation treatment management practices. 

Adjusted LSMEANS of seed yield and WP offer near identical assessments of 

performance potential across environments, but WP offers the advantage of performance 

approximation within environments given estimated seasonal effective cumulative water 

input. Due to this reasoning, WP LSMEANS continue to be the primary performance 

metrics of interest when identifying associations to water response in our study.  

 When investigating WP LSMEANS to other agronomic traits a strong association 

with lodging becomes apparent (Figure 22, 23, 24). Lodging has a strong negative 
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association with WP, with Pearson correlation coefficients ranging from -0.56 in the 

UX3036 population to -0.49 in the UX3000 population when considering LSMEANS 

adjusted for maturity date. Relationships between WP LSMEANS and agronomic traits 

studied though comparison of positive and negative transgressive segregate means within 

each population likewise indicated a similar relationship with lodging. Transgressive 

segregant groupings were determined through comparison of WP LSMEANS over 

irrigation treatments and environments for the 2017-2018 water response experiment to 

parental values. Positive transgressive segregate RILs with WP LSMEANS greater than 

U11-614093 in the UX3000 population had significantly reduced lodging, plant height, 

R1 and R3 stage timing, seed protein composition, estimated processed value, and 

estimation meal product protein when compared to negative transgressive segregates in 

the population (Table 26). Seed yield, seed weight, and RWP were significantly higher in 

the UX3000 population when comparing transgressive segregates (Table 26). In the 

UX3036 population, lodging, seed protein composition, estimated processed value, and 

estimation meal product protein continued to be negatively associated whereas seed yield, 

and RWP were significantly positively associated with increased WP (Table 26).  

 The strong negative association of WP and lodging is likely due to multiple 

factors in the study. First, significant differences occur in the susceptibility to lodging of 

parental lines used; the parental line with the highest WP, U11-614093, also has 

significantly (α = 0.01) lower lodging severity on average when compared to the other 

parental lines (Table 5). In addition, lodging has been shown to reduce seed yield through 

the inability of mechanical harvest and through the reduction of photosynthate supply due 

to changes in canopy structure and light use efficiency (Johnston and Pendleton, 1968; 
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Johnston et al., 1969; Weber and Fehr, 1966). Because seed yield is a primary component 

of WP, yield reductions due to lodging likewise limit WP. With a strong association 

between WP and lodging detected in the experiment, the standard procedure of culling 

lodged genotypes in early generation evaluations likely likewise improves WP.  Indirect 

selection efficiency of WP from lodging was estimated to be 0.59; moderate gains in 

overall WP may be expected through culling lodge genotypes. 

Phenomic Associations to Water Productivity  

 Even with informative associations identified between agronomic traits and WP, 

much of the highly quantitative relationship between seed yield and seasonal effective 

water is still in question. Due to the dynamic and temporal nature of water stress, 

collecting phenotypic information at key growth and developmental stages offers an 

opportunity to uncover associations potentially undetectable at maturity. Furthermore, 

collecting high dimensional phenotypic data at key growth stages allows for the 

opportunity to discover specific associations within and across developmental periods. In 

hopes to better understand water productivity in soybean, a multi-sensor high throughput 

field phenotyping platform was used to collect phenomic information at V5 and R5 

stages in 2017 and V5, R3, and R5 stages in 2018. The platform is equipped with a suite 

of sensors that capture growth and development phenotypes through digital images, 

spectrometer, light distance and ranging (LIDAR), ultrasonic, and radiometric datasets 

(Bai et al., 2016). These datasets can be grouped into three categories: (1) information 

relative to a red, green and blue channel digital image (RGB), (2) the spectral reflectance 

spectrum, and (3) whole canopy related phenotypic traits.  
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 Stark differences between the phenomic categories, growth stage, and population 

were observed when examining relationships to WP across irrigation treatments in the 

experiment (Table 27, 28). In relationship to information gleaned from the RGB digital 

images, significant differences (α = 0.05) where observed when comparing phenotypic 

correlations to WP and broad sense heritability across populations and growth stages 

(Table 27, 28). Positive correlations for red and green color channels were exhibited in 

the UX3036 population at the V5 growth stage, yet no significant correlations were 

detectable for other growth stages within the population (Table 27). In addition, no 

significant correlations were identified for either the UX3000 population or when 

considering all lines together in the experiment (Overall) (Table 27). Like phenotypic 

correlations, increased heritability estimations were calculated for earlier growth stages. 

Broad sense heritability was estimated to be approximately 0.25 across channels at the 

V5 growth stage with no significant differences between channels or populations (Table 

28, Figure 25). Heritability estimations where slightly larger at the R3 growth stage when 

investigating individual channels although no significant differences between channels, 

populations, or between the V5 and R3 stages were observed (Table 28, Figure 25). 

Surprisingly red, green and blue color channels seem to offer no apparent value in 

accessing WP at the R5 growth stage as both the heritability estimation and phenotypic 

correlation is zero (Table 27, 28, Figure 25). 

 A possible explanation for the reduction in association of red, green, and blue 

color channels with increasing growth may deal with properties of the image in relation 

to the soybean canopy. At earlier growth stages such as V5 and R3, the soybean plant has 

yet to reach full closed canopy between rows. A digital image of the plot will therefore 
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assess both the color attributes of a plot in addition to the canopy cover fraction. Plots 

with slower development will return lower red, green, and blue pixel totals as pixels 

containing the soil background are removed before processing. In contrast, at the R5 

growth stage plots have reached full canopy, and growth and expansion rates discernible 

in earlier growth stages are no longer able to be distinguished. When comparing 

phenomic means of color channels between parents, significant differences occur at the 

V5 growth stage, yet no differences are detectable at the R5 growth stage (Table 29). 

 To better understand the relationship of image background removal, or image 

thresholding, with the growth and development of the lines, whole canopy phenotypes 

should be examined. Through the computation of thresholded pixel area (Area), the 

canopy cover fraction for each plot can be quantified. When examining this metric, 

associations to WP become evident at the V5 growth stage. Pearson correlation 

coefficients range from 0.45 in the UX3036 population to 0.22 in the UX3000 with 

significant difference apparent between parental lines in both populations (Table 27, 29). 

Strengthening the association of pixel area to WP at the V5 stage, significant broad sense 

heritability values are calculated for both populations and when considering both 

populations together (Table 28). Like the associations of red, green, and blue channels to 

WP at later growth stages, thresholded pixel area offers little to no value once plots have 

reached full canopy between rows. Insignificant phenotypic correlations and heritability 

estimations were calculated for thresholded pixel area at both the R3 and R5 growth stage 

(Table 28).  

 In close agreement with the trends observed in the thresholded pixel area 

phenotype, the canopy to air temperature differential (CATD) trait supports the 
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relationship of growth and development to WP. Assumed to be largely influenced by the 

growth and expansion of plots at the V5 growth stage, CATD was shown to have a strong 

association to WP before the closed canopy with high broad sense heritability estimates 

(Table 27, 28). Expecting to result from the 14° field of view on the radiometer, positive 

CATD values are likely resulting from a combined temperature reading of both the soil 

background and plot vegetative tissue. Plots with greater canopy to soil fraction ratios at 

the V5 growth stage would be anticipated to cover a larger portion of the soil 

background, and therefore return a lower temperature reading when phenotyped. 

Reinforcing this association of phenotypes quantifying growth and development to WP, 

canopy height measured through the average output of LIDAR and ultrasonic sensors was 

observed to be significantly correlated to WP especially during the R5 growth stage 

(Table 27). In the UX3036 population, canopy height was estimated to have a correlation 

coefficient of 0.46 to WP at R5 (Table 27). With over 2.0 cm difference on average 

between parental lines in the UX3036 population at the R5 growth stage, and a 

heritability estimation of 0.69, canopy height appears to be a trait that is repeatable and 

controlled by genetics in the population (Table 28, 29).  

 With encouraging associations identified between phenotypes quantifying growth 

and development, and their likely impact on phenotypes pertaining to the digital image, 

the association of reflectance phenotypes to WP is still in question. To address some of 

confounding effects of canopy fraction, the reflectance spectrum can be investigated. 

Because no thresholding is performed when processing the spectrometer data, 

wavelength reflectance values represent the average reflectance including soil. When 

considering the total spectral reflectance of the plot, information gained in the visible 
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light range is limited. Phenotypic correlations of the summation of visible light 

reflectance is non-significant for every growth stage phenotyped in the experiment (Table 

27). In addition, the summation of visible light reflectance is largely controlled by 

external environmental factors as broad sense heritability of the visible light range is 

marginal at all growth stages (Table 28). 

  In contrast to visible light reflectance, the summation of reflectance in the near 

infrared region (NIR) shows promising association to WP. Significant associations were 

observed in every growth stage when considering the summation of NIR reflectance with 

increased correlation and heritability during later growth stages (Table 27, 28). When 

considering the full spectrum, the usefulness of visible light phenotypes to NIR metrics 

quickly becomes evident (Figure 26, 27). Through the reflectance spectra comparison of 

lines with WP in the lower quantile to lines with WP in the top quantile, clear differences 

are only discernable in the NIR region (Figure 26, 27). Especially during the R5 growth 

stage, NIR reflectance wavelengths in the 750 nm to 800 nm range displays clear and 

significant (α = 0.05) separation of the WP groups (Figure 27). Increasing the value of 

NIR reflectance over visible light reflectance, broad sense heritability estimations are 

relatively high especially in the 750 nm to 800 nm range (Figure 26, 27).  

 Increasing the utility of NIR wavelengths, reflectance ratios demonstrate 

increased association to WP when compared to either visible light or NIR reflectance 

individually. Compared to the summation of NIR reflectance, the ratio of NIR to visible 

light offers increased Pearson correlation coefficients for every stage and population 

investigated with significantly higher broad sense heritabilities in most situations (Table 

26, 27). Furthering this trend, specific spectral indices comparing NIR wavelengths to 
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visible light wavelengths exhibit strong association to WP especially during later growth 

stages. Spectral indices such as the simple ratio index of 800 nm over 680 nm (SR680) 

were observed to have correlation coefficients of 0.39 and broad sense heritability 

estimations on an entry basis of 0.62 at the R5 growth stage over all lines evaluated in the 

experiment (Table 30). In addition to SR680, several spectral indices were observed to 

have broad sense heritability estimations larger than 0.5, yet no RGB indices were 

observed to have broad sense heritability estimations higher than 0.5 at any stage (Table 

30, 31). Indices not including NIR wavelengths calculated solely from RGB channels, 

were also shown to have reduced association to WP when compared to spectral indices 

(Table 30, 31). Agreeing with the tendency established earlier, visible light phenotypes 

appear most associated to WP during earlier growth stages but fail to exhibit the strength 

of association observed when considering NIR reflectance. 

 In summary, phenotypes quantifying growth parameters or NIR reflectance 

indices display the strongest association to WP. In context of this experiment, genotypes 

with increased thresholded pixel area at the V5 growth stage, and increased NIR to red 

light reflectance ratio at the R5 growth stage tend to have a higher yield to seasonal 

effective cumulative water ratios. Genotypes with increased thresholded pixel area at V5 

are likely intercepting more light which inherently improves the genotypes capacity for 

future yield and growth (Purcell, 2000). Through the interception of more light, 

genotypes with increased pixel area can be expected to increase photosynthetic activity 

thereby increasing the supply of photosynthates needed for growth and development. 

With a larger canopy area, the CATD would also be predicted to be reduced as 

evaporative cooling occurring at leaf stomates reduces the effective temperature of the 



62 
 

plot in comparison to the warmer soil background (Farquhar and Sharkey, 1982; Horton 

et al., 1984; Roche, 2015). As the uncovered soil background is expected to be warmer 

than the ambient air temperature, plots with increased canopy coverage likewise reduce 

the CATD. In addition, with root to above ground biomass ratios of approximately 0.75 

in soybean at early stages, and the assumption of a positive correlation between 

thresholded pixel area and biomass, genotypes with improved canopy fraction at earlier 

stages may be developing a more extensive root system prior to flowering (Torrion et al., 

2012). A more extensive root system offers genotypes the potential to be more productive 

through the ability to extract water deeper from the soil profile during periods of stress 

thereby sustaining growth and development through reproductive periods vital to seed 

yield and WP. Enhanced growth and development during the reproductive periods would 

in turn result in higher NIR to red light reflectance as the ratios have traditionally been 

used to quantify photosynthetic activity and biomass in a variety of crops (Sims and 

Gamon, 2002).  

 Although biological implications on the interpretation of promising phenomic 

associations to water productivity can be speculated, to better understand meaningful 

associations the incorporation of genomic data is necessary. Through the pairing of high-

dimensional phenotypic and genotypic data, small genetic variations can be associated 

with phenotypic response, pleiotropy can be studied, and our knowledge of complex 

biological systems can be increased (Bilder et al., 2009; Freimer and Sabatti, 2003; Houle 

et al., 2010; Schork, 1997). 
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Genomic Associations to Water Productivity  

 To identify genomic regions related to water productivity and associated 

agronomic and phenomic traits, inclusive composite interval mapping (ICIM) was used to 

detect significant quantitative trait loci (QTL). In total, seven QTL for WP across 

treatments were detected in the study; five QTL were detected in the UX3000 population 

and two QTL were detected in the UX3036 population (Table 32). In the UX3000 

population, the five identified QTL explained an estimated 44.4% of the total phenotypic 

variance observed for WP with additive QTL effects ranging from 0.56 kg ha-1 mm-1 to 

0.98 kg ha-1 mm-1. Similarly, the two QTL identified in the UX3036 population had 

additive effects ranging from 0.80 kg ha-1 mm-1 to 1.48 kg ha-1 mm-1, yet when taken as a 

whole the two QTL only explained an estimated 15.8% of the total phenotypic variance 

for WP in the population (Table 32).   

 To begin to shed light on the function of each of the seven QTL identified, QTL 

mapping was first repeated considering WP within each irrigation treatment. Through the 

identification of WP QTL relative to ether the irrigated or rainfed treatment, association 

of the previously identified QTL to productivity in stress or optimum environments can 

be interpreted. Eight QTL were identified after mapping WP within each water treatment; 

six within the UX3000 population and two within the UX3036 population. Of the eight 

QTL identified, six overlapped with significant genetic regions detected when 

considering WP across irrigation treatments as the response. Within the UX3000 

population, QTL identified on chromosomes 1, 4, and 7 were found to coincide with 

genetic regions associated to WP in the rainfed treatment (Table 32, 33, Figure 28). The 

QTL identified on chromosomes 18 and 19 appear to be related to WP in irrigated 
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treatments (Table 33, Figure 28). Like the UX3000 population, the QTL on chromosome 

19 in the UX3036 was associated with the irrigated treatment; in contrast, the UX3036 

QTL on chromosome 12 appears to be most associated with WP in rainfed environments 

(Table 33, Figure 29).  

 When investigating WP QTL mapped within irrigation treatment, three additional 

minor QTL become significant in the UX3000 population as compared to WP QTL 

related to performance across irrigation treatments (Table 32, 33). New minor QTL on 

chromosome 8 and 19 appear related to WP in the rainfed treatment, and a new minor 

QTL on chromosome 3 is detectable in the irrigated treatment (Table 33). Both QTL 

detected in the rainfed treatment in the UX3000 population overlap with QTL identified 

in the study related to seed weight, whereas the QTL identified on chromosome 3 

overlaps with a final plant height QTL. When studying the disappearance of QTL on 

chromosome 4 and 18 detected over treatments in the UX3000 population to QTL 

identified by irrigation treatment, power of detecting differences appears to be the main 

issue. The QTL on chromosome 4 was estimated to have a LOD score of 2.44 in the 

rainfed treatment, and the QTL on chromosome 18 was estimated to have a LOD score of 

2.33 in the irrigated treatment falling below the significance threshold.  Discrepancies 

between QTL results between the overall response and by irrigation treatment response 

are likely attributable to the population size, number of molecular markers, and number 

of environments associated with the study reducing the power needed to detect all minor 

QTL (Li, H. et al., 2010). Within the ICIM mapping framework, a population size greater 

than 200 lines with molecular markers spaced approximately every 20cM or less is 

recommended for unbiased estimates of QTL explaining more than 5% of the phenotypic 
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variance (Li, H. et al., 2010). In our study populations sizes of 144 and 171 lines were 

used for the UX3000 and UX3036 population respectively after filtering for similarity 

and poor marker call rate within lines; this population size is slightly sub-optimum. In 

addition, marker spacing often exceeded 20 cM in both populations (Figure 6, 7). These 

factors in combination reduce the power to detect minor QTL and are likely a reason for 

discrepancies between the overall and by irrigation treatment results (Li, H. et al., 2010).  

 Like the methodology used to investigate the seven WP QTL identified across 

environments to specific water treatments, QTL mapping was repeated for 3140 

agronomic and phenomic traits to investigate association to WP. From the 3140 

agronomic and phenomic traits, 2407 significant QTL were detected across both 

populations; 88 agronomic QTL were identified, and 2319 QTL were identified for 

phenomic trait by growth stage combinations (e.g. NDVI at the V5 growth stage, and 

NDVI and the R5 growth stage). Supporting the phenomic trend of increased heritability 

of traits in later growth stages the majority of phenomic QTL were derived from 

reproductive stage phenotyping (Figure 30). Of the 2407 agronomic and phenomic QTL, 

178 were found to have estimated genetic positions within confidence intervals of the 

seven WP QTL discussed earlier (Table 33, 34). To simplify interpretation of the 

overlapping agronomic and phenomic QTL, eleven categories were constructed: canopy, 

index, NIR, reproductive, RGB, seed traits, blue, green, red, agronomic and yield 

(Appendix 7). From these groupings, the seven WP QTL were clustered based on their 

relative proportion of overlapping QTL to agronomic and phenomic categories. Using 

this category clustering approach, informative associations were discovered.  
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 In the UX3000 population, WP QTL identified on chromosomes 1, 4, and 7 

previously related to productivity in the rainfed treatment were found to be 

predominantly associated to seed yield (Figure 31, Table 34). Genetic regions 

significantly correlated to overall WP on chromosomes 1, 4, and 7 in the UX3000 

population were observed to coincide with genetic regions associated with seed yield 

performance. In contrast WP QTL on chromosome 18 and 19 in the UX3000 population 

were found to be more related to agronomic, reproductive, or seed traits (Figure 31, Table 

34).  The WP QTL on chromosome 18 exhibited associations with genetic regions related 

to reproductive traits such as R1 date along with seed traits such as seed size (Table 34). 

In divergence, the WP QTL on chromosome 19 demonstrated associations with genetic 

regions controlling agronomic traits such at height and lodging along with spectral traits 

involving NIR to RGB ratios (Figure 31, Table 34).  In the UX3036 population, the two 

WP QTL identified both displayed moderate association to yield performance and NIR 

wavelengths from approximately 900 – 950 nm. The WP QTL on chromosome 19 also 

demonstrated overlap with QTL identified for height, lodging, and canopy temperature 

traits (Figure 31, Table 34).  

 To further interpret the association of each of the seven WP QTL, all QTL 

reported on SoyBase (SoyBase.org) were investigated for overlapping position based on 

genetic positions from the genome assembly version Glyma.Wm82.a2.v2 (Grant et al., 

2009). In total, 145 QTL from SoyBase overlapped with the genetic position confidence 

intervals estimated for the seven WP QTL identified in this study (Table 35). In an 

approach similar to the grouping and clustering of agronomic and phenomic traits, the 

fourteen QTL object type categories within SoyBase: other seed, whole plant, inorganic, 
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fungal, insect, leaf stem, miscellaneous, seed oil, seed protein, reproductive, yield, 

nematode, root and pod were used to identify WP QTL relationships 

(https://www.soybase.org/search/qtllist.php). Although no clear relationship pattern was 

identified for WP QTL on chromosome 12 and 18 to reported QTL on Soybase, relatable 

associations were reported for the remaining five QTL. Like trends observed when 

examining phenomic traits, UX3000 WP QTL on chromosome 1, 4, and 7 overlapped 

with reported QTL related to seed yield (Figure 32, Table 35). Quantitative trait loci 

reported for seed yield, seed set, seed width, seed height, node number, and pod number 

corresponded with WP QTL on chromosome 1, 4 and 7 (Figure 32, Table 35). In 

addition, the UX3036 WP QTL on chromosome 19 overlapped with reported QTL for 

pod number and seed set traits pertaining to yield and plant height traits like the yield and 

agronomic associations discovered earlier (Figure 32, Table 35).   

 Through coupling phenomic and genomic information, genetic associations can 

be related to correlated phenotypic responses. Unique patterns and potential phenotypic 

associations were identified for each of the seven WP QTL detected. In relationship to 

this experiment where water stress was minor, WP seems to be most associated to genetic 

factors potentially influencing maximum seed yield potential. The most significant QTL 

identified in the study on chromosome 7 of the UX3000 population is located within a 

genetic region that largely overlaps with QTL related to seed yield performance (e.g. seed 

yield, seed fill, seed set, seed size) (Table 34, 35). This genetic region is not unique to the 

UX3000 population as corresponding genetic regions have been reported when mapping 

QTL for seed yield and drought susceptibility across environments using multiple other 

biparental mapping populations (Du et al., 2009; Wang, X. et al., 2014). Bolstering the 



68 
 

agronomic associations of lodging to WP, QTL identified on chromosome 19 in both the 

UX3000 and UX3036 population demonstrated a similar genetic position and maximum 

expression within the irrigated treatment (Table 33, 34, Figure 28, 29). Finally, 

emphasizing the complex and highly quantitative nature of water productivity, QTL on 

chromosomes 1, 4, 12, and 18 showed relationships with multiple agronomic and 

phenomic traits including: yield, seed traits, reproductive stage timing, spectral indices 

along with canopy reflectance traits. These genetic regions, although significantly related 

to WP explain less than 10.0% of the phenotypic variance and may contain genes 

conferring pleiotropic effects. Marginal gains could be expected through focusing on only 

the most significant agronomic, phenomic, and genomic associations identified thus far. 

To more fully leverage all associations and the experimental dataset, predictive analytic 

modeling using machine learning algorithms can be employed.    

 Predictive Analytic Modeling of Water Productivity  

 Machine learning has been recently broadly applied for both quantitative trait 

prediction and supporting trait discovery in crops (Chlingaryan et al., 2018; Ma, C. et al., 

2014; Ogutu et al., 2011; Singh, A. et al., 2016). When applied to heterogenous and 

complex biological datasets, nonparametric machine learning algorithms have relaxed or 

no assumptions about data distributions, heteroscedasticity, and multicollinearity (Hastie 

et al., 2005; James, G. et al., 2013). Especially suitable for quantitative traits such as 

water productivity, the creation and application of supervised machine learning 

algorithms allows for the full integration of agronomic, phenomic, genomic, and 

environmental data. This full integration is expected to in turn lead to a more holistic 

understanding of traits influenced partially by many factors.  
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 To apply predictive analytic machine learning algorithms to the experiment, three 

algorithm methods, two separate cross validation (CV) schemes, and two distinct data 

input types were considered. First, least square mean estimations (LSMEANS) of 

agronomic and phenomic traits were paired with genetic data and modeled with 

generalized linear regression with elastic net regulation (ENET). Model performance was 

assessed using both a ten-fold cross validation on the input dataset (CV1) and through 

testing on datasets separate and distinct from the training set (CV2) (e.g. training on 

Mead environments and testing on Lincoln environments, training on the UX3000 

population and testing on the UX3036 population, training on irrigated plots and training 

on rainfed, etc.). To address the issue of dimensionality presented through modeling 

many agronomic and phenomic traits, phenomic traits collected at the R3 growth stage 

were omitted due to lack of replication over years, and broad sense heritability 

estimations were used as an initial filtering process. Through only including agronomic 

and phenomic traits collected at the V5 or R5 growth stage with broad sense heritabilities 

greater than 0.25, approximately 100 to 150 agronomic and phenomic traits were 

modeled to WP depending on the input dataset. To reduce the number of SNP markers 

included in the modeling dataset, only polymorphic markers with non-significant (α > 

0.001) segregation distortion from the expected 1:1 Mendelian inheritance ratio after 

excluding heterozygotes were incorporated. These filters addressed the issue of 

dimensionality, while maintaining the most repeatable traits. Finally the ENET regulation 

and optimization helps address the p >> n problem through grouping highly correlated 

variables and only including one of the grouped variable set (Zou and Hastie, 2005). 

Through filtering on heritability, segregation distortion, and the variable selection 
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methodologies unique to ENET, approximately 4,000 agronomic, phenomic and genomic 

traits are reduced to approximately 25 variables in the final linear model (Figure 33, 34).   

 Even with the dramatic reduction of input variables, satisfactory predictive 

performance was exhibited when correlation of predicted to observed WP was evaluated 

through the CV1 scheme. Pearson correlation coefficients of predicted to observed 

observations ranged from 0.54 when considering the V5 growth stage observations 

during both the 2016 preliminary yield response experiment and 2017-2018 water 

response experiment, to 0.81 when focusing on only the UX3036 population with 

phenomic data collected at the R5 growth stage in 2017-2018 (Table 36). Root mean 

square error (RMSE) estimations of models ranged from 0.48 kg ha-1 mm-1 in the 2016-

2018 UX3000 and V5 growth stage subset to 1.04 kg ha-1 mm-1 in the 2016-2018 V5 

growth stage subset based on all RILs (Table 36). In addition, selected variables and 

linear model coefficient weights of the ENET largely agreed with previously identified 

associations in the study. Echoing the significant association of lodging at maturity to WP 

identified when focusing on agronomic data, lodging was observed to have the largest 

negative coefficient weight when looking at any population and growth stage subset 

(Figure 33, 34). In agreement with the importance of spectral indices to WP discovered 

earlier, variables such as the simple ratio index of 800 nm over 680 nm (SR680) or the 

simple ratio index of 800 to 705 nm (SR705) were observed to have positive coefficient 

weights at both the V5 and R5 growth stage in both populations (Figure 33, 34). Finally, 

in partial accordance with significant genetic associations previously identified through 

ICIM QTL mapping, four of the fourteen SNP markers with coefficient weights flanked 

or resided within a WP QTL region (Figure 33, 34).  
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 To investigate the influence that each data type has on the predictability of WP, 

ENET models were built for each of the six data types and combinations: agronomic, 

phenomic, genomic, agronomic + phenomic, agronomic + genomic, and complete 

(agronomic + phenomic + genomic). A comparison of the Pearson correlation 

coefficients and 95% confidence intervals of predicted to observed responses for each 

data group allows for an assessment of the relative applied value of each data type. When 

evaluating performance through the CV1 scheme on WP LSMEANS, genomic data 

appears to offer the most utility as a single data type (Figure 35). Correlation coefficients 

were observed to be significantly (α = 0.05) higher than models built using agronomic or 

phenomic data exclusively within the UX3000 population (Figure 35). Larger yet 

insignificant differences were also exhibited for the UX3036 populations and when 

merging both populations together (Figure 35).  Models built using solely agronomic 

information displayed improved performance over phenomic models, especially when 

considering both populations (Figure 35). Continuing this trend, models merging 

agronomic and genomic data offered slight performance improvements when compared 

to models with agronomic and phenomic information (Figure 35). As expected, models 

containing all data types exhibited the best performance in most situations tested through 

CV1 (Figure 35).   

 When evaluating models through the CV2 scheme the relative importance of each 

data type changes. In contrast to performance evaluated through ten-fold cross validation 

in the CV1 scheme, models tested on datasets dissimilar of the training set displayed 

lower correlation coefficients and difference relative importance of data types. Examples 

of CV2 scheme evaluation would include building a model on the UX3000 population, 
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and testing on the UX3036 population, training on the 2017 WP LSMEANS and testing 

on 2018 WP LSMEANS or building a model on the 2018 Mead environment and testing 

on the 2017 Lincoln environment. Through such a cross validation scheme, the relative 

utility of genomic data over phenomic and agronomic data is decreased (Figure 36).  In 

the CV2 scheme, the performance of agronomic or phenomic models is marginally 

improved or models built using exclusively genomic information (Figure 36). In 

agreement, models built with both agronomic and phenomic information offer slight, but 

insignificant improvements over models built with agronomic and genomic information 

(Figure 36). Like the importance of the complete dataset observed when evaluating 

through CV1, the complete dataset displays the highest performing models in most 

situations when evaluated through CV2 (Figure 36).  

 To further examine the relative importance of phenomic and genomic variables, 

predictive models for WP were developed using machine learning algorithms on a per 

plot observation basis. Modeling plot observations allows for a much larger dataset size 

when compared to focusing on LSMEANS of WP (18746 ~ 442 observations), and 

enables the incorporation of weather station data, soil electrical conductivity information, 

and spatial variables unique to each observation. Through ensembled classification and 

regression trees with bootstrap aggregation and random predictor selection at each split 

(CART), and feed forward artificial neural networks with Bayesian regulation (NET), the 

predictability and relative predictor importance of trait categories was investigated. 

Model performance was much higher than models built on WP LSMEANS; Pearson 

correlation coefficients of observed to predicted responses through the NET algorithm 

ranged from 0.94 when considering phenomic data at the V5 growth stage in the UX3000 
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population across both irrigation treatments, to 0.80 when subsetting the irrigated 

treatment and phenomic data collected at the R5 growth stage (Table 37). Similarly, the 

models built through the CART algorithm exhibited correlation coefficients ranging from 

0.95 when using all plot information collected in the study to 0.80 when using only 

irrigation plot information and phenomic data at the R5 growth stage (Table 38).  

 Similar to results obtained through the CV1 scheme, when plot observations were 

used for modeling and performance was evaluated through the CV2 scheme, Pearson 

correlation coefficients were observed to be higher than models built using WP 

LSMEANS (Figure 36, Table 39, 40). Correlation coefficients ranged from 0.89 when 

considering all plot observations to 0.71 when subsetting all phenomic observations from 

the rainfed treatment within the UX3036 population for the CART algorithm, and 

coefficients ranged from 0.89 in the UX3036 using R5 phenomic variables to 0.25 using 

all phenomic variables at the R5 growth stage in both populations over the irrigated 

treatment (Table 39, 40). In addition, models built from plot observations have improved 

robustness to predict in untested datasets and are apparently robust to overfitting as well 

when compared to models developed from WP LSMEANS (Table 36, 39, 40).  

  In an attempt to investigate the gain in performance of per plot prediction versus 

WP LSMEANS prediction, relative predictor importance of each variable type was 

estimated through the CART algorithm using an interaction curvature test (Loh, 2002). 

On a per plot basis, soil electrical conductivity measurements and spatial variables such 

as longitude and latitude where observed to have the highest relative predictor importance 

across both populations (Figure 37, 38). Strengthening the evident influence of plot WP 

from environmental factors, weather station variables, categorized as environmental, 
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displayed high predictor importance regardless of the phenomic stage, and indicated 

increased importance when considering all phenomic observations (Figure 37, 38).   

 In summary, the full integration and modeling of agronomic, phenomic, genomic, 

and environmental data on a per plot basis through the CART and NET algorithms offers 

improved predictive importance when compared to modeling on a per line LSMEAN 

basis. As observed earlier, WP is largely controlled by environmental factors; 

environmental variances are much larger on average than genotypic variances (Table 24). 

Collecting and modeling traits that quantify environmental factors influencing WP would 

therefore be expected to improve the performance of the model. The predictability on a 

per plot basis compared to a per line basis appears to be improved partially through the 

incorporation of soil electrical conductivity, spatial coordinates, and weather station 

information. It therefore follows that to most effectively model and investigate a trait 

largely influenced by environmental factors, spatial and environmental data should be 

collected or effectively accounted for through an appropriate experimental design.  

 In relationship to applications in plant breeding, unbiased genotypic estimates are 

of primary importance. To effectively evaluate and compare genotypes, experimental 

design accounting for environmental factors potentially influencing the trait of interest is 

needed. Using experimental design factors such as blocking, replication, and augmented 

check lines, researchers obtain genotypic estimates adjusted for extraneous environmental 

effects. Therefore, in order to evaluate genotypes most effectively, plant breeders focus 

on adjusted genotypic means such as LSMEANS for advancement decisions. Because 

genotypic means are of primary importance in the line evaluation stages of plant breeding 

programs, modeling WP in the line evaluation stages for advancement decisions has 
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limited applicability. Since WP can be easily obtained through the incorporation of 

weather station and agronomic data normally collected in a plant breeding program, 

gathering estimates of water productivity over representative environments is preferable 

to predictive modeling. In contrast, in evaluation stages where agronomic data is not 

routinely generated, modeling WP shows potential for application. In earlier generation 

evaluation such as maturity separations, progeny row evaluations, or hill to row 

evaluations where yield data is not measured, collecting and modeling agronomic, 

phenomic, genomic, and environmental data has great potential to estimate WP. This 

estimation could then be used for selection purposes potentially increasing in the rate of 

genetic gain. The improve accuracy of multi-omic prediction models when compared to 

genomic selection models, may offer increase opportunity of application of rapid 

recurrent selection prediction success. Furthermore, the routine collection of agronomic, 

phenomic, genomic, and environmental data in yield evaluation generations can be used 

as a sort of insurance policy. With seemingly increasing volatile weather patterns and the 

large resource requirements needed to maintain a breeding program, regular collection of 

multi-omic data enables the opportunity of quantitative trait prediction should the need 

arise.  Finally, through this routine collection of omic data in yield evaluation stages, 

product placement decisions in untested environments could be expected to be improved. 

Through training models on testing environments representative of the products growing 

region, predictive models using algorithms such as the CART method, could be used to 

predict performance in untested environments with improved confidence when compared 

to traditional methods.  
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CONCLUSION 

 The rising demand for soybean [Glycine Max (L.) Merrill] taken in consideration 

with current climatic trends accentuates the importance of improving soybean seed yield 

response per unit water, or water productivity (WP). To further our understanding of the 

quantitative nature of soybean WP, a multi-omic approach was implemented for 

improved trait identification and predictive modeling opportunities. Through the 

evaluation of two recombinant inbred line populations jointly totaling 439 lines subjected 

to contrasting irrigation treatments, informative agronomic, phenomic, and genomic 

associations were identified. 

 Population specific associations to WP were identified for ultrasonic plant height 

collected at the R5 growth stage in the UX3036 population (r = 0.46, H = 0.69) along 

with a QTL identified on chromosome 12 (r = 0.29). Within the UX3000 population, 

unique significant associations were found for QTL on chromosomes 1, 4, 7, and 18 (r = 

0.30, 0.28, 0.33, 0.26). Across both populations, significant relationships were found 

between WP and lodging at maturity (LG) (r = -0.58, H = 0.86), the canopy to air 

temperature differential (CATD) at the V5 growth stage (r = -0.31, H = 0.39), the SR680 

spectral index collected at the R5 growth stage, (r = 0.62, H = 0.39), and a QTL at 

approximately 30 cM on chromosome 19 (r = 0.27).  

 Through the coupling of field phenomic data with agronomic and genomic data 

routinely collected in plant breeding programs, interpretation of identified traits and 

predictive performance of models was increased. The shared genetic association on 

chromosome 19 in both populations overlapped with genetic regions indicating 

association to both LG and the SR680 spectral index collected at the R5 growth stage. 
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Through the integration of significant agronomic, phenomic, and genomic traits, 

predictive models of WP were developed across environments on an entry mean basis (r 

= 0.72, RMSE = 0.67 kg ha-1 mm-1) and on a per plot basis (r = 0.95, RMSE = 0.39 kg ha-

1 mm-1) using machine learning algorithms. 

 Findings from this study shed light on both soybean response to water and the 

application of field phenomic data to soybean breeding programs. Our results highlight 

the value of integrating multiple dataset types to study and model quantitative traits. 

Through the application of our findings, soybean breeders can potentially deploy mult-

omic selection models in early generation screening stages to increase the rate of genetic 

gain in relation to soybean WP.  
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TABLES 

Table 1. Soybean lines used as parents of the two RIL populations, UX3000 and UX3036; parental pedigree
information, and metrics of genetic similarity to the common parent U11-614093 included  

 

 

 

 

 

 

 

 

Strain Female Male Originator Stem Type Flower 
Color

Pubescence 
Color Pod Color Seed Coat 

Luster
Seed Coat 

Color
Hilum 
Color

LD02-4485 M90-184111 IA3010 Univ. of Illinois I P G Br D Y Bf
U11-614093 U02-242055 LD04-13265 Univ. of Nebraska I P T Br D Y Bl
U09-312115 U02-242055 U03-300134 Univ. of Nebraska I P T Br D Y Bl

GParentage Descriptors§

§  W = White, P = Purple, T = Tawny, G = Grey,  Y = Yellow,  Bl = Black, Bf = Buff
* Approximate coefficient of parentage to U11-614093 (Ruff, 2016)
± Genotypic similarity in terms of identity by descent to U11-614093 from 9,513 GBS SNP data (Ruff, 2016)



 

Table 2. Spatial characteristics, soil characteristics, growth parameters and management metrics of enviro
study 

Location Year Latitude Longitude Elevation Soil Type ECS† ECD† Precipitation Irrigation
Irrigated 
Effecitive 
Water¶

Rainfed 
Effecitive 
Water¶

GDD§ Planting 
Date

m ms m-1 ms m-1 mm mm mm mm

Clay Center 2016 40.573 -98.138 556 Crete silt loam 386 201 375 3385 5/20/2016
Cotesfield* 2016 575 Hord silt loam 293 229 360 3055 5/21/2016
Mead 2016 41.159 -96.420 350 Filbert silt loam 642 76 455 3354 6/3/2016
Wymore* 2016 401 Kennebec silt loam 508 126 344 3814 6/4/2016
Mead 2017 41.157 -96.424 350 Yutan silty clay loam 29.31 0.67 708 120 411 375 3354 5/16/2017
Lincoln 2017 40.864 -96.598 347 Kennebec silt loam 42.74 0.63 691 101 368 234 3357 5/31/2017
Mead 2018 41.159 -96.423 350 Tomek silt loam 29.58 0.82 746 125 384 324 3359 5/8/2018
Lincoln 2018 40.863 -96.595 347 Kennebec silt loam 33.17 0.69 706 114 270 222 3424 5/28/2018
†Soil electrical conductivity shallow signal (0 - 1 meters, ECS) and soil electrical conductivity deep signal (0 - 3 meters, ECD)
¶ Seasonal effective cumulative water calculated through SoyWater (http://hprcc-agron0.unl.edu/soywater)
§Growing degree days (GDD)
*Latitude and longitude information not included to preserve privacy of cooperators

Soil Characteristics Cumulative Plant
 Growth Parameters MEnvironment Spatial Characteristics



 

Table 3. Sensors modules information, field of view, and associated canopy traits measured through the fie
platform 

 
 
 
 
 
 
 

Sensor Model and Manufacturer Field of View Canopy Trait Measured
ToughSonic30, Senix Corporation, Hinesburg, Vermont NA Canopy height
SRS, Decagon Devices, Pullman, Washington 18° Canopy NDVI
SI-131, Apogee Instruments, Inc., Logan, Utah 14° Canopy temperature
CCS175, Thorlabs Inc., Newton, New Jersey 13° Canopy reflectance spectra
C615, Logitech, Fremont, California 33° by 20° Canopy RGB image
AgGPS 216, Trimble Navigation Ltd., Sunnyvale, California NA Plot GPS positioin
CS215-L, Campbell Scientific Inc., Logan, Utah NA Atmospheric temperature and humidity
VLP-16 Puck, Velodyne LiDAR Inc., San Jose, CA 360° vertical; 30° horizontal Canopy height and density
LI-200, LICOR Biosciences, Lincoln, Nebraska NA Atmospheric solar radiation



 

Table 4. Spectral indices, acronyms, calculation formation, biological trait estimation and sources of spectr
calculated from field phenomic platform 

 

Index Acronym Wavelength formula Trait estimated Source
Anthocyanin reflectance index ARI 1/550 - 1/700 Anthocyanin levels Gitelson et al., 2001
Chlorophyll Red-Edge CHLRE [(760:800) / (540:560)]-1 Chlorophyll degradation Gitelson et al., 2001
Crop Water Index CWI1 531 + 570 Water stress Moran et al., 1994
Crop Water Index CWI2 ∑ 520 - 530 nm Water stress McDermid et al., 2008
Crop Water Index CWI3 ∑ 570 - 590 nm Water stress McDermid et al., 2008
Crop Water Index CWI4 ∑ 690 - 710 nm Water stress McDermid et al., 2008
Crop Water Index CWI5 ∑ 500 - 700 Yield Aparicio et al., 2000
Crop Water Index CWI6 ∑ 700 - 950 Yield Aparicio et al., 2000
Grain Yield GYI1 ∑ 500 -700 nm Yield Ferrio et al., 2005
Grain Yield GYI2 ∑ 700- 950 nm Yield Ferrio et al., 2005
Grain Yield GYI3 680 nm Yield Ferrio et al., 2005
Green Normalized Vegetation Index GNDVI (801-550) / (800+550) Biomass, nitrogen use Gitelson et al., 1996

Modified Chlorophyll Absorption Ratio Index MCARI [(700-670) -0.2 
(700:550)*(700/670)]

Chlorophyll concentration Daughtry et al., 2000

Near infrared to green division index NIRGreen 801 / 550
Near infrared to red division index NIRRed 801 / 670
Near infrared to visible light division index NIR_VIS ∑ 500 -700 / ∑ 700- 950

Normalized Difference Water Index NDWI (800 - 680) / (800 + 680) Plant Water Status Gao, 1996
Normalized Vegetation Index 680 NDVI680 (800 – 680) / (800 + 680) Photosynthesis parameters Sims and Gamon, 2002
Normalized Vegetation Index 705 NDVI705 (750 – 705) / (750 + 705) Photosynthesis parameters Sims and Gamon, 2002

Optimized Soil Adjusted Vegetation Index OSAVI (1+0.16) [(800-670) / (800 + 670 
+0.16)]

Chlorophyll concentration Rondeaux et al., 1996, Steven, 1998

Photochemical Refectance Index PRI (531-570) / (531+ 570) Photosynthesis parameters Gamon et al., 1997
Red Edge RE ∑ 690 - 740 Chlorophyll concentration Horler et al., 1983
Red Edge Division Index RE3/RE2 ∑(734 - 747) / ∑(715 - 726) Photosynthesis parameters Vogelmann et al., 1993b
Red Edge Inflection Point REIP1 Maximum in 680-780 Photosynthesis parameters Vogelmann et al., 1993b
Simple Index SI1 710 / 810 Drought Stress Jiang, Y. and Carrow, 2007
Simple Index SI2 710 / 760 Drought Stress Jiang, Y. and Carrow, 2007
Simple Ratio SR ∑(750 - 900) / ∑(660 - 720) Photosynthesis parameters Sims and Gamon, 2002
Simple Ratio 680 SR680 800 / 680 Photosynthesis parameters Sims and Gamon, 2002
Simple Ratio 705 SR705 730/ 705 Photosynthesis parameters Sims and Gamon, 2002

Soil Adjusted Vegetation Index SAVI (1+0.5) [(800-670) / (800 + 670 
+0.5)]

Chlorophyll concentration Huete et al., 1988

TCARI to OSAVI division index TCARI_OSAVI TACARI / OSAVI Chlorophyll concentration Haboudane et al., 2004

Transformed Chlorophyll Absorption Reflectance Index TCARI 3*[(700-670) -0.2 
(700:550)*(700/670)]

Chlorophyll concentration Haboudane et al., 2004

Vogelmann Index 4 D715/705 ∑(710 - 720) / ∑(700 - 710) Photosynthesis parameters Vogelmann et al., 1993b



 

Table 5. RIL parent and population least square mean estimations for seed, water response, and plant char
based on two replications across two irrigation treatments and four environments for 2017-2018 water resp

 

Parent Population nφ Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1§ Maturity§ R1-R8§

kg ha-1 g/100 1-5 scale g kg-1 g kg-1 $ kg-1 g kg-1 kg ha-1 mm-1 kg ha-1 mm-1 days days days

LD02-4485 1 4332** 14.2** 1.7 332** 193** 5.0** 471** 14.1** 17.5** 41.3 127** 86***
UX3036 203 4586 15.2 1.8 340 192 5.1 476 14.9 19.1 41.4 130 88

U11-614093 1 5012 16.6 1.8 351 191 5.3 485 17.0 21.4 41.9 131 89
UX3000 235 4856 14.8 1.8 342 194 5.2 480 15.5 20.3 42.5 130 88

U09-312115 1 4643** 13.4** 1.7 337** 197** 5.2** 477** 14.9** 19.9** 42.7± 128** 85***

Seed Characteristics Water Response Reproductive Period Attributes

φLine count
†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange grou
price montly average mean over the October 2013 – October 2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodit
meal&months=60, 11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) ca
effective water during reproductive (R1-R8) period
§Date at which 50% of plot reached R1 growth stage (R1), the date at which greater than 95% of pods have reached maturity on the main stem (Mat
between R1 and Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at maturity according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
± indicates difference from U11-614093 significance at α = 0.10
* indicates difference from U11-614093 significance at α = 0.05
** indicates difference from U11-614093 significance at α = 0.01



 

Table 6. Environmental agronomic means across both populations for environments used in the study inclu
preliminary evaluation and 2017-2018 water response experiment environments 

Location Year Treatment Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1§ R3§ R5§ Maturity§ R1-R8§

kg ha-1 g/100 1-5 scale g kg-1 g kg-1 $ kg-1 g kg-1 kg ha-1 mm-1 kg ha-1 mm-1 days days days days days
Clay Center 2016 5284 15.5 1.4 328 201 5.4 473 14.1 125
Cotesfield 2016 6285 17.5 1.4 327 198 5.5 475 15.8
Mead 2016 4920 15.9 1.6 330 199 5.5 474 15.5 118
Wymore 2016 4798 17.0 1.2 337 200 5.5 475 12.3 117
Mead 2017 Irrigated 5304 16.1** 1.4 339** 196** 5.5** 479** 12.7** 16.7** 47* 135** 88**
Mead 2017 Rainfed 5307 15.6** 1.3 324** 201** 5.4** 466** 14.3** 19.9** 47* 134** 87**
Lincoln 2017 Irrigated 5033** 16.0** 1.2 350 193 5.6 485 14.5** 17.0** 38** 121** 83**
Lincoln 2017 Rainfed 4824** 15.4** 1.2 349 194 5.6 484 20.6** 26.3** 39** 118** 79**
Mead 2018 Irrigated 4538** 15.1 2.2** 337** 190** 5.5** 475** 12.4** 14.0** 41* 63 77* 137** 96**
Mead 2018 Rainfed 4281** 15.1 2.0** 332** 195** 5.4** 473** 13.2** 15.1** 40* 63 77* 135** 95**
Lincoln 2018 Irrigated 4170 15.2 2.5** 352** 187* 5.6** 483** 14.8** 19.7** 38 61 71** 126± 88±
Lincoln 2018 Rainfed 4148 15.3 2.3** 347** 188* 5.6** 480** 18.6** 27.2** 38 61 70** 125± 87±
†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group end o
average mean over the October 2013 – October 2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodity=soybean-meal&mo
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calculated
water during reproductive (R1-R8) period
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reached matu
(Maturity), and the interval between R1 and Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at maturity according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
φSubset count
± indicates treatment significance at α = 0.10
* indicates treatment significance at α = 0.05
** indicates treatment significance at α = 0.01

Seed Characteristics Water ResponseEnvironment Reproductive Period Attributes



 

Table 7. Environmental agronomic means for the UX3000 population for environments used in the study in
preliminary evaluation and 2017-2018 water response experiment environments 

Location Year Treatment Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1§ R3§ R5§ Maturity§ R1-R8
kg ha-1 g/100 1-5 scale g kg-1 g kg-1 $ kg-1 g kg-1 kg ha-1 mm-1 kg ha-1 mm-1 days days days days days

Clay Center 2016 5331 15.4 1.3 328 202 5.4 472 14.2 126.0
Cotesfield 2016 6547 17.1 1.4 327 201 5.5 474 16.4
Mead 2016 5233 15.9 1.6 329 203 5.5 473 16.5 119.0
Wymore 2016 4858 16.7 1.1 336 201 5.5 474 12.5 118.0
Mead 2017 Irrigated 5453 15.8** 1.4 340** 197** 5.6** 480** 13.0** 17.3** 47 136* 89**
Mead 2017 Rainfed 5492 15.4** 1.5 326** 200** 5.4** 469** 14.8** 20.8** 48 134* 86**
Lincoln 2017 Irrigated 5095** 16.0** 1.2** 353** 194** 5.7* 487* 14.7** 17.4** 39 121** 82**
Lincoln 2017 Rainfed 4858** 15.2** 1.2** 351** 195** 5.7* 485* 20.7** 27.1** 40 118** 78**
Mead 2018 Irrigated 4621** 15.1± 2.2 338 192 5.5 477 12.7** 14.5** 41 63 78 137** 96**
Mead 2018 Rainfed 4313** 14.9± 2.0 333 196 5.5 475 13.3** 15.4** 41 63 78 135** 94**
Lincoln 2018 Irrigated 4229 15.1 2.5** 352** 188 5.6** 483** 14.7** 19.8** 38 61 71 125.0 87±
Lincoln 2018 Rainfed 4231 15.2 2.3** 347** 190 5.6** 481** 19.0** 28.2** 39 61 70 125.0 86±
†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group end
montly average mean over the October 2013 – October 2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodity=soybean
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calculat
water during reproductive (R1-R8) period
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reached ma
(Maturity), and the interval between R1 and Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at maturity according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
φSubset count
± indicates treatment significance at α = 0.10
* indicates treatment significance at α = 0.05
** indicates treatment significance at α = 0.01

Environment Seed Characteristics Water Response Reproductive Period Attributes



 

Table 8. Environmental agronomic means for the UX3036 population for environments used in the study in
preliminary evaluation and 2017-2018 water response experiment environments 

 

Location Year Treatment Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1§ R3§ R5§ Maturity§ R1-R8§

kg ha-1 g/100 1-5 scale g kg-1 g kg-1 $ kg-1 g kg-1 kg ha-1 mm-1 kg ha-1 mm-1 days days days days days

Clay Center 2016 5159 15.4 1.3 328 202 5.4 472 14.2 126
Cotesfield 2016 6173 17.1 1.4 327 201 5.5 474 15.5
Mead 2016 4787 15.9 1.6 329 203 5.5 473 16.5 119
Wymore 2016 4643 16.7 1.1 336 201 5.5 474 12.5 118
Mead 2017 Irrigated 5125 16.4** 1.4 338** 194** 5.5** 478** 12.3** 16.1** 47 135* 88**
Mead 2017 Rainfed 5080 15.8** 1.2 323** 200** 5.3** 464** 13.7** 19.0** 47 133* 86**
Lincoln 2017 Irrigated 4981** 16.1** 1.2** 348** 193** 5.6* 483* 14.4** 16.7** 37 120** 83**
Lincoln 2017 Rainfed 4776** 15.7** 1.2** 347** 193** 5.6* 483* 20.4** 25.5** 38 118** 80**
Mead 2018 Irrigated 4432** 15.3 2.2 336 188 5.4 473 12.1** 13.4** 40 63 77 137** 97**
Mead 2018 Rainfed 4236** 15.4 2.1 331 193 5.4 470 13.1** 14.7** 40 63 77 135** 95**
Lincoln 2018 Irrigated 4084 15.3 2.5** 352** 185 5.6** 482** 14.6** 19.2** 37 61 70 127 88±
Lincoln 2018 Rainfed 4053 15.4 2.3** 346** 187 5.5** 480** 18.2** 26.1** 37 61 70 126 87±
†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group end 
montly average mean over the October 2013 – October 2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodity=soybean-m
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calculate
water during reproductive (R1-R8) period
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reached matu
(Maturity), and the interval between R1 and Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at maturity according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
φSubset count
± indicates treatment significance at α = 0.10
* indicates treatment significance at α = 0.05
** indicates treatment significance at α = 0.01

Environment Seed Characteristics Water Response Reproductive Period Attributes
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Table 9. Agronomic means by environment, treatment, and maturity grouping 
across populations for 2017-2018 water response experiment environments 

 
 
 
 

 

Location Year Treatment MG Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1§ R3§ R5§ Maturity§ R1-R8§ Height Lodging ‡ nφ

kg ha-1 g/100 1-5 scale g kg-1 g kg-1 $ kg-1 g kg-1 kg ha-1 mm-1 kg ha-1 mm-1 days days days days days cm 1-5 scale

Mead 2017 Irrigated 2.0 5476* 16.3** 1.1** 331** 201 5.5** 475** 11.3** 13.4** 44.6** 130.1 85.5 94.6** 1.1 120
Mead 2017 Rainfed 2.0 5314* 16.0** 1.3** 325** 201 5.4** 468** 14.2** 18.3** 45.3** 130.2 84.9 89.5** 1.1 120
Mead 2017 Irrigated 2.5 5505** 16.3** 1.2 338** 197** 5.6** 478** 13.5** 17.4** 46.1* 134.4** 88.3** 101.2** 1.2** 349
Mead 2017 Rainfed 2.5 5313** 15.5** 1.3 319** 203** 5.3** 461** 14.2** 18.8** 46.3* 131.9** 85.6** 93.5** 1.0** 346
Mead 2017 Irrigated 3.0 5143** 15.9** 1.6** 342** 194** 5.6** 480** 12.5** 17.1** 48.2 137.2** 89.0** 110.1** 1.7** 414
Mead 2017 Rainfed 3.0 5311** 15.5** 1.4** 328** 198** 5.4** 470** 14.2** 20.1** 48.3 135.8** 87.5** 105.6** 1.3** 414
Mead 2017 Irrigated 3.5 4874* 16.3± 1.5 341** 195* 5.6** 480** 12.2** 16.3** 47.5** 137.2± 89.7** 110.4 1.8** 54
Mead 2017 Rainfed 3.5 5196* 15.9± 1.4 329** 198* 5.4** 471** 15.9** 29.3** 48.7** 136.3± 87.6** 108.1 1.2** 54
Mead 2018 Irrigated 2.0 4887 15.8* 2.0 335** 194** 5.5** 476** 13.9** 15.1** 38.9 60.8 75.8 130.7** 91.9** 98.2** 1.6* 82
Mead 2018 Rainfed 2.0 4772 15.5* 2.0 325** 201** 5.4** 468** 15.6** 17.3** 38.8 61.7 75.5 128.4** 89.6** 102.5** 1.8* 82
Mead 2018 Irrigated 2.5 4728** 14.7** 2.1** 336** 192** 5.5** 475** 13.4** 14.6** 39.3 61.7 77.0 133.6** 94.3** 108.3 2.7** 242
Mead 2018 Rainfed 2.5 4556** 15.1** 2.0** 331** 195** 5.4** 472** 14.1** 15.7** 39.3 61.6 77.0 131.9** 92.6** 108.9 2.3** 242
Mead 2018 Irrigated 3.0 4468** 15.4** 2.3** 336 189** 5.4** 474** 11.6** 13.0** 40.8** 63.9** 77.5** 137.7** 97.0** 119.8** 2.8** 378
Mead 2018 Rainfed 3.0 4010** 15.2** 2.1** 335 193** 5.5** 475** 12.4** 14.1** 40.3** 63.1** 77.3** 136.5** 96.1** 115.0** 2.3** 378
Mead 2018 Irrigated 3.5 4311 15.2 2.1** 340** 189** 5.5** 477** 12.3** 14.6** 42.4 63.7 78.4 141.1** 98.7** 121.0 2.2 234
Mead 2018 Rainfed 3.5 4261 15.1 2.1** 330** 195** 5.4** 471** 12.7** 15.3** 42.4 64.0 78.1 138.7** 96.3** 121.7 2.3 234
Lincoln 2017 Irrigated 2.0 5099 15.2 1.5** 347** 194* 5.6* 482* 17.0** 20.2** 36.8 114.4** 77.5** 104.4 2.1* 120
Lincoln 2017 Rainfed 2.0 5118 15.3 1.1** 344** 196* 5.6* 481* 22.0** 27.6** 37.0 113.2** 76.2** 104.1 1.9* 120
Lincoln 2017 Irrigated 2.5 4950 15.6* 1.1** 344** 196** 5.6** 481** 14.8** 17.3** 37.7 118.5** 80.8** 106.6** 2.2* 349
Lincoln 2017 Rainfed 2.5 4951 15.8* 1.3** 350** 193** 5.6** 484** 21.0** 26.4** 37.9 116.8** 78.9** 112.7** 2.1* 346
Lincoln 2017 Irrigated 3.0 5102** 16.6** 1.2 356** 192** 5.7** 489** 13.9** 16.0** 38.7** 123.5** 84.8** 119.4** 2.7** 412
Lincoln 2017 Rainfed 3.0 4670** 15.3** 1.2 350** 194** 5.7** 485** 19.9** 26.0** 39.6** 119.3** 79.7** 114.2** 1.8** 408
Lincoln 2017 Irrigated 3.5 4883* 16.1** 1.1 350** 192* 5.6** 483* 13.4** 15.6** 39.5* 123.6** 84.1** 116.5 2.1 52
Lincoln 2017 Rainfed 3.5 4547* 14.7** 1.2 345** 194* 5.6** 481* 19.6** 25.8** 40.4* 118.3** 77.9** 115.9 1.9 54
Lincoln 2018 Irrigated 2.0 4411 15.5 2.4* 348** 187** 5.6** 480** 13.1** 17.1** 36.6± 49.4± 69.2± 119.4** 82.8** 99.9** 2.1** 82
Lincoln 2018 Rainfed 2.0 4342 15.6 2.2* 336** 194** 5.5** 476** 18.8** 27.0** 36.2± 48.7± 68.6± 116.9** 80.7** 94.2** 1.4** 82
Lincoln 2018 Irrigated 2.5 4241 14.4** 2.8** 349** 190** 5.6** 482** 16.6** 22.1** 36.5 50.2 69.5 121.5** 85.1** 104.8** 2.4** 242
Lincoln 2018 Rainfed 2.5 4302 15.1** 2.5** 341** 192** 5.5** 478** 19.4** 27.2** 36.5 50.4 69.3 120.7** 84.2** 101.1** 1.8** 242
Lincoln 2018 Irrigated 3.0 4176** 15.6** 2.3 353** 186 5.6** 483** 15.5** 21.0** 37.8± 51.5± 70.8* 128.0* 90.2** 111.3± 1.9** 380
Lincoln 2018 Rainfed 3.0 4097** 15.3** 2.3 351** 186 5.6** 482** 18.4** 27.4** 38.0± 51.7± 70.3* 127.8* 89.7** 110.2± 1.6** 380
Lincoln 2018 Irrigated 3.5 3987 15.4 2.6** 354** 186 5.6** 484** 12.0** 15.4** 39.3± 50.5± 71.9 130.3 91.0* 115.1 2.4** 233
Lincoln 2018 Rainfed 3.5 3985 15.5 2.2** 351** 187 5.6** 482** 17.9** 26.7** 39.6± 50.3± 71.9 130.1 90.5* 114.2 1.6** 234
Overall Irrigated 2.0 4968± 15.7 1.8* 340** 194** 5.5** 478** 13.8** 16.4** 39.2 55.1 72.5± 123.7* 84.4** 99.3* 1.7** 404
Overall Rainfed 2.0 4887± 15.6 1.6* 332** 198** 5.5** 473** 17.6** 22.5** 39.3 55.2 72.1± 122.2* 82.9** 97.6* 1.5** 404
Overall Irrigated 2.5 4856** 15.3 1.8 342** 194** 5.6** 479** 14.6** 17.8** 39.9 56.0 73.2 127.0** 87.1** 105.2* 2.1** 1182
Overall Rainfed 2.5 4780** 15.4 1.8 335** 196** 5.5** 474** 17.2** 22.0** 40.0 56.0 73.2 125.3** 85.3** 104.1* 1.8** 1176
Overall Irrigated 3.0 4722** 15.9** 1.8** 347** 190** 5.6** 481** 13.4** 16.8** 41.4 57.7± 74.2* 131.6** 90.2** 115.2** 2.3** 1584
Overall Rainfed 3.0 4522** 15.3** 1.7** 341** 193** 5.5** 478** 16.2** 21.9** 41.6 57.4± 73.8* 129.8** 88.3** 111.3** 1.7** 1580
Overall Irrigated 3.5 4514.0 15.7± 1.8** 346** 191** 5.6** 481** 12.5** 15.5** 42.2± 57.1 75.2± 133.0** 90.9** 115.7 2.1** 573
Overall Rainfed 3.5 4497.0 15.3± 1.7** 339** 193** 5.5** 476** 16.5** 24.3** 42.8± 57.1 75.0± 130.8** 88.1** 115.0 1.8** 576
†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group end of day settlement price montly 
average mean over the October 2013 – October 2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodity=soybean-meal&months=60, 11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calculated as yield per unit effective water 
during reproductive (R1-R8) period
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reached maturity on the main stem (Maturity), and 
the interval between R1 and Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at matury according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
φSubset count
± indicates treatment significance at α = 0.10
* indicates treatment significance at α = 0.05
** indicates treatment significance at α = 0.01
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Table 10. Agronomic means by environment, treatment, and maturity grouping 
within the UX3000 population for 2017-2018 water response experiment 
environments 

 
 
 
 
 

Location Year Treatment MG Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1§ R3§ R5§ Maturity§ R1-R8§ Height Lodging ‡ nφ

kg ha-1 g/100 1-5 scale g kg-1 g kg-1 $ kg-1 g kg-1 kg ha-1 mm-1 kg ha-1 mm-1 days days days days days cm 1-5 scale

Mead 2017 Irrigated 2.0 5655** 16.3** 1.1** 332** 203 5.5** 477** 11.7** 13.8** 44.5** 130.8 86.3** 91.8** 1.0 72
Mead 2017 Rainfed 2.0 5484** 15.9** 1.3** 327** 202 5.4** 471** 14.6** 18.9** 45.5** 130.5 85.0** 86.8** 1.0 72
Mead 2017 Irrigated 2.5 5722** 15.8** 1.3 338** 198** 5.6** 479** 14.0** 18.2** 46.2* 134.8** 88.6** 99.3** 1.0* 168
Mead 2017 Rainfed 2.5 5446** 15.0** 1.3 318** 204** 5.2** 458** 14.5** 19.4** 46.5* 132.0** 85.5** 90.8** 1.0* 166
Mead 2017 Irrigated 3.0 5237** 15.5± 1.7 343** 194** 5.6** 480** 12.7** 17.7** 48.8 137.3 88.4 109.8** 1.4** 238
Mead 2017 Rainfed 3.0 5524** 15.4± 1.6 332** 198** 5.5** 474** 14.7** 21.2** 48.8 136.9 88.1 106.5** 1.1** 238
Mead 2017 Irrigated 3.5 5154* 16.1 1.4 342** 196 5.6** 481** 12.9** 17.4** 47.8** 137.8 90.0 111.2 1.5** 24
Mead 2017 Rainfed 3.5 5522* 15.9 1.7 332** 197 5.5** 475** 16.9** 31.7** 49.1** 138.0 88.9 110.1 1.0** 24
Mead 2018 Irrigated 2.0 5189** 15.7 2.0 334** 196** 5.5** 477** 14.7** 16.1** 39.0 60.7 76.0 130.6** 91.6** 97.9** 1.3* 48
Mead 2018 Rainfed 2.0 4934** 15.5 2.0 326** 202** 5.4** 471** 16.1** 17.9** 39.0 61.5 75.8 127.5** 88.5** 102.4** 1.6* 48
Mead 2018 Irrigated 2.5 4956** 14.8± 2.0 339** 194** 5.5** 478** 14.0** 15.3** 39.5± 61.8 77.0 133.3** 93.8** 105.0 2.3** 112
Mead 2018 Rainfed 2.5 4712** 15.1± 2.0 333** 197** 5.5** 475** 14.6** 16.3** 39.8± 61.7 77.3 131.3** 91.5** 105.5 1.9** 112
Mead 2018 Irrigated 3.0 4555** 15.2** 2.3 337 191** 5.5** 476* 11.9** 13.5** 41.3** 64.2* 77.9 137.6** 96.3± 119.4** 2.7** 192
Mead 2018 Rainfed 3.0 4036** 14.7** 2.0 337 194** 5.5** 477* 12.4** 14.4** 40.8** 62.8* 77.7 136.6** 95.9± 111.0** 1.8** 190
Mead 2018 Irrigated 3.5 4273 14.9 2.2 340** 190** 5.5** 478** 12.2 14.7* 42.8 63.8 78.5 140.8** 98.0** 118.8 2.0 150
Mead 2018 Rainfed 3.5 4170 14.8 2.1 332** 196** 5.4** 474** 12.4 15.3* 42.9 64.0 78.2 138.2** 95.2** 119.2 2.1 150
Lincoln 2017 Irrigated 2.0 5226 15.2 1.4 349** 195** 5.7** 483** 17.4** 20.7** 38.1 114.0** 75.9* 102.7 1.8* 72
Lincoln 2017 Rainfed 2.0 5176 15.1 1.0 344** 197** 5.6** 481** 22.2** 28.0** 37.8 112.7** 74.9* 100.5 1.5* 72
Lincoln 2017 Irrigated 2.5 5013 15.5 1.1 346** 196** 5.6** 483** 14.9** 17.7** 38.7 118.5** 79.8** 104.7** 2.0** 168
Lincoln 2017 Rainfed 2.5 5035 15.5 1.2 352** 194** 5.7** 486** 21.3** 27.1** 38.9 116.6** 77.7** 110.1** 1.7** 168
Lincoln 2017 Irrigated 3.0 5129** 16.5** 1.2 359** 192** 5.7** 492** 13.9** 16.2** 39.7** 124.4** 84.7** 118.0** 2.6** 237
Lincoln 2017 Rainfed 3.0 4665** 15.1** 1.1 352** 194** 5.7** 486** 19.9** 26.9** 40.6** 119.7** 79.1** 111.7** 1.6** 235
Lincoln 2017 Irrigated 3.5 4936 15.6** 1.0 350 193* 5.6 484.0 13.5** 16.1** 40.8 123.5** 82.7** 114.4 2.0 23
Lincoln 2017 Rainfed 3.5 4558 14.5** 1.3 348 195* 5.6 483.0 19.6** 26.4** 41.2 117.5** 76.3** 114.6 2.0 24
Lincoln 2018 Irrigated 2.0 4604± 15.0 2.4 346** 189** 5.6** 481** 13.7** 17.9** 36.9 49.2 69.2 118.5** 81.6** 98.0** 1.8** 48
Lincoln 2018 Rainfed 2.0 4470± 15.4 2.1 336** 196** 5.5** 477** 19.4** 28.2** 36.7 48.6 68.5 116.0** 79.3** 91.9** 1.2** 48
Lincoln 2018 Irrigated 2.5 4324± 14.3** 2.9 349** 193 5.6** 483** 16.9** 22.8** 36.8 50.0 69.4 119.7 82.9 98.8** 1.8** 112
Lincoln 2018 Rainfed 2.5 4452± 15.2** 2.5 342** 193 5.6** 479** 20.0** 28.7** 37.0 50.4 69.2 119.8 82.8 95.3** 1.4** 112
Lincoln 2018 Irrigated 3.0 4244± 15.3* 2.3 352** 187 5.6** 482* 15.7** 21.7** 38.6 52.0 71.0 127.2* 88.7** 108.1 1.4** 192
Lincoln 2018 Rainfed 3.0 4168± 15.1* 2.3 350** 187 5.6** 481* 18.8** 28.4** 38.7 51.9 70.4 126.9* 88.2** 107.6 1.2** 192
Lincoln 2018 Irrigated 3.5 4019 15.1 2.5 355** 187 5.6** 484** 12.1** 15.6** 39.8 50.6 71.9 129.9 90.1± 113.2* 2.1** 149
Lincoln 2018 Rainfed 3.5 4069 15.2 2.2 351** 188 5.6** 482** 18.3** 27.4** 40.0 50.4 71.8 129.7 89.7± 111.3* 1.3** 150
Overall Irrigated 2.0 5223** 15.2 1.6* 341** 196** 5.6** 480** 14.4** 17.2** 40.0 55.0 72.6 123.2* 83.3** 97.5** 1.5* 240
Overall Rainfed 2.0 5079** 15.1 1.5* 334** 199** 5.5** 476** 18.2** 23.3** 40.1 55.1 72.1 121.7* 81.5** 95.0** 1.3* 240
Overall Irrigated 2.5 5076* 14.8 1.7 343** 196** 5.6** 481** 14.9** 18.4** 40.7 55.9 73.2 126.6** 85.9** 102.0* 1.7** 560
Overall Rainfed 2.5 4976* 14.8 1.6 336** 197** 5.5** 474** 17.7** 23.0** 41.0 56.0 73.2 124.8** 83.8** 100.5* 1.5** 558
Overall Irrigated 3.0 4833** 15.2** 1.8** 348** 191** 5.6** 483** 13.5** 17.2** 42.3 58.1± 74.5 131.5** 89.2** 113.9** 2.0** 859
Overall Rainfed 3.0 4653** 14.7** 1.7** 342** 194** 5.6** 480** 16.6** 22.9** 42.5 57.3± 74.0 129.9** 87.4** 109.2** 1.4** 855
Overall Irrigated 3.5 4269.0 14.2 2.2** 347** 189** 5.6** 481** 12.3** 15.4** 41.7 57.2 75.2 134.8** 93.0** 115.6 2.0** 346
Overall Rainfed 3.5 4246.0 14.2 2.0** 341** 192** 5.5** 478** 15.8** 22.4** 42.0 57.2 75.0 133.1** 91.1** 114.8 1.7** 348
†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group end of day settlement price montly 
average mean over the October 2013 – October 2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodity=soybean-meal&months=60, 11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calculated as yield per unit effective water 
during reproductive (R1-R8) period
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reached maturity on the main stem (Maturity), 
and the interval between R1 and Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at matury according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
φSubset count
± indicates treatment significance at α = 0.10
* indicates treatment significance at α = 0.05
** indicates treatment significance at α = 0.01
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Table 11. Agronomic means by environment, treatment, and maturity grouping 
within the UX3036 population for 2017-2018 water response experiment 
environments 

 

 
 

 

 

Location Year Treatment MG Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1§ R3§ R5§ Maturity§ R1-R8§ Height Lodging ‡ nφ

kg ha-1 g/100 1-5 scale g kg-1 g kg-1 $ kg-1 g kg-1 kg ha-1 mm-1 kg ha-1 mm-1 days days days days days cm 1-5 scale

Mead 2017 Irrigated 2.0 5208 16.3 1.1* 329** 199* 5.4** 472** 10.7** 12.8** 44.8 129.1 84.3 98.7* 1.3± 48
Mead 2017 Rainfed 2.0 5060 16.1 1.3* 322** 201* 5.3** 463** 13.5** 17.3** 45.0 129.8 84.8 93.5* 1.1± 48
Mead 2017 Irrigated 2.5 5306* 16.5** 1.2 337** 196** 5.5** 478** 13.0** 16.8** 46.1 134.3** 88.1** 103.8** 1.3** 181
Mead 2017 Rainfed 2.5 5168* 15.9** 1.2 320** 202** 5.3** 462** 13.8** 18.3** 46.3 132.1** 85.8** 96.5** 1.1** 180
Mead 2017 Irrigated 3.0 5005 16.3** 1.5** 341** 192** 5.5** 479** 12.2** 16.4** 47.7± 137.4** 89.7** 111.0** 2.1** 176
Mead 2017 Rainfed 3.0 5016 15.6** 1.2** 326** 198** 5.3** 467** 13.4** 18.9** 48.0± 134.8** 86.8** 106.2** 1.5** 176
Mead 2017 Irrigated 3.5 4649 16.4± 1.6** 341** 195* 5.6** 479** 11.6** 15.4** 47.2** 136.7** 89.5** 109.7 2.1** 30
Mead 2017 Rainfed 3.5 4935 15.9± 1.1** 327** 198* 5.4** 468** 15.1** 27.5** 48.4** 134.9** 86.5** 106.6 1.4** 30
Mead 2018 Irrigated 2.0 4460 13.9 2.0 336** 190** 5.4** 474** 12.6** 13.8** 38.7 61.0** 75.6** 130.9* 92.2± 98.7 1.9 34
Mead 2018 Rainfed 2.0 4543 13.6 2.0 323** 198** 5.3** 463** 14.9** 16.5** 38.4 62.0** 75.2** 129.5* 91.1± 102.7 2.2 34
Mead 2018 Irrigated 2.5 4508 12.6** 2.1** 335** 190** 5.4* 473** 12.7** 13.9** 39.2 61.7** 76.8** 133.9** 94.8** 111.8 3.1** 130
Mead 2018 Rainfed 2.5 4470 13.2** 2.0** 331** 193** 5.4* 471** 13.9** 15.4** 39.0 61.6** 76.7** 132.4** 93.4** 111.2 2.6** 130
Mead 2018 Irrigated 3.0 4398** 13.5 2.3** 335 188** 5.4** 472* 11.5** 12.6** 40.3** 63.5** 77.0** 137.9** 97.6** 119.4 2.9 186
Mead 2018 Rainfed 3.0 3935** 13.5 2.1** 335 192** 5.4** 474* 12.1** 13.6** 39.9** 63.2** 77.0** 136.1** 96.2** 118.8 2.7 188
Mead 2018 Irrigated 3.5 4379 13.7 2.1 339** 187** 5.4** 475** 12.5** 14.3** 41.6 63.5** 78.2** 141.5** 99.8** 124.8 2.4 84
Mead 2018 Rainfed 3.5 4424 13.5 2.1 328** 193** 5.3** 466** 13.2** 15.4** 41.6 64.0** 78.0** 139.8** 98.1** 126.0 2.7 84
Lincoln 2017 Irrigated 2.0 4910 15.2 1.5** 343 194 5.6 481.0 16.3** 19.4** 34.9* 114.9 80.0** 106.8 2.5 48
Lincoln 2017 Rainfed 2.0 5031 15.5 1.1** 343 193 5.6 481.0 21.6** 27.1** 35.8* 114.0 78.3** 109.5 2.4 48
Lincoln 2017 Irrigated 2.5 4895 15.6** 1.1** 342** 195** 5.6** 480** 14.6** 16.9** 36.9± 118.6** 81.7** 109.2** 2.5 181
Lincoln 2017 Rainfed 2.5 4893 16.1** 1.3** 349** 192** 5.6** 484** 20.7** 25.8** 37.3± 117.4** 80.0** 116.2** 2.5 178
Lincoln 2017 Irrigated 3.0 5105** 16.8** 1.2 354** 190** 5.7** 487** 13.9** 15.8** 37.6** 123.3** 85.7** 123.3** 2.9** 175
Lincoln 2017 Rainfed 3.0 4627** 15.3** 1.2 347** 193** 5.6** 482** 19.8** 24.7** 38.5** 119.0** 80.5** 117.3** 2.0** 173
Lincoln 2017 Irrigated 3.5 4841 16.4** 1.1 350** 191 5.6** 483* 13.3** 15.2** 38.5* 123.7** 85.2** 118.2 2.2 29
Lincoln 2017 Rainfed 3.5 4539 15.0** 1.1 342** 194 5.6** 480* 19.5** 25.4** 39.8* 118.9** 79.1** 116.9 1.9 30
Lincoln 2018 Irrigated 2.0 4139 15.7 2.5 349** 184** 5.6** 480** 12.3** 15.8** 36.2 49.6** 69.1** 120.7** 84.5* 102.6* 2.5** 34
Lincoln 2018 Rainfed 2.0 4162 15.7 2.4 336** 191** 5.4** 474** 18.1** 25.2** 35.5 48.9** 68.7** 118.1** 82.6* 97.4* 1.6** 34
Lincoln 2018 Irrigated 2.5 4125 14.4** 2.6 349** 187** 5.6** 481** 16.2** 21.2** 36.2 50.4** 69.5** 122.9** 86.8** 109.7** 2.9** 130
Lincoln 2018 Rainfed 2.5 4196 15.0** 2.4 340** 191** 5.5** 477** 18.9** 26.1** 36.1 50.4** 69.5** 121.5** 85.3** 106.2** 2.2** 130
Lincoln 2018 Irrigated 3.0 4114± 15.7 2.3 353* 185 5.6 482* 15.2** 20.3** 37.1** 51.1** 70.7** 128.7 91.6** 113.8* 2.3** 188
Lincoln 2018 Rainfed 3.0 4033± 15.5 2.2 351* 185 5.6 481* 18.1** 26.4** 37.4** 51.4** 70.2** 128.4 91.0** 111.9* 2.0** 188
Lincoln 2018 Irrigated 3.5 3932 15.6 2.7** 353 185 5.6 483.0 11.9** 15.2** 38.5 50.3** 72.0** 131.0 92.5* 118.4 2.8** 84
Lincoln 2018 Rainfed 3.5 3835 15.8 2.3** 352 185 5.6 482.0 17.3** 25.6** 38.8 50.1** 71.9** 130.7 91.9* 119.5 2.1** 84
Overall Irrigated 2.0 4744.0 15.4 1.7 339** 193** 5.5** 477** 13.1** 15.6** 38.9 55.3 72.4 123.6 84.7± 101.9 2.0* 164
Overall Rainfed 2.0 4758.0 15.3 1.6 331** 196** 5.4** 471** 17.1** 21.6** 38.9 55.4 72.0 122.7 83.8± 100.9 1.8* 164
Overall Irrigated 2.5 4773.0 15.0* 1.7 341** 192** 5.5** 478** 14.1** 17.1** 39.9 56.1 73.2 127.3** 87.4** 108.3 2.4** 622
Overall Rainfed 2.5 4738.0 15.2* 1.7 335** 195** 5.5** 473** 16.9** 21.5** 40.0 56.0 73.1 125.7** 85.6** 107.3 2.0** 618
Overall Irrigated 3.0 4642** 15.5** 1.8** 346** 188** 5.5** 480** 13.2** 16.3** 40.6 57.3 73.8 131.8** 91.2** 116.9** 2.5** 725
Overall Rainfed 3.0 4388** 15.0** 1.7** 340** 192** 5.5** 476** 15.8** 20.9** 40.9 57.3 73.6 129.7** 88.8** 113.6** 2.1** 725
Overall Irrigated 3.5 4308.0 15.1± 2.1** 346** 188** 5.5** 480** 12.2** 14.9** 40.8 56.9 75.1 134.7* 93.9** 119.6 2.5 227
Overall Rainfed 3.5 4290.0 14.9± 1.9** 338** 191** 5.5** 474** 15.8** 22.0** 41.2 57.0 74.9 133.0* 91.8** 119.9 2.2 228
†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group end of day settlement price montly average 
mean over the October 2013 – October 2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodity=soybean-meal&months=60, 11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calculated as yield per unit effective water during 
reproductive (R1-R8) period
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reached maturity on the main stem (Maturity), and 
the interval between R1 and Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at matury according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
φSubset count
± indicates treatment significance at α = 0.10
* indicates treatment significance at α = 0.05
** indicates treatment significance at α = 0.01
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Table 12. Ranges of reproductive period attributes by environment, population, and 
maturity grouping for 2017-2018 water response experiment environments; ranges of 
overall location represent the mean of four environments 

 

Location Year Population MG R1§ R3§ R5§ Maturity§ R1-R8§ nφ

days days days days days

Mead 2017 UX3000 2.0 5 11 12 48
Mead 2017 UX3036 2.0 6 12 14 48
Mead 2017 UX3000 2.5 9 17 18 181
Mead 2017 UX3036 2.5 9 17 18 180
Mead 2017 UX3000 3.0 7 14 15 176
Mead 2017 UX3036 3.0 8 20 18 176
Mead 2017 UX3000 3.5 6 8 10 30
Mead 2017 UX3036 3.5 7 12 16 30
Mead 2018 UX3000 2.0 5 4 5 10 11 34
Mead 2018 UX3036 2.0 5 7 7 14 12 34
Mead 2018 UX3000 2.5 5 7 6 10 11 130
Mead 2018 UX3036 2.5 7 6 7 10 10 130
Mead 2018 UX3000 3.0 9 7 6 15 16 186
Mead 2018 UX3036 3.0 9 6 6 12 16 188
Mead 2018 UX3000 3.5 7 5 5 14 14 84
Mead 2018 UX3036 3.5 7 6 8 18 18 84
Lincoln 2017 UX3000 2.0 8 12 13 48
Lincoln 2017 UX3036 2.0 9 13 14 48
Lincoln 2017 UX3000 2.5 10 15 17 181
Lincoln 2017 UX3036 2.5 12 15 18 178
Lincoln 2017 UX3000 3.0 9 14 19 175
Lincoln 2017 UX3036 3.0 11 13 22 173
Lincoln 2017 UX3000 3.5 9 10 15 29
Lincoln 2017 UX3036 3.5 9 14 16 30
Lincoln 2018 UX3000 2.0 6 4 4 10 11 34
Lincoln 2018 UX3036 2.0 8 5 4 18 15 34
Lincoln 2018 UX3000 2.5 6 5 4 13 12 130
Lincoln 2018 UX3036 2.5 6 5 4 17 14 130
Lincoln 2018 UX3000 3.0 6 5 6 10 10 188
Lincoln 2018 UX3036 3.0 6 4 5 9 10 188
Lincoln 2018 UX3000 3.5 6 5 4 11 12 84
Lincoln 2018 UX3036 3.5 5 5 8 15 13 84
Overall UX3000 2.0 6.0 4.0 4.5 10.8 11.8 164
Overall UX3036 2.0 7.0 6.0 5.5 14.3 13.8 164
Overall UX3000 2.5 7.5 6.0 5.0 13.8 14.5 622
Overall UX3036 2.5 8.5 5.5 5.5 14.8 15.0 618
Overall UX3000 3.0 7.8 6.0 6.0 13.3 15.0 725
Overall UX3036 3.0 8.5 5.0 5.5 13.5 16.5 725
Overall UX3000 3.5 7.0 5.0 4.5 10.8 12.8 227
Overall UX3036 3.5 7.0 5.5 8.0 14.8 15.8 228

Environment Reproductive Period Attributes

§Date at which 50% of plot reach R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater 
than 95% of pods have reached maturity on the main stem (Maturity), and the interval between R1 and Maturity (R1-
R8) expressed as days after planting
φSubset count

 



 

Table 13. Agronomic irrigation treatment effects by environment and population for 2017-2018 water resp
environments; values represent the response to irrigation 

 

Location Year Population Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1§ R3§ R5§ Maturity§ R1
kg ha-1 g/100 1-5 scale g kg-1 g kg-1 $ kg-1 g kg-1 kg ha-1 mm-1 kg ha-1 mm-1 days days days days d

Mead 2017 UX3000 -37.2 0.4** 0.0 13** (-3**) 0.2** 10** -1.7** -3.5** -0.3 0.0 0.0 1.1* 1.4
Mead 2017 UX3036 49.7 0.6** 0.1 15** (-6**) 0.2** 13** -1.4** -2.9** -0.3 0.0 0.0 2.0* 2.3
Lincoln 2017 UX3000 237** 0.7± 0.1** 2** (-1**) 0.0* 2* -6.0** -9.8** -0.5 0.0 0.0 3.3** 3.8
Lincoln 2017 UX3036 202** 0.5± 0.0** 1** 0** 0.0* 1* -5.9** -8.9** -0.8 0.0 0.0 2.7** 3.4
Mead 2018 UX3000 307** 0.2** 0.1 5 (-4) 0.0 2.0 -0.6** -1.0** 0.1 0.4 0.1 1.9** 1.8
Mead 2018 UX3036 196** -0.1** 0.1 5 (-4) 0.0 3.0 -0.9** -1.3** 0.2 0.0 0.1 1.6** 1.4
Lincoln 2018 UX3000 -1.1 -0.2 0.2 5 (-1) 0.0 2.0 -4.2** -8.4** -0.1 0.0 0.4 0.4 0.5
Lincoln 2018 UX3036 30.1 -0.1 0.1** 5** (-2) 0.0** 2** -3.6** -6.9** -0.1 0.0 0.3 0.8 0.9
Overall UX3000 126** 0.3** 0.1* 6** (-2**) 0.1** 4** -3.1** -5.7** -0.2 0.2** 0.3** 1.7** 1.9
Overall UX3036 119* 0.2** 0.1** 6** (-3**) 0.1** 5** -2.9** -5.0** -0.2 0.0 0.2** 1.8** 2.0
†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange grou
price montly average mean over the October 2013 – October 2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodity
meal&months=60, 11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) cal
effective water during reproductive (R1-R8) period
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reache
(Maturity), and the interval between R1 and Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at matury according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
φSubset count
± indicates treatment significance at α = 0.10
* indicates treatment significance at α = 0.05
** indicates treatment significance at α = 0.01

Environment Seed Characteristics Water Response Reproductive Period Attribute



 

Table 14. 2017 – 2018 water response experiment ANOVA mean squares across both UX3000 and UX3036
and parental lines and irrigation treatments 

 
 
 
 

Source of Variation df Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1 R3 R5 M

kg ha-1 g/100 1-5 scale g kg-1 g kg-1 $ kg-1 g kg-1 kg ha-1 

mm-1

kg ha-1 

mm-1
days days days

Environment (ENV) 3 110027*** 2891*** 614*** 16360*** 3280*** 85*** 6090*** 1450*** 4044*** 33891*** 138427*** 44587*** 11
Ea 12 91 8.90 0.70 209.0 70.0 0.90 93.0 2.30 5.60 68.80 98.70 116.50 13
Irrigation Treatment (IRR_TRT) 1 6281** 115.2*** 16.8* 7451*** 1339** 39.8*** 3497** 2465.4*** 7597.8*** 89.10 12.2** 44.4*** 54

ENV:IRR_TRT 3 1852* 59.3** 3.10 1449** 185* 15.7*** 1108** 371.2*** 973.7*** 50.50 11.1** 10.2** 46
Eb 12 375 5.70 1.90 158.0 44.0 1.40 138.0 0.80 0.20 158.60 1.20 1.40 63
STRAIN 440 477*** 13.2*** 0.5*** 66*** 29*** 0.4*** 30*** 3.5*** 5.4*** 39.9*** 7.9*** 9.6*** 23
ENV:STRAIN 1316 74*** 1.02*** 0.32*** 6.2*** 2.1*** 0.05*** 4.8*** 0.78*** 1.98*** 3.50*** 2.49*** 1.44*** 4.0
IRR_TRT:STRAIN 440 46*** 0.93*** 0.20 3.9*** 0.9*** 0.04*** 3.3*** 0.37*** 1.30*** 1.85*** 1.15*** 0.82*** 3.1
ENV:IRR_TRT:STRAIN 1316 49*** 0.71*** 0.21* 4.8*** 1.2*** 0.04*** 4.0*** 0.37*** 1.02*** 1.65*** 1.03*** 0.74*** 4.0
Ec 3929 37 0.51 0.19 1.5 0.4 0.01 1.1 0.25 0.58 0.89 0.60 0.36 2.1
†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group end of day settlement
the October 2013 – October 2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodity=soybean-meal&months=60, 11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calculated as yield per unit
reproductive (R1-R8) period
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reached maturity on the main 
between R1 and Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at matury according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
± indicates treatment significance at α = 0.10
* indicates treatment significance at α = 0.05
** indicates treatment significance at α = 0.01

Seed Characteristics Water ResponseExperimental Reproductive Period Attribute



 

Table 15. 2017–2018 water response experiment ANOVA mean squares for the UX3000 RIL population an
across irrigation treatments 

 
 
 
 

Source of Variation df Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1 R3 R5 M

kg ha-1 g/100 1-5 scale g kg-1 g kg-1 $ kg-1 g kg-1 kg ha-1 mm-1 kg ha-1 mm-1 days days days

Environment (ENV) 3 67824*** 1525*** 314** 8840*** 1520*** 39*** 2940*** 742*** 313*** 16300*** 74209*** 25093*** 6
Ea 12 72 7.50 0.60 104.00 41.0 0.40 52.0 2.70 0.10 57.20 72.50 71.80 1
Irrigation Treatment (IRR_TRT) 1 3530*** 86.1*** 10.2* 3793*** 581** 18.6** 1607** 1401.4*** 54854.6*** 43.20 30.7*** 32.9*** 2
ENV:IRR_TRT 3 1624** 37.3** 3.50 637* 72.0 7.2* 441.0 209.9*** 7259.8*** 17.30 14.9*** 2.8* 3
Eb 12 149 5.10 1.70 173.00 35.0 1.50 154.0 0.30 0.00 113.30 0.30 0.70 5
STRAIN 236 377*** 12.7*** 0.4*** 55*** 19*** 0.3*** 22*** 3.0*** 5.6*** 38.6*** 9.0*** 9.2*** 2
ENV:STRAIN 708 64*** 0.89*** 0.30*** 5.4*** 1.8*** 0.04*** 4.0*** 0.73*** 3.56*** 3.30*** 2.49*** 1.29*** 6
IRR_TRT:STRAIN 236 46** 0.77*** 0.21 2.9*** 0.7*** 0.02*** 2.4*** 0.36*** 2.23*** 1.90*** 1.28*** 0.89*** 2
ENV:IRR_TRT:STRAIN 708 49*** 0.70*** 0.20 4.6*** 1.1*** 0.03*** 4.0*** 0.37*** 1.78*** 1.71*** 1.14*** 0.76*** 4
Ec 2085 35 0.43 0.19 0.60 0.3 0.01 0.4 0.24 0.37 0.68 0.54 0.32 2
†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group end of day settlement
the October 2013 – October 2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodity=soybean-meal&months=60, 11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calculated as yield per uni
reproductive (R1-R8) period
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reached maturity on the main 
between R1 and Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at matury according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
± indicates treatment significance at α = 0.10
* indicates treatment significance at α = 0.05
** indicates treatment significance at α = 0.01

Experimental Seed Characteristics Water Response Reproductive Period Attribu



 

Table 16. 2017–2018 water response experiment ANOVA mean squares for the UX3036 RIL population an
across irrigation treatments 

 
 
 

Source of Variation df Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1 R3 R5 

kg ha-1 g/100 1-5 scale g kg-1 g kg-1 $ kg-1 g kg-1 kg ha-1 mm-1 kg ha-1 mm-1 days days days

Environment (ENV) 3 43692*** 1371*** 304*** 7630*** 1810*** 47*** 3230*** 711*** 1809*** 17744*** 64218*** 19527*** 5
Ea 12 60 8.40 0.60 137.0 33.0 0.7 6.0 0.90 1.80 26.30 31.10 49.20 5
Irrigation Treatment (IRR_TRT) 1 2758* 33.3*** 6.7*** 3652*** 778*** 21.2*** 1903*** 1066.4*** 3057.0*** 46.00 0.70 13.0*** 2
ENV:IRR_TRT 3 406 28.5*** 1.7* 831*** 141** 8.5*** 694*** 164.3*** 377.4*** 35.70 0.80 6.7***
Eb 12 313 1.10 0.30 29.0 16.0 0.1 13.0 1.70 0.30 36.90 0.60 0.30 8
STRAIN 204 523*** 12.9*** 0.6*** 74*** 35*** 0.4*** 33*** 3.6*** 5.8*** 26.9*** 6.5*** 9.2*** 2
ENV:STRAIN 608 79*** 1.16*** 0.32*** 6.6*** 2.1*** 0.06*** 5.3*** 0.81*** 1.72*** 2.99*** 2.49*** 1.47*** 0
IRR_TRT:STRAIN 204 47* 1.11*** 0.18 5.1*** 1.0*** 0.05*** 4.3*** 0.36*** 1.07*** 1.79*** 0.90** 0.72*** 3
ENV:IRR_TRT:STRAIN 608 49*** 0.69** 0.22* 5.0*** 1.1*** 0.04*** 3.8*** 0.35*** 0.90*** 1.58*** 0.89** 0.73*** 3
Ec 1821 38 0.56 0.19 1.9 0.5 0.0 1.7 0.26 0.53 1.10 0.65 0.38
†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group end of day settlement p
the October 2013 – October 2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodity=soybean-meal&months=60, 11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calculated as yield per unit 
reproductive (R1-R8) period
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reached maturity on the main s
between R1 and Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at matury according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
± indicates treatment significance at α = 0.10
* indicates treatment significance at α = 0.05
** indicates treatment significance at α = 0.01

Experimental Seed Characteristics Water Response Reproductive Period Attribu



 

Table 17. Overall Pearson correlations coefficients of agronomic means across populations and environmen
2018 water response experiment; correlation coefficients representative of the irrigated treatment above th
correlation coefficients of rainfed treatment listed below the diagonal 

Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1§ R3§ R5§ Maturity§ R1-R8§ Height Lodgin
Yield 0.36** -0.44** -0.17** 0.43** 0.07** 0.01 0.50** 0.37** 0.31** 0.26** 0.23** -0.01 -0.23** -0.16** -0.38*

Weight 0.34** -0.37** 0.36** 0.13** 0.48** 0.42** 0.20** 0.28** 0.14** -0.62** -0.60** -0.23** -0.40** -0.11** -0.20*
Quality -0.40** -0.27** 0.08** -0.36** -0.12** -0.09** 0.00 0.08** -0.23** -0.25** -0.25** 0.14** 0.35** 0.10** 0.17**
Protein -0.27** 0.24** 0.09** -0.51** 0.82** 0.86** 0.22** 0.28** -0.28** -0.65** -0.60** -0.32** -0.22** 0.19** 0.15**

Oil 0.40** -0.02 -0.31** -0.72** 0.00 -0.17** 0.01 -0.05** 0.28** 0.25** 0.22** -0.10** -0.32** -0.33** -0.27*
EPV -0.18** 0.23** 0.01 0.91** -0.43** 0.92** 0.26** 0.31** -0.13** -0.58** -0.54** -0.40** -0.43** 0.00 -0.01
MPP -0.21** 0.20** 0.06** 0.92** -0.52** 0.97** 0.21** 0.24** -0.16** -0.52** -0.47** -0.34** -0.33** 0.09** 0.06**
WP 0.34** 0.42** -0.11** 0.55** -0.25** 0.54** 0.50** 0.89** -0.38** -0.49** -0.53** -0.49** -0.37** -0.14** -0.21*

RWP 0.26** 0.48** -0.04* 0.53** -0.30** 0.49** 0.46** 0.90** -0.14** -0.67** -0.70** -0.37** -0.38** -0.18** -0.30*
R1 0.41** 0.07** -0.29** -0.50** 0.44** -0.44** -0.44** -0.50** -0.29** 0.68** 0.73** 0.65** 0.14** -0.06** -0.31*
R3 0.07** -0.69** -0.28** -0.60** 0.42** -0.50** -0.48** -0.80** -0.89** 0.63** 0.94** 0.83** 0.78** 0.33** 0.19**
R5 0.04± -0.67** -0.29** -0.52** 0.37** -0.44** -0.42** -0.79** -0.86** 0.69** 0.94** 0.87** 0.81** 0.36** 0.16**

Maturity -0.03* -0.29** 0.20** -0.43** 0.09** -0.46** -0.41** -0.76** -0.61** 0.59** 0.78** 0.83** 0.85** 0.24** -0.04*
R1-R8 -0.30** -0.40** 0.44** -0.21** -0.17** -0.29** -0.22** -0.62** -0.57** 0.09** 0.73** 0.76** 0.86** 0.35** 0.17**
Height -0.27** -0.20** 0.10** 0.32** -0.36** 0.25** 0.28** 0.04* -0.02 -0.21** 0.34** 0.39** 0.10** 0.26** 0.39**

Lodging -0.39** -0.23** 0.13** 0.19** -0.24** 0.13** 0.16** -0.12** -0.22** -0.32** 0.32** 0.28** -0.02 0.18** 0.40**

Seed Characteristics Water Response Plant CharacteristReproductive Period Attributes

†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group end of d
settlement price montly average mean over the October 2013 – October 2018 time period. (retrieved from 
https://www.indexmundi.com/commodities/?commodity=soybean-meal&months=60, 11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calculated as
yield per unit effective water during reproductive (R1-R8) period
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reached maturit
on the main stem (Maturity), and the interval between R1 and Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at matury according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
± indicates treatment significance at α = 0.10
* indicates treatment significance at α = 0.05
** indicates treatment significance at α = 0.01



 

Table 18. Overall Pearson correlations coefficients of agronomic means across environments within the 201
response experiment for the UX3000 population; correlation coefficients representative of the irrigated tre
diagonal and correlation coefficients of rainfed treatment listed below the diagonal 

Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1§ R3§ R5§ Maturity§ R1-R8§ Height Lodgi
Yield 0.39** -0.46** -0.22** 0.48** 0.01 -0.03 0.49** 0.35** 0.31** 0.26** 0.19** 0.00 -0.21** -0.21** -0.32*

Weight 0.41** -0.37** 0.40** 0.10** 0.50** 0.45** 0.23** 0.28** 0.09** -0.64** -0.62** -0.28** -0.42** -0.14** -0.16*
Quality -0.40** -0.24** 0.03 -0.36** -0.16** -0.14** -0.02 0.08** -0.23** -0.28** -0.29** 0.12** 0.31** 0.09** 0.09*
Protein -0.33** 0.24** 0.09** -0.54** 0.85** 0.87** 0.15** 0.19** -0.30** -0.65** -0.59** -0.38** -0.29** 0.23** 0.24*

Oil 0.43** -0.09** -0.29** -0.72** -0.08** -0.24** 0.04 -0.05* 0.27** 0.27** 0.21** -0.04* -0.24** -0.35** -0.22*
EPV -0.24** 0.23** -0.07** 0.90** -0.44** 0.91** 0.20** 0.22** -0.18** -0.59** -0.55** -0.44** -0.46** 0.07** 0.13*
MPP -0.27** 0.20** -0.02 0.91** -0.51** 0.97** 0.13** 0.12** -0.20** -0.51** -0.46** -0.37** -0.35** 0.18** 0.20*
WP 0.28** 0.49** -0.19** 0.55** -0.28** 0.50** 0.46** 0.88** -0.39** -0.44** -0.52** -0.53** -0.44** -0.24** -0.26*

RWP 0.21** 0.53** -0.08** 0.53** -0.36** 0.45** 0.41** 0.89** -0.13** -0.64** -0.69** -0.40** -0.44** -0.25** -0.35*
R1 0.46** 0.06** -0.20** -0.49** 0.37** -0.44** -0.43** -0.49** -0.28** 0.66** 0.72** 0.66** 0.19** 0.06** -0.22*
R3 0.02 -0.73** -0.28** -0.60** 0.48** -0.48** -0.46** -0.82** -0.90** 0.62** 0.95** 0.84** 0.82** 0.44** 0.30*
R5 -0.03 -0.71** -0.29** -0.52** 0.40** -0.43** -0.41** -0.83** -0.88** 0.69** 0.94** 0.89** 0.85** 0.47** 0.28*

Maturity 0.00 -0.30** 0.27** -0.46** 0.10** -0.47** -0.41** -0.79** -0.62** 0.62** 0.78** 0.84** 0.87** 0.29** -0.02
R1-R8 -0.28** -0.42** 0.46** -0.29** -0.10** -0.32** -0.25** -0.70** -0.61** 0.17** 0.75** 0.80** 0.88** 0.34** 0.12*
Height -0.31** -0.26** 0.09** 0.36** -0.32** 0.33** 0.35** 0.04± 0.04± -0.06** 0.39** 0.44** 0.15** 0.23** 0.43*

Lodging -0.30** -0.23** 0.13** 0.19** -0.24** 0.13** 0.16** -0.12** -0.22** -0.32** 0.32** 0.28** -0.02 0.18** 0.40**

Seed Characteristics Water Response Reproductive Period Attributes Plant Characteristi

†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group end of day 
settlement price montly average mean over the October 2013 – October 2018 time period. (retrieved from 
https://www.indexmundi.com/commodities/?commodity=soybean-meal&months=60, 11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calculated as yi
per unit effective water during reproductive (R1-R8) period
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reached maturity o
the main stem (Maturity), and the interval between R1 and Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at matury according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
± indicates treatment significance at α = 0.10
* indicates treatment significance at α = 0.05
** indicates treatment significance at α = 0.01



 

Table 19. Overall Pearson correlations coefficients of agronomic means across environments within the 201
response experiment for the UX3036 population; correlation coefficients representative of the irrigated tre
diagonal and correlation coefficients of rainfed treatment listed below the diagonal 

Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1§ R3§ R5§ Maturity§ R1-R8§ Height Lodgin
Yield 0.37** -0.44** -0.13** 0.36** 0.07** 0.02 0.52** 0.40** 0.29** 0.28** 0.25** -0.02 -0.24** -0.06* -0.38**

Weight 0.33** -0.36** 0.36** 0.20** 0.53** 0.46** 0.20** 0.30** 0.20** -0.60** -0.56** -0.21** -0.42** -0.10** -0.27**
Quality -0.42** -0.30** 0.10** -0.40** -0.13** -0.07** -0.02 0.03 -0.23** -0.21** -0.20** 0.19** 0.41** 0.11** 0.25**
Protein -0.23** 0.24** 0.09** -0.54** 0.82** 0.86** 0.25** 0.32** -0.30** -0.67** -0.62** -0.27** -0.13** 0.20** 0.15**

Oil 0.34** 0.07** -0.32** -0.74** -0.02 -0.18** -0.03 -0.08** 0.24** 0.24** 0.22** -0.14** -0.37** -0.28** -0.22**
EPV -0.16** 0.30** 0.04 0.91** -0.46** 0.94** 0.27** 0.34** -0.17** -0.63** -0.59** -0.39** -0.38** 0.05**** 0.02
MPP -0.19** 0.25** 0.07** 0.92** -0.56** 0.97** 0.23** 0.28** -0.18** -0.57** -0.52** -0.32** -0.28** 0.10** 0.06*
WP 0.40** 0.38** -0.06* 0.54** -0.26** 0.54** 0.51** 0.91** -0.40** -0.50** -0.53** -0.45** -0.30** 0.00 -0.13**

RWP 0.32** 0.47** -0.02 0.52** -0.28** 0.51** 0.47** 0.91** -0.18** -0.70** -0.71** -0.34** -0.32** -0.07** -0.20**
R1 0.34** 0.12** -0.38** -0.54** 0.46** -0.49** -0.50** -0.54** -0.35** 0.74** 0.78** 0.65** 0.12** -0.12** -0.33**
R3 0.12** -0.66** -0.27** -0.59** 0.38** -0.55** -0.52** -0.78** -0.88** 0.69** 0.93** 0.82** 0.76** 0.24** 0.10**
R5 0.10** -0.61** -0.26** -0.52** 0.32** -0.50** -0.47** -0.76** -0.84** 0.75** 0.93** 0.86** 0.80** 0.29** 0.07*

Maturity -0.07** -0.27** 0.16** -0.41** 0.08** -0.47** -0.42** -0.74** -0.61** 0.57** 0.77** 0.82** 0.83** 0.17** -0.07**
R1-R8 -0.31** -0.41** 0.44** -0.14** -0.21** -0.25** -0.18** -0.53** -0.51** 0.03 0.72** 0.76** 0.84** 0.32** 0.15**
Height -0.18** -0.22** 0.12** 0.30** -0.32** 0.24** 0.26** 0.13** 0.04 -0.27** 0.32** 0.39** 0.07** 0.27** 0.30**

Lodging -0.42** -0.23** 0.13** 0.19** -0.24** 0.13** 0.16** -0.12** -0.22** -0.32** 0.32** 0.28** -0.02 0.18** 0.40**

Seed Characteristics Water Response Reproductive Period Attributes Plant Characteristi

†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group end of da
settlement price montly average mean over the October 2013 – October 2018 time period. (retrieved from 
https://www.indexmundi.com/commodities/?commodity=soybean-meal&months=60, 11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calculated as 
yield per unit effective water during reproductive (R1-R8) period
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reached maturity 
the main stem (Maturity), and the interval between R1 and Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at matury according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
± indicates treatment significance at α = 0.10
* indicates treatment significance at α = 0.05
** indicates treatment significance at α = 0.01



 

Table 20. Overall Pearson correlations coefficients of agronomic means across populations and environmen
2018 water response experiment for reproductive timing intervals; correlation coefficients representative o
treatment above the diagonal and correlation coefficients of rainfed treatment listed below the diagonal 

Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1-R3§ R3-R5§ R5-R
Yield 0.36** -0.44** -0.17** 0.43** 0.07** 0.01 0.50** 0.37** 0.33** -0.28** -0.05*

Weight 0.34** -0.37** 0.36** 0.13** 0.48** 0.42** 0.20** 0.28** -0.62** 0.56** -0.21*
Quality -0.40** -0.27** 0.08** -0.36** -0.12** -0.09** 0.00 0.08** -0.24** 0.21** -0.17*
Protein -0.27** 0.24** 0.09** -0.51** 0.82** 0.86** 0.22** 0.28** -0.68** 0.61** -0.15*

Oil 0.40** -0.02 -0.31** -0.72** 0.00 -0.17** 0.01 -0.05** 0.26** -0.23** -0.18*
EPV -0.18** 0.23** 0.01 0.91** -0.43** 0.92** 0.26** 0.31** -0.60** 0.54** -0.26*
MPP -0.21** 0.20** 0.06** 0.92** -0.52** 0.97** 0.21** 0.24** -0.54** 0.49** -0.19*
WP 0.34** 0.42** -0.11** 0.55** -0.25** 0.54** 0.50** 0.89** -0.37** 0.35** -0.46*

RWP 0.26** 0.48** -0.04* 0.53** -0.30** 0.49** 0.46** 0.90** -0.61** 0.53** -0.46*
R1-R3 0.12** -0.64** -0.24** -0.62** 0.44** -0.52** -0.50** -0.72** -0.87** -0.91** 0.39**
R3-R5 -0.10** 0.59** 0.22** 0.57** -0.41** 0.47** 0.45** 0.66** 0.76** -0.90** -0.45*
R5-R8 -0.21** -0.19** -0.14** 0.09** -0.21** -0.03 -0.01 -0.41** -0.33** 0.23** -0.30**
Height -0.27** -0.20** 0.10** 0.32** -0.36** 0.25** 0.28** 0.04* -0.02 -0.21** 0.34** 0.39**

Lodging -0.39** -0.23** 0.13** 0.19** -0.24** 0.13** 0.16** -0.12** -0.22** -0.32** 0.32** 0.28**

Seed Characteristics Water Response Reproductive Period Interva

†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group e
montly average mean over the October 2013 – October 2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodity=soybe
11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calcu
effective water during reproductive (R1-R8) period
§Reproductive stage interval in days
‡Lodging is rated at matury according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
± indicates treatment significance at α = 0.10
* indicates treatment significance at α = 0.05
** indicates treatment significance at α = 0.01



 

Table 21. Genetic variances (σG2) and least square mean Pearson correlation coefficients (r) with 95% conf
agronomic traits across populations during 2017-2018 water response experiment; treatments were denote
following subscripts (1 = irrigated treatment, 2 = rainfed treatment, 3 = response between treatments, 4 = o
Using tables in Rosielle and Hamblin (1981) KG represents the ratio of genetic variance in stress over non-s

 

Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1§ R3§ R5§ Maturity§ R
kg ha-1 g/100 1-5 scale g kg-1 g kg-1 $ kg-1 g kg-1 kg ha-1 mm-1 kg ha-1 mm-1 days days days days

σG
2

1
108,701

(91,268, 129,244)
0.66

(0.56, 0.76)
0.01

(0.00, 0.01)
32.39

(27.87, 37.74)
16.87

(14.71, 19.44)
0.00*

(0.00, 0.00)
10.32*

(8.63, 12.31)
0.98

(0.80, 1.20)
1.00*

(0.72, 1.33)
2.20

(1.90, 2.55)
0.95*

(0.79, 1.13)
0.94

(0.79, 1.11)
13.70

(12.02, 15.70) (

σG
2

2
89,306

(74,822, 106,383)
0.61

(0.53, 0.70)
0.00

(0.00, 0.01)
32.18

(27.37, 37.83)
15.20

(13.12, 17.66)
0.00*

(0.00, 0.01)
16.32*

(13.51, 19.62)
1.16

(0.97, 1.39)
1.93*

(1.53, 2.39)
2.30

(2.00, 2.67)
0.35*

(0.22, 0.49)
0.98

(0.83, 1.16)
13.03

(11.42, 14.94) (

σG
2

3
0

(0, 6,420)
0.04

(0.01, 0.07)
0.00

(0.00, 0.00)
0.00

(0.00, 0.46)
0.00

(0.00, 0.11)
0.00

(0.00, 0.00)
0.00

(0.00, 0.44)
0.01

(0.00, 0.12)
0.51

(0.20, 0.86)
0.04

(0.00, 0.11)
0.00

(0.00, 0.05)
0.00

(0.00, 0.07)
0.00

(0.00, 0.03) (

σG
2

4
100,831

(86,443, 117,829)
0.62

(0.54, 0.72)
0.01

(0.00, 0.01)
33.33

(28.93, 38.53)
16.24

(14.19, 18.67)
0.00

(0.00, 0.00)
13.99

(11.98, 16.37)
1.10

(0.93, 1.30)
1.43

(1.15, 1.75)
2.24

(1.95, 2.58)
0.66

(0.54, 0.80)
0.96

(0.82, 1.11)
13.43

(11.81, 15.35) (

r12
0.83

(0.80, 0.86)
0.91

(0.90, 0.93)
0.41

(0.33, 0.48)
0.89

(0.87, 0.91)
0.95

(0.94, 0.96)
0.88

(0.86, 0.90)
0.84

(0.82, 0.87)
0.79

(0.75, 0.82)
0.74

(0.67, 0.76)
0.87

(0.84, 0.89)
0.59

(0.53, 0.65)
0.73

(0.68, 0.77)
0.91

(0.95, 0.96) (

r13
0.37

(0.29, 0.45)
0.22

(0.14, 0.32)
0.68

(0.62, 0.72)
0.28

(0.20, 0.37)
0.23

(0.15, 0.32)
0.11

(0.02, 0.21)
0.02

(-0.07, 0.12)
0.12

(0.02, 0.20)
0.16

(0.07, 0.25)
0.37

(0.29, 0.45)
0.59

(0.53, 0.65)
0.04

(-0.05, 0.14)
0.03

(-0.15, 0.04) (-

r14
0.96

(0.95, 0.97)
0.98

(0.97, 0.98)
0.88

(0.85, 0.89)
0.97

(0.97, 0.98)
0.99

(0.98, 0.99)
0.97

(0.96, 0.97)
0.95

(0.94, 0.96)
0.94

(0.92, 0.95)
0.92

(0.90, 0.93)
0.97

(0.96, 0.97)
0.91

(0.89, 0.93)
0.91

(0.89, 0.92)
0.97

(0.99, 0.99) (

r23
-0.21

(-0.29, -0.11)
-0.19

(-0.28, -0.10)
-0.40

(-0.48, -0.32)
-0.18

(-0.26, -0.08)
-0.09

(-0.18, 0.00)
-0.37

(-0.44, -0.28)
-0.52

(-0.58, -0.44)
-0.51

(-0.59, -0.46)
-0.54

(-0.62, -0.50)
-0.13

(-0.22, -0.04)
-0.30

(-0.38, -0.21)
-0.65

(-0.71, -0.60)
-0.40

(-0.43, -0.26) (-

r24
0.95

(0.95, 0.96)
0.98

(0.97, 0.98)
0.80

(0.76, 0.83)
0.97

(0.97, 0.98)
0.99

(0.98, 0.99)
0.97

(0.97, 0.98)
0.97

(0.96, 0.97)
0.95

(0.94, 0.96)
0.94

(0.93, 0.95)
0.96

(0.96, 0.97)
0.87

(0.85, 0.89)
0.95

(0.94, 0.96)
0.98

(0.99, 0.99) (

r34
0.09

(0.01, 0.19)
0.02

(-0.07, 0.12)
0.24

(0.14, 0.32)
0.05

(-0.03, 0.16)
0.07

(-0.02, 0.17)
-0.14

(-0.23, -0.04)
-0.28

(-0.36, -0.19)
-0.23

(-0.33, -0.16)
-0.23

(-0.34, -0.16)
0.13

(0.04, 0.22)
0.21

(0.11, 0.29)
-0.38

(-0.46, -0.30)
-0.20

(-0.30, -0.12) (-
K2

G 0.82 0.93 0.55 0.99 0.90 1.40± 1.58± 1.18 1.92± 1.05 0.37± 1.05 0.95

Seed Characteristics Water Response Reproductive Period Attributes

†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group end of day settlement price montly avera
October 2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodity=soybean-meal&months=60, 11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calculated as yield per unit effective water du
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reached maturity on the main stem (Maturity), an
Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at matury according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
* indicates treatment significance at α = 0.05
± indicates significant difference from 1.0 at α = 0.05



 

Table 22. Genetic variances (σG2) and least square mean Pearson correlation coefficients (r) with 95% conf
agronomic traits for the UX3000 population during 2017-2018 water response experiment; treatments wer
the following subscripts (1 = irrigated treatment, 2 = rainfed treatment, 3 = response between treatments, 4
response). Using tables in Rosielle and Hamblin (1981) KG represents the ratio of genetic variance in stress 
environments   

 

Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1§ R3§ R5§ Maturity§ R1-R8§ H

kg ha-1 g/100 1-5 scale g kg-1 g kg-1 $ kg-1 g kg-1 kg ha-1 mm-1 kg ha-1 mm-1 days days days days days

σG
2

1
102,575

(80,058, 131,021)
0.59

(0.48, 0.74)
0.01

(0.00, 0.02)
28.11

(22.78, 34.87)
10.21

(8.34, 12.60)
0.00

(0.00, 0.00)
7.96

(6.14, 10.26)
1.03

(0.76, 1.36)
0.62

(0.25, 1.05)
2.29

(1.87, 2.83)
1.23*

(0.97, 1.55)
0.98

(0.78, 1.24)
14.35

(11.93, 17.44)
5.93

(4.79, 7.37) (53

σG
2

2
70,737

(54,734, 90,907)
0.57

(0.47, 0.71)
0.00

(0.00, 0.01)
24.78

(19.47, 31.46)
9.84

(7.90, 12.30)
0.00

(0.00, 0.00)
10.10

(7.33, 13.56)
0.98

(0.76, 1.26)
0.76

(0.37, 1.23)
2.14

(1.75, 2.65)
0.35*

(0.15, 0.57)
1.01

(0.80, 1.28)
14.47

(12.04, 17.56)
6.34

(5.17, 7.82) (50

σG
2

3
0

(0, 11,274)
0.01

(0.00, 0.06)
0.00

(0.00, 0.01)
0.00

(0.00, 0.54)
0.00

(0.00, 0.15)
0.00

(0.00, 0.00)
0.00

(0.00, 0.41)
0.01

(0.00, 0.16)
0.47

(0.02, 1.00)
0.04

(0.00, 0.14)
0.00

(0.00, 0.13)
0.02

(0.00, 0.13)
0.00

(0.00, 0.05)
0.00

(0.00, 0.10) (0

σG
2

4
87,455

(70,514, 108,927)
0.58

(0.48, 0.71)
0.00

(0.00, 0.01)
27.52

(22.54, 33.85)
10.25

(8.42, 12.57)
0.00

(0.00, 0.00)
9.95

(7.94, 12.50)
1.04

(0.82, 1.31)
0.66

(0.38, 1.00)
2.20

(1.81, 2.69)
0.80

(0.61, 1.03)
0.99

(0.80, 1.22)
14.51

(12.11, 17.55)
6.26

(5.15, 7.66) (52

r12
0.77

(0.71, 0.82)
0.92

(0.90, 0.94)
0.20

(0.08, 0.32)
0.89

(0.86, 0.92)
0.91

(0.88, 0.93)
0.87

(0.83, 0.89)
0.80

(0.75, 0.84)
0.73

(0.66, 0.78)
0.57

(0.48, 0.65)
0.83

(0.78, 0.87)
0.43

(0.32, 0.53)
0.53

(0.43, 0.61)
0.90

(0.95, 0.97)
0.96

(0.88, 0.92) (0

r13
0.53

(0.43, 0.61)
0.19

(0.06, 0.31)
0.90

(0.87, 0.92)
0.34

(0.22, 0.45)
0.25

(0.12, 0.36)
0.11

(-0.02, 0.23)
0.11

(-0.01, 0.24)
0.26

(0.14, 0.38)
0.38

(0.27, 0.49)
0.55

(0.46, 0.64)
0.64

(0.56, 0.71)
0.10

(-0.03, 0.22)
-0.27

(-0.48, -0.27)
-0.38

(-0.39, -0.15) (-0

r14
0.95

(0.94, 0.96)
0.98

(0.97, 0.98)
0.93

(0.91, 0.94)
0.97

(0.97, 0.98)
0.98

(0.97, 0.98)
0.96

(0.95, 0.97)
0.94

(0.93, 0.95)
0.92

(0.90, 0.94)
0.87

(0.84, 0.90)
0.96

(0.95, 0.97)
0.87

(0.84, 0.90)
0.80

(0.75, 0.84)
0.97

(0.99, 0.99)
0.99

(0.96, 0.98) (0

r23
-0.14

(-0.26, -0.01)
-0.21

(-0.33, -0.08)
-0.25

(-0.37, -0.13)
-0.12

(-0.24, 0.01)
-0.18

(-0.30, -0.06)
-0.40

(-0.51, -0.29)
-0.50

(-0.59, -0.40)
-0.47

(-0.57, -0.37)
-0.54

(-0.63, -0.44)
0.00

(-0.13, 0.12)
-0.42

(-0.52, -0.31)
-0.79

(-0.84, -0.74)
-0.66

(-0.69, -0.54)
-0.62

(-0.73, -0.58) (-0

r24
0.93

(0.91, 0.95)
0.98

(0.97, 0.98)
0.56

(0.46, 0.64)
0.97

(0.96, 0.98)
0.98

(0.97, 0.98)
0.97

(0.96, 0.98)
0.96

(0.94, 0.97)
0.94

(0.92, 0.95)
0.90

(0.87, 0.92)
0.95

(0.93, 0.96)
0.82

(0.77, 0.85)
0.93

(0.91, 0.95)
0.98

(0.99, 0.99)
0.99

(0.98, 0.99) (0

r34
0.23

(0.11, 0.35)
-0.01

(-0.14, 0.12)
0.67

(0.59, 0.73)
0.12

(-0.01, 0.24)
0.03

(-0.09, 0.16)
-0.16

(-0.29, -0.04)
-0.23

(-0.35, -0.10)
-0.13

(-0.25, 0.00)
-0.11

(-0.24, 0.01)
0.31

(0.19, 0.42)
0.18

(0.05, 0.30)
-0.51

(-0.60, -0.41)
-0.50

(-0.60, -0.42)
-0.52

(-0.59, -0.40) (-0
K2

G 0.69 0.97 0.46 0.88 0.96 1.32 1.27 0.95 1.24 0.94 0.28± 1.03 1.01 1.07

Seed Characteristics Water Response Reproductive Period Attributes Pl

†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group end of day settlement price montly average mean ove
October 2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodity=soybean-meal&months=60, 11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calculated as yield per unit effective water during reprodu
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reached maturity on the main stem (Maturity), and the interva
Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at matury according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
* indicates treatment significance at α = 0.05
± indicates significant difference from 1.0 at α = 0.05



 

Table 23. Genetic variances (σG2) and least square mean Pearson correlation coefficients (r) with 95% conf
agronomic traits for the UX3036 population during 2017-2018 water response experiment; treatments wer
the following subscripts (1 = irrigated treatment, 2 = rainfed treatment, 3 = response between treatments, 4
response). Using tables in Rosielle and Hamblin (1981) KG represents the ratio of genetic variance in stress 
environments   

 

Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1§ R3§ R5§ Maturity§ R1-R8§

kg ha-1 g/100 1-5 scale g kg-1 g kg-1 $ kg-1 g kg-1 kg ha-1 mm-1 kg ha-1 mm-1 days days days days days

σG
2

1
99,478

(74,929, 130,968)
0.73

(0.58, 0.92)
0.00

(0.00, 0.02)
35.44

(28.17, 44.83)
21.16

(17.23, 26.24)
0.00

(0.00, 0.00)
10.19

(7.64, 13.46)
0.86

(0.60, 1.18)
1.03*

(0.64, 1.52)
1.34

(1.05, 1.70)
0.53

(0.35, 0.75)
0.88

(0.67, 1.15)
13.79

(11.32, 16.98)
7.60

(6.17, 9.49) (6

σG
2

2
102,358

(78,280, 133,251)
0.62

(0.50, 0.78)
0.01

(0.00, 0.02)
35.96

(28.27, 45.88)
19.42

(15.65, 24.28)
0.00

(0.00, 0.01)
17.26

(12.98, 22.74)
1.30

(0.99, 1.69)
2.10*

(1.52, 2.84)
1.59

(1.26, 2.00)
0.35

(0.16, 0.55)
0.99

(0.77, 1.28)
11.97

(9.80, 14.79)
5.77

(4.61, 7.27) (5

σG
2

3
0

(0, 9,345)
0.09

(0.04, 0.15)
0.00

(0.00, 0.01)
0.00

(0.00, 1.90)
0.00

(0.00, 0.37)
0.00

(0.00, 0.00)
0.00

(0.00, 2.16)
0.00

(0.00, 0.16)
0.31

(0.00, 0.78)
0.04

(0.00, 0.15)
0.00

(0.00, 0.05)
0.00

(0.00, 0.06)
0.00

(0.00, 0.17)
0.10

(0.00, 0.47) (

σG
2

4
103,920

(81,839, 132,379)
0.66

(0.53, 0.82)
0.01

(0.00, 0.01)
36.42

(29.41, 45.48)
20.42

(16.69, 25.23)
0.00

(0.00, 0.00)
14.03

(11.02, 17.91)
1.15

(0.88, 1.48)
1.67

(1.24, 2.22)
1.45

(1.17, 1.82)
0.47

(0.32, 0.65)
0.95

(0.75, 1.20)
12.86

(10.59, 15.81)
6.67

(5.43, 8.26) (6

r12
0.83

(0.78, 0.87)
0.89

(0.86, 0.92)
0.47

(0.35, 0.57)
0.88

(0.85, 0.91)
0.95

(0.94, 0.96)
0.82

(0.78, 0.87)
0.80

(0.75, 0.85)
0.81

(0.74, 0.84)
0.76

(0.66, 0.79)
0.79

(0.73, 0.84)
0.54

(0.44, 0.64)
0.71

(0.63, 0.77)
0.91

(0.95, 0.97)
0.96

(0.89, 0.93) (

r13
0.29

(0.17, 0.42)
0.27

(0.15, 0.40)
0.52

(0.41, 0.61)
0.25

(0.14, 0.39)
0.25

(0.12, 0.38)
0.15

(0.02, 0.29)
-0.05

(-0.17, 0.11)
0.02

(-0.13, 0.14)
0.04

(-0.10, 0.17)
0.30

(0.17, 0.42)
0.65

(0.56, 0.72)
0.03

(-0.11, 0.17)
0.28

(0.10, 0.36)
0.23

(0.14, 0.40) (

r14
0.96

(0.94, 0.97)
0.97

(0.97, 0.98)
0.86

(0.82, 0.89)
0.97

(0.96, 0.98)
0.99

(0.98, 0.99)
0.95

(0.94, 0.96)
0.94

(0.92, 0.95)
0.94

(0.92, 0.95)
0.92

(0.88, 0.93)
0.94

(0.93, 0.96)
0.91

(0.88, 0.93)
0.90

(0.87, 0.92)
0.98

(0.99, 0.99)
0.99

(0.97, 0.98) (

r23
-0.29

(-0.40, -0.15)
-0.19

(-0.31, -0.04)
-0.51

(-0.61, -0.40)
-0.24

(-0.34, -0.08)
-0.05

(-0.19, 0.09)
-0.44

(-0.53, -0.31)
-0.63

(-0.70, -0.52)
-0.57

(-0.68, -0.51)
-0.62

(-0.73, -0.57)
-0.35

(-0.47, -0.23)
-0.29

(-0.41, -0.15)
-0.68

(-0.75, -0.60)
-0.14

(-0.19, 0.08)
-0.06

(-0.27, 0.00) (-

r24
0.96

(0.94, 0.97)
0.97

(0.96, 0.98)
0.86

(0.81, 0.89)
0.97

(0.96, 0.98)
0.99

(0.98, 0.99)
0.96

(0.95, 0.97)
0.96

(0.95, 0.97)
0.96

(0.95, 0.97)
0.95

(0.93, 0.96)
0.95

(0.93, 0.96)
0.85

(0.80, 0.88)
0.95

(0.93, 0.96)
0.98

(0.99, 0.99)
0.99

(0.97, 0.98) (

r34
0.00

(-0.13, 0.15)
0.04

(-0.08, 0.19)
0.01

(-0.13, 0.14)
0.01

(-0.11, 0.17)
0.11

(-0.03, 0.24)
-0.17

(-0.28, -0.02)
-0.40

(-0.49, -0.25)
-0.32

(-0.47, -0.22)
-0.35

(-0.50, -0.26)
-0.03

(-0.17, 0.10)
0.27

(0.13, 0.39)
-0.41

(-0.52, -0.29)
0.07

(-0.05, 0.23)
0.09

(-0.06, 0.21) (
K2

G 1.03 0.85 1.54 1.01 0.92 1.39 1.69 1.51 2.03± 1.19 0.65 1.12 0.87 0.76

Seed Characteristics Water Response Reproductive Period Attributes P

†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group end of day settlement price montly average mean ove
October 2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodity=soybean-meal&months=60, 11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calculated as yield per unit effective water during reprodu
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reached maturity on the main stem (Maturity), and the interv
Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at matury according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
* indicates treatment significance at α = 0.05
± indicates significant difference from 1.0 at α = 0.05



 

Table 24. Genetic (σG2), genotypic by environment (σGE2), and environmental variance (σE2) estimations wit
intervals of agronomic traits across populations during 2017-2018 water response experiment; treatments w
through the following subscripts (1 = irrigated, 2 = rainfed, 3 = response between treatments, 4 = overall re

 
 

Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1§ R3§ R5§ Maturity§ R
kg ha-1 g/100 1-5 scale g kg-1 g kg-1 $ kg-1 g kg-1 kg ha-1 mm-1 kg ha-1 mm-1 days days days days

σG
2

1
108,701

(91,268, 129,244)
0.66

(0.56, 0.76)
0.01

(0.00, 0.01)
32.39

(27.87, 37.74)
16.87

(14.71, 19.44)
0.00*

(0.00, 0.00)
10.32*

(8.63, 12.31)
0.98

(0.80, 1.20)
1.00*

(0.72, 1.33)
2.20

(1.90, 2.55)
0.95*

(0.79, 1.13)
0.94

(0.79, 1.11)
13.70

(12.02, 15.70) (

σG
2

2
89,306

(74,822, 106,383)
0.61

(0.53, 0.70)
0.00

(0.00, 0.01)
32.18

(27.37, 37.83)
15.20

(13.12, 17.66)
0.00*

(0.00, 0.01)
16.32*

(13.51, 19.62)
1.16

(0.97, 1.39)
1.93*

(1.53, 2.39)
2.30

(2.00, 2.67)
0.35*

(0.22, 0.49)
0.98

(0.83, 1.16)
13.03

(11.42, 14.94) (

σG
2

3
0

(0, 6,420)
0.04

(0.01, 0.07)
0.00

(0.00, 0.00)
0.00

(0.00, 0.46)
0.00

(0.00, 0.11)
0.00

(0.00, 0.00)
0.00

(0.00, 0.44)
0.01

(0.00, 0.12)
0.51

(0.20, 0.86)
0.04

(0.00, 0.11)
0.00

(0.00, 0.05)
0.00

(0.00, 0.07)
0.00

(0.00, 0.03) (

σG
2

4
100,831

(86,443, 117,829)
0.62

(0.54, 0.72)
0.01

(0.00, 0.01)
33.33

(28.93, 38.53)
16.24

(14.19, 18.67)
0.00

(0.00, 0.00)
13.99

(11.98, 16.37)
1.10

(0.93, 1.30)
1.43

(1.15, 1.75)
2.24

(1.95, 2.58)
0.66

(0.54, 0.80)
0.96

(0.82, 1.11)
13.43

(11.81, 15.35) (

σGE
2

1
59,744

(47,607, 72,633)
0.22*

(0.19, 0.27)
0.05*

(0.03, 0.06)
13.11

(11.31, 15.05)
2.95

(2.47, 3.47)
0.00

(0.00, 0.00)
9.31*

(8.17, 10.56)
1.50*

(1.34, 1.68)
3.63*

(3.27, 4.02)
0.50

(0.40, 0.61)
0.27*

(0.18, 0.38)
0.18

(0.10, 0.26)
1.47

(1.28, 1.68) (

σGE
2

2
54,854

(44,688, 65,761)
0.10*

(0.07, 0.13)
0.02*

(0.01, 0.03)
17.20

(14.60, 19.98)
5.06

(4.30, 5.88)
0.00

(0.00, 0.00)
15.62*

(13.45, 17.97)
0.75*

(0.61, 0.89)
2.69*

(2.29, 3.12)
0.53

(0.44, 0.64)
0.66*

(0.52, 0.81)
0.24

(0.16, 0.32)
1.73

(1.51, 1.96) (

σGE
2

3
60,904

(43,862, 78,164)
0.19

(0.13, 0.26)
0.00

(0.00, 0.01)
33.81

(30.90, 36.96)
4.91

(4.15, 5.74)
0.00

(0.00, 0.00)
24.52

(22.10, 27.13)
1.08

(0.86, 1.29)
3.65

(3.09, 4.26)
0.14

(0.00, 0.30)
0.26

(0.17, 0.36)
0.06

(0.00, 0.14)
1.45

(1.18, 1.73) (

σGE
2

4
43,751

(37,219, 50,774)
0.12

(0.10, 0.14)
0.03

(0.03, 0.04)
10.59

(9.37, 11.92)
3.21

(2.83, 3.62)
0.00

(0.00, 0.00)
7.73

(6.83, 8.71)
0.92

(0.82, 1.03)
2.41

(2.16, 2.67)
0.48

(0.42, 0.55)
0.40

(0.32, 0.49)
0.20

(0.15, 0.25)
1.16

(1.03, 1.30) (

σE
2

1
441,605

(232,770, 1,372,453)
2.37

(0.94, 8.89)
0.61

(0.31, 1.97)
76.19

(33.04, 272.37)
21.11

(9.58, 73.33)
0.01

(0.00, 0.03)
30.11

(15.64, 94.71)
2.99

(1.77, 8.35)
7.94

(3.79, 26.60)
19.92

(5.94, 84.42)
75.26

(9.31, 659.31)
23.73

(3.31, 202.93)
61.28

(16.36, 269.20) (10

σE
2

2
436,822

(211,288, 1,454,822)
1.85

(0.81, 6.53)
0.47

(0.25, 1.50)
168.02

(65.12, 663.20)
34.02

(15.19, 119.55)
0.02

(0.01, 0.08)
87.46

(39.61, 304.21)
14.24

(4.83, 57.56)
37.36

(12.62, 150.88)
19.63

(5.79, 83.88)
73.49

(8.99, 632.57)
25.17

(3.39, 215.81)
67.63

(18.07, 297.23) (13

σE
2

3
331,901

(299,512, 414,270)
1.15

(1.00, 1.62)
0.43

(0.41, 0.47)
59.67

(31.43, 185.33)
16.47

(12.65, 31.50)
0.01

(0.01, 0.04)
53.61

(30.99, 153.06)
8.76

(4.40, 28.29)
21.62

(10.36, 72.25)
3.17

(2.91, 3.71)
1.67

(1.54, 2.04)
1.43

(1.31, 1.73)
5.49

(4.55, 8.84) (7

σE
2

4
351,402

(142,992, 1,301,909)
1.81

(0.62, 7.29)
0.44

(0.18, 1.62)
100.71

(32.80, 413.51)
22.18

(8.13, 87.50)
0.01

(0.00, 0.04)
41.93

(16.50, 158.24)
6.36

(2.14, 25.71)
17.09

(5.48, 70.47)
19.01

(5.15, 83.16)
73.97

(8.74, 645.05)
24.15

(3.02, 209.10)
63.01

(16.10, 280.42) (10

Seed Characteristics Water Response Reproductive Period Attributes

†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group end of day settlement price montly average mea
2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodity=soybean-meal&months=60, 11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calculated as yield per unit effective water during re
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reached maturity on the main stem (Maturity), and the i
R8) expressed as days after planting
‡Lodging is rated at matury according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
* indicates treatment significance at α = 0.05
± indicates significant difference from 1.0 at α = 0.05



 

Table 25. Agronomic trait broad sense heritability (H) on an entry mean basis and 95% confidence interva
populations during 2017-2018 water response experiment; treatments were denoted through the following 
irrigated, 2 = rainfed, 4 = overall response)    

 
 
 

Population Subset Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1§ R3§ R5§ Maturity§

kg ha-1 g/100 1-5 scale g kg-1 g kg-1 $ kg-1 g kg-1 kg ha-1 mm-1 kg ha-1 mm-1 days days days days

UX3000 H1 
0.59

(0.46, 0.75)
0.65

(0.52, 0.81)
0.06

(0.00, 0.17)
0.70

(0.57, 0.87)
0.78

(0.64, 0.96)
0.65

(0.53, 0.82)
0.60

(0.46, 0.77)
0.59*

(0.44, 0.78)
0.24

(0.10, 0.41)
0.49

(0.40, 0.61)
0.11

(0.09, 0.14)
0.24

(0.19, 0.30)
0.63

(0.53, 0.77)

UX3000 H2
0.50

(0.39, 0.65)
0.70

(0.57, 0.86)
0.05

(0.00, 0.14)
0.51

(0.40, 0.65)
0.69

(0.55, 0.86)
0.49

(0.37, 0.64)
0.44

(0.32, 0.60)
0.34*

(0.26, 0.44)
0.12

(0.06, 0.19)
0.48

(0.39, 0.59)
0.04

(0.02, 0.06)
0.23

(0.18, 0.29)
0.61

(0.51, 0.74)

UX3000 H4
0.73

(0.59, 0.91)
0.82

(0.67, 1.00)
0.18

(0.09, 0.30)
0.77

(0.63, 0.94)
0.86

(0.71, 1.00)
0.73

(0.59, 0.90)
0.70

(0.56, 0.88)
0.59

(0.47, 0.73)
0.26

(0.18, 0.35)
0.69

(0.57, 0.84)
0.22

(0.18, 0.28)
0.48

(0.40, 0.59)
0.79

(0.66, 0.96)

UX3036 H1 
0.60

(0.45, 0.78)
0.66

(0.53, 0.84)
0.05

(0.00, 0.16)
0.73

(0.59, 0.93)
0.85

(0.70, 1.00)
0.63

(0.49, 0.81)
0.60

(0.45, 0.79)
0.53

(0.37, 0.72)
0.37

(0.24, 0.55)
0.31

(0.25, 0.40)
0.05

(0.04, 0.07)
0.23

(0.18, 0.31)
0.64

(0.53, 0.79)

UX3036 H2
0.62

(0.47, 0.80)
0.70

(0.56, 0.88)
0.10

(0.01, 0.21)
0.58

(0.45, 0.74)
0.77

(0.62, 0.96)
0.53

(0.41, 0.69)
0.52

(0.39, 0.69)
0.39

(0.30, 0.51)
0.30

(0.22, 0.41)
0.36

(0.28, 0.45)
0.04

(0.02, 0.06)
0.25

(0.19, 0.32)
0.59

(0.48, 0.73)

UX3036 H4
0.78

(0.62, 0.98)
0.82

(0.67, 1.00)
0.27

(0.16, 0.41)
0.79

(0.64, 0.99)
0.90

(0.74, 1.00)
0.73

(0.59, 0.92)
0.72

(0.57, 0.91)
0.60

(0.48, 0.77)
0.47

(0.36, 0.60)
0.54

(0.44, 0.68)
0.16

(0.13, 0.21)
0.51

(0.41, 0.63)
0.79

(0.65, 0.96)

Overall H1 
0.61

(0.51, 0.72)
0.65

(0.56, 0.76)
0.06

(0.00, 0.14)
0.72

(0.62, 0.84)
0.84

(0.73, 0.96)
0.68

(0.59, 0.80)
0.63

(0.53, 0.75)
0.57*

(0.46, 0.69)
0.35

(0.25, 0.46)
0.45

(0.39, 0.53)
0.09

(0.08, 0.11)
0.23

(0.20, 0.28)
0.63

(0.55, 0.72)

Overall H2
0.57

(0.47, 0.67)
0.70

(0.61, 0.82)
0.06

(0.00, 0.13)
0.55

(0.47, 0.65)
0.74

(0.64, 0.86)
0.56

(0.47, 0.67)
0.52

(0.43, 0.63)
0.37*

(0.31, 0.44)
0.27

(0.21, 0.33)
0.47

(0.41, 0.55)
0.04

(0.02, 0.05)
0.23

(0.20, 0.28)
0.59

(0.52, 0.68)

Overall H4
0.77

(0.66, 0.89)
0.82

(0.72, 0.94)
0.24

(0.16, 0.32)
0.78

(0.68, 0.90)
0.89

(0.78, 1.00)
0.77

(0.67, 0.89)
0.74

(0.63, 0.86)
0.60

(0.52, 0.70)
0.42

(0.35, 0.50)
0.67

(0.59, 0.77)
0.20

(0.17, 0.23)
0.49

(0.42, 0.57)
0.79

(0.69, 0.90)

Seed Characteristics Water Response Reproductive Period Attributes

†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange group end of day settlement price m
October 2013 – October 2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodity=soybean-meal&months=60, 11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) calculated as yield per unit effect
R8) period
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reached maturity on the main stem (M
between R1 and Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at matury according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
* indicates treatment significance at α = 0.05



 

Table 26. Least square means estimates of positive and negative water productivity transgressive segregate
for the UX3000 and UX3036 populations over the 2017-2018 water response experiment across irrigation t
transgressive segregant groupings were determined through comparison of WP LSMEANS over irrigation
environments for the 2017-2018 water response experiment to parental values 

Subset Population Yield Weight Quality† Protein Oil EPV# MPP# WP¶ RWP¶ R1§ R3§ R5§ Maturity§ R1-R8
kg ha-1 g/100 1-5 scale g kg-1 g kg-1 $ kg-1 g kg-1 kg ha-1 mm-1 kg ha-1 mm-1 days days days days days

Positive UX3000 5264** 15.3** 1.8** 341* 194 5.5** 479** 15.9** 20.8** 42.3** 56.9** 74.1 130 88
Positive UX3036 5193** 15.5 1.8 336** 193 5.5** 474** 15.9** 20.3** 41.6 56.6 73.9 131 89
Parental UX3000 4971 15.0 1.7 344 194 5.6 481 15.0 19.7 42.3 56.5 73.8 129 87
Parental UX3036 4803 15.4 1.7 341 192 5.5 478 14.6 18.6 41.3 56.0 73.8 129 88
Negative UX3000 4609** 14.5** 1.8** 344* 194 5.6** 481** 13.8** 18.6** 42.9** 57.0** 74.2 130.5 88
Negative UX3036 4213** 15.1 1.8 341** 193 5.5** 477** 12.8** 16.4** 41.4 56.7 73.6 129.6 88

Seed Characteristics Water Response Reproductive Period Attributes

†Seed quality scored on a iterative 1 - 5 scale; 1 = seed free from blemishes and defects to 5 = greater than 75% of sample blemished
#Estimated processed value (EPV) and estimated meal product protein (MPP) calculated through the SPROC 
program (Brumm & Hurburgh, 1990). Crude oil and meal prices were calculated from the Chicago Board of Trade - Chicago Mercantile Exchange grou
price montly average mean over the October 2013 – October 2018 time period. (retrieved from https://www.indexmundi.com/commodities/?commodity
meal&months=60, 11/28/18)
¶ Water productivity (WP) calculated as yield per unit effective water from planting date to maturity date; reproductive water productivity (RWP) cal
effective water during reproductive (R1-R8) period
§Date at which 50% of plot reached R1 growth stage (R1), R3 growth stage, R5 growth stage, the date at which greater than 95% of pods have reache
(Maturity), and the interval between R1 and Maturity (R1-R8) expressed as days after planting
‡Lodging is rated at matury according on a iterative 1-5 scale; 1= all plants erect to 5= all plants prostrate
φSubset count
± indicates segregant subset significance at α = 0.10 from contrasting segregation group (eg., positive compared to negative)
* indicates segregant subset significance at α = 0.05 from contrasting segregation group (eg., positive compared to negative)
** indicates segregant subset significance at α = 0.01 from contrasting segregation group (eg., positive compared to negative)



 

Table 27. Pearson correlation coefficients and 95% confidence intervals of canopy reflectance parameters t
productivity collected at V5, R3, and R5 growth and reproductive stages during 2017-2018 water response 
irrigation treatments  

Population Stage R† G† B† VIS# NIR# NIR/VIS# Height¶ CATD§ Area‡ P

UX3000 V5
-0.07

(-0.19, 0.06)
-0.04

(-0.17, 0.08)
-0.10

(-0.23, 0.02)
-0.01

(-0.13, 0.12)
0.09

(-0.04, 0.21)
0.11

(-0.02, 0.23)
-0.09

(-0.22, 0.04)
-0.11

(-0.23, 0.02)
0.22

(0.09, 0.34)

UX3036 V5
0.19

(0.06, 0.32)
0.14

(0.01, 0.28)
0.07

(-0.07, 0.20)
-0.02

(-0.16, 0.12)
0.20

(0.07, 0.33)
0.28

(0.15, 0.40)
0.13

(-0.01, 0.26)
-0.33

(-0.45, -0.20)
0.45

(0.33, 0.55)

Overall V5
-0.06

(-0.15, 0.03)
-0.02

(-0.11, 0.07)
-0.09

(-0.18, 0.00)
-0.07

(-0.16, 0.02)
0.19

(0.10, 0.28)
0.29

(0.20, 0.37)
0.02

(-0.07, 0.11)
-0.31

(-0.39, -0.23)
0.43

(0.35, 0.50)

UX3000 R3
0.04

(-0.09, 0.17)
0.07

(-0.06, 0.20)
0.05

(-0.08, 0.17)
-0.19

(-0.31, -0.06)
-0.10

(-0.22, 0.03)
0.32

(0.20, 0.43)
-0.07

(-0.19, 0.06)
-0.02

(-0.14, 0.11)
0.01

(-0.12, 0.13)

UX3036 R3
-0.10

(-0.23, 0.04)
-0.08

(-0.22, 0.05)
-0.09

(-0.23, 0.05)
-0.08

(-0.22, 0.06)
0.01

(-0.13, 0.15)
0.11

(-0.02, 0.25)
0.14

(0.00, 0.27)
0.09

(-0.05, 0.22)
0.14

(0.00, 0.27)

Overall R3
-0.07

(-0.16, 0.02)
-0.04

(-0.13, 0.05)
-0.08

(-0.17, 0.01)
-0.16

(-0.25, -0.07)
-0.02

(-0.11, 0.07)
0.25

(0.17, 0.34)
-0.08

(-0.17, 0.01)
-0.02

(-0.11, 0.07)
0.16

(0.07, 0.25) (

UX3000 R5
0.00

(-0.13, 0.13)
0.00

(-0.13, 0.13)
0.03

(-0.10, 0.15)
-0.05

(-0.18, 0.08)
0.17

(0.05, 0.29)
0.25

(0.13, 0.37)
0.02

(-0.11, 0.15)
-0.12

(-0.24, 0.01)
0.14

(0.02, 0.27) (

UX3036 R5
0.07

(-0.06, 0.21)
0.06

(-0.08, 0.19)
0.05

(-0.08, 0.19)
-0.06

(-0.19, 0.08)
0.24

(0.11, 0.36)
0.27

(0.13, 0.39)
0.46

(0.34, 0.56)
-0.01

(-0.15, 0.13)
-0.03

(-0.17, 0.10) (

Overall R5
0.00

(-0.09, 0.09)
0.01

(-0.08, 0.10)
-0.06

(-0.14, 0.03)
-0.04

(-0.12, 0.05)
0.28

(0.20, 0.36)
0.34

(0.25, 0.41)
0.30

(0.21, 0.38)
0.08

(-0.01, 0.17)
0.15

(0.07, 0.24) (

Subset Red - Green - Blue Spectrum Canopy Traits

†Red (R), green (G), and blue (B) represented as pixel count in color channel
#Visible (VIS) and Near infrared (NIR) represented as spectral reflectance
¶ Canopy height (Height) calculated from mean of LiDar and ultrasonic sensors measurments in centimeters
§Canopy to air temperature differental (CATD) calculated from radiometric and ambient temperature sensors on plot basis
‡Thresholded pixel area (Area) and thresholded perimeter (Perimeter) expressed as pixel count after color thresholding



 

Table 28. Broad sense heritability on an entry-mean basis estimations and 95% confidence intervals of can
parameters at V5, R3, and R5 growth and reproductive stages during 2017-2018 water response experimen
treatments 

 

Population Stage R† G† B† VIS# NIR# NIR/VIS# Height¶ CATD§ Area‡ Perimet

Overall V5
0.25

(0.21, 0.31)
0.24

(0.19, 0.30)
0.29

(0.24, 0.35)
0.04

(0.00, 0.09)
0.10

(0.04, 0.16)
0.30

(0.24, 0.38)
0.20

(0.16, 0.26)
0.40

(0.33, 0.48)
0.11

(0.08, 0.15)
0.05

(0.02, 0

UX3000 V5
0.22

(0.16, 0.29)
0.21

(0.14, 0.29)
0.27

(0.20, 0.36)
0.00

(0.00, 0.05)
0.12

(0.05, 0.20)
0.20

(0.12, 0.30)
0.15

(0.10, 0.23)
0.40

(0.30, 0.51)
0.06

(0.03, 0.10)
0.05

(0.02, 0

UX3036 V5
0.24

(0.17, 0.33)
0.24

(0.16, 0.34)
0.29

(0.21, 0.40)
0.06

(0.00, 0.15)
0.09

(0.00, 0.20)
0.34

(0.24, 0.48)
0.25

(0.18, 0.35)
0.39

(0.29, 0.53)
0.12

(0.07, 0.17)
0.04

(0.00, 0

Overall R3
0.32

(0.23, 0.42)
0.31

(0.22, 0.41)
0.28

(0.21, 0.37)
0.15

(0.11, 0.19)
0.18

(0.13, 0.24)
0.27

(0.21, 0.33)
0.53

(0.44, 0.63)
0.31

(0.20, 0.44)
NA

(0.00, 0.00)
NA

(0.00, 0

UX3000 R3
0.34

(0.21, 0.50)
0.28

(0.15, 0.45)
0.27

(0.15, 0.41)
0.15

(0.09, 0.22)
0.20

(0.13, 0.29)
0.20

(0.12, 0.29)
0.31

(0.20, 0.44)
0.30

(0.15, 0.48)
NA

(0.00, 0.00)
NA

(0.00, 0

UX3036 R3
0.34

(0.21, 0.50)
0.36

(0.23, 0.53)
0.32

(0.21, 0.47)
0.14

(0.09, 0.21)
0.17

(0.10, 0.26)
0.30

(0.22, 0.40)
0.50

(0.38, 0.66)
0.27

(0.10, 0.49)
NA

(0.00, 0.00)
NA

(0.00, 0

Overall R5
0.00

(0.00, 0.01)
0.00

(0.00, 0.01)
0.01

(0.00, 0.02)
0.20

(0.13, 0.29)
0.22

(0.15, 0.30)
0.53

(0.41, 0.66)
0.63

(0.52, 0.76)
0.25

(0.16, 0.37)
NA

(0.00, 0.00)
NA

(0.00, 0

UX3000 R5
0.00

(0.00, 0.01)
0.00

(0.00, 0.01)
0.00

(0.00, 0.02)
0.14

(0.04, 0.27)
0.16

(0.06, 0.28)
0.38

(0.21, 0.58)
0.69

(0.54, 0.88)
0.22

(0.10, 0.38)
NA

(0.00, 0.00)
NA

(0.00, 0

UX3036 R5
0.00

(0.00, 0.01)
0.00

(0.00, 0.01)
0.00

(0.00, 0.01)
0.23

(0.12, 0.37)
0.21

(0.10, 0.34)
0.45

(0.28, 0.66)
0.55

(0.38, 0.75)
0.20

(0.05, 0.38)
NA

(0.00, 0.00)
NA

(0.00, 0

Subset Canopy TraitsRed - Green - Blue Spectrum

†Red (R), green (G), and blue (B) represented as pixel count in color channel
#Visible (VIS) and Near infrared (NIR) represented as spectral reflectance
¶ Canopy height (Height) calculated from mean of LiDar and ultrasonic sensors measurments in centimeters
§Canopy to air temperature differental (CATD) calculated from radiometric and ambient temperature sensors on plot basis
‡Thresholded pixel area (Area) and thresholded perimeter (Perimeter) expressed as pixel count after color thresholding



 

Table 29. RIL parent and population least square mean canopy reflectance parameter estimations across ir
and environments for 2017-2018 water response experiment 

 

 

 

 

Parent Population Stage R† G† B† VIS# NIR# NIR/VIS# Height¶ CATD§ Area‡ Perimeter‡

pixels pixels pixels ref ref cm °C pixels pixels

LD02-4485 V5 83.1 108.4* 77.3 0.27* 0.88* 0.31* 32.0* 5.19* 501607* 17486
UX3036 V5 83.8 109.6 76.1 0.31 1.03 0.30 34.4 4.57 556643 16789

U11-614093 V5 83.2 109.5 76.1 0.29 1.03 0.28 34.0 4.43 565707 17303
UX3000 V5 81.3 108.0 74.6 0.29 1.06 0.28 33.8 4.32 582587 17209

U09-312115 V5 82.0* 108.2* 74.7* 0.28* 1.09* 0.26* 33.3 4.15* 593586* 17243

LD02-4485 R5 98.4 101.6 89.9 0.10 1.48* 15.5* 105.7* (-0.90*) 1191001 4921
UX3036 R5 99.8 103.0 91.3 0.10 1.54 15.6 107.0 (-0.88) 1192439 4929

U11-614093 R5 99.3 102.6 91.1 0.10 1.59 16.9 107.9 (-0.80) 1192994 4824
UX3000 R5 99.3 102.5 89.9 0.10 1.64 16.7 108.2 (-0.59) 1197414 4801

U09-312115 R5 98.6 102.0 88.7 0.10 1.64* 17.3* 108.4* (-0.81*) 1198144 4819

Subset Red - Green - Blue Spectrum Canopy Traits

†Red (R), green (G), and blue (B) represented as pixel count in color channel
#Visible (VIS) and near infrared (NIR) represented as spectral reflectance
¶ Canopy height (Height) calculated from mean of LiDar and ultrasonic sensors measurments in centimeters
§Canopy to air temperature differental (CATD) calculated from radiometric and ambient temperature sensors on plot 
basis
‡Thresholded pixel area (Area) and thresholded perimeter (Perimiter) expressed as pixel count after color thresholding
* indicates difference from U11-614093 significance at α = 0.05
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Table 30. Broad sense heritability (H) on an entry-mean basis and phenotypic Pearson 
correlations coefficients (rp) with 95% confidence intervals by growth stage of RGB 
reflectance indices during the 2017-2018 water response experiment across irrigation 
treatments and environments; H estimates larger than 0.50 highlighted in grey  

 

Index H rp H rp H rp

ARI
0.02

(0.00, 0.05)
-0.20

(-0.28, -0.11)
0.00

(0.00, 0.06)
-0.10

(-0.19, -0.01)
0.09

(0.00, 0.20)
-0.04

(-0.13, 0.05)

CWSI 0.02
(0.00, 0.08)

-0.03
(-0.12, 0.06)

0.16
(0.12, 0.20)

-0.14
(-0.23, -0.05)

0.19
(0.12, 0.27)

-0.01
(-0.10, 0.08)

D715 0.17
(0.12, 0.22)

0.35
(0.27, 0.43)

0.29
(0.19, 0.40)

0.19
(0.10, 0.27)

0.30
(0.22, 0.40)

0.26
(0.17, 0.34)

DSI1 0.01
(0.00, 0.04)

-0.04
(-0.13, 0.05)

0.16
(0.12, 0.20)

-0.15
(-0.23, -0.06)

0.17
(0.10, 0.24)

-0.01
(-0.10, 0.08)

DSI2 0.02
(0.00, 0.04)

-0.04
(-0.13, 0.05)

0.15
(0.11, 0.20)

-0.16
(-0.24, -0.07)

0.21
(0.14, 0.30)

-0.04
(-0.13, 0.04)

DSI3 0.01
(0.00, 0.04)

-0.03
(-0.12, 0.06)

0.13
(0.08, 0.19)

-0.14
(-0.23, -0.05)

0.20
(0.12, 0.30)

0.04
(-0.05, 0.13)

GNDVI 0.17
(0.13, 0.21)

0.30
(0.21, 0.38)

0.31
(0.23, 0.41)

0.18
(0.09, 0.26)

0.24
(0.15, 0.35)

0.27
(0.18, 0.35)

GYI1 0.02
(0.00, 0.04)

-0.05
(-0.14, 0.04)

0.15
(0.11, 0.19)

-0.16
(-0.25, -0.07)

0.20
(0.13, 0.29)

-0.03
(-0.12, 0.06)

GYI2 0.01
(0.00, 0.05)

0.18
(0.09, 0.27)

0.16
(0.11, 0.21)

-0.04
(-0.12, 0.05)

0.22
(0.15, 0.30)

0.27
(0.19, 0.36)

GYI3 0.13
(0.04, 0.23)

-0.13
(-0.22, -0.04)

0.14
(0.09, 0.19)

-0.16
(-0.25, -0.07)

0.19
(0.10, 0.29)

-0.03
(-0.12, 0.06)

LCI 0.24
(0.19, 0.31)

0.34
(0.26, 0.42)

0.16
(0.09, 0.24)

0.20
(0.12, 0.29)

0.44
(0.34, 0.57)

0.31
(0.22, 0.39)

MCARI 0.12
(0.09, 0.16)

0.15
(0.06, 0.24)

0.15
(0.04, 0.29)

0.02
(-0.07, 0.11)

0.27
(0.14, 0.41)

0.14
(0.05, 0.23)

NDRE 0.27
(0.20, 0.35)

0.34
(0.25, 0.41)

0.15
(0.07, 0.25)

0.19
(0.10, 0.27)

0.26
(0.14, 0.40)

0.20
(0.11, 0.28)

NDVI 0.14
(0.11, 0.18)

0.33
(0.24, 0.40)

0.17
(0.09, 0.27)

0.23
(0.14, 0.31)

0.64
(0.52, 0.78)

0.40
(0.32, 0.47)

NDVI680 0.13
(0.10, 0.17)

0.32
(0.24, 0.40)

0.00
(0.00, 0.10)

0.20
(0.11, 0.28)

0.57
(0.45, 0.71)

0.39
(0.32, 0.47)

NDVI705 0.30
(0.23, 0.38)

0.35
(0.27, 0.43)

0.21
(0.11, 0.33)

0.18
(0.09, 0.26)

0.38
(0.27, 0.52)

0.22
(0.13, 0.31)

NDWI 0.13
(0.10, 0.17)

0.32
(0.24, 0.40)

0.00
(0.00, 0.10)

0.20
(0.11, 0.28)

0.57
(0.45, 0.71)

0.39
(0.32, 0.47)

NIR / Green 0.20
(0.16, 0.25)

0.31
(0.23, 0.39)

0.41
(0.33, 0.50)

0.20
(0.11, 0.28)

0.33
(0.23, 0.46)

0.26
(0.17, 0.34)

NIR / Red 0.33
(0.26, 0.42)

0.32
(0.24, 0.40)

0.36
(0.28, 0.45)

0.29
(0.20, 0.37)

0.66
(0.54, 0.80)

0.40
(0.32, 0.47)

OSAVI 0.18
(0.14, 0.22)

0.31
(0.22, 0.39)

0.08
(0.00, 0.18)

0.06
(-0.03, 0.15)

0.24
(0.17, 0.32)

0.33
(0.25, 0.41)

PRI 0.11
(0.08, 0.15)

0.15
(0.06, 0.23)

0.08
(0.00, 0.20)

0.05
(-0.04, 0.14)

0.14
(0.04, 0.27)

0.17
(0.08, 0.25)

RE 0.23
(0.18, 0.30)

0.10
(0.01, 0.19)

0.40
(0.28, 0.53)

-0.08
(-0.17, 0.01)

0.56
(0.44, 0.70)

0.20
(0.11, 0.28)

RE3RE2 0.18
(0.13, 0.23)

0.32
(0.23, 0.39)

0.26
(0.16, 0.37)

0.16
(0.08, 0.25)

0.30
(0.20, 0.42)

0.17
(0.08, 0.26)

REDGE 0.24
(0.18, 0.30)

0.27
(0.18, 0.35)

0.38
(0.26, 0.51)

0.11
(0.02, 0.20)

0.56
(0.44, 0.70)

0.26
(0.18, 0.34)

REIP 0.05
(0.00, 0.14)

0.11
(0.02, 0.20)

0.11
(0.07, 0.16)

-0.02
(-0.11, 0.07)

0.25
(0.15, 0.37)

0.23
(0.15, 0.32)

RENDVI 0.17
(0.13, 0.22)

0.36
(0.28, 0.44)

0.21
(0.11, 0.33)

0.18
(0.09, 0.26)

0.38
(0.27, 0.52)

0.22
(0.13, 0.31)

reNDVI2 0.18
(0.14, 0.23)

0.36
(0.28, 0.44)

0.24
(0.15, 0.35)

0.18
(0.09, 0.27)

0.37
(0.26, 0.51)

0.21
(0.12, 0.29)

SAVI 0.02
(0.01, 0.04)

0.24
(0.16, 0.33)

0.05
(0.00, 0.11)

-0.01
(-0.10, 0.08)

0.18
(0.11, 0.26)

0.28
(0.20, 0.36)

SR1 0.28
(0.22, 0.35)

0.35
(0.26, 0.42)

0.16
(0.09, 0.24)

0.22
(0.13, 0.30)

0.54
(0.42, 0.67)

0.33
(0.25, 0.41)

SR680 0.33
(0.26, 0.41)

0.33
(0.25, 0.41)

0.34
(0.26, 0.43)

0.28
(0.20, 0.36)

0.62
(0.50, 0.75)

0.39
(0.31, 0.46)

SR705 0.17
(0.13, 0.21)

0.33
(0.24, 0.40)

0.32
(0.22, 0.44)

0.19
(0.10, 0.27)

0.58
(0.46, 0.72)

0.28
(0.20, 0.36)

SRWBI 0.01
(0.00, 0.03)

-0.07
(-0.16, 0.02)

0.08
(0.00, 0.23)

0.02
(-0.07, 0.11)

0.12
(0.05, 0.19)

-0.15
(-0.24, -0.07)

STI1 0.17
(0.12, 0.23)

-0.36
(-0.43, -0.28)

0.12
(0.05, 0.20)

-0.19
(-0.27, -0.10)

0.20
(0.10, 0.31)

-0.19
(-0.27, -0.10)

STI2 0.16
(0.09, 0.24)

-0.24
(-0.32, -0.15)

0.19
(0.11, 0.28)

-0.13
(-0.22, -0.04)

0.14
(0.06, 0.22)

-0.26
(-0.34, -0.17)

TCARI 0.21
(0.15, 0.28)

0.15
(0.06, 0.23)

0.11
(0.00, 0.24)

0.01
(-0.08, 0.10)

0.26
(0.14, 0.40)

0.13
(0.05, 0.22)

TCARI / OSAVI
0.16

(0.10, 0.24)
0.09

(0.00, 0.18)
0.12

(0.00, 0.26)
0.00

(-0.09, 0.09)
0.23

(0.11, 0.37)
0.09

(0.01, 0.18)

Average
0.15

(0.11, 0.20)
0.16

(0.08, 0.25)
0.18

(0.11, 0.27)
0.06

(-0.03, 0.14)
0.33

(0.23, 0.44)
0.17

(0.08, 0.25)

Growth Stage
V5 R3 R5
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Table 31. Broad sense heritability (H) on an entry-mean basis and phenotypic Pearson 
correlations coefficients (rp) with 95% confidence intervals by growth stage of spectral 
reflectance indices during the 2017-2018 water response experiment across irrigation 
treatments and environments 

Index H rp H rp H rp

CIVE
0.03

(0.02, 0.04)
-0.05

(-0.14, 0.03)
0.28

(0.21, 0.37)
-0.08

(-0.17, 0.01)
0.01

(0.00, 0.02)
-0.06

(-0.15, 0.03)

COM1 0.02
(0.01, 0.03)

0.12
(0.03, 0.21)

0.08
(0.02, 0.15)

-0.12
(-0.20, -0.03)

0.02
(0.00, 0.03)

0.09
(0.00, 0.18)

COM2 0.02
(0.01, 0.02)

0.03
(-0.06, 0.12)

0.35
(0.23, 0.50)

-0.14
(-0.23, -0.05)

0.12
(0.03, 0.23)

0.07
(-0.02, 0.16)

ExG 0.54
(0.46, 0.64)

0.04
(-0.05, 0.12)

0.44
(0.31, 0.58)

0.21
(0.13, 0.30)

0.14
(0.11, 0.19)

0.22
(0.13, 0.30)

ExGR 0.06
(0.04, 0.10)

0.17
(0.08, 0.25)

0.00
(0.00, 0.14)

-0.03
(-0.12, 0.06)

0.00
(0.00, 0.02)

-0.11
(-0.19, -0.02)

ExR 0.26
(0.22, 0.31)

-0.04
(-0.13, 0.05)

0.29
(0.24, 0.35)

-0.10
(-0.19, -0.01)

0.00
(0.00, 0.02)

-0.07
(-0.16, 0.02)

GRRI 0.04
(0.01, 0.08)

0.12
(0.03, 0.21)

0.10
(0.04, 0.17)

0.00
(-0.09, 0.09)

0.00
(0.00, 0.01)

-0.08
(-0.17, 0.01)

MExG 0.27
(0.22, 0.33)

0.07
(-0.02, 0.16)

0.21
(0.10, 0.34)

0.14
(0.05, 0.22)

0.23
(0.18, 0.30)

0.05
(-0.04, 0.14)

NDI 0.05
(0.02, 0.09)

0.13
(0.04, 0.22)

0.13
(0.07, 0.19)

-0.02
(-0.11, 0.07)

0.00
(0.00, 0.01)

-0.09
(-0.17, 0.00)

NGBDI 0.03
(0.02, 0.05)

0.14
(0.05, 0.23)

0.18
(0.13, 0.25)

-0.04
(-0.13, 0.05)

0.05
(0.03, 0.06)

0.15
(0.06, 0.23)

NGRDI 0.05
(0.02, 0.09)

0.13
(0.04, 0.22)

0.13
(0.07, 0.19)

-0.02
(-0.11, 0.07)

0.00
(0.00, 0.01)

-0.09
(-0.17, 0.00)

VARI 0.00
(0.00, 0.01)

-0.04
(-0.13, 0.05)

0.21
(0.12, 0.30)

-0.04
(-0.13, 0.05)

0.10
(0.07, 0.14)

-0.15
(-0.24, -0.07)

VDVI 0.06
(0.04, 0.08)

0.19
(0.10, 0.28)

0.15
(0.09, 0.22)

-0.02
(-0.11, 0.07)

0.02
(0.01, 0.03)

0.12
(0.03, 0.21)

VEG
0.03

(0.00, 0.06)
0.12

(0.03, 0.21)
0.13

(0.08, 0.20)
-0.03

(-0.12, 0.06)
0.01

(0.00, 0.01)
0.10

(0.01, 0.18)

Average
0.10

(0.08, 0.14)
0.08

(-0.01, 0.17)
0.19

(0.12, 0.28)
-0.02

(-0.11, 0.07)
0.05

(0.03, 0.08)
0.01

(-0.08, 0.10)

Growth Stage
V5 R3 R5



  

Table 32. Water productivity QTL identified by inclusive composite interval mapping (ICIM) by populatio
treatments and environments in 2017-2018 water response experiment 

Population Chromosome Position† Left Marker# Left Marker 
Allelesρ Right Marker# Right Marker

 Allelesρ LOD¶ PVE(%)§ Add. Effect‡ Left C

cM kg ha-1 mm-1 cM
UX3000 1 48.8 SGM01.4042298 G/A SGM01.39140734 G/A 3.77 9.2 0.66 41.3
UX3000 4 111.6 SGM04.47740685 C/T SGM04.48222393 A/G 4.64 8.0 -0.64 108.
UX3000 7 56.4 SGM07.5798679 T/C SGM07.10241187 A/G 7.12 11.1 0.98 50.9
UX3000 18 117.4 SGM18.48271736 T/C SGM18.53740575 G/A 3.86 6.8 0.56 100.
UX3000 19 21.0 SGM19.2418392 C/T SGM19.6458355 G/A 5.73 9.2 -0.68 15.5
UX3036 12 66.4 SGM12.34063256 G/A SGM12.35086789 A/G 2.62 3.6 -0.80 59.9
UX3036 19 36.4 SGM19.2418392 T/C SGM19.42257278 C/T 2.72 12.2 1.48 15.9
†Estimated QTL position in centimorgan units
# Downstream flanking SNP marker (LeftMarker) and upstream flanking SNP marker (RightMarker) of estimated QTL position
ρ Segregating alleles of marker. Listed as female allele / male allele parental line source
¶ Logarithm of the odds (LOD) score of estimated QTL position
§ Phenotypic variation explained by QTL at estimated position
± Estimated additive genetic effect of female derived QTL at estimated position (eg. UX3000 = U09-312115 x U11-614093, effect of QTL derived from U
614093 x LD02-4485). 
φLower (Left CI) and upper (Right CI) confidence interval calculated by one-LOD drop from estimated QTL position
τ Parental line containing estimated favorable effect QTL 



  

Table 33. Water productivity QTL identified by inclusive composite interval mapping (ICIM) by populatio
treatment across environments in 2017-2018 water response experiment 

Population Treatment Chromosome Position† Left Marker# Left Marker 
Allelesρ Right Marker# Right Marker

 Allelesρ LOD¶ PVE(%)§ Add. Effect‡ Le

cM kg ha-1 mm-1

UX3000 Rainfed 1 54.8 SGM01.4042298 G/A SGM01.39140734 G/A 3.11 6.7 0.48
UX3000 Irrigated 3 127.6 SGM03.39594385 C/A SGM03.45039348 C/T 3.05 5.3 0.53 1
UX3000 Rainfed 7 57.4 SGM07.10241187 A/G SGM07.13784462 G/T 4.75 10.8 0.83
UX3000 Rainfed 8 127.9 SGM08.36466450 A/C SGM08.40695313 G/A 4.32 8.3 -0.54 1
UX3000 Irrigated 19 19.0 SGM19.2418392 C/T SGM19.6458355 G/A 3.37 7.2 -0.59
UX3000 Rainfed 19 34.0 SGM19.32353405 C/T SGM19.34851394 G/A 3.39 6.5 -0.49
UX3036 Rainfed 12 69.4 SGM12.34063256 G/A SGM12.35086789 A/G 2.96 8.7 -0.89
UX3036 Irrigated 19 30.4 SGM19.2418392 T/C SGM19.42257278 C/T 3.54 8.7 1.31
†Estimated QTL position in centimorgan units
# Downstream flanking SNP marker (LeftMarker) and upstream flanking SNP marker (RightMarker) of estimated QTL position
ρ Segregating alleles of marker. Listed as female allele / male allele parental line source
¶ Logarithm of the odds (LOD) score of estimated QTL position
§ Phenotypic variation explained by QTL at estimated position
± Estimated additive genetic effect of female derived QTL at estimated position (eg. UX3000 = U09-312115 x U11-614093, effect of QTL derived from U09-312115
LD02-4485). 
φLower (Left CI) and upper (Right CI) confidence interval calculated by one-LOD drop from estimated QTL position
τ Parental line containing estimated favorable effect QTL 
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Table 34. Water productivity QTL identified by inclusive composite interval 
mapping (ICIM) by population across irrigation treatments and environments in 
2017-2018 water response experiment; QTL Trait Identifier lists trait names of 
QTL with overlapping genetic confidence intervals identified by population and 
irrigation treatment across environments in 2017-2018 water response experiment 

 
 

 

 

 

 

 

 

 

 

Population Chromosome Position† QTL Trait Identifier# 

cM

UX3000 1 48.8

UX3000_17YIELD, UX3000_17WP, UX3000_YIELD_2, 
UX3000_WP_2, UX3000_V5ExR, UX3000_V5ExR.Homogeneity,
UX3000_V5H.Homogeneity, UX3000_R5SR705,
UX3000_1618YIELD, UX3036_R5

UX3000 4 111.6 UX3000_YIELD,  UX3000_RWP, UX3000_17WP, UX3000_YIELD_2, 
UX3000_WP_2, UX3000_R5r.g.Energy, UX3000_1618YIELD

UX3000 7 56.4 UX3000_YIELD,  UX3000_RWP, UX3000_17WP, UX3000_YIELD_1,
UX3000_YIELD_2, UX3000_WP_2, UX3000_YIELD_1618

UX3000 18 117.4
UX3000_SW, UX3000_18WP, UX3000_WP_1, UX3000_R1, 
UX3000_R5H, UX3000_R5S, UX3000_R5r.g.Homogeneity,
UX3000_R5NGBDI.Energy, UX3000_R5VDVI.Homogeneity

UX3000 19 21.0

UX3000_YIELD,  UX3000_17WP, UX3000_WP_1, UX3000_RWP_1, 
UX3000_V5g, UX3000_V5g.b, UX3000_V5a., 
UX3000_V5ExGR.Contrast, UX3000_V5ExGR.Energy, 
UX3000_V5ExGR.Homogeneity, UX3000_R5SR680,
UX3000_R5NIRRed, UX3000_1618YIELD, UX3000_1618R8

UX3036 12 66.4 UX3036_18WP,UX3036_YIELD,  UX3036_YIELD_2, UX3036_WP_2, UX3036_R5Cr.Correlation

UX3036 19 36.4

UX3036_18YIELD, UX3036_18WP, UX3036_YIELD,  UX3036_HT, UX3036_YIELD_1, 
UX3036_LG, UX3036_WP_1, 
UX3036_RWP_1, UX3036_R3g.Contrast, UX3036_R3g.Homogeneity,
UX3036_R3ExG.Homogeneity, UX3036_R3R935_7, UX3036_R3R936, 
UX3036_R3R936_3, UX3036_R3R937_8, UX3036_R3R939, 
UX3036_R3R939_3, UX3036_R3R940_2, UX3036_R3R940_5, 
UX3036_R3R940_7, UX3036_R3R941, UX3036_R3R941_3, 
UX3036_R3R942_5, UX3036_R3R944, UX3036_R3R945_2, UX3036_R3R945_7, 
UX3036_R3R946_3, UX3036_R3R947_2, UX3036_R3R947_8, 
UX3036_R3R948_7, UX3036_R3R949_3, UX3036_R3NIRGreen

†Estimated QTL position in centimorgan units
# List QTL traits identified in 2017-2018 water response experiment with estimated genetic position within confidence interval 
estimated for corresponding water productivity QTL. Trait identifier in the following general format 
POPULATION_TRAIT_TREATMENT; traits without treatment listed represent response across treatments
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Table 35. Water productivity QTL identified by inclusive composite interval 
mapping (ICIM) by population across irrigation treatment and environments in 
2017-2018 water response experiment; SoyBase QTL Trait Identifier list unique 
object types of reported QTL with estimated positions within confidence interval of 
corresponding water productivity QTL  

 

 
 

 

 

 

 

 

 

Population Chromosome Position† Soybase QTL Trait Identifier#

cM

UX3000 1 48.8
Bean pyralid, First flower, Lodging, Node number, Plant height, Pod 
wall weight, Reproductive to vegetative period ratio, Seed oil, Seed 
set, Seed weight, shoot weight

UX3000 4 111.6

Phosphorus use efficiency,  Plant height, Plant dry weight, Pod 
number, Root weight, SDS disease incidence, SDS disease index, 
Seed coat cracking, Seed daidzein, Seed height, Seed isoflavone, 
Seed length, Seed protein, Seed weight, Seed width

UX3000 7 56.4

Canopy height, Common cutworm, Corn earworm,  First flower, 
Leaflet area, Leaflet chlorophyll,  Pod maturity, Pubescence density, 
Root nodule weight, dry, Root volume, Row spacing response, Seed 
fill, Seed genistein, Seed oil, Seed oleic, Seed protein, Seed set, Seed 
thicknes, Seed width, Seed yield

UX3000 18 117.4 SCN 

UX3000 19 21.0 Pod dehiscence, Pod number, Root length, Seed oil, Seed protein, 
Shoot weight

UX3036 12 66.4 Fe effic, Hypocotyl weight, Pod borer, 
Seed isoflavone, Seed linolenic, Seed oil 

UX3036 19 36.4

Al tolerance, Flood tolerance, Plant height, Pod number, 
Root density, Row spacing response, Seed genistein, Seed 
isoflavone, Seed length to width ratio, Seed linolenic, Seed oil, Seed 
protein, Seed set, Seed sucrose, Seed total isoflavone, Seed weight, 
Shoot weight

†Estimated QTL position in centimorgan units
# List unique SoyBase QTL object types with estimated genetic position within confidence interval 
estimated for corresponding water productivity QTL. Retrived from https://soybase.org/dlpages/
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Table 36. Summary of water productivity LSMEANS ENET algorithm models over 
irrigation treatments with observed to predicted Pearson correlation coefficients (r) 
estimated through CV1 scheme; root mean square error (RMSE), mean absolute 
error (MAE) and data subset size (n) reported 

 

Population† Growth Stage# Year Subset* r RMSE MAE n
kg ha-1 mm-1 kg ha-1 mm-1

Overall V5 2017-2018
0.67

 (0.57, 0.77) 0.67 0.51 442

UX3000 V5 2017-2018 0.75
 (0.69, 0.81)

0.54 0.41 239

UX3036 V5 2017-2018 0.63
 (0.54, 0.72)

0.82 0.63 203

Overall R5 2017-2018 0.72
 (0.66, 0.77)

0.66 0.51 442

UX3000 R5 2017-2018 0.67
 (0.60, 0.75)

0.58 0.45 239

UX3036 R5 2017-2018 0.81
 (0.74, 0.88)

0.65 0.50 203

Overall V5 + R5 2017-2018 0.72
 (0.67, 0.77)

0.67 0.52 442

UX3000 V5 + R5 2017-2018 0.79
 (0.74, 0.84)

0.52 0.40 239

UX3036 V5 + R5 2017-2018 0.73
 (0.67, 0.79)

0.66 0.52 203

Overall V5 2016 - 2018 0.54
 (0.50, 0.58)

1.04 0.81 845

UX3000 V5 2016 - 2018 0.79
 (0.74, 0.85)

0.48 0.37 239

UX3036 V5 2016 - 2018 0.64
 (0.57, 0.72)

0.77 0.59 203

Overall R5 2016 - 2018 0.65
 (0.62, 0.68)

0.93 0.74 845

UX3000 R5 2016 - 2018 0.73
 (0.64, 0.82)

0.54 0.43 239

UX3036 R5 2016 - 2018 0.75
 (0.69, 0.81)

0.69 0.53 203

Overall V5 + R5 2016 - 2018 0.55
 (0.52, 0.59)

1.03 0.83 845

UX3000 V5 + R5 2016 - 2018 0.76
 (0.70, 0.83)

0.48 0.37 239

UX3036 V5 + R5 2016 - 2018
0.77

 (0.72, 0.82) 0.67 0.52 203

† Population subset; Overall denotes observations from both populations considered 
together
# Growth stages of phenomic data (e.g. V5 + R5 indicates phenomic data from both V5 
and R5 data collection events were included)
*Year subset used (2016-2018 indicates observations from both the 2016 preliminary 
evaluation experiment and the 2017-2018 water response experiment, 2017-2018 indicates 
observations from the water response experiment)
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Table 37. Summary of per-plot water productivity NET algorithm models using 
2017-2018 water response experiment observations; observed to predicted Pearson 
correlation coefficients (r) estimated through CV1 scheme, and root mean square 
error (RMSE), mean absolute error (MAE) and data subset size (n) reported  

 

Population† Growth Stage# Treatment* r RMSE MAE n
kg ha-1 mm-1 kg ha-1 mm-1

Overall R5 Irrigated
0.86

(0.85, 0.88) 0.43 0.34 2956

Overall R5 Overall 0.90
(0.90, 0.91)

0.47 0.37 5921

Overall R5 Rainfed 0.91
(0.90, 0.92)

0.47 0.37 2965

Overall V5 Irrigated 0.87
(0.86, 0.88)

0.45 0.35 4406

Overall V5 Overall 0.93
(0.92, 0.93)

0.49 0.38 8804

Overall V5 Rainfed 0.93
(0.93, 0.93)

0.50 0.39 4398

Overall V5 + R5 Irrigated 0.90
(0.88, 0.91)

0.42 0.33 2012

Overall V5 + R5 Overall 0.91
(0.91, 0.91)

0.50 0.39 18746

Overall V5 + R5 Rainfed 0.92
(0.92, 0.93)

0.48 0.37 2009

UX3000 R5 Overall 0.92
(0.91, 0.92)

0.44 0.33 2936

UX3000 V5 Overall 0.94
(0.94, 0.94)

0.44 0.34 4362

UX3000 V5 + R5 Irrigated 0.89
(0.88, 0.89)

0.41 0.32 4665

UX3000 V5 + R5 Overall 0.92
(0.92, 0.93)

0.47 0.36 9326

UX3000 V5 + R5 Rainfed 0.94
(0.94, 0.94)

0.45 0.35 4661

UX3036 R5 Overall 0.89
(0.88, 0.90)

0.48 0.38 2493

UX3036 V5 Overall 0.93
(0.92, 0.93)

0.49 0.39 3708

UX3036 V5 + R5 Irrigated 0.87
(0.87, 0.88)

0.45 0.35 3933

UX3036 V5 + R5 Overall 0.91
(0.91, 0.91)

0.51 0.40 7874

UX3036 V5 + R5 Rainfed
0.92

(0.92, 0.93) 0.51 0.40 3941

† Population subset; Overall denotes observations from both populations considered 
together
# Growth stages of phenomic data (e.g. V5 + R5 indicates phenomic data from both V5 
and R5 data collection events were included)
*Irrigation treatment subset used (Overall indicates observations from both treaments 
used, rainfed denotes observations from only rainfed treatment observed, irrigated 
indicates observations from only the irrigated treatment used)
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Table 38. Summary of per-plot water productivity CART algorithm models using 
2017-2018 water response experiment observations; observed to predicted Pearson 
correlation coefficients (r) estimated through CV1 scheme, and root mean square 
error (RMSE), mean absolute error (MAE) and data subset size (n) reported  

 

Population† Growth Stage# Treatment* r RMSE MAE n
kg ha-1 mm-1 kg ha-1 mm-1

Overall R5 Irrigated
0.80

(0.79, 0.81) 0.52 0.41 2956

Overall R5 Overall 0.86
(0.86, 0.87)

0.55 0.42 5921

Overall R5 Rainfed 0.86
(0.85, 0.88)

0.58 0.44 2965

Overall V5 Irrigated 0.83
(0.83, 0.83)

0.50 0.39 4406

Overall V5 Overall 0.91
(0.91, 0.92)

0.53 0.40 8804

Overall V5 Rainfed 0.91
(0.90, 0.92)

0.56 0.43 4398

Overall V5 + R5 Irrigated 0.82
(0.81, 0.83)

0.55 0.43 2012

Overall V5 + R5 Overall 0.95
(0.95, 0.95)

0.39 0.29 18746

Overall V5 + R5 Rainfed 0.87
(0.86, 0.88)

0.63 0.49 2009

UX3000 R5 Overall 0.89
(0.88, 0.90)

0.51 0.39 2936

UX3000 V5 Overall 0.92
(0.92, 0.93)

0.49 0.37 4362

UX3000 V5 + R5 Irrigated 0.91
(0.91, 0.92)

0.36 0.27 4665

UX3000 V5 + R5 Overall 0.95
(0.95, 0.96)

0.37 0.28 9326

UX3000 V5 + R5 Rainfed 0.96
(0.95, 0.96)

0.38 0.28 4661

UX3036 R5 Overall 0.84
(0.83, 0.86)

0.58 0.45 2493

UX3036 V5 Overall 0.90
(0.90, 0.91)

0.57 0.44 3708

UX3036 V5 + R5 Irrigated 0.91
(0.90, 0.91)

0.39 0.29 3933

UX3036 V5 + R5 Overall 0.95
(0.94, 0.95)

0.41 0.30 7874

UX3036 V5 + R5 Rainfed
0.95

(0.95, 0.95) 0.42 0.31 3941

† Population subset; Overall denotes observations from both populations considered 
together
# Growth stages of phenomic data (e.g. V5 + R5 indicates phenomic data from both V5 
and R5 data collection events were included)
*Irrigation treatment subset used (Overall indicates observations from both treaments 
used, rainfed denotes observations from only rainfed treatment observed, irrigated 
indicates observations from only the irrigated treatment used)
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Table 39. Summary of water productivity on a per-plot basis CART algorithm 
model using 2017-2018 water response experiment observations; observed to 
predicted Pearson correlation coefficients (r) estimated through CV2 scheme, and 
root mean square error (RMSE), mean absolute error (MAE) and data subset size 
(n) reported 

 

Population† Growth Stage# Treatment± r RMSE MAE n

kg ha-1 mm-1 kg ha-1 mm-1

Overall R5 Irrigated
0.73

(0.71, 0.75) 2.38 1.81 2956

Overall R5 Overall 0.82
(0.77, 0.86)

1.68 1.30 5921

Overall R5 Rainfed 0.76
(0.67, 0.84)

1.90 1.47 2965

Overall V5 Irrigated 0.77
(0.75, 0.79)

2.13 1.63 4406

Overall V5 Overall 0.84
(0.80, 0.88)

1.52 1.18 8804

Overall V5 Rainfed 0.76
(0.67, 0.84)

2.03 1.60 4398

Overall V5 + R5 Irrigated 0.82
(0.80, 0.84)

1.92 1.46 2012

Overall* V5 + R5 Overall 18746

Overall V5 + R5 Rainfed 0.73
(0.63, 0.83)

2.15 1.64 2009

UX3000 R5 Overall 0.74
(0.64, 0.83)

1.98 1.55 2936

UX3000 V5 Overall 0.78
(0.68, 0.87)

2.03 1.60 4362

UX3000 V5 + R5 Irrigated 0.71
(0.67, 0.74)

2.23 1.75 4665

UX3000 V5 + R5 Overall 0.79
(0.72, 0.86)

1.90 1.50 9326

UX3000 V5 + R5 Rainfed 0.70
(0.49, 0.90)

2.35 1.88 4661

UX3036 R5 Overall 0.78
(0.64, 0.91)

1.93 1.53 2493

UX3036 V5 Overall 0.79
(0.64, 0.93)

1.73 1.38 3708

UX3036 V5 + R5 Irrigated 0.72
(0.64, 0.79)

2.55 2.03 3933

UX3036 V5 + R5 Overall 0.79
(0.65, 0.94)

1.88 1.50 7874

UX3036 V5 + R5 Rainfed
0.71

(0.49, 0.93) 2.00 1.55 3941

† Population subset; Overall denotes observations from both populations considered 
together
# Growth stages of phenomic data (e.g. V5 + R5 indicates phenomic data from both V5 
and R5 data collection events were included)
±Irrigation treatment subset used (Overall indicates observations from both treaments 
used, rainfed denotes observations from only rainfed treatment observed, irrigated 
indicates observations from only the irrigated treatment used)
*No untested subsets to evaluated overall model performance using V5 + R5 stages 
through CV2 method
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Table 40. Summary of per-plot water productivity NET algorithm models using 
2017-2018 water response experiment observations; observed to predicted Pearson 
correlation coefficients (r) estimated through CV2 scheme, and root mean square 
error (RMSE), mean absolute error (MAE) and data subset size (n) reported 

 

Population† Growth Stage# Treatment± r RMSE MAE n
kg ha-1 mm-1 kg ha-1 mm-1

Overall R5 Irrigated
0.25

(0.15, 0.35) 5.54 4.67 2956

Overall R5 Overall 0.54
(0.45, 0.64)

6.75 5.92 5921

Overall R5 Rainfed 0.34
(0.18, 0.49)

4.35 3.42 2965

Overall V5 Irrigated 0.37
(0.20, 0.55)

4.59 3.52 4406

Overall V5 Overall 0.80
(0.76, 0.84)

1.95 1.56 8804

Overall V5 Rainfed 0.58
(0.50, 0.67)

5.57 4.65 4398

Overall V5 + R5 Irrigated 0.40
(0.28, 0.52)

4.29 3.45 2012

Overall* V5 + R5 Overall 18746

Overall V5 + R5 Rainfed 0.75
(0.72, 0.78)

2.05 1.61 2009

UX3000 R5 Overall 0.80
(0.75, 0.86)

1.92 1.49 2936

UX3000 V5 Overall 0.36
(0.22, 0.50)

4.68 3.61 4362

UX3000 V5 + R5 Irrigated 0.56
(0.46, 0.65)

4.79 4.11 4665

UX3000 V5 + R5 Overall 0.77
(0.73, 0.81)

2.62 2.10 9326

UX3000 V5 + R5 Rainfed 0.79
(0.72, 0.86)

2.17 1.74 4661

UX3036 R5 Overall 0.89
(0.88, 0.90)

1.74 1.44 2493

UX3036 V5 Overall 0.54
(0.46, 0.63)

6.27 5.27 3708

UX3036 V5 + R5 Irrigated 0.64
(0.55, 0.73)

5.46 4.55 3933

UX3036 V5 + R5 Overall 0.74
(0.71, 0.78)

2.26 1.80 7874

UX3036 V5 + R5 Rainfed
0.74

(0.70, 0.77) 2.34 1.86 3941

† Population subset; Overall denotes observations from both populations considered 
together
# Growth stages of phenomic data (e.g. V5 + R5 indicates phenomic data from both V5 
and R5 data collection events were included)
±Irrigation treatment subset used (Overall indicates observations from both treaments 
used, rainfed denotes observations from only rainfed treatment observed, irrigated 
indicates observations from only the irrigated treatment used)
*No untested subsets to evaluated overall model performance using V5 + R5 stages 
through CV2 method
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FIGURES 

Figure 1. Least square mean estimations of parental lines for the study under 
limited and full irrigation treatments from 2013-2014 Chile drip and Lincoln 
campus irrigation evaluation 

 

 

 

 

 

 

 

 

Limited# Full# 

Parent Yield Yield nφ

kg ha-1 kg ha-1

LD02-4485 4484 ± 321 5217 ± 591 14
U11-614093 4708 ± 321 6361± 591 14
U09-312115 4537 ± 321 5938 ± 591 14

Irrigation Treatment

* indicates difference from U11-614093 significance at α = 0.05
#Irrigation treatments for previous studies defience as limited = 60% of evapotranspriation demands 
replaced, and full = 90% of evapotranspiration demands replaced
φSubset count
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Figure 2. Mead 2018 water response experiment field layout and experimental 
design. Maturity grouping and irrigation treatment denoted below each tier. 
Incomplete blocks outlined in black within each maturity group and irrigation 
treatment tier. Parental lines of population and random sampling of RILs within 
each population placed randomly within each incomplete block. Maturity group 
placement, irrigation treatment, incomplete block placement, and plot placement 
randomized for each year, location, treatment, and replication. 
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Figure 3. t-distributed stochastic neighbor embedding dimensionality reduction on 
SNP markers information for RILs and parental lines 
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Figure 4. Comparison of genetic map created through Haldane’s mapping function 
versus genetic map created using SNP genetic positon interpolation from 
Wm82.a2.v2 reference genome for the UX3000 population 
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Figure 5. Comparison of genetic map created through Haldane’s mapping function 
versus genetic map created using SNP genetic positon interpolation from 
Wm82.a2.v2 reference genome for the UX3036 population 
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Figure 6. Genetic map of UX3000 population used for QTL mapping from 
Wm82.a2.v2 reference genome interpolation 
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Figure 7. Genetic map of UX3036 population used for QTL mapping from 
Wm82.a2.v2 reference genome interpolation 
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Figure 8. Pubescence color segregation ratio interpolated from hilum color in 
UX3036 population compared to the expected 9:7 segregation ratio through Chi-
square test. 
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Figure 9. Estimated QTL position of pubescence color trait in UX3036 population 
compared to reported position of T locus on SoyBase; QTL position estimated 
through inclusive composite interval mapping.    
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Figure 10. Violin plot of water productivity least square mean estimate (LSMEANS) 
distributions for RILs and parental lines in the 2017- 2018 water response 
experiment across environments and irrigation treatments. ANOVA p-value 
represents significance of population effect. Means based on two populations in each 
of two environments per year for two years. Number of RILs equal to 235 in the 
UX3000 populations and 203 in the UX3036 population.   
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Figure 11. SoyWater water use chart representing irrigated treatments of the 3.0 
maturity grouping within the 2017 Mead environment of the 2017-2018 water 
response experiment   
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Figure 12. SoyWater water use chart representing rainfed treatments of the 3.0 
maturity grouping within the 2017 Mead environment of the 2017-2018 water 
response experiment   
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Figure 13. SoyWater water use chart representing irrigated treatments of the 3.0 
maturity grouping within the 2018 Mead environment of the 2017-2018 water 
response experiment   
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Figure 14. SoyWater water use chart representing rainfed treatments of the 3.0 
maturity grouping within the 2018 Mead environment of the 2017-2018 water 
response experiment   
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Figure 15. SoyWater water use chart representing irrigated treatments of the 3.0 
maturity grouping within the 2017 Lincoln environment of the 2017-2018 water 
response experiment   
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Figure 16. SoyWater water use chart representing rainfed treatments of the 3.0 
maturity grouping within the 2017 Lincoln environment of the 2017-2018 water 
response experiment   
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Figure 17. SoyWater water use chart representing irrigated treatments of the 3.0 
maturity grouping within the 2018 Lincoln environment of the 2017-2018 water 
response experiment   
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Figure 18. SoyWater water use chart representing rainfed treatments of the 3.0 
maturity grouping within the 2018 Lincoln environment of the 2017-2018 water 
response experiment  
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Figure 19. Correlogram of agronomic means of 2017-2018 water response 
experiment across populations, environments and irrigation treatments. Number 
values represent Pearson correlation coefficients. Values graphically represented 
through color shading. Non-significant (α > 0.05) pairwise relationships crossed-out. 

 

 

 

 

 

 

 



152 
 

 

Figure 20. Correlogram of agronomic means of 2017-2018 water response 
experiment within the UX3000 population across environments and irrigation 
treatments. Pearson correlation coefficients graphically represented through color 
shading. Non-significant (α > 0.05) pairwise relationships crossed-out. 
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Figure 21. Correlogram of agronomic means of 2017-2018 water response 
experiment within the UX3036 population across environments and irrigation 
treatments. Pearson correlation coefficients graphically represented through color 
shading. Non-significant (α > 0.05) pairwise relationships crossed-out. 
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Figure 22. Correlogram of least square means 2017-2018 water response experiment 
across populations, environments and irrigation treatments. Number values 
represent Pearson correlation coefficients. Values graphically represented through 
color shading. Non-significant (α > 0.05) pairwise relationships crossed-out. 
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Figure 23. Correlogram of least square means of 2017-2018 water response 
experiment within the UX3000 population across environments and irrigation 
treatments. Number values represent Pearson correlation coefficients. Pearson 
correlation coefficients graphically represented through color shading. Non-
significant (α > 0.05) pairwise relationships crossed-out. 
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Figure 24. Correlogram of least square means of 2017-2018 water response 
experiment within the UX3036 population across environments and irrigation 
treatments. Number values represent Pearson correlation coefficients. Pearson 
correlation coefficients graphically represented through color shading. Non-
significant (α > 0.05) pairwise relationships crossed-out. 
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Figure 25. Red green and blue digital image channels relationship with growth stage 
at time of phenotyping and broad sense heritability and 95% confidence intervals 
on an entry mean basis during 2017-2018 water response experiment across 
populations, environments, and irrigation treatments 
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Figure 26. Water productivity least square means quartile group average and 95% 
confidence interval of spectral wavelength least square means across environments, 
populations, and irrigation treatments during the 2017-2018 water response 
experiment collected at the V5 growth stage; broad sense heritability on an entry 
mean basis of spectral wavelengths indicated through dark grey bars 
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Figure 27. Water productivity least square means quartile group average and 95% 
confidence interval of spectral wavelength least square means across environments, 
populations, and irrigation treatments during the 2017-2018 water response 
experiment collected at the R5 growth stage; broad sense heritability on an entry 
basis of spectral wavelengths indicated through dark grey bars 
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Figure 28. Manhattan plot for UX3000 population considering least square means of 
water productivity over environments and irrigation treatments (Overall), over 
environments within the irrigated treatment (Irrigated), and over environments 
within the rainfed treatment (Rainfed) during the 2017-2018 water response 
experiment 
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Figure 29. Manhattan plot for UX3036 population considering least square means of 
water productivity over environments and irrigation treatments (Overall), over 
environments within the irrigated treatment (Irrigated), and over environments 
within the rainfed treatment (Rainfed) during the 2017-2018 water response 
experiment 
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Figure 30. Summary of 2,319 unique phenomic trait QTL by growth stage and 
population across irrigation treatments and environments during the 2017-2018 
water response experiment  
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Figure 31. Identified water productivity QTL across irrigation treatments and 
environments during the 2017-2018 water response experiment heatmap and 
hierarchical clustering dendrogram to phenomic trait categories. WP QTL specified 
in the following format: POPUALATION_CHROMOSOME. Count data of 
categories with overlapping genetic position confidence intervals was normalized 
and used for construction of both heatmap and dendrogram. Values represent 
relative portion of category overlapping (e.g. 1.00 represents all overlapping QTL 
fall one specified category). Dendrogram on left of figure represents relative 
similarity of QTL in relationship to ratios of overlapping QTL categories. 
Categories of individual traits listed in appendix 7.  
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Figure 32. Identified water productivity QTL across irrigation treatments and 
environments during the 2017-2018 water response experiment heatmap and 
hierarchical clustering dendrogram to reported QTL object type categories on 
Soybase (soybase.org). WP QTL specified in the following format: 
POPUALATION_CHROMOSOME. Count data of reported QTL’s object type 
with overlapping genetic position confidence intervals was normalized and used for 
construction of both heatmap and dendrogram. Values represent relative portion of 
object type overlapping (e.g. 1.00 represents all overlapping QTL fall one specified 
object type). Dendrogram on left of figure represents relative similarity of QTL in 
relationship to ratios of overlapping Soybase QTL object types available at 
soybase.org 
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Figure 33. Regression coefficients of generalized linear regression with elastic net 
regulation (ENET) model variables by population using least square means 
(LSMEANS) of water productivity across environments and irrigation treatments 
during 2017-2018 water response experiment in combination with genomic data and 
phenomic data collected at the V5 growth stage; flanking SNP markers of detected 
WP QTL indicated with orange dot 
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Figure 34. Regression coefficients of generalized linear regression with elastic net 
regulation (ENET) model variables by population using least square means 
(LSMEANS) of water productivity across environments and irrigation treatments 
during 2017-2018 water response experiment in combination with genomic data and 
phenomic data collected at the R5 growth stage; flanking SNP markers of detected 
WP QTL indicated with orange dot 
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Figure 35. Predicted to observed Pearson correlation coefficient estimations and 
95% confidence intervals of generalized linear regression with elastic net regulation 
(ENET) model over phenomic data collection growth stages and data subsets across 
environments and irrigation treatments in the 2017-2018 water response experiment 
using CV1 scheme. Date set type indicated on upper margin and growth stage 
relative to phenomic data collection on right hand margin.  
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Figure 36. Predicted to observed Pearson correlation coefficient estimations and 
95% confidence intervals of generalized linear regression with elastic net regulation 
(ENET) model over phenomic data collection growth stages, populations, 
environments and irrigation treatments in the 2017-2018 water response experiment 
using CV2 scheme.  
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Figure 37. Relative predictor importance estimations and 95% confidence intervals 
estimated from interaction curvature method and CART algorithm from plot data 
of 2017-2018 water response experiment within the UX3000 population. Growth 
stage relative to phenomic data collection variables indicated in upper plot margin. 
Categories of individual traits listed in appendix 7. 
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Figure 38. Relative predictor importance estimations and 95% confidence intervals 
estimated from interaction curvature method and CART algorithm from plot data 
of 2017-2018 water response experiment within the UX3036 population. Growth 
stage relative to phenomic data collection variables indicated in upper plot margin.  
Categories of individual traits listed in appendix 7. 
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APPENDIX 

1. Image Processing Script 
TotalnoImage = height(allresults); 
srepath = 'D:\Box Sync\Dissertation\Drought Project Phenotyping 
Data\2018\SC R5\SC R5 3.0\'; 
  
 IndicesAllFile = ["Area", "AreaVar", "Perimeter","PF", 
"MinoxAxisLength", "ConvexArea",  "EquivDiameter", "Solidity", 
"Extent", "FilledArea", "Orientation","R","G","B","r","g","b","r-g","g-
b","(g-b)/(r-
g)","INT","GRRI","NDI","NGRDI","NGBDI","VARI","VDVI","CIVE","TGI","VEG"
,"MExG","ExG","ExR","ExGR","COM1","COM2","X","Y","Z","L*","a*","b*","b*
/a*","H","S","V","RF","YF","GF","CF","BF","MF","RGF","Y'","Cb","Cr",]; 
IndicesTextureFile = ["R","G","B","r","g","b","r-g","g-b","(g-b)/(r-
g)","INT","GRRI","NDI","NGRDI","NGBDI","VARI","VDVI","CIVE","TGI","VEG"
,"MExG","ExG","ExR","ExGR","COM1","COM2","X","Y","Z","L*","a*","b*","b*
/a*","H","S","V","Y'","Cb","Cr",]; 
for t = 1:38 
    ContrastIndexName = strcat(string(IndicesTextureFile(t)),' 
Contrast'); 
    CorrelationIndexName = strcat(string(IndicesTextureFile(t)),' 
Correlation'); 
    EnergyIndexName = strcat(string(IndicesTextureFile(t)),' Energy'); 
    HomogeneityIndexName = strcat(string(IndicesTextureFile(t)),' 
Homogeneity'); 
    IndicesAllFile(1,53+4*t) = ContrastIndexName; 
    IndicesAllFile(1,54+4*t) = CorrelationIndexName; 
    IndicesAllFile(1,55+4*t) = EnergyIndexName; 
    IndicesAllFile(1,56+4*t) = HomogeneityIndexName; 
end   
IndicesAllFile(1,209) = 'Gray Contrast'; 
IndicesAllFile(1,210) = 'Gray Correlation'; 
IndicesAllFile(1,211) = 'Gray Energy'; 
IndicesAllFile(1,212) = 'Gray Homogeneity'; 
IndicesColorWorkspace = 
["R","G","B","r","g","b","rg","gb","gbrg","INT","GRRI","NDI","NGRDI","N
GBDI","VARI","VDVI","CIVE","TGI","VEG","MExG","ExG","ExR","ExGR","COM1"
,"COM2","X","Y","Z","Lasterisk","aasterisk","basterisk","basteriskaaste
risk","H","S","V","RF","YF","GF","CF","BF","MF","RGF","YPrime","Cb","Cr
",]; 
IndicesTextureWorkspace = 
["R","G","B","r","g","b","rg","gb","gbrg","INT","GRRI","NDI","NGRDI","N
GBDI","VARI","VDVI","CIVE","TGI","VEG","MExG","ExG","ExR","ExGR","COM1"
,"COM2","X","Y","Z","Lasterisk","aasterisk","basterisk","basteriskaaste
risk","H","S","V","YPrime","Cb","Cr",]; 
  
for i = 1:TotalnoImage 
     
BW_out = allresults.output{i,1};   
BW_out = bwpropfilt(BW_out, 'Area', [2500 + eps(2500), Inf]); 
I = imread(allresults.fileName{i,1}); 
  
maskedImage = I; 
maskedImage(repmat(~BW_out,[1 1 3])) = 0; 
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        % Get properties for thresholded image. 
            properties = regionprops(BW_out, {'Area', 'ConvexArea', 
'Perimeter','MinorAxisLength', 'EquivDiameter', 'Solidity', 'Extent', 
'FilledArea', 'Orientation'}); 
  
            properties = struct2table(properties); 
  
                Area = sum(properties.Area); 
                AreaVar = var(properties.Area); 
                ConvexArea = sum(properties.ConvexArea); 
                AreaFilled = sum(properties.FilledArea); 
                Perimeter = sum(properties.Perimeter); 
                MinorAxisLength = max(properties.MinorAxisLength); 
                EqivDiameter = mean(properties.EquivDiameter); 
                Solidity = mean(properties.Solidity); 
                Extent = mean(properties.Extent); 
                [row,column] = size(BW_out); 
                PF = Area/row/column; 
                Orientation = mean(properties.Orientation);  
                 
              % R,G,B 
            R = maskedImage(:,:,1); 
            G = maskedImage(:,:,2); 
            B = maskedImage(:,:,3); 
             
            % r,g,b,r-g,g-b,(g-b)/(r-g) 
            RN = R/255; 
            GN = G/255; 
            BN = B/255; 
            r = RN./(RN+GN+BN); 
            g = GN./(RN+GN+BN); 
            b = BN./(RN+GN+BN); 
            rg = r-g; 
            gb = g-b; 
            gbrg = (g-b)./(r-g); 
  
           % 
INT,GRRI,NDI,NGRDI,NGBDI,VARI,VDVI,CIVE,TGI,VEG,MExG,ExG,ExR,ExGR,COM1,
COM2, 
            INT = (R+G+B)/3; 
            GRRI = G./R; 
            NDI = 128*((G-R)./(G+R)+1); 
            NGRDI = (G-R)./(G+R); 
            NGBDI = (G-B)./(G+B); 
            VARI = (G-R)./(G+R-B); 
            VDVI = (2*G-B-R)./(2*G+B+R); 
            CIVE = 0.441*R-0.811*G+0.385*B+18.78745; 
            TGI = -0.5*((670-480)*(R-G)-(670-550)*(R-B)); 
            VEG = 
uint8(double(G)./((double(R).^0.667).*(double(B).^0.333))); 
            MExG = 1.262*G-0.884*R-0.311*B; 
            ExG = 2*g-r-b; 
            ExR = 1.3*R-G; 
            ExGR = ExG-ExR; 
            COM1 = ExG+CIVE+ExGR+VEG; 
            COM2 = 0.36*ExG+0.47*CIVE+0.17*VEG; 
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            maskedImage = uint8(maskedImage); 
  
            % X,Y,Z 
            maskedImageXYZ = rgb2xyz(maskedImage); 
            X = maskedImageXYZ(:,:,1); 
            Y = maskedImageXYZ(:,:,2); 
            Z = maskedImageXYZ(:,:,3); 
  
            % L*,a*,b*,b*/a* 
            maskedImageLab = rgb2lab(maskedImage); 
            Lasterisk = maskedImageLab(:,:,1); 
            aasterisk = maskedImageLab(:,:,2); 
            basterisk = maskedImageLab(:,:,3); 
            basteriskaasterisk = basterisk./aasterisk; 
  
            % 
H,S,V,RedFraction,YellowFraction,GreenFraction,CyanFraction,BlueFractio
n,MagentaFraction,RelativeGreenFraction 
            maskedImageHSV = rgb2hsv(maskedImage); 
            H = maskedImageHSV(:,:,1); 
            S = maskedImageHSV(:,:,2); 
            V = maskedImageHSV(:,:,3); 
            RF = (H<1/6); 
            YF = (H>=1/6) & (H<1/3); 
            GF = (H>=1/3) & (H<0.5); 
            CF = (H>=0.5) & (H<2/3); 
            BF = (H>=2/3) & (H<5/6); 
            MF = (H>=5/6); 
            RGF = (H>=1/6) & (H<=0.5); 
  
            % Y',Cb,Cr 
            maskedImageYCbCr = double(rgb2ycbcr(maskedImage)); 
            YPrime = maskedImageYCbCr(:,:,1); 
            Cb = maskedImageYCbCr(:,:,2); 
            Cr = maskedImageYCbCr(:,:,3); 
             
            % Save the first indices 
            IndicesAllFile(i,1) = Area; 
            IndicesAllFile(i,2) = AreaVar; 
            IndicesAllFile(i,3) = Perimeter; 
            IndicesAllFile(i,4) = PF; 
            IndicesAllFile(i,5) = MinorAxisLength; 
            IndicesAllFile(i,6) = ConvexArea; 
            IndicesAllFile(i,7) = EqivDiameter; 
            IndicesAllFile(i,8) = Solidity; 
            IndicesAllFile(i,9) = Extent; 
            IndicesAllFile(i,10) = AreaFilled; 
            IndicesAllFile(i,11) = Orientation; 
             
            % Compute the average value of each color index for each 
masked image 
            BW = double(BW_out); 
            for c = 1:45 
                ColorIndexMatrix = 
double(eval(IndicesColorWorkspace(c))); 
                % Set NaN and Inf to 0 
                ColorIndexMatrix(isnan(ColorIndexMatrix)) = 0; 
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                ColorIndexMatrix(isinf(ColorIndexMatrix)) = 0; 
                % Set matrix values of soil to 0 
                ColorIndexMatrix = ColorIndexMatrix.*BW; 
                ColorIndex = sum(ColorIndexMatrix(:))/Area; 
                IndicesAllFile(i,11+c) = ColorIndex; 
            end 
             
            % Compute 4 texture indices of most color indice matrices 
plus gray image for each masked image             
            % Prepare a BW mask to convert matrix values of soil to NaN 
so that they will be ignored in GLCM 
            BWCroppedTexture = double(BW_out); 
            BWCroppedTexture(BWCroppedTexture==0) = NaN; 
             
            for t = 1:38 
                TextureIndexMatrix = 
double(eval(IndicesTextureWorkspace(t))); 
                % Remove soil effect 
                TextureIndexMatrix = 
TextureIndexMatrix.*BWCroppedTexture; 
                % GrayLimits are set as the limits of the original 
matrix; NumLevels is set as the number of unique number of the original 
matrix; Offset is set as scanning vertically upward by 1 pixel 
distance; 
                GLCM = 
graycomatrix(TextureIndexMatrix,'GrayLimits',[],'NumLevels',256,'Offset
',[-1 0]); 
                TextureIndices = graycoprops(GLCM); 
                IndicesAllFile(i,53+4*t) = TextureIndices.Contrast; 
                % Replace NaN with 0 when there is no correlation  
                if isnan(TextureIndices.Correlation) == 1 
                    IndicesAllFile(i,54+4*t) = 0; 
                else IndicesAllFile(i,54+4*t) = 
TextureIndices.Correlation; 
                end 
                IndicesAllFile(i,55+4*t) = TextureIndices.Energy; 
                IndicesAllFile(i,56+4*t) = TextureIndices.Homogeneity; 
            end 
             
            % Gray Image 
            maskedImageGray = double(rgb2gray(maskedImage)); 
            TextureIndexMatrix = maskedImageGray.*BWCroppedTexture; 
            GLCM = 
graycomatrix(TextureIndexMatrix,'GrayLimits',[],'NumLevels',256,'Offset
',[-1 0]); 
            TextureIndices = graycoprops(GLCM); 
            IndicesAllFile(i,209) = TextureIndices.Contrast; 
            if isnan(TextureIndices.Correlation) == 1 
                IndicesAllFile(i,210) = 0; 
            else IndicesAllFile(i,210) = TextureIndices.Correlation; 
            end 
            IndicesAllFile(i,211) = TextureIndices.Energy; 
            IndicesAllFile(i,212) = TextureIndices.Homogeneity; 
             
            % Write images 
            BWfilename = strcat(srepath,'BW\', num2str(i),'.bmp'); 
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            Maskedfilename = strcat(srepath,'Mask\', num2str(i),'.bmp' 
); 
            imwrite(BW_out,BWfilename); 
            imwrite(maskedImage,Maskedfilename); 
             
    end 
  
      % Export Results to Exel File.        
          export = IndicesAllFile 
IndicesAllFile = ["FileName","Area", "AreaVar", "Perimeter","PF", 
"MinoxAxisLength", "ConvexArea",  "EquivDiameter", "Solidity", 
"Extent", "FilledArea", "Orientation","R","G","B","r","g","b","r-g","g-
b","(g-b)/(r-
g)","INT","GRRI","NDI","NGRDI","NGBDI","VARI","VDVI","CIVE","TGI","VEG"
,"MExG","ExG","ExR","ExGR","COM1","COM2","X","Y","Z","L*","a*","b*","b*
/a*","H","S","V","RF","YF","GF","CF","BF","MF","RGF","Y'","Cb","Cr",]; 
IndicesTextureFile = ["R","G","B","r","g","b","r-g","g-b","(g-b)/(r-
g)","INT","GRRI","NDI","NGRDI","NGBDI","VARI","VDVI","CIVE","TGI","VEG"
,"MExG","ExG","ExR","ExGR","COM1","COM2","X","Y","Z","L*","a*","b*","b*
/a*","H","S","V","Y'","Cb","Cr",]; 
for t = 1:38 
    ContrastIndexName = strcat(string(IndicesTextureFile(t)),' 
Contrast'); 
    CorrelationIndexName = strcat(string(IndicesTextureFile(t)),' 
Correlation'); 
    EnergyIndexName = strcat(string(IndicesTextureFile(t)),' Energy'); 
    HomogeneityIndexName = strcat(string(IndicesTextureFile(t)),' 
Homogeneity'); 
    IndicesAllFile(1,54+4*t) = ContrastIndexName; 
    IndicesAllFile(1,55+4*t) = CorrelationIndexName; 
    IndicesAllFile(1,56+4*t) = EnergyIndexName; 
    IndicesAllFile(1,57+4*t) = HomogeneityIndexName; 
end   
IndicesAllFile(1,210) = 'Gray Contrast'; 
IndicesAllFile(1,211) = 'Gray Correlation'; 
IndicesAllFile(1,212) = 'Gray Energy'; 
IndicesAllFile(1,213) = 'Gray Homogeneity'; 
IndicesColorWorkspace = 
["R","G","B","r","g","b","rg","gb","gbrg","INT","GRRI","NDI","NGRDI","N
GBDI","VARI","VDVI","CIVE","TGI","VEG","MExG","ExG","ExR","ExGR","COM1"
,"COM2","X","Y","Z","Lasterisk","aasterisk","basterisk","basteriskaaste
risk","H","S","V","RF","YF","GF","CF","BF","MF","RGF","YPrime","Cb","Cr
",]; 
IndicesTextureWorkspace = 
["R","G","B","r","g","b","rg","gb","gbrg","INT","GRRI","NDI","NGRDI","N
GBDI","VARI","VDVI","CIVE","TGI","VEG","MExG","ExG","ExR","ExGR","COM1"
,"COM2","X","Y","Z","Lasterisk","aasterisk","basterisk","basteriskaaste
risk","H","S","V","YPrime","Cb","Cr",];                   
          Column_Headers = IndicesAllFile; 
          xlFilename = strcat(srepath,'ImageAnalysis.xlsx');   
          xlRange = 'A1'; 
          xlswrite(xlFilename, Column_Headers,'ImageAnalysis',xlRange); 
                  
          Names = allresults{:,2}; 
          xlswrite(xlFilename, Names,'ImageAnalysis', 'A2'); 
           
          xlswrite(xlFilename, export,'ImageAnalysis', 'B2'); 
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2. Spectrum Processing Script 
clear; 
clc; 
%----------------------------------------------------------------------
----------------------------------------- 
%WORKING DIRECTORY SETUP 
%These values need to be adjusted until the following break 
  
%Set Working Directories 
srepath_all = 'D:\Box Sync\Dissertation\Drought Project Phenotyping 
Data\2017\Mead\Mead Late Season\Mead-2017.8.12-Late Season\'; 
%srepath_all = 'D:\Box Sync\Dissertation\Drought Project Phenotyping 
Data\2017\Stevens Creek\Stevens Creek-2017.7.1-Early Season-
Organized\'; 
  
%List Folders within Directory 
files= dir(srepath_all); 
directories = [files.isdir]; 
sub_folder = files(directories); 
  
sub_folders = {'1.1';'1.2';'2.1';'2.2';'3.1';'3.2';'4.1';'4.2'}; 
  
%----------------------------------------------------------------------
----------------------------------------- 
%Code is automated from this point forward based on values denoted 
above 
%----------------------------------------------------------------------
----------------------------------------- 
  
%REFLECTANCE ADJUSTMENTS 
  
for i = 1:(length(sub_folders)) 
  
%Import Plot Raw Values and Calculate Reflectance 
    %Set source directory 
    srepath = strcat(srepath_all, sub_folders{i},"\"); 
     
    %Create filenames 
    fileU = strcat(srepath,'Spectrum-U.xls.csv'); 
    fileL = strcat(srepath,'Spectrum-L.xls.csv'); 
    fileM = strcat(srepath,'Spectrum-M.xls.csv'); 
    fileR = strcat(srepath,'Spectrum-R.xls.csv'); 
    fileINT = strcat(srepath,'Integration Time.xls.csv'); 
    fileLog = strcat(srepath,'Measurements.xls.csv'); 
     
    %Import Reference Files 
    Uraw= csvread(fileU,1); 
    Lraw = csvread(fileL,1); 
    Mraw = csvread(fileM,1); 
    Rraw = csvread(fileR,1); 
    Int = csvread(fileINT); 
    log = readtable(fileLog); 
     
    Llog = table2array(log(strcmp(log.LMR, 'L'),1)); 
    Mlog = table2array(log(strcmp(log.LMR, 'M'),1)); 
    Rlog = table2array(log(strcmp(log.LMR, 'R'),1)); 



177 
 

 

        
%Calculate Reflectance 
    %Need to match up Up looking and Down looking Values in situations 
where 
    %sensor bars where turned off to speed up system 
     
    %Up looking Spectrometer Calculation  
    %No Black Pixel Collected in 2017 so need to adjust by scaling to 
    %lowest value in each array 
    Utemp = (Uraw.*Int(:,1));  
     
   %Create Table for Loop Outputs  
    zedsdead_U = zeros(size(Utemp,1),1); 
    for q = 1:size(Utemp,1) 
    zedsdead_U(q,1) = min(Utemp(q,:));  
    end 
     
    %Calculate Reflectance 
    U = (Utemp - zedsdead_U)./ Int(:,1); 
     
    %Left Spectrometer 
     
       %Index for Uplooking Adjustment Values 
        U_L_index = (Llog(:,1)+2)/3; 
       %No Black Pixel Collected in 2017 so need to adjust by scaling 
to 
       %lowest value in each array 
        Ltemp = (Lraw.*Int((U_L_index),2));  
        U_L = U(U_L_index,:); 
         
      %Create Table for Loop Outputs  
        zedsdead_L = zeros(size(Ltemp,1),1); 
        for w = 1:size(Ltemp,1) 
        zedsdead_L(w,1) = min(Ltemp(w,:));  
        end 
        
       %Downlooking Caluclation 
        D_L = (Ltemp - zedsdead_L)./ Int((U_L_index),2); 
                      
       %Total Reflectance     
        L_1 = D_L ./ U_L; 
         
        %Row Labels      
        L = [Llog L_1]; 
  
    %Middle Spectrometer 
       %Index for Uplooking Adjustment Values 
        U_M_index = (Mlog(:,1)+1)/3; 
        U_M = U(U_M_index,:); 
       %No Black Pixel Collected in 2017 so need to adjust by scaling 
to 
       %lowest value in each array 
        Mtemp = (Mraw.*Int((U_M_index),2));  
        U_M = U(U_M_index,:); 
         
      %Create Table for Loop Outputs  
        zedsdead_M = zeros(size(Mtemp,1),1); 
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        for e = 1:size(Mtemp,1) 
        zedsdead_M(e,1) = min(Mtemp(e,:));  
        end 
        
       %Downlooking Caluclation 
        D_M = (Mtemp - zedsdead_M)./ Int((U_M_index),2); 
                      
       %Total Reflectance     
        M_1 = D_M ./ U_M; 
         
        %Row Labels      
        M = [Mlog M_1]; 
       
    %Right Spectrometer 
       %Index for Uplooking Adjustment Values 
        U_R_index = (Rlog(:,1)+0)/3; 
        U_R = U(U_R_index,:); 
       %No Black Pixel Collected in 2017 so need to adjust by scaling 
to 
       %lowest value in each array 
        Rtemp = (Rraw.*Int((U_R_index),2));  
        U_R = U(U_R_index,:); 
         
      %Create Table for Loop Outputs  
        zedsdead_R = zeros(size(Rtemp,1),1); 
        for r = 1:size(Rtemp,1) 
        zedsdead_R(r,1) = min(Rtemp(r,:));  
        end 
        
       %Downlooking Caluclation 
        D_R = (Rtemp - zedsdead_R)./ Int((U_R_index),2); 
                      
       %Total Reflectance     
        R_1 = D_R ./ U_R; 
         
        %Row Labels      
        R= [Rlog R_1]; 
  
%Calculate Average Spectrometer Readings for Variable Names Output 
%This is required so reflectance indices may be calculated and compared 
between plots 
    %Import Label Files 
    labs = readtable('D:\Box Sync\Dissertation\Drought Project 
Phenotyping Data\2017\Mead\Mead Late Season\Speclabels.xlsx'); 
     
    %Create Column Names for Merged Table 
    columnnames = labs{1,:}; 
  
    %Merge Spectrometer Files 
    spec = vertcat(L, M, R);  
    spec = array2table(spec, 'VariableNames', columnnames); 
     
%----------------------------------------------------------------------
----------------------------------------- 
%VEGETATION INDEX CALCULATIONS 
  
%Photochemical Reflectance Index (PRI) calculation  
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%PRI=(R531-R570)/(R531+R570) by SRS sensor manual (Should we use other 
proven parameter?) 
   spec.PRI=(spec.R531 - spec.R570_1) ./ ((spec.R531 + 
spec.R570_1));%Calculate PRI index 
  
%Normalized difference vegetation index (NDVI) calculation 
%NDVI=(R800-R630)/(R800+R630) 
   spec.NDVI=(spec.R799_9 - spec.R630_1)./(spec.R799_9 + 
spec.R630_1);%Calculate NDVI index 
  
%Red Edge NDVI vegetation index (RENDVI) calculation 
%Red edge NDVI=(R750-R705)/(R750+R705) 
    spec.RENDVI=(spec.R750_1 - spec.R705_1)./(spec.R750_1 + 
spec.R705_1);%calculate RENDVI index 
  
%Green Normalized Vegetation Index(GNDVI)calculation 
%GNDVI=(801-550)/(800+550) 
    spec.GNDVI=(spec.R801_1 - spec.R549_9)./(spec.R799_9 + 
spec.R549_9);%calculate GNDVI index 
  
%Anthocyanin reflectance index (ARI) calculation 
%ARI = (1/550) - (1/700) 
    spec.ARI=(1./spec.R549_9)-(1./spec.R700_1);%calculate ARI index 
  
%Chlorophyll Red-Edge 
%ChlRdEg = [(760:800)/(540:560)]-1 
    spec.ChlRdEg2=(sum(spec{:,1168:1293},2) ./ sum(spec{:,524:581},2))-
1; 
     
%Crop Water Status 
%CWSI = 531+570 
    spec.CWSI = spec.R529_9 + spec.R570_1; 
     
%Drought Stress Index # 1 
%DSI1 = 520:530 
  spec.DSI1=sum(spec{:,468:496},2); 
     
%Drought Stress Index # 2 
%DSI2 = 570:590 
    spec.DSI2=sum(spec{:,609:665},2); 
     
%Drought Stress Index # 3 
%DSI3 = 690:710 
    spec.DSI3=sum(spec{:,957:1017},2); 
     
 %Grain Yield Index #1  
 %GYI1 = 500:700 
    spec.GYI1=sum(spec{:,413:987},2); 
         
 %Grain Yield Index #2  
 %GYI2 = 700:950 
    spec.GYI2 = sum(spec{:,987:1783},2);     
     
 %Grain Yield Index #3 
 %GYI1 = 680 
    spec.GYI3 = sum(spec{:,926:928},2);  
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 %Grain Yield Index #4  
 %GYI4 = 950:1000 
    spec.GYI4 = sum(spec{:,1783:1957},2); 
         
 %Leaf Cholorophyll Index 
 %LCI =(850-710)/(850+680) 
    spec.LCI = (spec.R850 - spec.R710_1)./(spec.R850 + spec.R679_9); 
     
 %Stress Index #1 
 %STI1= 710/810 
    spec.STI1 = spec.R710_1./spec.R810_1; 
     
 %Stress Index #2 
 %STI2= 710/760 
    spec.STI2 = spec.R710_1./spec.R760_2; 
     
%Red Edge Index 
 %RE= 690-740 
    spec.RE = spec.R690./spec.R740_2; 
         
%Normalized Water Index 
 %NDWI= (800-680)/(800+680) 
    spec.NDWI = (spec.R799_9 - spec.R679_9)./(spec.R799_9 + 
spec.R679_9); 
     
 %NDWI2 = sum(950 - 970) 
    spec.NDWI2 = sum(spec{:,1783:1851},2); 
  
%RED Edge Division Index 
 %RE3RE2= (734:747)/(715:726) 
    spec.RE3RE2 = 
(sum(spec{:,1089:1129},2))./(sum(spec{:,1032:1065},2));  
     
 %Red Edge Inflection Point 
 %REIP= Maxiumum 680-780 
    REIPrange = spec{:,927:1230}; 
    [val,loc] = max(REIPrange'); 
    %Maximum value in range 
    spec.REIP = val'; 
    %Wavelenght of inflection point 
    spec.REIPnm = (loc' * 0.33) + 680; 
     
 %Spectral Reflectance Index 1 
 %SR1 = (750:900)/(660:720); 
    spec.SR1 = (sum(spec{:,1138:1614},2))./(sum(spec{:,868:1047},2)); 
     
 %Spectral Reflectance Index 680 
 %SR680= 800/680 
    spec.SR680 = spec.R799_9 ./ spec.R679_9; 
     
 %Spectral Reflectance Index 705 
 %SR705= 730/705 
     spec.SR705 = spec.R730 ./ spec.R705_1; 
     
%Normalized difference vegetation index 680 (NDVI680) calculation 
%NDVI680=(R800-R680)/(R800+R680) 
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    spec.NDVI680 = (spec.R799_9 - spec.R679_9)./(spec.R799_9 + 
spec.R679_9); 
     
%Normalized difference vegetation index 705 (NDVI705) calculation 
%NDVI705=(750-705)/(750+705) 
    spec.NDVI705 = (spec.R750_1 - spec.R705_1)./(spec.R750_1 + 
spec.R705_1); 
     
%Difference index 715 calculation 
%D715=(710:720)/(700:710) 
    spec.D715 = (sum(spec{:,1017:1047},2))./(sum(spec{:,987:1017},2)); 
     
    %NIRRed index 
    %NIRRed = 801/670 
    spec.NIRRed = spec.R801_1./spec.R670_1; 
     
    %NIRGreen 
    %NIRGreen = 801/550 
    spec.NIRGreen = spec.R801_1./spec.R549_9; 
     
    %MCARI 
    %MCARI = (700-670)-0.2(700-550)*700/670 
    %MCARI2 = (850-730)-0.2(850-570)/730 
    spec.MCARI = ((spec.R700_1 - spec.R670_1) - 0.2 * (spec.R700_1 - 
spec.R549_9).* spec.R700_1) ./spec.R670_1; 
    spec.MCARI2 = ((spec.R850 - spec.R730) - 0.2*(spec.R850 - 
spec.R570_1))./ spec.R730; 
     
    %SAVI 
    %SAVI = (1 + 0.5) * (R801 - R670) / (R801 + R670 + 0.5) 
    spec.SAVI= (1 + 0.5) .* (spec.R801_1 - spec.R670_1) ./ (spec.R801_1 
+ spec.R670_1 + 0.5); 
     
    %OSAVI 
    %OSAVI = (1+ 0.16) *(R801 - R670)/(R801 + R670 + 0.16) 
    spec.OSAVI= (1 + 0.16) .* (spec.R801_1 - spec.R670_1) ./ 
(spec.R801_1 + spec.R670_1 + 0.16); 
       
    %Simple Ratio Water Band Index 
    %SRWBI = R950 / R900 
    spec.SRWBI = spec.R950_1 ./ spec.R899_9;  
     
    %Water Balance Index  
    %WBI1 = 970/900 
    spec.WBI1 = spec.R969_9 ./ spec.R899_9; 
    %WBI2 = 905/980 
    spec.WBI2 = spec.R905 ./ spec.R980; 
    %WBI3 = 970/902 
    spec.WBI3 = spec.R969_9 ./ spec.R902; 
     
    %Normalized reflectance curve area (Estimation of Canopy Water 
Content 
    %by Means of Hyperspectral Indices Based on Drought Stress Gradient 
Experiments of Maize in the North Plain China) 
     %NRCA =1015:1020 
     spec.NRCA = sum(spec{:,2009:2029},2); 
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    %Transformed Chlorophyll Absorption in Reflectance Index 
    %TCARI = 3 * (700 - 670) -0.2(700-550) *700/670) 
     spec.TCARI = 3 .*( ((spec.R700_1 - spec.R670_1) - 0.2 * 
(spec.R700_1 - spec.R549_9).*spec.R700_1) ./spec.R670_1);   
     
    %TCARI to OSAVI Ration 
    spec.TCARI_OSAVI = spec.TCARI ./ spec.OSAVI; 
      
%Write Final Output 
    filename_out = strcat(srepath, 'AnalysisSpec.csv'); 
    writetable(spec, filename_out); 
     
    %Print Folder is Complete for Watching Loop 
    fprintf(sub_folders{i}) 
     
end 
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3. Example RQTL genomic data quality control script 
#Load Library’s 

library(qtl) 

library(tidyverse) 

 

#Set Working Directory 

setwd("D:/Box Sync/Dissertation/Drought Project/Analysis/ICIM/QC") 

 

#UX3036 

file_UX3036=read.cross(format=c("csvr"), file="UX3036_ABH_PHENO2.csv", 
na.strings="NA", 

                       genotypes=c("A","H","B"), alleles=c("A","B")) 

object_UX3036=convert2riself(file_UX3036) 

summary(object_UX3036) 

 

#Save pdf 

#pdf("UX3036 Quality Check Figures.pdf") 

 

#Investigate pattern of missing data 

plotMissing(object_UX3036) #several individuals and markers with 
missing data 

 

#Plot genotyped markers for each individual 

par(mfrow=c(1,2), las=1) 

plot(ntyped(object_UX3036), ylab="No. typed markers", main="No. 
genotypes by individual") 

plot(ntyped(object_UX3036, "mar"), ylab="No. typed individuals", 
main="No. genotypes by marker") 

 

#Drop indivuals with relative low number of markers 

object_UX3036 <- subset(object_UX3036, ind=(ntyped(object_UX3036)>800)) 

 

#Drop markers with poor call rate 

nt.bymar <- ntyped(object_UX3036, "mar") 

todrop <- names(nt.bymar[nt.bymar < 145]) 

object_UX3036 <- drop.markers(object_UX3036, todrop) 

 

#Identify duplicate individuals 
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cg <- comparegeno(object_UX3036) 

hist(cg[lower.tri(cg)], breaks=seq(0, 1, len=101), xlab="No. matching 
genotypes") 

rug(cg[lower.tri(cg)]) 

 

#Identify individuals with over 95% matching genotypes 

wh <- which(cg > 0.98, arr=TRUE) 

wh <- wh[wh[,1] < wh[,2],] 

g <- pull.geno(object_UX3036) 

 

#Remove one paired individual with over 95% matching genotpyes and 
checked for duplicated markers 

object_UX3036 <- subset(object_UX3036, ind=-wh[,2]) 

print(dup <- findDupMarkers(object_UX3036, exact.only=FALSE)) 

summary(object_UX3036) 

 

#Investigate distored segregation patterns 

gt <- geno.table(object_UX3036) 

gt[gt$P.value < 0.001/totmar(object_UX3036),] 

 

#Drop distored markers 

todrop <- rownames(gt[gt$P.value < 1e-8,]) 

object_UX3036 <- drop.markers(object_UX3036, todrop) 

summary(object_UX3036) 

 

#Investigate allele frequencies 

g <- pull.geno(object_UX3036) 

gfreq <- apply(g, 1, function(a) table(factor(a, levels=1:3))) 

gfreq <- t(t(gfreq) / colSums(gfreq)) 

par(mfrow=c(1,2), las=1) 

 

for(i in 1:2){ 

  plot(gfreq[i,], ylab="Genotype frequency", main=c("A", "B")[i], 
ylim=c(0,1)) 

} 

 

# 

object_UX3036 <- est.rf(object_UX3036) 
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checkAlleles(object_UX3036, threshold=5) 

 

#Plot LOD score against the estimated recombination fractions for all 
marker pairs 

rf <- pull.rf(object_UX3036) 

lod <- pull.rf(object_UX3036, what="lod") 

plot(as.numeric(rf), as.numeric(lod), xlab="Recombination fraction", 
ylab="LOD score") 

 

 

#Investigate recombination fraction 

par(mfrow=c(1,1), las=1) 

plotRF(object_UX3036, alternate.chrid=FALSE) 

 

#Investigate genetic map for coverage 

plotMap(object_UX3036) 

 

#Reorder genetic map based on recombination fraction 

object_UX3036_rec = orderMarkers(object_UX3036, use.ripple = TRUE, 
window = 8, map.function = "haldane") 

 

#Investigate swithced alleles 

plotRF(object_UX3036_rec, alternate.chrid=TRUE) 

 

#Look for problem individuals 

plot(countXO(object_UX3036_rec), ylab="Number of crossovers") 

plotMap(object_UX3036,object_UX3036_rec) 

 

#Output cross object 

chr = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10",  

        "11", "12", "13", "14", "15", "16", "17", "18", "19", "20") 

write.cross(object_UX3036, format="csv",filestem="UX3036_QC_2", chr, 
digits=NULL, descr) 

write.cross(object_UX3036_rec, format="csv",filestem="UX3036_QC_2_rec", 
chr, digits=NULL, descr) 

summary(object_UX3036) 

 

dev.off() 
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4. Example CART Script 
... 
i=str2num(getenv('SLURM_TASKS_PER_NODE')); 
p=parpool(i); 
p.IdleTimeout = inf 
... 
  
%Load Dataset and Rename 
load Workspace_Complete.mat 
  
% Partion variables for loop output 
ALL = MasterDatasetComplete; 
UX3000 = MasterDatasetComplete(MasterDatasetComplete.TEST=='UX3000',:); 
UX3036 = MasterDatasetComplete(MasterDatasetComplete.TEST=='UX3036',:); 
  
UX3000_V5 = UX3000(UX3000.STAGE=='V5',:); 
UX3000_R5 = UX3000(UX3000.STAGE=='R5',:); 
  
UX3036_V5 = UX3036(UX3036.STAGE=='V5',:); 
UX3036_R5 = UX3036(UX3036.STAGE=='R5',:); 
  
V5 = ALL(ALL.STAGE=='V5',:); 
R5 = ALL(ALL.STAGE=='R5',:); 
R3 = ALL(ALL.STAGE=='R3',:); 
  
IRR_TREAT1 = 
MasterDatasetComplete(MasterDatasetComplete.IRR_TREAT==1,:); 
IRR_TREAT2 = 
MasterDatasetComplete(MasterDatasetComplete.IRR_TREAT==2,:); 
  
UX3000_1 = UX3000(UX3000.IRR_TREAT==1,:); 
UX3000_2 = UX3000(UX3000.IRR_TREAT==2,:); 
  
UX3036_1 = UX3036(UX3036.IRR_TREAT==1,:); 
UX3036_2 = UX3036(UX3036.IRR_TREAT==2',:); 
  
V5_1 = V5(V5.IRR_TREAT==1,:); 
V5_2 = V5(V5.IRR_TREAT==2',:); 
  
R5_1 = R5(R5.IRR_TREAT==1,:); 
R5_2 = R5(R5.IRR_TREAT==2',:); 
  
R3_1 = R3(R3.IRR_TREAT==1,:); 
R3_2 = R3(R3.IRR_TREAT==2',:); 
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% Store datasets in list 
loop.names = {"UX3000", "UX3000_V5", "UX3000_R5", "UX3036", 
"UX3036_V5", "UX3036_R5", "ALL", "V5", "R5",... 
    "IRR_TREAT1", "IRR_TREAT2", "UX3000_1", "UX3000_2", "UX3036_1", 
"UX3036_2", "V5_1", "V5_2", "R5_1", "R5_2", "R3", "R3_1", "R3_2"}; 
  
water{1} = UX3000; 
water{2} = UX3000_V5; 
water{3} = UX3000_R5; 
water{4} = UX3036; 
water{5} = UX3036_V5; 
water{6} = UX3036_R5; 
water{7} = ALL; 
water{8} = V5; 
water{9} = R5; 
water{10} = IRR_TREAT1; 
water{11} = IRR_TREAT2; 
water{12} = UX3000_1; 
water{13} = UX3000_2; 
water{14} = UX3036_1; 
water{15} = UX3036_2; 
water{16} = V5_1; 
water{17} = V5_2; 
water{18} = R5_1; 
water{19} = R5_2; 
water{20} = R3; 
water{21} = R3_1; 
water{22} = R3_2; 
  
  
for i = 1:length(water) 
  
% Assign inputtable dataset 
%Testing Data 
dataset = water{i};  
  
%Create CV partitions for testing model 
 CV = cvpartition(height(dataset), 'KFold', 10); 
  
 %Create Empty Table for Correlation Ouputs 
 cor = array2table(zeros(1,10)); 
  
for k = 1:10 
  
 % Create trainingg and testing datasets 
  cv.idx = CV.test(k); 
  train = dataset(~cv.idx,:); 
  test = dataset(cv.idx,:); 
  
% Extract predictors and response 
% This code processes the data into the right shape for training the 
model. 
predictorNames = {'IRR_TREAT', 'STAGE', 'LMR', 'TEST', 'ECD', 'ECDV', 
'ECS', 'ECSD', 'ECSDV', 'ECSV', 'Time', 'Latitude', 'Longitude', 
'Easting', 'Northing', 'AirTemperature_C', 'RelativeHumidity', 
'SVP_Pa', 'VPD_kPa', 'ShortwaveRadiation_Wm2', 'SensorHeight_cm', 
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'CanopyHeight', 'UltrasonicCanopyHeight', 'CATD_C', 'CATD_VPD', 
'CanopyTemperature_C', 'Volume', 'Area', 'Perimeter', 'Area_Perimeter', 
'PF', 'R', 'G', 'B', 'r', 'g', 'b', 'rg', 'gb', 'Xgbrg', 'INT', 'GRRI', 
'NDI', 'NGRDI', 'NGBDI', 'VARI', 'VDVI', 'CIVE', 'VEG', 'MExG', 'ExG', 
'ExR', 'ExGR', 'COM1', 'COM2', 'X', 'Y', 'Z', 'L', 'a', 'b1', 'ba', 
'H', 'S', 'V', 'RF', 'YF', 'GF', 'CF', 'RGF', 'Y1', 'Cb', 'Cr', 
'RContrast', 'RCorrelation', 'REnergy', 'RHomogeneity',... 
    'GContrast', 'GCorrelation', 'GEnergy', 'GHomogeneity', 
'BContrast', 'BCorrelation', 'BEnergy', 'BHomogeneity', 'rContrast', 
'rCorrelation', 'rEnergy', 'rHomogeneity', 'gContrast', 'gCorrelation', 
'gEnergy', 'gHomogeneity', 'bContrast', 'bCorrelation', 'bEnergy', 
'bHomogeneity', 'rgContrast', 'rgCorrelation', 'rgEnergy', 
'rgHomogeneity', 'gbContrast', 'gbCorrelation', 'gbEnergy', 
'gbHomogeneity', 'XgbrgContrast', 'XgbrgCorrelation', 'XgbrgEnergy', 
'XgbrgHomogeneity', 'INTContrast', 'INTCorrelation', 'INTEnergy', 
'INTHomogeneity', 'NDIContrast', 'NDICorrelation', 'NDIEnergy', 
'NDIHomogeneity', 'NGRDIContrast', 'NGRDICorrelation', 'NGRDIEnergy', 
'NGRDIHomogeneity', 'NGBDIContrast', 'NGBDICorrelation', 
'NGBDIEnergy',... 
    'NGBDIHomogeneity', 'VARIContrast', 'VARICorrelation', 
'VARIEnergy', 'VARIHomogeneity', 'VDVIContrast', 'VDVICorrelation', 
'VDVIEnergy', 'VDVIHomogeneity', 'CIVEContrast', 'CIVECorrelation', 
'CIVEEnergy', 'CIVEHomogeneity', 'MExGContrast', 'MExGCorrelation', 
'MExGEnergy', 'MExGHomogeneity', 'ExGContrast', 'ExGCorrelation', 
'ExGEnergy', 'ExGHomogeneity', 'ExRContrast', 'ExRCorrelation', 
'ExREnergy', 'ExRHomogeneity', 'ExGRContrast', 'ExGRCorrelation', 
'ExGREnergy', 'ExGRHomogeneity', 'XContrast', 'XCorrelation', 
'XEnergy', 'XHomogeneity', 'YContrast', 'YCorrelation', 'YEnergy', 
'YHomogeneity', 'ZContrast', 'ZCorrelation', 'ZEnergy', 'ZHomogeneity', 
'LContrast', 'LCorrelation', 'LEnergy', 'LHomogeneity',... 
    'aContrast', 'aCorrelation', 'aEnergy', 'aHomogeneity', 
'bContrast1', 'bCorrelation1', 'bEnergy1', 'bHomogeneity1', 
'baContrast', 'baCorrelation', 'baEnergy', 'baHomogeneity', 
'HContrast', 'HCorrelation', 'HEnergy', 'HHomogeneity', 'SContrast', 
'SCorrelation', 'SEnergy', 'SHomogeneity', 'VContrast', 'VCorrelation', 
'VEnergy', 'VHomogeneity', 'YContrast1', 'YCorrelation1', 'YEnergy1', 
'YHomogeneity1', 'CbContrast', 'CbCorrelation', 'CbEnergy', 
'CbHomogeneity', 'CrContrast', 'CrCorrelation', 'CrEnergy', 
'CrHomogeneity', 'GrayContrast', 'GrayCorrelation', 'GrayEnergy', 
'GrayHomogeneity', 'R501_5', 'R502_2', 'R503_3', 'R503_7', 'R504', 
'R504_8', 'R505_5', 'R505_8', 'R506_2', 'R507_3', 'R508', 'R508_7',... 
    'R509_8', 'R510_2', 'R510_5', 'R511_2', 'R512', 'R512_3', 'R512_7', 
'R513', 'R513_8', 'R514_5', 'R514_8', 'R515_2', 'R516_3', 'R517', 
'R517_7', 'R518_8', 'R519_2', 'R519_5', 'R520_2', 'R521', 'R521_3', 
'R521_7', 'R522', 'R522_8', 'R523_5', 'R523_8', 'R524_2', 'R525_3', 
'R526', 'R526_3', 'R526_7', 'R527_8', 'R528_5', 'R529_2', 'R530_3', 
'R531', 'R531_7', 'R532_8', 'R533_5', 'R534_2', 'R535_3', 'R536', 
'R536_7', 'R537_8', 'R538_5', 'R539_2', 'R540_3', 'R541', 'R541_7', 
'R542_8', 'R543_5', 'R544_2', 'R545_3', 'R546', 'R546_3', 'R546_7', 
'R547_8', 'R548_5', 'R548_8', 'R549_2', 'R550_3', 'R551', 'R551_3', 
'R551_7', 'R552', 'R552_7', 'R553_5', 'R553_8', 'R554_2', 'R554_5', 
'R555_2', 'R556_3', 'R556_7',... 
    'R557', 'R557_7', 'R558_8', 'R559_5', 'R559_8', 'R560_2', 'R561_3', 
'R562', 'R562_3', 'R562_7', 'R563', 'R563_7', 'R564_8', 'R565_2', 
'R565_5', 'R566_2', 'R567_3', 'R568', 'R568_3', 'R568_7', 'R569', 
'R569_7', 'R570_8', 'R571_2', 'R571_5', 'R572_2', 'R573_3', 'R574', 
'R574_3', 'R574_7', 'R575', 'R575_7', 'R576_8', 'R577_5', 'R577_8', 
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'R578_2', 'R579_3', 'R580', 'R580_3', 'R580_7', 'R581', 'R581_7', 
'R582_8', 'R583_5', 'R583_8', 'R584_2', 'R584_5', 'R585_2', 'R586_3', 
'R587', 'R587_3', 'R587_7', 'R588', 'R588_7', 'R589_8', 'R590_5', 
'R590_8', 'R591_2', 'R591_5', 'R592_2', 'R593_3', 'R594', 'R594_3', 
'R594_7', 'R595', 'R595_7', 'R596_8', 'R597_5', 'R597_8', 'R598_2', 
'R598_5', 'R599_2', 'R600_3',... 
    'R601', 'R601_3', 'R601_7', 'R602', 'R602_7', 'R603_8', 'R604_5', 
'R604_8', 'R605_2', 'R605_5', 'R605_8', 'R606_2', 'R606_5', 'R607_2', 
'R608_3', 'R609', 'R609_3', 'R609_7', 'R610', 'R610_7', 'R611_8', 
'R612_5', 'R612_8', 'R613_5', 'R613_8', 'R614_2', 'R614_5', 'R615_2', 
'R616_3', 'R617', 'R617_3', 'R617_7', 'R618', 'R618_3', 'R618_7', 
'R619', 'R619_7', 'R620_8', 'R621_5', 'R621_8', 'R622_2', 'R622_5', 
'R622_8', 'R623_2', 'R623_5', 'R624_2', 'R625_3', 'R626', 'R626_3', 
'R626_7', 'R627', 'R627_3', 'R627_7', 'R628', 'R628_7', 'R629_8', 
'R630_8', 'R631_5', 'R631_8', 'R632_2', 'R632_5', 'R633_2', 'R633_5', 
'R634_2', 'R635_3', 'R636', 'R636_3', 'R637', 'R637_3', 'R637_7', 
'R638', 'R638_7', 'R639',... 
    'R639_7', 'R640_8', 'R641_5', 'R641_8', 'R642_5', 'R642_8', 
'R643_2', 'R643_5', 'R644_2', 'R644_5', 'R645_2', 'R646_3', 'R647_3', 
'R648', 'R648_3', 'R648_7', 'R649', 'R649_3', 'R649_7', 'R650', 
'R650_7', 'R651', 'R651_7', 'R652_8', 'R653_8', 'R654_5', 'R654_8', 
'R655_5', 'R655_8', 'R656_2', 'R656_5', 'R656_8', 'R657_2', 'R657_5', 
'R658_2', 'R659_2', 'R660_3', 'R661_3', 'R662', 'R662_3', 'R663', 
'R663_3', 'R663_7', 'R664', 'R664_3', 'R664_7', 'R665', 'R665_7', 
'R666', 'R666_7', 'R667_7', 'R668_8', 'R669_8', 'R670_5', 'R670_8', 
'R671_5', 'R671_8', 'R672_5', 'R672_8', 'R673_2', 'R673_5', 'R673_8', 
'R674_2', 'R674_5', 'R675_2', 'R675_5', 'R676_2', 'R676_5', 'R677_2', 
'R678_2', 'R679_3', 'R680_3',... 
    'R681_3', 'R682', 'R682_3', 'R683', 'R683_3', 'R684', 'R684_3', 
'R684_7', 'R685', 'R685_3', 'R685_7', 'R686', 'R686_3', 'R686_7', 
'R687', 'R687_3', 'R687_7', 'R688', 'R688_7', 'R689', 'R689_7', 'R690', 
'R690_7', 'R691', 'R691_7', 'R692_7', 'R693_7', 'R694_7', 'R695_7', 
'R696_8', 'R697_8', 'R698_8', 'R699_8', 'R700_8', 'R701_8', 'R702_8', 
'R703_8', 'R704_5', 'R704_8', 'R705_5', 'R705_8', 'R706_5', 'R706_8', 
'R707_5', 'R707_8', 'R708_5', 'R708_8', 'R709_5', 'R709_8', 'R710_5', 
'R710_8', 'R711_5', 'R711_8', 'R712_5', 'R712_8', 'R713_5', 'R713_8', 
'R714_5', 'R714_8', 'R715_5', 'R715_8', 'R716_8', 'R717_8', 'R718_8', 
'R719_8', 'R720_8', 'R721_8', 'R722_8', 'R723_7', 'R724_7', 'R725_7', 
'R726_7',... 
    'R727_7', 'R728_7', 'R729', 'R729_7', 'R730', 'R730_7', 'R731', 
'R731_7', 'R732', 'R732_3', 'R732_7', 'R733', 'R733_3', 'R733_7', 
'R734', 'R734_3', 'R734_7', 'R735', 'R735_3', 'R736', 'R736_3', 'R737', 
'R737_3', 'R738_3', 'R739_3', 'R740_2', 'R741_2', 'R742_2', 'R742_5', 
'R743_2', 'R743_5', 'R744_2', 'R744_5', 'R744_8', 'R745_2', 'R745_5', 
'R745_8', 'R746_2', 'R746_5', 'R746_8', 'R747_5', 'R747_8', 'R748_8', 
'R749_8', 'R750_7', 'R751_7', 'R752', 'R752_7', 'R753', 'R753_7', 
'R754', 'R754_3', 'R754_7', 'R755', 'R755_3', 'R756', 'R756_3', 
'R757_3', 'R758_3', 'R759_2', 'R760_2', 'R760_5', 'R761_2', 'R761_5', 
'R761_8', 'R762_2', 'R762_5', 'R762_8', 'R763_5', 'R763_8', 'R764_8', 
'R765_7', 'R766_7',... 
    'R767', 'R767_7', 'R768', 'R768_3', 'R768_7', 'R769', 'R769_3', 
'R770_3', 'R771_2', 'R772_2', 'R772_5', 'R773_2', 'R773_5', 'R773_8', 
'R774_2', 'R774_5', 'R774_8', 'R775_5', 'R775_8', 'R776_7', 'R777_7', 
'R778', 'R778_7', 'R779', 'R779_3', 'R780', 'R780_3', 'R781_3', 
'R782_2', 'R782_5', 'R783_2', 'R783_5', 'R783_8', 'R784_2', 'R784_5', 
'R784_8', 'R785_8', 'R786_7', 'R787_7', 'R788', 'R788_3', 'R788_7', 
'R789', 'R789_3', 'R790_3', 'R791_2', 'R791_5', 'R792_2', 'R792_5', 



190 
 

 

'R792_8', 'R793_5', 'R793_8', 'R794_8', 'R795_7', 'R796', 'R796_7', 
'R797', 'R797_3', 'R798_3', 'R799_2', 'R799_5', 'R800_2', 'R800_5', 
'R800_8', 'R801_5', 'R801_8', 'R802_7', 'R803_7', 'R804', 'R804_3', 
'R805', 'R805_3', 'R806_2', ... 
    'R807_2', 'R807_5', 'R807_8', 'R808_5', 'R808_8', 'R809_7', 
'R810_7', 'R811', 'R811_3', 'R812', 'R812_3', 'R813_2', 'R813_5', 
'R814_2', 'R814_5', 'R814_8', 'R815_8', 'R816_7', 'R817', 'R817_3', 
'R817_7', 'R818', 'R818_3', 'R819_2', 'R820_2', 'R820_5', 'R820_8', 
'R821_5', 'R821_8', 'R822_7', 'R823', 'R823_3', 'R823_7', 'R824', 
'R824_3', 'R825_2', 'R826_2', 'R826_5', 'R826_8', 'R827_8', 'R828_7', 
'R829', 'R829_3', 'R830', 'R830_3', 'R831_2', 'R831_5', 'R831_8', 
'R832_2', 'R832_5', 'R832_8', 'R833_7', 'R834', 'R834_7', 'R835', 
'R835_3', 'R836_2', 'R836_5', 'R837_2', 'R837_5', 'R837_8', 'R838_7', 
'R839', 'R839_7', 'R840', 'R840_3', 'R841_2', 'R841_5', 'R842_2', 
'R842_5', 'R842_8', 'R843_7', 'R844', 'R844_7',... 
    'R845', 'R845_3', 'R846_2', 'R846_5', 'R846_8', 'R847_2', 'R847_5', 
'R847_8', 'R848_7', 'R849', 'R849_3', 'R850', 'R850_3', 'R851_2', 
'R851_5', 'R851_8', 'R852_8', 'R853_7', 'R854', 'R854_3', 'R855_2', 
'R855_5', 'R856_2', 'R856_5', 'R856_8', 'R857_7', 'R858', 'R858_3', 
'R859_3', 'R860_2', 'R860_5', 'R860_8', 'R861_7', 'R862', 'R862_3', 
'R862_7', 'R863', 'R863_3', 'R864_2', 'R864_5', 'R864_8', 'R865_7', 
'R866', 'R866_7', 'R867', 'R867_3', 'R868_2', 'R868_5', 'R868_8', 
'R869_7', 'R870', 'R870_7', 'R871', 'R871_3', 'R872_2', 'R872_5', 
'R872_8', 'R873_7', 'R874', 'R874_3', 'R874_7', 'R875', 'R875_3', 
'R876_2', 'R876_5', 'R876_8', 'R877_7', 'R878', 'R878_3', 'R879_2', 
'R879_5', 'R880_2', 'R880_5', 'R880_8', 'R881_7',... 
    'R882', 'R882_3', 'R883_2', 'R883_5', 'R883_8', 'R884_7', 'R885', 
'R885_3', 'R885_7', 'R886', 'R886_3', 'R887_2', 'R887_5', 'R887_8', 
'R888_7', 'R889', 'R889_3', 'R890_2', 'R890_5', 'R890_8', 'R891_7', 
'R892', 'R892_3', 'R893_2', 'R893_5', 'R894_2', 'R894_5', 'R894_8', 
'R895_7', 'R896', 'R896_3', 'R897_2', 'R897_5', 'R897_8', 'R898_7', 
'R899', 'R899_3', 'R900_2', 'R900_5', 'R900_8', 'R901_7', 'R902', 
'R902_3', 'R903_2', 'R903_5', 'R903_8', 'R904_7', 'R905', 'R905_3', 
'R906_2', 'R906_5', 'R906_8', 'R907_7', 'R908', 'R908_3', 'R909_2', 
'R909_5', 'R909_8', 'R910_7', 'R911', 'R911_3', 'R912_2', 'R912_5', 
'R912_8', 'R913_7', 'R914', 'R914_3', 'R915_2', 'R915_5', 'R915_8', 
'R916_7', 'R917', 'R917_3', 'R918_2', 'R918_5',... 
    'R918_8', 'R919_7', 'R920', 'R920_3', 'R921_2', 'R921_5', 'R921_8', 
'R922_7', 'R923', 'R923_3', 'R924_2', 'R924_5', 'R924_8', 'R925_7', 
'R926', 'R926_3', 'R927_2', 'R927_7', 'R928', 'R928_3', 'R929_2', 
'R929_5', 'R929_8', 'R930_7', 'R931', 'R931_3', 'R932_2', 'R932_5', 
'R932_8', 'R933_7', 'R934', 'R934_3', 'R935_7', 'R936', 'R936_3', 
'R937_2', 'R937_5', 'R937_8', 'R938_7', 'R939', 'R939_3', 'R940_2', 
'R940_5', 'R940_7', 'R941', 'R941_3', 'R942_2', 'R942_5', 'R942_8', 
'R943_7', 'R944', 'R944_3', 'R945_2', 'R945_5', 'R945_7', 'R946', 
'R946_3', 'R947_2', 'R947_5', 'R947_8', 'R948_7', 'R949', 'R949_3', 
'PRI', 'NDVI', 'RENDVI', 'GNDVI', 'ARI', 'reNDVI2', 'NDRE', 'NIR_VIS', 
'NIR', 'CWSI', 'DSI1', 'DSI2', 'DSI3', 'GYI1', 'GYI2',... 
    'GYI3', 'LCI', 'STI1', 'STI2', 'REDGE', 'NDWI', 'RE3RE2', 'REIP', 
'REIPnm', 'SR1', 'SR680', 'SR705', 'NDVI680', 'NDVI705', 'D715', 
'NIRRed', 'NIRGreen', 'MCARI', 'SAVI', 'OSAVI', 'SRWBI', 'RE', 'TCARI', 
'TCARI_OSAVI', 'GDD', 'GDD_C', 'Precip_C', 'PrecipDepart_C', 'IRR_C', 
'WUa', 'WUac', 'R8_GDD', 'R7_GDD', 'R5_GDD', 'R35_GDD', 'R1_GDD', 
'R8_TotW', 'R8_Wlefc', 'S_TotW', 'S_WIefc', 'S_Dep', 'R7_TotW', 
'R7_WIefc', 'R7_Dep', 'R1_TotW', 'R1_WIefc', 'R1_Dep', 'R35_TotW', 
'R35_WIefc', 'R35_Dep', 'R5_TotW', 'R5_WIefc', 'R5_Dep', 
'Avg_Dep_R1_R35', 'Avg_Dep_R35_R5', 'Avg_Dep_R5_R7', 'Avg_Dep_R1_R5', 
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'Avg_Dep_R35_R7', 'Avg_Dep_R1_R7', 'TotW_R1_R35', 'TotW_R35_R5', 
'TotW_R5_R7', 'Wlefc_R1_R35', 'Wlefc_R35_R5', 'Wlefc_R5_R7'}; 
  
predictors = train(:, predictorNames); 
  
response = train.YIELD_R8_Wlefc; 
  
isCategoricalPredictor = [true, true, true, true, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false,... 
    false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false,... 
    false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, 
false,... 
    false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false,... 
    false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
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false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false,... 
    false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false,... 
    false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false,... 
    false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false,... 
    false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false,... 
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    false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false, false, false, false, false, false, false, false, false, false, 
false]; 
  
% Train a regression model 
% This code specifies all the model options and trains the model. 
% Retreive optimized number of learning cycles and minimum leaf size 
from 
template = templateTree('MinLeafSize', 5); 
regressionEnsemble = fitrensemble(predictors, response, 'Method', 
'Bag', 'NumLearningCycles', 500, 'Learners', template); 
  
% Create the result struct with predict function 
predictorExtractionFcn = @(t) t(:, predictorNames); 
ensemblePredictFcn = @(x) predict(regressionEnsemble, x); 
trainedModel.predictFcn = @(x) 
ensemblePredictFcn(predictorExtractionFcn(x)); 
  
% Add additional fields to the result struct 
trainedModel.RequiredVariables = {'IRR_TREAT', 'STAGE', 'LMR', 'TEST', 
'ECD', 'ECDV', 'ECS', 'ECSD', 'ECSDV', 'ECSV', 'Time', 'Latitude', 
'Longitude', 'Easting', 'Northing', 'AirTemperature_C', 
'RelativeHumidity', 'SVP_Pa', 'VPD_kPa', 'ShortwaveRadiation_Wm2', 
'SensorHeight_cm', 'CanopyHeight', 'UltrasonicCanopyHeight', 'CATD_C', 
'CATD_VPD', 'CanopyTemperature_C', 'Volume', 'Area', 'Perimeter', 
'Area_Perimeter', 'PF', 'R', 'G', 'B', 'r', 'g', 'b', 'rg', 'gb', 
'Xgbrg', 'INT', 'GRRI', 'NDI', 'NGRDI', 'NGBDI', 'VARI', 'VDVI', 
'CIVE', 'VEG', 'MExG', 'ExG', 'ExR', 'ExGR', 'COM1', 'COM2', 'X', 'Y', 
'Z', 'L', 'a', 'b1', 'ba', 'H', 'S', 'V', 'RF', 'YF', 'GF', 'CF', 
'RGF', 'Y1', 'Cb', 'Cr', 'RContrast', 'RCorrelation', 'REnergy', 
'RHomogeneity',... 
    'GContrast', 'GCorrelation', 'GEnergy', 'GHomogeneity', 
'BContrast', 'BCorrelation', 'BEnergy', 'BHomogeneity', 'rContrast', 
'rCorrelation', 'rEnergy', 'rHomogeneity', 'gContrast', 'gCorrelation', 
'gEnergy', 'gHomogeneity', 'bContrast', 'bCorrelation', 'bEnergy', 
'bHomogeneity', 'rgContrast', 'rgCorrelation', 'rgEnergy', 
'rgHomogeneity', 'gbContrast', 'gbCorrelation', 'gbEnergy', 
'gbHomogeneity', 'XgbrgContrast', 'XgbrgCorrelation', 'XgbrgEnergy', 
'XgbrgHomogeneity', 'INTContrast', 'INTCorrelation', 'INTEnergy', 
'INTHomogeneity', 'NDIContrast', 'NDICorrelation', 'NDIEnergy', 
'NDIHomogeneity', 'NGRDIContrast', 'NGRDICorrelation', 'NGRDIEnergy', 
'NGRDIHomogeneity', 'NGBDIContrast', 'NGBDICorrelation', 
'NGBDIEnergy',... 
    'NGBDIHomogeneity', 'VARIContrast', 'VARICorrelation', 
'VARIEnergy', 'VARIHomogeneity', 'VDVIContrast', 'VDVICorrelation', 
'VDVIEnergy', 'VDVIHomogeneity', 'CIVEContrast', 'CIVECorrelation', 
'CIVEEnergy', 'CIVEHomogeneity', 'MExGContrast', 'MExGCorrelation', 
'MExGEnergy', 'MExGHomogeneity', 'ExGContrast', 'ExGCorrelation', 
'ExGEnergy', 'ExGHomogeneity', 'ExRContrast', 'ExRCorrelation', 
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'ExREnergy', 'ExRHomogeneity', 'ExGRContrast', 'ExGRCorrelation', 
'ExGREnergy', 'ExGRHomogeneity', 'XContrast', 'XCorrelation', 
'XEnergy', 'XHomogeneity', 'YContrast', 'YCorrelation', 'YEnergy', 
'YHomogeneity', 'ZContrast', 'ZCorrelation', 'ZEnergy', 'ZHomogeneity', 
'LContrast', 'LCorrelation', 'LEnergy', 'LHomogeneity',... 
    'aContrast', 'aCorrelation', 'aEnergy', 'aHomogeneity', 
'bContrast1', 'bCorrelation1', 'bEnergy1', 'bHomogeneity1', 
'baContrast', 'baCorrelation', 'baEnergy', 'baHomogeneity', 
'HContrast', 'HCorrelation', 'HEnergy', 'HHomogeneity', 'SContrast', 
'SCorrelation', 'SEnergy', 'SHomogeneity', 'VContrast', 'VCorrelation', 
'VEnergy', 'VHomogeneity', 'YContrast1', 'YCorrelation1', 'YEnergy1', 
'YHomogeneity1', 'CbContrast', 'CbCorrelation', 'CbEnergy', 
'CbHomogeneity', 'CrContrast', 'CrCorrelation', 'CrEnergy', 
'CrHomogeneity', 'GrayContrast', 'GrayCorrelation', 'GrayEnergy', 
'GrayHomogeneity', 'R501_5', 'R502_2', 'R503_3', 'R503_7', 'R504', 
'R504_8', 'R505_5', 'R505_8', 'R506_2', 'R507_3', 'R508', 'R508_7',... 
    'R509_8', 'R510_2', 'R510_5', 'R511_2', 'R512', 'R512_3', 'R512_7', 
'R513', 'R513_8', 'R514_5', 'R514_8', 'R515_2', 'R516_3', 'R517', 
'R517_7', 'R518_8', 'R519_2', 'R519_5', 'R520_2', 'R521', 'R521_3', 
'R521_7', 'R522', 'R522_8', 'R523_5', 'R523_8', 'R524_2', 'R525_3', 
'R526', 'R526_3', 'R526_7', 'R527_8', 'R528_5', 'R529_2', 'R530_3', 
'R531', 'R531_7', 'R532_8', 'R533_5', 'R534_2', 'R535_3', 'R536', 
'R536_7', 'R537_8', 'R538_5', 'R539_2', 'R540_3', 'R541', 'R541_7', 
'R542_8', 'R543_5', 'R544_2', 'R545_3', 'R546', 'R546_3', 'R546_7', 
'R547_8', 'R548_5', 'R548_8', 'R549_2', 'R550_3', 'R551', 'R551_3', 
'R551_7', 'R552', 'R552_7', 'R553_5', 'R553_8', 'R554_2', 'R554_5', 
'R555_2', 'R556_3', 'R556_7',... 
    'R557', 'R557_7', 'R558_8', 'R559_5', 'R559_8', 'R560_2', 'R561_3', 
'R562', 'R562_3', 'R562_7', 'R563', 'R563_7', 'R564_8', 'R565_2', 
'R565_5', 'R566_2', 'R567_3', 'R568', 'R568_3', 'R568_7', 'R569', 
'R569_7', 'R570_8', 'R571_2', 'R571_5', 'R572_2', 'R573_3', 'R574', 
'R574_3', 'R574_7', 'R575', 'R575_7', 'R576_8', 'R577_5', 'R577_8', 
'R578_2', 'R579_3', 'R580', 'R580_3', 'R580_7', 'R581', 'R581_7', 
'R582_8', 'R583_5', 'R583_8', 'R584_2', 'R584_5', 'R585_2', 'R586_3', 
'R587', 'R587_3', 'R587_7', 'R588', 'R588_7', 'R589_8', 'R590_5', 
'R590_8', 'R591_2', 'R591_5', 'R592_2', 'R593_3', 'R594', 'R594_3', 
'R594_7', 'R595', 'R595_7', 'R596_8', 'R597_5', 'R597_8', 'R598_2', 
'R598_5', 'R599_2', 'R600_3',... 
    'R601', 'R601_3', 'R601_7', 'R602', 'R602_7', 'R603_8', 'R604_5', 
'R604_8', 'R605_2', 'R605_5', 'R605_8', 'R606_2', 'R606_5', 'R607_2', 
'R608_3', 'R609', 'R609_3', 'R609_7', 'R610', 'R610_7', 'R611_8', 
'R612_5', 'R612_8', 'R613_5', 'R613_8', 'R614_2', 'R614_5', 'R615_2', 
'R616_3', 'R617', 'R617_3', 'R617_7', 'R618', 'R618_3', 'R618_7', 
'R619', 'R619_7', 'R620_8', 'R621_5', 'R621_8', 'R622_2', 'R622_5', 
'R622_8', 'R623_2', 'R623_5', 'R624_2', 'R625_3', 'R626', 'R626_3', 
'R626_7', 'R627', 'R627_3', 'R627_7', 'R628', 'R628_7', 'R629_8', 
'R630_8', 'R631_5', 'R631_8', 'R632_2', 'R632_5', 'R633_2', 'R633_5', 
'R634_2', 'R635_3', 'R636', 'R636_3', 'R637', 'R637_3', 'R637_7', 
'R638', 'R638_7', 'R639',... 
    'R639_7', 'R640_8', 'R641_5', 'R641_8', 'R642_5', 'R642_8', 
'R643_2', 'R643_5', 'R644_2', 'R644_5', 'R645_2', 'R646_3', 'R647_3', 
'R648', 'R648_3', 'R648_7', 'R649', 'R649_3', 'R649_7', 'R650', 
'R650_7', 'R651', 'R651_7', 'R652_8', 'R653_8', 'R654_5', 'R654_8', 
'R655_5', 'R655_8', 'R656_2', 'R656_5', 'R656_8', 'R657_2', 'R657_5', 
'R658_2', 'R659_2', 'R660_3', 'R661_3', 'R662', 'R662_3', 'R663', 
'R663_3', 'R663_7', 'R664', 'R664_3', 'R664_7', 'R665', 'R665_7', 
'R666', 'R666_7', 'R667_7', 'R668_8', 'R669_8', 'R670_5', 'R670_8', 
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'R671_5', 'R671_8', 'R672_5', 'R672_8', 'R673_2', 'R673_5', 'R673_8', 
'R674_2', 'R674_5', 'R675_2', 'R675_5', 'R676_2', 'R676_5', 'R677_2', 
'R678_2', 'R679_3', 'R680_3',... 
    'R681_3', 'R682', 'R682_3', 'R683', 'R683_3', 'R684', 'R684_3', 
'R684_7', 'R685', 'R685_3', 'R685_7', 'R686', 'R686_3', 'R686_7', 
'R687', 'R687_3', 'R687_7', 'R688', 'R688_7', 'R689', 'R689_7', 'R690', 
'R690_7', 'R691', 'R691_7', 'R692_7', 'R693_7', 'R694_7', 'R695_7', 
'R696_8', 'R697_8', 'R698_8', 'R699_8', 'R700_8', 'R701_8', 'R702_8', 
'R703_8', 'R704_5', 'R704_8', 'R705_5', 'R705_8', 'R706_5', 'R706_8', 
'R707_5', 'R707_8', 'R708_5', 'R708_8', 'R709_5', 'R709_8', 'R710_5', 
'R710_8', 'R711_5', 'R711_8', 'R712_5', 'R712_8', 'R713_5', 'R713_8', 
'R714_5', 'R714_8', 'R715_5', 'R715_8', 'R716_8', 'R717_8', 'R718_8', 
'R719_8', 'R720_8', 'R721_8', 'R722_8', 'R723_7', 'R724_7', 'R725_7', 
'R726_7',... 
    'R727_7', 'R728_7', 'R729', 'R729_7', 'R730', 'R730_7', 'R731', 
'R731_7', 'R732', 'R732_3', 'R732_7', 'R733', 'R733_3', 'R733_7', 
'R734', 'R734_3', 'R734_7', 'R735', 'R735_3', 'R736', 'R736_3', 'R737', 
'R737_3', 'R738_3', 'R739_3', 'R740_2', 'R741_2', 'R742_2', 'R742_5', 
'R743_2', 'R743_5', 'R744_2', 'R744_5', 'R744_8', 'R745_2', 'R745_5', 
'R745_8', 'R746_2', 'R746_5', 'R746_8', 'R747_5', 'R747_8', 'R748_8', 
'R749_8', 'R750_7', 'R751_7', 'R752', 'R752_7', 'R753', 'R753_7', 
'R754', 'R754_3', 'R754_7', 'R755', 'R755_3', 'R756', 'R756_3', 
'R757_3', 'R758_3', 'R759_2', 'R760_2', 'R760_5', 'R761_2', 'R761_5', 
'R761_8', 'R762_2', 'R762_5', 'R762_8', 'R763_5', 'R763_8', 'R764_8', 
'R765_7', 'R766_7',... 
    'R767', 'R767_7', 'R768', 'R768_3', 'R768_7', 'R769', 'R769_3', 
'R770_3', 'R771_2', 'R772_2', 'R772_5', 'R773_2', 'R773_5', 'R773_8', 
'R774_2', 'R774_5', 'R774_8', 'R775_5', 'R775_8', 'R776_7', 'R777_7', 
'R778', 'R778_7', 'R779', 'R779_3', 'R780', 'R780_3', 'R781_3', 
'R782_2', 'R782_5', 'R783_2', 'R783_5', 'R783_8', 'R784_2', 'R784_5', 
'R784_8', 'R785_8', 'R786_7', 'R787_7', 'R788', 'R788_3', 'R788_7', 
'R789', 'R789_3', 'R790_3', 'R791_2', 'R791_5', 'R792_2', 'R792_5', 
'R792_8', 'R793_5', 'R793_8', 'R794_8', 'R795_7', 'R796', 'R796_7', 
'R797', 'R797_3', 'R798_3', 'R799_2', 'R799_5', 'R800_2', 'R800_5', 
'R800_8', 'R801_5', 'R801_8', 'R802_7', 'R803_7', 'R804', 'R804_3', 
'R805', 'R805_3', 'R806_2', ... 
    'R807_2', 'R807_5', 'R807_8', 'R808_5', 'R808_8', 'R809_7', 
'R810_7', 'R811', 'R811_3', 'R812', 'R812_3', 'R813_2', 'R813_5', 
'R814_2', 'R814_5', 'R814_8', 'R815_8', 'R816_7', 'R817', 'R817_3', 
'R817_7', 'R818', 'R818_3', 'R819_2', 'R820_2', 'R820_5', 'R820_8', 
'R821_5', 'R821_8', 'R822_7', 'R823', 'R823_3', 'R823_7', 'R824', 
'R824_3', 'R825_2', 'R826_2', 'R826_5', 'R826_8', 'R827_8', 'R828_7', 
'R829', 'R829_3', 'R830', 'R830_3', 'R831_2', 'R831_5', 'R831_8', 
'R832_2', 'R832_5', 'R832_8', 'R833_7', 'R834', 'R834_7', 'R835', 
'R835_3', 'R836_2', 'R836_5', 'R837_2', 'R837_5', 'R837_8', 'R838_7', 
'R839', 'R839_7', 'R840', 'R840_3', 'R841_2', 'R841_5', 'R842_2', 
'R842_5', 'R842_8', 'R843_7', 'R844', 'R844_7',... 
    'R845', 'R845_3', 'R846_2', 'R846_5', 'R846_8', 'R847_2', 'R847_5', 
'R847_8', 'R848_7', 'R849', 'R849_3', 'R850', 'R850_3', 'R851_2', 
'R851_5', 'R851_8', 'R852_8', 'R853_7', 'R854', 'R854_3', 'R855_2', 
'R855_5', 'R856_2', 'R856_5', 'R856_8', 'R857_7', 'R858', 'R858_3', 
'R859_3', 'R860_2', 'R860_5', 'R860_8', 'R861_7', 'R862', 'R862_3', 
'R862_7', 'R863', 'R863_3', 'R864_2', 'R864_5', 'R864_8', 'R865_7', 
'R866', 'R866_7', 'R867', 'R867_3', 'R868_2', 'R868_5', 'R868_8', 
'R869_7', 'R870', 'R870_7', 'R871', 'R871_3', 'R872_2', 'R872_5', 
'R872_8', 'R873_7', 'R874', 'R874_3', 'R874_7', 'R875', 'R875_3', 
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'R876_2', 'R876_5', 'R876_8', 'R877_7', 'R878', 'R878_3', 'R879_2', 
'R879_5', 'R880_2', 'R880_5', 'R880_8', 'R881_7',... 
    'R882', 'R882_3', 'R883_2', 'R883_5', 'R883_8', 'R884_7', 'R885', 
'R885_3', 'R885_7', 'R886', 'R886_3', 'R887_2', 'R887_5', 'R887_8', 
'R888_7', 'R889', 'R889_3', 'R890_2', 'R890_5', 'R890_8', 'R891_7', 
'R892', 'R892_3', 'R893_2', 'R893_5', 'R894_2', 'R894_5', 'R894_8', 
'R895_7', 'R896', 'R896_3', 'R897_2', 'R897_5', 'R897_8', 'R898_7', 
'R899', 'R899_3', 'R900_2', 'R900_5', 'R900_8', 'R901_7', 'R902', 
'R902_3', 'R903_2', 'R903_5', 'R903_8', 'R904_7', 'R905', 'R905_3', 
'R906_2', 'R906_5', 'R906_8', 'R907_7', 'R908', 'R908_3', 'R909_2', 
'R909_5', 'R909_8', 'R910_7', 'R911', 'R911_3', 'R912_2', 'R912_5', 
'R912_8', 'R913_7', 'R914', 'R914_3', 'R915_2', 'R915_5', 'R915_8', 
'R916_7', 'R917', 'R917_3', 'R918_2', 'R918_5',... 
    'R918_8', 'R919_7', 'R920', 'R920_3', 'R921_2', 'R921_5', 'R921_8', 
'R922_7', 'R923', 'R923_3', 'R924_2', 'R924_5', 'R924_8', 'R925_7', 
'R926', 'R926_3', 'R927_2', 'R927_7', 'R928', 'R928_3', 'R929_2', 
'R929_5', 'R929_8', 'R930_7', 'R931', 'R931_3', 'R932_2', 'R932_5', 
'R932_8', 'R933_7', 'R934', 'R934_3', 'R935_7', 'R936', 'R936_3', 
'R937_2', 'R937_5', 'R937_8', 'R938_7', 'R939', 'R939_3', 'R940_2', 
'R940_5', 'R940_7', 'R941', 'R941_3', 'R942_2', 'R942_5', 'R942_8', 
'R943_7', 'R944', 'R944_3', 'R945_2', 'R945_5', 'R945_7', 'R946', 
'R946_3', 'R947_2', 'R947_5', 'R947_8', 'R948_7', 'R949', 'R949_3', 
'PRI', 'NDVI', 'RENDVI', 'GNDVI', 'ARI', 'reNDVI2', 'NDRE', 'NIR_VIS', 
'NIR', 'CWSI', 'DSI1', 'DSI2', 'DSI3', 'GYI1', 'GYI2',... 
    'GYI3', 'LCI', 'STI1', 'STI2', 'REDGE', 'NDWI', 'RE3RE2', 'REIP', 
'REIPnm', 'SR1', 'SR680', 'SR705', 'NDVI680', 'NDVI705', 'D715', 
'NIRRed', 'NIRGreen', 'MCARI', 'SAVI', 'OSAVI', 'SRWBI', 'RE', 'TCARI', 
'TCARI_OSAVI', 'GDD', 'GDD_C', 'Precip_C', 'PrecipDepart_C', 'IRR_C', 
'WUa', 'WUac', 'R8_GDD', 'R7_GDD', 'R5_GDD', 'R35_GDD', 'R1_GDD', 
'R8_TotW', 'R8_Wlefc', 'S_TotW', 'S_WIefc', 'S_Dep', 'R7_TotW', 
'R7_WIefc', 'R7_Dep', 'R1_TotW', 'R1_WIefc', 'R1_Dep', 'R35_TotW', 
'R35_WIefc', 'R35_Dep', 'R5_TotW', 'R5_WIefc', 'R5_Dep', 
'Avg_Dep_R1_R35', 'Avg_Dep_R35_R5', 'Avg_Dep_R5_R7', 'Avg_Dep_R1_R5', 
'Avg_Dep_R35_R7', 'Avg_Dep_R1_R7', 'TotW_R1_R35', 'TotW_R35_R5', 
'TotW_R5_R7', 'Wlefc_R1_R35', 'Wlefc_R35_R5', 'Wlefc_R5_R7'}; 
 trainedModel.RegressionEnsemble = regressionEnsemble; 
 response=test.YIELD_R8_Wlefc; 
  
%Output testing predictions and observed values 
 yfit = trainedModel.predictFcn(test); 
 predtemp{k} = table(yfit, response, test.RecID, test.STAGE);  
  
 correlation= corrcoef(yfit, response);  
 cor{1,k}= correlation(1,2); 
  
end 
  
% Merge model predictions 
preds = vertcat(predtemp{:}); 
  
% Write predictions file 
pname = strcat(loop.names{i},'_','predictions.csv'); 
corrname = strcat(loop.names{i},'_','correlations.csv'); 
writetable(preds, pname);  
writetable(cor,corrname);  
  
end 
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5. Example NET Script 
... 
i=str2num(getenv('SLURM_TASKS_PER_NODE')); 
p=parpool(i); 
p.IdleTimeout = inf 
... 
  
%Load Dataset and Rename 
load workspace_geno1718.mat 
  
% Partion variables for loop output 
ALL = MasterDatasetComplete; 
UX3000 = MasterDatasetComplete(MasterDatasetComplete.TEST=='UX3000',:); 
UX3036 = MasterDatasetComplete(MasterDatasetComplete.TEST=='UX3036',:); 
  
UX3000_V5 = UX3000(UX3000.STAGE=='V5',:); 
UX3000_R5 = UX3000(UX3000.STAGE=='R5',:); 
  
UX3036_V5 = UX3036(UX3036.STAGE=='V5',:); 
UX3036_R5 = UX3036(UX3036.STAGE=='R5',:); 
  
V5 = ALL(ALL.STAGE=='V5',:); 
R5 = ALL(ALL.STAGE=='R5',:); 
R3 = ALL(ALL.STAGE=='R3',:); 
  
IRR_TREAT1 = 
MasterDatasetComplete(MasterDatasetComplete.IRR_TREAT==1,:); 
IRR_TREAT2 = 
MasterDatasetComplete(MasterDatasetComplete.IRR_TREAT==2,:); 
  
UX3000_1 = UX3000(UX3000.IRR_TREAT==1,:); 
UX3000_2 = UX3000(UX3000.IRR_TREAT==2,:); 
  
UX3036_1 = UX3036(UX3036.IRR_TREAT==1,:); 
UX3036_2 = UX3036(UX3036.IRR_TREAT==2',:); 
  
V5_1 = V5(V5.IRR_TREAT==1,:); 
V5_2 = V5(V5.IRR_TREAT==2',:); 
  
R5_1 = R5(R5.IRR_TREAT==1,:); 
R5_2 = R5(R5.IRR_TREAT==2',:); 
  
R3_1 = R3(R3.IRR_TREAT==1,:); 
R3_2 = R3(R3.IRR_TREAT==2',:); 
  
% Store datasets in list 
loop.names = {"UX3000", "UX3000_V5", "UX3000_R5", "UX3036", 
"UX3036_V5", "UX3036_R5", "ALL", "V5", "R5",... 
    "IRR_TREAT1", "IRR_TREAT2", "UX3000_1", "UX3000_2", "UX3036_1", 
"UX3036_2", "V5_1", "V5_2", "R5_1", "R5_2", "R3", "R3_1", "R3_2"}; 
  
water{1} = UX3000; 
water{2} = UX3000_V5; 
water{3} = UX3000_R5; 
water{4} = UX3036; 
water{5} = UX3036_V5; 
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water{6} = UX3036_R5; 
water{7} = ALL; 
water{8} = V5; 
water{9} = R5; 
water{10} = IRR_TREAT1; 
water{11} = IRR_TREAT2; 
water{12} = UX3000_1; 
water{13} = UX3000_2; 
water{14} = UX3036_1; 
water{15} = UX3036_2; 
water{16} = V5_1; 
water{17} = V5_2; 
water{18} = R5_1; 
water{19} = R5_2; 
water{20} = R3; 
water{21} = R3_1; 
water{22} = R3_2; 
  
for i = 1:length(water) 
  
% Assign inputtable dataset 
%Testing Data 
dataset = water{i};  
  
% Extract predictors and response 
% This code processes the data into the right shape for training the 
model. 
phenoNames = {'IRR_TREAT', 'STAGE', 'LMR', 'TEST',  'Time', 'Latitude', 
'Longitude', 'Easting', 'Northing', 'AirTemperature_C', 
'RelativeHumidity', 'SVP_Pa', 'VPD_kPa', 'ShortwaveRadiation_Wm2', 
'SensorHeight_cm', 'CanopyHeight', 'UltrasonicCanopyHeight', 'CATD_C', 
'CATD_VPD', 'CanopyTemperature_C', 'Volume', 'Area', 'Perimeter', 
'Area_Perimeter', 'PF', 'R', 'G', 'B', 'r', 'g', 'b', 'rg', 'gb', 
'Xgbrg', 'INT', 'GRRI', 'NDI', 'NGRDI', 'NGBDI', 'VARI', 'VDVI', 
'CIVE', 'VEG', 'MExG', 'ExG', 'ExR', 'ExGR', 'COM1', 'COM2', 'X', 'Y', 
'Z', 'L', 'a', 'b1', 'ba', 'H', 'S', 'V', 'RF', 'YF', 'GF', 'CF', 
'RGF', 'Y1', 'Cb', 'Cr', 'RContrast', 'RCorrelation', 'REnergy', 
'RHomogeneity',... 
    'GContrast', 'GCorrelation', 'GEnergy', 'GHomogeneity', 
'BContrast', 'BCorrelation', 'BEnergy', 'BHomogeneity', 'rContrast', 
'rCorrelation', 'rEnergy', 'rHomogeneity', 'gContrast', 'gCorrelation', 
'gEnergy', 'gHomogeneity', 'bContrast', 'bCorrelation', 'bEnergy', 
'bHomogeneity', 'rgContrast', 'rgCorrelation', 'rgEnergy', 
'rgHomogeneity', 'gbContrast', 'gbCorrelation', 'gbEnergy', 
'gbHomogeneity', 'XgbrgContrast', 'XgbrgCorrelation', 'XgbrgEnergy', 
'XgbrgHomogeneity', 'INTContrast', 'INTCorrelation', 'INTEnergy', 
'INTHomogeneity', 'NDIContrast', 'NDICorrelation', 'NDIEnergy', 
'NDIHomogeneity', 'NGRDIContrast', 'NGRDICorrelation', 'NGRDIEnergy', 
'NGRDIHomogeneity', 'NGBDIContrast', 'NGBDICorrelation', 
'NGBDIEnergy',... 
    'NGBDIHomogeneity', 'VARIContrast', 'VARICorrelation', 
'VARIEnergy', 'VARIHomogeneity', 'VDVIContrast', 'VDVICorrelation', 
'VDVIEnergy', 'VDVIHomogeneity', 'CIVEContrast', 'CIVECorrelation', 
'CIVEEnergy', 'CIVEHomogeneity', 'MExGContrast', 'MExGCorrelation', 
'MExGEnergy', 'MExGHomogeneity', 'ExGContrast', 'ExGCorrelation', 
'ExGEnergy', 'ExGHomogeneity', 'ExRContrast', 'ExRCorrelation', 
'ExREnergy', 'ExRHomogeneity', 'ExGRContrast', 'ExGRCorrelation', 
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'ExGREnergy', 'ExGRHomogeneity', 'XContrast', 'XCorrelation', 
'XEnergy', 'XHomogeneity', 'YContrast', 'YCorrelation', 'YEnergy', 
'YHomogeneity', 'ZContrast', 'ZCorrelation', 'ZEnergy', 'ZHomogeneity', 
'LContrast', 'LCorrelation', 'LEnergy', 'LHomogeneity',... 
    'aContrast', 'aCorrelation', 'aEnergy', 'aHomogeneity', 
'bContrast1', 'bCorrelation1', 'bEnergy1', 'bHomogeneity1', 
'baContrast', 'baCorrelation', 'baEnergy', 'baHomogeneity', 
'HContrast', 'HCorrelation', 'HEnergy', 'HHomogeneity', 'SContrast', 
'SCorrelation', 'SEnergy', 'SHomogeneity', 'VContrast', 'VCorrelation', 
'VEnergy', 'VHomogeneity', 'YContrast1', 'YCorrelation1', 'YEnergy1', 
'YHomogeneity1', 'CbContrast', 'CbCorrelation', 'CbEnergy', 
'CbHomogeneity', 'CrContrast', 'CrCorrelation', 'CrEnergy', 
'CrHomogeneity', 'GrayContrast', 'GrayCorrelation', 'GrayEnergy', 
'GrayHomogeneity', 'R501_5', 'R502_2', 'R503_3', 'R503_7', 'R504', 
'R504_8', 'R505_5', 'R505_8', 'R506_2', 'R507_3', 'R508', 'R508_7',... 
    'R509_8', 'R510_2', 'R510_5', 'R511_2', 'R512', 'R512_3', 'R512_7', 
'R513', 'R513_8', 'R514_5', 'R514_8', 'R515_2', 'R516_3', 'R517', 
'R517_7', 'R518_8', 'R519_2', 'R519_5', 'R520_2', 'R521', 'R521_3', 
'R521_7', 'R522', 'R522_8', 'R523_5', 'R523_8', 'R524_2', 'R525_3', 
'R526', 'R526_3', 'R526_7', 'R527_8', 'R528_5', 'R529_2', 'R530_3', 
'R531', 'R531_7', 'R532_8', 'R533_5', 'R534_2', 'R535_3', 'R536', 
'R536_7', 'R537_8', 'R538_5', 'R539_2', 'R540_3', 'R541', 'R541_7', 
'R542_8', 'R543_5', 'R544_2', 'R545_3', 'R546', 'R546_3', 'R546_7', 
'R547_8', 'R548_5', 'R548_8', 'R549_2', 'R550_3', 'R551', 'R551_3', 
'R551_7', 'R552', 'R552_7', 'R553_5', 'R553_8', 'R554_2', 'R554_5', 
'R555_2', 'R556_3', 'R556_7',... 
    'R557', 'R557_7', 'R558_8', 'R559_5', 'R559_8', 'R560_2', 'R561_3', 
'R562', 'R562_3', 'R562_7', 'R563', 'R563_7', 'R564_8', 'R565_2', 
'R565_5', 'R566_2', 'R567_3', 'R568', 'R568_3', 'R568_7', 'R569', 
'R569_7', 'R570_8', 'R571_2', 'R571_5', 'R572_2', 'R573_3', 'R574', 
'R574_3', 'R574_7', 'R575', 'R575_7', 'R576_8', 'R577_5', 'R577_8', 
'R578_2', 'R579_3', 'R580', 'R580_3', 'R580_7', 'R581', 'R581_7', 
'R582_8', 'R583_5', 'R583_8', 'R584_2', 'R584_5', 'R585_2', 'R586_3', 
'R587', 'R587_3', 'R587_7', 'R588', 'R588_7', 'R589_8', 'R590_5', 
'R590_8', 'R591_2', 'R591_5', 'R592_2', 'R593_3', 'R594', 'R594_3', 
'R594_7', 'R595', 'R595_7', 'R596_8', 'R597_5', 'R597_8', 'R598_2', 
'R598_5', 'R599_2', 'R600_3',... 
    'R601', 'R601_3', 'R601_7', 'R602', 'R602_7', 'R603_8', 'R604_5', 
'R604_8', 'R605_2', 'R605_5', 'R605_8', 'R606_2', 'R606_5', 'R607_2', 
'R608_3', 'R609', 'R609_3', 'R609_7', 'R610', 'R610_7', 'R611_8', 
'R612_5', 'R612_8', 'R613_5', 'R613_8', 'R614_2', 'R614_5', 'R615_2', 
'R616_3', 'R617', 'R617_3', 'R617_7', 'R618', 'R618_3', 'R618_7', 
'R619', 'R619_7', 'R620_8', 'R621_5', 'R621_8', 'R622_2', 'R622_5', 
'R622_8', 'R623_2', 'R623_5', 'R624_2', 'R625_3', 'R626', 'R626_3', 
'R626_7', 'R627', 'R627_3', 'R627_7', 'R628', 'R628_7', 'R629_8', 
'R630_8', 'R631_5', 'R631_8', 'R632_2', 'R632_5', 'R633_2', 'R633_5', 
'R634_2', 'R635_3', 'R636', 'R636_3', 'R637', 'R637_3', 'R637_7', 
'R638', 'R638_7', 'R639',... 
    'R639_7', 'R640_8', 'R641_5', 'R641_8', 'R642_5', 'R642_8', 
'R643_2', 'R643_5', 'R644_2', 'R644_5', 'R645_2', 'R646_3', 'R647_3', 
'R648', 'R648_3', 'R648_7', 'R649', 'R649_3', 'R649_7', 'R650', 
'R650_7', 'R651', 'R651_7', 'R652_8', 'R653_8', 'R654_5', 'R654_8', 
'R655_5', 'R655_8', 'R656_2', 'R656_5', 'R656_8', 'R657_2', 'R657_5', 
'R658_2', 'R659_2', 'R660_3', 'R661_3', 'R662', 'R662_3', 'R663', 
'R663_3', 'R663_7', 'R664', 'R664_3', 'R664_7', 'R665', 'R665_7', 
'R666', 'R666_7', 'R667_7', 'R668_8', 'R669_8', 'R670_5', 'R670_8', 
'R671_5', 'R671_8', 'R672_5', 'R672_8', 'R673_2', 'R673_5', 'R673_8', 
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'R674_2', 'R674_5', 'R675_2', 'R675_5', 'R676_2', 'R676_5', 'R677_2', 
'R678_2', 'R679_3', 'R680_3',... 
    'R681_3', 'R682', 'R682_3', 'R683', 'R683_3', 'R684', 'R684_3', 
'R684_7', 'R685', 'R685_3', 'R685_7', 'R686', 'R686_3', 'R686_7', 
'R687', 'R687_3', 'R687_7', 'R688', 'R688_7', 'R689', 'R689_7', 'R690', 
'R690_7', 'R691', 'R691_7', 'R692_7', 'R693_7', 'R694_7', 'R695_7', 
'R696_8', 'R697_8', 'R698_8', 'R699_8', 'R700_8', 'R701_8', 'R702_8', 
'R703_8', 'R704_5', 'R704_8', 'R705_5', 'R705_8', 'R706_5', 'R706_8', 
'R707_5', 'R707_8', 'R708_5', 'R708_8', 'R709_5', 'R709_8', 'R710_5', 
'R710_8', 'R711_5', 'R711_8', 'R712_5', 'R712_8', 'R713_5', 'R713_8', 
'R714_5', 'R714_8', 'R715_5', 'R715_8', 'R716_8', 'R717_8', 'R718_8', 
'R719_8', 'R720_8', 'R721_8', 'R722_8', 'R723_7', 'R724_7', 'R725_7', 
'R726_7',... 
    'R727_7', 'R728_7', 'R729', 'R729_7', 'R730', 'R730_7', 'R731', 
'R731_7', 'R732', 'R732_3', 'R732_7', 'R733', 'R733_3', 'R733_7', 
'R734', 'R734_3', 'R734_7', 'R735', 'R735_3', 'R736', 'R736_3', 'R737', 
'R737_3', 'R738_3', 'R739_3', 'R740_2', 'R741_2', 'R742_2', 'R742_5', 
'R743_2', 'R743_5', 'R744_2', 'R744_5', 'R744_8', 'R745_2', 'R745_5', 
'R745_8', 'R746_2', 'R746_5', 'R746_8', 'R747_5', 'R747_8', 'R748_8', 
'R749_8', 'R750_7', 'R751_7', 'R752', 'R752_7', 'R753', 'R753_7', 
'R754', 'R754_3', 'R754_7', 'R755', 'R755_3', 'R756', 'R756_3', 
'R757_3', 'R758_3', 'R759_2', 'R760_2', 'R760_5', 'R761_2', 'R761_5', 
'R761_8', 'R762_2', 'R762_5', 'R762_8', 'R763_5', 'R763_8', 'R764_8', 
'R765_7', 'R766_7',... 
    'R767', 'R767_7', 'R768', 'R768_3', 'R768_7', 'R769', 'R769_3', 
'R770_3', 'R771_2', 'R772_2', 'R772_5', 'R773_2', 'R773_5', 'R773_8', 
'R774_2', 'R774_5', 'R774_8', 'R775_5', 'R775_8', 'R776_7', 'R777_7', 
'R778', 'R778_7', 'R779', 'R779_3', 'R780', 'R780_3', 'R781_3', 
'R782_2', 'R782_5', 'R783_2', 'R783_5', 'R783_8', 'R784_2', 'R784_5', 
'R784_8', 'R785_8', 'R786_7', 'R787_7', 'R788', 'R788_3', 'R788_7', 
'R789', 'R789_3', 'R790_3', 'R791_2', 'R791_5', 'R792_2', 'R792_5', 
'R792_8', 'R793_5', 'R793_8', 'R794_8', 'R795_7', 'R796', 'R796_7', 
'R797', 'R797_3', 'R798_3', 'R799_2', 'R799_5', 'R800_2', 'R800_5', 
'R800_8', 'R801_5', 'R801_8', 'R802_7', 'R803_7', 'R804', 'R804_3', 
'R805', 'R805_3', 'R806_2', ... 
    'R807_2', 'R807_5', 'R807_8', 'R808_5', 'R808_8', 'R809_7', 
'R810_7', 'R811', 'R811_3', 'R812', 'R812_3', 'R813_2', 'R813_5', 
'R814_2', 'R814_5', 'R814_8', 'R815_8', 'R816_7', 'R817', 'R817_3', 
'R817_7', 'R818', 'R818_3', 'R819_2', 'R820_2', 'R820_5', 'R820_8', 
'R821_5', 'R821_8', 'R822_7', 'R823', 'R823_3', 'R823_7', 'R824', 
'R824_3', 'R825_2', 'R826_2', 'R826_5', 'R826_8', 'R827_8', 'R828_7', 
'R829', 'R829_3', 'R830', 'R830_3', 'R831_2', 'R831_5', 'R831_8', 
'R832_2', 'R832_5', 'R832_8', 'R833_7', 'R834', 'R834_7', 'R835', 
'R835_3', 'R836_2', 'R836_5', 'R837_2', 'R837_5', 'R837_8', 'R838_7', 
'R839', 'R839_7', 'R840', 'R840_3', 'R841_2', 'R841_5', 'R842_2', 
'R842_5', 'R842_8', 'R843_7', 'R844', 'R844_7',... 
    'R845', 'R845_3', 'R846_2', 'R846_5', 'R846_8', 'R847_2', 'R847_5', 
'R847_8', 'R848_7', 'R849', 'R849_3', 'R850', 'R850_3', 'R851_2', 
'R851_5', 'R851_8', 'R852_8', 'R853_7', 'R854', 'R854_3', 'R855_2', 
'R855_5', 'R856_2', 'R856_5', 'R856_8', 'R857_7', 'R858', 'R858_3', 
'R859_3', 'R860_2', 'R860_5', 'R860_8', 'R861_7', 'R862', 'R862_3', 
'R862_7', 'R863', 'R863_3', 'R864_2', 'R864_5', 'R864_8', 'R865_7', 
'R866', 'R866_7', 'R867', 'R867_3', 'R868_2', 'R868_5', 'R868_8', 
'R869_7', 'R870', 'R870_7', 'R871', 'R871_3', 'R872_2', 'R872_5', 
'R872_8', 'R873_7', 'R874', 'R874_3', 'R874_7', 'R875', 'R875_3', 
'R876_2', 'R876_5', 'R876_8', 'R877_7', 'R878', 'R878_3', 'R879_2', 
'R879_5', 'R880_2', 'R880_5', 'R880_8', 'R881_7',... 
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    'R882', 'R882_3', 'R883_2', 'R883_5', 'R883_8', 'R884_7', 'R885', 
'R885_3', 'R885_7', 'R886', 'R886_3', 'R887_2', 'R887_5', 'R887_8', 
'R888_7', 'R889', 'R889_3', 'R890_2', 'R890_5', 'R890_8', 'R891_7', 
'R892', 'R892_3', 'R893_2', 'R893_5', 'R894_2', 'R894_5', 'R894_8', 
'R895_7', 'R896', 'R896_3', 'R897_2', 'R897_5', 'R897_8', 'R898_7', 
'R899', 'R899_3', 'R900_2', 'R900_5', 'R900_8', 'R901_7', 'R902', 
'R902_3', 'R903_2', 'R903_5', 'R903_8', 'R904_7', 'R905', 'R905_3', 
'R906_2', 'R906_5', 'R906_8', 'R907_7', 'R908', 'R908_3', 'R909_2', 
'R909_5', 'R909_8', 'R910_7', 'R911', 'R911_3', 'R912_2', 'R912_5', 
'R912_8', 'R913_7', 'R914', 'R914_3', 'R915_2', 'R915_5', 'R915_8', 
'R916_7', 'R917', 'R917_3', 'R918_2', 'R918_5',... 
    'R918_8', 'R919_7', 'R920', 'R920_3', 'R921_2', 'R921_5', 'R921_8', 
'R922_7', 'R923', 'R923_3', 'R924_2', 'R924_5', 'R924_8', 'R925_7', 
'R926', 'R926_3', 'R927_2', 'R927_7', 'R928', 'R928_3', 'R929_2', 
'R929_5', 'R929_8', 'R930_7', 'R931', 'R931_3', 'R932_2', 'R932_5', 
'R932_8', 'R933_7', 'R934', 'R934_3', 'R935_7', 'R936', 'R936_3', 
'R937_2', 'R937_5', 'R937_8', 'R938_7', 'R939', 'R939_3', 'R940_2', 
'R940_5', 'R940_7', 'R941', 'R941_3', 'R942_2', 'R942_5', 'R942_8', 
'R943_7', 'R944', 'R944_3', 'R945_2', 'R945_5', 'R945_7', 'R946', 
'R946_3', 'R947_2', 'R947_5', 'R947_8', 'R948_7', 'R949', 'R949_3', 
'PRI', 'NDVI', 'RENDVI', 'GNDVI', 'ARI', 'reNDVI2', 'NDRE', 'NIR_VIS', 
'NIR', 'CWSI', 'DSI1', 'DSI2', 'DSI3', 'GYI1', 'GYI2',... 
    'GYI3', 'LCI', 'STI1', 'STI2', 'REDGE', 'NDWI', 'RE3RE2', 'REIP', 
'REIPnm', 'SR1', 'SR680', 'SR705', 'NDVI680', 'NDVI705', 'D715', 
'NIRRed', 'NIRGreen', 'MCARI', 'SAVI', 'OSAVI', 'SRWBI', 'RE', 'TCARI', 
'TCARI_OSAVI'}; 
  
envNames = {'ECD', 'ECDV', 'ECS', 'ECSD', 'ECSDV', 'ECSV','GDD', 
'GDD_C', 'Precip_C', 'PrecipDepart_C', 'IRR_C', 'WUa', 'WUac', 
'R8_GDD', 'R7_GDD', 'R5_GDD', 'R35_GDD', 'R1_GDD', 'R8_TotW', 
'R8_Wlefc', 'S_TotW', 'S_WIefc', 'S_Dep', 'R7_TotW', 'R7_WIefc', 
'R7_Dep', 'R1_TotW', 'R1_WIefc', 'R1_Dep', 'R35_TotW', 'R35_WIefc', 
'R35_Dep', 'R5_TotW', 'R5_WIefc', 'R5_Dep', 'Avg_Dep_R1_R35', 
'Avg_Dep_R35_R5', 'Avg_Dep_R5_R7', 'Avg_Dep_R1_R5', 'Avg_Dep_R35_R7', 
'Avg_Dep_R1_R7', 'TotW_R1_R35', 'TotW_R35_R5', 'TotW_R5_R7', 
'Wlefc_R1_R35', 'Wlefc_R35_R5', 'Wlefc_R5_R7'}; 
  
genoNames = 
{'SGM01_1013994','SGM01_1273914','SGM01_1653600','SGM01_1887609','SGM01
_2102513','SGM01_22123142','SGM01_2601764','SGM01_27230466','SGM01_3033
126','SGM01_3080035','SGM01_3296361','SGM01_3387651','SGM01_39140734','
SGM01_40040347','SGM01_401923','SGM01_4023442','SGM01_4042298','SGM01_4
4442390','SGM01_4799896','SGM01_48006295','SGM01_48994432','SGM01_49055
756','SGM01_49298272','SGM01_4934180','SGM01_49405022','SGM01_50206347'
,'SGM01_50572171','SGM01_5066554','SGM01_50982643','SGM01_510643','SGM0
1_51147675','SGM01_51392814','SGM01_51774753','SGM01_52499700','SGM01_5
2652130','SGM01_52777403','SGM01_52833754','SGM01_53436407','SGM01_5377
2821','SGM01_55031991','SGM01_55158751','SGM01_55404734','SGM01_5543820
3',... 
    
'SGM01_56142221','SGM01_56705229','SGM01_5729824','SGM02_10453962','SGM
02_10791729','SGM02_11831588','SGM02_12334435','SGM02_13674975','SGM02_
13748685','SGM02_14419208','SGM02_14710975','SGM02_14917949','SGM02_152
71225','SGM02_15630228','SGM02_1598551','SGM02_16571664','SGM02_1950516
6','SGM02_2189373','SGM02_24269404','SGM02_2933055','SGM02_3415435','SG
M02_3826362','SGM02_3887461','SGM02_39283955','SGM02_39333124','SGM02_4
0041145','SGM02_40063716','SGM02_41277852','SGM02_41384134','SGM02_4237
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0864','SGM02_42522092','SGM02_42730709','SGM02_43168584','SGM02_4370350
0','SGM02_44037267','SGM02_44441196','SGM02_45170092','SGM02_45505123',
'SGM02_45743148','SGM02_46310608','SGM02_46648827','SGM02_46907259','SG
M02_47225152',... 
    
'SGM02_47857148','SGM02_48192842','SGM02_5167931','SGM02_5262408','SGM0
2_5654145','SGM02_5698591','SGM02_6899003','SGM02_7050046','SGM02_76799
81','SGM02_831795','SGM02_8819494','SGM02_9264905','SGM02_9544733','SGM
02_971919','SGM03_1226007','SGM03_1324758','SGM03_1463842','SGM03_17803
90','SGM03_2959509','SGM03_29653628','SGM03_3115149','SGM03_31363274','
SGM03_33161483','SGM03_33292135','SGM03_3362229','SGM03_34029176','SGM0
3_34147379','SGM03_34416830','SGM03_344529','SGM03_34467296','SGM03_351
7250','SGM03_35405797','SGM03_35462187','SGM03_36147368','SGM03_3644935
7','SGM03_36914473','SGM03_36959274','SGM03_37720073','SGM03_38100814',
'SGM03_39009305','SGM03_39216024','SGM03_39594385','SGM03_40136891','SG
M03_40583852',... 
    
'SGM03_40928220','SGM03_41512333','SGM03_41595432','SGM03_42016419','SG
M03_42115188','SGM03_43484650','SGM03_43663870','SGM03_44445428','SGM03
_44591609','SGM03_4475124','SGM03_45039348','SGM03_45211072','SGM03_509
789','SGM03_5244122','SGM03_9111573','SGM03_9259491','SGM04_11757558','
SGM04_2294967','SGM04_2423943','SGM04_2631785','SGM04_2690045','SGM04_3
542966','SGM04_3590478','SGM04_42002144','SGM04_43501937','SGM04_435548
88','SGM04_4546417','SGM04_46147176','SGM04_46302690','SGM04_47033150',
'SGM04_47114807','SGM04_47241037','SGM04_47740685','SGM04_4778134','SGM
04_48222393','SGM04_48275459','SGM04_48442502','SGM04_48902672','SGM04_
49343742','SGM04_49556059','SGM04_49678259','SGM04_49828162','SGM04_504
44359',... 
    
'SGM04_50498533','SGM04_50850285','SGM04_51330095','SGM04_52122999','SG
M04_52205833','SGM04_5237529','SGM04_5555278','SGM04_56409','SGM04_5816
885','SGM04_586537','SGM04_6016181','SGM04_6415784','SGM04_6718332','SG
M04_7026156','SGM04_7191821','SGM04_7744741','SGM04_8029471','SGM04_892
2321','SGM04_9014045','SGM05_1442678','SGM05_1536037','SGM05_1582267','
SGM05_2167334','SGM05_2213518','SGM05_27124210','SGM05_2718523','SGM05_
2737995','SGM05_27611613','SGM05_30537465','SGM05_31068959','SGM05_3193
2170','SGM05_32095735','SGM05_32922250','SGM05_33001491','SGM05_3384466
7','SGM05_33887621','SGM05_34112269','SGM05_3428900','SGM05_34461135','
SGM05_35005617','SGM05_35036404','SGM05_3525154','SGM05_35533047','SGM0
5_35687363',... 
    
'SGM05_36119852','SGM05_36479027','SGM05_36962030','SGM05_37059445','SG
M05_3755641','SGM05_37699648','SGM05_37770680','SGM05_3832616','SGM05_3
84215','SGM05_39151875','SGM05_39187571','SGM05_39419467','SGM05_398868
22','SGM05_40684517','SGM05_40772548','SGM05_41265253','SGM05_41674471'
,'SGM05_41893109','SGM05_41897022','SGM05_4368128','SGM05_4423839','SGM
05_5001282','SGM05_5221711','SGM05_5285887','SGM05_5381035','SGM06_1014
3832','SGM06_10260260','SGM06_10402418','SGM06_10483693','SGM06_1118921
','SGM06_11360371','SGM06_11506438','SGM06_1234490','SGM06_12441358','S
GM06_12571378','SGM06_12941178','SGM06_13264621','SGM06_13429255','SGM0
6_13759357','SGM06_14094641','SGM06_14281072','SGM06_14780835','SGM06_1
4901930',... 
    
'SGM06_1532017','SGM06_16133204','SGM06_16365309','SGM06_16790675','SGM
06_17453976','SGM06_17672411','SGM06_18446052','SGM06_2508365','SGM06_2
624221','SGM06_31352488','SGM06_3362688','SGM06_3397159','SGM06_3543679
','SGM06_3643449','SGM06_38527444','SGM06_43996760','SGM06_44190937','S
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GM06_46295298','SGM06_47112305','SGM06_47769455','SGM06_47933744','SGM0
6_48211587','SGM06_48344234','SGM06_48875217','SGM06_49089182','SGM06_4
93964','SGM06_49429943','SGM06_49498510','SGM06_49588829','SGM06_496643
40','SGM06_5001043','SGM06_50244483','SGM06_50588869','SGM06_5064301','
SGM06_50711282','SGM06_50818472','SGM06_51128748','SGM06_51169689','SGM
06_5835215','SGM06_5853765','SGM06_6099232','SGM06_6404245','SGM06_6981
466',... 
    
'SGM06_7078527','SGM06_7762338','SGM06_7841986','SGM06_8488833','SGM06_
8985500','SGM07_10241187','SGM07_10286005','SGM07_1121927','SGM07_12490
59','SGM07_13784462','SGM07_14949725','SGM07_155936','SGM07_16121771','
SGM07_16190796','SGM07_1632501','SGM07_17181419','SGM07_17699946','SGM0
7_2128629','SGM07_22970212','SGM07_2759942','SGM07_2804779','SGM07_2893
5619','SGM07_3300645','SGM07_3337039','SGM07_35613115','SGM07_35868100'
,'SGM07_36439830','SGM07_36493756','SGM07_36894956','SGM07_37280491','S
GM07_38504182','SGM07_38555656','SGM07_38950581','SGM07_39121324','SGM0
7_39776460','SGM07_3981112','SGM07_4018151','SGM07_40573526','SGM07_408
96029','SGM07_41801020','SGM07_42222270','SGM07_42396323','SGM07_427972
11',... 
    
'SGM07_42869168','SGM07_43453490','SGM07_43528343','SGM07_43600726','SG
M07_43893649','SGM07_44397815','SGM07_444904','SGM07_44567848','SGM07_4
968848','SGM07_5529532','SGM07_5798679','SGM07_6028089','SGM07_7618741'
,'SGM07_7658072','SGM07_8151504','SGM07_8206004','SGM07_8789695','SGM07
_9489274','SGM08_10215938','SGM08_10646123','SGM08_11602284','SGM08_116
76355','SGM08_12310493','SGM08_12393450','SGM08_13849126','SGM08_138901
48','SGM08_14283732','SGM08_14764913','SGM08_15062941','SGM08_1506737',
'SGM08_15084953','SGM08_16094804','SGM08_16190177','SGM08_16898563','SG
M08_17514669','SGM08_17864282','SGM08_1821010','SGM08_18254279','SGM08_
1885489','SGM08_19062988','SGM08_19135495','SGM08_20809106','SGM08_2112
7737',... 
    
'SGM08_21968675','SGM08_22658482','SGM08_2292177','SGM08_3022795','SGM0
8_3182921','SGM08_33279507','SGM08_3373388','SGM08_35113908','SGM08_362
72305','SGM08_36466450','SGM08_3991132','SGM08_40597410','SGM08_4069531
3','SGM08_42439047','SGM08_42485714','SGM08_4272701','SGM08_43252916','
SGM08_43369022','SGM08_43619289','SGM08_43896715','SGM08_44924890','SGM
08_45018612','SGM08_45403652','SGM08_45506275','SGM08_45666704','SGM08_
45913059','SGM08_46546152','SGM08_46549976','SGM08_4673523','SGM08_4683
2876','SGM08_46873906','SGM08_47655267','SGM08_47796376','SGM08_5088534
','SGM08_5287858','SGM08_5709053','SGM08_5734502','SGM08_7108611','SGM0
8_7187624','SGM08_7654540','SGM08_7787054','SGM08_8310289','SGM08_85123
73',... 
    
'SGM08_9589446','SGM08_9733609','SGM09_1126171','SGM09_11815924','SGM09
_1738859','SGM09_1904113','SGM09_2037617','SGM09_2094995','SGM09_270883
3','SGM09_2967367','SGM09_3215569','SGM09_3271593','SGM09_33843724','SG
M09_343841','SGM09_3461540','SGM09_35591012','SGM09_3612769','SGM09_362
24352','SGM09_37391443','SGM09_38864545','SGM09_39047264','SGM09_395826
00','SGM09_39701905','SGM09_40964518','SGM09_41130494','SGM09_41183456'
,'SGM09_4137128','SGM09_41475422','SGM09_415069','SGM09_42227831','SGM0
9_42458021','SGM09_42922011','SGM09_43003730','SGM09_43818290','SGM09_4
3968962','SGM09_44104810','SGM09_44264423','SGM09_4446465','SGM09_45378
105','SGM09_45722700','SGM09_4636524','SGM09_46405114','SGM09_46896551'
,... 
    
'SGM09_47598386','SGM09_47798573','SGM09_47932059','SGM09_48055288','SG
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M09_49104726','SGM09_49159729','SGM09_5040021','SGM09_5606447','SGM09_6
027763','SGM09_6929310','SGM09_7033037','SGM09_7951864','SGM09_888248',
'SGM10_1047086','SGM10_1263795','SGM10_1393163','SGM10_16707334','SGM10
_1956903','SGM10_2248117','SGM10_2445007','SGM10_2722140','SGM10_302998
7','SGM10_3190951','SGM10_3474358','SGM10_3526785','SGM10_36804130','SG
M10_37161455','SGM10_37502435','SGM10_38550767','SGM10_38639954','SGM10
_38954329','SGM10_39448713','SGM10_39992994','SGM10_40187057','SGM10_40
329105','SGM10_4052703','SGM10_40818239','SGM10_41180154','SGM10_412262
09','SGM10_42166065','SGM10_4234910','SGM10_42522750','SGM10_42861060',
... 
    
'SGM10_43016403','SGM10_43489645','SGM10_43530047','SGM10_44622989','SG
M10_44714548','SGM10_45550230','SGM10_45722273','SGM10_45826997','SGM10
_45903960','SGM10_46839076','SGM10_46920760','SGM10_48012886','SGM10_48
147731','SGM10_4911476','SGM10_49181823','SGM10_49292067','SGM10_495681
36','SGM10_4991089','SGM10_50227775','SGM10_50564648','SGM10_50592953',
'SGM10_5229058','SGM10_5317658','SGM10_5588824','SGM10_6551692','SGM10_
7111255','SGM10_7684035','SGM10_828695','SGM11_10540668','SGM11_1075246
2','SGM11_10834171','SGM11_10878645','SGM11_10958741','SGM11_11133013',
'SGM11_11214061','SGM11_11358906','SGM11_11434509','SGM11_1276760','SGM
11_1348491','SGM11_1733305','SGM11_2100501','SGM11_24088624','SGM11_263
3828',... 
    
'SGM11_2688621','SGM11_31929823','SGM11_33641304','SGM11_3441553','SGM1
1_34725337','SGM11_3866567','SGM11_4225960','SGM11_4354625','SGM11_5248
257','SGM11_5800217','SGM11_6106501','SGM11_6242845','SGM11_6892876','S
GM11_6916605','SGM11_8148438','SGM11_8195937','SGM11_8247504','SGM11_89
62042','SGM11_9057723','SGM11_9204696','SGM11_9949486','SGM11_9991987',
'SGM12_13084714','SGM12_13421597','SGM12_1766819','SGM12_18463','SGM12_
2189248','SGM12_22040646','SGM12_23794124','SGM12_2383625','SGM12_29809
68','SGM12_3181216','SGM12_3301952','SGM12_33216359','SGM12_33637803','
SGM12_34063256','SGM12_34580948','SGM12_34953570','SGM12_35086789','SGM
12_35868638','SGM12_36260189','SGM12_36452567','SGM12_36656366',... 
    
'SGM12_37183963','SGM12_37673640','SGM12_37942902','SGM12_38161783','SG
M12_3849110','SGM12_38782388','SGM12_39131542','SGM12_39760450','SGM12_
39871294','SGM12_4031021','SGM12_4713158','SGM12_4830371','SGM12_548635
5','SGM12_5718212','SGM12_6436749','SGM12_6449595','SGM12_6885126','SGM
12_7121432','SGM12_7491224','SGM12_7623089','SGM12_8505012','SGM12_8778
0','SGM12_8880389','SGM13_10423581','SGM13_11259402','SGM13_14961696','
SGM13_15126101','SGM13_16350701','SGM13_16455228','SGM13_16756004','SGM
13_16811968','SGM13_18327972','SGM13_18552568','SGM13_20101231','SGM13_
20431993','SGM13_21014295','SGM13_21073871','SGM13_21563834','SGM13_217
55210','SGM13_22038516','SGM13_22551254','SGM13_23063311','SGM13_233298
61',... 
    
'SGM13_25268844','SGM13_25927261','SGM13_27478816','SGM13_28143152','SG
M13_29671496','SGM13_30724301','SGM13_32814804','SGM13_32978732','SGM13
_33422715','SGM13_33580485','SGM13_34683105','SGM13_34849137','SGM13_35
857223','SGM13_36026888','SGM13_36341134','SGM13_37050736','SGM13_37365
297','SGM13_37457852','SGM13_38366685','SGM13_38501835','SGM13_39620391
','SGM13_39670045','SGM13_40980791','SGM13_41330682','SGM13_42068706','
SGM13_42110725','SGM13_42805498','SGM13_42863727','SGM13_43220826','SGM
13_43467121','SGM13_44289742','SGM13_44683118','SGM13_45335445','SGM13_
45433282','SGM14_1169042','SGM14_1615206','SGM14_2013931','SGM14_276241
3','SGM14_34212172','SGM14_3431743','SGM14_35546575','SGM14_3763434',..
. 



205 
 

 

    
'SGM14_43657351','SGM14_43972963','SGM14_44464828','SGM14_44735794','SG
M14_45179507','SGM14_45567917','SGM14_4602230','SGM14_46187759','SGM14_
46375456','SGM14_46738490','SGM14_46796309','SGM14_47447267','SGM14_476
30622','SGM14_47854709','SGM14_4790688','SGM14_47974934','SGM14_4820497
0','SGM14_48570017','SGM14_48761814','SGM14_48932740','SGM14_4974018','
SGM14_5115479','SGM14_594215','SGM14_6019064','SGM14_6314219','SGM14_67
69526','SGM14_6877470','SGM14_7259161','SGM14_7302532','SGM14_8080546',
'SGM14_8086503','SGM14_8709515','SGM14_881466','SGM14_9099832','SGM14_9
435464','SGM14_9863990','SGM15_10545687','SGM15_10658031','SGM15_112155
67','SGM15_11280882','SGM15_12664579','SGM15_12925527','SGM15_13033502'
,... 
    
'SGM15_13376346','SGM15_14667375','SGM15_14737273','SGM15_1490854','SGM
15_15923817','SGM15_15979942','SGM15_171892','SGM15_194375','SGM15_2198
120','SGM15_26959702','SGM15_3169943','SGM15_3291460','SGM15_36824503',
'SGM15_4283809','SGM15_4425676','SGM15_45560807','SGM15_45764616','SGM1
5_48664536','SGM15_48855521','SGM15_48911478','SGM15_49106585','SGM15_4
931211','SGM15_49765244','SGM15_49816600','SGM15_50993879','SGM15_51241
958','SGM15_51424187','SGM15_51665436','SGM15_5222329','SGM15_6066642',
'SGM15_6085794','SGM15_6291081','SGM15_7094505','SGM15_7358153','SGM15_
7853665','SGM15_8199307','SGM15_8620771','SGM15_8976489','SGM15_9665525
','SGM16_102882','SGM16_1260003','SGM16_1741187','SGM16_1772720','SGM16
_2826158',... 
    
'SGM16_28330994','SGM16_28506525','SGM16_29108774','SGM16_29159876','SG
M16_30267608','SGM16_30353896','SGM16_3124736','SGM16_31359859','SGM16_
31530465','SGM16_31822897','SGM16_32318002','SGM16_32458318','SGM16_331
67192','SGM16_34372952','SGM16_35145590','SGM16_35826159','SGM16_361467
66','SGM16_3623115','SGM16_36635344','SGM16_37086672','SGM16_37381270',
'SGM16_37518951','SGM16_3871263','SGM16_390383','SGM16_4054598','SGM16_
4463667','SGM16_4877018','SGM16_4936673','SGM16_5369094','SGM16_5593545
','SGM16_6105250','SGM16_6965006','SGM16_7683810','SGM16_7795526','SGM1
6_986578','SGM17_10380761','SGM17_11080989','SGM17_11338860','SGM17_114
04483','SGM17_11485633','SGM17_12864946','SGM17_12990725','SGM17_133986
17',... 
    
'SGM17_13460241','SGM17_1387432','SGM17_1456784','SGM17_19731255','SGM1
7_2155046','SGM17_22290577','SGM17_2321565','SGM17_3492430','SGM17_3611
437','SGM17_36118829','SGM17_36253917','SGM17_3768720','SGM17_37697148'
,'SGM17_37759500','SGM17_38173476','SGM17_38247877','SGM17_38942962','S
GM17_39019814','SGM17_39113097','SGM17_39204594','SGM17_39521449','SGM1
7_39528940','SGM17_40068238','SGM17_40185759','SGM17_40610052','SGM17_4
0744377','SGM17_41319215','SGM17_41407995','SGM17_41600558','SGM17_4467
354','SGM17_4604270','SGM17_4697224','SGM17_501436','SGM17_530864','SGM
17_5525889','SGM17_5718320','SGM17_6514005','SGM17_6577190','SGM17_7924
918','SGM17_8000983','SGM17_8178483','SGM17_8843808','SGM17_9319718','S
GM17_9338171',... 
    
'SGM17_9820001','SGM18_10024678','SGM18_1056851','SGM18_13108531','SGM1
8_13247187','SGM18_1789189','SGM18_1909982','SGM18_2178648','SGM18_2212
6449','SGM18_22400675','SGM18_2798728','SGM18_298263','SGM18_3058000','
SGM18_3474294','SGM18_3681514','SGM18_3874018','SGM18_4775910','SGM18_4
8271736','SGM18_48870752','SGM18_49153370','SGM18_49185950','SGM18_4996
669','SGM18_50504231','SGM18_51012902','SGM18_52443633','SGM18_52569529
','SGM18_52957703','SGM18_5323509','SGM18_53247366','SGM18_53740575','S
GM18_54440620','SGM18_54811534','SGM18_55271472','SGM18_55328225','SGM1
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8_55998003','SGM18_56815568','SGM18_57080773','SGM18_57620505','SGM18_5
7745955','SGM18_5998461','SGM18_6554086','SGM18_6933896','SGM18_7172561
','SGM18_747851',... 
    
'SGM18_963384','SGM19_1333269','SGM19_2000024','SGM19_2019409','SGM19_2
267266','SGM19_2418392','SGM19_30239319','SGM19_3180152','SGM19_3235340
5','SGM19_34851394','SGM19_3489366','SGM19_35425757','SGM19_35963637','
SGM19_36767143','SGM19_37841812','SGM19_37868145','SGM19_38334051','SGM
19_38452089','SGM19_39500216','SGM19_39581073','SGM19_40855351','SGM19_
40975911','SGM19_41458437','SGM19_42257278','SGM19_42344268','SGM19_423
96693','SGM19_44246121','SGM19_44481150','SGM19_45324599','SGM19_453705
94','SGM19_46398192','SGM19_46634486','SGM19_471094','SGM19_47389507','
SGM19_47514824','SGM19_48196242','SGM19_48290030','SGM19_49210133','SGM
19_49249895','SGM19_49814563','SGM19_50730824','SGM19_514053','SGM19_64
58355',... 
    
'SGM19_7358532','SGM19_860428','SGM20_1042491','SGM20_1129790','SGM20_1
445929','SGM20_1608482','SGM20_20469910','SGM20_2054806','SGM20_2237894
','SGM20_2426117','SGM20_24674575','SGM20_294010','SGM20_3071936','SGM2
0_34041437','SGM20_34140804','SGM20_34188658','SGM20_34239213','SGM20_3
42632','SGM20_34910001','SGM20_35379699','SGM20_35766549','SGM20_362352
83','SGM20_36720824','SGM20_37097315','SGM20_37573710','SGM20_38030407'
,'SGM20_38656535','SGM20_38750487','SGM20_39691634','SGM20_39729724','S
GM20_40636288','SGM20_40704783','SGM20_40820776','SGM20_41288533','SGM2
0_42075128','SGM20_42244655','SGM20_42885207','SGM20_42952890','SGM20_4
4105030','SGM20_44505799','SGM20_45714180','SGM20_45857761','SGM20_4695
8141',... 
    
'SGM20_47024906','SGM20_47241278','SGM20_47447552','SGM20_690237','SGM2
0_824049'}; 
  
% Format Categorical Variables for LASSO 
% Format Categorical Variables 
dataset.IRR_TREAT = grp2idx(dataset.IRR_TREAT);  
dataset.STAGE = grp2idx(dataset.STAGE);  
dataset.LMR = grp2idx(dataset.LMR);  
dataset.TEST = grp2idx(dataset.TEST);  
dataset = convertvars(dataset, genoNames, 'single'); 
  
predictorNames = horzcat(phenoNames, envNames, genoNames); 
  
 predictors = table2array(dataset(:, predictorNames)); 
 response = dataset.YIELD_R8_Wlefc; 
  
 input = predictors'; 
 target = response';  
     
% Create a Fitting Network 
net = feedforwardnet(1, 'trainbr'); %One hidden layer and bayesian 
regularization 
  
% Set up Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
  
% Train the Network 
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[net,tr] = train(net,input,target); 
  
% Test the Network 
yfit = net(input); 
errors = gsubtract(yfit,target); 
mse = perform(net,target,yfit); 
  
%Output testing predictions and observed values 
 preds = table(yfit', response, dataset.RecID, dataset.STAGE);  
  
% Plot performance 
figurename1 = strcat("FitFigures/",loop.names{i},"_PERF.fig");  
figure 
plotperform(tr); 
savefig(figurename1);  
  
% Plot trining state status 
figurename2 = strcat("FitFigures/",loop.names{i},"_TS.fig");  
figure 
plottrainstate(tr); 
savefig(figurename2);  
  
% Plot Error Histogram 
figurename3 = strcat("FitFigures/",loop.names{i},"_ER.fig");  
figure 
ploterrhist(errors); 
savefig(figurename3);  
  
% Plot Regression Figures 
figurename4 = strcat("FitFigures/",loop.names{i},"_REG.fig");  
figure 
plotregression(target,yfit,'All' ); 
savefig(figurename4);  
  
% Cross Validation on other datasets 
sets=1:length(water); 
  
for k=sets(sets~=i) 
  
valnames = loop.names;  
  
%Create testing dataset     
test = water{k}; 
  
  
% Extract predictors and response 
% This code processes the data into the right shape for training the 
model. 
phenoNames = {'IRR_TREAT', 'STAGE', 'LMR', 'TEST',  'Time', 'Latitude', 
'Longitude', 'Easting', 'Northing', 'AirTemperature_C', 
'RelativeHumidity', 'SVP_Pa', 'VPD_kPa', 'ShortwaveRadiation_Wm2', 
'SensorHeight_cm', 'CanopyHeight', 'UltrasonicCanopyHeight', 'CATD_C', 
'CATD_VPD', 'CanopyTemperature_C', 'Volume', 'Area', 'Perimeter', 
'Area_Perimeter', 'PF', 'R', 'G', 'B', 'r', 'g', 'b', 'rg', 'gb', 
'Xgbrg', 'INT', 'GRRI', 'NDI', 'NGRDI', 'NGBDI', 'VARI', 'VDVI', 
'CIVE', 'VEG', 'MExG', 'ExG', 'ExR', 'ExGR', 'COM1', 'COM2', 'X', 'Y', 
'Z', 'L', 'a', 'b1', 'ba', 'H', 'S', 'V', 'RF', 'YF', 'GF', 'CF', 
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'RGF', 'Y1', 'Cb', 'Cr', 'RContrast', 'RCorrelation', 'REnergy', 
'RHomogeneity',... 
    'GContrast', 'GCorrelation', 'GEnergy', 'GHomogeneity', 
'BContrast', 'BCorrelation', 'BEnergy', 'BHomogeneity', 'rContrast', 
'rCorrelation', 'rEnergy', 'rHomogeneity', 'gContrast', 'gCorrelation', 
'gEnergy', 'gHomogeneity', 'bContrast', 'bCorrelation', 'bEnergy', 
'bHomogeneity', 'rgContrast', 'rgCorrelation', 'rgEnergy', 
'rgHomogeneity', 'gbContrast', 'gbCorrelation', 'gbEnergy', 
'gbHomogeneity', 'XgbrgContrast', 'XgbrgCorrelation', 'XgbrgEnergy', 
'XgbrgHomogeneity', 'INTContrast', 'INTCorrelation', 'INTEnergy', 
'INTHomogeneity', 'NDIContrast', 'NDICorrelation', 'NDIEnergy', 
'NDIHomogeneity', 'NGRDIContrast', 'NGRDICorrelation', 'NGRDIEnergy', 
'NGRDIHomogeneity', 'NGBDIContrast', 'NGBDICorrelation', 
'NGBDIEnergy',... 
    'NGBDIHomogeneity', 'VARIContrast', 'VARICorrelation', 
'VARIEnergy', 'VARIHomogeneity', 'VDVIContrast', 'VDVICorrelation', 
'VDVIEnergy', 'VDVIHomogeneity', 'CIVEContrast', 'CIVECorrelation', 
'CIVEEnergy', 'CIVEHomogeneity', 'MExGContrast', 'MExGCorrelation', 
'MExGEnergy', 'MExGHomogeneity', 'ExGContrast', 'ExGCorrelation', 
'ExGEnergy', 'ExGHomogeneity', 'ExRContrast', 'ExRCorrelation', 
'ExREnergy', 'ExRHomogeneity', 'ExGRContrast', 'ExGRCorrelation', 
'ExGREnergy', 'ExGRHomogeneity', 'XContrast', 'XCorrelation', 
'XEnergy', 'XHomogeneity', 'YContrast', 'YCorrelation', 'YEnergy', 
'YHomogeneity', 'ZContrast', 'ZCorrelation', 'ZEnergy', 'ZHomogeneity', 
'LContrast', 'LCorrelation', 'LEnergy', 'LHomogeneity',... 
    'aContrast', 'aCorrelation', 'aEnergy', 'aHomogeneity', 
'bContrast1', 'bCorrelation1', 'bEnergy1', 'bHomogeneity1', 
'baContrast', 'baCorrelation', 'baEnergy', 'baHomogeneity', 
'HContrast', 'HCorrelation', 'HEnergy', 'HHomogeneity', 'SContrast', 
'SCorrelation', 'SEnergy', 'SHomogeneity', 'VContrast', 'VCorrelation', 
'VEnergy', 'VHomogeneity', 'YContrast1', 'YCorrelation1', 'YEnergy1', 
'YHomogeneity1', 'CbContrast', 'CbCorrelation', 'CbEnergy', 
'CbHomogeneity', 'CrContrast', 'CrCorrelation', 'CrEnergy', 
'CrHomogeneity', 'GrayContrast', 'GrayCorrelation', 'GrayEnergy', 
'GrayHomogeneity', 'R501_5', 'R502_2', 'R503_3', 'R503_7', 'R504', 
'R504_8', 'R505_5', 'R505_8', 'R506_2', 'R507_3', 'R508', 'R508_7',... 
    'R509_8', 'R510_2', 'R510_5', 'R511_2', 'R512', 'R512_3', 'R512_7', 
'R513', 'R513_8', 'R514_5', 'R514_8', 'R515_2', 'R516_3', 'R517', 
'R517_7', 'R518_8', 'R519_2', 'R519_5', 'R520_2', 'R521', 'R521_3', 
'R521_7', 'R522', 'R522_8', 'R523_5', 'R523_8', 'R524_2', 'R525_3', 
'R526', 'R526_3', 'R526_7', 'R527_8', 'R528_5', 'R529_2', 'R530_3', 
'R531', 'R531_7', 'R532_8', 'R533_5', 'R534_2', 'R535_3', 'R536', 
'R536_7', 'R537_8', 'R538_5', 'R539_2', 'R540_3', 'R541', 'R541_7', 
'R542_8', 'R543_5', 'R544_2', 'R545_3', 'R546', 'R546_3', 'R546_7', 
'R547_8', 'R548_5', 'R548_8', 'R549_2', 'R550_3', 'R551', 'R551_3', 
'R551_7', 'R552', 'R552_7', 'R553_5', 'R553_8', 'R554_2', 'R554_5', 
'R555_2', 'R556_3', 'R556_7',... 
    'R557', 'R557_7', 'R558_8', 'R559_5', 'R559_8', 'R560_2', 'R561_3', 
'R562', 'R562_3', 'R562_7', 'R563', 'R563_7', 'R564_8', 'R565_2', 
'R565_5', 'R566_2', 'R567_3', 'R568', 'R568_3', 'R568_7', 'R569', 
'R569_7', 'R570_8', 'R571_2', 'R571_5', 'R572_2', 'R573_3', 'R574', 
'R574_3', 'R574_7', 'R575', 'R575_7', 'R576_8', 'R577_5', 'R577_8', 
'R578_2', 'R579_3', 'R580', 'R580_3', 'R580_7', 'R581', 'R581_7', 
'R582_8', 'R583_5', 'R583_8', 'R584_2', 'R584_5', 'R585_2', 'R586_3', 
'R587', 'R587_3', 'R587_7', 'R588', 'R588_7', 'R589_8', 'R590_5', 
'R590_8', 'R591_2', 'R591_5', 'R592_2', 'R593_3', 'R594', 'R594_3', 
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'R594_7', 'R595', 'R595_7', 'R596_8', 'R597_5', 'R597_8', 'R598_2', 
'R598_5', 'R599_2', 'R600_3',... 
    'R601', 'R601_3', 'R601_7', 'R602', 'R602_7', 'R603_8', 'R604_5', 
'R604_8', 'R605_2', 'R605_5', 'R605_8', 'R606_2', 'R606_5', 'R607_2', 
'R608_3', 'R609', 'R609_3', 'R609_7', 'R610', 'R610_7', 'R611_8', 
'R612_5', 'R612_8', 'R613_5', 'R613_8', 'R614_2', 'R614_5', 'R615_2', 
'R616_3', 'R617', 'R617_3', 'R617_7', 'R618', 'R618_3', 'R618_7', 
'R619', 'R619_7', 'R620_8', 'R621_5', 'R621_8', 'R622_2', 'R622_5', 
'R622_8', 'R623_2', 'R623_5', 'R624_2', 'R625_3', 'R626', 'R626_3', 
'R626_7', 'R627', 'R627_3', 'R627_7', 'R628', 'R628_7', 'R629_8', 
'R630_8', 'R631_5', 'R631_8', 'R632_2', 'R632_5', 'R633_2', 'R633_5', 
'R634_2', 'R635_3', 'R636', 'R636_3', 'R637', 'R637_3', 'R637_7', 
'R638', 'R638_7', 'R639',... 
    'R639_7', 'R640_8', 'R641_5', 'R641_8', 'R642_5', 'R642_8', 
'R643_2', 'R643_5', 'R644_2', 'R644_5', 'R645_2', 'R646_3', 'R647_3', 
'R648', 'R648_3', 'R648_7', 'R649', 'R649_3', 'R649_7', 'R650', 
'R650_7', 'R651', 'R651_7', 'R652_8', 'R653_8', 'R654_5', 'R654_8', 
'R655_5', 'R655_8', 'R656_2', 'R656_5', 'R656_8', 'R657_2', 'R657_5', 
'R658_2', 'R659_2', 'R660_3', 'R661_3', 'R662', 'R662_3', 'R663', 
'R663_3', 'R663_7', 'R664', 'R664_3', 'R664_7', 'R665', 'R665_7', 
'R666', 'R666_7', 'R667_7', 'R668_8', 'R669_8', 'R670_5', 'R670_8', 
'R671_5', 'R671_8', 'R672_5', 'R672_8', 'R673_2', 'R673_5', 'R673_8', 
'R674_2', 'R674_5', 'R675_2', 'R675_5', 'R676_2', 'R676_5', 'R677_2', 
'R678_2', 'R679_3', 'R680_3',... 
    'R681_3', 'R682', 'R682_3', 'R683', 'R683_3', 'R684', 'R684_3', 
'R684_7', 'R685', 'R685_3', 'R685_7', 'R686', 'R686_3', 'R686_7', 
'R687', 'R687_3', 'R687_7', 'R688', 'R688_7', 'R689', 'R689_7', 'R690', 
'R690_7', 'R691', 'R691_7', 'R692_7', 'R693_7', 'R694_7', 'R695_7', 
'R696_8', 'R697_8', 'R698_8', 'R699_8', 'R700_8', 'R701_8', 'R702_8', 
'R703_8', 'R704_5', 'R704_8', 'R705_5', 'R705_8', 'R706_5', 'R706_8', 
'R707_5', 'R707_8', 'R708_5', 'R708_8', 'R709_5', 'R709_8', 'R710_5', 
'R710_8', 'R711_5', 'R711_8', 'R712_5', 'R712_8', 'R713_5', 'R713_8', 
'R714_5', 'R714_8', 'R715_5', 'R715_8', 'R716_8', 'R717_8', 'R718_8', 
'R719_8', 'R720_8', 'R721_8', 'R722_8', 'R723_7', 'R724_7', 'R725_7', 
'R726_7',... 
    'R727_7', 'R728_7', 'R729', 'R729_7', 'R730', 'R730_7', 'R731', 
'R731_7', 'R732', 'R732_3', 'R732_7', 'R733', 'R733_3', 'R733_7', 
'R734', 'R734_3', 'R734_7', 'R735', 'R735_3', 'R736', 'R736_3', 'R737', 
'R737_3', 'R738_3', 'R739_3', 'R740_2', 'R741_2', 'R742_2', 'R742_5', 
'R743_2', 'R743_5', 'R744_2', 'R744_5', 'R744_8', 'R745_2', 'R745_5', 
'R745_8', 'R746_2', 'R746_5', 'R746_8', 'R747_5', 'R747_8', 'R748_8', 
'R749_8', 'R750_7', 'R751_7', 'R752', 'R752_7', 'R753', 'R753_7', 
'R754', 'R754_3', 'R754_7', 'R755', 'R755_3', 'R756', 'R756_3', 
'R757_3', 'R758_3', 'R759_2', 'R760_2', 'R760_5', 'R761_2', 'R761_5', 
'R761_8', 'R762_2', 'R762_5', 'R762_8', 'R763_5', 'R763_8', 'R764_8', 
'R765_7', 'R766_7',... 
    'R767', 'R767_7', 'R768', 'R768_3', 'R768_7', 'R769', 'R769_3', 
'R770_3', 'R771_2', 'R772_2', 'R772_5', 'R773_2', 'R773_5', 'R773_8', 
'R774_2', 'R774_5', 'R774_8', 'R775_5', 'R775_8', 'R776_7', 'R777_7', 
'R778', 'R778_7', 'R779', 'R779_3', 'R780', 'R780_3', 'R781_3', 
'R782_2', 'R782_5', 'R783_2', 'R783_5', 'R783_8', 'R784_2', 'R784_5', 
'R784_8', 'R785_8', 'R786_7', 'R787_7', 'R788', 'R788_3', 'R788_7', 
'R789', 'R789_3', 'R790_3', 'R791_2', 'R791_5', 'R792_2', 'R792_5', 
'R792_8', 'R793_5', 'R793_8', 'R794_8', 'R795_7', 'R796', 'R796_7', 
'R797', 'R797_3', 'R798_3', 'R799_2', 'R799_5', 'R800_2', 'R800_5', 
'R800_8', 'R801_5', 'R801_8', 'R802_7', 'R803_7', 'R804', 'R804_3', 
'R805', 'R805_3', 'R806_2', ... 
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    'R807_2', 'R807_5', 'R807_8', 'R808_5', 'R808_8', 'R809_7', 
'R810_7', 'R811', 'R811_3', 'R812', 'R812_3', 'R813_2', 'R813_5', 
'R814_2', 'R814_5', 'R814_8', 'R815_8', 'R816_7', 'R817', 'R817_3', 
'R817_7', 'R818', 'R818_3', 'R819_2', 'R820_2', 'R820_5', 'R820_8', 
'R821_5', 'R821_8', 'R822_7', 'R823', 'R823_3', 'R823_7', 'R824', 
'R824_3', 'R825_2', 'R826_2', 'R826_5', 'R826_8', 'R827_8', 'R828_7', 
'R829', 'R829_3', 'R830', 'R830_3', 'R831_2', 'R831_5', 'R831_8', 
'R832_2', 'R832_5', 'R832_8', 'R833_7', 'R834', 'R834_7', 'R835', 
'R835_3', 'R836_2', 'R836_5', 'R837_2', 'R837_5', 'R837_8', 'R838_7', 
'R839', 'R839_7', 'R840', 'R840_3', 'R841_2', 'R841_5', 'R842_2', 
'R842_5', 'R842_8', 'R843_7', 'R844', 'R844_7',... 
    'R845', 'R845_3', 'R846_2', 'R846_5', 'R846_8', 'R847_2', 'R847_5', 
'R847_8', 'R848_7', 'R849', 'R849_3', 'R850', 'R850_3', 'R851_2', 
'R851_5', 'R851_8', 'R852_8', 'R853_7', 'R854', 'R854_3', 'R855_2', 
'R855_5', 'R856_2', 'R856_5', 'R856_8', 'R857_7', 'R858', 'R858_3', 
'R859_3', 'R860_2', 'R860_5', 'R860_8', 'R861_7', 'R862', 'R862_3', 
'R862_7', 'R863', 'R863_3', 'R864_2', 'R864_5', 'R864_8', 'R865_7', 
'R866', 'R866_7', 'R867', 'R867_3', 'R868_2', 'R868_5', 'R868_8', 
'R869_7', 'R870', 'R870_7', 'R871', 'R871_3', 'R872_2', 'R872_5', 
'R872_8', 'R873_7', 'R874', 'R874_3', 'R874_7', 'R875', 'R875_3', 
'R876_2', 'R876_5', 'R876_8', 'R877_7', 'R878', 'R878_3', 'R879_2', 
'R879_5', 'R880_2', 'R880_5', 'R880_8', 'R881_7',... 
    'R882', 'R882_3', 'R883_2', 'R883_5', 'R883_8', 'R884_7', 'R885', 
'R885_3', 'R885_7', 'R886', 'R886_3', 'R887_2', 'R887_5', 'R887_8', 
'R888_7', 'R889', 'R889_3', 'R890_2', 'R890_5', 'R890_8', 'R891_7', 
'R892', 'R892_3', 'R893_2', 'R893_5', 'R894_2', 'R894_5', 'R894_8', 
'R895_7', 'R896', 'R896_3', 'R897_2', 'R897_5', 'R897_8', 'R898_7', 
'R899', 'R899_3', 'R900_2', 'R900_5', 'R900_8', 'R901_7', 'R902', 
'R902_3', 'R903_2', 'R903_5', 'R903_8', 'R904_7', 'R905', 'R905_3', 
'R906_2', 'R906_5', 'R906_8', 'R907_7', 'R908', 'R908_3', 'R909_2', 
'R909_5', 'R909_8', 'R910_7', 'R911', 'R911_3', 'R912_2', 'R912_5', 
'R912_8', 'R913_7', 'R914', 'R914_3', 'R915_2', 'R915_5', 'R915_8', 
'R916_7', 'R917', 'R917_3', 'R918_2', 'R918_5',... 
    'R918_8', 'R919_7', 'R920', 'R920_3', 'R921_2', 'R921_5', 'R921_8', 
'R922_7', 'R923', 'R923_3', 'R924_2', 'R924_5', 'R924_8', 'R925_7', 
'R926', 'R926_3', 'R927_2', 'R927_7', 'R928', 'R928_3', 'R929_2', 
'R929_5', 'R929_8', 'R930_7', 'R931', 'R931_3', 'R932_2', 'R932_5', 
'R932_8', 'R933_7', 'R934', 'R934_3', 'R935_7', 'R936', 'R936_3', 
'R937_2', 'R937_5', 'R937_8', 'R938_7', 'R939', 'R939_3', 'R940_2', 
'R940_5', 'R940_7', 'R941', 'R941_3', 'R942_2', 'R942_5', 'R942_8', 
'R943_7', 'R944', 'R944_3', 'R945_2', 'R945_5', 'R945_7', 'R946', 
'R946_3', 'R947_2', 'R947_5', 'R947_8', 'R948_7', 'R949', 'R949_3', 
'PRI', 'NDVI', 'RENDVI', 'GNDVI', 'ARI', 'reNDVI2', 'NDRE', 'NIR_VIS', 
'NIR', 'CWSI', 'DSI1', 'DSI2', 'DSI3', 'GYI1', 'GYI2',... 
    'GYI3', 'LCI', 'STI1', 'STI2', 'REDGE', 'NDWI', 'RE3RE2', 'REIP', 
'REIPnm', 'SR1', 'SR680', 'SR705', 'NDVI680', 'NDVI705', 'D715', 
'NIRRed', 'NIRGreen', 'MCARI', 'SAVI', 'OSAVI', 'SRWBI', 'RE', 'TCARI', 
'TCARI_OSAVI'}; 
  
envNames = {'ECD', 'ECDV', 'ECS', 'ECSD', 'ECSDV', 'ECSV','GDD', 
'GDD_C', 'Precip_C', 'PrecipDepart_C', 'IRR_C', 'WUa', 'WUac', 
'R8_GDD', 'R7_GDD', 'R5_GDD', 'R35_GDD', 'R1_GDD', 'R8_TotW', 
'R8_Wlefc', 'S_TotW', 'S_WIefc', 'S_Dep', 'R7_TotW', 'R7_WIefc', 
'R7_Dep', 'R1_TotW', 'R1_WIefc', 'R1_Dep', 'R35_TotW', 'R35_WIefc', 
'R35_Dep', 'R5_TotW', 'R5_WIefc', 'R5_Dep', 'Avg_Dep_R1_R35', 
'Avg_Dep_R35_R5', 'Avg_Dep_R5_R7', 'Avg_Dep_R1_R5', 'Avg_Dep_R35_R7', 
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'Avg_Dep_R1_R7', 'TotW_R1_R35', 'TotW_R35_R5', 'TotW_R5_R7', 
'Wlefc_R1_R35', 'Wlefc_R35_R5', 'Wlefc_R5_R7'}; 
  
genoNames = 
{'SGM01_1013994','SGM01_1273914','SGM01_1653600','SGM01_1887609','SGM01
_2102513','SGM01_22123142','SGM01_2601764','SGM01_27230466','SGM01_3033
126','SGM01_3080035','SGM01_3296361','SGM01_3387651','SGM01_39140734','
SGM01_40040347','SGM01_401923','SGM01_4023442','SGM01_4042298','SGM01_4
4442390','SGM01_4799896','SGM01_48006295','SGM01_48994432','SGM01_49055
756','SGM01_49298272','SGM01_4934180','SGM01_49405022','SGM01_50206347'
,'SGM01_50572171','SGM01_5066554','SGM01_50982643','SGM01_510643','SGM0
1_51147675','SGM01_51392814','SGM01_51774753','SGM01_52499700','SGM01_5
2652130','SGM01_52777403','SGM01_52833754','SGM01_53436407','SGM01_5377
2821','SGM01_55031991','SGM01_55158751','SGM01_55404734','SGM01_5543820
3',... 
    
'SGM01_56142221','SGM01_56705229','SGM01_5729824','SGM02_10453962','SGM
02_10791729','SGM02_11831588','SGM02_12334435','SGM02_13674975','SGM02_
13748685','SGM02_14419208','SGM02_14710975','SGM02_14917949','SGM02_152
71225','SGM02_15630228','SGM02_1598551','SGM02_16571664','SGM02_1950516
6','SGM02_2189373','SGM02_24269404','SGM02_2933055','SGM02_3415435','SG
M02_3826362','SGM02_3887461','SGM02_39283955','SGM02_39333124','SGM02_4
0041145','SGM02_40063716','SGM02_41277852','SGM02_41384134','SGM02_4237
0864','SGM02_42522092','SGM02_42730709','SGM02_43168584','SGM02_4370350
0','SGM02_44037267','SGM02_44441196','SGM02_45170092','SGM02_45505123',
'SGM02_45743148','SGM02_46310608','SGM02_46648827','SGM02_46907259','SG
M02_47225152',... 
    
'SGM02_47857148','SGM02_48192842','SGM02_5167931','SGM02_5262408','SGM0
2_5654145','SGM02_5698591','SGM02_6899003','SGM02_7050046','SGM02_76799
81','SGM02_831795','SGM02_8819494','SGM02_9264905','SGM02_9544733','SGM
02_971919','SGM03_1226007','SGM03_1324758','SGM03_1463842','SGM03_17803
90','SGM03_2959509','SGM03_29653628','SGM03_3115149','SGM03_31363274','
SGM03_33161483','SGM03_33292135','SGM03_3362229','SGM03_34029176','SGM0
3_34147379','SGM03_34416830','SGM03_344529','SGM03_34467296','SGM03_351
7250','SGM03_35405797','SGM03_35462187','SGM03_36147368','SGM03_3644935
7','SGM03_36914473','SGM03_36959274','SGM03_37720073','SGM03_38100814',
'SGM03_39009305','SGM03_39216024','SGM03_39594385','SGM03_40136891','SG
M03_40583852',... 
    
'SGM03_40928220','SGM03_41512333','SGM03_41595432','SGM03_42016419','SG
M03_42115188','SGM03_43484650','SGM03_43663870','SGM03_44445428','SGM03
_44591609','SGM03_4475124','SGM03_45039348','SGM03_45211072','SGM03_509
789','SGM03_5244122','SGM03_9111573','SGM03_9259491','SGM04_11757558','
SGM04_2294967','SGM04_2423943','SGM04_2631785','SGM04_2690045','SGM04_3
542966','SGM04_3590478','SGM04_42002144','SGM04_43501937','SGM04_435548
88','SGM04_4546417','SGM04_46147176','SGM04_46302690','SGM04_47033150',
'SGM04_47114807','SGM04_47241037','SGM04_47740685','SGM04_4778134','SGM
04_48222393','SGM04_48275459','SGM04_48442502','SGM04_48902672','SGM04_
49343742','SGM04_49556059','SGM04_49678259','SGM04_49828162','SGM04_504
44359',... 
    
'SGM04_50498533','SGM04_50850285','SGM04_51330095','SGM04_52122999','SG
M04_52205833','SGM04_5237529','SGM04_5555278','SGM04_56409','SGM04_5816
885','SGM04_586537','SGM04_6016181','SGM04_6415784','SGM04_6718332','SG
M04_7026156','SGM04_7191821','SGM04_7744741','SGM04_8029471','SGM04_892
2321','SGM04_9014045','SGM05_1442678','SGM05_1536037','SGM05_1582267','
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SGM05_2167334','SGM05_2213518','SGM05_27124210','SGM05_2718523','SGM05_
2737995','SGM05_27611613','SGM05_30537465','SGM05_31068959','SGM05_3193
2170','SGM05_32095735','SGM05_32922250','SGM05_33001491','SGM05_3384466
7','SGM05_33887621','SGM05_34112269','SGM05_3428900','SGM05_34461135','
SGM05_35005617','SGM05_35036404','SGM05_3525154','SGM05_35533047','SGM0
5_35687363',... 
    
'SGM05_36119852','SGM05_36479027','SGM05_36962030','SGM05_37059445','SG
M05_3755641','SGM05_37699648','SGM05_37770680','SGM05_3832616','SGM05_3
84215','SGM05_39151875','SGM05_39187571','SGM05_39419467','SGM05_398868
22','SGM05_40684517','SGM05_40772548','SGM05_41265253','SGM05_41674471'
,'SGM05_41893109','SGM05_41897022','SGM05_4368128','SGM05_4423839','SGM
05_5001282','SGM05_5221711','SGM05_5285887','SGM05_5381035','SGM06_1014
3832','SGM06_10260260','SGM06_10402418','SGM06_10483693','SGM06_1118921
','SGM06_11360371','SGM06_11506438','SGM06_1234490','SGM06_12441358','S
GM06_12571378','SGM06_12941178','SGM06_13264621','SGM06_13429255','SGM0
6_13759357','SGM06_14094641','SGM06_14281072','SGM06_14780835','SGM06_1
4901930',... 
    
'SGM06_1532017','SGM06_16133204','SGM06_16365309','SGM06_16790675','SGM
06_17453976','SGM06_17672411','SGM06_18446052','SGM06_2508365','SGM06_2
624221','SGM06_31352488','SGM06_3362688','SGM06_3397159','SGM06_3543679
','SGM06_3643449','SGM06_38527444','SGM06_43996760','SGM06_44190937','S
GM06_46295298','SGM06_47112305','SGM06_47769455','SGM06_47933744','SGM0
6_48211587','SGM06_48344234','SGM06_48875217','SGM06_49089182','SGM06_4
93964','SGM06_49429943','SGM06_49498510','SGM06_49588829','SGM06_496643
40','SGM06_5001043','SGM06_50244483','SGM06_50588869','SGM06_5064301','
SGM06_50711282','SGM06_50818472','SGM06_51128748','SGM06_51169689','SGM
06_5835215','SGM06_5853765','SGM06_6099232','SGM06_6404245','SGM06_6981
466',... 
    
'SGM06_7078527','SGM06_7762338','SGM06_7841986','SGM06_8488833','SGM06_
8985500','SGM07_10241187','SGM07_10286005','SGM07_1121927','SGM07_12490
59','SGM07_13784462','SGM07_14949725','SGM07_155936','SGM07_16121771','
SGM07_16190796','SGM07_1632501','SGM07_17181419','SGM07_17699946','SGM0
7_2128629','SGM07_22970212','SGM07_2759942','SGM07_2804779','SGM07_2893
5619','SGM07_3300645','SGM07_3337039','SGM07_35613115','SGM07_35868100'
,'SGM07_36439830','SGM07_36493756','SGM07_36894956','SGM07_37280491','S
GM07_38504182','SGM07_38555656','SGM07_38950581','SGM07_39121324','SGM0
7_39776460','SGM07_3981112','SGM07_4018151','SGM07_40573526','SGM07_408
96029','SGM07_41801020','SGM07_42222270','SGM07_42396323','SGM07_427972
11',... 
    
'SGM07_42869168','SGM07_43453490','SGM07_43528343','SGM07_43600726','SG
M07_43893649','SGM07_44397815','SGM07_444904','SGM07_44567848','SGM07_4
968848','SGM07_5529532','SGM07_5798679','SGM07_6028089','SGM07_7618741'
,'SGM07_7658072','SGM07_8151504','SGM07_8206004','SGM07_8789695','SGM07
_9489274','SGM08_10215938','SGM08_10646123','SGM08_11602284','SGM08_116
76355','SGM08_12310493','SGM08_12393450','SGM08_13849126','SGM08_138901
48','SGM08_14283732','SGM08_14764913','SGM08_15062941','SGM08_1506737',
'SGM08_15084953','SGM08_16094804','SGM08_16190177','SGM08_16898563','SG
M08_17514669','SGM08_17864282','SGM08_1821010','SGM08_18254279','SGM08_
1885489','SGM08_19062988','SGM08_19135495','SGM08_20809106','SGM08_2112
7737',... 
    
'SGM08_21968675','SGM08_22658482','SGM08_2292177','SGM08_3022795','SGM0
8_3182921','SGM08_33279507','SGM08_3373388','SGM08_35113908','SGM08_362
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72305','SGM08_36466450','SGM08_3991132','SGM08_40597410','SGM08_4069531
3','SGM08_42439047','SGM08_42485714','SGM08_4272701','SGM08_43252916','
SGM08_43369022','SGM08_43619289','SGM08_43896715','SGM08_44924890','SGM
08_45018612','SGM08_45403652','SGM08_45506275','SGM08_45666704','SGM08_
45913059','SGM08_46546152','SGM08_46549976','SGM08_4673523','SGM08_4683
2876','SGM08_46873906','SGM08_47655267','SGM08_47796376','SGM08_5088534
','SGM08_5287858','SGM08_5709053','SGM08_5734502','SGM08_7108611','SGM0
8_7187624','SGM08_7654540','SGM08_7787054','SGM08_8310289','SGM08_85123
73',... 
    
'SGM08_9589446','SGM08_9733609','SGM09_1126171','SGM09_11815924','SGM09
_1738859','SGM09_1904113','SGM09_2037617','SGM09_2094995','SGM09_270883
3','SGM09_2967367','SGM09_3215569','SGM09_3271593','SGM09_33843724','SG
M09_343841','SGM09_3461540','SGM09_35591012','SGM09_3612769','SGM09_362
24352','SGM09_37391443','SGM09_38864545','SGM09_39047264','SGM09_395826
00','SGM09_39701905','SGM09_40964518','SGM09_41130494','SGM09_41183456'
,'SGM09_4137128','SGM09_41475422','SGM09_415069','SGM09_42227831','SGM0
9_42458021','SGM09_42922011','SGM09_43003730','SGM09_43818290','SGM09_4
3968962','SGM09_44104810','SGM09_44264423','SGM09_4446465','SGM09_45378
105','SGM09_45722700','SGM09_4636524','SGM09_46405114','SGM09_46896551'
,... 
    
'SGM09_47598386','SGM09_47798573','SGM09_47932059','SGM09_48055288','SG
M09_49104726','SGM09_49159729','SGM09_5040021','SGM09_5606447','SGM09_6
027763','SGM09_6929310','SGM09_7033037','SGM09_7951864','SGM09_888248',
'SGM10_1047086','SGM10_1263795','SGM10_1393163','SGM10_16707334','SGM10
_1956903','SGM10_2248117','SGM10_2445007','SGM10_2722140','SGM10_302998
7','SGM10_3190951','SGM10_3474358','SGM10_3526785','SGM10_36804130','SG
M10_37161455','SGM10_37502435','SGM10_38550767','SGM10_38639954','SGM10
_38954329','SGM10_39448713','SGM10_39992994','SGM10_40187057','SGM10_40
329105','SGM10_4052703','SGM10_40818239','SGM10_41180154','SGM10_412262
09','SGM10_42166065','SGM10_4234910','SGM10_42522750','SGM10_42861060',
... 
    
'SGM10_43016403','SGM10_43489645','SGM10_43530047','SGM10_44622989','SG
M10_44714548','SGM10_45550230','SGM10_45722273','SGM10_45826997','SGM10
_45903960','SGM10_46839076','SGM10_46920760','SGM10_48012886','SGM10_48
147731','SGM10_4911476','SGM10_49181823','SGM10_49292067','SGM10_495681
36','SGM10_4991089','SGM10_50227775','SGM10_50564648','SGM10_50592953',
'SGM10_5229058','SGM10_5317658','SGM10_5588824','SGM10_6551692','SGM10_
7111255','SGM10_7684035','SGM10_828695','SGM11_10540668','SGM11_1075246
2','SGM11_10834171','SGM11_10878645','SGM11_10958741','SGM11_11133013',
'SGM11_11214061','SGM11_11358906','SGM11_11434509','SGM11_1276760','SGM
11_1348491','SGM11_1733305','SGM11_2100501','SGM11_24088624','SGM11_263
3828',... 
    
'SGM11_2688621','SGM11_31929823','SGM11_33641304','SGM11_3441553','SGM1
1_34725337','SGM11_3866567','SGM11_4225960','SGM11_4354625','SGM11_5248
257','SGM11_5800217','SGM11_6106501','SGM11_6242845','SGM11_6892876','S
GM11_6916605','SGM11_8148438','SGM11_8195937','SGM11_8247504','SGM11_89
62042','SGM11_9057723','SGM11_9204696','SGM11_9949486','SGM11_9991987',
'SGM12_13084714','SGM12_13421597','SGM12_1766819','SGM12_18463','SGM12_
2189248','SGM12_22040646','SGM12_23794124','SGM12_2383625','SGM12_29809
68','SGM12_3181216','SGM12_3301952','SGM12_33216359','SGM12_33637803','
SGM12_34063256','SGM12_34580948','SGM12_34953570','SGM12_35086789','SGM
12_35868638','SGM12_36260189','SGM12_36452567','SGM12_36656366',... 
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'SGM12_37183963','SGM12_37673640','SGM12_37942902','SGM12_38161783','SG
M12_3849110','SGM12_38782388','SGM12_39131542','SGM12_39760450','SGM12_
39871294','SGM12_4031021','SGM12_4713158','SGM12_4830371','SGM12_548635
5','SGM12_5718212','SGM12_6436749','SGM12_6449595','SGM12_6885126','SGM
12_7121432','SGM12_7491224','SGM12_7623089','SGM12_8505012','SGM12_8778
0','SGM12_8880389','SGM13_10423581','SGM13_11259402','SGM13_14961696','
SGM13_15126101','SGM13_16350701','SGM13_16455228','SGM13_16756004','SGM
13_16811968','SGM13_18327972','SGM13_18552568','SGM13_20101231','SGM13_
20431993','SGM13_21014295','SGM13_21073871','SGM13_21563834','SGM13_217
55210','SGM13_22038516','SGM13_22551254','SGM13_23063311','SGM13_233298
61',... 
    
'SGM13_25268844','SGM13_25927261','SGM13_27478816','SGM13_28143152','SG
M13_29671496','SGM13_30724301','SGM13_32814804','SGM13_32978732','SGM13
_33422715','SGM13_33580485','SGM13_34683105','SGM13_34849137','SGM13_35
857223','SGM13_36026888','SGM13_36341134','SGM13_37050736','SGM13_37365
297','SGM13_37457852','SGM13_38366685','SGM13_38501835','SGM13_39620391
','SGM13_39670045','SGM13_40980791','SGM13_41330682','SGM13_42068706','
SGM13_42110725','SGM13_42805498','SGM13_42863727','SGM13_43220826','SGM
13_43467121','SGM13_44289742','SGM13_44683118','SGM13_45335445','SGM13_
45433282','SGM14_1169042','SGM14_1615206','SGM14_2013931','SGM14_276241
3','SGM14_34212172','SGM14_3431743','SGM14_35546575','SGM14_3763434',..
. 
    
'SGM14_43657351','SGM14_43972963','SGM14_44464828','SGM14_44735794','SG
M14_45179507','SGM14_45567917','SGM14_4602230','SGM14_46187759','SGM14_
46375456','SGM14_46738490','SGM14_46796309','SGM14_47447267','SGM14_476
30622','SGM14_47854709','SGM14_4790688','SGM14_47974934','SGM14_4820497
0','SGM14_48570017','SGM14_48761814','SGM14_48932740','SGM14_4974018','
SGM14_5115479','SGM14_594215','SGM14_6019064','SGM14_6314219','SGM14_67
69526','SGM14_6877470','SGM14_7259161','SGM14_7302532','SGM14_8080546',
'SGM14_8086503','SGM14_8709515','SGM14_881466','SGM14_9099832','SGM14_9
435464','SGM14_9863990','SGM15_10545687','SGM15_10658031','SGM15_112155
67','SGM15_11280882','SGM15_12664579','SGM15_12925527','SGM15_13033502'
,...  
'SGM15_13376346','SGM15_14667375','SGM15_14737273','SGM15_1490854','SGM
15_15923817','SGM15_15979942','SGM15_171892','SGM15_194375','SGM15_2198
120','SGM15_26959702','SGM15_3169943','SGM15_3291460','SGM15_36824503',
'SGM15_4283809','SGM15_4425676','SGM15_45560807','SGM15_45764616','SGM1
5_48664536','SGM15_48855521','SGM15_48911478','SGM15_49106585','SGM15_4
931211','SGM15_49765244','SGM15_49816600','SGM15_50993879','SGM15_51241
958','SGM15_51424187','SGM15_51665436','SGM15_5222329','SGM15_6066642',
'SGM15_6085794','SGM15_6291081','SGM15_7094505','SGM15_7358153','SGM15_
7853665','SGM15_8199307','SGM15_8620771','SGM15_8976489','SGM15_9665525
','SGM16_102882','SGM16_1260003','SGM16_1741187','SGM16_1772720','SGM16
_2826158',... 
'SGM16_28330994','SGM16_28506525','SGM16_29108774','SGM16_29159876','SG
M16_30267608','SGM16_30353896','SGM16_3124736','SGM16_31359859','SGM16_
31530465','SGM16_31822897','SGM16_32318002','SGM16_32458318','SGM16_331
67192','SGM16_34372952','SGM16_35145590','SGM16_35826159','SGM16_361467
66','SGM16_3623115','SGM16_36635344','SGM16_37086672','SGM16_37381270',
'SGM16_37518951','SGM16_3871263','SGM16_390383','SGM16_4054598','SGM16_
4463667','SGM16_4877018','SGM16_4936673','SGM16_5369094','SGM16_5593545
','SGM16_6105250','SGM16_6965006','SGM16_7683810','SGM16_7795526','SGM1
6_986578','SGM17_10380761','SGM17_11080989','SGM17_11338860','SGM17_114
04483','SGM17_11485633','SGM17_12864946','SGM17_12990725','SGM17_133986
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17',...  
'SGM17_13460241','SGM17_1387432','SGM17_1456784','SGM17_19731255','SGM1
7_2155046','SGM17_22290577','SGM17_2321565','SGM17_3492430','SGM17_3611
437','SGM17_36118829','SGM17_36253917','SGM17_3768720','SGM17_37697148'
,'SGM17_37759500','SGM17_38173476','SGM17_38247877','SGM17_38942962','S
GM17_39019814','SGM17_39113097','SGM17_39204594','SGM17_39521449','SGM1
7_39528940','SGM17_40068238','SGM17_40185759','SGM17_40610052','SGM17_4
0744377','SGM17_41319215','SGM17_41407995','SGM17_41600558','SGM17_4467
354','SGM17_4604270','SGM17_4697224','SGM17_501436','SGM17_530864','SGM
17_5525889','SGM17_5718320','SGM17_6514005','SGM17_6577190','SGM17_7924
918','SGM17_8000983','SGM17_8178483','SGM17_8843808','SGM17_9319718','S
GM17_9338171',... 
'SGM19_7358532','SGM19_860428','SGM20_1042491','SGM20_1129790','SGM20_1
445929','SGM20_1608482','SGM20_20469910','SGM20_2054806','SGM20_2237894
','SGM20_2426117','SGM20_24674575','SGM20_294010','SGM20_3071936','SGM2
0_34041437','SGM20_34140804','SGM20_34188658','SGM20_34239213','SGM20_3
42632','SGM20_34910001','SGM20_35379699','SGM20_35766549','SGM20_362352
83','SGM20_36720824','SGM20_37097315','SGM20_37573710','SGM20_38030407'
,'SGM20_38656535','SGM20_38750487','SGM20_39691634','SGM20_39729724','S
GM20_40636288','SGM20_40704783','SGM20_40820776','SGM20_41288533','SGM2
0_42075128','SGM20_42244655','SGM20_42885207','SGM20_42952890','SGM20_4
4105030','SGM20_44505799','SGM20_45714180','SGM20_45857761','SGM20_4695
8141',... 
'SGM20_47024906','SGM20_47241278','SGM20_47447552','SGM20_690237','SGM2
0_824049'}; 
% Format Categorical Variables 
test.IRR_TREAT = grp2idx(test.IRR_TREAT);  
test.STAGE = grp2idx(test.STAGE);  
test.LMR = grp2idx(test.LMR);  
test.TEST = grp2idx(test.TEST);  
test = convertvars(test, genoNames, 'single'); 
  
predictorNames = horzcat(phenoNames, envNames, genoNames); 
  
    predictors = table2array(test(:, predictorNames)); 
    response = test.YIELD_R8_Wlefc; 
  
     input = predictors'; 
  
    % Test the Network 
    yfit2 = net(input); 
 %Output testing predictions and observed values 
 testname = repmat(valnames{k},length(yfit2),1);  
 predtemp{k} = table(yfit2', response, testname, test.RecID, 
test.STAGE);  
end 
 % Merge model predictions 
preds2 = vertcat(predtemp{:}); 
 % Write predictions file 
pname = strcat(loop.names{i},'_','predictions.csv'); 
writetable(preds, pname);  
pname2 = strcat(loop.names{i},'_','predcomp.csv'); 
writetable(preds2, pname2);   
end 
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6. Example ENET Script 
... 
i=str2num(getenv('SLURM_TASKS_PER_NODE')); 
p=parpool(i); 
p.IdleTimeout = inf 
... 
  
% Load dataset 
load("BLUPS.mat") 
  
HeritabilityEstimationsR5.Variable(18) = "gb"; 
HeritabilityEstimationsR5.Variable(17) = "rg"; 
HeritabilityEstimationsR5.Variable(19) = "Xgbrg"; 
HeritabilityEstimationsR5.Variable(41) = "ba"; 
HeritabilityEstimationsR5.Variable(38) = "L"; 
HeritabilityEstimationsR5.Variable(39) = "a"; 
HeritabilityEstimationsR5.Variable(40) = "b"; 
HeritabilityEstimationsR5.Variable(50) = "Y"; 
  
% Subset only heritabile predictors variables 
Hvars = HeritabilityEstimationsR5(HeritabilityEstimationsR5.Hprog > 
0.25, 1);  
Hvarnames = convertStringsToChars(Hvars.Variable'); 
Hvarnames(:,120:121)=[]; 
  
% 2017- 2018  
ALL_1718 = BLUPS1718ALL(:,2:22);  
V5_1718 = BLUPS1718V5(:,2:22); 
R5_1718 = BLUPS1718R5(:,2:22); 
  
% Partion variables for loop output 
ALL_ALL_1718 = ALL_1718(ALL_1718.TEST~="DTHY",:);  
UX3000_ALL_1718 = ALL_1718(ALL_1718.TEST=="UX3000",:);  
UX3036_ALL_1718 = ALL_1718(ALL_1718.TEST=="UX3036",:);  
  
ALL_V5_1718 = V5_1718(V5_1718.TEST~="DTHY",:);  
UX3000_V5_1718 = V5_1718(V5_1718.TEST=="UX3000",:);  
UX3036_V5_1718 = V5_1718(V5_1718.TEST=="UX3036",:);  
  
ALL_R5_1718 = R5_1718(R5_1718.TEST~="DTHY",:);  
UX3000_R5_1718 = R5_1718(R5_1718.TEST=="UX3000",:);  
UX3036_R5_1718 = R5_1718(R5_1718.TEST=="UX3036",:);  
  
% 2016 - 2018 
ALL_1618 = BLUPS1618ALL(:,2:10);  
V5_1618 = BLUPS1618V5(:,2:10); 
R5_1618 = BLUPS1618R5(:,2:10); 
  
% Partion variables for loop output 
ALL_ALL_1618 = ALL_1618(ALL_1618.TEST~="DTHY",:);  
UX3000_ALL_1618 = ALL_1618(ALL_1618.TEST=="UX3000",:);  
UX3036_ALL_1618 = ALL_1618(ALL_1618.TEST=="UX3036",:);  
NT_UX3000_ALL_1618 = ALL_1618(ALL_1618.TEST=="NT_UX3000",:);  
NT_UX3036_ALL_1618 = ALL_1618(ALL_1618.TEST=="NT_UX3036",:);  
NT_ALL = [NT_UX3000_ALL_1618; NT_UX3036_ALL_1618];  
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ALL_V5_1618 = V5_1618(V5_1618.TEST~="DTHY",:);  
UX3000_V5_1618 = V5_1618(V5_1618.TEST=="UX3000",:);  
UX3036_V5_1618 = V5_1618(V5_1618.TEST=="UX3036",:);  
NT_UX3000_V5_1618 = V5_1618(V5_1618.TEST=="NT_UX3000",:);  
NT_UX3036_V5_1618 = V5_1618(V5_1618.TEST=="NT_UX3036",:);  
NT_V5 = [NT_UX3000_V5_1618; NT_UX3036_V5_1618];  
  
ALL_R5_1618 = R5_1618(R5_1618.TEST~="DTHY",:);  
UX3000_R5_1618 = R5_1618(R5_1618.TEST=="UX3000",:);  
UX3036_R5_1618 = R5_1618(R5_1618.TEST=="UX3036",:);  
NT_UX3000_R5_1618 = R5_1618(R5_1618.TEST=="NT_UX3000",:);  
NT_UX3036_R5_1618 = R5_1618(R5_1618.TEST=="NT_UX3036",:);  
NT_R5 = [NT_UX3000_R5_1618; NT_UX3036_R5_1618];  
Hapmapall = Hapmap; 
  
Hapmapnames = Commonhapmap.Properties.VariableNames; 
Hapmap = convertvars(Commonhapmap, Hapmapnames(2:end), 'single'); 
  
% Store datasets in list 
wtrnames = [ "ALL_1718",  "ALL_ALL_1718","ALL_R5_1718", 
"ALL_V5_1718",... 
     "UX3000_ALL_1718", "UX3000_R5_1718", "UX3000_V5_1718",... 
     "UX3036_ALL_1718", "UX3036_R5_1718", "UX3036_V5_1718",... 
     "ALL_1618", "ALL_ALL_1618","ALL_R5_1618","ALL_V5_1618",... 
    "UX3000_ALL_1618", "UX3000_R5_1618", "UX3000_V5_1618",... 
    "UX3036_ALL_1618","UX3036_R5_1618","UX3036_V5_1618",... 
    "NT_ALL", "NT_R5","NT_V5", "NT_UX3000_ALL","NT_UX3036_ALL",... 
    "NT_UX3000_R5","NT_UX3036_R5", "NT_UX3000_V5", "NT_UX3036_V5"]; 
  
wtr{1} = ALL_1718; 
wtr{2} = ALL_ALL_1718; 
wtr{3} = ALL_R5_1718; 
wtr{4} = ALL_V5_1718; 
  
wtr{5} = UX3000_ALL_1718; 
wtr{6} = UX3000_R5_1718; 
wtr{7} = UX3000_V5_1718; 
  
wtr{8} = UX3036_ALL_1718; 
wtr{9} = UX3036_R5_1718; 
wtr{10} = UX3036_V5_1718; 
  
wtr{11} = ALL_1618; 
wtr{12} = ALL_ALL_1618; 
wtr{13} = ALL_R5_1618; 
wtr{14} = ALL_V5_1618; 
  
wtr{15} = UX3000_ALL_1618; 
wtr{16} = UX3000_R5_1618; 
wtr{17} = UX3000_V5_1618; 
  
wtr{18} = UX3036_ALL_1618; 
wtr{19} = UX3036_R5_1618; 
wtr{20} = UX3036_V5_1618; 
  
wtr{21} = NT_ALL; 
wtr{22} = NT_R5; 
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wtr{23} = NT_V5; 
  
wtr{24} = NT_UX3000_ALL_1618; 
wtr{25} = NT_UX3036_ALL_1618; 
wtr{26} = NT_UX3000_R5_1618; 
wtr{27} = NT_UX3036_R5_1618; 
wtr{28} = NT_UX3000_V5_1618; 
wtr{29} = NT_UX3036_V5_1618; 
  
% Calculate model for R WP 
for i = 1:10 
% Assign dataset 
dat = wtr{i};  
dat = rmmissing(dat, 'DataVariables', "STRAIN"); 
dat = innerjoin(dat, Hapmap); 
  
% Format data     
dat.response = dat.YIELD_R_Wlefc;  
tbl = dat(:,8:end); 
table = tbl(:,1:end-1);  
X = table2array(table); 
y= tbl.response; 
  
% Lasso regulization regression 
[B, FitInfo] = lasso(X,y,'Alpha', 0.75, 'CV',10); 
idxLambda1SE = FitInfo.Index1SE; 
coef = B(:,idxLambda1SE); 
coef0 = FitInfo.Intercept(idxLambda1SE); 
yhat = X*coef + coef0; 
  
%Output predictions 
predslasso = array2table([yhat, dat.response, dat.STRAIN]); 
coefstable = cell2table(transpose(table.Properties.VariableNames)); 
coefstble = [coefstable,array2table(coef)]; 
  
% Write files 
lname = 
strcat("R/",wtrnames{i},'_',"YIELD_R_Wlefc","_",'lassopred.csv'); 
writetable(predslasso,lname);  
  
cname = strcat("R/",wtrnames{i},'_',"YIELD_R_Wlefc","_",'coefs.csv'); 
writetable(coefstble,cname);  
  
% Test model 
for k = 1:10 
     
% Assign dataset 
wtrdat = wtr{k}; 
wtrdat = rmmissing(wtrdat, 'DataVariables', "STRAIN"); 
wtrdat  = innerjoin(wtrdat, Hapmap);  
  
% Assign response variable  
wtrdat.response = wtrdat.YIELD_R_Wlefc;  
wtrtbl = wtrdat(:,8:end); 
wtrtable = wtrtbl(:,1:end-1);  
  
X2= table2array(wtrtable); 
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%Output predictions 
yhat2 = X2*coef + coef0; 
testname = repmat(wtrnames{k},height(wtrdat),1); 
complasso{k} = array2table([yhat2, wtrdat.response, wtrdat.STRAIN, 
testname]); 
  
end 
  
% Write files 
compname = 
strcat("R/",wtrnames{i},'_',"YIELD_R_Wlefc","_",'comppred.csv'); 
comparisonlass = vertcat(complasso{:}); 
writetable(comparisonlass,compname); 
  
end 
  
% Yield and WP 
  
% Calculate model 
for i = 1:length(wtr) 
% Assign dataset 
dat = wtr{i};  
dat = dat(:,ALL_1618.Properties.VariableNames); 
dat = rmmissing(dat, 'DataVariables', "STRAIN"); 
dat  = innerjoin(dat, Hapmap);  
  
% Assign Response Variable 
respvarnames = ["YIELD", "YIELD_R8_Wlefc"];  
  
for j = 1:2 
  
% Format data     
dat.response = table2array(dat(:,respvarnames{j}));  
tbl = dat(:,8:end); 
table = tbl(:,1:end-1);  
X = table2array(table); 
y= tbl.response; 
  
% Lasso regulization regression 
[B, FitInfo] = lasso(X,y,'Alpha', 0.75, 'CV',10); 
idxLambda1SE = FitInfo.Index1SE; 
coef = B(:,idxLambda1SE); 
coef0 = FitInfo.Intercept(idxLambda1SE); 
yhat = X*coef + coef0; 
  
%Output predictions 
predslasso = array2table([yhat, dat.response, dat.STRAIN]); 
coefstable = cell2table(transpose(table.Properties.VariableNames)); 
coefstble = [coefstable,array2table(coef)]; 
  
% Write files 
lname = strcat(respvarnames{j}, "/", 
wtrnames{i},'_',respvarnames{j},"_",'lassopred.csv'); 
writetable(predslasso,lname);  
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cname = strcat(respvarnames{j}, "/", 
wtrnames{i},'_',respvarnames{j},"_",'coefs.csv'); 
writetable(coefstble,cname);  
  
% Test model 
for k = 1:length(wtr) 
     
% Assign dataset 
wtrdat = wtr{k}; 
wtrdat = wtrdat(:,ALL_1618.Properties.VariableNames); 
wtrdat = rmmissing(wtrdat, 'DataVariables', "STRAIN"); 
wtrdat  = innerjoin(wtrdat, Hapmap);  
  
% Assign Response Variable 
wtrdat.response = table2array(wtrdat(:,respvarnames{j}));  
  
wtrtbl = wtrdat(:,8:end); 
wtrtable = wtrtbl(:,1:end-1);  
X2= table2array(wtrtable); 
  
%Output predictions 
yhat2 = X2*coef + coef0; 
testname = repmat(wtrnames{k},height(wtrdat),1); 
complasso{k} = array2table([yhat2, wtrdat.response, wtrdat.STRAIN, 
testname]); 
  
end 
  
% Write files 
compname = strcat(respvarnames{j}, 
"/",wtrnames{i},'_',respvarnames{j},"_",'comppred.csv'); 
comparisonlass = vertcat(complasso{:}); 
writetable(comparisonlass,compname); 
  
end 
end 
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7. Hyperlink to variable categories spreadsheet for individual traits collected during 
the 2017-2018 water response experiment for QTL and predictive analytic summary 
figures 
https://unl.box.com/s/r62z2s84rcxlqlvgfaj8jihunnthxi9s 
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