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The Plant Phenome Journal
Science Notes

Core Ideas

•	 Functional ANOVA methods are beneficial in 
analyzing time series phenotypic datasets.

•	 Scoring all plants or plots on the same days is 
challenging in large-scale experiments.

•	 Plants phenotyped on non-overlapping days can 
be compared using functional ANOVA.
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Recent advances in automated plant phenotyping have enabled the collection of time 
series measurements from the same plants of a wide range of traits at different devel-
opmental time scales. The availability of time series phenotypic datasets has increased 
interest in statistical approaches for comparing patterns of change among different plant 
genotypes and different treatment conditions. Two widely used methods of modeling 
growth with time are pointwise analysis of variance (ANOVA) and parametric sigmoi-
dal curve fitting. Pointwise ANOVA yields discontinuous growth curves, which do not 
reflect the true dynamics of growth patterns in plants. In contrast, fitting a parametric 
model to a time series of observations does capture the trend of growth; however, these 
models require assumptions regarding the true pattern of plant growth. Depending on 
the species, treatment regime, and subset of the plant life cycle sampled, these assump-
tions will not always hold true. We have developed a different approach—functional 
ANOVA—which yields continuous growth curves without requiring assumptions regard-
ing patterns of plant growth. We compared and validated this approach using data from 
an experiment measuring the growth of two maize (Zea mays L. ssp. mays) genotypes 
under two water availability treatments during a 21-d period. Functional ANOVA enables 
a nonparametric estimation of the dynamics of changes in plant traits with time with-
out assumptions regarding curve shape. In addition to estimating smooth curves of trait 
values with time, functional ANOVA also estimates the derivatives of these curves, e.g., 
growth rates, simultaneously. Using two different subsampling strategies, we demon-
strate that this functional ANOVA method enables the comparison of growth curves 
among plants phenotyped on non-overlapping days with little reduction in estimation 
accuracy. This means that functional ANOVA based approaches can allow larger num-
bers of samples and biological replicates to be scored in a single experiment given fixed 
amounts of phenotyping infrastructure and personnel.

One of the primary goals of both classical and quantitative genetic research is 
to link genotypic variation to phenotypic variation by identifying specific 
genetic variants that produce defined changes in phenotype. In the last sev-

eral decades, advances in DNA sequencing have drastically increased the throughput 
and decreased the cost of quantifying genotypic variation across individuals. Today, 
the vast majority of the time and cost of plant genetic research is devoted to capturing 
and quantifying phenotypic data, a process that remains slow and both cost and labor 
intensive. The bottleneck of phenotypic data collection has driven interest in automated 
and high-throughput approaches to collecting plant phenotypes. High-throughput plant 
phenotyping platforms use cameras or other sensors to capture nondestructive measure-
ments of plant traits from dozens to thousands of plants per day (Fahlgren et al., 2015b; 
Miller et al., 2007). Because these measurements are both automated and nondestruc-
tive, the same traits can be measured from the same plants repeatedly throughout the life 
cycle of a plant. Unlike single time point measurements, time series trait data enable the 
quantification of the dynamics of plant growth and development. Biomass data collected 
from maize recombinant inbred lines and association populations have demonstrated 
that different genetic loci are identified using data from different time points in develop-
ment (Muraya et al., 2017; Zhang et al., 2017). However, statistical approaches for both 
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dealing with the particular complexities of time series phenotypic 
measurements and extracting as much information as possible 
from repeated phenotypic measurements remains an ongoing area 
of development within plant biology and quantitative genetics.

One approach to dealing with high-density time series data 
is to conduct independent quantitative trait loci (QTL) or asso-
ciation analyses at each individual time point measured (Kwak 
et al., 2014; Moore et al., 2013). Under the ANOVA setup, we 
call this method pointwise ANOVA, as ANOVA is performed 
at each time point individually. However, this approach generally 
requires that all plants be scored at all time points analyzed. In 
addition, it does not leverage the potential of repeated measure-
ments to increase the accuracy with which true values at a given 
time point can be estimated. Another approach is to fit particular 
functions such as logistic curves to the data (Deng et al., 2012; 
Xavier et al., 2017). However, this parametric inference approach 
will produce accurate results only if the assumptions of the growth 
model function are satisfied by the observed data. Commonly used 
growth curve models (sigmoidal curves) generally require data 
from across the entire life cycle of the plant, which can limit the 
types of phenotyping data to which these models can be applied. 
For example, many greenhouses or ground-based phenotyping 
systems can only be used to gather data from plants below a fixed 
height limit (Fahlgren et al., 2015a; White and Conley, 2013). For 
taller crops such as maize or bioenergy sorghum [Sorghum bicolor 
(L.) Moench], only a portion of the life cycle can be phenotyped 
without exceeding these height limits.

Functional data analysis (FDA) (Ramsay and Silverman, 
2005; Yao et al., 2005) is another approach that can be applied 
to the analysis of time series phenotypic datasets. This alterna-
tive approach combines many of the strengths of both pointwise 
ANOVA and parametric modeling approaches to the analysis of 
time series phenotypic datasets. In FDA, data-driven nonpara-
metric approaches (Cleveland and Devlin, 1988; Fan and Gijbels, 
1996; Jacoby, 2000; Ramsay and Silverman, 2005) are used to fit 
the trend of a data series with time. Unlike pointwise ANOVA, 
FDA makes very flexible assumptions about the distribution of 
time points (Yao et al., 2005). Multiple observations taken from 
the same plant with time will show a degree of correlation, and if 
correctly harnessed, these correlations can be used to increase the 
accuracy with which different effects can be estimated. However, 
this correlation structure is often missed or captured incorrectly 
by time series analysis. In FDA, a mixed random effect term (Yao 
et al., 2005) is used to explain the correlation structure among the 
data. Statistical inference can also be used to obtain confidence 
bands for the estimated curves, again taking into account the tem-
poral dependence of the data. Functional data analysis has been 
applied to the analysis of plant phenotypic data in several recent 
cases. For example, FDA has been used to analyze different levels of 
variation in root gravitropism data (Xu et al., 2017) and dominant 
variation in phenotype data has been extracted by FDA and applied 
to further analysis, such as multivariate QTL mapping (Kwak et 
al., 2016). Compared with a previously proposed approach of 

fitting cubic B-spline to individual plants when estimating root 
growth rates (Beemster and Baskin, 1998), the method proposed 
here pools information across different plants to provide smooth-
ing estimates for the mean growth curves and genotype, treatment, 
and their interaction effects with time, together with the deriva-
tives of those functions. Furthermore, by utilizing information on 
variation across biological replicates, the proposed method can also 
generate confidence bands around the estimated growth curves.

In studies aimed at comparing genotypes or treatments, opti-
mal experimental design emphasizes collecting measurements as 
close to simultaneously as possible for all plants within the study to 
avoid increased variance across measurements resulting from both 
developmental and diurnal changes in the measured phenotype. 
However, in larger quantitative genetic studies using high-through-
put phenotyping technologies, this requirement for simultaneous 
data collection can become a major bottleneck limiting the number 
of plants and number of accessions that can be included within 
a single experiment. For example, the University of Nebraska–
Lincoln’s Greenhouse Innovation Center has the capacity to image 
approximate 400 plants per day, while significantly more total 
plants can be grown in parallel (Ge et al., 2016). Similar systems 
such as the Bellwether phenotyping system also have the capacity 
to grow more plants simultaneously than can be imaged during the 
course of a single day (Fahlgren et al., 2015a). Phenotypes collected 
from unmanned aerial vehicles suffer from a similar constraint 
on how many plots can be imaged per day, with the additional 
constraint that unsuitable weather conditions—high wind, thun-
derstorms etc.—can result in missing data from particular sites on 
particular dates, producing unbalanced final phenotypic datasets. 
In many cases, FDA can provide a way to address this issue by per-
mitting the reconstruction of growth curves using relatively small 
numbers of measurements spaced across a large period of devel-
opment, thus generating predicted values for any time points not 
scored. Our proposed method can produce a subsample estimator 
based on half of the observed data for individual plants with only 
minimal decreases in accuracy relative to estimates constructed 
from the entire dataset. In addition, we obtain accurate estimator 
values when different batches of plants are phenotyped on alternat-
ing days relative to each other.

�Methods
Experimental Design, Growth Conditions, 
and Imaging

Our B73 plants were grown from a seed source validated using 
RNA-sequencing single nucleotide polymorphism calling to match 
the B73 genotype used to generate the maize reference genome 
(Liang and Schnable, 2016). Fast Flowering Mini-Maize-A seeds 
were provided by Morgan E. McCaw and have also been subjected 
to 24´ whole genome resequencing (McCaw et al., 2016). All plants 
were grown at the University of Nebraska–Lincoln’s Greenhouse 
Innovation Center. Plants were sown into 5.7-L pots with Fafard 
germination mix and watered to a target weight of 5.4 kg. From 6 d 
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after planting (DAP) to 26 DAP, plants were imaged using an RGB 
camera from angles offset from each other by 90°. Until 10 DAP, 
each plant was rewatered to a target weight of 5.4 kg. From 11 DAP 
(the 6th day since the beginning of imaging) to the end of the exper-
iment, drought-treated plants received no additional water, while 
well-watered plants continued to be rewatered to a target weight of 
5.4 kg each day. Further details on experimental design and growth 
conditions were provided by Ge et al. (2016).

Extraction of Pixel Counts from RGB Images
An RGB image processing procedure (Ge et al., 2016) was 

applied to extract plant sizes from the acquired images. A thresh-
old was applied to the contrast of green intensity and the average 
intensity of red and blue to separate the plant pixels from the back-
ground. The majority of the background in our imaging chamber 
was white. Therefore, the plant areas could be obtained efficiently 
by such a comparison. The total pixel counts of the extracted plant 
were considered as a measurement of the plant size.

Pointwise ANOVA Model
Let yi(tj) be the area of the ith maize plant measured at time tj, 

where i = 1, …, n, n = 60 is the sample size, and j = 1, …, m, m = 20 
is the number of measured days. Define genotype indicator Gi as 
follows: Gi = 1 if the ith maize is of Genotype B73 and Gi = 0 if 
the ith maize is of Genotype FFMM-A. Similarly, define the envi-
ronment indicator Wi as follows: Wi = 1 if the ith maize plant is 
well watered and Wi = 0 if the ith maize plant is water stressed. A 
natural way to model the growth with time is to use the following 
pointwise ANOVA model:

( ) ( )i j j i j i j i i j i jy t G g W w G W t=m + + + g +e   [1]

where mj is the plant area of water-stressed FFMM-A maize at time 
tj, gj is the genotype effect function at time tj, w j is the treatment 
effect function at time tj, gj is the genotype ´ environment interac-
tion at time tj, and ei(tj) is a zero-mean random variable.

It is interesting to know whether genotype ´ environment 
interactions exist. To explore this, we tested the genotype ´ envi-
ronment interaction in a pointwise manner. The results can be 
summarized as

Day 1: P = 0.346 Day 8: P = 0.799 Day 15: P = 0.834
Day 2: P = 0.579 Day 9: P = 0.495 Day 16: omitted
Day 3: P = 0.696 Day 10: P = 0.592 Day 17: P = 0.869
Day 4: P = 0.622 Day 11: P = 0.705 Day 18: P = 0.997
Day 5: P = 0.662 Day 12: P = 0.886 Day 19: P = 0.915
Day 6: P = 0.761 Day 13: P = 0.687 Day 20: P = 0.737
Day 7: P = 0.851 Day 14: P = 0.675 Day 21: P = 0.793

Because all genotype ´ environment interactions were insig-
nificant, we revised Eq. [1] and used the following pointwise 
ANOVA model:

( ) ( )i j j i j i j i jy t G g W w t=m + + +e   [2]

The resulting estimates are denoted as ˆ jm , ˆ jg , and ˆ jw , where 
j = 1, …, m. Interpolating the corresponding estimates resulted 
in Fig. 1. However, the estimated functions are not smooth. We 
advocate the following functional ANOVA method.

Functional ANOVA Model
We assume the following functional ANOVA model for 

plant growth:

( ) ( ) ( ) ( ) ( )i i i iy t t G g t W w t t=m + + +e   [3]

where m(t) is the growth function of the water-stressed FFMM-A 
maize, g(t) is the genotype effect, w(t) is the treatment effect, and 
ei(t) is a zero-mean random process. We assume m(t), g(t), and w(t) 
are smooth functions with continuous second derivatives, which 
is a key difference between pointwise ANOVA and functional 
ANOVA. To recover the underlying functions and their dynam-
ics, namely velocity and acceleration, we use penalized smoothing 
splines (Ramsay and Silverman, 2005).

We first represent m(t) using a rank K spline basis expansion:

( ) ( )
1, ,

1

K

j r j
j

t B tm
=

m = bå

where bm ,j is a coefficient and 
1 ,r jB (t) is an order r1 B-spline basis 

function. We chose K = 12 for a reduced rank representation and 
let B-spline basis functions have equally spaced interior knots on 
[0,20]. Because we were interested in estimating velocity and accel-
eration functions smoothly, we chose order r1 = 6. Define 

Fig. 1. The comparison of (a) estimated growth curves and (b) the 
estimated main effect functions using pointwise ANOVA and func-
tional ANOVA for the dataset including two genotypes and two 
treatments. The estimated curves with the open circles are point-
wise ANOVA estimates.
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bm = (bm ,1, …, bm ,K)T and B(t) = (B6,1, …, B6,K)T(t). Denote the 
r2th derivative of B(t) as 2( )rB (t). Then m(t) can be rewritten as 
m(t) = B(t)Tbm . Similarly, we approximate other functions as 
g(t) = B(t)Tbg and w(t) = B(t)Tbw. To estimate the vectors of 
parameters bm , bg, and bw, penalized smoothing splines minimize 
the following penalized sum of squares:

( ) ( ) ( ) ( )
2T T T

1 1

T T T
1 2 3

n m

i j j i j g i j w
i j

g g w w

y t t G t W tm
= =

m m

é ù- - -ê úê úë û

+l +l +l

åå B B Bb b b

b Wb b Wb b Wb

[4]

where l l for l = 1, 2 , 3 are smoothing parameters and 
W = ò 2( )rB (t)[ 2( )rB (t)]Tdt is a penalty matrix. Let l = l1 = l2 
= l3 for simplicity and set r2 = 4 because we penalize the second 
derivatives. For a given smoothing parameter l, an explicit form 
of solutions can be obtained when minimizing Eq. [4] (Ramsay 
and Silverman, 2005). Generalized cross-validation (GCV) is a 
popular method to choose smoothing parameters (Ramsay and 
Silverman, 2005). The GCV function is a smooth function of l . 
To locate the optimal smoothing parameter that minimizes the 
GCV function, we used a simple grid search approach. After the 
optimal smoothing parameter was found, the penalized sum of 
squares in Eq. [4] was minimized to obtain the estimates ˆ

mb , ˆ
gb , 

and ˆ
wb . Accordingly, the obtained estimates for the smooth func-

tions are m̂ (t) = B(t)T ˆ
mb , ĝ (t) = B(t)T ˆ

gb , and ŵ (t) =  B(t)T ˆ
wb . 

The confidence bands for the estimated curves m̂ (t), ĝ (t), and 
ŵ (t) can be obtained by a linear transformation of the joint con-
fidence intervals of the regression coefficients bm , bg, and bw of 
the B-spline basis functions in Eq. [4]. The 95% confidence bands 
for the estimated genotype and treatment effects in our study were 
calculated by using the “fda” R package.

One advantage of using the penalized smoothing splines 
technique is that it readily yields different derivatives of 

the target smooth curves. For example, the estimates of the 
first and second derivative of m(t) are m̂ (1)(t) = [B(1)(t)]T ˆ

mb  
and m̂ (2)(t) = [B(2)(t)]T ˆ

mb , respectively. In general, Eq. [4] can 
be adapted to allow the number of observations to be different for 
each plant and the time points to be unequally spaced, which is a 
significant advantage of the functional ANOVA approach relative 
to conventional pointwise ANOVA. This advantage can be quite 
useful in determining imaging strategies. For example, image data 
could be collected at higher density early in development, when 
error and/or plant-to-plant variation is high, and at lower densi-
ties close to maturity when growth rates are low and the ratio of 
measurement error to mean values also declines.

Overall, when using the complete dataset, the difference 
between the estimates provided by the two methods was relatively 
small, as shown in Fig. 1. However, note that for the pointwise 
ANOVA, the estimates are fitted at each time point tj, so the 
obtained growth curves and main effects curves are discontinuous, 
which does not reflect the natural growth of plants. In contrast, 
the functional ANOVA assumes that the main effects and inter-
actions are smooth functions with time with continuous second 
derivatives. The dynamics of plant development (namely velocity 
and acceleration), as well as confidence bands for those curves, can 
be obtained by the functional ANOVA, which cannot be provided 
by the pointwise ANOVA.

�Results
The plant high-throughput phenotyping datasets used in this 

study were taken from a factorial experiment with 60 plants divided 
equally into two genotypes (B73 and FFMM-A) and equally into 
two treatments (well watered and drought stressed) (Fig. 2) (Ge 
et al., 2016). The two genotypes were selected because B73 is a 
widely used reference genotype that is a typical representative of 

Fig. 2. Estimated plant size for each individual phenotyped within this dataset, which includes two genotypes and two water treatments. 
Day 0 corresponds to 6 d after planting; Day 20 corresponds to 26 d after planting.
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moderate temperate maize, while FFMM-A represents one extreme 
end of the distribution of plant life cycle speed and plant archi-
tecture present within domesticated maize. Plants were imaged 
daily for a total of 21 d, excluding Day 16 as a result of a technical 
failure. As previously reported, B73 grew faster and larger than 
FFMM-A, and well-watered maize grew faster and larger than 
drought-stressed plants (Fig. 3) (Ge et al., 2016).

Estimating Genotype and Treatment Effects 
Using Spline Fitting

Vegetative biomass accumulation in maize and many other 
crops is generally assumed to follow a sigmoidal growth curve 
(Erickson, 1976). The cumulative increase of total C fixed as the 
plant produces additional leaves enables the growth of either more 
or larger leaves, creating the acceleration portion of the growth 

curve, while later in development much C is devoted to repro-
ductive development, slowing the accumulation of additional 
vegetative biomass, which ultimately plateaus, producing a final 
S-shaped curve. The dataset used in this study did not extend into 
reproductive development and thus captured only the first phase of 
the sigmoidal biomass accumulation pattern, producing J-shaped 
curves as shown in Fig. 3.

Applying penalized spline smoothing to the data, we obtained 
the estimated growth under different conditions shown in Fig. 4a. 
As expected, for each genotype, well-watered plants were consis-
tently larger than drought-stressed plants. In addition, plants from 
the accession B73 were consistently larger than those of FFMM-A. 
At early stages of plant development, genotype played a larger role 
in determining plant biomass than did water treatment. From Day 
1 to Day 16, both well-watered and drought-stressed B73 plants 

Fig. 3. Plants classified based on (a) genotype and (b) water treatment.
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were consistently larger than FFMM-A plants in either water 
treatment. After Day 16, the biomass of well-watered FFMM-A 
exceeded that of drought-stressed B73.

Figure 4b shows the estimated main effect functions for 
both genotype and water treatment. Both effect functions are 
monotonically increasing, but they exhibit very different shapes. 
The effect function for genotype is close to linear and increases 
steadily. The 95% confidence band in Fig. 4c shows that the 
effect function is significant throughout the whole experimental 
period. However, the effect function for water treatment shows an 
obvious J shape, starting at a low value and increasing very slowly 
for the first third of the experiment and then growing rapidly. 
The estimated treatment effect function is close to zero during 
the first few days because the drought stress started from Day 6. 

The 95% confidence band in Fig. 4d indicates that the treatment 
effect function is not significant until the second half of the 
experiment, which is reasonable because drought stress may take 
a few days to act significantly. The intersection of the two main 
effects functions coincides with the finding in Fig. 4a.

Dynamic Changes in Growth Rate
The results for the dynamics of the growth curves are sum-

marized in Fig. 5. Figure 5a shows the estimated growth velocity 
functions under different conditions. Similarly for each genotype, 
the growth velocity for non-water-stressed maize was consistently 
higher than for the drought-stressed maize; within each water 
treatment, B73 consistently grew faster than FFMM-A. All 
growth velocity curves show an S shape: during the early period, 

Fig. 4. (a) Growth curves estimated for each genotype–treatment combination, (b) estimated effect sizes for genotype and treatment, (c) 
estimated genotype effect with 95% confidence bands, and (d) estimated treatment effect with 95% confidence bands.



Page 7 of 10

the growth rates decreased slightly; during the middle period, the 
growth rates increased sharply; for the later period, the growth 
rates declined again. Interestingly, the early period for B73 was 
about 2 or 3 d longer than for FFMM-A, and the late period of 
non-water-stressed maize was about 2 or 3 d longer than that of 
drought-stressed maize. From the velocity perspective, this coin-
cides again with the finding that the genotype effect plays an 
important role during the early period but the treatment effect 
plays an important role during the late period. Figure 5b shows 
the estimated main effect velocity functions. Similarly, the two 
main effect functions show different shapes: after the early period 
of decrease, the genotype effect on the rate of growth increases 
slightly followed by a decrease, but the watering effect on the rate 
of growth increases sharply and keeps increasing.

Figure 5c shows the estimated growth acceleration functions 
under different conditions. Each curve in Fig. 5c exhibits a parabola-
like shape, with the maximum acceleration located around the 10th 
day of the experiment. Figure 5d shows the estimated main effect 
acceleration functions. The treatment effect on the acceleration of 
growth seems consistently higher than the genotype effect except for 
the first few days. Both acceleration functions increased during the 
first half of the experiment. However, for the latter half, the watering 
effect on acceleration became close to a constant, about 340, whereas 
the genotype effect on acceleration decreased dramatically.

Functional ANOVA for Comparing Growth with 
Non-overlapping Time Points

To investigate the estimation efficiency when plants were not 
phenotyped every day and to test the prediction accuracy of func-
tional ANOVAs for plant areas when phenotype measurements 
were not recorded, comparisons via cross-validation were made 
between the full dataset and subsampled datasets.

The data were subsampled in two ways. In the first scenario, 
only measurements from odd-numbered days were retained (10 d in 
total) for all the plants. This subsampling tested the effect of reduc-
ing the number of days of imaging for a single experiment, allowing 
more independent experiments to be conducted in parallel using 
the same infrastructural capacity for phenotypic data acquisition. 
We named the first scenario “subsampling by dates”. In the second 
scenario, all the plants were equally divided into two groups among 
the two genotypes and two treatments. For the first group, only 
measurements from odd-numbered days were retained, while for 
the remaining plants in the second group, only measurements from 
even-numbered days were retained. This subsampling tested the 
effect of measuring different subsets of plants in an experiment at 
different time points, which would allow experiments with a large 
number of genotypes or large sample sizes within each genotype 
to be conducted given a fixed facility capacity for phenotypic data 
acquisition. We named the second scenario “subsampling by plant 
replicates”.

Growth rates together with genotype and treatment effects 
were estimated using the two subsampling approaches described 
above using the same functional ANOVA procedure as for the full 
dataset. With the exception of the first several days when all the 
plants were quite small, as shown in Fig. 6, functional ANOVA 
with half of the data produced reliable estimates that were within 
5% deviation from the estimation using the entire data set. One 
explanation for the large relative difference at early time points—
when the plants were small—is that for small plants, the ratio of the 
variation of the phenotypic trait over its mean value is high. In this 
study, the variation included the biological variation among differ-
ent plants and measurement error from extracting plant features 
from images. When plants are small, the measurement error may 
be large compared with the mean value of the traits, which would 

Fig. 5. The estimated first derivative of (a) growth curves and (b) the main effect function of genotype and water treatment, and the esti-
mated second derivative of (c) growth curves and (d) the main effect function of genotype and water treatment.
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result in higher SD/mean ratios at early developmental stages of 
plants. Compared with the results when all the plants were pheno-
typed every day, the average relative estimation difference caused by 
reducing the imaging frequency was 1.64% (subsampling by dates), 
and that caused by decreasing the number of daily phenotyped 
plants was 1.45% (subsampling by plant replicates). Given those 
small estimation differences, the functional ANOVA approach is 
able to recover the entire genotype and treatment effects with time 
even if the plant images are recorded on only half the time of the 
whole experiment or only half of those plants are imaged every day. 
Data were further subsampled to one-fourth of the all data points 

collected. In subsampling by dates, data from all plants from only 
5 d (1st, 6th, 11th, 16th, and 21st days) were used; in subsampling 
by plant replicates, the 60 plants were divided into four groups 
with a roughly equal size within each combination of treatment 
and genotype. Only one group of data was used to construct the 
dataset used for functional data analysis. As shown in Fig. 7, the 
relative estimation differences remain quite small, with an aver-
age of 2.82% in the case of subsampling by dates and 2.13% in the 
case of subsampling by plant replicates. When the amounts of data 
become even smaller, the estimates become much less accurate for 
subsampling by dates because there are not enough time points 

Fig. 6. The relative difference in estimated growth curves between the whole dataset, which includes two genotypes and two treatments, 
and (a) a dataset subsampled to include data from only every other day (subsampling half by dates, all plants measured on the same days) 
and (b) a dataset subsampled by plant replicates (plants split into two groups measured on alternating days).

Fig. 7. The relative difference in estimated growth curves between the whole dataset, which includes two genotypes and two treatments, 
and (a) a dataset subsampled to include data from only every 4 d (subsampling 1/4 by dates, all plants measured on the same days) and (b) 
a dataset subsampled by plant replicates (plants split into four groups measured alternately on different days).
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to estimate the whole growth curve. Accuracy also decreases in 
subsampling by plant replicates, but the rate of decrease is slower 
because data from different combinations of genotype and treat-
ment are available on all the days.

One natural question is how to go about identifying opti-
mal sampling frequencies for imaging when different levels of 
priority are given to minimize experimental cost or maximize 
measurement accuracy. One general rule of thumb is that if the 
curvature of the growth function or the degree of measurement 
error is high, the number of data points needed to estimate the 
underlying curve with a given level of accuracy will increase 
(Ramsay and Silverman, 2005). In the dataset used here, mea-
surement error was moderate and the curvature of the estimated 
underlying functions was relatively low, and thus once-per-day 
measurements represents a denser sampling scheme than neces-
sary as demonstrated by the results when subsampling one-half 
or one-quarter of the total data points. The topic of identifying 
optimal sampling rates in functional datasets is an area of ongo-
ing investigation (Ji and Müller, 2017). The proposed technical 
methods may hold promise in working with larger and more com-
plex phenomic datasets than the one used for initial investigation 
of functional data analysis for plant phenomics.

�Discussion
In this study, we used functional data analysis as a non-

parametric method to model plant growth with time. This 
nonparametric approach effectively incorporates neighborhood 
information when fitting the underlying growth curve and pro-
duces more accurate estimates of genotype and treatment effects 
with time (Ramsay and Silverman, 2005). Intuitively, plant bio-
mass at time t0 is highly related to that at the previous time point, 
t0 - 1, and the following one, t0 + 1. This sharing of data between 
nearby time points also provides increased accuracy for predictions 
of plant traits at time points not sampled in the experiment. Unlike 
parametric approaches, the functional data analysis method out-
lined above is data driven rather than model driven and thus is 
applicable to a wider range of treatments, genotypes, and develop-
mental stages and adaptive to temporally dependent observations. 
Compared with parametric modeling approaches, nonparametric 
methods such as the one used in this study are flexible with regard 
to patterns of growth that do not match prior assumptions regard-
ing the growth pattern of plants. In addition, they adjust for the 
temporal dependence effect in statistical inference, which is gener-
ally not considered in parametric approaches.

The nonparametric regression approach used in this study 
requires fewer assumptions about how traits change with time 
than fitting parametric curves to data. However, the translation 
of a curve defined by a single function into a small number of quan-
titative phenotypic variables that can be used for mapping genetic 
variants through QTL or genome-wide association study analy-
sis is a more straightforward process than performing the same 
translation for a nonparametrically defined curve. For example, 

after fitting a sigmoidal growth curve, a researcher might perform 
separate quantitative genetic analyses to identify the genetics con-
trolling the timing of the inflection point of the curve, the slope 
of the curve at the inflection point, and the total change in value 
between the bottom and total horizontal asymptotes. Further 
work is needed to identify the most informative summary statistics 
for describing the behavior of nonparametrically defined curves 
such as the timing of the point with the highest first derivative 
value, the maximum value of the first derivative, etc.

The mean function m(t) and the effect functions g(t) and w(t) 
are obviously significant for the data we have analyzed. However, 
sometimes there might be many effect functions in the functional 
ANOVA model and some effect functions are close to zero, so it 
would be essential to test whether these effect functions are zero 
or not. For this purpose, generalized likelihood ratio tests may be 
conducted (Fan et al., 2001), but this was out of the scope of this 
study. The pointwise ANOVA requires observations from all com-
binations of genotypes and treatments at the same time point for 
analyzing the genotype ´ environment interaction effects. This 
may not be feasible in some experimental designs because the imag-
ing process of all the plants cannot be finished within a single day. 
In contrast, functional ANOVA enables genotype ´ environment 
interaction analysis on such non-overlapping datasets by borrowing 
information from the adjacent dates. The number and the location 
of knots used in this study may not be optimal. However, because 
both the number of knots and the smoothing parameter control 
the smoothness of the functions in penalized splines, choosing the 
number of knots in penalized splines is not as important as it is in 
regression splines. We used equally spaced knots because of their 
simplicity and also due to the fact that the mean effect functions 
are relatively smooth.

Finally, we demonstrated that our proposed method is robust 
to missing data and non-overlapping sampling dates between sub-
sets of samples within a single experiment. The necessity to collect 
measurements from all or nearly all individuals at each time point 
within an experiment is a major constraint on high-throughput 
phenotyping studies in both the greenhouse, where plant measure-
ments are limited by the throughput of imaging systems, and the 
field, where plant measurements are limited by the availability of 
human labor and weather suitable for phenotyping. The wider 
adoption of functional data analysis in the analysis of plant phe-
notyping data and awareness of the increased flexibility it provides 
for sampling data within experimental designs should lead to larger 
and more statistically robust experiments in the future.

Additional information
The raw image data used in this study are hosted at CyVerse under 
doi:10.7946/P22K7V.x.
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