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Interactions between microRNAs (miRNAs) and RNA-binding proteins (RBPs)

are pivotal in miRNA-mediated sorting, yet the molecular mechanisms underlying

these interactions remain largely understudied. Few miRNA-binding proteins have

been verified, typically requiring extensive laboratory work. This study introduces

DeepMiRBP, a novel hybrid deep learning model designed to predict microRNA-

binding proteins. The model integrates Bidirectional Long Short-Term Memory (Bi-

LSTM) networks with attention mechanisms, transfer learning, and cosine similarity

to offer a robust computational approach for inferring miRNA-protein interactions.

DeepMiRBP is implemented through two architectures. The first is a Y-shaped

model that employs Bi-LSTM networks and transfer learning to identify similarities

between miRNA and RNA sequences. This method captures dependencies and con-

text within RNA sequences, while attention mechanisms highlight the most relevant

features. Transfer learning applies knowledge from a large dataset of RNA-binding

proteins to predict miRNA-protein interactions.



The second architecture enhances the first by adding cosine similarity and

transfer learning. It has two main components: the first uses Bi-LSTM networks

and transfer learning to process RNA sequences binding to RBPs, embedding them

into a 128-dimensional space, and assessing similarities with miRNA sequences. The

second uses CNNs and protein structural information, such as PSSM and contact

maps, to encode proteins into unique vectors and evaluate their similarities, resulting

in a comprehensive similarity matrix.

DeepMiRBP accurately predicts miRNA interactions with recently discovered

exosomal transporter proteins like AGO, YBX1, and FXR2. This highlights its po-

tential to identify novel transporter proteins crucial for exosome-mediated small RNA

sorting and other miRNA-protein interactions. DeepMiRBP’s methodologies provide

a scalable template for research, from mechanistic discovery to cell-to-cell communi-

cation in disease development, with the potential for RNA-centric therapeutic inter-

ventions and personalized medicine.

DeepMiRBP has shown high accuracy in predicting RNA-binding interactions,

making it valuable for studying miRNA sorting and broader RNA-protein interac-

tions. Its innovative use of Bi-LSTM networks, CNNs, transfer learning, and cosine

similarity marks a significant advancement in computational biology, offering a pow-

erful framework to understand complex cellular networks.



Acknowledgements

First and foremost, I express my deepest gratitude to my advisor, Dr. Juan

Cui. Her unwavering guidance, insightful feedback, and continuous support have

been instrumental in shaping this dissertation. Her expertise and encouragement

have influenced the direction of my research and significantly improved the quality of

my work.

I am also immensely grateful to my committee members, Dr. Hamid Sharif, Dr.

Qiuming Yao, Dr. Mohammad Rashedul Hasan, and Dr. Hamid Bagheri, for their

valuable feedback and constructive suggestions, which have significantly improved the

quality of this work. I want to extend a special thank you to Dr. Sharif and Dr. Yao

for their meticulous review of my dissertation.

I thank the Department of Computer Science and Engineering at the Univer-

sity of Nebraska-Lincoln for providing the necessary resources and creating a con-

ducive environment for my research. The support and assistance of the faculty and

staff have been unwavering and instrumental in my journey.

A special and heartfelt note of gratitude goes to my wonderful family. To my

incredible wife, Elham, thank you for your endless support and for taking such good

care of our family, especially our 3.5-year-old son, Noyan. Your patience and under-

ii



iii

standing allowed me to focus on my work and studies, and to my dear Noyan, thank

you for sometimes letting Daddy study in peace. Your laughter and curiosity kept

me motivated, and your occasional interruptions were always a delightful reminder of

what truly matters.

I also want to express my deepest gratitude to my mother. Mom, your unwa-

vering support and constant encouragement have always given me the strength and

energy to keep going. I am eternally grateful for everything you have done for me.

Even though my dad has passed away, my father’s teachings and values con-

tinue to guide me every day. Thank you, Dad, for being my role model and for all

the love and wisdom you imparted. You were, and still are, my inspiration.

Thank you all for your contributions and support. This dissertation would not

have been possible without you.



Contents

Contents iv

List of Figures vii

List of Tables xi

1 Introduction 1

1.1 Proposed Multimodal Deep Learning Framework for RNA and miRNA-

Protein Interaction Prediction . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Predictive Modeling of RNA Binding Proteins and Small RNA-

protein Binding Prediction Using Y Architecture and Transfer-Learning 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Data Collection and Analysis . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 RNA Sequences that Bind to RNA-Binding Proteins . . . . . 19

2.3.2 Data Preprocessing and Refinement . . . . . . . . . . . . . . . 25

iv



v

2.3.3 Data Integration and Analysis . . . . . . . . . . . . . . . . . . 30

2.3.4 Input Representation Using Embeddings . . . . . . . . . . . . 31

2.4 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.2 Advanced Machine Learning Techniques in DeepMiRBP for

RNA and miRNA-Protein Interaction Prediction . . . . . . . 43

2.4.3 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . 70

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.5.1 RNA-Protein Binding Performance( Source Domain) . . . . . 79

2.5.2 miRNA-Protein Binding Site Prediction (Target Domain . . . 84

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3 Enhanced miRNA-Protein Binding Predictions Using Transfer Learn-

ing and Cosine Similarity 88

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2 Data Collection and Analysis . . . . . . . . . . . . . . . . . . . . . . 91

3.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.3.1 Core Techniques for Enhancing DeepMiRBP Model Development 95

3.3.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . 105

3.3.3 Selection of Model Architecture and Hyperparameter Optimiza-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.3.4 Model Evaluations . . . . . . . . . . . . . . . . . . . . . . . . 120

3.3.5 Design of the Case Studies . . . . . . . . . . . . . . . . . . . . 122



vi

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.4.1 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . 125

3.4.2 Validation on miR-451, miR-19b, miR-23a, and miR-21 (Case

Study 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.4.3 Validation on miR-223 (Case Study 2) . . . . . . . . . . . . . 131

3.4.4 Discovery on miR-let-7d (Case Study 3) . . . . . . . . . . . . 133

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4 Conclusion 138

4.1 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2 Implications for Bioinformatics and Molecular Biology . . . . . . . . . 139

4.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 142

A Supplementary Data 156



List of Figures

1.1 Schematic diagram of miRNA transfer between cells and competitive

miRNA binding in the recipient cell as an illustration. MVB: multi-

vesicular bodies; HDL: high-density lipoprotein [18]. . . . . . . . . . . 3

2.1 The ENCORE project aims to study protein-RNA interactions by cre-

ating a map of RNA binding proteins (RBPs) encoded in the human

genome and identifying the RNA elements that the RBPs bind to. . . 21

2.2 UniProt is the world’s leading high-quality, comprehensive, and freely

accessible resource of protein sequence and functional information. . . 25

2.3 The National Center for Biotechnology Information advances science

and health by providing access to biomedical and genomic information. 26

2.4 Elbow Curve for PCA, illustrating the explained variance ratio against

the number of principal components. The curve helps determine the

optimal number of components to retain by identifying where the vari-

ance explained by additional components diminishes. . . . . . . . . . 34

2.5 Sequence logos and matrices for ABRE used in this study. (a) ABRE

sequence logo; (b) ABRE frequency matrix. . . . . . . . . . . . . . . 35

2.6 3D Protein Structure of protein AGO1HUMAN.[77] . . . . . . . . . . 36

vii



viii

2.7 ResPRE Contact Prediction for AGO1 HUMAN. The above plot dis-

plays the contact-map with a cutoff ¿=0.5 of confidence score (ranging

from 0 to 1) [52]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8 Flowchart of ResPRE. (a) Process of precision-matrix-based feature

collection. (b) Block diagram of deep residual neural network architec-

ture [52] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.9 Overview of the transfer learning approach. . . . . . . . . . . . . . . . 43

2.10 Bi-LSTM with an attention mechanism. Our proposed model used the

attention mechanism with bi-LSTM as an encoder. . . . . . . . . . . 54

2.11 The figure illustrates the transfer learning process. Initially, a model

is pre-trained on a general dataset. This model is then transferred

and fine-tuned on a specific task’s data. The final stage involves the

evaluation of the new task, highlighting the model’s adaptability from

a broad learning context to a specialized one [74]. . . . . . . . . . . . 65

2.12 The figure illustrates the transfer learning process. Initially, a model

is pre-trained on a general dataset. This model is then transferred

and fine-tuned on a specific task’s data. The final stage involves the

evaluation of the new task, highlighting the model’s adaptability from

a broad learning context to a specialized one [74]. . . . . . . . . . . . 66



ix

2.13 a) Schema of proposed source domain architecture. b)This figure

presents the schematic diagram of the proposed DeepmiRPB architec-

ture, a deep-learning model for predicting microRNA-protein binding.

The architecture illustrates the various layers, connections, and data

flow within the model. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.14 Confusion Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.1 Overview of the DeepmiRBP model. . . . . . . . . . . . . . . . . . . 93

3.2 The encoder and decoder can take various forms depending on our

use case, such as feedforward neural networks. In the figure above, x

represents the input data, z is the compressed feature vector, and x′ is

the regenerated input. . . . . . . . . . . . . . . . . . . . . . . . . . . 106



x

3.3 Schematic diagram of the proposed DeepmiRPB architecture for pre-

dicting microRNA-protein interactions. (a) First part architecture:

This part trains on RNA sequences that bind to RNA-binding pro-

teins (RBPs) to learn intricate features of RNA-protein interactions.

The knowledge gained is then transferred to the target domain, where

miRNA sequences are input, embedding codes are generated, and co-

sine similarity is employed to identify RNA sequences most similar to

the miRNA sequences. (b) Second part architecture: This part pro-

cesses the Position-Specific Scoring Matrix (PSSM) and contact maps

for each RBP candidate identified in the first part. Convolutional

Neural Networks (CNN) and max-pooling layers encode these matri-

ces. Cosine similarity is then calculated to compare RBP candidates

with other proteins, resulting in a matrix identifying proteins with a

higher likelihood of binding to the miRNA sequence. . . . . . . . . . 107

3.4 Accuracy and loss charts for various hyperparameter configurations. . 119

3.5 Accuracy and loss charts for various hyperparameter configurations. . 120

3.6 Accuracy and loss charts for various hyperparameter configurations. . 121

3.7 Accuracy and loss charts for various hyperparameter configurations. . 122

3.8 Accuracy and loss charts for various hyperparameter configurations. . 123

3.9 time for each epoch takes around 50 minutes . . . . . . . . . . . . . . 124

3.10 Accuracy and loss charts for various hyperparameter configurations. . 125

3.11 Confusion matrix for test data in the source domain . . . . . . . . . 127



List of Tables

2.1 Converted frequency matrix into a matrix of probabilities for the ABRE

motif. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Accuracy for Proteins after 50 Epochs . . . . . . . . . . . . . . . . . 81

2.3 Comparative Performance Across Models . . . . . . . . . . . . . . . . 82

2.4 Accuracy for Proteins using DeepmiRBP . . . . . . . . . . . . . . . . 84

3.1 Performance metrics for source and target models . . . . . . . . . . . 126

3.2 Top 10 RBPs with highest scores for miR-451. . . . . . . . . . . . . . 130

3.3 Top RBPs with highest scores for miR-19b, miR-23a, and miR-21. . . 130

3.4 Top RBPs with highest scores for miR-223. . . . . . . . . . . . . . . . 131

3.5 Top RBPs with highest scores for let-7d. . . . . . . . . . . . . . . . . 131

3.6 Cosine similarity matrix for final candidate proteins for miR-223 sorting.133

xi



Chapter 1

Introduction

RNA-binding proteins (RBPs) and microRNAs (miRNAs) play pivotal roles

in gene regulation, intricately weaving the narrative of cellular function. RBPs, capa-

ble of binding to single and double-stranded RNA molecules, are integral to various

cellular activities, particularly RNA processing. This includes splicing, where non-

functional sequences (introns) are excised, and functional sequences (exons) are fused

[11, 19, 47]. A foundational understanding of RNA-protein interactions sets the stage

for the subsequent chapters of this dissertation.

miRNAs, small non-coding RNA molecules, have garnered significant attention

due to their profound impact on gene expression regulation. Approximately 22 nu-

cleotides in length, miRNAs modulate the expression of multiple genes simultaneously

by binding to the 3’ untranslated region (UTR) of target messenger RNAs (mRNAs),

leading to their degradation or translational repression [7, 24]. The regulatory po-

tential of miRNAs is crucial for maintaining cellular homeostasis, with disruptions

in their function implicated in diseases ranging from cancer to cardiovascular and

neurological disorders [41].

The process of miRNA sorting, where these molecules are selectively incor-
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porated into multivesicular bodies (MVBs) and subsequently released as exosomes,

exemplifies the precision and complexity of cellular communication [82]. This selec-

tive packaging and dispatching of miRNAs to recipient cells enable the coordination

of biological processes across different tissues and organs. Recent studies have hinted

at specific sequence motifs and RBPs that might play a role in this selective sorting

[49, 42], though the exact mechanisms remain enigmatic and warrant further explo-

ration.

Exosomes, depicted in Figure 1.1, are small membrane-bound vesicles that

serve as cellular couriers, transferring a variety of molecular cargos, including miR-

NAs, to recipient cells [78]. miRNAs packaged into exosomes can be delivered to

distant tissues, influencing the gene expression of recipient cells [55]. This mechanism

of intercellular communication has profound implications, as illustrated by the release

of miR-105 in breast cancer exosomes, promoting tumor growth in distant tissues like

the lungs and brain [89, 25]. Such revelations underscore the therapeutic potential of

understanding miRNA sorting mechanisms and their broader implications in disease

progression.

Previous studies identified the molecular features of miRNA responsible for its

secretion, emphasizing the importance of specific motifs [26, 82]. For instance, motif

discovery tools like MDS2 have identified motifs associated with exomiRs. Experi-

ments have shown that mutations in these motifs significantly decrease miRNA levels

in exosomes compared to cells, indicating the crucial role of these motifs in exomiR

sorting [26, 72]. Furthermore, miRNA-binding proteins responsible for sorting miR-

NAs with specific motifs have been identified, such as hnRNPA2B1 in human primary
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Figure 1.1: Schematic diagram of miRNA transfer between cells and competitive
miRNA binding in the recipient cell as an illustration. MVB: multivesicular bodies;
HDL: high-density lipoprotein [18].

T cells [82] and Sdpr and Fus in adipocyte cells.

A high-performance discovery tool capable of systematically studying miRNA-

protein interactions in an automated and high-yield manner is needed further to

elucidate the protein-mediated sorting process beyond motif analysis. Although only

a handful of miRNA-binding proteins are known, the availability of massive amounts

of (mi)RNA-protein interactome data provides an opportunity to harness machine

learning (ML) and deep learning (DL) approaches for genome-scale predictions of

DNA/RNA binding sites and protein structures. Inspired by recent advances, this

research explores ML-based solutions to identify molecular determinants that are key

to exomiR sorting.
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1.1 Proposed Multimodal Deep Learning Framework for RNA and miRNA-

Protein Interaction Prediction

We propose a multimodal deep learning-based framework focused on predict-

ing miRNA-protein interactions. DL is particularly suitable for this task because it

facilitates efficient representation learning directly from each data modality during

model training when properly formulated into a supervised learning task. Successful

applications of DL in protein structure, function, localization, and DNA/RNA inter-

action studies, such as AlphaFold [46], DeepSec [70], DeepSig [68], DeepLoc [3], and

DeepBind [2], have demonstrated remarkable performances. However, none of these

tools were designed to discover miRNA-protein binding.

This research aims to develop a new predictive model for miRNA-protein inter-

action by addressing two major goals: (1) predicting miRNA sorting and (2) predict-

ing RNA binding proteins. To achieve these goals, we created the DeepMiRBP model.

Initially, we utilized transfer learning and Y architecture, which are detailed in Chap-

ter 2. Subsequently, we enhanced the model by incorporating cosine similarity and

transfer learning with two main components: The RNA Binding Protein Candidate

trained on a vast dataset of RNA sequences that bind to RBPs. It extracts features

from RNA sequences and uses transfer learning to predict miRNA-protein binding.

Cosine similarity is employed to find similarities between miRNA and RBP sequences.

The second Component is the protein Candidate for Binding miRNA. After obtain-

ing the RBP candidates that have a chance to bind to miRNA, this Component uses

residue contact maps and position-specific scoring matrices (PSSM) for each RBP. It
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identifies other proteins that could be similar to the RBP candidates. We introduce

DeepMiRBP, a new multimodal deep neural network for miRNA-Protein Binding pre-

diction, which integrates sequence and structural information from both RNA and

RBPs. The DeepMiRBP model leverages transfer learning and cosine similarity for

effective prediction. Together, these components offer precise predictions of miRNA-

protein interactions. Subsequent sections will delve into the model’s details and its

implications in molecular biology.

1.2 Contribution

This dissertation makes several key contributions to the field of bioinformatics

and molecular biology:

• Development of the DeepmiRPB Model: This dissertation presents a

novel hybrid deep learning model, DeepmiRPB, designed to predict miRNA-

binding proteins by modeling molecular interactions. The model’s innovative

integration of Bidirectional Long Short-Term Memory (Bi-LSTM) networks,

transfer learning, attention mechanisms, and cosine similarity underscores its

robustness and precision in computational biology.

• Integration of Multi-Omic Data: DeepmiRPB leverages multi-omic data,

capturing the nuanced dependencies and structural information within miRNA

and protein sequences. This comprehensive approach enhances the accuracy of

predictions, offering a more detailed understanding of miRNA-protein interac-

tions.
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• Validation of Model Performance: The model’s efficacy was rigorously val-

idated through extensive testing across diverse datasets, demonstrating high

accuracy, precision, recall, and F1 scores. This validation process highlights the

model’s robustness in predicting interactions with key proteins such as AGO,

YBX1, and FXR2, which are crucial for understanding disease regulatory mech-

anisms.

• Application to Disease Mechanisms: The DeepmiRPB model’s capability

to predict miRNA interactions with proteins involved in diseases, including

cancer, signifies its potential for identifying novel therapeutic targets. This

aspect of the research underscores the model’s relevance to practical applications

in understanding and treating disease mechanisms.

• Scalability and Adaptability: The methodologies and insights from the

DeepmiRPB model provide a scalable template for future research. The model’s

adaptability highlights its potential for developing novel RNA-centric thera-

peutic interventions and personalized medicine, making significant strides in

bioinformatics.

• Novel Computational Framework: This research introduces a unique com-

putational framework that synergizes sequence and structural data through a

multi-modular deep neural network. The innovative use of transfer learning and

cosine similarity within this framework paves the way for future advancements

in miRNA-protein interaction prediction.
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1.3 Organization

This dissertation is organized into several chapters, each addressing different

aspects of the research:

• Chapter 2: Predictive Modeling of RNA Binding Proteins and Small RNA-

protein Binding Prediction Using Y Architecture and Transfer-Learning - This

chapter delves into predictive modeling techniques for RNA-binding proteins

and small RNA-protein binding. It details the data collection, preprocessing,

and implementation of the Y architecture and transfer learning in the Deep-

MiRBP model.

• Chapter 3: Enhanced miRNA-Protein Binding Predictions Using Transfer Learn-

ing and Cosine Similarity - This chapter builds on the previous one by enhanc-

ing the model’s predictive capabilities using transfer learning and cosine simi-

larity. It discusses the core techniques, model architecture, and hyperparameter

optimization and presents the improved model’s results.

• Chapter 4: Conclusion - The final chapter summarizes the research’s key find-

ings, discusses its implications for bioinformatics and molecular biology, and

suggests future research directions.



Chapter 2

Predictive Modeling of RNA Binding Proteins and Small RNA-protein

Binding Prediction Using Y Architecture and Transfer-Learning

2.1 Introduction

In molecular biology, the intricate dance between microRNAs (miRNAs) and

RNA-binding proteins (RBPs) is pivotal for cellular communication and gene regu-

lation. Understanding the sorting and interactions of miRNAs is a frontier yet to be

fully explored. This chapter heralds a revolutionary hybrid deep learning framework,

harnessing the strengths of Y-architecture networks to delve into the secrets of small

RNA sorting determinants.

The cornerstone of our framework is a bidirectional Long Short-Term Mem-

ory (LSTM) network embellished with an attention mechanism that meticulously

processes RBP sequences. This approach captures the temporal dependencies and

nuances within the sequential RNA data, highlighting the influential subsequences

crucial for interaction specificity. Complementing this is our innovative application

of autoencoders, which distill high-dimensional PSSM and protein structure contact

map data into a more tractable form without losing the essence of the structural

8
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information that guides miRNA targeting.

Employing a Y-shaped architecture, our model synergizes sequence analysis

with structural insights, tackling the inputs in parallel streams before converging

to decode the complexities of miRNA-protein binding. This dual-pathway strategy

ensures the retention of the biological data’s sequential and structural fidelity and

enhances interpretability and predictive performance. Transfer learning techniques

further amplify our model’s prowess, allowing it to transcend its training data and

excel in identifying miRNA-protein interactions across diverse cellular contexts. Our

results exhibit an exceptional capability to predict miRNA binding partners, surpass-

ing existing tools that predominantly rely on sequence analysis.

By integrating advanced LSTM networks with attention, autoencoder@Sath

structural profiles, and a multifaceted Y-architecture, our framework is a monumental

leap in computational biology. It highlights sequence and structural motifs that

could be the key to unlocking miRNA sorting mechanisms and proposes plausible

candidates for miRNA transporter proteins. Our model’s technical sophistication and

adaptability make it an invaluable asset in understanding the enigmatic processes

that govern RNA biology. This research extends beyond theoretical implications,

providing a practical toolset for the scientific community to investigate miRNA sorting

mechanisms further. It promises to revolutionize our approach to diseases where

miRNA dysregulation is a factor, offering a new lens through which we can view

potential therapeutic targets and interventions. By pushing the boundaries of what

is possible in RNA analytics, our work paves the way for transformative discoveries

that could reshape the landscape of medical science and biotechnology.
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In the intricate tapestry of molecular biology, RNA-binding proteins (RBPs)

and microRNAs (miRNAs) emerge as pivotal threads that intricately weave the nar-

rative of gene regulation. RBPs, with their ability to bind directly to single and

double-chained RNA molecules, play a central role in various cellular activities linked

to RNA’s function [11]. One of their most critical roles is assisting in RNA process-

ing, particularly in splicing, which involves the excision of non-functional sequences

(introns) and the fusion of functional ones (exons) [19, 47]. This foundational under-

standing of RNA-protein interactions sets the stage for the subsequent chapters of

this dissertation.

Diving deeper into molecular biology, miRNAs, small non-coding RNA molecules,

have garnered significant attention due to their profound impact on gene expression

regulation [7]. These molecules, approximately 22 nucleotides in length, modulate the

expression of multiple genes simultaneously by binding to the 3’ untranslated region

(UTR) of target messenger RNAs (mRNAs), leading to their degradation or trans-

lational repression [24]. Their broad regulatory potential makes miRNAs integral to

maintaining cellular homeostasis. Disruptions in their function have been implicated

in many diseases, ranging from cancer to cardiovascular and neurological disorders

[41].

The process of miRNA sorting, where these molecules are selectively incorpo-

rated into multivesicular bodies (MVBs) and subsequently released as exosomes, is a

testament to the precision and complexity of cellular communication [82]. This se-

lective packaging and dispatching of miRNAs to recipient cells allow for coordinating

biological processes across different tissues and organs. Recent studies have hinted
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at specific sequence motifs and RNA-binding proteins that might play a role in this

selective sorting [49, 42]. Yet, the exact mechanisms remain enigmatic, beckoning

further exploration.

Exosomes, depicted in Figure 1.1, are small membrane-bound vesicles that

serve as cellular couriers, transferring many molecular cargos, including miRNAs, to

recipient cells [78]. Among these cargos, miRNAs are particularly interesting due to

their role in gene regulation. miRNAs packaged into exosomes can be delivered to

distant tissues, influencing recipient cells’ gene expression [55]. This mechanism of

intercellular communication allows for the coordination of biological processes across

different tissues and organs.

This mechanism of intercellular communication has profound implications, as

illustrated by the release of miR-105 in breast cancer exosomes, which promotes

tumor growth in distant tissues like the lungs and brain [89, 25]. Such revelations un-

derscore the therapeutic potential of understanding miRNA sorting mechanisms and

their broader implications in disease progression. However, the journey to unravel

the mysteries of miRNA sorting is far from complete. Numerous questions, such

as identifying miRNAs interacting with loading proteins, their subsequent sorting

into exosomes, and the downstream gene regulatory effects in recipient cells, linger.

Addressing these questions promises to illuminate the intricate mechanisms of inter-

cellular communication and gene regulation. Furthermore, it could pave the way for

innovative therapeutic strategies targeting diseases associated with aberrant miRNA

function.

Previous research has demonstrated that molecular features of miRNA are
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responsible for its secretion [53, 27]. In prior studies, a motif discovery tool named

MDS2 was developed specifically for short sequence analysis, identifying motifs asso-

ciated with exomiRs. Experiments showed that mutations in these motifs significantly

decreased the miRNA levels in exosomes versus cells, indicating that exomiR sort-

ing depends on the presence of these motifs. Additionally, miRNA-binding proteins

responsible for sorting miRNAs with specific motifs have been identified, such as hn-

RNPA2B1 in human primary T cells and Sdpr and Fus in adipocyte cells. Molecular

docking analysis has suggested a possible linkage between miRNA motifs and protein

binding sites.

To further elucidate the protein-mediated sorting process beyond motif anal-

ysis, we need a high-performance discovery tool capable of systematically studying

miRNA-protein interactions in an automated and high-yield manner. While only a

handful of miRNA-binding proteins are known, massive amounts of (mi)RNA-protein

interactome data have become available. Inspired by recent advances in machine

learning (ML) and its successes in genome-scale prediction of DNA/RNA binding

sites and protein structures, we aim to explore ML-based solutions that can harness

the power of omics data on sequence, structure, and interaction to identify molecular

determinants key to exomiR sorting.

In this project, we propose a multimodal deep learning (DL)-based framework

focused on predicting miRNA-protein interactions. DL facilitates efficient represen-

tation learning from each data modality during model training when the problem is

properly formulated into a supervised learning task. DL has been successfully ap-

plied to study protein structure, function, localization, and DNA/RNA interaction,
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including seminal works like AlphaFold, DeepSec, and DeepBind. However, none of

these tools were designed to discover miRNA-protein binding.

Building a new predictive model for miRNA-protein interaction requires ad-

dressing two major issues: representative data and multimodal architecture. Most

miRNA interactome data were collected from AGO-related CLIP-seq and CLASH

platforms, but we need to integrate other proteins into the model to make it rep-

resentative and general. Additionally, current DL models handle mostly sequence

data, while this research needs a new framework to incorporate sequence and struc-

tural information from both interaction partners. To overcome these limitations, we

propose a transfer learning solution leveraging abundant data, knowledge, and ex-

perience in RNA-protein binding (source domain) to improve discovery-making in

miRNA (target domain) through a multi-modular deep neural network framework.

Current RNA binding data derived from sequencing, like RNA Bind-N-seq data on

hundreds of RBPs, provides implicit binding regions and does not pinpoint exact con-

tact sites. To make it applicable for miRNA study, we need to preprocess the data

and extract information about conserved contact sites to train models in the source

model. The trained models will be transferred and refined in the target domain by in-

cluding miRNA-protein interaction data. The proposed model will consider sequence

and structure information from associated (mi)RNA and protein for new interaction

prediction.

We introduce DeepmiRPB, a new multimodal deep neural network for miRNA-

protein binding prediction, integrating sequence and structural information from both

RNA and RBP. DeepmiRPB integrates two main components:
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• DeepRPB Feature Extractor: Trained on a vast dataset of RBPs, it extracts

features like the secondary structure context of RNA and the residue contact

of RBPs.

• miRNA-specific Model: Using transfer learning, it processes features from

the DeepRPB extractor to predict miRNA-protein binding.

Together, these components offer precise predictions of miRNA-protein inter-

actions. Subsequent sections will delve into the model’s details and its implications

in molecular biology.

In this research, we seek to delve deeper into miRNA interactions, leverag-

ing advanced computational tools and omics data. Building on foundational work

with RBPs and miRNAs, we aim to further our understanding of the complex reg-

ulatory networks that govern cellular function, focusing on miRNA sorting and its

implications in health and disease.

2.2 Related Work

RNA-binding proteins (RBPs) are paramount in orchestrating many cellular

regulatory functions, from gene splicing to localization, and have profound implica-

tions for patient care [23]. The quest to pinpoint RBP binding sites is crucial, given

that RBPs discern both sequence and structure motifs in RNA molecules. The latter,

structure motifs, pertain to the unique three-dimensional conformation of RNA, di-

verging from sequence motifs that focus on nucleotide order. Notably, certain proteins

linked with amyotrophic lateral sclerosis are known to bind to RNA targets within
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specific structures like hairpins and loops. Moreover, RBPs are adept at discerning

loop and stem regions in RNA precursors, thereby modulating RNA expression levels

[75].

Traditional methodologies, such as RIP-seq and CLIP-seq, employed for RBP

discovery are resource-intensive in terms of time and cost [34]. This has catalyzed the

emergence of many efficient and economical tools for discerning sequence and struc-

ture motifs. Some of these tools, like BEAM [88], focus on structure motifs, while

others, such as CapR [82] and the approach by Li et al. [26], amalgamate sequence

motifs with secondary structure considerations. These tools have significantly ad-

vanced our understanding of RNA-protein interactions by enabling high-throughput

and precise identification of binding sites.

The advent of deep learning has revolutionized the prediction landscape of

RNA-protein interactions. A slew of models, including DeepBind [2], deepRKE [21],

DeeperBind [35], and models by Zeng et al. [20], have harnessed the prowess of

Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) net-

works. These models, ranging from iDeep [63], iDeepV [32], iDeepE [63], to iDeeps

[63], and DanQ [65], have showcased the potential of deep learning in capturing intri-

cate sequence and structure motifs, thereby enhancing the precision of RNA-protein

interaction predictions.

Despite these advancements, the realm of miRNA-binding proteins remains

largely uncharted. While extensive research has been conducted on RNA-binding pro-

teins, the specific domain of miRNA-binding proteins has been relatively untouched.

This lacuna in the research landscape underscores our work’s novelty and pioneering
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nature. Venturing into this nascent domain, we aim to bridge the existing knowledge

gap and contribute seminal insights into the intricate dynamics of miRNA-protein

interactions.

• miRNA Sorting: There is currently no comprehensive framework specifically

dedicated to miRNA sorting. However, research has been published in Nature

by Garcia-Martin et al. [27], providing substantial insights into miRNA sorting

mechanisms. This study demonstrates that miRNAs possess sorting sequences

that determine their secretion into small extracellular vesicles (sEVs) or reten-

tion within cells. Different cell types, such as white and brown adipocytes,

endothelium, liver, and muscle, make preferential use of specific sorting se-

quences, defining the sEV miRNA profile of that cell type. The study identifies

two RNA-binding proteins, Alyref and Fus, as key players in the export of miR-

NAs carrying one of the strongest EXOmotifs, CGGGAG. This miRNA code

links circulating exosomal miRNAs to their tissues of origin and provides an

approach for improved targeting in RNA-mediated therapies.

• RNA-binding Proteins: Traditional methodologies, such as RIP-seq and

CLIP-seq, employed for RBP discovery are resource-intensive in terms of time

and cost [34]. This has catalyzed the emergence of many efficient and econom-

ical tools for discerning sequence and structure motifs. Some of these tools,

like BEAM [88], focus on structure motifs, while others, such as CapR [82] and

the approach by Li et al. [26], amalgamate sequence motifs with secondary

structure considerations. These tools have significantly advanced our under-
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standing of RNA-protein interactions by enabling high-throughput and precise

identification of binding sites.

For instance, DeepBind utilizes CNNs to learn sequence motifs from raw RNA

sequences, offering significant improvements in prediction accuracy over tradi-

tional methods [2]. Similarly, DeeperBind enhances this approach by incorpo-

rating more complex network architectures to capture subtle features in the data

[79]. These advancements have led to more robust and generalizable models ca-

pable of predicting RNA-protein interactions across diverse biological contexts.

• miRNA Targeting: In recent years, studies have begun exploring the unique

challenges and opportunities miRNA-binding proteins present. For example,

the work by Ha and Kim [33] highlights the critical regulatory roles of miRNAs

in gene expression, emphasizing the need for precise identification of miRNA-

binding sites. Similarly, research by Dueck et al. [22] has provided insights

into the differential association of miRNAs with various Argonaute proteins,

suggesting complex regulatory mechanisms yet to be fully understood.

Additionally, the development of computational tools specifically tailored for

miRNA-binding site prediction is gaining traction. For instance, the tool devel-

oped by Quevillon Huberdeau et al. [66] focuses on the phosphorylation states

of Argonaute proteins, which are pivotal in miRNA-mediated gene silencing.

Such tools are instrumental in advancing our understanding of miRNA-protein

interactions and their implications in cellular processes.

Integrating deep learning techniques in miRNA research is also beginning to
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show promise. Studies leveraging LSTM networks to capture the temporal dy-

namics of miRNA interactions are emerging as a new frontier in computational

biology. These approaches enhance the predictive accuracy of miRNA-binding

sites and provide deeper insights into the regulatory roles of miRNAs in various

biological systems.

Overall, the existing body of research underscores the critical role of RBPs and

miRNA-binding proteins in cellular regulation. However, the specific mechanisms and

interactions within the miRNA-protein domain remain an area ripe for exploration.

Our work aims to address this gap by leveraging advanced computational techniques,

including deep learning, to unravel the complexities of miRNA-protein interactions.

Through this, we hope to contribute to a more comprehensive understanding of the

molecular underpinnings of gene regulation and pave the way for novel therapeutic

interventions.

2.3 Data Collection and Analysis

Data collection and analysis are fundamental components of bioinformatics

research and are the foundation for constructing predictive models. This chapter

describes the meticulous data collection, organization, and preprocessing process. The

primary datasets utilized in our research include RNA sequences that bind to RNA-

binding proteins (RBPs) and protein sequences sourced from the Universal Protein

Resource (UniProt) and the NCBI Protein Database.



19

2.3.1 RNA Sequences that Bind to RNA-Binding Proteins

Sequencing-Based Platforms for Protein-RNA Binding Site Identification

Understanding our data source is crucial before delving into data preprocess-

ing and embeddings. The RNA Binding Protein (RBP) binding linear RNAs from

RBPSuite [64] are derived from advanced sequencing platforms designed to capture

protein-RNA interactions. These platforms, often termed ’CLIP-Seq’ (Crosslinking

Immunoprecipitation Sequencing), employ a combination of immunoprecipitation and

high-throughput sequencing to identify the binding sites of RNA-binding proteins.

The process typically involves several steps:

• Crosslinking RNA-binding proteins to RNA molecules in living cells.

• Fragmenting the RNA and isolating the RNA-protein complexes.

• Sequencing the RNA fragments to determine the binding sites.

The advantage of such sequencing-based platforms is the ability to capture in

vivo protein-RNA interactions, providing a more accurate representation of cellular

processes. Moreover, the high-throughput nature of these platforms allows for identi-

fying thousands of binding sites in a single experiment, making it a valuable resource

for bioinformatics studies like ours.

Data Collection and Organization

In bioinformatics, the quality and comprehensiveness of data are pivotal in

ensuring the accuracy and reliability of predictive models. Our research, aimed at
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understanding RNA-protein interactions, necessitated the collection of data from rep-

utable sources that offer both depth and breadth in their datasets.

One of the primary repositories from which we sourced our data is RBPSuite

[64]. This suite, derived from advanced sequencing platforms, is specifically tailored

to capture the nuances of protein-RNA interactions. However, our data collection

efforts extended beyond RBPSuite. We further enriched our dataset by utilizing data

from the ENCODE Project [17].

The ENCODE (Encyclopedia of DNA Elements) Project is a groundbreaking

initiative to identify all functional elements in the human genome. Initiated in 2003,

the project’s primary goal is to enhance our understanding of how genetic informa-

tion is regulated and utilized in different cell types and tissues. By mapping these

elements, ENCODE provides insights into their roles in human health and disease.

The ENCODE Project has generated a vast amount of data, including information on

DNA regions that produce RNA, regions that bind proteins, and chemically modified

regions. This data is freely available to the scientific community and is a valuable

resource for researchers worldwide.

A specialized section of the ENCODE Project, the ENCORE Matrix, inte-

grates data from the ENCODE and Roadmap Epigenomics projects. ”ENCORE”

stands for ”Encyclopedia of DNA Elements at Roadmap Epigenomics.” This inte-

grated resource offers a comprehensive view of functional genomic elements across

various cell types and tissues. When visiting the ENCORE Matrix page on the EN-

CODE website 2.1, one is presented with a matrix of experiments related to the

ENCORE tag. This matrix is organized by biosample (cell or tissue type) and assay
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type (the method used to detect a specific genomic feature). Each cell in the matrix

represents a specific experiment, and clicking on a cell provides detailed information

about that experiment.

Figure 2.1: The ENCORE project aims to study protein-RNA interactions by creating
a map of RNA binding proteins (RBPs) encoded in the human genome and identifying
the RNA elements that the RBPs bind to.

In our quest to understand RNA-protein interactions, we also leveraged var-

ious platforms that offer insights into these interactions. One such platform is TF

ChIP-seq. ChIP-seq (Chromatin Immunoprecipitation sequencing) is a method that

enables researchers to understand protein interactions with DNA. When referring

to ”TF ChIP-seq,” we delve into studying the binding sites of transcription factors

(TFs) on DNA. Other platforms that enriched our research include eCLIP, a method

tailored to study RNA-protein interactions, and CRISPR RNA-seq, a fusion of the

CRISPR/Cas9 genome editing system with RNA sequencing, offering insights into

the transcriptomic effects of specific genetic modifications.
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With the data sources identified, we delve into the specifics of the data utilized

in our research:

• RNA Sequences: The benchmark dataset for RNA Binding Protein (RBP)

binding linear RNAs from RBPSuite served as our primary source for RNA

sequences [64]. This comprehensive dataset includes 154 RBPs, and their cor-

responding binding sites (RNAs) are derived from ENCODE. The use of this

dataset ensures that we have a robust and diverse set of RNA sequences for our

model training and validation.

• Protein Sequences: For protein sequences, we utilized two main resources:

the Universal Protein Resource, which shows the website in this Figure 2.2

and the National Library of Medicine, NCBI, Protein Database [1, 71, 76] that

shows the website in this Figure 2.3. UniProt is a freely accessible database

of protein sequence and functional information, which includes the manually

annotated UniProt Knowledgebase and the automatically annotated UniProt

TrEMBL database. The NCBI Protein Database is a collection of sequences

from several sources, including translations from annotated coding regions in

GenBank, RefSeq, and TPA and records from SwissProt, PIR, PRF, and PDB.

These databases offer a wealth of protein sequence information, which is crucial

for our research.

In addition to protein sequences, we also considered protein structures. We

used the method described in the paper ”ResPRE: high-accuracy protein contact pre-

diction by coupling precision matrix with deep residual neural networks” [52]. This
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method uses a deep residual convolutional neural network to predict residue-level

protein contacts using the inverse covariance matrix of multiple sequence alignments.

This approach provides valuable information about protein structures, which is es-

sential for our research.

miRNA Data Collection and Organization

The data utilized in this study, specifically related to miRNA, was obtained

from the research paper titled ”Mapping the Human miRNA Interactome by CLASH

Reveals Frequent Noncanonical Binding” [37]. This paper was a valuable resource for

our model, providing a detailed annotation of all identified miRNA-mRNA interac-

tions in Data S1.

The collection of Data S1 involved using experimental data derived from high-

throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-

CLIP) and photoactivatable-ribonucleoside-enhanced crosslinking and immunopre-

cipitation (PAR-CLIP). In addition to these experimental methods, computational

predictions were also employed. These predictions were based on algorithms that

consider sequence complementarity and the thermodynamic stability of the miRNA-

mRNA duplex when predicting miRNA targets.

Upon obtaining the data, it was found to include 26 columns. Specifically,

Column 5, titled miRNA seq, provided the miRNA sequence (start – end). As part of

the data preprocessing, we focused on creating a clean dataset with uniform miRNA

sequences. To achieve this, we adjusted the length of all sequences to 101 characters.

If a sequence was shorter than 101 characters, we appended additional characters
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from the start to the end until it reached 101. This formed the positive part of our

dataset.

Subsequently, we generated a negative sequence dataset. The total number of

sequences for miRNA, combining both the positive and negative datasets, amounted

to 31,636. This comprehensive dataset served as the foundation for our subsequent

analysis and modeling.

The research by Helwak et al. is particularly notable for its comprehensive

approach to identifying miRNA interactions. They employed a technique known

as CLASH (crosslinking, ligation, and sequencing of hybrids) to directly ligate and

sequence miRNA-target RNA duplexes associated with the human AGO1 protein.

This technique allowed for the high-confidence identification of more than 18,000

miRNA-mRNA interactions, providing a robust dataset for our study.

Key points from Helwak et al. that were particularly relevant to our data

collection include:

• The binding of most miRNAs involves the 5’ seed region, but around 60% of seed

interactions are noncanonical, containing bulged or mismatched nucleotides.

• Approximately 18% of miRNA-mRNA interactions involve the miRNA 3’ end,

with little evidence for 5’ contacts.

• Specific base-pairing patterns, including canonical and noncanonical sites, char-

acterize the miRNA-target interactions.

These insights into miRNA binding mechanisms were critical for understanding

our dataset’s complexity and diversity of miRNA interactions. The detailed anno-
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tation and high-confidence interactions provided by Helwak et al. ensured that our

dataset was comprehensive and reliable, forming a solid foundation for developing

and validating our predictive models. focused primarily on two types of data: RNA

sequences and protein sequences.

Figure 2.2: UniProt is the world’s leading high-quality, comprehensive, and freely
accessible resource of protein sequence and functional information.

2.3.2 Data Preprocessing and Refinement

Data preprocessing is a pivotal step in ensuring the efficacy of our models. We

RNA Sequence Preprocessing

Our primary dataset for RNA sequences was sourced from RBPSuite, a bench-

mark for RNA Binding Protein (RBP) binding linear RNAs [64]. The preprocessing

of this dataset encompassed several stages:

• Initially, the peak files of each RBP were merged to consolidate the data.

• Regions that overlapped with the reference gene were selected using the intersect

Bed function of bedtools [67].
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Figure 2.3: The National Center for Biotechnology Information advances science and
health by providing access to biomedical and genomic information.

• Gene-overlapped regions with less than 107 base pairs (bp) were extended with

downstream and upstream regions of the same length, resulting in positive re-

gions of RBPs.

• Negative RBP binding regions were produced by implementing shuffleBed of

bedtools[67], with all regions being 101bp.

• The fasta files of positive and negative regions were retrieved using fastaFromBed

of bedtools.
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• For each RBP, only 60,000 positive and 60,000 negative sites were retained if

the extracted positive and negative samples exceeded this number; otherwise,

all extracted samples were used.

This data collection and preprocessing approach ensures that the data used

for training the deep learning model is highly relevant. Before we proceed to the next

part, we want to talk briefly about bedtools [67].

In bioinformatics, the efficient manipulation and analysis of genomic data are

crucial for advancing our understanding of molecular biology. One of the essential

tools we employed for preprocessing RNA sequences is bedtools [67]. bedtools is a

versatile suite of utilities designed to facilitate a wide range of genomic analyses. It

enables researchers to easily perform complex operations on genomic data, offering

functionalities for intersection, merging, and complementing genomic features, among

others.

Developed by Quinlan and Hall, bedtools is widely recognized for its ro-

bustness and flexibility in handling various genomic datasets. The suite comprises

numerous command-line tools that operate on files formatted in the Browser Exten-

sible Data (BED) format, a standard for representing genomic intervals. These tools

are indispensable for identifying overlapping genomic regions, extracting sequence

data, and computing coverage statistics.

Our research specifically utilized bedtools to preprocess RNA sequences. One

of the key features we leveraged is the getfasta tool, which extracts DNA or RNA

sequences from a reference genome based on coordinates provided in a BED file. This



28

functionality is particularly useful for converting genomic intervals into corresponding

nucleotide sequences, a critical step in our data preprocessing pipeline.

The process of extracting RNA sequences using getfasta involves several

steps:

• First, the BED file containing RNA-binding protein (RBP) binding site coordi-

nates is prepared.

• Next, bedtools getfasta is employed to retrieve the nucleotide sequences cor-

responding to these coordinates from a reference genome.

To illustrate the usage of bedtools getfasta, consider the following com-

mand:

bedtools getfasta -fi reference_genome.fa -bed rna_binding_sites.bed

-fo output_sequences.fa

In this command:

• -fi referencegenome.fa : SpecifiestheinputreferencegenomefileinFASTAformat.

Additionally, bedtools getfasta offers options to handle more complex sce-

narios, such as extracting sequences from specific blocks within BED intervals. For

instance, using the -split option enables the extraction of sequences from each block

separately, which is essential when dealing with spliced RNA molecules.

An example command incorporating the -split option is as follows:

•• bedtools getfasta -fi reference_genome.fa -bed rna_binding_sites.bed

-fo output_sequences.fa -split
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This command ensures that each block within the BED intervals is treated

independently, providing a precise extraction of spliced RNA sequences.

The use of bedtools was instrumental in our research for several reasons:

• Its ability to efficiently process large genomic datasets ensured we could handle

the extensive RNA sequence data derived from RBPSuite and other sources.

• The flexibility and precision offered by bedtools getfasta allowed us to tailor

our data extraction processes to meet the specific requirements of our study,

thereby enhancing the accuracy and reliability of our RNA sequence data.

• The seamless integration of bedtools into our preprocessing pipeline facilitated

the preparation of high-quality datasets, which are crucial for training robust

deep learning models.

In conclusion, bedtools has proven to be an invaluable tool in preprocessing

RNA sequences for our research. Its comprehensive suite of utilities and user-friendly

command-line interface have enabled us to perform intricate genomic analyses with

ease and precision, thereby contributing significantly to the success of our study.

Protein Sequence Preprocessing

For protein sequences, we obtained data from the Universal Protein Resource

(UniProt) and the NCBI Protein Database [1, 71]. We used three main features

for the embeddings: the Position-Specific Scoring Matrix (PSSM) and the Protein

Structure Contact Map.

The detailed steps for preprocessing protein sequences include:
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• Extracting protein sequences from UniProt and NCBI databases.

• Generating PSSM profiles for each protein sequence.

• Creating contact maps using the ResPRE method, which involves predicting

residue-level protein contacts based on the inverse covariance matrix of multiple

sequence alignments.

2.3.3 Data Integration and Analysis

Our research is bolstered by a robust dataset amalgamated from reputable

sources. This comprehensive dataset ensures the efficacy and reliability of our deep-

learning models in predicting RNA-protein interactions. By combining these re-

sources, we have compiled a comprehensive and diverse dataset for our research,

allowing us to train our models effectively and ensure they can handle a wide range

of RNA and protein sequences.

Integrating Data from Multiple Sources

To achieve a comprehensive dataset, it is crucial to integrate data from multiple

reputable sources. RBPSuite and the ENCODE Project were the primary sources

for our RNA sequences, while UniProt and NCBI provided the bulk of our protein

sequence data. This integration process involved aligning and merging data from

these diverse sources to create a unified dataset.
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Ensuring Data Quality and Consistency

Maintaining high data quality and consistency is essential for the success of

any bioinformatics research. Our data preprocessing steps, which involved rigorous

filtering, selection, and validation processes, ensured that our dataset was of the

highest quality. By meticulously curating and refining our data, we laid a solid

foundation for our subsequent analyses and model training.

The meticulous data collection and organization process, advanced platforms,

and reputable databases have laid a robust foundation for our research into RNA-

protein interactions. The datasets we’ve chosen, backed by the credibility of sources

like ENCODE, RBPSuite, UniProt, and NCBI, ensure that our predictive models are

accurate and reliable. We have compiled a comprehensive and diverse dataset for our

research by integrating these resources and employing rigorous data preprocessing

techniques. This dataset will allow us to train our deep-learning models effectively

and ensure they can handle a wide range of RNA and protein sequences.

2.3.4 Input Representation Using Embeddings

Our study employed various embedding techniques to represent RNA and pro-

tein sequences, ensuring that our models could effectively interpret and learn from

the data. Two primary techniques utilized in this study are Position-Specific Scoring

Matrix (PSSM) and Protein Structure Contact Maps (PSCMs).
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Position-Specific Scoring Matrix (PSSM)

Position-Specific Scoring Matrix (PSSM) is an essential computational tool

widely used in bioinformatics, specifically for analyzing DNA and protein sequences.

PSSM represents the conservation of specific residues (amino acids or nucleotides) at

particular positions in a sequence alignment. It’s a matrix that helps in identifying

conserved patterns within biological sequences, making it a valuable asset in tasks

like sequence alignment, motif discovery, and homology detection [4, 45, 39, 38].

To generate a PSSM for a given protein sequence, we first perform a BLAST

(Basic Local Alignment Search Tool) search against a protein database (such as

UniProt) to find similar sequences. These sequences are then aligned to create a

Multiple Sequence Alignment (MSA). From the MSA, we calculate the frequency of

each amino acid at each position in the alignment, which gives us a Position-Specific

Frequency Matrix (PSFM). The PSFM is then converted into a PSSM by taking the

log-odds of the observed frequencies relative to the expected frequencies of amino

acids [4]. The formula for the log-odds score is:

Log-Odds Score (a,i) = log2

(
Frequency of a at position i

Background frequency of a

)

To refine our understanding of protein sequences within our dataset, which

comprises 500 unique proteins, we generated PSSM files for each protein. Given their

variable lengths, we encapsulated them into fixed-dimension vectors. The imperative

of dimensionality reduction led us to employ the Elbow Curve method specifically for
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our PSSM data.

The Elbow Curve, depicted in Figure 2.14, illustrates the explained variance

ratio against the number of principal components. This strategic approach enabled

us to ascertain the optimal number of principal components to retain, ensuring the

preservation of significant features while minimizing informational loss. By identi-

fying the ”elbow point,” where the explained variance ratio begins to plateau, we

determined the appropriate number of components to maintain the integrity of the

data.

Advancing beyond traditional methods, we integrated an Autoencoder into

our analytical framework for a more sophisticated dimensionality reduction of the

PSSM representations. The Autoencoder’s encoder component compresses the in-

put PSSM into a dense, lower-dimensional representation, capturing the protein’s

sequence conservation essence. Subsequently, the decoder part attempts to recreate

the original PSSM from this compressed representation. This process not only aids in

reducing the dimensionality of our data but also uncovers latent patterns that might

be obscured in the raw PSSMs.

Consider the example of ABRE, a nucleotide motif discovered that its con-

sensus sequence is ACGTG G/T C [36]. An alignment of 47 ABRE sequences was

constructed, and a matrix of counts at each motif position was created.

This count matrix has four rows corresponding to the four nucleotides that

occur in DNA: A, C, G, and T. It also has nine columns corresponding to the nine

positions in the motif. To convert these counts into a PSSM, the frequency matrix

is first transformed into a matrix of probabilities. The probability of observing a
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Figure 2.4: Elbow Curve for PCA, illustrating the explained variance ratio against
the number of principal components. The curve helps determine the optimal number
of components to retain by identifying where the variance explained by additional
components diminishes.

particular nucleotide at a given position is the observed count for that nucleotide at

that position, divided by the number of sequences in the alignment. For instance, the

observed probabilities for the ABRE motif are:

Log-odds scores are then calculated using the odds ratio of observed to ex-

pected frequencies. For nucleotides, assuming equal frequencies, the expected fre-

quency is always 0.25. The log-odds probability of each nucleotide at each position

in half-bit units is then calculated.
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Figure 2.5: Sequence logos and matrices for ABRE used in this study. (a) ABRE
sequence logo; (b) ABRE frequency matrix.

1 2 3 4 5 6 7 8 9
A 0.32 0.09 1.00 0.00 0.00 0.00 0.06 0.00 0.30
C 0.32 0.43 0.00 1.00 0.00 0.00 0.02 0.02 0.43
G 0.17 0.06 0.00 0.00 1.00 0.00 0.91 0.38 0.11
T 0.19 0.43 0.00 0.00 0.00 1.00 0.00 0.60 0.17

Table 2.1: Converted frequency matrix into a matrix of probabilities for the ABRE
motif.

Protein Structure Contact Maps (PSCMs)

Proteins are complex molecules that play critical roles in the body, with their

function often determined by their three-dimensional shape or structure. The struc-

ture of a protein encompasses its sequence of amino acids, known as its primary

structure. This sequence gives rise to local sub-structures, such as alpha-helices and

beta-sheets, which are components of the protein’s secondary structure. As these

sub-structures interact, they form the protein’s overall three-dimensional shape [52],

termed its tertiary structure. Some proteins consist of more than one amino acid

chain, and the arrangement of these chains relative to each other is described as the

quaternary structure.

Visualizing the protein structure is often achieved using techniques like X-
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Figure 2.6: 3D Protein Structure of protein AGO1HUMAN.[77]
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ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. However,

determining the exact structure of a protein using these methods can be challenging.

The complexity arises from the number of atoms in proteins and the dynamic nature

of these molecules, which can adopt multiple conformations. Additionally, there are

inherent limitations to the experimental methods themselves. For instance, X-ray

crystallography requires the protein to form crystals, which isn’t always feasible,

while NMR is typically limited to analyzing relatively small proteins.

Given these challenges in directly determining protein structures, researchers

have sought alternative ways to understand them. One such approach is the Pro-

tein Structure Contact Map (PSCM). A PSCM is a graphical representation of a

protein’s tertiary structure. Instead of portraying the protein in three dimensions, a

contact map is a two-dimensional matrix. In this matrix, a mark at a specific posi-

tion indicates that two amino acids are in proximity to the protein’s three-dimensional

structure.

Contact maps simplify the intricate three-dimensional structure into a more

manageable two-dimensional representation. This simplification facilitates the analy-

sis and comparison of structures. Moreover, while the exact coordinates of a protein’s

atoms might vary under different conditions, the contact map remains relatively con-

sistent. This consistency, combined with advances in machine learning and bioinfor-

matics, has shown that predicting contact maps can be an effective step in forecasting

the full three-dimensional structure of a protein.

To understand the spatial relationships between amino acid residues, we em-

ployed Protein Structure Contact Maps (PSCMs). These maps translate the three-
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dimensional structure of proteins into a two-dimensional matrix, providing insights

into the protein’s tertiary structure and facilitating the analysis of its functional and

structural properties [60, 5].

To enhance the accuracy of our contact maps, we utilized the ResPRE algo-

rithm, a deep learning-based method for predicting residue-level contacts [52]. Re-

sPRE employs a deep residual convolutional neural network, efficiently predicting

contacts even for challenging protein sequences. This approach offers a more flexible

tool for understanding protein structure, bypassing direct calculation.

The contact map is determined based on the spatial proximity of amino acid

residues in the protein’s 3D structure. If the distance between two residues falls

below a threshold, typically within 6-8 Ångstroms, they are considered in contact,

marking the corresponding matrix cell as 1; otherwise, it is marked as 0, resulting in

a symmetric matrix representation 2.7.

ResPRE Algorithm

ResPRE: High-Accuracy Protein Contact Prediction by Coupling Precision

Matrix with Deep Residual Neural Networks is a state-of-the-art method designed

to enhance the accuracy of protein contact predictions [52]. The ResPRE algorithm

consists of three primary steps: Multiple Sequence Alignment (MSA) generation,

precision-matrix-based feature collection, and deep residual neural network training.

1. MSA Generation: An informative MSA is critical for evolutionary cou-

pling analyses and subsequent contact-map prediction. In ResPRE, the MSA is gener-

ated by HHblits [52] with a coverage threshold for the query sequence of 40 and a pair-
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Figure 2.7: ResPRE Contact Prediction for AGO1 HUMAN. The above plot displays
the contact-map with a cutoff ¿=0.5 of confidence score (ranging from 0 to 1) [52].
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wise sequence identity cutoff of 0.99 against Uniprot201604bythreeiterations.TheE−

valuethresholdisconfiguredto1toobtainmorediversealignments.

2. Precision-Matrix Based Feature Collection: The precision matrix,

derived through the maximum likelihood approach, helps rule out transitional noises

of contact maps compared with the previously used covariance matrix. This step is

crucial for capturing the conditional independent relationships among residues, which

are then used as training features for the deep residual neural networks.

3. Deep Residual Neural Network Architecture: The deep residual neu-

ral network (ResNet) architecture enables the training of very deep neural networks

by adding feedforward neural networks with an identity map of input, allowing gra-

dients to flow smoothly from deeper to shallower layers. This architecture enhances

the neural network’s learning ability, making it possible to predict contacts even for

challenging protein sequences.

Figure 2.8: Flowchart of ResPRE. (a) Process of precision-matrix-based feature col-
lection. (b) Block diagram of deep residual neural network architecture [52]

The ResPRE algorithm has significantly improved prediction accuracy com-
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pared to traditional methods. By leveraging the precision matrix and deep residual

neural networks, ResPRE provides a robust framework for understanding protein

structures, particularly useful for proteins lacking close homology templates in exist-

ing databases.

In summary, these embedding techniques play a crucial role in our study,

transforming raw sequence data into formats more amenable to analysis and inter-

pretation by our deep learning models. Integrating PSSM and PSCMs, along with

the advanced ResPRE algorithm, enhances our ability to predict and analyze protein

structures with higher accuracy and reliability.

2.4 Materials and Methods

2.4.1 Overview

The field of miRNA-protein binding prediction is burgeoning, yet it is fraught

with significant challenges, predominantly due to the sparse availability of specialized

miRNA-protein binding datasets. These datasets are crucial for the training, testing,

and validation of predictive models, and their scarcity could impede the development

of reliable and accurate prediction algorithms [8]. The complexity of miRNA-protein

interactions, which exhibit considerable variability across different biological contexts,

further complicates the prediction process.

The paucity of miRNA-protein binding datasets is attributed to the intricate

and labor-intensive nature of the experimental techniques employed for identifying

these interactions, such as CLIP and HITS-CLIP. These methods are time-consuming
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and costly and necessitate specialized expertise, thereby hindering the generation of

extensive miRNA-protein interaction datasets [16]. Additionally, the highly context-

dependent nature of miRNA-protein interactions, varying across cell types, develop-

mental stages, and physiological conditions, adds another layer of complexity, result-

ing in datasets that capture only a fraction of the potential interactions in biological

systems [44].

Given these challenges, computational approaches, particularly machine learn-

ing, have emerged as promising tools for predicting miRNA-protein interactions. Ma-

chine learning algorithms are adept at discerning patterns and structures from existing

data, which can be applied to predict new, unseen data. This capability is particu-

larly beneficial for tasks like miRNA-protein interaction prediction, where the data

is complex and high-dimensional [13].

This research contributes to the field by designing a novel transfer learning

solution to address the issue of limited data availability. Transfer learning allows us

to leverage pre-existing knowledge and models from related domains, adapting them

to the specific task of miRNA-protein interaction prediction. For instance, a model

initially trained to predict protein-protein interactions can be repurposed to predict

miRNA-protein interactions. This approach enables the utilization of patterns and

structures learned from RNA-protein interaction data, enhancing the performance of

miRNA-protein interaction prediction models [12].

Furthermore, we introduce a multi-modular deep neural network architecture

tailored to capture various facets of miRNA-protein interactions. This architecture

integrates different modules, each designed to extract specific features relevant to
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Figure 2.9: Overview of the transfer learning approach.

the interaction, such as sequence and structural features. By amalgamating these

modules, we achieve a holistic model capable of delivering accurate predictions, even

in scenarios characterized by limited data availability [28].

In summary, this research pioneers the exploration of miRNA-protein inter-

actions, addressing the prevalent challenges through innovative computational ap-

proaches. Integrating transfer learning and a multi-modular deep neural network

architecture marks a significant stride towards accurately predicting miRNA-protein

interactions, paving the way for future research and applications in this domain.

2.4.2 Advanced Machine Learning Techniques in DeepMiRBP for RNA

and miRNA-Protein Interaction Prediction

The advent of machine learning (ML) and deep learning (DL) has marked a

paradigm shift in bioinformatics, providing powerful tools for the analysis and inter-

pretation of complex biological data. These techniques offer unprecedented capabil-
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ities in modeling intricate patterns and making accurate predictions, thereby accel-

erating discoveries in the life sciences [29]. In our study, we have leveraged several

advanced ML and DL techniques in the development of our model, DeepMiRBP. This

chapter explores these advanced ML methods, focusing on their applications in bioin-

formatics, including Bi-Directional Long Short-Term Memory (Bi-LSTM) networks,

attention mechanisms, embedding layers, Y architecture, and transfer learning.

Bioinformatics deals with acquiring, storing, analyzing, and disseminating bi-

ological data, most notably genetic and genomic data. Traditional computational

approaches often fail to handle the sheer volume and complexity of modern biological

datasets. With their ability to learn from data and improve over time, machine learn-

ing techniques have become indispensable in this field [29]. They enable researchers

to uncover hidden patterns, predict biological functions, and model biological systems

with greater accuracy and efficiency [29].

One of the primary reasons for the growing reliance on ML and DL in bioin-

formatics is their ability to handle large-scale data. For instance, processing high-

throughput sequencing data, which generates gigabytes of information, requires algo-

rithms capable of scaling with data size [29]. ML models, such as neural networks, can

process and learn from vast amounts of data, making them ideal for bioinformatics

applications [29].

In recent years, deep learning and neural networks have become increasingly

prevalent in bioinformatics due to several compelling reasons. Firstly, the inherent

ability of deep learning models to automatically learn and extract features from raw

data without the need for extensive manual feature engineering has revolutionized the
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field [29]. This capability is particularly beneficial in bioinformatics, where biological

data’s complexity and high dimensionality pose significant challenges.

Deep learning models, such as Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs), including Long Short-Term Memory (LSTM)

networks, are adept at capturing complex patterns and dependencies within data.

CNNs, for example, are exceptionally effective in recognizing spatial hierarchies in

data, making them suitable for tasks such as protein structure prediction and cellular

image analysis [50]. On the other hand, RNNs and their variants, such as Bi-LSTM,

excel in sequence modeling, which is crucial for understanding genetic sequences and

predicting RNA-protein interactions [40].

Another critical advantage of deep learning in bioinformatics is its scalabil-

ity. Deep learning models can leverage large datasets to improve their performance

continuously. This is essential in bioinformatics, where the volume of data generated

by high-throughput technologies exponentially increases. Techniques such as trans-

fer learning further enhance scalability by enabling models trained on large, general

datasets to be fine-tuned for specific tasks with smaller datasets [61].

The flexibility and adaptability of neural networks also contribute to their

widespread use in bioinformatics. Neural networks can be customized and fine-tuned

for various applications, from predicting gene expression levels to identifying poten-

tial drug targets. Integrating different data types, such as genomic, proteomic, and

phenotypic data, into a single model (e.g., through architectures like the Y network)

allows for a more comprehensive analysis of biological systems.

Furthermore, advancements in computational power, particularly with Graph-
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ics Processing Units (GPUs) and Tensor Processing Units (TPUs), have made it fea-

sible to train deep neural networks efficiently on large biological datasets. This com-

putational capability has democratized access to deep learning, enabling researchers

to implement sophisticated models without prohibitive costs.

Deep learning’s robust performance in handling noisy and unstructured data

makes it suitable for bioinformatics. Biological data often contains noise due to

experimental errors and biological variability. Deep learning models can effectively

manage this noise and still produce reliable predictions, enhancing bioinformatics

analyses’ overall accuracy and robustness [29].

In our model, DeepMiRBP, we utilized advanced machine learning techniques

to predict RNA and miRNA-protein interactions. The following sections will detail

these techniques, explaining their underlying principles, applications in bioinformat-

ics, and how they contribute to our understanding of biological systems. By har-

nessing the power of machine learning, we can continue to push the boundaries of

bioinformatics, paving the way for discoveries and innovations in the life sciences [29].

Embedding Layers: Embedding layers transform categorical data into con-

tinuous vector spaces, capturing semantic relationships between categories. This is

particularly useful for representing biological sequences (e.g., DNA, RNA, proteins)

in a form suitable for neural networks. Embeddings help identify similarities and

differences between sequences based on their learned representations [54].

Bi-Directional Long Short-Term Memory (Bi-LSTM): Bi-LSTM net-

works are an extension of traditional LSTM networks that process data in both for-

ward and backward directions. This bidirectional processing captures context from
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both past and future states, making Bi-LSTMs highly effective for sequence-based

tasks such as gene prediction, RNA-protein binding site identification, and sequence

alignment [40].

Attention Mechanisms: Attention mechanisms allow models to focus on

specific parts of the input sequence, enhancing their performance on tasks requiring

long-range dependencies. In bioinformatics, attention mechanisms are used in models

for protein structure prediction and genomic sequence analysis, where certain regions

of the input data are more informative than others [80].

Y Architecture: The Y architecture is a specific neural network design that

merges multiple input streams, processes them independently, and then combines

them for final prediction. This architecture is useful in bioinformatics, where dif-

ferent data types (e.g., genomic, proteomic, and phenotypic) must be integrated for

comprehensive analysis.

Transfer Learning: Transfer learning involves leveraging pre-trained models

on new, related tasks. This approach is particularly useful in bioinformatics, where

labeled data is often scarce. Using models pre-trained on related datasets, we can

achieve significant performance improvements even with limited data [61]. For ex-

ample, pre-trained models on large protein databases can be fine-tuned to predict

specific protein functions or interactions [61].

Integrating these advanced machine-learning techniques into bioinformatics

workflows has led to significant advancements in the field. From predicting protein

structures to understanding genomic variations, these methods provide researchers

with powerful tools to decode the complexities of biological data [29].
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The following sections will detail these techniques, explaining their underlying

principles, applications in bioinformatics, and how they contribute to our under-

standing of biological systems. By harnessing the power of machine learning, we can

continue to push the boundaries of bioinformatics, paving the way for discoveries and

innovations in the life sciences [29].

Embedding Layers

Embedding layers transform categorical data into continuous vector spaces,

capturing semantic relationships between categories. In bioinformatics, embeddings

are used to represent sequences such as proteins and RNA in a form suitable for

neural networks.

The embedding layer in Long Short-Term Memory (LSTM) deep learning mod-

els is crucial, especially in natural language processing (NLP) and sequence analysis.

This layer transforms discrete, categorical input data, such as RNA and miRNA se-

quences, into fixed-size dense vectors, facilitating the learning process in subsequent

model layers.

In a continuous vector space, the embedding layer represents each unique item,

like a character or word. These vectors, learned during training, capture semantic

relationships between items, making it possible to measure distances or similarities

between them. Mathematically, if we have a set of items {x1, x2, . . . , xn}, the embed-

ding layer maps each item xi to a vector vi ∈ Rd, with d being the embedding space’s

dimensionality. The embedding matrix E is represented as:
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E =



v1

v2

...

vn


where vi is the embedding vector for the item xi. This embedding matrix E

is typically initialized randomly and then refined during the training process through

backpropagation.

For RNA sequences of 101 characters, the embedding layer transforms each

character into a unique 128-dimensional vector, resulting in a matrix of size 101×128.

To obtain a single embedding for the entire sequence, vectors are summed along the

columns:

vRNA =
101∑
i=1

vi

This process ensures that the embedding vector vRNA captures the collective

information of the entire RNA sequence, facilitating its input into subsequent layers

of the LSTM model.

miRNA sequences, typically shorter than 25 characters, are padded with zeros

to match the required input length of 101 characters. The embedding layer then

transforms each character into a 128-dimensional vector. For miRNA sequences, we

sum only up to the original sequence length:
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vmiRNA =

Len(miRNA)∑
i=1

vi

This method ensures that the embeddings for miRNA sequences accurately

represent the original biological sequences without introducing noise from padding.

The embedding vectors are learned during the neural network’s training phase.

The objective is to optimize these vectors so that similar items (e.g., similar nucleotide

sequences) are close to each other in the embedding space. This is achieved by

minimizing a loss function that measures the difference between the predicted outputs

and the actual labels.

Commonly used loss functions for training embeddings in bioinformatics in-

clude the categorical cross-entropy loss for classification tasks and the mean squared

error (MSE) for regression tasks. The gradients of these loss functions concerning

the embedding vectors are computed, and the embedding matrix E is updated using

gradient descent or its variants.

Embedding layers offer several advantages in bioinformatics:

• Dimensionality Reduction: Embeddings reduce the dimensionality of cate-

gorical data, making it more manageable for neural networks. This is particu-

larly important for biological sequences, which can be very long and complex.

• Capturing Semantic Relationships: Embedding vectors capture the seman-

tic relationships between items, allowing the model to understand similarities

and differences between sequences. For instance, similar RNA sequences will

have similar embeddings.
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• Efficient Computation: Embedding layers enable efficient computation by

transforming high-dimensional categorical data into lower-dimensional contin-

uous vectors, reducing the computational burden on subsequent layers.

• Transfer Learning: Pre-trained embedding layers can be transferred to new

models, providing a head start in learning and improving performance, espe-

cially when labeled data is scarce.

In practice, embedding layers are implemented using deep learning frameworks

such as TensorFlow and PyTorch. Below is a sample implementation of an embedding

layer in a neural network using TensorFlow:

import tensorflow as tf

from tensorflow.keras.layers import Embedding, LSTM, Dense

# Define the input sequence length and the size of the embedding space

input_length = 101

embedding_dim = 128

vocab_size = 10000 # Example vocabulary size

# Define the model

model = tf.keras.Sequential([

Embedding(input_dim=vocab_size,

output_dim=embedding_dim,

input_length=input_length),
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LSTM(64, return_sequences=True),

LSTM(64),

Dense(1, activation=’sigmoid’)

])

# Compile the model

model.compile(optimizer=’adam’,

loss=’binary_crossentropy’,

metrics=[’accuracy’])

# Print the model summary

model.summary()

This example demonstrates how to define an embedding layer that transforms

input sequences into 128-dimensional vectors, followed by LSTM layers and a dense

output layer for classification.

The embedding layer is vital in modern neural network architectures, especially

for handling categorical data in bioinformatics. By transforming discrete sequences

into continuous vector spaces, embedding layers enable models to capture semantic

relationships and perform complex analyses of biological data. The combination

of embeddings with advanced techniques like LSTM, cosine similarity, and transfer

learning enhances the capability of bioinformatics models to provide accurate and

insightful predictions, driving forward our understanding of biological systems.
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Bi-Directional Long Short-Term Memory (Bi-LSTM)

Long Short-Term Memory (LSTM) networks are a type of recurrent neural

network (RNN) specifically designed to address the vanishing and exploding gradient

problems encountered when training traditional RNNs [40, 81]. LSTMs are adept

at learning long-term dependencies in sequence data, making them suitable for ap-

plications involving RNA sequences and protein structure analysis in computational

biology.

The core architecture of an LSTM unit includes memory cells that retain state

over long sequences and three types of gates: input, forget, and output. These gates

regulate the flow of information into and out of the cell, deciding what to keep or

discard from the cell state. Mathematically, the operations within an LSTM cell are

described as follows:

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ⊙ tanh(Ct)

where σ denotes the sigmoid function, Ct and ht represent the cell state and hidden

state at time t, respectively, and W and b denote the weight matrices and bias vectors

[40].

To enhance the model’s ability to learn from past and future contexts within



54

a sequence, a Bidirectional LSTM (Bi-LSTM) can be employed. This architecture

processes data in both forward and backward directions, concatenating the hidden

states to understand the sequence context comprehensively depicted in Figure 2.10

[31]. In a Bi-LSTM, two LSTMs are used, one for the forward pass and one for the

backward pass:

−→
ht = LSTM(xt,

−−→
ht−1,

−−→
Ct−1)

←−
ht = LSTM(xt,

←−−
ht+1,

←−−
Ct+1)

The final output at each time step t is the concatenation of the forward and backward

hidden states:

ht =
−→
ht ⊕

←−
ht

Figure 2.10: Bi-LSTM with an attention mechanism. Our proposed model used the
attention mechanism with bi-LSTM as an encoder.

This bidirectional approach allows the network to have a complete view of the
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sequence context, capturing dependencies that might be missed by a unidirectional

LSTM [69]. This is particularly useful in bioinformatics, where the contextual infor-

mation from past and future positions within a sequence can provide valuable insights

into biological processes.

In computational biology, Bi-LSTMs have been effectively used in various ap-

plications, such as predicting RNA secondary structures, protein-protein interactions,

and gene expression levels [32, 63]. The ability of Bi-LSTMs to capture long-term de-

pendencies and contextual information makes them particularly well-suited for these

tasks.

LSTM Architecture:

• Forget Gate: The forget gate decides which information from the previous

cell state should be discarded. It takes the hidden state ht−1 and the current

input xt, applies a sigmoid activation function, and produces a value between 0

and 1. Mathematically, it is represented as:

ft = σ(Wf · [ht−1, xt] + bf )

• Input Gate: The input gate decides which information from the current input

should be added to the cell state. It also uses a sigmoid function to produce a

gating value and a tanh function to create a candidate vector for new informa-

tion. The equations are:

it = σ(Wi · [ht−1, xt] + bi)
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C̃t = tanh(WC · [ht−1, xt] + bC)

• Cell State Update: The new cell state is a combination of the old cell state,

scaled by the forget gate, and the candidate cell state, scaled by the input gate:

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

• Output Gate: The output gate decides which part of the cell state should

be output. It uses a sigmoid function to produce a gating value and a tanh

function to create the new hidden state:

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ⊙ tanh(Ct)

Applications of Bi-LSTM in Bioinformatics:

• RNA Sequence Analysis: Bi-LSTMs are used to analyze RNA sequences to

predict secondary structures and interactions with proteins. The bidirectional

nature allows the model to consider upstream and downstream nucleotides,

enhancing prediction accuracy [32].

• Protein-Protein Interactions: Understanding protein interactions is crucial

for drug discovery and disease treatment. Bi-LSTMs can model these interac-

tions by analyzing sequence data in both directions, providing a comprehensive
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view of interaction dynamics [63].

• Gene Expression Prediction: Predicting gene expression levels based on

DNA sequence data benefits from Bi-LSTMs’ ability to capture dependencies

from both directions, leading to more accurate and robust models [52].

In summary, LSTM and Bi-LSTM networks offer powerful tools for handling

sequential data in bioinformatics. Their ability to learn long-term dependencies and

contextual information makes them especially useful for complex biological data anal-

ysis. By employing Bi-LSTMs, researchers can gain deeper insights into biological

processes, improving the accuracy and effectiveness of computational models in bioin-

formatics [40, 31, 69].

Attention Mechanisms

Attention mechanisms allow models to focus on specific parts of the input se-

quence, enhancing the performance of tasks such as translation and protein structure

prediction. They dynamically assign different weights to different parts of the input

data, enabling the model to concentrate on the most relevant information.

The concept of attention was introduced to address the limitations of tradi-

tional sequence-to-sequence models, particularly in handling long sequences. Atten-

tion mechanisms provide a way of aligning and relating different parts of input and

output sequences, which makes them especially useful in tasks that require under-

standing of context, such as language translation and bioinformatics [80].

In the context of RNA sequences and bioinformatics, attention mechanisms are
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vital because they allow the model to focus on important regions of the sequence that

may have significant biological functions. RNA sequences often contain critical motifs

and structures that influence their interactions with proteins and other molecules.

Attention mechanisms help the model identify and prioritize these regions, improving

the accuracy and interpretability of predictions [6].

Mathematically, attention mechanisms can be described as follows. Given an

input sequence X = {x1, x2, . . . , xn} and an output sequence Y = {y1, y2, . . . , ym},

the attention mechanism computes a context vector ct for each output time step t.

The context vector is a weighted sum of the input hidden states hi, where the weights

αti represent the importance of each input hidden state hi at time t:

ct =
n∑

i=1

αtihi

The weights αti are computed using an alignment model, which scores each

input hidden state hi based on its relevance to the current output time step t. A

common alignment model is the dot-product attention, where the alignment score eti

is computed as the dot product of the decoder hidden state st and the input hidden

state hi:

eti = st · hi

The alignment scores are then normalized using a softmax function to obtain

the attention weights αti:

αti =
exp(eti)∑n
j=1 exp(etj)
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The context vector ct is then combined with the decoder hidden state st to

produce the final output:

yt = f(st, ct)

Where f is a function that generates the output yt based on the decoder’s

hidden state and the context vector. This process allows the model to dynamically

focus on different parts of the input sequence at each output time step, improving its

ability to handle complex dependencies and long-range interactions.

In bioinformatics, attention mechanisms have been applied to various tasks,

such as predicting RNA-protein interactions, RNA secondary structure, and gene

expression levels [87]. The ability to focus on important regions of the sequence

makes attention mechanisms particularly valuable in these applications, where specific

sequence motifs and structures play crucial roles.

The following references provide additional insights into the development and

application of attention mechanisms in neural networks and bioinformatics:

Y Architecture in Deep Learning Models

Y Architecture, also known as multi-input and multi-output architecture, is a

powerful design in deep learning that allows for integrating multiple data streams into

a single model. This architecture is particularly useful when dealing with complex

datasets that require different types of inputs, such as RNA sequences and protein

structure contact maps, to be processed simultaneously. Combining these inputs

allows Y Architecture to provide a more comprehensive understanding of the data,



60

leading to more accurate predictions and insights.

In the context of our model, the Y Architecture integrates RNA sequences and

protein sequences (PSSM and contact maps), enabling the model to learn from mul-

tiple perspectives and capture the intricate relationships between different biological

entities.

• Concept of Y Architecture: The Y Architecture consists of multiple input

branches that converge into a single output branch. Each input branch pro-

cesses a specific type of data using layers tailored to extract relevant features.

These branches then merge into a common pathway, which combines the learned

features and performs further processing to produce the final output. This de-

sign allows the model to leverage different types of information simultaneously,

improving its overall performance and robustness.

• Mathematical Formulation: Let X1 and X2 be the two input data streams

representing RNA sequences and protein sequences, respectively. Each input is

processed by a separate set of layers:

Z1 = f1(X1, θ1)

Z2 = f2(X2, θ2)

where f1 and f2 are functions representing the processing layers for X1 and X2,

and θ1 and θ2 are the corresponding parameters. The outputs Z1 and Z2 are

then concatenated to form a combined feature representation:
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Z = concat(Z1, Z2)

This combined representation Z is passed through additional layers f3 to pro-

duce the final output Y :

Y = f3(Z, θ3)

• Implementation in Keras: The Keras functional API provides a flexible

framework for implementing Y Architecture. Below is an example of a model

with multiple inputs and outputs:

[language=Python] from keras.layers import Input, Dense, Concatenate from

keras.models import Model

Define two sets of inputs inputa = Input(shape = (128, ))inputb = Input(shape =

(128, ))

The first branch operates on the first input x1 = Dense(64, activation=’relu’)(inputa)x1 =

Dense(64, activation =′ relu′)(x1)

The second branch operates on the second input x2 = Dense(64, activation=’relu’)(inputb)x2 =

Dense(64, activation =′ relu′)(x2)

Concatenate the outputs of the two branches combined = Concatenate()([x1, x2])

Apply a fully connected layer and output layer z = Dense(64, activation=’relu’)(combined)

output = Dense(1, activation=’sigmoid’)(z)
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Define the model with two inputs and one output model = Model(inputs=[inputa, inputb], outputs =

output)

• Benefits of Y Architecture: The Y Architecture offers several advantages:

– Integration of Multiple Data Types: It allows the model to integrate

and learn from different data types, providing a more holistic understand-

ing of the underlying patterns and relationships.

– Improved Performance: By leveraging multiple inputs, the model can

capture more information, leading to better performance and more accu-

rate predictions.

– Flexibility: The architecture is highly flexible and can be adapted to

various tasks and datasets, making it suitable for various applications in

bioinformatics and other fields.

• Application in Our Model: In our model, the Y Architecture is employed to

simultaneously process RNA sequences and protein sequences (PSSM and con-

tact maps). The RNA sequences are processed using LSTM layers to capture

their sequential nature, while the protein sequences are processed using CNN

layers to extract spatial features. The outputs from these branches are then

concatenated and passed through additional layers to produce the final predic-

tions. This design enables the model to leverage the strengths of both LSTM

and CNN, providing a comprehensive understanding of the data and improving

its predictive capabilities.
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The Y Architecture is a versatile and powerful design in deep learning that enhances

the model’s ability to learn from multiple data types. Its application in our model

demonstrates its effectiveness in integrating RNA and protein sequences, leading to

more accurate and insightful predictions. This approach improves the model’s per-

formance and provides a deeper understanding of the complex relationships between

different biological entities, making it an invaluable tool in bioinformatics research.

Leveraging Transfer Learning for miRNA-Protein Interaction Prediction

In the development of our model, DeepMiRBP, we have employed several

advanced machine learning techniques to enhance the prediction of miRNA-protein

interactions. This chapter delves into each of these techniques, providing detailed

explanations and their applications in bioinformatics.

Transfer Learning is a powerful technique in machine learning that allows

the knowledge learned from one task to be reused to improve performance on a

related task. This technique is especially beneficial when dealing with small datasets,

as it enables leveraging pre-existing knowledge and models [62]. Transfer Learning

addresses one of the key challenges in machine learning: the need for large amounts

of labeled data. By reusing models trained on large datasets, Transfer Learning can

significantly reduce the data and computational requirements for training new models

on related tasks [84].

In machine learning, a task refers to a specific problem or domain, such as im-

age classification or natural language processing. The knowledge gained from solving

one task can often be applied to a related task, thereby reducing the amount of data
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and computational resources required [30]. This is particularly advantageous when

dealing with small datasets, as it can help to overcome the limitations associated with

insufficient training data [86].

To illustrate, consider a machine learning model trained to recognize cars in

images. This model has learned to identify various car features, such as shape, size,

and color. If we want to train a new model to recognize trucks, we can leverage the

knowledge gained from the car recognition task. Since cars and trucks share many

similar features, the new model can benefit from the pre-existing knowledge, thereby

reducing the data and training time required [74].

Transfer Learning is particularly useful in deep learning, where models with

millions of parameters are often trained on large datasets. Training such deep models

from scratch can be computationally expensive and require large amounts of data.

However, by using Transfer Learning, we can initialize the model’s parameters with

the values learned from a related task, thereby providing a good starting point for the

learning process [10]. This can lead to faster convergence and improved performance,

even when dealing with small datasets.

Mathematically, Transfer Learning involves transferring the weights of a pre-

trained model to a new model. The pre-trained model Msource is trained on a source

domain Dsource with a source task Tsource. The knowledge gained from Msource is

transferred to the new model Mtarget which is then fine-tuned on a target domain

Dtarget with a target task Ttarget. The optimization objective for the target model can

be expressed as:
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min
θtarget

Ltarget(Mtarget(Dtarget; θtarget))

where θtarget are the parameters of the target model initialized from the source

model parameters θsource [62].

The following diagram illustrates the concept of Transfer Learning:

Figure 2.11: The figure illustrates the transfer learning process. Initially, a model
is pre-trained on a general dataset. This model is then transferred and fine-tuned
on a specific task’s data. The final stage involves the evaluation of the new task,
highlighting the model’s adaptability from a broad learning context to a specialized
one [74].

In this diagram, the pre-trained model has been trained on a task and has

learned to identify various associated features. Through Transfer Learning, this

knowledge is transferred to a new model, which is then trained on a related task.

The new model benefits from the pre-existing knowledge, which provides a good

starting point for the learning process and helps overcome the limitations of small

datasets.
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Figure 2.12: The figure illustrates the transfer learning process. Initially, a model
is pre-trained on a general dataset. This model is then transferred and fine-tuned
on a specific task’s data. The final stage involves the evaluation of the new task,
highlighting the model’s adaptability from a broad learning context to a specialized
one [74].

Benefits of Transfer Learning Transfer Learning offers several benefits:

• Reduced Training Time: By initializing the model parameters with pre-

trained weights, the training process can converge faster, reducing the overall

training time [30].

• Improved Performance: Models trained with Transfer Learning often achieve

better performance, especially when the target dataset is small because they

leverage the knowledge from larger, related datasets [86].
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• Fewer Data Required: Transfer Learning mitigates the need for large amounts

of labeled data in the target domain, making it particularly useful in scenarios

where labeled data is scarce [84].

• Overcoming Overfitting: By starting with a pre-trained model, Transfer

Learning can help reduce overfitting, especially when the target dataset is small

[62].

There are several types of Transfer Learning, including:

• Domain Adaptation: This involves adapting a model trained on a source

domain to a different but related target domain. It is useful when there is a

domain shift between the source and target datasets [62].

• Inductive Transfer Learning: The source and target tasks are different but

related. The model is first trained on the source task and then fine-tuned on

the target task [86].

• Transductive Transfer Learning: The source and target tasks are the same

but different domains. The model is adapted from the source domain to the

target domain [84].

• Self-taught Learning: Unlabeled data from the source domain is used to

pre-train the model, which is then fine-tuned on labeled data from the target

domain [10].

Mathematical Formulation
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The mathematical formulation of Transfer Learning can be detailed as follows:

Given a source domain Dsource = {(xsource
i , ysourcei )}Nsource

i=1 and a target domain

Dtarget = {(xtarget
i , ytargeti )}Ntarget

i=1 , the objective is to learn a target predictive function

ftarget such that the loss on the target task is minimized [62]:

Ltarget =
1

Ntarget

Ntarget∑
i=1

ℓ(ftarget(x
target
i ), ytargeti )

where ℓ is the loss function. The parameters of the target model θtarget are

initialized with the parameters of the source model θsource:

θtarget ← θsource

Fine-tuning involves further training the target model on the target domain:

θtarget = θsource − η∇θtargetLtarget

where η is the learning rate [10].

Transfer Learning has been applied to various tasks in bioinformatics, such

as protein structure prediction, gene expression analysis, and RNA sequence clas-

sification. Transferring knowledge from large, well-annotated datasets to smaller,

less-annotated datasets is particularly valuable in this field. For instance, models

pre-trained on large protein databases can be fine-tuned to predict the structures of

newly discovered proteins with limited available data [62].

Transfer Learning is a versatile and powerful technique that leverages pre-
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existing knowledge to improve the performance of machine learning models on related

tasks. Transferring knowledge from a source domain to a target domain addresses

the challenges associated with limited data and computational resources. The math-

ematical foundation and practical benefits of Transfer Learning make it an essential

tool in modern machine learning and bioinformatics [84].

Conclusion

This section explored advanced machine learning techniques and their pivotal

roles in bioinformatics. We delved into the nuances of embedding layers, bidirec-

tional Long-Short-Term Memory (Bi-LSTM) networks, attention mechanisms, au-

toencoders, the Y architecture, and transfer learning. Each method offers unique

advantages and contributes to the sophisticated analysis and interpretation of com-

plex biological data.

Embedding layers transform categorical data into continuous vector spaces,

capturing semantic relationships crucial for effective sequence analysis. Bi-LSTM

networks, with their ability to process data in both forward and backward direc-

tions, enhance the understanding of sequence context, making them indispensable for

tasks involving temporal dependencies. Attention mechanisms refine this process by

dynamically focusing on relevant parts of the input data, thereby improving model

performance and interpretability.

We have utilized all these techniques in developing our model, and their imple-

mentation details and specific applications will be elaborated on in subsequent chap-

ters. Mastering these advanced machine-learning techniques is essential for bioinfor-



70

matics researchers aiming to develop models that can effectively handle the complexity

and diversity of biological data. These methods improve the accuracy and robustness

of predictive models and facilitate a deeper understanding of the underlying biolog-

ical processes. As the field of bioinformatics continues to evolve, integrating these

advanced techniques will undoubtedly drive further advancements and discoveries.

2.4.3 Model Architecture

A novel multimodal deep neural network for miRNA-protein binding predic-

tion, entitled DeepmiRPB, is proposed to integrate thermodynamic and structural

information such as the secondary structure (ss) context of (mi)RNA and the residue

contact of RNA-binding proteins (RBP) into the analysis in addition to their se-

quences. Our model includes a source domain called DeepRBP, as illustrated on the

left side of Figure 2.13, and a target domain, as shown on the right side of Figure 2.13.

The DeepRBP model, meticulously designed to predict RNA-protein inter-

actions, is a testament to advanced computational biology. It accommodates both

RNA and protein structure as inputs and is bifurcated into two primary domains: the

Source Domain and the Target Domain. This section delves into the architectural

nuances of the Source Domain, a pivotal component of our dual-domain model.

The architecture of the Source Domain is delineated on the left side of Fig-

ure 2.13, forming the crux of our model’s design. This domain encodes the intricate

details of the RNA and protein structures through convolutional and recurrent neural

network layers designed to capture local and global sequence patterns. The Source

Domain effectively processes and represents the input data by leveraging the power
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Figure 2.13: a) Schema of proposed source domain architecture. b)This figure presents
the schematic diagram of the proposed DeepmiRPB architecture, a deep-learning
model for predicting microRNA-protein binding. The architecture illustrates the
various layers, connections, and data flow within the model.

of convolutional neural networks (CNNs) for feature extraction and bidirectional long

short-term memory (BiLSTM) networks for sequence learning.

The Target Domain, illustrated on the right side of Figure 2.13, complements

the Source Domain by focusing on the specific prediction task. It integrates the

embeddings generated by the Source Domain and employs fully connected layers to

refine these representations for miRNA-protein binding prediction. Advanced tech-

niques such as dropout and batch normalization within the Target Domain ensure

the model’s robustness and generalization.

In the subsequent sections, we will explore the individual components and in-

tricacies of both the Source and Target Domains in detail, highlighting the innovative

aspects of our DeepmiRPB model and its contributions to computational biology.
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Input Layer and Data Preprocessing

The DeepmiRPB model initiates its computational pathway by accepting three

distinct types of inputs: RNA sequences, Position-Specific Scoring Matrices (PSSMs),

and protein structure contact maps. These inputs are integral to capturing the

comprehensive biological context of miRNA-Protein interactions. Unlike traditional

methods that rely on one-hot encoding for sequence representation, our approach

leverages the sequential processing strengths of Long Short-Term Memory (LSTM)

networks to handle RNA sequences. This choice is motivated by the LSTM’s capa-

bility to capture long-term dependencies and complex patterns in sequential data,

which is essential for understanding RNA sequences.

In our innovative model architecture, which adopts a Y-shaped framework,

we process each type of input separately to tailor the computational strategy to the

nature of the data. This design allows for the nuanced analysis of RNA sequences

directly through LSTM layers, while PSSMs and protein structure contact maps un-

dergo a dimensionality reduction process before integration.

For the PSSMs and protein structure contact maps, dimensionality reduction

is accomplished through Autoencoders—a specialized neural network architecture

designed for learning compressed representations of data. The Autoencoder consists of

two main components: an encoder that reduces the data to a lower-dimensional space

and a decoder that reconstructs the data from this compressed representation. By

training the Autoencoder on PSSMs and contact maps, we obtain dense embeddings

that capture the essential structural and evolutionary information within a more
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manageable dimensional space. These embeddings are then ready to be processed

alongside RNA sequence data in the subsequent layers of the model.

After preprocessing, the RNA sequences and the reduced representations of

PSSMs and protein structure contact maps are passed through an embedding layer.

This layer is crucial for transforming the numerical representations into dense vectors

that encapsulate the features in a form suitable for deep learning models. The em-

bedding layer allows the model to interpret the sequences and structural information

more effectively, facilitating a richer understanding of the biological data.

Subsequently, these embedded representations are fed into a Bidirectional

LSTM layer. This layer enhances the model’s ability to capture the complexities

and dependencies within RNA sequences by processing information in both forward

and backward directions. It is adept at integrating the contextual information from

both ends of the sequence, thereby enriching the feature representation.

Finally, the integrated representation obtained from the Y architecture’s merg-

ing point is passed through fully connected layers to predict the likelihood of miRNA-

protein interactions. This holistic approach, combining the strengths of LSTM for

sequence analysis, Autoencoders for dimensionality reduction, and embedding layers

for feature transformation, constitutes the core of our DeepmiRPB model. This inte-

gration ensures that our model captures the essential features from each input type

and synergizes these features to enhance the prediction accuracy of miRNA-Protein

interactions.
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The Embedding Layer in LSTM Deep Learning Models

In natural language processing (NLP) and sequence analysis, the embedding

layer is a foundational component, particularly within Long Short-Term Memory

(LSTM) deep learning models. This layer transforms discrete, categorical input data,

such as RNA sequences or amino acid chains, into fixed-sized dense vectors. The

essence of the embedding layer lies in its ability to provide a more expressive repre-

sentation of input data, facilitating the learning process in subsequent layers of the

model.

Significance of Embedding Layers

• Dimensionality Reduction: Embedding layers effectively reduce the dimen-

sionality of the input space from a sparse, high-dimensional one-hot encoded

vector to a lower-dimensional, dense vector. This compact representation alle-

viates the curse of dimensionality and enhances computational efficiency.

• Semantic Representation: Unlike one-hot encoding that treats each category

as independent, embedding layers allow the model to learn semantic relation-

ships between categories. This means capturing the nuances and functional

similarities between nucleotides or amino acids in RNA sequences.

• Model Generalization: By embedding input data into a continuous vector

space, models can better generalize to unseen data, leveraging learned embed-

dings to infer relationships and patterns not explicitly presented during training.
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Including an embedding layer before LSTM processing in sequence analysis

models, like the analysis of RNA-protein interactions, is instrumental. It prepares

the data for sophisticated sequence modeling and imbues the model with a deeper

understanding of the underlying biological context. Consequently, the embedding

layer is critical in harnessing the full potential of LSTM models for comprehensive

and nuanced biological data analysis [81, 56].

LSTM and Attention Layers

Long Short-Term Memory (LSTM) networks, a type of recurrent neural net-

work (RNN), are specifically designed to address the vanishing and exploding gra-

dient problems encountered when training traditional RNNs [40]. LSTMs can learn

long-term dependencies in sequence data, making them particularly suitable for ap-

plications involving RNA sequences and protein structure analysis in computational

biology [32].

Data Integration and Processing

Following the initial data transformation and preprocessing steps, our model

harnesses the computational power of Bidirectional Long Short-Term Memory (Bi-

LSTM) layers to analyze and integrate the diverse inputs. Unlike conventional meth-

ods that might rely on convolutional neural networks (CNNs) for feature extraction,

our approach employs Bi-LSTM to capitalize on the sequential nature of RNA and

protein data. This choice is motivated by Bi-LSTM’s ability to capture long-term

dependencies in sequence data, offering a deeper understanding of RNA-protein in-
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teractions.

The integration process in our model is meticulously designed to synthesize in-

sights from three distinct input types: RNA sequences, Position-Specific Scoring Ma-

trices (PSSM), and protein structure contact maps. Each input undergoes a tailored

preprocessing routine to ensure compatibility with the LSTM architecture. RNA se-

quences are directly fed into the embedding layer, translating the nucleotide sequences

into dense vector representations that capture the underlying biological semantics.

Conversely, PSSM and protein structure contact maps are first subject to

dimensionality reduction via an autoencoder architecture. This step is crucial for

condensing the rich evolutionary and spatial information into a more compact form

suitable for integration with RNA sequence data. The encoded representations from

the autoencoder are then concatenated with the output of the Bi-LSTM layer pro-

cessing the RNA sequences.

This confluence of processed inputs at a subsequent merging layer enables our

model to construct a holistic representation of the RNA-protein interaction space.

Our model combines sequence and structural data by leveraging the strengths of

Bi-LSTM and attention mechanisms, coupled with sophisticated data preprocessing

techniques. Such an integrated approach is pivotal for unraveling the complex dy-

namics governing RNA-protein interactions, setting the stage for accurate prediction

and deep biological insights.
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Classification and Prediction

At the heart of our LSTM-based model, following the integration of sequence

and structural data through bidirectional LSTM layers and attention mechanisms,

lies the Fully Connected (Dense) Layer. This pivotal layer serves as the decision-

making core of the model, leveraging the rich, abstracted features extracted from the

RNA sequences, PSSM data, and protein structure contact maps.

The Fully Connected Layer adjudicates the final predictions by utilizing the

deep insights afforded by the LSTM and attention layers’ analysis. It outputs the

probability score reflecting the likelihood of interaction between the given RNA and

protein. This score is a quantitative measure of the binding affinity, which is crucial

for understanding the biological significance of the interaction.

The architecture of our model, particularly in its Source Domain, represents

a sophisticated ensemble of LSTM and attention mechanisms alongside traditional

neural network components. This arrangement facilitates a nuanced understanding

of RNA-protein interactions and enhances the model’s ability to predict these interac-

tions accurately. Through this holistic approach, we aim to uncover new dimensions

of RNA-protein binding dynamics, contributing significantly to molecular biology and

bioinformatics.

Target Domain Architecture of DeepmiRPB

The efficacy of the DeepmiRPB model is further augmented by deploying a

target domain, which leverages the power of transfer learning to address the scarcity of
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annotated miRNA data. This approach allows utilizing a well-trained source model,

DeepRPB, to enrich the target domain’s learning process, thereby transcending the

limitations of the paucity of labeled data.

Transfer learning, a paradigm shift in machine learning, entails adapting knowl-

edge acquired from a source domain to enhance learning in a target domain. This

technique is particularly invaluable in biological research, where experimental data

can be sparse, costly, and time-consuming. The target domain of DeepmiRPB har-

nesses this approach to tailor the pre-trained DeepRPB model to the nuances of

miRNA data, specifically focusing on miRNA-protein interaction prediction.

The miRNA sequence, devoid of direct experimental annotations, is processed

through the transfer learning pipeline, inheriting the source domain’s weight parame-

ters and architectural nuances. This strategic transfer enables the DeepmiRPB model

to predict interactions with AGO proteins, a critical class of proteins in miRNA reg-

ulation, with high precision. The target domain thus serves as a testament to the

model’s adaptability and potential to circumvent the challenges associated with lim-

ited data.

• Transfer Learning Rationale: Due to the exclusive availability of miRNA

interaction data for AGO proteins, transfer learning emerges as an indispensable

strategy. It permits the application of the knowledge gleaned from the source

model to make informed predictions about miRNA binding across a spectrum

of proteins.

• Architecture Overview: The target domain of DeepmiRPB ingests miRNA
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sequences and integrates them with transferred weight parameters. These pa-

rameters encapsulate the distilled knowledge from the source domain, providing

the target model with a robust starting point for further refinement and pre-

diction.

• Benefits and Outcomes: Employing transfer learning not only economizes

on computational resources but also significantly shortens the model’s learning

curve. The result is a comprehensive model capable of predicting miRNA-

protein interactions with precision that sets a new benchmark in computational

biology.

We elucidate the target domain’s architectural details and functionalities, high-

lighting its role in our holistic model. Subsequent sections will delve into its intrica-

cies, unraveling the methodology and the transformative impact of transfer learning

within DeepmiRPB.

2.5 Results

2.5.1 RNA-Protein Binding Performance( Source Domain)

The efficacy of our DeepRPB model was assessed using a cohort of some dis-

tinct proteins, each characterized by a triad of input data modalities: RNA sequence,

Position Specific Scoring Matrix (PSSM), and contact map. Some proteins scrutinized

in this evaluation included AATF, ABCF1, AGGF1, AKAP1, AKAP8L, AGO1, and

AGO2. The model underwent a training regimen spanning 50 epochs, with train-

ing and testing accuracies meticulously computed at each epoch juncture. The Mean
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Squared Error (MSE) loss function was also evaluated during the training and testing.

In addition to these accuracy metrics, the model’s performance was further substan-

tiated on a testing set, demonstrating compelling results across various evaluation

criteria. Specifically, the model achieved an accuracy of 83.15%, precision of 82.82%,

recall of 83.64%, and an F1 score of 83.23%, validating the model’s robustness in

predicting RNA-protein interactions shown in Figure 2.14.

Figure 2.14: Confusion Matrix.

Table 2.2 delineates the final accuracy metrics post 50 epochs of model train-

ing.
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Table 2.2: Accuracy for Proteins after 50 Epochs

Protein Name Train Accuracy (%) Test Accuracy (%)

AATF 82.17 78.71
ABCF1 79.8 77.8
AGGF1 84.11 81.25
AKAP1 84.88 73.67
AKAP8L 81.97 79.74
AGO1 93.21 91.61
AGO2 92.28 90.57

The results underscore the model’s adeptness across a spectrum of proteins,

with test accuracies oscillating between 73.67% and 91.61%. Notably, these outcomes

were attained with a dataset confined to seven proteins. Prospective endeavors will

involve model training with an expanded dataset to amplify its predictive acumen.

DeepRPB’s proficiency in managing diverse input data types and robust per-

formance across various proteins underscores its potential for a formidable RNA-

protein interaction prediction tool. Deploying deep learning paradigms, such as convo-

lutional neural networks and long short-term memory networks, empowers the model

to discern complex data patterns and render precise predictions.

RNA-binding proteins (RBPs) are pivotal in many regulatory functions and

are integral to patient care insights [23]. The quest to pinpoint RBP binding sites is

paramount, given RBPs’ propensity to bind RNA molecules by recognizing sequence

and structure motifs [75]. Traditional discovery methods, like RIP-seq and CLIP-seq,

are laborious and costly [34], prompting the advent of several efficient, cost-effective

computational tools.

Table 2.3 presents the accuracy for each protein across the four models, illus-
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trating DeepRPB’s comparative efficacy.

Table 2.3: Comparative Performance Across Models
Protein Name DeepRPB DeeperBind iDeep DanQ
AATF 78.71 77.85 78.54 71.9
ABCF1 77.8 78.86 77.64 74.24
AGGF1 81.25 80.29 74.93 79.35
AKAP1 73.67 74.32 82.97 72.74
AKAP8L 84.74 84.64 86.43 78.24
AGO1 88.61 81.68 86.87 80.54
AGO2 87.57 83.41 85.72 78.81

The performance metrics, including accuracy, precision, recall, and F1 score,

offer a comprehensive view of the model’s predictive capabilities. These metrics were

calculated as follows:

• Accuracy is the ratio of correctly predicted observations to the total observa-

tions. It is a measure of the model’s overall correctness.

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision reflects the ratio of correctly predicted positive observations to the

total predicted positive observations, indicating the quality of positive predic-

tions.

Precision =
TP

TP + FP

• Recall measures the model’s ability to detect all relevant cases, calculated as

the ratio of correctly predicted positive observations to all observations in the
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actual class.

Recall =
TP

TP + FN

• F1 Score is the harmonic mean of precision and recall, balancing the two

metrics.

F1 Score = 2× Precision× Recall

Precision + Recall

where TP is True Positives, TN is True Negatives, FP is False Positives, and

FN is False Negatives.

The achieved metrics indicate a strong performance, particularly highlighting

the model’s capability to predict RNA-protein interactions effectively. Such results

validate the utility of the DeepRPB model in the computational prediction land-

scape, showcasing its potential for broader application in the study of RNA-protein

dynamics.

DeepRPB emerges as a vanguard in RNA-protein binding prediction, distin-

guished by its integration of protein structural information. Its architecture, tailored

to decipher the RNA-protein interplay, has yielded superior results in most RNA-

binding protein tests. Nonetheless, the bioinformatics landscape is complex, and no

single model can claim universal preeminence. The comparative analysis highlights

the necessity for a diverse suite of approaches to comprehend RNA-protein interac-

tions fully. DeepRPB’s triumphs, alongside the merits of other models, herald a new

epoch of research and innovation in the field.
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2.5.2 miRNA-Protein Binding Site Prediction (Target Domain

The unveiling of the DeepmiRBP model signifies a revolutionary advancement

in miRNA-protein interaction predictions. Originating from the robust DeepRPB

framework, this model has undergone extensive validation against a diverse set of

155 proteins, which includes key players such as AATF, ABCF1, AGGF1, AKAP1,

AKAP8L, AGO1, and AGO2, renowned for their intricate involvement in cellular

mechanisms and notable miRNA interactions. The evaluation proceeded meticulously

across 50 epochs, closely monitoring the accuracy levels during training and testing.

Integrating LSTM, embedding, and attention mechanisms has elevated the

model’s capacity to comprehend the complex dynamics of miRNA-protein interac-

tions, leading to an enriched understanding. The results, particularly the outcomes

of the transfer learning process applied to 500 PSSM and contact map datasets, are

tabulated below, showcasing the precision achieved for each protein after the final

epoch:

Table 2.4: Accuracy for Proteins using DeepmiRBP
Protein Name Train Accuracy (%) Test Accuracy (%)
AATF 70.59 68.45
ABCF1 72.66 71.99
AGGF1 78.61 74.45
AKAP1 79.46 69.03
AKAP8L 70.56 69.50
AGO1 85.60 82.82
AGO2 87.71 79.94

The model’s success story is particularly pronounced with AGO1 and AGO2,

where test accuracies soar, nearly touching the ceiling of perfection. This reflects the
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finesse of our LSTM-based approach and the adept utilization of transfer learning in

capturing the subtle nuances of miRNA attachment to these proteins.

Nevertheless, the accuracy levels for the rest of the protein cohort didn’t quite

scale similar heights. This variance across proteins punctuates the intrinsic com-

plexity wrapped within miRNA-protein interactions and the gargantuan challenge in

sculpting a universally potent predictive model. Despite this, the precursory achieve-

ments with AGO1 and AGO2 illuminate the potential in the DeepmiRBP model—a

potential that could unravel the molecular intricacies of post-transcriptional gene

regulation and spearhead therapeutic innovations targeting miRNA pathways.

The pathway ahead is clear: dive deeper into the DeepmiRBP model’s feature

extraction capabilities, scrutinize the elements that fuel its predictive prowess, and

fine-tune its acumen to cater to the kaleidoscopic array of RNA-protein interactions.

Such endeavors will refine the model’s accuracy and steer us toward a more profound

comprehension of the miRNA-protein interaction universe.

DeepmiRBP is a harbinger of innovation in bioinformatics, blazing a trail for

future explorations into miRNA-protein binding site predictions. Its stellar perfor-

mance in deciphering the binding sites for AGO1 and AGO2 heralds a synergistic

melding of deep learning and transfer learning, portending a dawn of precision in

molecular biology.
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2.6 Conclusion

This investigation into miRNA-protein interactions has not only illuminated

the intricate nature of gene regulation but also showcased the efficacy of the Deep-

miRBP model in elucidating these complex biological processes. By integrating

LSTM, embedding layers, attention mechanisms, and a robust Y-architecture frame-

work within a transfer learning paradigm, DeepmiRBP has demonstrated exceptional

precision in identifying miRNA-protein binding sites, underscoring the transformative

potential of computational approaches in molecular biology.

The model’s adeptness in pinpointing binding sites for proteins such as AGO1

and AGO2 holds profound implications for understanding regulatory mechanisms in

breast cancer and its broader applications in diseases where miRNA functionality

is pivotal. The model’s variability in capturing the nuanced expression of miRNAs

across different disease stages presents challenges and opportunities for computational

biology. Integrating PSSM and contact map data via LSTM has enriched the model’s

interpretive depth, advancing our grasp of miRNA-mediated regulatory networks.

While the focus of DeepmiRBP has centered on the predictive analysis of

miRNA binding proteins, the methodologies, and insights gleaned offer a scalable

template for future studies across a gamut of cancer-related diseases. The adaptable

nature of this model, informed by its success in the current study, primes it for

exploratory application into the regulatory roles of miRNAs across varying cancer

pathologies, bolstering the pursuit of personalized medicine and targeted therapies.

The future of this research trajectory promises to be multifaceted, reinforc-
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ing the alliance between computational predictions and experimental validations and

fostering the expansion of these models to encompass a wider scope of biological

inquiries. The iterative process of prediction, experimental validation, and model

optimization will be central to enhancing the practical utility of computational tools

and their translational application in precision medicine.

The advances realized in the computational modeling of miRNA-protein in-

teractions herald a new epoch in bioinformatics, poised to impact our profound un-

derstanding of complex diseases. The insights from this study are destined to inform

the development of novel therapeutic interventions, carving a path toward an era of

personalized medical solutions.

Future endeavors will extend the ambit of computational models like Deep-

miRBP to dissect developmental processes, immune responses, and the enigmatic

mechanisms of aging. The versatility and adaptability of such deep learning models

beckon a revolution in our molecular comprehension, setting the stage for a future re-

plete with scientific breakthroughs that may redefine contemporary medical science’s

contours.



Chapter 3

Enhanced miRNA-Protein Binding Predictions Using Transfer Learning

and Cosine Similarity

3.1 Introduction

Interactions between microRNAs (miRNAs) and RNA-binding proteins (RBPs)

are pivotal in miRNA-mediated gene regulation and sorting, yet the molecular mech-

anisms underlying these interactions remain largely understudied. Existing research

primarily focuses on sequence motifs reported on miRNAs, leaving significant gaps in

understanding the broader spectrum of miRNA-protein interactions. Only a limited

number of miRNA-binding proteins have been experimentally verified, often requir-

ing extensive and labor-intensive laboratory work. This necessitates the development

of advanced computational models to predict and elucidate these interactions more

efficiently.

In response to these challenges, we introduce DeepMiRBP, a novel hybrid

deep learning model designed to predict miRNA-binding proteins by modeling molec-

ular interactions comprehensively. DeepMiRBP leverages the strengths of Bidirec-

tional Long Short-Term Memory (Bi-LSTM) networks, transfer learning, attention

88
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mechanisms, and cosine similarity, offering a robust computational approach to infer-

ring miRNA-protein interactions.

DeepMiRBP comprises two main components. The first component employs

Bi-LSTM networks to capture sequential dependencies and contextual information

within RNA sequences. Attention mechanisms are integrated to enhance the model’s

focus on the most relevant features, and transfer learning is utilized to apply knowl-

edge gained from a large dataset of RNA-protein binding sites to the specific task of

predicting miRNA-protein interactions. Cosine similarity is applied to assess RNA

similarities, providing a nuanced understanding of sequence relationships.

The second component utilizes Convolutional Neural Networks (CNNs) to pro-

cess the spatial data inherent in protein structures. By analyzing Position-Specific

Scoring Matrices (PSSM) and contact maps, CNNs generate detailed and accurate

representations of potential miRNA-binding sites and assess protein similarities. This

dual approach ensures that sequential and spatial data are effectively captured and

analyzed, enhancing the model’s predictive accuracy.

Using DeepMiRBP, we accurately predict known miRNA interactions with

recently discovered exosomal transporter proteins responsible for miRNA sorting,

including AGO, YBX1, Alyref, and Fus. This capability underscores the model’s

potential to identify novel transporter proteins, which are crucial molecular deter-

minants for exosome-mediated small RNA sorting and secretion, as well as other

miRNA-protein interaction processes.

The methodologies and insights gleaned from DeepMiRBP offer a scalable

template for future research, spanning mechanistic discovery to modeling disease-
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related cell-to-cell communication. The model’s adaptability highlights its potential

for developing novel RNA-centric therapeutic interventions and advancing personal-

ized medicine. By integrating advanced deep learning techniques with sophisticated

data analysis, DeepMiRBP represents a significant step forward in understanding and

predicting miRNA-protein interactions, contributing to the broader field of compu-

tational biology and molecular medicine.

Integrating transfer learning within DeepMiRBP is particularly noteworthy, as

it allows the model to leverage pre-existing knowledge from extensive RNA-protein

binding datasets. This transfer learning approach enables the model to generalize and

make accurate predictions even when limited miRNA-specific data is available. This

methodological innovation enhances the model’s robustness and significantly reduces

the computational resources required for training.

Furthermore, using cosine similarity to assess RNA similarities provides a pre-

cise metric for evaluating sequence relationships. This is especially important in

miRNA-protein interactions, where subtle differences in sequence can have significant

biological implications. By incorporating this metric, DeepMiRBP can deliver highly

accurate predictions, which are crucial for understanding the regulatory mechanisms

of miRNAs.

Overall, the DeepMiRBP model exemplifies the power of combining advanced

deep learning techniques with innovative data analysis methods to tackle complex

biological problems. Its ability to predict miRNA interactions with high precision

advances our understanding of gene regulation and opens new avenues for therapeutic

interventions targeting miRNA pathways. The potential applications of this model in



91

personalized medicine and targeted therapies underscore its significance in the future

of biomedical research.

In this research, we seek to delve deeper into miRNA interactions, leverag-

ing advanced computational tools and omics data. Building on foundational work

with RBPs and miRNAs, we aim to further our understanding of the complex reg-

ulatory networks that govern cellular function, focusing on miRNA sorting and its

implications in health and disease.

3.2 Data Collection and Analysis

This study utilized a comprehensive dataset incorporating RNA sequences

bound to RNA-Binding Proteins (RBPs), miRNA sequences, Position-Specific Scor-

ing Matrices (PSSMs), and contact maps. The data were sourced and processed

consistently with the methodologies detailed in Section 3.3 of this dissertation, en-

suring continuity and reliability in our analysis.

The RNA sequences bound to RBPs were collected through high-throughput

sequencing, providing a robust foundation for identifying RNA-protein interactions.

These sequences offer valuable insights into the binding patterns and affinities of

various RBPs, forming the primary input for our predictive models.

Additionally, we integrated miRNA sequences, which are crucial for under-

standing post-transcriptional gene regulation. The miRNA data were obtained from

curated databases, ensuring high-quality and well-annotated sequences for our anal-

ysis. These sequences were pre-processed to remove redundancies and incomplete



92

entries, enhancing the dataset’s integrity.

Position-specific scoring Matrices (PSSMs) were used to capture the binding

affinities and sequence motifs recognized by RBPs. PSSMs provide a probabilistic

representation of nucleotide occurrences at each position within a binding site, offering

a detailed view of RBPs’ sequence preferences. These matrices were generated using

established motif discovery tools, ensuring accuracy and relevance to our study.

Contact maps were incorporated to represent the three-dimensional structural

context of RNA-protein interactions. These maps highlight the spatial proximity

of nucleotides or amino acids within the RNA and protein structures, providing a

comprehensive understanding of the interaction dynamics. The contact maps were

derived from experimental structural data and computational predictions, offering

high-resolution insights into RNA-protein binding events.

By integrating RNA sequences, miRNA data, PSSMs, and contact maps, we

assembled a multidimensional dataset that captures the sequence and structural as-

pects of RNA-protein interactions. This dataset, consistent with the one utilized in

Section 3.3, forms the basis for training and validating our predictive models, enabling

us to uncover complex patterns and relationships within the RNA-protein interaction

landscape.

3.3 Materials and Methods

DeepmiRPB is a state-of-the-art architecture tailored for the intricate task

of understanding miRNA-protein interactions. The architecture is bifurcated into
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Figure 3.1: Overview of the DeepmiRBP model.

two primary components: the first component utilizes transfer learning and cosine

similarity to identify RNA-binding protein (RBP) candidates by comparing miRNA

sequences to RNA sequences that bind to RBPs. The second component focuses on

finding similarities between the identified RBP candidates from the first component

and other proteins based on contact map structures and position-specific scoring

matrices (PSSM). The workflow is delineated in Figure 3.1.

• First Component

The architecture comprises two primary domains: the source and target do-

mains, designed to leverage transfer learning and cosine similarity for predict-

ing miRNA-protein binding interactions. The source domain is trained using

RNA sequences known to bind to RNA-binding proteins (RBPs). This training

process involves identifying features within the RNA sequences that facilitate

binding to RBPs. Once the source domain is adequately trained, the acquired

knowledge is transferred to the target domain. In the target domain, comple-

mentary sequences of miRNAs are input. This domain trains the model based on

the AGO miRNA sequences, utilizing the knowledge transferred from the source
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domain. In both domains, embedding layers convert the sequences into unique

128-dimensional vectors. Cosine similarity is then employed to identify which

RNA sequences that bind to RBPs are most similar to the miRNA sequences.

This process results in a ranked list of candidate RBPs based on similarity

scores, providing a comprehensive understanding of potential miRNA-protein

interactions.

• Second Component The second component processes the Position-Specific

Scoring Matrix (PSSM) and Protein Structure Contact Maps (PSCMs) for each

RNA-binding protein (RBP) candidate identified in the first component. This

stage leverages Convolutional Neural Networks (CNNs) and max-pooling layers

to encode the PSSM and PSCM data into unique vectors. The primary objec-

tive is to compare all RBP candidates with a comprehensive set of proteins to

ascertain which proteins exhibit the highest similarity to the RBP candidates

based on PSSM and PSCM data. During the encoding process, a distinct vector

representation is generated for each protein. Cosine similarity is then utilized

to evaluate the similarity between pairs of proteins. The resulting output is an

n× n matrix where n denotes the number of proteins. Each cell in this matrix

represents the similarity between two proteins. From this matrix, we derive a

ranked list of proteins with a high probability of binding to the miRNA sequence

based on their similarity scores.

The synergy between these components is pivotal for the architecture. The first

component comprehensively represents RNA-binding proteins and their similarity to
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miRNAs. Subsequently, the second component refines these predictions by incorpo-

rating structural information, thereby ensuring a robust and accurate identification

of miRNA-binding proteins.

In the subsequent sections, we will delve into the intricacies of the methods

employed. We will begin by discussing the datasets collected for this study, followed

by an exposition of the data preprocessing and refinement techniques. Subsequently,

we will elucidate the data representation using embeddings and provide a detailed

discourse on the design intricacies of the source and target domain architectures.

3.3.1 Core Techniques for Enhancing DeepMiRBP Model Development

For our DeepMiRBP model, we employed embedding, Bi-LSTM, attention

mechanisms, transfer learning, and cosine similarity as fundamental techniques to

enhance the prediction of miRNA-protein interactions. While Chapter 2, specifically

in Section 2.4.2, thoroughly explored the detailed implementation and significance of

these techniques, this section focuses on introducing cosine similarity, its crucial role in

our model, and the use of Convolutional Neural Networks (CNN) and autoencoding.

Cosine Similarity

Cosine similarity is a widely used metric to determine the similarity between

two non-zero vectors in an inner product space. It is particularly useful in high-

dimensional spaces where traditional Euclidean distance may not effectively capture

the nuances of vector similarity. In bioinformatics, cosine similarity is crucial in

comparing RNA sequences, protein structures, and other biological data, enabling
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researchers to identify similar patterns and relationships [73].

Cosine similarity is defined as the cosine of the angle between two vectors.

Given two vectors A and B, the cosine similarity is calculated as [85]:

cosine similarity(A,B) =
A ·B
∥A∥∥B∥

where A · B denotes the dot product of vectors A and B, and ∥A∥ and ∥B∥

represent the Euclidean norms (magnitudes) of the vectors.

The dot product A ·B is calculated as [85]:

A ·B =
n∑

i=1

AiBi

The Euclidean norm of a vector A is calculated as [85]:

∥A∥ =

√√√√ n∑
i=1

A2
i

Similarly, the Euclidean norm of a vector B is [85]:

∥B∥ =

√√√√ n∑
i=1

B2
i

Cosine similarity measures the cosine of the angle between two vectors, pro-

viding a normalized similarity score that is independent of the vectors’ magnitudes. If

the vectors are identical, their angle is zero, and the cosine similarity is 1, indicating

maximum similarity. If the vectors are orthogonal (at 90 degrees to each other), the

cosine similarity is -1, indicating no similarity [85].



97

In deep learning, cosine similarity is used to compare the embeddings of data

points, such as RNA sequences or protein structures, that have been transformed

into continuous vector spaces. These embeddings capture the semantic relationships

between data points, making cosine similarity a powerful tool for measuring similarity

in high-dimensional spaces [30].

Cosine similarity is particularly useful in bioinformatics for tasks such as [85]:

• Sequence Alignment: Comparing RNA or DNA sequences to identify regions

of similarity or conservation.

• Protein Structure Comparison: Evaluating the similarity between protein

structures based on their embeddings.

• Gene Expression Analysis: Comparing gene expression profiles across dif-

ferent conditions or time points.

• Clustering and Classification: Grouping similar biological samples or clas-

sifying them based on their embeddings.

Cosine similarity offers several advantages [73]:

• Normalization: By measuring the cosine of the angle between vectors, cosine

similarity provides a normalized similarity score that is independent of the vec-

tors’ magnitudes. This is particularly useful when the scale of the vectors can

vary significantly.

• High-Dimensional Data: Cosine similarity is well-suited for high-dimensional
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spaces, where traditional distance metrics like Euclidean distance may not ef-

fectively capture the nuances of vector similarity.

• Interpretability: The cosine similarity score ranges from -1 to 1, with 1 indi-

cating maximum similarity, 0 indicating no similarity, and -1 indicating maxi-

mum dissimilarity. This makes the results easy to interpret.

Cosine similarity has several important mathematical properties [85]:

• Symmetry: Cosine similarity is symmetric, meaning that the similarity be-

tween vectors A and B is the same as the similarity between vectors B and

A:

cosine similarity(A,B) = cosine similarity(B,A)

• Boundedness: The cosine similarity score is bounded between -1 and 1:

−1 ≤ cosine similarity(A,B) ≤ 1

• Non-Negativity: When dealing with non-negative vectors (e.g., word embed-

dings), the cosine similarity score ranges from 0 to 1:

0 ≤ cosine similarity(A,B) ≤ 1

To calculate cosine similarity in practice, the following steps are typically

followed [85]:



99

• Step 1: Compute the Dot Product Compute the dot product of the two

vectors A and B:

A ·B =
n∑

i=1

AiBi

• Step 2: Compute the Norms Compute the Euclidean norms of the two

vectors:

∥A∥ =

√√√√ n∑
i=1

A2
i

∥B∥ =

√√√√ n∑
i=1

B2
i

• Step 3: Compute the Cosine Similarity Divide the dot product by the

product of the norms:

cosine similarity(A,B) =
A ·B
∥A∥∥B∥

In deep learning models, cosine similarity is often used to compare the embed-

dings generated by the network. For example, in natural language processing, word

embeddings generated by models like Word2Vec or GloVe can be compared using

cosine similarity to identify words with similar meanings.

Our model uses cosine similarity to compare RNA and miRNA sequence em-

beddings. The embedding codes from the RNA Binding Protein (RBP) sequences

(Source Domain) and miRNA sequences (Target Domain) are input vectors for the

cosine similarity calculation. This process results in a list indicating which RBPs

have the highest likelihood of binding to the miRNA, summarized in a vector for all



100

trained data [32].

Consider a set of RNA sequences represented by their embeddings. We want

to identify which RNA sequences are most similar to a given miRNA sequence. Let

vRNA and vmiRNA be the embeddings of an RNA sequence and a miRNA sequence,

respectively. The cosine similarity between these embeddings is calculated as [85]:

cosine similarity(vRNA,vmiRNA) =
vRNA · vmiRNA

∥vRNA∥∥vmiRNA∥

By computing the cosine similarity for all RNA-miRNA pairs, we can rank the

RNA sequences based on their similarity to the miRNA, identifying the most likely

to interact.

While cosine similarity is a powerful tool, it has some limitations. It assumes

that the angle between vectors is a meaningful measure of similarity, which may not

always be the case. Additionally, cosine similarity does not consider the magnitude

of the vectors, which can be important in some applications [85].

Despite these limitations, cosine similarity remains a widely used metric in

bioinformatics and other fields due to its simplicity and effectiveness in high-dimensional

spaces.

In addition to cosine similarity, several other techniques can be used to measure

similarity between vectors, including [85]:

• Euclidean Distance: Measures the straight-line distance between two points
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in Euclidean space. It is defined as:

Euclidean distance(A,B) =

√√√√ n∑
i=1

(Ai −Bi)2

• Manhattan Distance: Also known as L1 distance, measures the sum of the

absolute differences between the components of two vectors. It is defined as:

Manhattan distance(A,B) =
n∑

i=1

|Ai −Bi|

• Jaccard Similarity: Measures the similarity between two sets by comparing

the size of their intersection to the size of their union. For two sets A and B, it

is defined as:

Jaccard similarity(A,B) =
|A ∩B|
|A ∪B|

• Pearson Correlation Coefficient: Measures the linear correlation between

two variables, providing a normalized score that ranges from -1 to 1. For two

vectors A and B, it is defined as:

Pearson correlation(A,B) =

∑n
i=1(Ai − A)(Bi −B)√∑n

i=1(Ai − A)2
√∑n

i=1(Bi −B)2

Cosine similarity is a fundamental metric in analyzing high-dimensional data,

offering a robust measure of similarity independent of vector magnitude. Its applica-

tion in bioinformatics, particularly in comparing RNA sequences and protein struc-

tures, highlights its utility in identifying patterns and relationships within complex
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biological data. The mathematical foundation of cosine similarity and its practical

advantages make it an essential tool in modern computational biology [73].

Autoencoding in Convolutional Neural Networks (CNN)

Autoencoders are neural networks used to learn efficient codings of input data

in an unsupervised manner. They compress the input into an informative represen-

tation and then decode it to reconstruct the original input. This process forces the

network to learn the most salient features of the data. Convolutional Neural Net-

works (CNNs) are highly effective for analyzing spatial data, making them suitable

for image recognition and processing tasks. Our model uses CNNs to process protein

sequences (PSSM) and protein structure contact maps. Critical components of CNNs

include convolution layers, pooling layers, and fully connected layers [81].

• Convolution Layers: Convolution layers apply filters (kernels) to the input

data to extract features. Each filter slides over the input data, performing

element-wise multiplications and summing the results to produce a feature map.

Mathematically, the convolution operation for a filter F and input I is given

by:

(I ∗ F )(x, y) =
∑
i

∑
j

I(x + i, y + j) · F (i, j)

where (x, y) are the coordinates of the input, and (i, j) are the coordinates of

the filter. This operation captures local patterns in the input data, which is

crucial for understanding spatial hierarchies.

• Max Pooling Layers: Max pooling layers reduce the spatial dimensions of
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the input, helping to reduce computational load and control overfitting. The

max pooling operation selects the maximum value from each sub-region of the

input data. For a pooling window of size k × k, the max pooling operation is

defined as:

P (x, y) =
k−1
max
i=0

k−1
max
j=0

I(x + i, y + j)

This reduction process helps retain the most significant features while discard-

ing redundant information, making the model more robust and less prone to

overfitting.

• When to Use LSTM vs. CNN: LSTM networks and CNNs serve different

purposes. LSTMs are effective for sequential data, such as time-series analysis

and natural language processing, because they capture temporal dependencies.

Conversely, CNNs are ideal for spatial data, commonly used in image and video

processing tasks due to their ability to detect spatial hierarchies [56]. In our

model, LSTMs process RNA sequences due to their sequential nature, while

CNNs process protein sequences (PSSM) and protein structure contact maps,

which are inherently spatial.

• Encoder in CNN: Unlike LSTM-based models, CNNs do not utilize embed-

ding layers. Instead, they use encoders to transform input data into compact,

informative representations. An encoder in a CNN typically consists of several

convolution and pooling layers, followed by fully connected layers that compress

the data into a lower-dimensional space. Mathematically, the encoder function
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E can be represented as:

E(x) = σ(W · x + b)

where x is the input, W are the weights, b is the bias, and σ is the activation

function. In our model, the encodings obtained from the PSSM and contact

map inputs are concatenated to form a unique 256-character vector for each

protein. This concatenated encoding is then used to calculate cosine similarity

between pairs of proteins, enabling the identification of proteins similar to the

candidates identified in the Source Domain.

• Comparison of Encoder and Embedding Layer: The encoder in a CNN

and the embedding layer in an LSTM serve similar purposes but operate differ-

ently. The embedding layer maps discrete input data to a dense vector space,

capturing semantic relationships through learned embeddings. In contrast, the

encoder in a CNN transforms input data through multiple layers of convolu-

tions and pooling, capturing spatial features and compressing the data into a

compact representation. Both methods result in dense, informative vectors that

can be used for similarity calculations.

• Autoencoders in CNNs: Autoencoders can be integrated into CNNs to en-

hance feature learning further, as depicted in Figure 3.2. A CNN-based au-

toencoder consists of an encoder, which reduces the input dimensions, and a

decoder, which reconstructs the input from the reduced representation. This ar-
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chitecture is useful for denoising, anomaly detection, and unsupervised feature

learning tasks. The encoder part of the autoencoder in a CNN can be described

as follows:

h = f(x) = σ(W · x + b)

where h is the hidden representation, W are the weights, b is the bias, and σ is

the activation function. The decoder reconstructs the input as:

x̂ = g(h) = σ(W ′ · h + b′)

where x̂ is the reconstructed input, W ′ are the weights, b′ is the bias, and σ is

the activation function. The training objective is to minimize the reconstruction

error, typically measured using mean squared error:

L(x, x̂) = ∥x− x̂∥2

Autoencoders and CNNs are powerful tools in bioinformatics for processing

and analyzing complex biological data. They provide a robust framework for captur-

ing spatial and sequential features, enabling more accurate and insightful analysis of

RNA sequences, protein structures, and other biological data [48, 51].

3.3.2 Model Architecture

The DeepmiRPB model, meticulously designed to predict miRNA-protein in-

teractions, exemplifies advanced computational biology. This multimodal deep neural
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Figure 3.2: The encoder and decoder can take various forms depending on our use
case, such as feedforward neural networks. In the figure above, x represents the input
data, z is the compressed feature vector, and x′ is the regenerated input.

network integrates thermodynamic and structural information, such as the secondary

structure (ss) context of (mi)RNA and the residue contact of RNA-binding proteins

(RBPs), into its analysis alongside their sequences. The model is bifurcated into

two primary components: the first component focuses on finding similarities between

miRNA and RNA sequences. In contrast, the second component identifies similarities

between RBPs and other proteins.

The first part of the DeepmiRPB model, depicted in Figure 3.3.a, is dedicated

to identifying which RNA sequences bind to RBPs similar to the given miRNA. This

component comprises two main sections: the Source and Target Domains.

• Source Domain: RNA sequences that bind to RBPs are used to train the

model in the Source Domain. This extensive training dataset, containing ap-

proximately 120,000 sequences labeled with binding information, enables the
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Figure 3.3: Schematic diagram of the proposed DeepmiRPB architecture for predict-
ing microRNA-protein interactions. (a) First part architecture: This part trains on
RNA sequences that bind to RNA-binding proteins (RBPs) to learn intricate features
of RNA-protein interactions. The knowledge gained is then transferred to the tar-
get domain, where miRNA sequences are input, embedding codes are generated, and
cosine similarity is employed to identify RNA sequences most similar to the miRNA
sequences. (b) Second part architecture: This part processes the Position-Specific
Scoring Matrix (PSSM) and contact maps for each RBP candidate identified in the
first part. Convolutional Neural Networks (CNN) and max-pooling layers encode
these matrices. Cosine similarity is then calculated to compare RBP candidates with
other proteins, resulting in a matrix identifying proteins with a higher likelihood of
binding to the miRNA sequence.

model to learn the intricate features of RNA-protein interactions. Once trained,

the learned knowledge, including all weights and parameters, is transferred to

the Target Domain.

• Target Domain: The Target Domain leverages the transferred knowledge

from the Source Domain to refine prediction capabilities further. Here, miRNA

sequences from the Argonaute (AGO) protein family are input, and the model

generates embedding codes for each miRNA sequence using the pre-trained

weights and parameters from the Source Domain.

• Similarity Calculation: The primary goal is to identify which RNA sequences
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that bind to RBPs are most similar to the miRNA sequences. This is achieved

by calculating the cosine similarity between the embedding vectors obtained

from the RNA and miRNA sequences. The resulting list ranks the RBPs based

on their similarity to the miRNA sequences, providing valuable insights into

potential miRNA-protein interactions.

In summary, the first part of the DeepmiRPB model efficiently utilizes transfer

learning and cosine similarity to identify and rank RNA-binding proteins likely to

interact with miRNA sequences, thereby enhancing our understanding of miRNA-

protein binding mechanisms.

The second part, illustrated in Figure 3.3.b, focuses on finding similarities

between proteins. We obtained a list of RBP candidates from the first part that could

bind to miRNAs. Given that our training data does not encompass all RNA-binding

proteins, a given miRNA might bind to an untrained protein. We aim to identify

proteins similar to the candidate list obtained from the first part to address this.

• We utilize the Position-Specific Scoring Matrix (PSSM) and protein structure

contact maps for each protein in the candidate list from the first part to find

the similarity between the two proteins.

• These inputs are separately fed into an Autoencoder CNN comprising several

convolution and pooling layers. Encoding codes for PSSM and contact maps

are generated separately for each protein and then concatenated into a 256-

character unique vector.
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• Cosine similarity is then used to calculate the similarity between each pair of

proteins, resulting in an n×n matrix for n proteins. This matrix helps identify

the protein most similar to the high-chance candidate identified in the first part.

By leveraging these techniques, we enhance our model’s ability to predict

miRNA-protein interactions, even when the target proteins were not part of the initial

training dataset. This comprehensive approach ensures we can accurately determine

potential miRNA-binding proteins based on similarity scores derived from structural

and sequence data.

In summary, our model operates based on the following steps:

• Identifying which RNA sequences bind to RBPs are more similar to the miRNA

sequences.

• Generating a list of RBP candidates likely to bind to miRNA.

• Determining which proteins are similar to the RBPs in our candidate list.

By following these steps, our model ensures a comprehensive analysis of miRNA-

protein interactions. Initially, it leverages transfer learning and cosine similarity to

identify RNA sequences similar to the miRNA, providing a list of potential RBP

candidates. Subsequently, it utilizes the Position-Specific Scoring Matrix (PSSM)

and protein structure contact maps to find proteins similar to these RBP candidates,

using convolutional neural networks and cosine similarity. This dual approach allows

us to accurately predict miRNA-binding proteins without complete training data for

all RNA-binding proteins.
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The subsequent subsections will delve deeper into the methodologies employed,

detailing the processes and techniques used in each part of the model.

First Part: Technical Overview

The first part of the DeepmiRPB model is a crucial component designed to

predict RNA-protein interactions by capturing complex patterns in RNA sequences

that facilitate binding with proteins. It consists of two primary sections: the Source

Domain and the Target Domain, as illustrated in Figure 3.3.a. This part of the model

includes several key components: embedding layers, bidirectional Long Short-Term

Memory (LSTM) layers, attention mechanisms, and dense layers.

• Source Domain: The process begins in the Source Domain by embedding

RNA sequences into a numerical format suitable for neural network process-

ing. The embedding layer transforms the input RNA sequences into fixed-sized

dense vectors, where each nucleotide in the RNA sequence is mapped to a unique

vector representation. This facilitates the capture of semantic relationships be-

tween different sequences. Following the embedding layer, multiple bidirectional

LSTM layers capture sequential dependencies in the RNA sequences from both

forward and backward directions. These layers are crucial for understanding the

sequence context, allowing the model to consider information from upstream and

downstream of a given nucleotide. Dropout layers are incorporated to prevent

overfitting by randomly setting a fraction of input units to zero during training.

An attention mechanism is then applied to enable the model to focus on the
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most relevant parts of the sequence, enhancing its ability to capture critical

features necessary for binding prediction. The output from the attention layer

is directed into dense layers that further process the information and produce

the final binding prediction through a sigmoid activation function. This final

layer outputs a probability score indicating the likelihood of binding between

the RNA sequence and the protein.

• Target Domain: After training the Source Domain, the learned knowledge,

including weights and parameters, is transferred to the Target Domain through

transfer learning techniques. In the Target Domain, miRNA sequences are in-

put, and all the layers discussed in the Source Domain are identically applied.

To align with the RNA sequences, miRNA sequences are converted to their

complementary sequences before being fed into the Target Domain. This con-

version ensures the model can effectively identify RNA sequences similar to the

miRNA.

• Sampling Methodology: After completing the initial training of the first

model component, evaluating the similarity between RBPs and miRNAs became

crucial. Cosine similarity was chosen for this purpose. However, due to the large

number of sequences associated with each RBP, computing the similarity with

every RBP-binding RNA sequence posed significant computational challenges.

To mitigate this issue, we implemented a sampling distribution approach for

each RBP sequence.

The sampling distribution ensures that we capture the essential characteristics
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and variability of the entire dataset without the need for exhaustive computa-

tions. Specifically, we randomly sampled 1000 RNA sequences or binding sites

for each RBP. This sampling strategy maintains the robustness and represen-

tativeness of our model. The Central Limit Theorem (CLT) underpins this

approach, stating that the distribution of sample means approximates a normal

distribution when the sample size is sufficiently large. Mathematically, CLT is

expressed as:

X̄n ≈ N

(
µ,

σ2

n

)

where X̄n represents the sample mean, µ denotes the population mean, σ2

indicates the population variance, and n is the sample size. For our study, we

determined that a sample size of 1000 is adequate to approximate normality

and capture the variability and underlying patterns in the data. This sample

size provides a representative subset for training purposes. By employing a

sampling distribution and selecting multiple random samples of 1000 for each

RBP sequence, we ensured that our model trained on a robust dataset that

faithfully reflects the underlying data distribution. This approach streamlined

the computation process and preserved the statistical integrity of the dataset.

Following inference on all the samples from RBPs, we computed the similarity

between the sampled RBP binding site sequences and miRNA. This method

significantly reduced computational overhead while maintaining the accuracy

and effectiveness of our similarity assessments.

• Similarity Calculation: The primary goal of the first part is to identify
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which RNA sequences are similar to the miRNA using cosine similarity. Cosine

similarity is a measure to determine the similarity between two non-zero vectors

in an inner product space. It is defined as the cosine of the angle between the

vectors, providing a metric to assess the degree of similarity between two sets

of embeddings. This measure is particularly useful in high-dimensional spaces

where traditional Euclidean distance may not effectively capture the nuances of

vector similarity.

The embedding codes from the RBP sequences (Source Domain) and miRNA

sequences (Target Domain) are input vectors for the cosine similarity calcu-

lation. This process results in a list indicating which RBPs have the highest

likelihood of binding to the miRNA, summarized in a vector for all trained data.

The core concept behind cosine similarity is to measure the cosine of the angle

between two vectors. If the vectors are identical, their angle is zero, and the co-

sine similarity is 1, indicating maximum similarity. If the vectors are orthogonal

(at 90 degrees to each other), the cosine similarity is 0, indicating no similar-

ity. This angular measure provides a normalized similarity score independent

of the vectors’ magnitudes, making it particularly useful in applications where

the scale of the vectors can vary significantly.

• The Embedding Layer in LSTM Deep Learning Models: In natural

language processing (NLP) and sequence analysis, the embedding layer is a

crucial component, especially within Long Short-Term Memory (LSTM) deep

learning models. This layer transforms discrete, categorical input data, such
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as RNA and miRNA sequences, into fixed-size dense vectors, facilitating the

learning process in subsequent model layers.

In a continuous vector space, the embedding layer represents each unique item,

like a character or word. These vectors, learned during training, capture se-

mantic relationships between items, making it possible to measure distances or

similarities between them. Combining LSTM with the Attention mechanism

provides a powerful tool for analyzing sequential data in computational biology.

This architecture’s ability to remember long-term dependencies and focus on

pertinent information makes it especially suited for our project, surpassing the

capabilities of Convolutional Neural Networks (CNNs) in handling the sequen-

tial nature and complex dependencies inherent in RNA sequences and protein

structures [80].

In summary, the first part of the DeepmiRPB model utilizes advanced neural

network components and transfer learning to accurately identify and rank RNA-

binding proteins that are likely to interact with miRNA sequences. The model

narrows potential RNA-protein interactions by embedding RNA sequences, captur-

ing sequential dependencies through bidirectional LSTM layers, applying attention

mechanisms, and leveraging cosine similarity. Integrating the Central Limit Theorem

ensures that taking multiple random samples with 1000 sequences per RBP is ade-

quate for robust training, providing a solid foundation for the subsequent steps in the

model. The following subsections will delve deeper into the methodologies employed,

detailing the processes and techniques used in each part of the model.
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Second Part: Technical Overview

The second part of the DeepmiRPB model is designed to find similarities be-

tween proteins based on the Position-Specific Scoring Matrix (PSSM) and predicted

contact maps from ResPRE, as illustrated in Figure 3.3.b. This component iden-

tifies which proteins are most likely to bind to the miRNAs, given the first part’s

RNA-binding protein (RBP) candidates. The second part employs several vital com-

ponents: encoders, convolutional neural networks (CNNs), and max-pooling layers.

• Autoencoders: Autoencoders are neural networks used to learn efficient cod-

ings of input data in an unsupervised manner. They compress the input into an

informative representation and then decode it to reconstruct the original input.

This process forces the network to learn the most salient features of the data.

• Convolutional Neural Networks (CNNs): CNNs are highly effective for

analyzing spatial data, making them suitable for image recognition and pro-

cessing tasks. Our model uses CNNs to process protein sequences (PSSM) and

protein structure contact maps. Critical components of CNNs include convolu-

tion layers, pooling layers, and fully connected layers [81].

• Convolution Layers: Convolution layers apply filters (kernels) to the input

data to extract features. Each filter slides over the input data, performing

element-wise multiplications and summing the results to produce a feature map.

• When to Use LSTM vs. CNN: LSTM networks and CNNs serve different

purposes. LSTMs are effective for sequential data, such as time-series analysis
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and natural language processing, because they capture temporal dependencies.

Conversely, CNNs are ideal for spatial data, commonly used in image and video

processing tasks due to their ability to detect spatial hierarchies [56]. In our

model, LSTMs process RNA sequences due to their sequential nature, while

CNNs process protein sequences (PSSM) and protein structure contact maps,

which are inherently spatial.

• Encoder in CNN: Unlike LSTM-based models, CNNs do not utilize embed-

ding layers. Instead, they use encoders to transform input data into compact,

informative representations. An encoder in a CNN typically consists of several

convolution and pooling layers, followed by fully connected layers that compress

the data into a lower-dimensional space.

• Comparison of Encoder and Embedding Layer: The encoder in a CNN

and the embedding layer in an LSTM serve similar purposes but operate differ-

ently. The embedding layer maps discrete input data to a dense vector space,

capturing semantic relationships through learned embeddings. In contrast, the

encoder in a CNN transforms input data through multiple layers of convolu-

tions and pooling, capturing spatial features and compressing the data into a

compact representation. Both methods result in dense, informative vectors that

can be used for similarity calculations.

In the second part of our model, we utilize these techniques to predict miRNA-

protein interactions by finding similarities between proteins based on PSSM and con-

tact map data. By leveraging the strengths of CNNs and encoders, we ensure a robust
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and accurate identification of potential miRNA-binding proteins, even if the target

proteins were not part of the initial training dataset.

3.3.3 Selection of Model Architecture and Hyperparameter Optimization

The selection of the optimal model architecture and the meticulous process

of hyperparameter optimization are pivotal in developing an effective deep-learning

model for miRNA-protein interaction prediction. Given the varied nature of our

input data—RNA sequences, miRNA sequences, Position-Specific Scoring Matrices

(PSSM), and protein structure contact maps—we adopted specific architectures tai-

lored to each data type. LSTM networks were chosen for RNA and miRNA sequences

due to their strength in capturing long-term dependencies in sequential data. For

PSSM and contact map data, CNNs were employed to leverage their ability to ex-

tract hierarchical features from spatial data.

Initially, we explored over 45 different model architectures to identify the most

effective configuration. These architectures included:

• Unidirectional LSTM networks

• Bidirectional LSTM networks

• Pure CNN architectures

• Hybrid models combining LSTM and CNN

• Models incorporating attention mechanisms

• Architectures with varying layers and configurations of LSTM and CNN
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Each model was evaluated based on its performance in predicting miRNA-

protein interactions, with metrics such as accuracy, precision, recall, and F1 score

being the primary indicators of success. The goal was to find an architecture that

provided high accuracy and maintained robustness across different types of input

data.

After identifying the best-performing architecture, we moved on to hyperpa-

rameter optimization. This process involved systematically varying the key hyper-

parameters to fine-tune the model’s performance. The hyperparameters considered

were:

• Embedding dimensions: [16, 32, 64, 128, 256, 512,1024]

• LSTM units: [16, 32, 64, 128, 256, 512,1024]

• Dropout rates: [0.2, 0.5]

• Batch sizes: [32, 64, 128]

• Learning rates: [0.001, 0.0001]

Each combination of these hyperparameters was tested, considering one pa-

rameter at a time while keeping the others constant. For instance, we began with

embedding dimensions set to 16 and LSTM units set to 16, then adjusted the other

parameters, such as dropout rates, batch sizes, and learning rates, in sequence. This

methodical approach ensured a thorough exploration of the hyperparameter space

and identified the optimal configuration.
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Figure 3.4: Accuracy and loss charts for various hyperparameter configurations.

Each hyperparameter configuration was subjected to a training regimen of 50

epochs, each taking approximately 18.6 hours for one of the tests we did in Fig-

ure3.10. This extensive experimentation provided a comprehensive understanding of

how different hyperparameters influenced model performance. The optimization re-

sults, including accuracy and loss charts, are presented in Figure 3.4, demonstrating

the impact of each parameter configuration on the model’s predictive capabilities.

Hyperparameter optimization is a crucial step in deep learning, as it signifi-

cantly influences the model’s ability to generalize from training data to unseen data.

Properly selected hyperparameters can substantially improve model performance, re-

ducing overfitting and enhancing the model’s ability to capture intricate patterns in

the data.

We developed a robust and accurate model for miRNA-protein interaction

prediction through this rigorous architecture selection process and hyperparameter
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Figure 3.5: Accuracy and loss charts for various hyperparameter configurations.

optimization. This model leverages the strengths of LSTM and CNN architectures,

fine-tuned through exhaustive experimentation, to provide reliable predictions crucial

for understanding the complex mechanisms underlying miRNA-protein interactions.

3.3.4 Model Evaluations

The performance of the source domain in the first component of our model

was evaluated using a dataset consisting of 188 RBP sequences. We employed a 90/10

split for data division, allocating 90% of the data for training and 10% for testing. To

ensure robustness and reliability, we implemented a 10-fold cross-validation approach.

The Adam optimizer was utilized for optimization during the training process. To

evaluate the model’s performance on training and testing datasets, we employed the

following metrics:

• Accuracy measures the overall correctness of the model by calculating the ratio

of correctly predicted interactions (both true positives and true negatives) to
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Figure 3.6: Accuracy and loss charts for various hyperparameter configurations.

the total observations.

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision indicates the quality of positive predictions by measuring the ratio

of correctly predicted positive interactions to the total predicted positives.

Precision =
TP

TP + FP

• Recall (sensitivity) measures the model’s ability to identify all relevant positive

interactions by calculating the ratio of correctly predicted positive observations

to all observations in the actual class.

Recall =
TP

TP + FN
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Figure 3.7: Accuracy and loss charts for various hyperparameter configurations.

• F1 Score is the harmonic mean of precision and recall, providing a single metric

that balances the trade-off between precision and recall.

F1 Score = 2× Precision× Recall

Precision + Recall

3.3.5 Design of the Case Studies

To comprehensively evaluate DeepmiRBP’s performance in identifying miRNA-

binding proteins, we designed three case studies:

• Case Study 1: based on miRNA interactions with RBPs that are included in

the model.

The source domain comprises 188 RBPs. We curated new miRNA interactions

validated with RBPs from recent literature. This case study aims to assess

whether the model accuractely identifies the binding proteins for these miRNAs
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Figure 3.8: Accuracy and loss charts for various hyperparameter configurations.

based on its training data.

• Case Study 2: based on miRNAs interactions with new RBPs that are excluded

in the model.

In this scenario, we focus on miR-223 known to interact with exosomal protein

YBX1. YBX1, although not included in our training data, plays a crucial role

in packaging miR-223 into exosomes through liquid-liquid phase separation, as

evidenced by Liu et al. [53]. This case study tests DeepmiRBP’s ability to

generalize to new RBPs not encountered during training.

• Case Study 3: to identify novel miRNA sorting proteins for selected exosomes.

This case study aims to illustrate how to use DeepmiRBP to identify miRNA

transporter proteins in exosomes of interest, e.g., from cancer cells by leveraging

miRNA and protein profiles of cancer-derived exosomes.

Taking let-7 as an example, this miRNA family has been extensively studied for
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Figure 3.9: time for each epoch takes around 50 minutes

its tumor-suppressive properties. According to Johnson et al. [43], the miR-let-

7 represses cell proliferation pathways in human cells, highlighting its potential

as a therapeutic target. Furthermore, Nwaeburu et al. [59] demonstrated that

the up-regulation of miRNA-let-7c by quercetin inhibits pancreatic cancer pro-

gression by activating Numbl. These findings underscore the critical role of the

let-7 family in combating cancers.

We utilized EVPsort [15] and public data of miRNA and protein profiles specific

to cancer-derived exosomes to obtain data for this test case. This case study

highlights the importance of combining public and user data to advance our

understanding of miRNA-protein interactions in disease contexts. We aim to

uncover novel miRNA transporter proteins that could serve as potential cancer

therapeutic targets.

We will discuss these case studies in the next section, focusing on the model’s perfor-
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Figure 3.10: Accuracy and loss charts for various hyperparameter configurations.

mance evaluation and its implications for predicting miRNA-protein interactions.

3.4 Results

3.4.1 Model Performance

After training, the comprehensive evaluation of the source and target domains,

summarized in Table 3.1, indicates DeepMiRBP’s robust capability and effectiveness

in predicting RNA-binding proteins.

In the source domain, the model demonstrated commendable performance

metrics, with an accuracy of 82.4% on the test dataset across all RBPs (see Table

3.1), indicating the model’s robust capability to identify RNA-binding sites correctly.

A precision of 81.1% reflects the model’s proficiency in accurately detecting true

positive interactions while minimizing false positives. A recall of 85.1% highlights the

model’s ability to identify a substantial proportion of true interactions. Last, the F1

score of 0.831, balances precision and recall, confirming the model’s overall reliability
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and robustness.

The confusion matrix for the source domain test data (Fig. 3.11) further il-

lustrates the model’s performance, providing a detailed view of the true positive,

true negative, false positive, and false negative predictions. This visualization rein-

forces the quantitative metrics in Table 3.1 and offers deeper insight into the model’s

prediction accuracy.

Domain Data Accuracy Precision Recall F1

Source Training 0.862 0.849 0.885 0.867

Testing 0.824 0.811 0.851 0.831

Target Training 0.874 0.864 0.896 0.880

Testing 0.854 0.843 0.877 0.860

Table 3.1: Performance metrics for source and target models
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Figure 3.11: Confusion matrix for test data in the source domain

Following the training of the source domain, the acquired knowledge and pa-

rameters were transferred to the target domain through transfer learning. In this

phase, miRNAs known to bind to AGO family proteins were input to ensure the com-

prehensive functionality of the entire framework. The target domain’s performance,

with an accuracy of 85.4% on the test data, demonstrates the successful integration

and efficacy of both the source and target domains.

Additionally, the source domain’s training set achieved an accuracy of 86.2%,

a precision of 84.9%, a recall of 88.5%, and an F1 score of 0.867. The target domain’s

training set reported an accuracy of 87.4%, a precision of 86.4%, a recall of 89.6%,

and an F1 score of 0.880. These metrics highlight the model’s strong performance
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across both domains.

In summary, the results from the source and target domains establish a solid

foundation for our model, demonstrating its effectiveness in accurately predicting

RNA-binding proteins. The high accuracy and balanced performance metrics in both

domains validate the model’s reliability. Subsequent sections will present the results

from the three case studies, further illustrating the model’s application and perfor-

mance in real-world scenarios.

3.4.2 Validation on miR-451, miR-19b, miR-23a, and miR-21 (Case Study

1)

After the first component was completely trained, we validated the model

using miRNA interactions with RBPs in the training domain. We tested the model

with several miRNAs and experimental data to ensure its robustness and accuracy.

• miR-451: According to Dueck et al. [22], miR-451 is directly processed by

AGO2, which is unusual because AGO2 is not typically involved in miRNA

processing; it usually just helps with the sorting and function of miRNAs that

have already been processed by Dicer. After processing, miR-451 remains asso-

ciated with AGO2, which acts as a form of sorting since miR-451 is specifically

bound to AGO2.

We first obtained samples from each RBP within our domain to validate this

and saved the embedding code for each RBP sequence. Next, we provided miR-

451 as input to the target domain, calculated the embedding code, and utilized
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cosine similarity to determine which RBP sequences were most similar to miR-

451. The results, shown in Table 3.2, list the top 10 RBPs with the highest

similarity scores:

As illustrated, AGO2 has the top score in the table, confirming its exclusive

association with miR-451. Interestingly, AGO1, with a score of -0.394, appears

much lower in the table in the 29th row. This result validates that DeepmiRBP

functions correctly in identifying known interactions for miR-451.

• miR-19b, miR-23a, and miR-21: According to Dueck et al. [22], miR-19b,

miR-23a, and miR-21 are known to associate with Argonaute protein families in

vivo, indicating they are processed by Dicer and are not limited to a specific Ago

protein. We repeated the sampling and embedding process for these miRNAs

to validate our model further. As predicted by our model, the high similar-

ity scores with various Argonaute proteins confirm the expected associations

and demonstrate the model’s accuracy in predicting miRNA-RBP interactions

across multiple miRNAs. The results are shown in the table 3.3, listing the top

RBPs with the highest similarity scores for miR-19b, miR-23a, and miR-21:

AGO1 and AGO2 stand at the top, confirming the model’s effectiveness. How-

ever, it is essential to note that the model provides a list of candidate RBPs

ranked by similarity score, ensuring comprehensive identification of potential

interactions.

These validation results demonstrate the robustness and reliability of the Deep-

miRBP model in accurately predicting miRNA-RBP interactions. The successful
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identification of known interactions for miR-451, miR-19b, miR-23a, and miR-21 re-

inforces the model’s effectiveness and lays a solid foundation for further studies.

RBP Similarity Score

AGO2 0.67

KHDRBS1 0.04

SFPQ -0.16

PRPF8 -0.82

SF3B4 -0.87

QKI -0.92

KHSRP -0.12

SF3A3 -0.17

HNRNPK -0.21

SF3B1 -0.24

Table 3.2: Top 10 RBPs with highest

scores for miR-451.

RBP Similarity Score

AGO1 0.55

AGO2 0.45

HNRNPK 0.26

SERBP1 0.25

NIP7 0.24

PCBP2 0.19

FKBP4 0.17

PCBP1 0.16

PHF6 0.14

IGF2BP3 0.13

Table 3.3: Top RBPs with highest scores

for miR-19b, miR-23a, and miR-21.
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RBP Similarity Score

TIAL1 0.12

CPEB4 0.12

CSDE1 0.12

SLBP 0.11

SERBP1 0.11

NIPBL 0.11

METAP2 0.11

SDAD1 0.11

APOBEC3C 0.11

ZNF800 0.10

Table 3.4: Top RBPs with highest scores

for miR-223.

RBP Similarity Score

NIP7 0.66

IGF2BP2 0.65

FXR2 0.61

IGF2BP3 0.49

XRN2 0.47

SLTM 0.36

SERBP1 0.34

BCCIP 0.27

SRSF9 0.17

FAM120A 0.15

Table 3.5: Top RBPs with highest scores

for let-7d.

3.4.3 Validation on miR-223 (Case Study 2)

We used miR-223 [15] as input to our source domain to test the model’s ability

to predict interactions for miRNAs excluded from the training dataset. miR-223 is

known to bind to the YBX1 protein [53], which was not included in our training

data. Initially, we provided miR-223 as input to the target domain to identify which

RNA sequences that bind to RBPs are more similar to miR-223 sequences. The first

component of the model generated a list of candidate RBPs with sequences similar

to miR-223. In the subsequent step, we utilized PSSM and contact maps for each
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candidate from the first component. We then provided each candidate’s PSSM and

contact map as input to the second component, generating a list of final candidate

proteins to which miR-223 could potentially bind.

For miR-223, we identified 25 RBPs from the 188 total RBPs used for training

the first component, with similarity scores greater than zero. Table 3.4 shows the top

10 similarity scores:

With this list of candidate RBPs similar to YBX1, we provided each candi-

date’s PSSM and contact map as input to the second component. The second com-

ponent computed the similarity between each protein, resulting in an n × n matrix.

Table 3.6 presents the similarity scores for the top 15 proteins, including YBX1. The

matrix shows that the top three highest scores are associated with SERBP1, CSDE1,

and TIAL1, along with YBX1. This indicates that these proteins would be selected

as candidates to which miR-223 could potentially bind. These high similarity scores

suggest a strong likelihood of interaction between miR-223 and these candidate RBPs,

thereby validating the model’s efficacy in predicting miRNA-protein interactions for

proteins excluded from the training dataset.
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TIAL1 CPEB4 SSB SLBP SERBP1 NIPBL METAP2 SDAD1 APOBEC3C ZNF800 CSDE1 YBX1 IGF2BP1 SYNCRIP HSPA1B

TIAL1 1.00 0.35 0.27 0.19 0.44 0.36 0.31 0.32 0.24 0.31 0.40 0.62 0.39 0.45 0.28

CPEB4 0.35 1.00 0.28 0.25 0.38 0.47 0.22 0.38 0.30 0.27 0.39 0.51 0.30 0.37 0.31

SSB 0.27 0.28 1.00 0.41 0.21 0.32 0.37 0.26 0.31 0.28 0.36 0.06 0.38 0.29 0.35

SLBP 0.19 0.25 0.41 1.00 0.35 0.39 0.28 0.32 0.27 0.26 0.32 0.17 0.42 0.24 0.33

SERBP1 0.44 0.38 0.21 0.35 1.00 0.28 0.39 0.31 0.32 0.43 0.42 0.66 0.49 0.43 0.35

NIPBL 0.36 0.47 0.32 0.39 0.28 1.00 0.34 0.39 0.36 0.32 0.34 0.12 0.35 0.36 0.27

METAP2 0.31 0.22 0.37 0.28 0.39 0.34 1.00 0.41 0.32 0.28 0.31 0.02 0.38 0.32 0.30

SDAD1 0.32 0.38 0.26 0.32 0.31 0.39 0.41 1.00 0.36 0.31 0.41 0.08 0.34 0.32 0.39

APOBEC3C 0.24 0.30 0.31 0.27 0.32 0.36 0.32 0.36 1.00 0.29 0.34 0.14 0.38 0.30 0.33

ZNF800 0.31 0.27 0.28 0.26 0.43 0.32 0.28 0.31 0.29 1.00 0.31 0.06 0.30 0.35 0.34

CSDE1 0.40 0.39 0.36 0.32 0.42 0.34 0.31 0.41 0.34 0.31 1.00 0.63 0.34 0.39 0.37

YBX1 0.62 0.51 0.06 0.17 0.66 0.12 0.02 0.08 0.14 0.06 0.63 1.00 0.51 0.58 0.42

IGF2BP1 0.39 0.30 0.38 0.42 0.49 0.35 0.38 0.34 0.38 0.30 0.34 0.51 1.00 0.49 0.40

SYNCRIP 0.45 0.37 0.29 0.24 0.43 0.36 0.32 0.32 0.30 0.35 0.39 0.58 0.49 1.00 0.39

HSPA1B 0.28 0.31 0.35 0.33 0.35 0.27 0.30 0.39 0.33 0.34 0.37 0.42 0.40 0.39 1.00

Table 3.6: Cosine similarity matrix for final candidate proteins for miR-223 sorting.

These case studies illustrate the efficacy of our model in predicting miRNA-

RBP interactions, even for miRNAs not included in the training domain. The compre-

hensive approach of combining sequence similarity and structural information through

PSSM and contact maps ensures accurate and reliable predictions.

3.4.4 Discovery on miR-let-7d (Case Study 3)

To illustrate how DeepMiRBP identifies novel candidates for miRNA sorting

in exosomes, we focused on let-7d, an exosomal miRNA found in colon cancer cells

[58] and pancreatic cancer cells [83]. Our goal was to determine which RBPs miRNA

hsa-let-7d would bind.

Using let-7d as input to the target domain, we obtained the similarity scores

indicating the affinity of various RBPs to this miRNA, as shown in Table 3.5.

Although the model evaluated 22 RBP candidates, the table presents the top
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10 candidates. Notably, IGF2BP2 and FXR2 emerged as top candidates, with sim-

ilarity scores of 0.65 and 0.61, respectively. Both proteins have been identified as

exosomal proteins in colorectal cancer cells [9], aligning with their potential roles in

exosome-mediated RNA transport.

This result corroborates the experimental data from VEPsort, where FXR2 is

known to bind to let-7d precursors. The identification of FXR2 among the top can-

didates for let-7d, coupled with their presence in exosomes, underscores FXR2’s role

in RNA binding and exosomal RNA sorting. It highlights DeepMiRMP’s utility in

providing reliable insights into miRNA-RBP interactions, which is crucial for under-

standing gene regulation mechanisms and developing targeted therapeutic strategies.

3.5 Discussion

Introducing the DeepmiRBP model into RNA research has provided a pro-

found leap forward in our understanding of miRNA-protein interactions. The results

presented in this study underscore the effectiveness and reliability of the DeepMiRBP

model in predicting miRNA-RBP interactions, even for miRNAs not included in the

training domain. The model’s ability to generalize to novel miRNA-RBP interac-

tions is particularly significant, as it demonstrates the potential for discovering new

miRNA-binding proteins and elucidating the mechanisms underlying miRNA sorting.

The promising performance of the DeepmiRBP model in predicting binding

sites for AGO, YBX1, and FXR2 proteins is noteworthy. These proteins play a pivotal

role in the post-transcriptional regulation of gene expression [14]. The identification
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of let-7d interactions with FXR2 and other RBPs emphasizes the model’s utility in

identifying miRNA-protein interactions relevant to cancer biology and indicates its

potential in pinpointing critical regulatory nodes within complex disease networks.

The high accuracy achieved in these predictions suggests that the model could serve

as a valuable tool for identifying novel RNA-centric therapeutic targets.

DeepmiRBP has not only demonstrated effectiveness in elucidating the com-

plex interplay between miRNAs and proteins but also underscores the power of deep

learning, which has been increasingly recognized for its ability to decipher complex

biological systems. However, the challenges inherent in applying cosine similarity and

transfer learning to such a complex biological problem should not be underestimated.

The specificity required for accurate RNA-protein interaction prediction necessitates

a tailored approach to model training and validation. It is important to note that

the DeepmiRBP model does not predict which miRNA binds to an RBP; rather, it

generates a candidate list based on cosine similarity scores, where higher scores indi-

cate a greater likelihood of binding. The model creates candidate lists using cosine

similarity with LSTM, CNN, and transfer learning. Another challenge faced was the

volume of data and the preparation required, which was demanding and complex.

[57].

The potential of transfer learning, as demonstrated by the DeepmiRBP model,

is immense. It offers a promising avenue for enhancing the predictive performance

of computational models in scenarios characterized by limited data availability or

high biological complexity. Nonetheless, the application of this technique must be

carefully calibrated to capture the nuances of each protein-miRNA interaction and



136

avoid overfitting to particular datasets or scenarios [61].

Integrating multi-omic data, including genomics, transcriptomics, and pro-

teomics, is expected further to refine the predictive accuracy of models like Deep-

miRBP. By incorporating a broader spectrum of biological data, researchers can hope

to capture the full complexity of RNA-mediated cell signaling and communication

and their regulatory roles in human diseases. This holistic approach will likely pave

the way for the next generation of precision medicine, where targeted therapies are

developed based on a comprehensive understanding of the molecular underpinnings.

Overall, the DeepMiRBP model provides a robust and scalable framework

for predicting miRNA-RBP interactions, offering valuable insights into the molecular

mechanisms of miRNA sorting. The model’s adaptability to new datasets and its

potential for identifying novel miRNA-binding proteins make it a powerful tool for

advancing small RNA research. Future work will focus on expanding the model’s

capabilities, incorporating additional datasets, and validating predictions experimen-

tally to refine our understanding of miRNA-protein interactions and their implications

in disease contexts further.

3.6 Conclusion

This investigation into miRNA-protein interactions has illuminated the intri-

cate nature of RNA sorting and showcased the efficacy of the DeepmiRBP model in

elucidating understudied biological processes. By integrating LSTM, CNN, transfer

learning, cosine similarity, and encoding techniques, DeepmiRBP has demonstrated
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exceptional precision in identifying miRNA-protein binding sites, underscoring the

transformative potential of computational approaches in RNA research.

The model’s adeptness, particularly in pinpointing binding sites for proteins

such as AGO, YBX1, and FXR2, holds profound implications for understanding regu-

latory mechanisms in cancer and other diseases where miRNA functionality is pivotal.

Integrating PSSM and contact map data via CNN has enriched the model’s interpre-

tive depth, advancing our grasp of miRNA-mediated cell signaling. The model’s

ability to capture the nuanced expression of miRNAs across biological conditions

presents challenges and opportunities.

While DeepmiRBP focuses on the predictive analysis of miRNA binding pro-

teins, the methodologies and insights gleaned offer a scalable template for future

studies across various RNA applications and human diseases like cancers. The adapt-

able nature of this model, informed by its success in the current study, primes it for

exploratory applications in RNA-centric targeted therapies.

In conclusion, the DeepmiRBP model significantly advances our ability to

predict miRNA-protein binding sites and understand the regulatory mechanisms in

cancer. The insights gained from this research contribute to a richer understanding

of the complex interplay between miRNAs and proteins and highlight the potential

for deep learning to revolutionize bioinformatics. Future research should continue to

build upon these findings, leveraging the power of computational models to unravel

the complexities of cancer biology and guide the development of new therapeutic

strategies.



Chapter 4

Conclusion

This dissertation has explored the complex and intricate interactions between

microRNAs (miRNAs) and RNA-binding proteins (RBPs), emphasizing the signifi-

cance of these interactions in gene regulation and disease progression. The research

presented herein underscores the transformative potential of advanced computational

approaches, particularly deep learning models, in unraveling these biological pro-

cesses.

4.1 Summary of Findings

The primary objective of this research was to develop and evaluate a ro-

bust computational model for predicting miRNA-protein interactions, leveraging the

strengths of deep learning architectures. The proposed DeepmiRPB model, incorpo-

rating Long Short-Term Memory (LSTM) networks, Convolutional Neural Networks

(CNNs), transfer learning, and cosine similarity, has demonstrated exceptional pre-

cision in identifying miRNA-protein binding sites. This model’s innovative design

allows it to capture the nuanced dependencies and structural information within

miRNA and protein sequences, facilitating accurate predictions even in limited data

138
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availability.

The efficacy of the DeepmiRPB model was validated through rigorous testing

against diverse datasets, distinct proteins characterized by various input data modal-

ities. The model achieved high accuracy, precision, recall, and F1 scores, showcasing

its robustness and reliability in predicting RNA-protein interactions. Furthermore,

the model’s performance in identifying miRNA interactions with key proteins such

as AGO1 and AGO2 highlights its potential in elucidating regulatory mechanisms in

diseases like cancer.

4.2 Implications for Bioinformatics and Molecular Biology

The insights gained from this research have profound implications for bioinfor-

matics and molecular biology. Integrating multi-omic data and employing sophisti-

cated computational techniques, the DeepmiRPB model offers a scalable and adapt-

able template for future studies across various biological contexts. This approach

enhances our understanding of miRNA-mediated regulatory networks and paves the

way for developing novel therapeutic interventions and personalized medicine.

The success of the DeepmiRPB model in capturing the complexities of miRNA-

protein interactions underscores the potential of deep learning in bioinformatics. This

research contributes to a richer understanding of gene regulation mechanisms, pro-

viding a foundation for future studies to decipher the molecular drivers of complex

diseases. The model’s adaptability and precision make it a valuable tool for explor-

ing the regulatory roles of miRNAs across different cancer stages and other disease
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pathologies.

4.3 Future Directions

The journey of computational modeling in miRNA-protein interactions is far

from complete. The future of this research trajectory promises to be multifaceted,

reinforcing the alliance between computational predictions and experimental valida-

tions. Future endeavors should focus on the following areas:

• Expanding Dataset Diversity: Incorporating more diverse and comprehen-

sive datasets, including various miRNA and protein sequences across different

species and disease states, will enhance the model’s generalizability and predic-

tive accuracy.

• Integrating Multi-Omic Data: Further integrating genomics, transcrip-

tomics, proteomics, and metabolomics data will provide a holistic view of miRNA-

protein interactions, capturing the full complexity of regulatory networks.

• Model Optimization: Continued optimization of the DeepmiRPB model,

including fine-tuning hyperparameters and exploring alternative deep learning

architectures, will improve its performance and applicability.

• Experimental Validation: Collaborating with experimental biologists to val-

idate the model’s predictions through laboratory experiments will strengthen

the reliability of computational findings and foster translational applications in

precision medicine.
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• Exploring New Biological Contexts: Applying the DeepmiRPB model to

investigate miRNA-protein interactions in other biological processes, such as

developmental biology, immune responses, and aging, will broaden our under-

standing of these critical regulatory mechanisms.

In conclusion, this dissertation has demonstrated the significant advances that

can be achieved in bioinformatics by integrating deep learning techniques and multi-

omic data. The DeepmiRPB model stands as a testament to the power of compu-

tational approaches in elucidating complex biological processes, offering a promising

pathway toward personalized medical solutions. The insights gained from this re-

search will inform the development of novel therapeutic interventions, carving a path

toward an era of precision medicine.

The future of bioinformatics is poised for a revolution driven by the versatility

and adaptability of deep learning models like DeepmiRPB. As we unravel the com-

plexities of miRNA-protein interactions, the stage is set for scientific breakthroughs

that may redefine contemporary medical science’s contours. This research lays a

solid foundation for these future explorations, promising to enhance our molecular

comprehension and improve patient care outcomes.
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Appendix A

Supplementary Data

All data and code associated with this research are available in the following

repository: https://github.com/sbbi-unl/DeepmiRBP.

We wrote and tested all the code in Google Colab utilizing the A100 GPU. Due

to the extensive computational requirements, as detailed in our study, a single epoch

of our model took approximately 19 hours to run. The significant computational

demands resulted in costs exceeding $10000 for running and testing our models.
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