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Abstract we used monthly precipitation and temperature data to give early warning of years with higher
West Nile Virus (WNV) risk in Nebraska. We used generalized additive models with a negative binomial
distribution and smoothing curves to identify combinations of extremes and timing that had the most
influence, experimenting with all combinations of temperature and drought data, lagged by 12, 18, 24, 30,
and 36 months. We fit models on data from 2002 through 2011, used Akaike's Information Criterion (AIC) to
select the best-fitting model, and used 2012 as out-of-sample data for prediction, and repeated this process
for each successive year, ending with fitting models on 2002-2017 data and using 2018 for out-of-sample
prediction. We found that warm temperatures and a dry year preceded by a wet year were the strongest
predictors of cases of WNV. Our models did significantly better than random chance and better than an
annual persistence naive model at predicting which counties would have cases. Exploring different
scenarios, the model predicted that without drought, there would have been 26% fewer cases of WNV in
Nebraska through 2018; without warm temperatures, 29% fewer; and with neither drought nor warmth, 45%
fewer. This method for assessing the influence of different combinations of extremes at different time
intervals is likely applicable to diseases other than West Nile, and to other annual outcome variables such as
crop yield.

Plain Language Summary We wanted to see whether we could predict years with higher risk of
West Nile Virus in Nebraska using publicly available data on temperature, precipitation, human cases, and
population. We used a type of model that lets the data speak for itself, identifying which intervals of

time leading up to an infection season are most important. We found that a dry year following a wet year,
often in combination with warm temperatures, increased the likelihood of infection. Drought accounted for
about 26% of the number of cases from 2002 to 2018.

1. Introduction

West Nile Virus (WNV), which is usually transmitted to humans by the bite of an infected mosquito
(the vector), made its first documented appearance in the continental United States in New York City in
1999 (Marfin & Gubler, 2001), and it has since spread nationwide, with substantial variation in infection
rates from place to place and from year to year. The first cases of WNV in Nebraska were reported in
2002, and in 2003, it spread through a previously unexposed population in Nebraska, with 1,942 cases
reported that year, far more than the next-highest annual total, 264 in 2006 (Figure 1). Counties in roughly
the eastern quarter of the state have experienced a lower cumulative incidence rate than the rest of the
state (Figure 2), although Nebraska and other Plains states have a relatively high per-capita infection rate
of WNV infection compared with the rest of the country (https://www.cdc.gov/westnile/statsmaps/
cumMapsData.html).

An estimated 1% or fewer of those infected develop neuroinvasive forms of WNV, which is occasionally fatal
(Mostashari et al., 2001; Petersen et al., 2013). Milder cases of WNV in humans include a fever, or are com-
pletely asymptomatic, and the majority of human infections go unreported (Colpitts et al., 2012; Curren
et al., 2018; Marfin & Gubler, 2001; Mostashari et al., 2001; Petersen et al., 2013). Whether or not they have
symptoms when they are first exposed, people are presumed to have acquired immunity after that
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Figure 1. Human cases of WNV in Nebraska, 2002-2018. This figure shows the annual totals of all human cases of West
Nile Virus in Nebraska, combining neuroinvasive and non-neuroinvasive cases. After 2003, when WNV spread through a
previously unexposed population and infected more than 1,900 people, annual totals have fluctuated in a smaller
range, not exceeding 300.

(Busch et al., 2008; Rossi et al., 2010; Samuel & Diamond, 2006), and do not have symptoms a second time.
The infection season generally runs through summer and fall (CDC, 2013), when virus-carrying mosquitos
feed on humans (Kilpatrick et al., 2006).

Although Culex tarsalis, the main WNV vector in Nebraska, breeds in standing water, anecdotal observa-
tions, large-scale statistical analyses, and research in other parts of the country suggest a connection
between drought years and higher infection rates (Epstein & Defilippo, 2001; Shaman et al., 2005), perhaps
related to irrigation (Petersen et al., 2013), to greater concentration of host species around limited water
sources (Brown et al., 2014), or to increased blood-feeding by thirsty, infected mosquitoes (Hagan
et al., 2018). In 2012, a hot, dry year, the state saw a resurgence of WNV (Figure 1), despite lower popula-
tions of mosquitoes.

Our goals were (1) explanatory, to see whether we could account for some portion of WNV infections in
humans based on precipitation and temperature, and (2) predictive, to see whether we could produce annual
county-level predictions at the start of the infection season, based on temperature, precipitation, and other
readily available data, to provide an early warning of years with greater risk of WNV infection. This would
complement the in-season information available from the state's vector-borne disease surveillance.
Nebraska's vector-borne disease surveillance program, which conducts mosquito trapping in about 30 of
Nebraska's 93 counties, yields information on the prevalence of mosquito species and infection rates with
roughly a 2-week interval between data collection and dissemination. The ability to alert practitioners to

total cases/capita

1200
!II! 900
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Hw
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Figure 2. Cumulative incidence of human cases of WNV through 2018. This map of cumulative incidence shows that
counties in eastern Nebraska have generally had a lower infection rate. Cumulative incidence is all cases over time,
both neuro- and non-neuroinvasive, per 100,000 population.
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the potential for higher infection rates early in the season provides more opportunity for mitigation actions
such as spraying insecticide or reminding people to use repellant, and for anticipating diagnostic and treat-
ment needs and costs. The Nebraska Department of Health and Human Services issues warnings when the
virus is first detected each year and before summer holidays that traditionally involve outdoor activities.
Being able to predict outbreaks with more confidence would enable public health authorities to conduct tar-
geted preventive messaging (Davis et al., 2017).

Our project incorporates and builds on findings from other multidisciplinary efforts to understand and pre-
dict health-related effects of climate change on vector-borne disease, focusing on county-scale in Nebraska.
Mills et al. (2010) created a research plan for climate change and vector-borne disease and recommended
collaborative, multidisciplinary partnerships that take an ecosystem approach, incorporating the effects of
climate on the physical environment, and on pathogens, vectors, and hosts, replicated over space and time
to understand local variation.

2. Literature Review

Previous U.S. research has generally found that temperatures within a certain range are associated with the
spread of West Nile (Paull et al., 2017) and that winter temperatures may be particularly influential in the
northern Plains (Wimberly et al., 2014), but the relationship to precipitation is complex. Depending on fac-
tors such as land use and land cover, climate, and prevalence of various animal hosts and mosquito vectors,
precipitation has been found to have positive, negative, unimodal, or undetectable correlations with West
Nile incidence, and the influence of different drivers varies spatially (Centers for Disease Control and
Chuang et al., 2011; Hahn et al., 2015; Paull et al., 2017; Prevention, 2013; Shand et al., 2016; Wimberly
et al., 2008, 2014). California, for example, monitors temperature, precipitation, species abundance, infec-
tion rate in mosquitoes, sentinel chickens, dead birds, and human cases and cites predictive capabilities
based in part on temperature and drought in the months preceding the infection season (California
Department of Public Health, 2019). South Dakota State University has conducted extensive research on
WNV in the northern Great Plains, combining remotely sensed weather data with near real-time mosquito
monitoring and infection data, and provides alerts and warnings through its Mosquito Information System
(http://mosquito.sdstate.edu/).

A recent large-scale study across the United States identified the role of different predictors of WNV infection
rates across the United States, emphasizing the role of immunity from previous exposure (Paull et al., 2017).
They used monthly bias-corrected precipitation and temperature data and the Palmer Drought Severity
Index and computed variables reflecting optimal breeding temperatures and freezes. Using a generalized lin-
ear mixed effects model, they found that the importance of predictors varied across the country, and that the
model was most accurate where drought and immunity were significant predictors, which was the case in
Nebraska. It also examined 15 counties in Colorado, using a generalized linear model with negative binomial
distribution, to evaluate the contribution of mosquito data, and found that drought was associated with
increased infection rates in mosquitoes.

Another recent large-scale study calculated z-scores for each U.S. county to express the number of cases of
neuro-invasive WNV as a number of standard deviations above or below the mean (Hahn et al., 2015).
Standardization enabled comparisons across different populations, and limiting it to neuroinvasive cases
ensured a more consistently reported subset of cases. They used North American Land Data Assimilation
System data for precipitation and temperature, aggregated to county level by averaging the grid cells in each
county. They used average annual precipitation and temperature calculations for each county, as well as
quarterly temperature and precipitation variables. At the national level, they found a strong positive correla-
tion between temperature anomalies and disease incidence, and no significant relationship between preci-
pitation and infection. At county level, temperature increased likelihood of infections in three of 10
regions of the country, and winter temperature was the most important seasonal predictor. The influence
of precipitation and temperature varied by region.

Keyel et al. (2019) used random forest machine learning to identify most important variables in predicting
WNV infection rates in New York and Connecticut over various spatial and temporal scales. They compared
66 climate-related and 20-21 nonclimatic variables and found that climate variables improved prediction of
mosquito and human infection rates at county scale.
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Shand et al. (2016) developed a model to predict West Nile infection risk for DuPage County, Illinois, based
on weekly precipitation, temperature, and mosquito surveillance data. For weather data, they averaged
values from two observation stations in the county and accounted for historic norms. They investigated
the effects of precipitation and computed “degree weeks” for several different weekly periods on mosquito
infection rate (MIR), the dependent variable. They found significant interaction between precipitation and
temperature, that lower-than-average precipitation made warmer conditions a stronger predictor, and that
a dry third quarter was a predictor of higher MIR in the following year's infection season.

Davis et al. (2017) observed that most disease models are retrospective, and called for modeling efforts that
make predictions on out-of-sample data. Accordingly, they used logistic regression to predict the weekly
probability of WNV occurrence at county level, based on 6-month lags of precipitation and temperature
and a mosquito infection index. The model correctly predicted an early onset to the infection season in
2016, based on warm temperatures. The researchers used human infection rates from 2004 through
2015, because 2002 and 2003 were highly atypical, with very high infection rates caused by the virus being
introduced to a population with little prior immunity. They also had access to weekly data from the state
Department of Health through a special data-sharing agreement. Most weekly county infection numbers
were zero, so the researchers used presence-absence reporting rather than counts. They used the gridded
North American Land Data Assimilation System and sampled the county centroid for precipitation and
temperature. Time lags of temperature and moisture data helped predict seasonal patterns (Davis
et al.,, 2018). Also in South Dakota, Hess et al. (2018) used machine learning to identify interannual
humidity, temperature, and surface water availability along with land use as key influences on the risk
of WNV to humans.

The spread of WNV has been associated with warmer temperatures in higher latitudes, especially warmer
winters that are no longer cold enough to halt the viral life cycle, although this dynamic is complex
(Beard et al., 2016; Wimberly et al., 2014). While the risk of human exposure in places such as Nebraska will
likely continue to change, excessively hot temperatures could limit viral reproduction (Beard et al., 2016).

Scientists' ability to predict or forecast disease is still evolving, as is decision-makers' ability to use advanced
warning for risk communication, anticipating treatment needs, or estimating impacts of interventions
(Johansson et al., 2019). Researchers have called for more systematic integration of scientific research with
public health decision-making (Barker, 2019). Surveying WNV modeling efforts to date, Barker grouped
models by the type of information they provide: spatial patterns; early warning based on spatiotemporal ana-
lysis; and early detection, incorporating surveillance data.

Our approach specifically focuses on how to match timescales for drivers and response variables in com-
plex processes such as incidence of vector-borne disease, which depend on how life cycles of pathogens
and vectors intersect with host species. A review of the state of knowledge and needed research on
climate change and vector-borne disease identifies the need for attention to timescales that effectively
couple processes across systems, such as climate and WNV infection (Parham et al., 2015). Our model
uses meteorological data and past human cases to provide early warning of higher-risk years, by county,
in the months leading up to the infection season. Rather than using preidentified lags of key variables,
our method uses regression models with distributed lags of weather variables (Teller et al., 2016) to iden-
tify patterns of precipitation and temperature over time that have the largest effect, and then uses models
fit on training data to predict human infection in subsequent out-of-sample years. Distributed lags of
monthly weather variables predicted variation in plant demography as functions of drought indices for
a perennial wildflower (Tenhumberg et al., 2018). Distributed lags of daily meteorological variables pre-
dicted seasonal patterns of WNV infection in South Dakota counties (Davis et al., 2018), whereas we
use up to 3 years of distributed lags of monthly weather and climate variables to predict annual variations
in human cases.

3. Methods
3.1. Data

Most of the data we used are publicly accessible. We used annual counts and estimates of Nebraska county
populations from the U.S. Census Bureau. We obtained annual counts of human cases of WNV for each
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county from CDC's Arbonet for 2002-2018. Paull et al. (2017) demonstrated that previous exposure to WNV
reduces human infection rates, so we computed the rate of cumulative incidence as the total number of pre-
vious cases, for each county and each year, per 100,000 population. For precipitation and temperature data,
we downloaded monthly values from the National Centers for Environmental Information, National
Climatic Data Center (https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc: C00005, Vose et al., 2014).
For the Standardized Precipitation Index (SPI) and Standardized Precipitation and Evapotranspiration Index
(SPEI) by county, we extracted monthly values from Westwide Drought Tracker netcdf files (Abatzoglou
et al., 2017). Although the Palmer Drought Severity Index was also available, we did not use it because of
its built-in time lag (Guttman, 1998).

3.2. Statistical Modeling

For each target out-of-sample year from 2012 through 2018, we used previous years as training data. For
each out-of-sample year we used two different training data sets. We started training data sets in either
2002, when cases were first recorded, or in 2004, to omit 2003, the highly anomalous year when WNV
first widely spread through Nebraska. We used the R package mgcv to fit generalized additive models
with thin-plate splines for nonparametric modeling of distributed lags of drought and temperature data,
using restricted maximum likelihood estimation with a log link and negative binomial distribution
(Wood, 2011). Natural-log-transformed population was used as an offset variable to directly model cases
per 100,000 people.

If there is something unique about a county or year that is not reflected in the covariates, then that county or
year could have consistently higher or lower cases than expected. This intraclass correlation can occur when-
ever a sample unit is measured repeatedly, as we do with both counties (multiple years) and years (many
counties) (Zuur et al., 2007). One approach to account for this correlation is to include random effects, coef-
ficients specific to a unit that are assumed to come from a specific distribution (usually normal) with mean
zero. Including random effects increases the computational complexity of a model, so as an alternative we
estimated categorical fixed effects for county and year using sum-to-zero contrasts (also called effects cod-
ing). Using sum-to-zero contrasts we can interpret the remaining fixed effects as applying to an average
county and year. We included county contrasts in all models. We ran models with and without year as a
sum-to-zero contrast coefficient to ensure that including a fixed effect of year did improve the model.

For each county and year, we created sets of lags of drought and temperature variables, working backward
from February. In practice, by mid-March, data through February are available, and preliminary data on
human cases for the previous year are available from Arbonet (at least, that was true in 2018). Mid-March
is potentially early enough to provide time to disseminate and use findings, before the late-spring start to
the infection season. Using February as the start of the lagged data, the February value was lag 0, January
was lag 1, December, lag 2, and so on. We experimented with lag lengths of 12, 18, 24, 30, and 36 months
and created lags for SPI, SPEI, standardized temperature deviations from the mean, and standardized preci-
pitation deviations from the mean.

Cases were our response variable. We eliminated counties with no cases in any years as outliers so that mod-
els would converge. There were three counties with no cases through 2012, dropping to one by 2018. Our
global model (1) was

In(Ai) = By + £, (tempi‘ Lm) + £, <dr0ughti7 t,m) +B,(CI,)
population; ,
+ By + By +ln<71007000 )

¥ ~NegBinom(Ai,, k), 1)

where i = county of observation, ¢ = year of observation, and m = months of lagged observations leading
up to the start of the infection season, 8; is the coefficient for cumulative incidence, and 8, and fj3; are
vectors of sum-to-zero contrast coefficients to help account for unique spatial (county) and temporal
(year) characteristics. f; and f, are nonlinear coefficients, functional smoothing curves. 3, is the intercept.
A is the expected rate of infection, and k is the overdispersion parameter for the negative binomial
distribution.
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Figure 4. The 2018 presence/absence predictions, performance of predictions, comparison with naive. (a) Counties
predicted to have cases in 2018. “Absence” means counties were predicted to have no cases. “Presence” means they
were predicted to have at least one case. Arthur County, white, is “NA” because it has never had any cases and was
excluded as an outlier. (b) County prediction performance in 2018. “Missed” means one or more cases occurred in a
county not predicted to have cases. “Over” means one or more cases were predicted but did not occur. “Correct” means
that a prediction for either the presence or absence of cases was correct. (c) Performance of fitted vs. naive model in
predicting counties with cases. Counties in orange are ones that the naive model got right but the fitted model did not.
Counties in blue are ones that the fitted model got right and the naive did not. The models performed the same, right or
wrong, in counties that are gray.

naive model for the years in the training data. The fitted models' accuracy for years 2005 and after ranged
from 68.4% to 75.1%. For years from 2002 onward, fitted models' accuracy ranged from 68% to 75.7%.

Our exploration of model selection methods other than lowest AIC did not find relationships between any
measures of training data performance and out-of-sample performance that led to better results than AIC.
On the whole, selection by AIC produced a better set of results than choosing models with or without the
year coefficient, or choosing by other model characteristics such as least sum of residuals, or training data
performance measures.

To see whether the difference between fitted and naive models was statistically significant, we performed
McNemar's test of paired categorical data. Comparing accuracy of predictions for years in training data
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Figure 5. Numeric prediction performance comparisons. This figure
contrasts the performance of best fitted models for each set of training
data with the performance of an annual persistence naive model,
comparing predictions with actual cases from 2005 on (to avoid
handicapping the naive). The difference between predicted and actual
cases is grouped by year and by county and expressed as standard
deviations, with an icon indicating the mean difference. Intervals show
the minimum and maximum single year or county with the smallest or
largest difference between predicted and observed cases.
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Figure 6. Predicted vs. observed cases, with prediction intervals, for out-
of-sample years, 2012-2018. This chart compares actual and predicted
numbers of cases, with actual numbers in tan, and predicted numbers in
blue, with prediction intervals.

from 2005 through 2017, the difference between the fitted and naive mod-
els was statistically significant in all cases. For out-of-sample forecasts,
accuracy was higher in all cases for the fitted than for the naive model,
for models chosen by AIC and based on data through 2002. Combining
all of the out-of-sample predictions across years and conducting
McNemar's test yielded a statistically significant difference between pre-
dictions from the fitted and naive models, with a chi-square statistic of
10.97 on 1 degree of freedom, for a probability of 0.0009.

4.4. Numeric Prediction Performance

We compared performance of naive and fitted models’ predictions with
actual numbers of cases for years used in training data (starting with
2002-2011, successively adding a year at a time, through 2018), grouped
by year and by county, and expressed differences as standard deviations
from the mean. We found that the fitted models were more prone to over-
predictions, in some cases, dramatically (Figure 5). Compared by year, the
naive model tended to underpredict the number of cases, with the lower
boundary of the range smaller in all seven instances than the fitted model,
by as little as 0.12 standard deviations for the model fit through 2012, and
by as much as 1.43 standard deviations for the model fit through 2013. But
the overpredictions of the fitted models were larger than those of the naive
models, in all years but one, and in one case, based on data through 2012,
the fitted model's overpredictions were as much as 14.87 standard devia-
tions above actual cases. In all cases but one, based on data through
2013, the average difference between the predicted and actual number of
cases was lower for the naive model than for the fitted model. Grouping
and comparing by county told a similar story. The underpredictions of
the fitted and naive models were closer to each other, but the overpredic-
tions of the fitted model were larger, by as much as 24.83 standard devia-
tions for data fit through 2012. Comparing the averages of predictions by
the fitted and naive models, the naive model came closer on numeric pre-
dictions than the fitted models in five out of the seven model runs, with
one producing a tie, and the fitted model outperforming the naive based
on data through 2013.

The prediction intervals were very large (Figure 6), so even on training
data, most but not all of the actual numbers of cases fell between the upper
and lower bounds of the prediction interval, but some of the fitted models
made dramatic overpredictions for certain years, notably for 2007 with the
model fit on data through 2012. The model fit on data through 2011 did a
reasonable job of anticipating the increase in cases in 2012, but the model
fit on data through 2017 failed to anticipate an increase in cases in 2018.
We did not find a sufficiently useful relationship between performance of
retroactive predictions and out-of-sample forecasts to enable us to make
confident numeric predictions. Figure 6 shows predictions for each out-
of-sample year in blue, with prediction intervals, and the actual number
of cases in tan.

4.5. Scenario Modeling

How to isolate and quantify the effect of drought—what can we attribute to
drought?—is a question that comes up frequently in research on the
impacts of drought. We experimented with using a model fitted on data
through 2018 to create scenarios without drought, without warm tempera-
tures, and with neither, to quantify the effect drought had on human cases
of WNV in Nebraska (Figure 7). Our model fit on data through 2018
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predicted

204

predicted 3,318 cases, fewer than the 3,973 actually recorded (excluding
2003, the model predicted 2,467 cases, more than the 2,030 that occurred
in years other than 2003). This is our baseline scenario. Our no-drought
scenario estimated that there would have been 2,445 cases of WNV, the
orange line, which is 873 less than the baseline scenario, accounting for
26% of the total. Our no-high temperatures scenario, the blue line, esti-
mated 2,355 cases, 963 less than the baseline scenario, a 29% difference.
In the scenario without drought or warm temperatures, the green line,

our model predicted 1,835 cases, which is 1,483 less than baseline sce-

actual nario, and 45% of the total.

Figure 7. Scenarios without drought, without warm temperature, and with
neither. The gray line shows predictions of our fitted model, the baseline

scenario. The orange line is the no-drought scenario. The blue line is the
no-warm temperature scenario. The green line shows the scenario with
neither drought nor warm temperatures. The dotted line is where a 1:1
predicted-to-actual relationship would be.

5. Discussion

We demonstrated that using regression models with distributed lags at
monthly intervals can identify patterns of drought and temperature in
previous years that predict increased risk of human cases of WNV in
Nebraska counties in the subsequent year. Although models fit on train-
ing data and used to make out-of-sample predictions were better at explanation, i.e., finding the drought
and temperature signal in what had happened in the past, they also demonstrated statistically significant
early-season ability to predict where cases would occur, based on out-of-sample data, a much more diffi-
cult task.

The value of the “year” coefficient, which started as a workaround in the transition from explanatory mod-
eling to forecasting, was an interesting and unexpected finding. Because “year” was a sum-to-zero contrast
coefficient within the model that we did not have for out-of-sample years, we modeled a year coefficient for
each county-year based on the first model, using drought, temperature, and county as predictors, and used
that for out-of-sample predictions. Other methods such as averaging year coefficients (which we also tried)
or setting the year coefficient to zero would lose information about the place-specific interactions of precipi-
tation and temperature. Although it introduces complexity, the interim step of modeling the year coefficient
in effect fine-tunes the signal for the effects of temperature and precipitation in a specific county. The fact
that this workaround produced meaningful results suggests that the interaction of precipitation and tem-
perature matters, as do place-specific factors such as land use that are not captured in our model. A less com-
plex, more integrated method for fitting smoothing curves for interacting variables would be valuable.

Using Nebraska counties as a unit of analysis also introduced heterogeneity into our model, given that they
range from sparsely populated rural areas to dense urban areas. Our model performed better at the “where”
question implicit in lower density counties that do not always have cases and worse at the “how many” ques-
tion implicit in more populous areas that always have cases. This suggests that distinguishing between rural
and urban counties, possibly modeling them separately, could improve performance, in lieu of actual access
to data at finer spatial scales.

Our model results are consistent with the understanding that drought and temperature contribute to but do
not independently account for all cases of WNV in humans. Predictors reflecting additional biological pro-
cesses could help refine numeric predictions. Population and movement of animal hosts, particularly birds,
could prove to be useful predictors (Moon et al., 2019). Population turnover and immunity cycles in avian
communities would be valuable to explore as predictors. MIRs would be a logical predictor to add to the
model, although only about 30 counties in Nebraska conduct mosquito trapping, and it has been intermit-
tent in some counties, so the resulting data are not evenly distributed across time or space. If real-time data
on human cases were to become available for Nebraska, it would open new avenues for exploration, in com-
bination with drought, temperature, and mosquito data (Davis et al., 2017; Wimberly et al., 2013). The
importance of temperatures identified by our models suggests that further research focused on biologic fac-
tors influencing whether the virus survives winter months and on earlier mosquito emergence (Ciota
et al., 2011) would be valuable. Human behavior is another key influence (Beard et al., 2016), from
production-driven decisions on land use to personal choices about whether to wear protective clothing or
insect repellant.
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A preliminary use for our predictive maps would be to produce an experimental risk map denoting counties
predicted to have higher risk, and use it to underscore a primary message, that people state-wide should
avoid exposure to mosquito bites by emptying pools of standing water, and by wearing protective clothing
and insect repellant. Additional warnings could be targeted to counties predicted to have cases, with ade-
quate information about the associated uncertainty of the prediction. We also used the model to create sce-
narios with no drought conditions and/or no warm winters. A similar process could be used to model the
effects of pervasive warmer temperatures. Although the results are fundamentally hypothetical, they would
provide sound numeric inputs for scenario-based decision making, particularly as the practice and use of dis-
ease forecasting evolves.

The strength of this method is in using lags of publicly available weather data that can be compared to a
response variable to find a meaningful pattern that can be used to explain the past and predict the future.
Depending on availability of data, it could easily be expanded to other diseases or other outcomes that are
determined partially or wholly by the weather, such as crop yield.

6. Conclusion

Human cases of WNV are the result of a complex chain of biological, physical, and social processes, includ-
ing virus transmission and reproduction through mosquitos and animal hosts such as birds, effects of tem-
perature and precipitation on reproductive success, habitat and feeding behavior, and human choice such as
emptying standing water and wearing protective clothing or insect repellant. We found that a dry year pre-
ceded by a wet year, and generally warmer temperatures, is a pattern that contributes to higher infection
rates in humans in Nebraska, and that a statistical model based on these weather patterns has a statistically
significant ability to predict which counties will have cases of WNV. This model allows us to explore scenar-
ios, such as how many fewer cases of WNV there would have been without drought or warm winters. The
method we used for detecting drought and temperature signals could be applied to other diseases, crop yield,
or other annual response variables.
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Precipitation and Evapotranspiration Index (SPEI) are extracted monthly values by county from Westwide
Drought Tracker netcdf files (Abatzoglou et al., 2017). Population data are from the U.S. Census Bureau.
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