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Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America

Abstract

Transcriptomic analysis of the response to bacterial pathogens has been reported for several species, yet few studies have
investigated the transcriptional differences in whole blood in subjects that differ in their disease response phenotypes.
Salmonella species infect many vertebrate species, and pigs colonized with Salmonella enterica serovar Typhimurium (ST)
are usually asymptomatic, making detection of these Salmonella-carrier pigs difficult. The variable fecal shedding of
Salmonella is an important cause of foodborne illness and zoonotic disease. To investigate gene pathways and biomarkers
associated with the variance in Salmonella shedding following experimental inoculation, we initiated the first analysis of the
whole blood transcriptional response induced by Salmonella. A population of pigs (n = 40) was inoculated with ST and
peripheral blood and fecal Salmonella counts were collected between 2 and 20 days post-inoculation (dpi). Two groups of
pigs with either low shedding (LS) or persistent shedding (PS) phenotypes were identified. Global transcriptional changes in
response to ST inoculation were identified by Affymetrix GenechipH analysis of peripheral blood RNA at day 0 and 2 dpi. ST
inoculation triggered substantial gene expression changes in the pigs and there was differential expression of many genes
between LS and PS pigs. Analysis of the differential profiles of gene expression within and between PS and LS phenotypic
classes identified distinct regulatory pathways mediated by IFN-c, TNF, NF-kB, or one of several miRNAs. We confirmed the
activation of two regulatory factors, SPI1 and CEBPB, and demonstrated that expression of miR-155 was decreased
specifically in the PS animals. These data provide insight into specific pathways associated with extremes in Salmonella fecal
shedding that can be targeted for further exploration on why some animals develop a carrier state. This knowledge can also
be used to develop rational manipulations of genetics, pharmaceuticals, nutrition or husbandry methods to decrease
Salmonella colonization, shedding and spread.
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Introduction

Salmonella enterica serovar Typhimurium (ST) infects almost

all vertebrates, including reptiles, birds, and mammals [1]. In

humans, ST causes an acute gastroenteritis known as salmonel-

losis. Salmonella colonization of pigs can lead to an enterocolitis of

variable severity with the bacteria often establishing a carrier status

in the host [2]. The decreased performance of pigs with subclinical

Salmonella infections has a negative economic impaction the swine

industry [3]. Moreover, pigs that persistently shed Salmonella pose a

significant threat to public health by increasing the potential for

foodborne disease [2,4,5]. To reduce the incidence and severity of

salmonellosis and other infectious diseases, a need exists to define

the immune genes and pathways responsible for enhanced disease

resistance and pathogen clearance [6]. Genetic selection for

improved humoral and cell-mediated immunity to develop pigs

with enhanced disease resistance has been reported [7], while

heritabilities of specific immune component parameters have

been estimated and correlations to performance traits defined

[8,9,10,11]. Genomic regions controlling leukocyte numbers and

response to mitogens have also been identified [12,13,14]. In a

Salmonella challenge experiment, van Diemenet al. found evidence

for genetic control of innate immunological traits (e.g., numbers

and function of polymorphonuclear leukocytes) and associated

some of these with susceptibility to salmonellosis [15,16].

An alternative approach to this problem is to identify the genes

that respond to Salmonella at the RNA level, and that are correlated

with decreased fecal shedding of Salmonella. Such genes would then
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provide valuable selectable biomarkers for decreased disease

spread and potentially for improved innate immune responsive-

ness to bacterial pathogens [17]. Initial studies have focused

on measuring host response to Salmonella spp. [18,19,20,21,22].

Screening for novel host mRNA responses to Salmonella has also

been reported [23]. More global analyses of the response to

Salmonella in immune tissues such as lung, Peyer’s patch, or lymph

node using Q-PCR assays [24] or microarrays [25,26] have also

been published. However, such analyses are difficult to translate

into biomarker development because tissues are collected at

slaughter. Optimally, this type of analysis needs to be performed

on samples that are easy and inexpensive to collect from many live

animals. One such sample would be whole blood, and measuring

the transcriptome of whole blood to survey human immune

responses to various diseases has become an accepted method to

identify biomarkers associated with disease [27]. The transcrip-

tomic response of peripheral blood mononuclear cells (PBMC) to

bacteria, virus and immune stimulants has been investigated;

effective classifiers were built to distinguish the infected or non-

infected status of the patient, as well as etiology of the infection

[28,29,30]. These studies indicate that measuring the blood

transcriptome may be useful in identifying genes controlling the

variability in disease resistance in the pig.

We hypothesize that there are yet unidentified host genetic

differences controlling phenotypic variation of Salmonella shedding

(and thus transmission) in pigs. Such postulated genetic differences

may control the effectiveness of early innate immune responses,

and we predict that these differences are likely to be most distinct

in individuals at the extreme ends of Salmonella shedding. These

differences may be reflected in the variation of gene expression

response to Salmonella inoculation among animals with distinct ST

fecal shedding counts. However, no data exist on the whole blood

transcriptomic response to Salmonella. Therefore, we have initiated

research to determine the variation in transcriptional responses to

ST across 40 pigs [31]. An initial characterization of these animals

found a significant positive correlation between serum interferon-c
(IFN-c), levels at 2day post-inoculation (dpi) and ST fecal shedding

levels at two and seven dpi. In the current study, Salmonella fecal

shedding data and whole blood transcriptome profiling of a

subset of this pig population were employed to 1) define extreme

shedding phenotype classes of pigs based on their total number of

Salmonella shed during the experiment; 2) determine the global

gene expression responses in porcine whole blood in response to

ST colonization; and 3) identify the gene expression differences

subsequent to ST inoculation between two defined groups, low

shedding (LS) and persistently shedding (PS) pigs. This study

describes for the first time the whole blood transcriptomic response

to ST inoculation in pigs and provides regulatory pathway

information on the differences between animals that shed large

numbers of Salmonella following inoculation as compared to

animals that shed much less Salmonella.

Materials and Methods

Sample collection, fecal bacteria quantification and
selection of animals

Peripheral blood samples were collected from two pig popula-

tions which were challenged similarly with ST: challenge popula-

tion #1 of 40 pigs which has been previously described [31], and

challenge population #2 of 77 pigs which is described here. In brief,

for both populations, the piglets used were from sows (crossbred or

Yorkshire breeds) and bred to boars from several different breeds.

All available breed information is shown in Supplemental Table S1.

Piglets were raised in climate-controlled, fully enclosed isolation

facilities at the USDA-ARS-National Animal Disease Center

(NADC) in Ames, IA. The pigs tested fecal negative for Salmonella

three times before intranasal challenge with 109 colony forming

units (cfu) of nalidixic acid resistant ST x4232 at 7 weeks of age.

Fecal and blood samples were collected from each animal at 0, 2, 7,

14, and 20 dpi. Salmonella was quantified from feces by direct

counting using bacteriological methods as described by Uthe et al.

[31]. Peripheral whole blood (approximately 2.3 mL) was collected

from the jugular vein into PAXgene Blood RNA tubes and

processed according to the instructions of QIAGEN. All procedures

involving animals were lawful and approved by the USDA-ARS-

NADC Animal Care and Use Committee (approval ID: ACUP

#3586).

Pigs were selected for RNA analysis from the phenotypic

extremes of the Salmonella shedding data initially from challenge

population #1 as follows: the shedding class phenotype was

defined based on the total fecal excretion of ST as determined by

calculating cumulative area under the plotted log curve (AULC) of

logarithmically normalized fecal counts obtained between day 0 to

day 20 post-inoculation for each animal. Based on the AULC, pigs

of extreme shedding phenotype were identified as low shedders

(LS1) and persistent shedders (PS1) and were selected from

challenge population #1 for microarray analysis. Where possible,

littermates were chosen that exhibited different shedding pheno-

type. Additional sets of extreme animals were selected using the

same criteria from the remaining animals in the challenge

population #1 (LS2 and PS2), and also from challenge population

#2 (LS3 and PS3; LS4 and PS4).

RNA preparation of selected animals
Total RNA was prepared from 4.5–9.0 ml of solution from the

PAXgene Blood RNA tubes for LS1 and PS1pigs at day 0, 2 and

20. Samples at day 0 and day 2 were collected for LS2, PS2,

LS4, and PS4 animals (50–100% of the total volume) using the

PAXgene Blood RNA kit (Qiagen, Cat. no. 762164). The DNA

was removed by in-solution DNase I digestion and RNeasy mini

elute kit cleanup as recommended by QIAGEN. PCR assay

without reverse transcription was used to confirm that the RNA

samples were DNA-free. The quantity and quality of the RNA

were determined using Agilent 2100 Bioanalyzer (Agilent Tech-

nologies, Santa Clara, CA) and Nanodrop 2000 (Thermo

Scientific, Wilmington, DE). RNA samples with RIN number

lower than 7 or yield less than 3 mg was identified as low quality

and excluded from the experiment.

For microRNA analysis, total RNA was isolated from PAXgene

tubes for LS3 and PS3 animals using PAXgene Blood miRNA kit

(Qiagen, Cat. no. 763134), and the miRNA quality was confirmed

using Agilent 2100 Bioanalyzer.

Microarray hybridization and statistical analysis
The porcine genome microarrays were purchased from Affyme-

trix (Cat. no. 900623; Santa Clara, CA). The RNA labeling,

porcine gene chip hybridization, washing and signal detection were

done at the GeneChip Facility, Iowa State University, Ames IA

according to the manufacturer’s instructions. The Bioconductor

package affy in R was used to compute normalized MAS5.0

expression measures from the 20 Affymetrix GeneChips. A linear

mixed model including fixed effects for shedding status, time and

interaction between shedding status and time along with random

pig effects was fit to the expression data for each gene using SAS

PROC MIXED. As part of each linear model analysis, p-values

were obtained for the shedding status-by-time interaction test, tests

for changes over time within and averaged over low and persistent

shedding groups and tests for a shedding effect at each time point

Blood RNA Response in Pigs to Salmonella
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and averaged over time points. The p-values for each test were

converted to q-values for false discovery rate estimation [32]. All

Affymetrix data has been submitted to GEO (GSE27000).

Globin RNA removal testing
Samples from two pigs were used to test a need for the removal

of globin RNA in Affymetrix microarray hybridizations. Globin

RNA from two test samples was removed using the globin

reduction protocol adapted from Affymetrix (www.affymetrix.

com). Subsequently, total RNA was cleaned-up using GeneChip

sample cleanup module (Affymetrix). Efficiency of globin RNA

removal was confirmed by real-time RT-PCR to amplify porcine

alpha and beta globin cDNAs using the QuantiTect SYBR Green

RT-PCR Kit (Qiagen, Valencia, CA) and the Chromo4 Real-

Time PCR Detection System (BioRad Laboratories, Hercules,

CA). To ensure that the globin RNA removal procedure did not

affect the expression levels of other transcripts, cDNAs coding

for HSPH1, DNAJA4, G3PDH, RPL32 and CXCL10, were

amplified before and after globin RNA removal by real-time RT-

PCR using primers reported in by Uthe et al. [17]. Expression

levels of these genes were not affected by globin RNA removal

(J.U., S.M.D.B and C.K.T., data not shown). Analysis of the effect

of globin removal on Affymetrix microarray hybridization data

was also performed and included number of present, marginal and

absent calls; number of genes with detection p-value,0.05 and an

estimate of whole chip signal intensities. No dramatic changes

were observed (T.H., J.U., and C.K.T., data not shown). While

previous reports have indicated that removal of globin RNA can

improve transcriptome profiling of whole blood RNA [33,34],

others have not used globin reduction methods [35]. As our results

did not indicate an obvious benefit of globin RNA removal prior

to Affymetrix microarray analysis at either the chip level or at an

individual gene level, globin RNA was not removed prior to

hybridization.

Real-time PCR
Blood RNA samples from the 10 animals, LS1 and PS1, which

have been used for the Affymetrix experiment, plus RNA samples

from a second set of 10 animals (LS2 and PS2) were analyzed by

real-time PCR. Two additional sets of animals (LS3 and PS3; LS4

and PS4) from challenge population #2 also have been analyzed by

real-time PCR. The reverse transcription was performed using

SuperScript II Reverse Transcriptase and Oligo(dT) primer

according to the manufacturer’s instructions (Invitrogen, Carlsbad,

CA). All reverse transcription reactions were run along with ‘‘no-

template controls’’. The no-template controls gave non-detectable

signals in all samples, confirming the high specificity of the assays.

Real-time PCR was performed using a standard SYBR Green PCR

kit (Applied Biosystems, Carsbad, CA) and BIO-RAD iQ5 Real-

Time PCR Detection System. All reactions were run in duplicate.

The data were normalized initially using the gene YWHAZ

(tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activa-

tion protein, zeta polypeptide) or RPL32 (ribosomal protein L32).

However, normalization with either of those two RNA levels or the

average of these RNA levels did not correct any systematic bias

between samples (as measured by reduced variance). In fact, higher

variance was introduced compared to normalization to input

nucleic acid (data not shown) Thus, results were normalized only to

the total input RNA or cDNA used, as we have reported previously

[36]. The significance level was set to 0.05.

The expression level of miR-124 and -155 were quantified in the

LS3 and PS3 animals using the Stem-loop TaqMan MicroRNA

Assay (ABI Assay: 000446 and 002623) and normalized by the

total amount of input RNA. MiRNA quantification assays were

performed only with the LS3 and PS3 animals because the blood

samples for challenge population #1 have been completely used for

standard RNA preparation.

Microarray probeset annotation and differentially
expressed gene functional annotation

The most current porcine Affymetrix Genechip annotation was

used to assign probesets to RefSeq ID [37]. Differentially expressed

genes (q value,0.05 or 0.1, fold change.1.5 or ,0.66) were

divided into categories of different expression pattern as a result of

ST inoculation. The open-access bioinformatics tool InnateDB [38]

was used to identify significantly regulated pathways between

different time points and shedding phenotypes. The web-based

program DAVID [39] was used to analyze the function of

differentially expressed gene identified by microarray. The

significantly enriched gene expression regulators of these differen-

tially expressed gene lists were identified by Sub-Network

Enrichment Analysis (SNEA) using Pathway StudioH.

Results

Classification of pigs as low shedders or persistent
shedders of Salmonella after challenge

In challenge population #1, 40Salmonella fecal-negative cross-

bred pigs were inoculated with Salmonella enterica serovar Typhi-

murium [31]. As described by Uthe and colleagues, bacteriological

evaluation of fecal samples indicated all 40 pigs were shedders of

Salmonella at 2 dpi, with an increase in body temperature (fever). A

wide range of Salmonella shedding counts was observed during the

20-day experiment, ranging from quantitatively undetectable to

320,000 cfu/g feces. To develop a new phenotypic measure for

categorizing pigs at the extremes of Salmonella shedding charac-

teristics, we plotted the log transformed fecal counts at days 0, 2, 7,

14 and 20 post-inoculation for each animal. The area under the

log curve (AULC) for the full 20 days was defined as the trait of

interest, as this AULC is an estimate of the total Salmonella shed by

an animal during the experiment. The number of Salmonella shed is

clearly an important parameter that affects within-herd disease

spread as well as a measure of within-animal immunologic control

of Salmonella replication. In Figure 1, we show the accumulated

AULC for each animal at each time point.

The AULC profile for Salmonella cfu revealed various types of

Salmonella shedders (Figure 1 and Supplemental Table S1). For

example, some pigs maintained high levels of shedding from 7 dpi

to 14 dpi, gradually decreasing shedding from 14 dpi to 20 dpi

and often becoming undetectable. Other pigs had high levels of

Salmonella shedding early, which thereafter quickly decreased to

low levels. We also observed pigs for which quantitative levels of

Salmonella were only observed at 2 dpi, as well as pigs that were

only qualitatively positive for Salmonella (Supplemental Table S1).

Interestingly, from 7 dpi on, the shedding counts of several

animals with low shedding levels quickly dropped close to the

detection limit of 25 bacteria per gram of fecal material. However,

for some animals with high initial shedding levels, significant

shedding continued to 14 dpi, with some pigs even moderately

increasing their shedding count during this period. These

observations indicate the shedding phenotype for the LS and PS

animals was manifest prior to 7 dpi. We therefore chose to

compare gene expression differences at the earliest time point post

inoculation, 2 dpi, between LS and PS pigs and relative to un-

inoculated pigs.

The pigs were ranked by total AULC over the 20 days of

challenge. Six persistent shedders (PS1) and 4 low shedders (LS1),

whose ST shedding count was very high or very low, respectively,

Blood RNA Response in Pigs to Salmonella
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were selected for the analysis of their peripheral blood transcriptome

(Figure 1 and Supplemental Table S1). Wherever possible, we

selected extreme animals that had an opposite extreme littermate, to

minimize genetic variation uncorrelated with shedding phenotype.

Another two separate groups of pigs, designated LS2 and PS2, were

selected as well for the purpose of validation of the transcriptomic

results (Figure 1 and Supplementary Table S1).

Induced large-scale gene expression changes in
peripheral blood following inoculation with ST

A goal of this research is to identify porcine gene expression

differences that occur early during the infection that can influence

the persistence and subsequent shedding of Salmonella in swine. Our

previous investigations have demonstrated that the peak of both

clinical symptoms (fever, diarrhea, decreased appetite) as well as

Salmonella shedding occurs at 2 days post-inoculation. Thus, the

peripheral blood RNA expression data for each of the 10 extreme

animals (four LS1 and six PS1) at day 0 and day 2 post-inoculation

were profiled and the resulting data analyzed as described in the

Methods. False discovery rate (FDR) was controlled initially at 10%

(q,0.1), but was reduced to 0.05% for pathway analyses after Q-

PCR confirmation (see later section). The numbers of differentially

expressed transcripts (probesets) for each comparison, and the

numbers of transcripts that overlap among comparisons, as defined

by q,0.1 and a fold change of.1.5 or ,0.66 (comparing LS1 2 dpi

versus 0 dpi, PS1 2 dpi versus 0 dpi, or PS1 versus LS1 at 2 dpi),

are shown in Figure 2A; numbers of differentially expressed genes

using a q,0.05 criterion are shown in Figure 2B. Complete data on

differential expression is shown in Supplemental Table S2.

Figure 2A also shows a total of 3,297 transcripts were statistically

significant for tests of shedding status-by-time interaction effects. In

addition, we also measured gene expression levels at day 20 for LS1

and PS1 animals. Permutation tests and traditional t-tests were used

to search for expression differences between persistent shedders and

low shedders (data not shown). No differentially expressed genes

were identified when controlling the false discovery rate at

reasonable levels (the smallest q-values were above 35%). Thus all

further analyses focused on the responses at day 2.

Direct comparison before and after ST inoculation identified

545 transcripts that were differentially expressed in LS1 animals

after ST inoculation and 2,647 transcripts differentially expressed

in PS1 animals after ST inoculation. We also observed 1,071

transcripts differentially expressed between LS1 and PS1 ani-

mals at 2 dpi. Full lists of differentially expressed transcripts are

available in Supplemental Table S3. Because changes in specific

cell populations could account for these microarray results, rather

than changes in cell-specific steady-state RNA levels, we tested for

the correlation of cell type numbers (a standard complete blood

count data including lymphocyte, monocyte, neutrophil, eosino-

phil, and basophil counts) with the gene expression differences.

The expression of very few transcripts were correlated with cell

type numbers, indicating that the gene expression differences

detected by the microarray cannot be explained by changes in

numbers of major cell types (Supplemental Table S4).

To initially characterize the effect of ST inoculation on cano-

nical immune pathways such as those involved in T cell-mediated

immune responses, inflammation, apoptosis, and antigen processing

and presentation, we examined expression data for genes that are

representative of these pathways [40]. We previously reported an

increase in serum IFN-c protein by 24–48 hours post inoculation

[31]. IFN-c-mediated activation of the cell-mediated immune

response, often associated with a Th1 response, following ST

inoculation was verified by observing significant increases in the

RNA levels for several genes responding to IFN-c stimulation [41],

including CASP4, CD14, IL18, IRF1, IRF2, IRF7, STAT1,

STAT3, OAS1, TNF, and WARS (Supplemental Table S2).

Notably, IL12B-specificmRNA was not significantly affected by

inoculation (IL12A is not on the Genechip), although the direction

of response was opposite in LS1 versus PS1 pigs, and was close to

significance for shed-by-time interaction (p,0.11; q,0.15). A

classical cell-mediated activation response detected in the peripheral

blood mRNA data was further demonstrated by decreases in

expression levels for IL4, IL5, IL6, and IL10mRNA (Supplemental

Table S2).

mRNA levels for innate/inflammatory marker genes such as

SLC11A1 and TLR4 were strongly increased following ST

inoculation, although IL6 and IL8 RNA levels were not affected

significantly. Apoptosis pathways genes such as TGM1, CASP7,

CASP8 (as well as CASP4 mentioned above) were significantly

increased. Genes involved in antigen processing were up-regulated,

Figure 1. Area under the log curve (AULC) defines extremes for Salmonella shedding phenotypes. The line graph illustrates the AULC
accumulated over time for each animal. At each time point, the AULC accumulated up to that time point for each animal was plotted; i.e., the values
shown at day 7 represent the AULC from day 0 to day 7; the total AULC shown at day 20 (AULC accumulated from day 0 to day 20) is the phenotype
used for shedding class distinction. Groups of pigs representing the two extremes for AULC at day 20 dpi, were thus selected for microarray analysis
(LS1 and PS1) and qPCR (LS2 and PS2). Animals in the LS1 group are in blue; PS1 animals are in red, while LS2 animals and PS2 animals are shown in
yellow green and green, respectively. Data for the non-selected animals are shown in gray.
doi:10.1371/journal.pone.0028768.g001
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including TAP1 and many genes encoding proteasome subunits

such asPSMA1 through PSMA6, PSMB1 through PSMB10, as well

as several PSMC and PSMD family members. For genes in the

antigen presentation pathway, we noted that CD86 was significantly

up-regulated by ST inoculation, although CD40 and CD80 were

not (Supplemental Table S2). We further noted that in many of the

genes mentioned above, the differential expression was observed in

the PS1 but not the LS1 animals (see Supplemental Table S3 and

further discussion below).

After inoculation with ST, the transcription level of more than

100 genes changed over five-fold in the PS animals (Table 1 shows

the 30 genes with highest fold change; the full list is available in

Supplemental Table S3). Interestingly, most of those transcripts

(90%) were up-regulated. As expected, the transcripts with the

largest fold change in response to ST inoculation included

numerous genes that are directly connected to known immune

and inflammatory responses. These include the lipopolysaccharide

(LPS) receptor toll-like receptor 4 (TLR4), the S100 proteins

S100A9 and S100A12 and the interleukin receptor accessory

protein IL1RAP (shown in Table 1); other known immune

inflammatory genes with slightly lower responses, including the

arachidonate 5-lipoxygenase-activating protein ALOX5AP, the

chemokine receptor CCR1, the transcription factors CEBPB and

IRF7 [42], are provided in Supplementary Table S3. In addition,

several genes not classically associated with immune inflammation

processes were found in these highly affected genes. These include

BATF3, which encodes a leucine zipper protein that functions as a

transcriptional repressor, and RETN, which encodes resistin, a

serum adipokine that is elevated by sepsis [43] (Table 1).

Two of the four top-ranked transcripts, which are annotated as

TCN1 and MMP8, encode proteins that are major constituents of

secondary granules in neutrophils [44,45], were up regulated 246-

and 36-fold, respectively. Level of TCN1 RNA has been reported

as very low in blood from healthy humans (http://biogps.org/

#goto=genereport&id=6947), and our results indicate expression

is high only after innate immune responses are initiated. Such

regulation of TCN1 is supported by a report showing induction of

TCN1 RNA in the intestinal epithelium of cholera patients

compared to healthy controls [42]. The transcripts for S100A9

and S100A12 were up-regulated 25.8- and 9-fold, respectively.

Alteration of the expression of these two S100 protein genes has

been reported to be associated with neutrophil functions and the

onset of disease [46]. Thus multiple high-ranked (significant and

high fold change) differentially expressed genes were associated

with neutrophils, indicating that neutrophils play an important

role in the PS responses to ST inoculation. The non-significant

correlation of the neutrophil counts with the gene expression

differences indicated that the demonstrated increase in specific

transcripts for these genes was not caused by higher numbers of

circulating neutrophils but by increased gene expression in the

blood.

Compared with the PS1 animals, the transcriptomic responses

of LS1 animals were significantly less dramatic; only 12 genes

show |fold change|.3 and q,0.1 (Table 2 shows the genes with

|fold change|.3; the full list is available in Supplemental Table

S3). For all 124 differentially expressed genes (q,0.1), 13 were also

differentially expressed in PS1animals. Interestingly, four of these

genes were changed in the opposite direction between LS1 and

PS1 groups. The gene up-regulated most dramatically, TGM1,

has been reported to be significantly induced by SC, ST, and

Haemophilus parasuis [26,40,47,48]. Other top-ranked differentially

expressed genes in the LS1 pigs such as KRTAP11-1, TAF1B and

BTBD10, have not been associated with Salmonella infection

previously.

The transcriptional response in the LS1 and PS1 animals is quite

distinct; most of the genes in either LS1_D2/D0 or PS1_D2/D0

were not found in the differentially expressed list for the other class;

only 13 genes were in common between these two sets of genes

(Figure 2B). In addition, 217 genes were significantly differentially

expressed between LS1 and PS1 pigs at day 2 after ST inoculation

(Figure 2B). Of these, 127 were also differentially expressed in PS1

animals in response to infection (those genes found in both

D2_PS1/LS1 and PS1_D2/D0, Figure 2B), and all of these were

up regulated (higher in post-inoculation samples of PS1 animals).

Figure 2. Summary of differentially expressed transcripts responding to inoculation (d2/d0), differential expression between the
two shedding classes at 2 dpi (PS1/PS2), or expression showing shedding class by time interaction (Shed By Time). These genes were
identified using the linear mixed model, and the false discovery rate was controlled at q less than 0.1 (Fig. 2A) or less than 0.05 (Fig. 2B), with the fold
change between treatments required to be higher than 1.5 or less than 0.66 (comparing LS1 2 dpi versus 0 dpi, PS1 2 dpi versus 0 dpi, or PS1 versus
LS1 at 2 dpi).
doi:10.1371/journal.pone.0028768.g002
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Six of the 217D2_PS1/LS1 genes were also changed in the LS1

animals after ST inoculation (LS1_D2/D0) and five of them were

up regulated. Of these six, only one is also differentially expressed in

PS animals.

Many genes were dramatically differentially expressed between

the PS1 and LS1 phenotypic classes (Table 3 shows the genes with

|fold change|.3, the full list is available in Supplemental Table

S3). Such genes include the MS4A8B gene, which increased 103-

fold in PS animals after ST treatment and was not significantly

different in LS animals. It was reported that MS4A8B was sig-

nificantly induced by Haemophilus parasuis, indicating its relationship

with bacterial infections in pigs [47]. The CSTA, BTBD10, KIF1B,

RARS2, and HPSE were expressed over 5 fold or higher in PS over

LS animals. The CD55 gene, which encodes a protein involved in

the disruption of the complement cascade, was 4.6 fold higher in PS

over LS animals. The C1orf210, PSP-II, GPN2, and SEPT8 genes

were expressed over 5 fold lower in PS animals compared to LS

animals. Expression differences between the shedding phenotypes

were also observed for other genes such as C1 peptidase (CTSS),

which participates in the degradation of antigenic proteins to

peptides for presentation on MHC class II molecules; MD-2 (LY96),

whose protein associates with TLR4and provides a link between the

receptor and downstream LPS signaling. An increase in the mRNA

for the Toll/interleukin-1 receptor domain-containing adaptor

protein, TICAM2, was also statistically significant (q value,0.05

and fold change.1.5) (Supplemental Table S3).

Validation of differentially expressed genes using qPCR
Twenty-one differentially expressed genes were selected for

validation of the microarray data by using qPCR (Table 4). All raw

data and statistical results of these qPCR tests are available in

Supplemental Table S5. The genes were selected with respect to

their rank of expression changes (q,0.1, fold change.1.5 or

,0.66), biological function, quality of annotation, available

nucleotide sequence length, and estimated microarray signal

intensity as an indicator of transcript abundance. Correlation

Table 1. Top 30 differentially expressed transcripts in PS animals with highest fold change after ST treatment (2 dpi/0 dpi), q
value,0.1*.

Probeset q Value Fold Change
Change
Direction

Gene
Symbol

Similarity to
RefSeq shown Gene Description

Ssc.16234.1.S1_at 0.001 246.61 Up TCN1 NM_001062 Transcobalamin I

Ssc.18927.1.S1_at 0.001 103.02 Up MS4A8B NM_031457 Membrane-spanning 4-domains subfamily A member 8B

Ssc.23801.1.S1_at 0.001 74.06 Up RETN NM_020415 Resistin

Ssc.12431.1.A1_at 0.002 36.06 Up MMP8 NM_002424 Matrix metallopeptidase 8

Ssc.2381.1.A1_at 0.003 25.82 Up S100A9 NM_002965 S100 calcium binding protein A9

Ssc.14444.3.A1_a_at 0.001 25.19 Up ARG2 NM_001172 Arginase type II

Ssc.646.1.S1_at 0.000 19.75 Up CSTA NM_005213 Cystatin A

Ssc.27433.1.S1_at 0.000 18.13 Up TGM1 NM_000359 Transglutaminase 1

Ssc.12781.1.A1_s_at 0.005 16.63 Up TLR4 NM_138554 Toll-like receptor 4

Ssc.7864.1.A1_at 0.000 15.94 Up IL1RAP NM_002182 Interleukin 1 receptor accessory protein

Ssc.3556.1.A1_at 0.001 15.78 Up - XM_001714592 Hypothetical protein LOC100133846

Ssc.24194.1.S1_a_at 0.000 14.69 Up TCEA3 NM_003196 Transcription elongation factor A

Ssc.3706.1.S2_at 0.000 14.52 Up SOD2 NM_001024465 Superoxide dismutase 2 mitochondrial

Ssc.22354.1.A1_at 0.001 14.07 Up BATF3 NM_018664 Basic leucine zipper transcription factor

Ssc.13769.1.S1_at 0.002 13.82 Up - XM_001127175 Hypothetical LOC728320

Ssc.3012.1.S1_at 0.004 13.32 Up UPP1 NM_181597 Uridine phosphorylase 1

Ssc.17283.2.S1_at 0.012 12.09 Up - NM_001038000 FKBP1A-like

Ssc.15379.1.S1_at 0.000 11.82 Up DGAT2 NM_032564 Diacylglycerol O-acyltransferase homolog 2

Ssc.14533.1.S1_at 0.002 11.66 Up - NM_002910 Renin binding protein

Ssc.998.1.A1_at 0.001 10.71 Up FAM129A NM_052966 Family with sequence similarity 129 member A (FAM129A)

Ssc.30887.1.S1_at 0.017 10.58 Up TNFAIP6 NM_007115 Tumor necrosis factor alpha-induced protein 6

Ssc.1137.1.S1_at 0.003 10.57 Up CASZ1 NM_001079843 Castor zinc finger 1

Ssc.2697.1.S1_at 0.002 10.53 Up TCEA3 NM_003196 Transcription elongation factor A

Ssc.5053.1.S1_at 0.001 9.33 Up CD163 NM_203416 CD163 molecule

Ssc.25255.1.S1_at 0.001 9.04 Up ASRGL1 NM_001083926 Asparaginase like 1

Ssc.7839.1.A1_at 0.018 9.02 Up EPB41L3 NM_012307 Erythrocyte membrane protein band 4.1-like 3

Ssc.9117.1.S1_at 0.002 9.01 Up S100A12 NM_005621 S100 calcium binding protein A12

Ssc.15890.1.S1_at 0.002 12.50 Down VNN1 NM_004666 Vanin 1

Ssc.6943.1.A1_at 0.027 9.09 Down ANGPT1 NM_001146 Angiopoietin 1

Ssc.19586.1.S1_at 0.002 9.09 Down C1orf210 NM_182517 Chromosome 1 open reading frame 210

*For multiple probesets that had the same annotation, the probeset with highest estimated expression level was retained.
doi:10.1371/journal.pone.0028768.t001
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analysis demonstrated that, overall, the qPCR results were

significantly correlated with the microarray results, indicating

that the qPCR results generally confirmed the microarray gene

expression data (Figure 3, r = 0.75, p,0.0001). For 15 selected

genes detected by microarray as differentially expressed in PS

animals after ST inoculation, 10 of them were also significant

(p,0.05) or trended to significance (p,0.1) by qPCR (Table 4).

For the remaining six genes, five of them were changed in the

same direction as the microarray data. For the nine genes

differentially expressed between PS and LS animals detected by

microarray, four of them were confirmed by qPCR (p value,0.1),

and four out of the remaining five genes were changed in the same

direction by both techniques. For the six genes differentially

expressed in LS animals after ST inoculation, one gene tended to

significance in the qPCR data (p value = 0.12), and three out of the

remaining five genes, were changed in the same direction in both

microarray and qPCR results. These results indicated that while

the qPCR and microarray results were generally in agreement, less

dramatic expression differences in LS animals were difficult to

confirm by qPCR. We also observed that genes with more

statistically significant differences in the microarray analysis (q

value,0.05) were nearly always confirmed by qPCR (95%

consistency), while it was more difficult to validate genes with

higher q values (69% consistent for 0.05,q,0.1; Table 4).

Expression levels of the selected genes in 10 additional animals

(four PS2 and six LS2) were measured by qPCR for further

validation of the gene expression differences detected by mic-

roarray. The qPCR results again in the aggregate correlated

significantly with the microarray results (Figure 3, r = 0.68,

q,0.0001), indicating that differentially expressed genes detected

by microarray can be confirmed by qPCR even in a new group of

pigs. Altogether, 40 samples have been measured by qPCR (20

animals, 2 time points), with a total of 84 comparisons made

(LS_D2/D0, PS_D2/D0, D0_PS/LS, D2_PS/LS; Table 4). Of

these, 11 comparisons (13%) with q value,0.1 (by microarray),

showed a response in the opposite direction between qPCR and

microarray results. Overall, 85% of the genes with the most

significant differences in expression (q value less than 0.05 and fold

changes higher than 1.5 or greater than 0.66) showed consistency

between microarray and QPCR methods. Therefore, to be

conservative in all further analyses, differentially expressed genes

were defined using a threshold of q value,0.05 and fold-change

greater than 1.5 or less than 0.66.

Functional annotation of the differentially expressed
genes and clusters of co-expressed genes

The functions of the differentially expressed genes and the

possible relationship between ST inoculation and the alteration of

gene expression were investigated by using DAVID [39], and

InnateDB [49]. The DAVID database was used to identify over-

represented functional GO terms for differentially expressed genes

(q,0.05, Supplemental Table S6). For the genes up-regulated in

PS animals following ST inoculation, 262 genes were linked to 38

significantly over-represented GO terms. The seven top ranked

GO terms related to immune and inflammatory response’’ or

‘‘defense response’’ covered 106 genes (about 40% of the total),

indicating that these terms represent the major responses in the

ST-inoculated PS animals. The GO term of ‘‘proteasome’’, which

consists of 14 proteasome subunits, was significantly over-repre-

sented as well; this annotation is consistent with the PSMA-D genes

noted above. For the down-regulated genes in PS animals, only six

GO terms reached the significance level. However, the terms were

very general (i.e., ‘‘glycoprotein’’, ‘‘secreted’’ and ‘‘signal’’) and the

specific biological meaning of these differentially regulated genes is

unclear.

For the up-regulated genes in the LS animals following ST

inoculation, none of the GO terms reached the significant level of

0.05 for over-representation, although a large number of genes

were connected to GO terms such as ‘‘immune response’’ and

‘‘inflammatory response’’. For the down-regulated genes in the

LS1 animals, 17 GO terms were significantly over-represented and

most of these GO terms are related to RNA binding and

recognition. There were 111 genes identified that are differentially

expressed in the LS1 animals only and not in the PS1 animals

(86+20+5, Figure 2B). Such genes are of interest since they are

associated with a decrease in Salmonella shedding in the LS1

animals. Interestingly, most of these genes were down-regulated

(104 out of 111) in LS1 compared to PS1 pigs following ST

inoculation, and GO annotation analysis of these down-regulated

genes revealed their involvement in ‘‘mRNA processing/metabolic

process,’’ ‘‘nucleotide binding,’’ ‘‘response to stress or DNA

Table 2. Top ranked differentially expressed transcripts in LS after ST treatment (2 dpi/0 dpi), q value,0.1, | fold change |.3.0*.

Probeset q Value
Fold
Change

Change
Direction Gene Symbol

Similarity to
RefSeq shown Gene description

Ssc.27433.1.S1_at 0.050 6.51 Up TGM1 NM_000359 Transglutaminase 1

Ssc.2131.1.S1_at 0.048 6.15 Up TMTC1 NM_175861 Transmembrane and tetratricopeptide repeat containing 1

Ssc.15379.1.S1_at 0.049 5.53 Up DGAT2 NM_032564 Diacylglycerol O-acyltransferase homolog 2

Ssc.18987.2.A1_at 0.039 4.30 Up GPN2 NM_001031770 Bos taurus GPN-loop GTPase 2

Ssc.25697.1.S1_at 0.046 3.83 Up KRTAP11-1 NM_175858 Keratin associated protein 11-1

Ssc.22089.2.S1_at 0.049 3.78 Up TAF1B NM_005680 TATA box binding protein (TBP)-associated factor

Ssc.2798.1.S1_at 0.031 3.02 Up SYP NM_003179 Synaptophysin (SYP)

Ssc.420.4.S1_a_at 0.038 3.23 Down CAMP NM_004345 Cathelicidin antimicrobial peptide

Ssc.30090.1.A1_at 0.046 4.35 Down GPN2 NM_001031770 GPN-loop GTPase 2

Ssc.26110.1.S1_at 0.049 5.56 Down BTBD10 NM_032320 BTB (POZ) domain containing 10

Ssc.7361.1.A1_at 0.031 8.33 Down - - -

Ssc.12131.1.A1_at 0.046 10.00 Down - - -

*For multiple probesets that had the same annotation, the probeset with highest estimated expression level was retained.
doi:10.1371/journal.pone.0028768.t002
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damage stimulus,’’ and ‘‘cell cycle related process’’ (Supplemental

Table S6). For the genes expressed higher in the PS1 over LS1

animals at 2 dpi, only two GO terms were significantly over-

represented, ‘‘endosome’’ and ‘‘Golgi apparatus’’. For the genes

expressed higher in LS1 over PS1 animals, a large number of

genes were connected with GO terms such as ‘‘ribosome’’ or

‘‘translation regulation’’. While these annotations were non-

significant, they were close to the q,0.05 significant levels for

over-representation.

To further analyze the differentially expressed gene lists, pathway

over-representation analysis was performed using the online tool,

InnateDB, which can identify the major interconnected innate

immunity networks in response to ST inoculation (Figure 4 and

Supplemental Table S7). Forty-three pathways were significantly

over-represented (q,0.1), with 42 of them up-regulated. As

observed for the GO annotation analysis, most of these over-

represented pathways (40 of 43) derive from the genes differentially

expressed in the PS1 animals in their response to Salmonella. The up-

regulated pathways included those required for inflammatory and

immune responses, such as ‘‘Apoptosis,’’ ‘‘Chemokine signaling,’’

‘‘Toll-like receptor signaling,’’ ‘‘IFN-c,’’ ‘‘interleukin signaling,’’

‘‘Jak-STAT signaling pathway’’ and ‘‘Fc-c receptor-mediated

phagocytosis’’ (Figure 4). The ‘‘Apoptosis pathway,’’ ‘‘Chemokine

signaling pathway,’’ ‘‘Integration of energy metabolism,’’ ‘‘Metab-

olism of amino acids’’ and ‘‘Oxidative phosphorylation’’ were the

top five pathways with the highest number of up-regulated genes,

and possibly represent the major biological changes in the blood of

PS1 animals after ST inoculation. The ‘‘Cytosolic DNA-sensing

pathway,’’ which could be another important regulatory module

responsible for the up-regulation of the genes in the PS1 animals

Table 3. Top ranked differentially expressed probesets between PS and LS animals after ST treatment at 2 dpi, q value,0.1, | fold
change |.3.0*.

Probeset q Value
Fold
Change

Change
Direction Gene Symbol

Similarity to
RefSeq shown Gene description

Ssc.18927.1.S1_at 0.038 27.04 Up MS4A8B NM_031457 Membrane-spanning 4-domains, subfamily
A, member 8B (MS4A8B)

Ssc.646.1.S1_at 0.024 8.69 Up CSTA NM_005213 Cystatin A

Ssc.26110.1.S1_at 0.018 7.07 Up BTBD10 NM_032320 BTB (POZ) domain containing 10

Ssc.25195.1.A1_at 0.043 6.34 Up KIF1B NM_183416 Kinesin family member 1B

Ssc.10706.1.A1_at 0.045 6.21 Up RARS2 NM_020320 Arginyl-tRNA synthetase 2 mitochondrial

Ssc.7093.3.S1_at 0.034 6.10 Up HPSE NM_001098540 Heparanase (HPSE)

Ssc.22694.1.S1_at 0.045 5.72 Up NDUFB6 NM_182739 NADH dehydrogenase (ubiquinone) 1 beta
subcomplex 6

Ssc.5618.1.S1_at 0.043 5.40 Up RALGDS NM_001042368 Ral guanine nucleotide dissociation stimulator

Ssc.2697.1.S1_at 0.044 5.28 Up TCEA3 NM_003196 Transcription elongation factor A

Ssc.21060.1.A1_at 0.044 5.07 Up Golim4 NM_175193 Golgi integral membrane protein 4

Ssc.19389.1.A1_at 0.034 4.87 Up C15orf48 NM_032413 Chromosome 15 open reading frame 48

Ssc.271.1.A1_at 0.045 4.66 Up CD55 NM_001114752 CD55 molecule decay accelerating factor for
complement

Ssc.24277.1.S1_at 0.047 4.25 Up USP45 NM_001080481 Ubiquitin specific peptidase 45

Ssc.11382.1.S1_at 0.040 4.18 Up SERINC1 NM_020755 Serine incorporator 1

Ssc.29675.1.S1_at 0.038 4.18 Up RABL3 NM_173825 member of RAS oncogene family-like 3 (RABL3)

Ssc.19596.2.S1_at 0.045 4.06 Up Lpcat2 NM_173014 Lysophosphatidylcholine acyltransferase 2

Ssc.13053.1.A1_at 0.047 4.05 Up CASP4 NM_176638 Apoptosis-related cysteine peptidase

Ssc.12711.1.S1_at 0.045 3.70 Up SSFA2 NM_001130445 Sperm specific antigen 2

Ssc.25255.2.S1_a_at 0.045 3.47 Up ASRGL1 NM_001083926 Asparaginase like 1

Ssc.8473.1.S2_at 0.034 3.40 Up DNAJA1 NM_001539 DnaJ (Hsp40) homolog subfamily A member 1

Ssc.22158.1.S1_at 0.038 3.33 Up ABHD13 NM_032859 Abhydrolase domain containing 13

Ssc.3706.1.S1_at 0.038 3.20 Up SOD2 NM_001024465 Superoxide dismutase 2

Ssc.5190.1.S1_at 0.034 3.06 Up HIATL1 NM_032558 Hippocampus abundant transcript-like 1

Ssc.6798.2.S1_at 0.038 3.04 Up HSPA9 NM_004134 Heat shock 70 kDa protein 9

Ssc.12446.1.A1_at 0.046 3.04 Up CASP4 NM_033306 Apoptosis-related cysteine peptidase

Ssc.6618.1.A1_at 0.038 3.33 Down ENDOD1 NM_015036 Endonuclease domain containing 1

Ssc.16377.2.A1_at 0.034 3.70 Down NM_145740 Glutathione S-transferase A1

Ssc.3344.1.A1_at 0.043 5.56 Down SEPT8 NM_015146 Septin 8

Ssc.18260.1.A1_at 0.038 5.56 Down GPN2 NM_001031770 GPN-loop GTPase 2

Ssc.590.1.S1_at 0.043 5.56 Down PSP-II NM_213836 Porcine seminal protein II (PSP-II)

Ssc.19586.1.S1_at 0.044 8.33 Down C1orf210 NM_182517 Chromosome 1 open reading frame 210

*For multiple probesets that had the same annotation, the probeset with highest estimated expression level was retained.
doi:10.1371/journal.pone.0028768.t003
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after ST inoculation, was also significantly over-represented

(Figures 4 and 5). Interestingly, some of the pathways enriched

with up-regulated genes such as ‘‘Apoptosis pathway,’’ ‘‘IL3

pathway,’’ and ‘‘Jak-STAT signaling pathway’’ also included a

few genes that were down-regulated, indicating the complexity of

the internal connections and regulation of these pathways. The

‘‘Steroid biosynthesis pathway’’ was significantly down-regulated

after ST inoculation in PS1 animals. For the lists of genes

differentially expressed between PS1 and LS1 animals at 2 dpi,

two pathways, ‘‘Steroid Biosynthesis’’ and ‘‘Ribosome and

Translation pathway’’ were significantly over-represented in genes

with lower expression in LS1 animals. Finally, no Innate DB

annotated pathway was significantly over-represented in LS1

animals due to ST inoculation.

Identifying sets of co-regulated genes and their
differentially expressed regulators in response to ST
inoculation

Using regulator-target relationships known from PubMed

literature, we used Sub-Network Enrichment Analysis (SNEA) to

identify individual ‘‘regulators’’ whose connections to specific sets

of differentially expressed target genes were over-represented

(p,0.05; Figure 6 and Supplemental Table S8). Such relationships

include direct interactions as well as more indirect relationships

inferred from published sources. Very few common GO annota-

tions of target genes were significantly over-represented in the lists of

differentially expressed genes in LS1 animals due to ST inoculation

and between PS1 and LS animals at 2 dpi. In the response to

Salmonella in PS1 pigs, however, many regulator-target relationships

were statistically significant, including those involving cytokines

such as IFN-c and tumor necrosis factor (TNF) and to immune-

inflammatory related transcription factors such as NF-kB. IFN-c,

TNF, and NF-kB were linked to the largest number of differentially

expressed genes, indicating their important roles in the regulation of

gene expression responses due to ST infection. Three interleukin

subnetworks (genes regulated by IL4, IL10 or IL12) were also

significantly enriched. These interleukins have extensive effects on T

cell activation, B cell proliferation, natural killer cell activation, and

antibody production, and also have broad interactions with other

immune and inflammatory modulators such as IFN-c and NF-kB.

Several other genes with altered expression patterns following ST

inoculation, including IRFs and STATs, as well as SPI1, CEBPB,

RELA and TLR4, had significantly enriched regulator-target sets

(Figure 6 and Supplemental Table S8). Four regulators with

significantly enriched down-regulated targets,JUN, MAPK14,

RELA and NR1H3, were induced in response to ST challenge

and two such regulators (FOS and FOXO3) were repressed. The

target network of TGFB1, whose protein product acts as a negative

Table 4. qPCR results for gene expression in pigs with different shedding phenotypes at day 0 versus day 2 following ST
inoculation, comparing with microarray data.

Microarray data (FCa) qPCR for group #1 (FCa) qPCR for group #2 (FCa)

Gene Name D2 PS/LS LS D2/D0 PS D2/D0 D2 PS/LS LS D2/D0 PS D2/D0 D2 PS/LS LS D2/D0 PS D2/D0

RPL6 0.60# 1.16 0.68 0.92 0.96 1.21 1.08 1.08 0.89

CEBPB 2.24 2.68 8.03## 3.55* 0.42 4.24* 1.59 3.89** 4.74**

CASP1 2.07# 1.74 4.15## 4.20** 0.43 2.95* 1.94** 4.16** 3.95**

SLC11A1 2.23 2.45 8.78## 4.55** 2.81 19.6** 4.03** 4.40** 16.9**

TLR4 1.81 2.23 4.96## 3.34* 4.26* 9.30** 1.19 5.22** 7.68**

VNN1 0.24 0.28 0.07## 0.02** 0.71 0.02** 0.09 0.01** 0.01*

TLR2 1.79 2.10# 3.65## 1.69 0.75 1.37 1.56 0.82 0.84

IGHG 0.34## 0.86 0.41## 0.63* 0.93 0.58** 0.69 0.79 0.41**

TREM1 1.86 2.07 5.26## 2.47* 0.17* 1.46 1.07 0.84 0.64

BPGM 0.34## 1.16 0.33## 0.77 1.13 0.60 0.52 1.46 0.95

ARPC4 1.79# 0.90 1.97## 1.59* 1.09 3.13** 1.77** 3.10** 2.24**

IRF7 1.06 2.37 6.67## 1.27 1.90 6.21** 1.83 2.45 5.55*

SPI1 1.48 1.95 2.57## 1.84 3.24** 6.28** 1.45 3.78** 6.61**

C1QA 0.32# 2.29 0.35## 6.06* 0.01** 0.16 0.51 1.40 0.95

LEF1 1.20 0.69 0.65## 1.74 1.02 0.87 1.12 0.71 0.71

HSP90AA1 1.72# 0.83 1.43 1.82* 0.64 1.73* 1.58* 1.09 0.95

HSPD1 1.70 0.61# 1.23 3.28* 0.51 2.28 0.96 5.06** 3.44**

NCL 4.35# 0.26# 1.76# 2.16 0.48 1.22 1.41 0.83 0.83

ZFP36L2 1.44 0.59# 0.87 1.41 1.38 1.55 1.27 1.65 1.38

SFRS3 1.60 0.46## 1.06 1.51 0.55 1.02 1.86 1.29 1.88

DDX3X 1.96# 0.54# 1.05 1.66 0.90 1.29 1.61 1.67 1.41

aFC, fold change: the ratio of the Ct value (qPCR) or probe intensity (microarray) between contrasts. FC greater than 1.0 indicates the gene was up-regulated, FC less
than 1.0 indicates the gene was down-regulated for the two samples shown.

*Statistical test of difference between contrasts: *indicates trends to significance at p,0.1 (Student’s t-test), **indicates significant difference at p,0.05.
#All genes shown were selected for qPCR validation. The genes were selected with respect to their rank of expression changes (#q,0.1, fold change.1.5 or ,0.66;

##q,0.05, fold change.1.5 or ,0.66;), as well as biological function, quality of annotation, available nucleotide sequence length, and estimated microarray signal
intensity as an indicator of transcript abundance.

doi:10.1371/journal.pone.0028768.t004
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autocrine growth factor, was significantly enriched as well. The

relevant functions of other over-represented regulators and

subnetworks of regulated targets are less defined.

Differential expression in PS animals for three regulators with

over-represented targets, SPI1, CEBPB and TLR4, was confirmed

by qPCR (Figure 7). All three were significantly up-regulated at

2 dpi in all four sets of the PS animals (PS1 to PS4) after ST

inoculation. The expression levels of two miRNAs (mir-124 and

mir-155) with over-represented targets were quantified by Stem-

loop TaqMan Assay (Figure 7). While the expression of mir-124 in

peripheral blood was almost undetectable (data not shown), miR-

155 was down regulated in pig peripheral blood RNA from PS3

animals inoculated with ST (over 5 fold, p,0.01, Figure 7).

Discussion

Blood transcriptome analysis as a means to explore
innate immune responses and identify biomarkers for
variation in disease outcome

The blood transcriptome has emerged as a useful and practical

window into the status of the immune system in health and disease

[27,50], even for compartmentalized infections such as respiratory

disease [28,51]. Additionally, variation in immune response to the

same pathogen among individuals can be detected; a recent report

described blood transcriptional signatures that correlated with the

extent of pulmonary tuberculosis [51]. To date, there have been

only a few reports of the response of the porcine whole blood

transcriptome to infection [35,52]. In contrast, several studies have

assessed the responses of peripheral blood derived cell populations

to infection with bacteria or viruses [53,54,55,56,57], immune

stimulants [58], or following vaccination [59]. Several reports have

demonstrated there is genetic control of various immune cell

parameters or immunological traits [8,9,10,12,13,14], as well as loci

associated with susceptibility to salmonellosis [15,16]. Our focus in

this work was to identify genes that mark early differential immune

responses to Salmonella in pigs by correlating fecal shedding and blood

transcriptomic responses. The expression changes of such early

biomarker genes associated with shedding could potentially be used to

select animals that are less susceptible to persistent infection, and thus

serve as a useful phenotype to improve pig genetics and food safety

problems introduced by Salmonella infection. In future work, it is also

possible to search for genetic polymorphisms controlling the variation

of these expression patterns, using the candidate gene approach (Uthe

et al., in press) or an expression Quantitative Trait Loci (eQTL)

approach [60]. Analysis of whole blood mRNA expression would also

be very valuable as a low cost means for measurement of genes whose

expression patterns are associated with a superior outcome, so that

the large numbers of individuals required for such association studies

can be tested and any association measured.

Identifying blood transcriptome patterns associated with
fecal shedding of Salmonella Typhimurium

Enumeration of fecal Salmonella shedding across the challenge

populations indicated that substantial shedding variability exists

among individual pigs. The transcriptome profiling results

demonstrated that the PS1 animals, which shed significantly

higher amounts of Salmonella than the LS1 animals, also have

significantly more vigorous peripheral blood transcriptome

responses. Further, these results indicated the induction of a cell-

mediated immune response with expression of genes classically

associated with a Th1 response and typified by IFN-c signaling

pathways; these pathways are discussed in detail below.

The GO annotation analysis of genes responding to Salmonella

colonization at 2 dpi indicated that the innate immune genes

Figure 3. Significant correlation between qPCR and microarray expression measurements across 21 genes tested. Whole blood gene
expression levels of the LS1, PS1 and LS2, PS2 pigs detected by qPCR were compared with microarray results for LS1 and PS1 samples. The diamonds
indicate the fold changes for each of the comparisons (LS_D2/D0, PS_D2/D0, D2_PS/LS), as measured using Affymetrix technology (X-axis) or by Q-
PCR (Y-axis). The lines illustrate the linear regression between expression levels detected by the two different methods.
doi:10.1371/journal.pone.0028768.g003
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constituted the majority of the over-represented responses and this

was confirmed by InnateDB analysis. Furthermore, InnateDB

over-representation analysis identified that the TLR4 and IFN-c
systems are major inducers of transcriptomic responses in the

peripheral blood of PS1 animals. The significant up-regulation of

mRNA for TLR4 and the elevation of over 30% of the genes in

the TLR signaling pathway indicated that this pathway and the

downstream effectors were extensively activated early in the

response to Salmonella. The activated downstream cascades of the

chemokine signaling pathway, the ‘‘NF-kB induced response,’’ the

‘‘IFN-c cascade,’’ and the interleukin pathways together with the

‘‘Toll-like receptor signaling pathway’’ itself cover most of the

over-represented pathways, further indicating primary roles for the

TLR4 and IFN-c systems in this response.

The cytosolic DNA-sensing pathway, which was significantly up-

regulated in the PS animals, could be another important regulatory

module responsible for the induced expression patterns seen in the

PS1 animals after ST inoculation. This pathway includes specific

families of pattern recognition receptors responsible for the

detection of foreign DNA from invading microbes and for

generating innate immune responses, such as the double-stranded

DNA sensor protein DAI and AIM2 [61,62,63]. Foreign DNA can

also be converted to RNA by host RNA polymerase III and then

recognized by the RNA sensor RIG-I [62,63]. After ST inoculation,

45% of genes in this pathway were significantly induced, including

the RNA polymerase III gene POLR3GL, the DNA exonu-

clease TREX1, and the double-stranded RNA recognition protein

DDX58, all of which are very important for the function of the

Cytosolic DNA-sensing pathway (Figure 4 and 5). Most important-

ly, the signaling modules downstream of the cytosolic DNA-sensing

pathway such as the NFkB-, IL6-, and IFNa-, centered cascades

were also significantly changed after ST inoculation (Figure 4 and

5). These results indicate that the cytosolic DNA-sensing system

may be an important mechanism for the activation of the immune

and inflammatory responses in persistently shedding pigs.

Decreases in expression of genes involved with RNA
metabolism and splicing are associated with low
shedding phenotype

A clearly intriguing result is the group of 111 genes, mostly

down-regulated upon inoculation with Salmonella, that were

Figure 4. Over-representation of many InnateDB pathways in the differentially expressed transcript list of ST inoculated pigs. The
lists of differentially expressed genes in PS1 pigs (q,0.05) were annotated using DAVID [39] and over-represented pathways identified using a false
discovery rate of q,0.1 in InnateDB [38]. Left: the ratio represents the proportion of the differentially expressed genes in a specific pathway
compared to all of the genes in that pathway. Right: each row represents the counts of the differentially expressed transcripts similarly annotated as
shown by the row label. As calculated by InnateDB, most of the genes in a majority of the pathways shown are up-regulated (q,0.1); however, the
bottom-most two pathways (marked with an *) are enriched with down-regulated genes (q,0.1).
doi:10.1371/journal.pone.0028768.g004
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identified as differentially expressed in the LS1 animals (Figure 2B),

and thus are associated with reduced Salmonella shedding and a

potentially superior host control of Salmonella replication. Many of

the over-represented terms in this set of genes are related to RNA

processing, metabolism, and/or splicing. Alternative splicing plays

an important role in several aspects of host-pathogen interactions

and immunity, and many examples of alternative splicing of

RNAs encoding immune system components have been reported

[64,65,66,67,68]. Two genes SFRS1 and SFRS3, members of the

serine-arginine-rich (SR) family are directly related to alterna-

tive splicing. SFRS1 and SFRS3 were down-regulated at 2 dpi

specifically in the LS1 animals. Both SFRS1 and SFRS3 contribute

to viral RNA nuclear export [69,70], and also interact with viral

proteins to regulate protein production during several viral infections

[71,72,73,74]. Therefore, decreasing SR gene expression could be

postulated as a useful response to viral infection. It would be quite

interesting to explore the role of SFRS1 and SFRS3 in Salmonella

colonization, as the decreased expression of these genes at day 2 pi is

correlated with lower Salmonella shedding observed in the LS

animals.

We were also interested in exploring the mechanisms by which

expression of splicing factor genes could be decreased. Beta-

catenin signaling can activate expression of SFRS3 thus affecting

alternative splicing [75]. Expression of CTNNB1, the gene

encoding b-catenin that controls expression of target genes

through its interaction with TCF4, is decreased significantly in

LS1 animals after Salmonella inoculation (1.6 fold relative to day 0,

q,0.04) and is slightly increased in PS1 pigs (1.2 fold, q,0.07).

Thus, the decrease of SFRS3, and potentially alternative splicing

in general, could be due to decreased b-catenin signaling in the

LS1 pigs. Interestingly, Salmonella infection of mice was shown to

stimulate b-catenin protein degradation, decrease expression of c-

myc (ab-catenin target gene), and decrease the physical interaction

between b-catenin and NF-kB [76]. Further, constitutively active

b-catenin was shown to stabilize the NF-kB inhibitor I-kB,

indicating b-catenin may have a novel role in suppression of

inflammation induced by Salmonella or other pathogenic bacteria

[77]. In addition, Salmonella effector protein AvrA was recently

shown to increase b-catenin protein levels, leading to activation of

the Wnt/b-catenin pathway signaling in intestinal epithelial cells

[78]. Finally, it has recently been demonstrated that b-catenin in

gut dendritic cells is necessary for anti-inflammatory responses,

and b-catenin signaling is thought to promote tolerance to

inflammatory stimuli [79]. We observed specifically in the LS1

pigs a decreased expression of b-catenin and targets of b-catenin

that are known to control alternative splicing of immune response

genes. It would be of interest to test whether effects on alternative

splicing are associated with decreased shedding after Salmonella

inoculation.

Multiple annotation analyses indicate TLR and IFN-c
regulons can account for much of the immune response
pathways that are associated with animals with the
highest levels of Salmonella shedding

The TLR and IFN-c signaling pathways are prominent in the

PS1 response to Salmonella inoculation, as shown by both the GO

and InnateDB analyses. We also used SNEA to identify regulatory

proteins linked to a network (regulons) of their known targets that

are enriched among the members of the differentially expressed

gene lists. If network regulators are themselves differentially

expressed, this could provide evidence for specific hypotheses that

such regulators are responsible for the observed changes in

expression of their enriched target genes. For example, in PS1 pigs

we observed an increase in expression of two NF-kB subunits p65

(RELA; 2 fold over 0 dpi, q,0.001) and p50 (NFKB1, 1.3 fold

Figure 5. Genes in the Cytosolic DNA-sensing pathway show changes in expression during response to Salmonella. The red boxes
indicate up-regulated genes and pink boxes indicate the gene is up-regulated and that target genes of the gene in the pink box are over-represented
in DAVID analysis. Green boxes indicate the gene is present on the array but was not differentially expressed. White boxes indicate that no gene
information was available in the porcine genome, or that the gene was not on the Affymetrix Genechip.
doi:10.1371/journal.pone.0028768.g005
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over 0 dpi, q,0.06), and the NF-kB regulon was shown to be

over-represented in the SNEA analysis (Figure 6). As well, the gene

for the NF-kB inhibitory subunit IkB (NFKB1A), which is a well-

known target of the TLR signaling network through NF-kB, was

up-regulated in PS1 pigs only (2.3 fold over 0 dpi, q,0.003).

Most importantly, the serum protein level of IFN-c, the top

ranked regulator for the up-regulated genes in PS1 animals,

increased after ST inoculation and was positively correlated with

Salmonella shedding levels [31]. IFN-c produced predominantly

by T lymphocytes and natural killer cells [80], is believed to

prime macrophages to respond more vigorously to LPS. IFN-c
signaling also induces expression of several TLR signaling

components, including TLR4 and MD2, both of which are up-

regulated in the PS1 animals in response to Salmonella inoculation

(TLR4: 5 fold over 0 dpi, q,0.02; MD2: 1.4 fold, q,0.04). IFN-

c has been proposed to remodel initial NF-kB signaling through

both feed forward and feedback mechanisms [80]. First, IFN-c
amplifies TLR signaling by stimulating the expression of IRF1

and its downstream targets, which overlap with TLR signaling as

IRF1 is also a target of NF-kB [41,81]. SNEA analysis shows that

the IRF1 regulon is significantly over-represented in PS1 pigs.

Also, IRF1 mRNA is significantly up-regulated as well in these

animals due to Salmonella inoculation (2.3 fold, q,0.004). Second,

IFN-c further activates proinflammatory pathways by suppress-

ing IL10 expression, which stimulates STAT3-dependent

suppression of TNF [80]. In PS1 pigs with high levels of

circulating IFN-c, IL10 RNA levels are nonresponsive to

Salmonella inoculation, while STAT3 and TNF are slightly but

significantly up-regulated in PS1 animals (1.49 fold over 0 dpi,

q,0.01 and 1.65 fold over 0 dpi, q,0.08, respectively). Another

set of STAT3 targets are SOCS genes, and SOCS3 is highly

stimulated in both PS1 (6.4 fold) and LS1 (3.3 fold) pigs

subsequent to Salmonella inoculation. However, the induction of

SOCS3 mRNA is significant for PS1 pigs only (q,0.01), likely

representing a negative feedback mechanism for IFN-c signaling

in PS1 animals.

Expression of TLR9, another gene positively regulated by

IFN-c through the actions of SPI1 and IRF8 [82], is slightly but

significantly down-regulated in PS1 animals (1.53 fold compared

to 0 dpi, q,0.04) and unchanged in LS1 animals. Porcine PBMC

express TLR9 and respond to bacterial CpG DNA [83], with this

TLR9 signaling inducing IFNG RNA expression in culture [84].

Human cells transfected with swine TLR9 and treated with CpG

DNA increased cytokine-specific mRNA expression, including

IFNG [85]. Mice infected with ST, as well as murine macrophages

treated with LPS, also demonstrate increased TLR9 expression

[86]. These observations are in contrast to the TLR9 response

seen in PS1 pigs. Interestingly, inhibition of TLR9 signaling using

an inhibitory oligonucleotide increased Salmonella replication in

cultured macrophages [87], which is consistent with the lower

levels of TLR9 expression seen in the PS1 animals. In our data,

levels of TLR4 RNA were also increased in PS1 animals,

suggesting that regulation of different TLRs is distinct in whole

blood cells in vivo.

Figure 6. Many sets of transcripts whose expression is controlled by a common regulator (within the same regulon) are found
significantly enriched in the differentially expressed transcript lists. Differentially expressed transcripts for a particular comparison (PS1
2 dpi versus 0 dpi, etc.) are shown with specific colors. The x axis is the negative log of the p value for the over-representation of the regulon shown.
The y axis (percent overlap) represents the proportion of the differentially expressed targets by a specific expression regulator compared to all known
targets of that regulator. The size of the bubble reflects the number of differentially expressed targets for each regulon. For all regulons described in
the text, the bubble is underlined.
doi:10.1371/journal.pone.0028768.g006
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Combining our SNEA analysis results with the circulating

cytokine data, we hypothesize that much of the difference in gene

expression between PS and LS animals at 2 days post inoculation

could be directly due to the higher levels of IFN-c in the

bloodstream. Elevated blood levels of IFN-c would induce

expression of IRF1 and other downstream components of the

TLR and IFN-c regulons. It would be interesting to test this

hypothesis through measuring the correlation of IFN-c signaling

levels and gene expression response separately from Salmonella

infection.

Overall, these results show that measurement of the transcrip-

tomic response in a limited number of individuals with extreme

disease outcomes identified substantially different responses of the

major canonical immune pathways between these two extremes.

As our gene expression data were quite extensive in the number of

responsive genes, this experiment also provided significant new

information for many poorly annotated transcripts in the porcine

genome, as a correlation of their expression pattern to the known

regulatory pathways described above may be a clue as to their

regulation and function in the porcine immune response.

We also compared our response patterns with the data of

Wurfel and colleagues [88]. This group quantified human whole

blood responses for eight cytokine proteins from 102 patients to

identify extremes in individual cytokine secretion after 6 hour LPS

stimulation [88]. They then measured differences in global mRNA

expression among three low and four high responders, cataloging

genes that responded to LPS stimulation, as well as differentially

expressed genes between the high and low responder classes.

Comparing these results and our data, we found no overlap

between genes differentially expressed between PS1 and LS1

animals at 2 dpi and genes differentially expressed between low

and high cytokine secretors reported by Wurfel et al. [88]. The

lack of overlap may be due to differences between in vivo responses

to live bacteria and responses to a short-term LPS treatment in

vitro. A smaller number of differentially expressed genes was

observed between high and low responders by Wurfel and

colleagues, as compared to the LS1 and PS1 animals, and this

could also potentially explain the lack of overlap.

Integrative analysis of miR-155 regulation with two
important transcription factors in the porcine blood
transcriptome response to Salmonella

Beyond the IFN-c regulon, we further explored selected

regulators showing large numbers of target genes in the

differentially expressed gene lists, including TLR4, CEBPB, and

Figure 7. Reciprocal expression during the persistent shedder response to Salmonella inoculation for miR-155 and two of its
repressed targets, SPI1 and CEBPB, which themselves have over-represented target gene sets in the transcriptomic response to
Salmonella. Expression level is presented as 40-minus actual Ct. LS1PS1, LS2PS2, LS3PS3, LS4PS4 are four different sets of low shedding and
persistent shedding pigs selected from two different challenge populations. The miR155 data was collected only from LS3PS3 due to the fact that
sufficient samples for the other pigs for miRNA preparations were unavailable.
doi:10.1371/journal.pone.0028768.g007
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SPI1, all of which we confirmed by q-PCR as up-regulated genes.

The CEBPB gene product controls the expression of IL6, IL8

and other acute phase genes [89]. The CEBPB regulatory factor

was among those genes up-regulated in porcine spleen upon

Haemophilus parasuis infection [47]. The SPI1 gene product (PU.1) is

well-known as a transcription factor controlling hematopoesis and

stimulation of gene expression during the immune response [90,91],

including the TLR4 gene. Recently, the SPI1 gene was shown to be

synergistically activated by NF-kB and CEBPB [92]. The SPI1 gene

was found to be up-regulated at 2 dpi in both the LS1 and PS1

animals, while CEBPB is up-regulated only in the PS1 animals (2.2

fold, q,0.001). To visualize the commonly-regulated genes among

these regulators, we collected the expression targets of IFN-c SPI1,

CEBPB and TLR4 and created a sub-network of all common genes

in Pathway StudioH; the result is shown in Figure 8.

In addition, one of the miRNAs with significantly enriched

targets within the up-regulated genes in PS1 animals is mir-155,

which was down-regulated over 5-fold following ST challenge in

persistent shedder pigs in a separate challenge population (PS3)

(p,0.01). Recently, mir-155 has been reported to target (inhibit)

the other two significantly enriched gene expression regulators,

SPI1 and CEBPB [93,94,95], thereby explaining the expression

pattern for much of the sub-network shown in Figure 8. The RNA

expression level changes, confirmed by qPCR for TLR4, CEBPB,

SPI1 and miR-155, provide substantial evidence to support the

SNEA-generated hypothesis of the coordinated involvement of

these factors in the regulation of the global gene expression

responses introduced by ST inoculation. Our results add evidence

of a direct connection between miR-155 and IFN-c signaling [96].

Banerjee and colleagues showed that during CD4+ T cell

activation miR-155 levels increase and promote Th1 differen-

tiation, while suppression of miR-155 levels promoted Th2

differentiation. They demonstrated that lower levels of miR-155

increased IFNGR1 RNA levels and that the IFNGR1 mRNA had

a functional miR-155 target sequence. Consistent with these

regulatory interactions, we note that in PS1 animals (high IFN-c
low miR-155), IFNGR1 RNA was significantly increased after

Salmonella inoculation (3.6 fold, q,0.002) while in LS1 animals the

increase is less dramatic (1.8 fold, q,0.13). Alternatively, we could

find no common targets of the cytosolic DNA-sensing pathway

with the targets of the above regulators, thus this pathway is

apparently relatively independent of those shown in Figure 8.

Finally, we believe this analysis shows that whole blood, in

addition to being a practical and useful source of biomarkers

associated with disease outcomes as has been shown for

tuberculosis severity [51], may be an appropriate model to

Figure 8. Common gene interactions of the IFNG, SPI1, TLR4, CEBPB and mir-155 (highlighted with yellow) gene expression
regulation networks for up-regulated genes in the PS animals. In this figure, all entity relationships (protein-protein binding, promoter
binding by transcription factor, known regulatory relationship, and other relationships) are shown for all up-regulated genes in the PS animals that
were shown to be regulated by one of these five genes in the Sub-Network Enrichment Analysis. Green lines indicate promoter binding evidence;
blue lines indicate regulation evidence only; all links reported by PubMed literature were obtained using Pathway StudioH (Ariadne). Note the large
number of genes in common among the IFNG, SPI1 and CEBPB regulons, as well as that miR-155 negatively regulates both SPI1 and CEBPB.
doi:10.1371/journal.pone.0028768.g008
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understand the regulatory mechanisms associated with the response

to Salmonella in vivo, even though the RNA is derived from a mixture

of cell types. We provided evidence for both transcriptional and

post-transcriptional regulatory pathway involvement in the porcine

whole blood RNA data collected herein. The present expression

profiling data can also be a useful starting point for the identification

of genetic variants that associate with the shedding phenotypes and

that reside within candidate genes such as those differentially

expressed between Salmonella shedding phenotype classes. Thus

these novel data will be an excellent foundation upon which to build

both of these approaches in the porcine species, an emerging model

for the mammalian immune response.
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