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Chiral topological insulator of magnons

Bo Li and Alexey A. Kovalev
Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience,
University of Nebraska, Lincoln, Nebraska 68588, USA

® (Received 29 January 2018; revised manuscript received 3 April 2018; published 14 May 2018)

We propose a magnon realization of 3D topological insulator in the AIII (chiral symmetry) topological class.
The topological magnon gap opens due to the presence of Dzyaloshinskii-Moriya interactions. The existence
of the topological invariant is established by calculating the bulk winding number of the system. Within our
model, the surface magnon Dirac cone is protected by the sublattice chiral symmetry. By analyzing the magnon
surface modes, we confirm that the backscattering is prohibited. By weakly breaking the chiral symmetry, we
observe the magnon Hall response on the surface due to opening of the gap. Finally, we show that by changing
certain parameters, the system can be tuned between the chiral topological insulator, three-dimensional magnon

anomalous Hall, and Weyl magnon phases.

DOI: 10.1103/PhysRevB.97.174413

I. INTRODUCTION

The discovery of topological insulators (TIs) [1,2] is a
remarkable achievement in condensed matter physics as it
reveals fundamental connection to topology and is promising
for applications in electronics and quantum computing. At the
same time, the concept of topology arises in a variety of other
fields under the encouragement of the success of topological
insulators [3,4]. Recently, there has been considerable interest
in the topological physics of magnon systems [5—13]. Realiza-
tions of systems with a Weyl spectrum of magnons have been
suggested [14—19]. Multiple theoretical works [6,7,11,20-36]
have discussed the edge or surface states of gapped magnon
systems. Due to the absence of the Kramers degeneracy and
the electronic orbital freedom for magnons, the investigation
has been limited to the magnon analog of the Chern insulator.
A magnon analog of the quantum spin Hall effect comprised of
two copies of magnon Chern insulators has also been proposed
[30,31]. Nevertheless, the topological protected helical surface
states have not been discussed for magnon systems. According
to the tenfold way classification of TIs [37,38], the AIII class
only requires the sublattice chiral symmetry for realization of a
topological insulator with Z invariant in one and three dimen-
sions [39-42]. Hosur et al. [39] discussed an electronic model
of chiral topological insulator (cTI). Wang et al. suggested a
realization of cTI in cold-atom systems [40].

In this paper, we show that magnon chiral topological
insulator (mcTI) can be realized in a Heisenberg model
endowed with the Dzyaloshinskii-Moriya interaction (DMI)
[43,44]. We consider a layered honeycomb lattice structure
[45,46] in which the interactions are chosen such that the
system possesses the chiral symmetry (see Fig. 1). The bulk is
characterized by the Z topological invariant: winding number.
In accordance with the bulk-boundary correspondence, our
model supports a symmetry-protected magnon Dirac cone on
its surface, provided the chiral symmetry is not broken on
the surface. The helical surface states lack backscattering in
the presence of the chiral symmetry. By breaking the chiral
symmetry, a small gap can be introduced in surface band, which
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leads to the magnon Hall response, e.g., under a temperature
gradient. We observe that similar to electronic systems, the
chiral symmetric perturbations can change the system to the
nodal line and trivial phases. Furthermore, by adding terms
breaking the chiral symmetry, we can bring our system into
the three-dimensional magnon anomalous Hall (3D-mAH) and
Weyl magnon phases.

The paper is organized as follows. In Sec. II (and in
Appendix B), we construct models of mcTI and clarify the
presence of the chiral symmetry and the mass term. In Sec. I11,
we calculate the topological invariant associated with the
spectrum of magnons in mcTI. In Sec. IV, we study the
surface states by constructing the effective Hamiltonian and
calculating the Hall-like response to the temperature gradient.
In Sec. V, we vary various parameters of the model and
construct a phase diagram with the nodal line and mcTI phases.
Several appendices give more details about our calculations.

II. MODEL

We consider a layered honeycomb magnetic structure with
ferromagnetic ordering, as shown in Fig. 1. Torealize mcTI, we
construct a model with the magnon Dirac spectrum in the bulk.
We then open a gap by adding a mass term corresponding to
additional DMI. In Appendix B, we show that there are various
ways to introduce the mass term. The Heisenberg Hamiltonian
is composed of the in-plane and interlayer exchange interac-
tions, and the axial anisotropy terms,

H = Hin + Hinter + Ham (1)
where

3
Hy,=-J Z ZSA,i Sp.ivs, +Sai-Spizs,

z,0 p=1

Hiner = — Y _(1Saz - Sp 41+ 6Saz - Spc1)
i,z

+(t < th,A— B,B — A,

Han = Z Z K(SZQ,(i,m)z' @
iz Q
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FIG. 1. Left: The layered Honeycomb structure. The central
nonmagnetic atom generate DMI between interlayer third-nearest-
neighbor atoms, e.g., A and B’. Middle: The in-plane and interlayer
exchange energy. Right: The projection of interlayer DMI between A
and B’ on z direction.

Here i corresponds to the in-plane index and z corresponds
to the layer index; 8; = (1,0,0), §, = (—1,4,0), 83 = (=1,

— 4,0); J and K are nearest exchange and axial anisotropy
energy with K < 0. Q stands for different spin modes, i.e.,
Q = A,B,A’,B’. In the Hamiltonian, we suppress unrelated
coordinates for clearness. For in-plane interaction, we only
consider nearest-neighbor exchange. For the interlayer inter-
action, we use a staggered pattern as shown in Fig. 1 (this
limitation simplifies analysis but it is not necessary, as we show
in Sec. V). We perform Holstein-Primakoff transformation in
the large S limit, S5, , = (S — 0!/ 0;)and S5 =~/250Q;, with

QlT, Q; being the magnon creation and annihilation operators
for spin mode Sp. The Hamiltonian in momentum space is
written in the basis Wy = (A, Bk, Ay, By), where we label
the layer and sublattice degrees of freedom by u and t Pauli
matrices,

H=1JSY WH, 3)
k

with

Hk = €0 — YikTx + VoMo Ty + 2X cos(k,) i, Ty
— 28 sin(k; )4 Ty “4)

Here ¢y =3 —2A — 2k, x = Zu e =y + iy, with

3k,
2

Y1k = cos(k,) + ZCOS(%)COS( *) and y = 2[005(1‘2—*) —

cos(2h) sin(&), 2 = — L@t +1)/J, 8 = Lt — 1)/J, and
k = K/J. Note that the Hamiltonian above has the chiral
symmetry 7, up to a constant term (below, we disregard this
constant energy shift), i.e.,

TZHkTZ = —Hk. (5)

First, we consider the case A =0, corresponding to the
staggered interlayer exchange. In this pattern, the exchange
term realizes the so-called 7 flux [39] for vertical plaquettes
Mpsign(t;;) = —1, e.g., AB’A’BA, where t;; stands for the
exchange strength between two spins. The eigenenergy,

Es/JS = £/ Inl? + 46 sin’(k.), ©)

reveals two Dirac cones at Qg(y) = (0, £ 47 0). Around the

. . . . Sﬁ ’
Dirac point Qg, the Hamiltonian reads
Hox = qi, @)

where g, = 3ke,qy = 3k, and g, = —26k;; {o;} =
{r.Ty, Ty, 1Ty} satisfy the relation {o;,0r;} =26;;. For
the other Dirac point, the Hamiltonian is easily obtained after
the transformation g, — —gq, in Eq. (7). Since the two Dirac
cones give us equivalent physics, we use the form in Eq. (7)
in the following discussion.

To realize mcTI, the Hamiltonian should have a chiral
symmetric mass term to open the gap in the bulk Dirac cone
while preserving the surface Dirac cone. In a massive Dirac
equation for the bulk, the mass term is described by the matrix
B satisfying the anticommunication relation {8,Hox} = 0.
The only possible term preserving the chiral symmetry is
B = py7,. To this end, we include the third-nearest-neighbor
interlayer DMI in our model. The correct form of DMI can
be produced by the central nonmagnetic atom as it is shown
in Fig. 1, where we assume an overlap of relevant orbitals
and a sufficiently strong spin-orbit interaction. The DMI term
becomes

Hy= Y Y Dap(dy)[Sa o) X Spird,.com]
an=tl id,

+{A —> B,B' > A}, ®)

where i, z are the in-plane and layer coordinates with assump-
tion of unit interlayer distance in z direction, d, represents the
in-plane second-nearest-neighbor between atoms with d; =

(2,%,0),d, = (~2,42,0), and ds = (0, — +/3,0) (the other
three are —d;, — d,, — d3). At the same time, we assume that
the in-plane DMI between the second-nearest-neighbors is
absent, as such a term would break the chiral symmetry. For the
magnetization along the z axis, only the z component of DMI
vectors is relevant, which is shown in Fig. 1. The z projections
of DMI vectors have the same magnitude D* and follow the
staggered pattern shown in Fig. 1. In momentum space, the
DMI term reads

Hi = 48p&k cos(k;)uy Ty, ©)

where §p = D?/J and & = Z?:l sin(k - d;). Now, we have
the full model given by Egs. (4) and (9).

To confirm the existence of surface states, we diagonalize
the Hamiltonian given by Egs. (1) and (8) in a slab geometry. In
our calculation, we consider two bulk regions with the opposite
sign of DMI 4 p, which guarantees the sign change of the mass
term across the interface. As expected, the model has Dirac
states confined to the x — y plane separating the two bulk
regions as shown in Fig. 2, left. The model hosts two surface
Dirac cones at the two-dimensional projection of Qg and Q, as
long as all parameters are nonzero. We also considered a bulk
terminated at a honeycomb plane with vacuum, which results
in a single Dirac cone with a gap opening due to breaking of the
chiral symmetry at the interface (see Fig. 2, right). The chiral
symmetry breaking appears due to the exchange energy terms
at the interface after application of the Holstein-Primakoff
transformation.
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FIG. 2. A plot corresponding to a slab geometry with the parame-
ters,6 = 0.3, §p = 0.15. Left: The surface state with the Dirac cone at
Q. and Q where the surface states appear at the interface between the
two bulk regions with the opposite sign of DMI 5. Right: The surface
state cone splits when the bulk is interrupted at a honeycomb plane
in contact with vacuum due to uncompensated exchange interactions
leading to breaking of the chiral symmetry.

III. TOPOLOGICAL INVARIANT

The presence of chiral symmetry ensures that the Hamil-
tonian could be brought to an off-diagonal form by a unitary
transformation. For our case, we need a transformation satis-
fying Uz.U' = ., under which,

_ . 0 Dy
Hk:UHkUT:[Di 0], (10)
with
—Vk Ak
Dy = 11
k |:_Al>); —V—ki|’ ( )

where Ax = —468p& cos(k;) + 28 sin(k,). We can adiabat-
ically deform ) into a flatband Hamiltonian Q) = 1 —
2% ienG [Wa) (Wal [37,38] where v, is the eigenstate of Hi
and B.G. stands for the states below the gap. The matrix form

reads
0 CIk:|
= , (12)
Qx [Qi 0

where the off-diagonal term is gx = %Dk with A =

V17?2 + | Ak|?. The chiral topological state can be charac-
terized by the three-dimensional winding number [37,38]

d’*k
vlg] = / 7 S trl(q19,9)(q'0,9)(q )], (13)
4
where u,v = k,,k,,k; and the integration goes over the whole
Brillouin zone. Numerical results show that the winding
number is quantized for nonzero 8, and §. When §p = 0 or
8 = 0, the model falls into the Dirac phase with vanishing
winding number. This result can be understood (details in
Appendix C) by considering the topologically equivalent
Hamiltonian around Qg: Hqg+k = giot; +mu, 1, with m =
24/38p (here we drop the momentum dependence of mass term
in topological sense). The topological invariant is calculated
as vglg] = sgn(6pd)/2. For Q. point, we replace g, — —q,
and m — —m to get v;[q] = sgn(6pd)/2. The total winding
number is the sum,

vlg] = sgn(6pé), (14)

which is a quantized number for the nontrivial mcTI phase and
zero for the trivial phase. In our model, there is only one Dirac

Vs\ ,,l
N/

,/"‘\ Surface Dirac

j=2 Inlayer

Interlayer )

DX DX DX DAL X

=1 s
/. Surface Dirac
£, cone
R
FIG. 3. Pairing pattern for § = ?8 p. The R Dirac cone resides

on the surface.

cone on the surface projection point of Qg or Q. Specifically,
when v[g] = 1(—1), the Dirac cone appears on the projection
of Qg (Q.) point. In general, mcTI can have more than one
Dirac cone at the boundary.

IV. SURFACE STATE

We can get a physical insight into the formation of the
surface Dirac cone by considering the interlayer Dirac cone
pairing pattern [39]. For simplicity, we ignore the chiral
symmetry-breaking terms appearing when we terminate a
sample at one of honeycomb planes in contact with vacuum.
Such symmetry-breaking terms do not appear if the interface
is formed between the two bulk regions with the opposite sign
of DMI § or if the interface is terminated in such a way that
the chiral symmetry-breaking terms due to exchange energy
do not appear. We consider the Hamiltonian that is Fourier
transformed with respect to the in-plane momentum,

Hj; = —Vik Tx + Vo M Ty + (zéku Sp — S)Myfy,
Hj j+1 = £i(8 + 28 I+Ty, (15)

where the index j labels the bilayer, H; ; describes in-
tralayer terms, and H; ;4 describes the interlayer terms in
the Hamiltonian written in the basis (A, ;, Bx,.; ,A;(”’ I BI’W j),
with k| representing the in-plane momentum (see Fig. 3).
The intralayer Hamiltonians describe two-dimensional Dirac
cones (different from the bulk Dirac cones discussed be-
fore), which hybridize due to interlayer coupling. It is
convenient to consider the Hamiltonian written in the sub-
space (AR,j,BR,J-,A/R,j,B;w.,AL,j,BL,j,A/L,j,B/L’j) where in-

dex R(L) stands for the in-plane momentum (0, + 347’%), and
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Pauli matrix v, acts on R and L Dirac cones,
Hj; =~ —~/38pv)u, 1y,
Hj jo1 = £i(8 + V38pv,) 1, (16)

Here o= 3(uy £ipy). For 8 = +/38p, we obtain that

Hj; o< 5% and H; j#1 0¢ ==, which shows that R and L
Dirac cones hybrldlze in a pattern shown in Fig. 3. In this
special case, the surface states live on top and bottom surfaces
without any penetration into the bulk. If § = —/38 p, the R
and L cones interchange in the hybridization pattern.

We can investigate the surface states further in the vicinity
of (0, £ %) point using the k - p theory. After replacing k,
to its second order by —id, in the Hamiltonian, the effective
Hamiltonian becomes

H(z) = —28(—id)pxty + M[1 — 3(—=i0.)*|uyTy,  (17)

with M = 45p&q, ., (= :|:2«/§8D). Under the boundary condi-
tion that the wave function vanishes at z = 0 and z = oo, and
taking the same termination as above, we obtain the eigenstates
for the Hamiltonian (see Appendix D) as below,

Y1(z) = f(2)(0,1,0,0)7,
Va(z) = f(2)(1,0,0,0)7. (18)
Here f(z)=./2(1 — ﬂz—z)efﬁz sinh(v/B% —2z2), B = 28/M,

and B8 > 0 has to be satisfied to ensure the existence of the
surface state. For a given §, Br = —fB; with Bg(,) being
the value of 8 at Qg point. It is clear that 8g > 0 when
sgn(épd) > 0, and the surface Dirac cone exists at the
projection of Qg point; when sgn(6p8) < 0, B, > 0, and the
surface Dirac cone exists at the projection of Q; point. This
result is consistent with the earlier discussion.

Without loss of generality, we consider the surface state ex-
isting at the projection of Qg point. The effective Hamiltonian
is

Hoyr =vr(k x €;)- 7, (19)

where vp = % This Hamiltonian exhibits magnon spin-
momentum locking [47] in the spin space defined by sublattices
A and B. The Rashba-like surface states in Eq. (19) are de-
scribed by helical eigenvectors, i.e., the eigenstate of k and —k
are orthogonal to each other, which prohibits backscattering
between states with opposite momentum. The chiral symmetric
perturbation can only shift the position of the Dirac cone as it
adds additional terms of the form M1, + M,t, to Eq. (19).
This is a manifestation of the fact that the surface modes are
protected by chiral symmetry.

Interesting physics can also arise when the chiral symmetry
is weakly broken at the interface. We can break the surface
Dirac cone by considering an interface with vacuum (see Fig. 2)
or by contacting mcTI with another material that has a broken
chiral symmetry. The gapped effective surface Hamiltonian
reads, Her = vp(k X ;) - T + my1,. The gap in the surface
Dirac cone will result in a Hall response to a longitudinal
driving force on the surface, similar to the surface Hall effect in
3D topological insulators with broken time-reversal symmetry
[48], which can be detected by the spin Nernst response [49],

]; = ayxvx T, (20)

l—'ﬁ
= Nodal line Q = Weyl

= mcTl = Insulating

-0.2 = Insulating

/\

= 3D-mAH

00 0.1 02 03 04 05
6p

FIG. 4. Left: Phase diagram in §p — A parameter space with
8 # 0. The mcTI phase is continuously connected to the A = 0 case
considered in the previous sections. Right: Phase diagram in np — 8p
parameter space (A = 0) with § = 0.2; The boundary lines between
different phases are np = 28/+/3 and 8p = np /2.

with response parameter oy, = —kVB Zk’n Q’y'x(k)cl(g(sn)),
where V is the surface area of the system, ng(k) is the mo-
mentum space Berry curvature, cj(x) = (1 4+ x)In(1 + x) —
xInx, g(e) = 1/(ef* — 1) is the Boson-Einstein distribution
function (see Appendix D). To identify the contribution from
the Dirac cone, we introduce a cutoff A such that A < gj. The
response parameter is calculated as

wkgmgeop?
o~ —— 8 In(A/|m;)), 21
ay, cosh(Beg) — 1 n(A/|mg|) 21

where 8 = JS/(kpT). Unlike electronic system, the response
parameter is not quantized due to the Bose-Einstein statistics.
In Eq. (21), only the contribution from the Dirac cone has been
considered. We note that the Berry curvature from other parts
of the Brillouin zone can also contribute to the spin Nernst
response due to the Bose-Einstein statistics.

V. TOPOLOGICAL PHASE TRANSITION

We now consider a more general model with a nonstaggered
pattern, i.e., A # 0. We find that even for A # O there is still
some region in parameter space with mcTI phase. As we
increase A, we encounter a phase transition into a nodal line
phase before we reach the trivial insulating phase (see Fig. 4).
For the full Hamiltonian composed of Eqgs. (4) and (9), the
energy is

E}/(JS) = [|2A cosk,| £ \/|yk|2 + (48p)2E cos? kz]2
+(28)% sin’ k.. (22)

To get nodal line phase, it’s required that k, = 0 and (21)* =
Il> + (48p)*E;. When min{|yl” + (48p)*80) < (24)° <
max{|yk|*> 4+ (48p)*E2}, the system falls into the nodal line
phase with the nodal lines lying on k., = 0 plane. When (21) <
min{|y|> + (48 D)2§lf}, it’s in mcTI phase that is continuously
related to the A = 0 case considered in the previous sections.
Note thatif § = 0, the gap is always closed at (0, + 3{”[, + 7).
so that § # 0 has to be satisfied. The phase diagram is shown
in Fig. 4. We find that there is a substantial region in parameter
space with mcTI phase.

Besides the phase transition induced in the presence of the
chiral symmetry, we find that the system can also be tuned
to the Weyl and 3D-mAH phase by introducing the in-plane
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second-nearest-neighbor bulk DMI that breaks the chiral
symmetry,

1 -
0 =3 >3 Dhe: [So.i X Souita,n).  (23)
0 zid;

where Q stands for different spin modes and ﬁZQ (d,) is the in-
plane DMI parameter. The presence of such DMI is consistent
with the symmetry of the honeycomb lattice. In momentum
space 8Hyx = 2npéxi,T,, Where np = |DzQ(d,\)|/J. Now the
system (A = 0) has energy

EZ/(JS) = |yl* + 4] Inp&l

+ \/ (28p&)? cos?(k,) + 82 sin*(k,)|*.  (24)

Conditions for the existence of Weyl point are |yx| = 0 and
n3E2 = (28p&y)? cos?(k,) + 82 sin’(k;), such that the Weyl

. _ 47 1 3r]%)/2—35%)—62
nodes lie atk; = (0, & 3\/5) and k; = 5 arccos( 355 ).
312, /2—38% —82
When —1 < =235—8— <1, there are four-momentum
357~

space Weyl nodes originating in the separation of two Dirac
cones along k, direction. Similar to Ref. [50], the system can
be manipulated into the Weyl, 3D-mAH, and insulating phases
by changing parameters. In parameter space, the insulating
and 3D-mAH phases are well separated by the Weyl phase
as shown in Fig. 4, where we identify the 3D-mAH phase
by the quantized Chern number (C = 2 in our model) for
arbitrary given k.. ie.,C = = Y, [o, dk )", (k.) with

Q;{'j) «, (k) being the Berry curvature of bands below the gap
and B.Z. standing for the 2D Brillouin zone.

VI. DISCUSSION

In this section, we discuss the role of magnon-magnon
interaction effects and give possible material candidates for
realizations of topological phases of magnons. So far, our
discussion has been limited to free magnon systems. Itis known
that magnon-magnon interactions do not play an important role
for a ferromagnetic alignment of spins at low temperatures.
In a general case, magnon-magnon interactions can induce
band renormalizations and magnon decay [51]. It has also
been shown that anharmonic terms due to DMI can lead to
nonperturbative damping proportional to the strength of DMI
in kagome lattice for the spin alignment orthogonal to DMI
vectors [52].

We have investigated the role of the above effects in our
model by considering the higher-order terms of the Holstein-
Primakoff transformation. Three diagrams in Fig. 5 contribute
to the self-energy where the first two correspond to the
quartic term in magnon-magnon interactions and the last one
corresponds to the cubic anharmonic interaction. According
to our analysis, the first two diagrams lead to the self-energy
that is proportional to at least the second power of temperature.
The effects induced by such diagrams are suppressed at low
temperatures since all relevant terms behave in a continuous
fashion without singularities. As for the third diagram, it is
also suppressed by a factor oc D? without singularities. The
effect of such a diagram completely vanishes for the second
model in Appendix B. For the first model in the main text,
we only observe a large contribution when magnetic moments

q p q
k kK k k
k k
k+q-p k—-q
2;1) 2;2) Ziz)

FIG. 5. Leftand middle: The self-energy diagrams corresponding
to the first- and second-order corrections due to the quartic magnon-
magnon interactions. Right: The self-energy diagram corresponding
to the cubic magnon-magnon interactions.

are near orthogonal to DMI vectors. This situation can be
avoided by tuning the strength of DMI in the model in the main
text, in which case the anharmonic contributions do not lead
to any singularities. Given nonsingular contributions from all
three diagrams, we believe that magnon-magnon interactions
cannot hinder topological phases in our models, at least at low
temperatures and for typical DMI.

For realizations of the two models given in the main text and
in Appendix B, we suggest to study stacked 2D honeycomb
ferromagnets with additional nonmagnetic atoms. From the
above discussion it seems that the model in Appendix B corre-
sponding to D,;, point group is better suitable for realizations
of the mcTI phase. Among material candidates, one could
consider Crl; van der Waals crystals with honeycomb structure
of magnetic atoms [53,54]. In addition, similar honeycomb
magnetic lattices can be realized in transition metal trihalides
TX3 (X =F, Cl, Br, and I; T = transition metal) [55].

VII. CONCLUSION

In this paper, we constructed a chiral symmetry-protected
topological insulator of magnons in light of the analogous
works for electronic and cold-atom systems. In our model,
the bulk gap opens due to the presence of DMI. We expect that
there could be other magnonic models with mcTI phase and
our analysis can facilitate finding other possible realizations.
Following the tenfold classification of topological insulators,
such models can be characterized by the 3D winding number.
We found that the surface Dirac cone has Rashba-like form,
so that the backscattering can be suppressed, which is similar
to the surface of the electronic topological insulator. Systems
with the broken chiral symmetry at the surface can also be
of interest due to a small gap in the surface states and due to
appearance of the magnonic Hall response. We showed that the
spin Nernst response can be used as a signature of the chiral
symmetry breaking at the surface. Finally, we constructed a
phase diagram in parameter space, which shows that the system
can be tuned between the mcTI, nodal line, 3D-mAH, and Weyl
magnon phases. We hope that our work can pave the way for
realizations of new topological phases of magnons.
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TABLE I. Symmetry Analysis

Chiral Symmetry Possible Terms

T {mosphxs by, i} @ {70, 73}

M T, (e py} @ {0, 7} {0,142} @ {7, 7}
/’Lx":y {,vanu“z} ® {TO,Ty} {/’LOsMx} ® {tx,fz_}
Myry {Mxvﬂz} ® {tO,ry} {MOsﬂy} ® {txsfz}

APPENDIX A: ANALYSIS OF POSSIBLE CHIRAL
SYMMETRIES FOR GENERAL LATTICES

In this Appendix, we explore various possibilities for
realizing a chiral symmetry in a system of localized spins.
For a Hamiltonian on a honeycomb lattice with in-plane ex-
change interactions, we get terms proportional to the following
matrices:

Ty, Ty (A1)

We further identify possible matrices describing the chiral
symmetry,
(A2)

(o tz) ® Tz, {ixs iy} ® 1y

We can now write all possible chiral symmetric terms that
anticommute with the chiral symmetry. All possibilities are
listed in Table I. For a system of localized spins, we can
obtain corresponded hopping terms from exchange interactions
and DMI. As a first step, one can construct Dirac magnons
and then open a gap with a chiral symmetric perturbation.
The minimal model only contains terms that anticommute
with each other, but the chiral symmetric perturbations do not
necessarily anticommute with the minimal model and can serve
to drive the phase transition as discussed in Sec. V. We note
that the presence of the chiral symmetry does not guarantee
the mcTI phase and one has to verify the nontrivial topology
via winding number calculation.

The above-mentioned steps can be applied to an arbitrary
lattice to obtain other models of mcTIs.

APPENDIX B: MODEL

In this Appendix, we give more details on mcTI models.
First, we show how the DMI is generated in the model we
discussed in the main text. Next, we describe a second mcTI
model with a different pattern of DMI.

1. DMI pattern

Here, we show how the interlayer DMI can be generated by
a nonmagnetic atom in the center of a honeycomb cell. As an
example, we calculate the interlayer DMI between A1 and B'1
spins in Fig. 6,
—_—>

—_
ClA1=8;—¢, CIB'1=26 +c, (B1)

—
where 2c is the vertical interlayer vector, e.g., A2B’l = 2c.
From the symmetry analysis, the DMI vector between A1 and
B'lis

-— ——
Daip1 = D(C1AL x C1B'1) = D(e, + ¢ x §,). (B2)

52
5’] B'1 ’
o - ® B
B’ \. A’ ’ @ @
N c1 A
% ® ®
®
A2
Al i
\\ Bl ?
\\ cz// @ A
\ ®
o B
@
/ B’ ®
B’ A

FIG. 6. The interlayer DMI pattern.

The DMI vector z component is D, where D is the DMI energy
scale. In Fig. 6, we give all the DMI z-component projection,
as shown, B — A’ and A — B’ have opposite sign along the
same interaction path vector.

2. Model 2

Here, we show how a different mcTI model can be realized
in a layered honeycomb ferromagnet system. We consider the
same lattice structure and labels as in Fig. 1, but assume that
all spins are aligned in x direction, which can be realized by
applying an external magnetic field. Instead of putting extra
nonmagnetic atoms in the center of unit cell, here we add atoms
in the front and back face of each unit cell to generate DMI
along vertical interlayer bonds as shown in Fig. 7. We also
need nonuniform third-nearest-neighbor exchange interactions
to induce the Dirac cone mass term. The model Hamiltonian
reads

H = Hin + Hinter + HZ + HD + Hex’ (BS)

where

Hin

3
—J Y Sai-Spits, +Swi-Spis,,

7,0 pu=l1
Higter = — Z(tSA,z . SB’,Z-H + fSA,z ' SB/,Z—I)
i,z

+(A— B,B = A,

eSS

FIG. 7. Left: Local spins are pointing in x direction due to applied
magnetic field. Nonmagnetic atoms in the face centers generate DMI
along the x-axis for the vertical bonds. Middle and right: Top view
depicts the third-nearest interlayer exchange interactions.
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Hy == " BSh i
iz Q

Hp =YY Dap(8)-(Sa: xSp1s)

i,z =%l

+Dpa(8) - (Spz X Sa z4s)s

ng = — Z Z ZtlsA,(i,z) 'SB’,(i+d,\,z+n)

iz n—tl d,
+65S4,6,2) - SB(i—dy.z4n)

+{t; <> 1,A — B,B' — A} (B4)

Here, the first two terms coincide with the model in the main
text, except that the interlayer nearest exchange interaction has
uniform strength. The third term corresponds to the Zeeman
interaction with the external magnetic field in x direction.
The term Hp represents vertical bond DMI contribution
with Dsp(8) = —5De, and Dpy (8) = 6De, (5 = £1). Hy™
stands for the third-nearest-neighbor exchange interaction
with staggered exchange strength as shown in Fig. 7. After
performing the Holstein-Primakoff transformation and the
Fourier transformation, the Hamiltonian up to a constant term
becomes

Hx = —YikTx + Yok Ty — 2r sin(k;) iy T,
+ 477gk Cos(kz)ll“x Ty +2 COS(kz)()‘ + 2770Xk)/1*x Ty,
(BS)

where r = D!], A=t/ no=t1+10)/2J,n=( —1r)/2J,
and & = Yo sin(k - d;), xi = >,_, cos(k - ;) with d; =
(2,%,0),d, = (—2,%2,0),d, = (0, — /3,0). First, we con-
sider the extreme case for which A = 19 = 0. The Hamiltonian
has the same form as the mcTI model in the main text, i.e., we
obtain an effective massive Dirac equation. If we turn on the
parameters 7 and A, they will not immediately break the mcTI
phase, similar to the case we discussed in Sec. V in the main
text. Specifically, the energy of Eq. (BS) is

E}/(JS) = [\/kalz + 4r2 sin®(k,) % 2| cos(k,)(A+210 i) 1>
+ 1672 cos* (k). (B6)

When n = 0, the spectrum is always gapless at two pairs
2

of nodes lylng at knode = (0, + 3477%’ + arctan()d_nlo#)).

In addition, one needs to assume that & = 0 is to close

the gap, which leads to k, =0 or 3k, +ky = 0. For kj

satisfying these conditions, the system is gapless at k, =

[ 44200 X108 )> = iex |2
+ 3 I Il 2 2
arcsin 4(7\+2770in“)2+4r2 when 4(A znOXkﬁ) - |Vk"“| P>

0. When max{4(A + 2noxx:)* — Iy 1>} <0, the system is
gapped and it is continuously connected with the magnon ¢TI
model with ny = A = 0 (see Fig. 8).

APPENDIX C: TOPOLOGICAL INVARIANT

The Hamiltonian in matrix form is

0 — Yk 0 Ak
—Y—k 0 —Ag 0
Hy = X , Cl
k O _Ak O —Y—k ( )
A0 -y O

FIG. 8. The spectrum of model 2 in a slab geometry shows the
presence of surface states. The parameters are r = 0.2, n = 0.1, A =
0.2, no = 0.15. Here we neglected the boundary effects which shift the
position of the surface cone. In principle, this effect can be weakened
or even eliminated by an interface with another material.

where Ax = —46pé&k cos(k,) + i26 sin(k;). To transform the
matrix to off-diagonal form, we use the transformation
operator U,

Ut puoU" = .o, (C2)
where
1 0 0 O
0O 0 1 O
U = 01 0 ol (C3)
0O 0 0 1
Under the transformation, the Hamiltonian becomes
- 0 D
_ T k
T = UHUT = [Dl ’ ] (C4)
where
— Ak
Dy = . C5
k |:_ Ai _y—ki| ( )

Assuming that the eigenstates have the form 1, =
(Xa>Na)", We have

0 Dxl|{Xxa|_, |Xa
b S]] e
and
DkD]JL 0 |:Xaj| — )»2 |:Xa:| (C7)
0 DDy ||na “[Na]

If Dleua = Au,, with ugul = 1 (a = 1,2), then we obtain

+ 1
X Uqg
4| =— , C8
[’7? } ﬁ[iva} ©®
with
(.
Vg = — Dyu,. (C9)
Aq

Now, we arrive at the topologically equivalent flatband Hamil-
tonian

Qv=1-2 )" [¥a) (¥l

ae{E, <0}

(C10)
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In matrix form,

L
Qk—[ql 0] (CI1)

qk—Zuv Zua TDk—

where, in our case, A2 = |yk|* + | Ak|?. Consider the negative
energy bands (they correspond to the filled bands for electronic

systems) and let A = /|}|* + | Ak|?, we have

Qk—k k-

The topology of mcTI is characterized by the 3D winding
number

A’k

Vgl = / 24n?

We can construct the topologically equivalent Hamiltonian
around Qp = (0,3[,0)

HQu+k = @y Te + queitzTy + Gz px Ty +mppy 7y, (CL5)

3ky, q. = —28k.,m = 24/38p. 1t’s

with
(C12)

(C13)

e"Prl(qg ™ 8,9) (g 0ug) g 9,q)].  (Cl4)

3
Whe.re Gx = 5kx, gy =
straightforward to get

= Vlql> +m?.

(Cl16)

Dy = q,00 — iq.0, —imo, — ig,0,

We have
1 L,
afluq = X a’iu Dk 2)\2 (aflu)L )Dk )\,3 ()" 8% Dk_q/’-Dk)’
(C17)

here 19,,A% = q,,, specifically,

1
L o]
1
aqu = ﬁ[()‘z - 6])2')60 +1iqyq.0x +igymoy + iCIyCIxUz],
1
-
+ i‘h%c"z]-

After some calculation, we obtain

[]_/d*k
VRIGT= | og

d3q
—sgn(3) Y

a3 l2m
sgn(é) / q

aqxq = QnyGO+IQXQZGx+lemGy+l(

04,9 = q:9,00 + l( — kz)ox +ig;mo,

(C18)

" trl(q" 9, 9)(q" 0k, q)(q "Bk, 9)]

" tr{(q'8,,9)(q'9,,9)(q"8,,9)]

m 1 *©
= sgn(8)m4n[—ﬁ+% tan~! ('}:—|>i|0
m
= sgn(8)2—7124nm
= sgn(8)sgn(m)/2
= sgn(8pd)/2. (C19)

We calculated the case of Qx above, for Q;, we only
need to replace g, — —g, and m — —m, which gives us
velg] = vrlgl = sgn(6pd)/2. After taking all contributions
into account, we have the topological invariant

v[g] = virlg] + vrlg] = sgn(épé). (C20)

APPENDIX D: SURFACE STATE
1. Effective surface Hamiltonian (k - p theory)

We consider the bulk Hamiltonian around Q gz, for asystem
terminated at a honeycomb layer as discussed in the main text.
We set k, =k, = 0, keep k; to second order, and replace it
with —id,,

H(z) = —A(=id )ty + M(1 = §(=i9.)%)u, 7,
= i ATy +iM(1 + 502)(u- — ny)ry, (D)

where A = 28, M = 48p&q,,,- For the zero-energy surface
state,

H@)y(z) =0 (D2)
which gives us the form of (z) as
V1)) = [ “2>] (D3)

Here @) is the eigenstate of 7, to keep the chiral symmetry,
i.e., (1,0)7 and (0,1)7 with eigenvalues £1. We plug Eq. (D3)
into Eq. (D2) and obtain

Ar+M(1+ 32%) =0. (D4)
The solution is
T=—pEVR -2, (D5)

where § = A/M, this corresponds to a surface state only if
B >0, ie., Re(r) < 0. Assuming the boundary condition

¥(0) = ¥ (o00) = 0, we obtain two eigenstates:
0 1
1 Atz A7z 0 Atz A7z
i=N|g|@ = v=nN[g[E -0
0 0
(D6)
Here N is the normalization factor, such that
o0
/ dzf ()" f(z) = 1, (D7)
0

with f(z) = N(e*'% — e~ %) = 2Ne~#* sinh(y/B% — 2z). We

can find the normal factor as

JF—2

N=Y"__— (D8)
V218l
so that
f)= /2(1 - %)ﬂz sinh(v/B% — 2z) with g > 0.
(D9)
In the vicinity of (0 ) let

H = Hyy, + H@), Hy =3kt + 3kop.t,.  (D10)
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It is easy to get

(Ezél)HvaWO,lwz)) = %(k,\'rx - kxfy)7

(¥l
( 1 )H(Z)(I%Hiﬂz)) =0. (D11

(V2]

Therefore, the effective low-energy surface Hamiltonian reads,

Hgr = 3(kyt — ky1y) = vpk x €.) - 7, (D12)

where vp = % This Hamiltonian possesses spin-momentum
locking in the A and B sublattice pseudo-spin space.

2. Surface Hall response

In order to discuss the Hall response on the surface of mcTI,
we start from the gapped surface Hamiltonina (for case § > 0),

Hewr = vr(k X €;) - T + myT,. (D13)
We write the Hamiltonian above in a compact form
Hork =d - T, (D14)
withd = {vrk,, — vrk,,m}. The energy and eigenstates are
Ex+/JS==d (D15)
and
‘= ;[ ds +d }
V2dd + &) | di — idy
1 —
Sl A L

where d = |d| = ,/v%|k|2 + m2. We can define mixed Berry

connection as A:lt = —i(uy|Vql|uy). The corresponding Berry
curvature is

Q) = V4 x A*d) = (D17)

2d3

We use the relation, X

= 560‘/“}9/“” (D18)
withQ,,, = i(3,A, — 9,.4,). Hence, Q° = Q,, = —Q,,.The
spin Nernst response to a temperature gradientis j§ = &, VT
with '

k
e = =7 D2 e (gen). (D19)
k,n
where cj(x)=(1+x)In(1+x)—xInx and g(x)=1/
(e =1)7". It's easy to check Qi (k) =v;Q;,(d)=
—02QF(d) = +v2 2 the response

o For our system,
parameter reads

kBms

Qyx =

2
/dkz—g{cl[g(eo —d)] = cilg(eo + )1},
(D20)

where g9 = 3 — 21 — 2k and we replaced % Y by [dk. To
identify the contribution from the Dirac cone, we introduce a
small energy cutoff A around the Dirac cone, i.e., A < &j. So
that we expand ¢ (g9 & d) to the first order of B8d,

—pB2deg

_ —hrdeo 2
1 — cosh(Beg) +OLBD").

cilgleo —d)] —cilgleo +d)] =

(D21)
Taking  the  transform  [dk = [~ 02;1 |k|d|k|dO =
[ Ld(d)d )7 do, we have

kp

my 2T A 1
=2 /0 o flmsd(d)ﬁ{ﬁ[g(eo—d)]

—cilgleo +d)l}

wkgmgeop?

~ cosh(Beg) — 1 In(A/|myl).

(D22)
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