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ABSTRACT Recent technology development and penetration of advanced metering infrastructure (AMI),
advanced building control systems, and the internet-of-things (IoT) in the built environment are providing
detailed information on building operation, performance, and user’s comfort and behavior. Building owners
can obtain a wide range of energy consumption details at various levels of time granularity to augment
their decisions as they manage the building operation and interact with the grid. AMI data are providing a
new level of detail and visibility that may enhance building services and assets in the smart grid domain
and make buildings inch closer to becoming a grid-interactive energy efficient buildings (GEB). While
utility-installed AMI typically records energy consumption at a 15, 30, or 60-minute resolution, building-
owner-installed metering can record energy consumption at one-minute or sub-minute time scales, providing
information about how much the energy consumption varies from one sub-minute to the other (i.e. variability)
at a finer time resolutions than typically available from AMI. This paper examines one-minute building
load profile data sets and presents a framework to study, define, extract, quantify and analyze variability
in buildings’ load profiles. The discussion of variability and its analysis is based on a case study of an
actual sub-minute time-resolution data set, collected in 2019, for two buildings in a Midwest state in the
USA. The result shows that for the case studies, the level of variability in an end-use category is not simply
proportional to its consumption. Furthermore, distinct and predictable daily variability patterns emerge in
end-use load categories. This information is useful for a host of applications including prediction, forecasting,
and modeling.

INDEX TERMS Load profile, building energy modeling, discrete wavelet transform, empirical mode

decomposition, variability analysis, variational mode decomposition.

I. INTRODUCTION

As the number of electrical loads in the built environment
continues to grow and the penetration of distributed energy
resources (DERs) continues to increase, their voltage, fre-
quency and power consumption/generation fluctuations in
real time must be considered for thorough analysis. Specif-
ically, accurate power flow studies in the electrical grid must
consider these fluctuations to guarantee electrical system
flexibility, reliability, and operation without compromising
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system performance. By increasing the utilization of DERs,
electrical system operation, control, economy, and planning
studies become critical to meet the target DER penetra-
tions [1]. When DER is interconnected to the distribution
system, conventional distribution studies and special sys-
tem impact studies methodologies need to be considered
as explained in IEEE Std 1547.7 [1], [2]. Hence, correct
modeling of the distribution systems’ components is key to
conducting accurate studies, which require time-series data
of the relevant loads at varying temporal and spatial con-
ditions [1]. IEEE Std 1547.7 (2013) states that “Multiple
power flow simulations including time series or quasi-static
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simulations may be needed to fully study the impacts of
DR [distributed resources] on Area EPS [Electric Power
System] voltage” ([2], page 8). Furthermore, the IEEE
standard describes quasi-static simulations: “Quasi-static
simulation refers to a sequence of steady-state power flow
conducted at a timestep of no less than 1 second but that
can use a time step of up to one hour” ([2], page 77) [1].
For example, authors in [3] studied the impact of PV sys-
tems on electrical systems using quasi-static time-series
(QSTS) simulations. The QSTS simulations in this work
require the use of model data, historical time-series load
data and PV data, however, time-series load data is not
always available at the desired temporal resolutions, often
limited to a 15-minute, 30-minute, or 1-hour time resolution
based on the typical recording frequencies of utility-installed
advanced metering infrastructure (AMI). Authors empha-
sized that such low-resolution data is not sufficient for some
of the time dependent QSTS simulations, and access to
the high-resolution data is preferred when conducting such
studies.

Building load profiles are time-series load data that varies
over a sub-minute, a minute, an hour, a day, a week, a
month or a year [4], [5]. Recent technology development and
penetration of advanced metering infrastructure, advanced
building control systems, sensor networks, and the internet-
of-things (IoT) in the built environment are providing detailed
information on building loads, operation, performance, and
user behavior. By measuring load profiles and other sensor
related information at a high temporal resolution, precise
knowledge and near real-time energy consumption informa-
tion is achievable. With respect to energy consumption, new
metering systems are providing a new level of detail and
visibility that may enhance building services and assets in the
smart grid domain and making building inch closer to becom-
ing a grid-interactive energy efficient buildings (GEB) [24].
Different metering systems are able to provide different levels
of detail, from a single reading of total energy consumption at
the whole-building level, to an intermediate level of consump-
tion recording each end-use load category, to fine-grained
details recording individual load components. In addition, the
time-resolution of the measured data varies from sub-minute
to hourly data. These various levels of load profile details
provide critical spatio-temporal energy demand information
that can be used to inform energy efficiency measures among
other applications [6] and can be analyzed in time or spec-
tral domains to provide information about what is actually
taking place in a building [7]. Furthermore, these variability
characteristics and varying levels of time-series load profile
data can provide more information on the impact of cus-
tomers on electricity demand, which can be used for various
power distribution system analysis such as DER planning,
tools for short-term load forecasting, synthetic load profile
development, and demand-side management. For example,
the authors in [8] discussed the impact of variability on
the power grid. They evaluated 17 million daily load sam-
ples to extract consumption variability at the individual and
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neighborhood level. They used a one-hour timestamp for their
analysis.

Building load profile time series data sets are limited,
as most building owners do not share their consumption in
an open forum and load profiles at a resolution less than
15-minutes are scarce. To overcome the lack of load profile
and load profile variability characteristics data, researchers
rely on available aggregate historical data for a given dis-
tribution system and use common fixed fractions to assign
loads at the transformer/building level. In doing so, the vari-
ability in the data is lost [4]. To overcome this limitation,
the authors proposed a generative model to generate synthetic
profiles. In addition to this method, Building Energy Mod-
eling tools (BEM) are a great resource to develop building
load profiles for applications in distribution system analysis,
energy efficiency and so forth. Simulation software such as
EnergyPlus was developed to provide a means for model-
ing building energy consumption in detail. EnergyPlus is
able to generate modeled load profile data, based on set
schedules and parameters, at various timescales, ranging from
one-minute to one hour. However, the developed load profiles
contain less variability than what actually takes place in real
buildings [1]. In other ongoing work by the authors, one
application of variability load profiles is utilized to generate
synthetic load profiles that resemble real building load pro-
files [1]. By focusing on variability in this context, the interest
is focused on extracting variability from a subset of the
limitedly available buildings with high time-resolution mea-
surements and leveraging these detailed profiles to predict
variability in similar load profiles with lower time- resolution
measurements, to generate synthetic load profiles for a wide
range of applications.

Toward this end, this paper builds on ongoing work,
focuses on the variability profile, looks at methods to extract
this variability from measured load profile data, and investi-
gates the impact of end-use category on building variability.
Specifically, the paper presents a method to define variability
in building load profile data; methods to extract the variabil-
ity using decomposition techniques; metrics to quantify the
extracted variability; and tools to analyze variability in both
full buildings and the end-use load categories that comprise
the total data. Figure 1 shows the framework used in this
research. It is noteworthy to mention that the methodology
presented here is a first step in understanding the typical
variability found in measured building load profiles in order
to leverage these characteristics to generate more realistic
or accurate synthetic load profiles from models or measured
load profiles with lower time resolution.

The major contribution and novelty of this work focuses
on the development of a framework methodology that can
be applied to modeled and/or measured time series data.
Specifically, the contributions are:

1. Developing a definition for variability in high-resolution
time series data. This definition does not apply to
building load profile data only, but can be used for any
time series data in different fields.
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Measured Building Load
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Define Variability in
the Context of the Time
Series Data Domain

|

Decompose Time
Series Signal to Extract
Variability Profiles

l

Quantify Variability
Profiles

l

Analyze Variability Profiles
- Correlation Analysis
- Comparison Analysis
- Time domain analysis
- Frequency domain analysis

FIGURE 1. Overall framework of the methodology in this work.

2. Extracting various levels of variability profiles using
well established decomposition techniques. The level
of variability to extract is application- specific and will
differ for different time series data domains. While
most published work on decomposition discards the
variability profile and focuses on the low-resolution
signal, this work focuses on analyzing the variability
profile instead.

3. Quantifying the extracted variability and developing
metrics specific to building load profile data to:

a. Measure and contrast variability profiles in simi-
lar time series data sets.

b. Measure the impact of top-down and bottom-up
monitoring by contrasting aggregated building
load profile data with intermediate end-use load
category load profile data.

c. Identify relationships between consumption per-
centages and variability levels.

Il. VARIABILITY IN BUILDING LOAD PROFILES
A. DEFINING VARIABILITY
Energy measurements and predictions only tell us the aver-
age power demand over some time frame. Depending on
the time frame used, this average might significantly over-
predict/underpredict actual energy demand in shorter time
frames. For example, Figure 2 shows that the daily averages
are clearly not a good prediction of hourly energy. A sin-
gle, constant prediction vastly underpredicts peak demand,
while overpredicting overnight demand. This daily measure-
ment/prediction would be very wrong at almost all times,
because the measurement has averaged two very different
modes of building operation in terms of energy consumption.
The same is true for the one-minute and one-hour
time scales. The one-hour averages may not be accurate

VOLUME 9, 2021
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FIGURE 2. Hourly and aggregated daily load profile measurements for an
actual building on July 11-14, 2019.

predictions of the energy at the one-minute interval as shown
in Figure 3. Specifically, when using one-hour averages,
accuracy is lost from the peak demand assumptions, and
information is lost about how much the energy varies over
shorter time frames.
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Hourly
80r
60
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x \
40
20f W

11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00
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FIGURE 3. One-minute measurements and aggregated hourly
measurements for an actual building on July 11, 2019.

Based on Figures 2 and 3, the exact definition of build-
ing load profile variability is thus flexible, and depends
on the information desired and the information available.
The desired information seeks to identify what timescale is
needed in order to conduct meaningful analysis of a given
building energy load profile, whereas the available informa-
tion is constrained by the actual time scale of measured or
modeled data for the building(s) under consideration. A load
profile’s variability over a certain timescale is the informa-
tion that fills this gap. This variability may be affected by
equipment, occupancy behavior, building size, or any number
of factors. Thus, the load profile variability is a function of
the building under consideration and the measured/desired
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timescale (time resolution). This can be described by
equation 1:

Load Profile Variability = f (Building characteristics,

measured timescale, desired timescale) @))

Furthermore, because of this flexibility, a general def-
inition for load profile variability can be expressed as a
quantifiable quantity that is bounded (i.e., with confidence),
or represented as a distribution, quantifying the range of
possible energy values that exist at times between two dif-
ferent time-resolutions. In another way, variability can be
described as the difference between a given measured, mod-
eled or predicted load profile for a given building and
a lower-resolution version of that same load profile. The
lower-resolution version of this load profile will be referred to
as the ‘base load’. Figure 4 illustrates this definition; the blue
line is the desired timescale, the high-resolution load profile
(measured at the one-minute time scale), and the red line is
the base load, the lower resolution version of this load profile
(measured/averaged at the one-hour time scale). The differ-
ence between these two lines is the variability load profile
that is missing in the one-hour time-resolution scale data and
present in the one-minute time-resolution scale data. While
the discussion is focusing on measured building load profiles,
the same analysis/conclusions apply to modeled, predicted
and/or synthesized load profiles in buildings, as well as any
similar time series data sets.

It is assumed that the lower-resolution load profile sig-
nals are accurate at the timescales they represent - whether
these are measurements or predictions using hourly, daily or
any other time-resolution. Therefore, one of the criteria in
defining and quantifying variability signals is for the vari-
ability profile to have an average energy of zero or near
zero. The variability profiles are a measurement of how much
the high-resolution values went above and below the base
load (the low-resolution values). For building load profiles,
measurements can take place at the sub-minute resolution,
up to hourly or longer, with the more common utility-installed
AMI measurements taking place at 15-minute, 30-minute
and one-hour intervals. For modeled building load profiles,
the resolution is not explicitly defined, but rather reflects
the resolution at which the model is designed to be accu-
rate -most commonly no shorter than hourly. The analysis
that follows will thus focus on a base load at the one-hour
time-resolution, and a high-resolution version of that load
profile, the measured load profile, at the one-minute reso-
lution. With this definition, the following section discusses
the possible methods to extract the difference between the
measured load profile and its base load, i.e. the variability
profile.

B. EXTRACTING VARIABILITY FROM BUILDINGS’ LOAD
PROFILES

Among the variety of methods to decompose time series
signals to extract and study variability are Discrete
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FIGURE 4. A visual representation of variability (yellow profile) as the
difference between the 1-minute and 1-hour measurements (the
difference between the blue and red load profiles).

Wavelet Transform (DWT), Hilbert Vibration Decomposi-
tion (HVD) [9], Wavelet packet decomposition (WPD) [10],
Empirical Mode Decomposition (EMD), and Variational
Mode Decomposition (VMD). Among the mentioned meth-
ods, DWT, EMD, and VMD are widely used in non-stationary
time series analysis. The following sub-section provide a brief
discussion on the EMD and VMD, then a detailed description
of DWT. DWT is selected because of its bounded frequency
range capability, a desirable feature for variability profile
signals, and an essential part in the framework to analyze load
profile variability at different time-resolutions.

1) EMPIRICAL MODE DECOMPOSITION (EMD)

EMD is a time-frequency method that is widely used in
non-stationary time series data analysis. EMD decompose the
data into “fluctuations” and “trend” signals, decomposing
a time series signal into intrinsic mode functions (IMFs)
and a residual (fast and slow oscillations, respectively) in
a recursive process without utilizing filters or any priori
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basis system [11]. The original time series signal s(¢) can be
represented by summation of the EMD decomposed signals
(IMFs and residual) as shown in equation (2) [12]:

K
s =Y a @) +rk @ 2

k=1

where ¢k (¢) represents the IMFs at iteration k and rg (¢) is the
final residual. By applying the Hilbert transform on IMFs,
frequency information can be extracted [13]. It should be
noted that the decomposed signals are extremely depen-
dent on finding maxima/minima techniques, interpolation
procedure, and stopping criteria [14]. Among most of the
time-frequency decomposition methods, EMD has a lower
resolution [6]. Due to lack of theoretical foundation, it is dif-
ficult to compare the EMD method with other time-frequency
methods. Mode mixing is considered another weakness of the
EMD method [6].

Both DWT and EMD decompose the data into
“fluctuations” and “‘trend” signals, but DWT does decom-
position through predetermined scales, whereas scales are
adaptive (data-driven) in the EMD method [15].

2) VARIATIONAL MODE DECOMPOSITION (VMD)

VMD is a data-adaptive algorithm that attempts to decompose
a signal without utilizing a fixed analysis or function into
discrete number of modes, which are called IMFs, where each
IMF mode is band-limited in the spectral domain [16]-[18].
VMD determines the modes concurrently by identifying the
signal peaks in frequency domain. In [14], authors stated that
VMD is superior to EMD when separating closely spaced
frequencies. VMD decomposes the input signal s(¢) into
K sets of narrowband IMFs, as shown in equation (3) [19].

K

s() =) u (1) 3)

k=1

where each IMF mode, u (), can be represented by a
frequency and amplitude modulated signal, as shown in
equation (4) [19].

ur (1) = Ax()cos(¢i (1)) “

where A (t) and ¢ (¢) are the mode’s envelope and phase,
respectively. The Modes’ envelope is positive and varying
slowly, which has an instantaneous frequency of ¢, (r) around
the central frequency f; of the mode. The detailed VMD algo-
rithms and calculating steps are available in the MathWorks
website [14].

3) DISCRETE WAVELET TRANSFORM (DWT)

Wavelet analysis has been considered as a tool for time series
analysis in different research domains, including power sys-
tem quality analysis [20], signal processing [21], image pro-
cessing of medical imaging [22], and hydrological time series
data analysis [23]. Wavelet analysis provides localized details
in time and frequency and can detect changes and provide
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tools to extract these features. During the decomposition pro-
cess, wavelet functions provide an approximation signal and a
detailed signal based on predetermined scales. These signals
are then utilized depending on the objectives of the research
analysis [1]. Specifically, time series data can be decomposed
into a series of approximation and detail signals (in the time
and frequency domain) via DWT process to extract features at
different timescales. The original signal is fed into low-pass
and high-pass filters, resulting in an approximation signal
and a details signal or coefficients, respectively. A signal’s
trend information (base load signal) is the approximation
(low frequency) signal, whereas the detail signal is a high
frequency signal that carries the abrupt changes in the original
signal, or the variability profile (see Figure 5). Localizing key
features of the signal at different timescales is a property of
the applied mother wavelet [1].

Downsample
F Low-pass } F_.I -,
-I filter l -

High-pass | G .| "
filter l 8

Downsample

Approximation Coefficients

—p CAy

Signal
s(t)

+clly

details Coellicients

FIGURE 5. 1-level DWT process.

To reconstruct the original signal s(¢), all the details and
last approximation level are added together as shown in
equation (95).

K
s(t) =Y d (1) +ak (1) )

k=1

where dy is the details signal at level k& and ak is approxima-
tion signal at final level K.

In this research project, the focus is on capturing differ-
ent detail signals (variability profiles), because they con-
tain the sudden changes that take place when the building
and/or the occupant(s) interact with the electrical system to
start/stop/alter the energy consumption behavior. The vari-
ability profile signal that is extracted is dependent not only
on the underlying data, but on the parameters chosen for the
DWT process, including level of decomposition and choice of
wavelet function. The level of decomposition depends on the
type of analysis and intended use case, and on the number of
data points available in the measured time series load profile
data set. Each decomposition level extracts a fixed frequency
range of variability. For example, for a measured data set
with a 15-minute time resolution, the first level contains
the 15- to 30-minute high-resolution variability, whereas the
second level contains the 30- to 60-minute variability. This
process is shown in Figure 6 and described in more detail in
the following section.

As a final validation on DWT decomposition to extract
variability load profiles, the correlation coefficient of the
individual variability profile signals (details) are measured
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with respect to the original signal to show the ability of
DWT in isolating each level of variability based on a fixed
frequency band. The correlation coefficient of two random
variables is a measure of their linear dependence and it is
shown in equation (6).

pa.B) = 2D ©)

OAOB

where A and B are two random variables or signals, o4 and
op are standard deviation (SD) of A and SD of B respectively.
Results of the correlation coefficient between variability
details at different levels for the building load profile are
shown in Table 1. As shown in the Table 1, there is no
correlation between the levels, which implies the ability of
DWT in isolating each level based on the fixed frequencies.

TABLE 1. Correlation coefficients of details signals from level 1 to
level 3 and original signal.

CORRELATION

COEFFICIENTS LEVEL #1 LEVEL #2 LEVEL #3
Level #1 1.000 0.000 0.000
Level #2 0.000 1.000 0.000
Level #3 0.000 0.000 1.000

C. DEMONSTRATING VARIABILITY EXTRACTION

USING A CASE STUDY

1) CASE STUDY DESCRIPTION

In this study, one-minute time-resolution measured load pro-
file data for a cafeteria building in a Midwest state in the
USA, for the full year 2019, is analyzed using DWT to extract
and analyze load variability features. The data set consists
of measured load profiles for the full building consumption
and for the end-use load profile categories that make-up the
full building consumption: lighting, cooking, mechanical and
miscellaneous electrical loads (Mels). The cooking load is fed
from two separately monitored electrical panels, identified as

127804

Cookingl and Cooking?2. In general, time resolution energy
measurements at the one-minute time- resolution is averaged
and provided as the reading at that specific timestamp. How-
ever, the data that is obtained for this case study is based
on single sampled power demand measurements taken at
each designated one-minute timestamp. This measurement
approach has advantages and disadvantages. The disadvan-
tage comes from the fact that it is a single measurement of
power and not an average measurement of the energy over
the full minute. However, using such single sampled data can
be advantageous in that it represents more extreme variabil-
ity than available in one-minute energy data. Furthermore,
the full building measurement used in the analysis is the
summation of each of the end-use load categories at each
timestamp. This is used for consistency in the analysis of
the full load (the aggregate data) and each of the end-use
load category data. As will be seen by the analysis of the
results in the remainder of the paper, any conclusions inferred
from the results is applicable to the building under consid-
eration and not a generalization. The focus of paper and its
analysis is to provide a framework that is applicable to any
time series data sets. In this context, the paper presents this
data to illustrate variability load profiles and to provide a
methodology/approach for those who are interested in similar
work.

a: LOOKING AT AGGREGATED FULL BUILDING LOAD
PROFILE DATA

Data pre-processing is performed before applying time-
frequency analysis by isolating null data and replacing them
using interpolation. With a one-minute time-resolution, a
total of five sets of 525,600 data points, each set representing
one end-use load category over a full year, are available for
this analysis. Of this total, 1524 data points (0.2%) had null
values and were replaced. By adding each of the end-use
category data points at each timestamp, the full building con-
sumption is aggregated from the end-use data. Figure 7 shows
the aggregated electricity consumption load profile for the
entire year, the load duration curve for the year, and an
example load profile for one day on June 4, 2019.

b: LOOKING AT END-USE LOAD CATEGORY PROFILE DATA
In addition to the aggregated building load profile, one-
minute time resolution load profiles for the five end-use
load categories are also available and used in the variability
analysis. Figure 8 shows similar plots to Figure 7, for each
end use category. Table 2 provides several summary statistics
for the case study building, including the peak, average and
minimum load for the aggregate load and for each of the
end-use load categories independently.

2) VARIABILITY EXTRACTION

As discussed previously, variability can be described as the
difference between a given measured, modeled or predicted
load profile for a given building and a lower-resolution ver-
sion of that same load profile (its base load). The choice

VOLUME 9, 2021



A. Parker et al.: Case Study to Quantify Variability in Building Load Profiles

IEEE Access

140

Building Load Profile |

120

100

80

kW

60

40

20

Jan Mar May Jul Sep Nov Jan
2019

a) Full year load profile

140

Load Duration Curvel

120

100

80

kW

60

40

2

x10°

b) Load duration curve

100

Building Load Profile |

8o

60

kW

40

201

18:00 00:00
Jan 04, 2019

00:00 06:00 12:00
c) Sample daily load profile

FIGURE 7. Full building load profile plots for 2019.

of the desired level of variability to extract depends on the
desired/considered base load and the time resolution of the
measured building load profile. Furthermore, depending on
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load categories in 2019.
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c) Sample daily load profiles on June 4, 2019.

FIGURE 8. Load profile for Total electricity usage and for end-use load
categories for the building in 2019.

the given time-resolution, various base loads and associated
variability profiles can be extracted and quantified. With the
application of DWT - Daubechies-4 (db4) wavelet function
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TABLE 2. Summary statistics for the Case study load profiles.

Cafe Building Load Data (in kW)

Peak Average ~ Minimum
Load Load Load

Aggregate Load 123.6 18.8 3.0
Lighting Load 8.5 2.4 0.0
E‘it:ffe Cookingl Load 515 5.1 0.7
Catego Cooking?2 Load 56.3 4.1 0.0
€Y | Mechanical Load 18.9 5.6 0.4
Mels Load 7.3 1.5 0.7

to the case study under considerations, 19 distinct/singular
frequency bands with associated base loads and variabil-
ity profiles are available for selection depending on the
purpose and application as shown in Table 3 [1]. In this
case study, the time resolution range is based on the mea-
sured time resolution (one-minute scale) and the desired base
load (lower time scale version at the one-hour scale). Since
DWT isolates ranges based on the power of two, with a one-
minute scale, the upper bound of the range for this one-hour
scale is 64-minutes and not exactly 60-minutes.

TABLE 3. Variability content at each extracted DWT level.

High Frequency Signal Information Content at each Time —Resolution
(min) and Decomposition Level

DWT Load Profile Time DWT Load Profile Time —
Levels —Resolution Range Levels Resolution Range
1| 1-2min 11 1024 - 2048 min
2 | 2-4min 12 2048 - 4096 min
3 | 4-8min 13 4096 - 8192 min
4 | 8-16min 14 8192 - 16384 min
5 | 16 -32 min 15 16384 - 32768 min
6 | 32 - 64 min 16 32768 - 65536 min
7 | 64-128 min' 17 65536 - 131072 min
8 | 128 -256 min 18 131072 - 262144 min
9 | 256 -512 min 19 | 262144 - 524288 min
10 | 512 - 1024 min

For the case study, singular and cumulative load variability
profiles at the 6th level are considered when using the mea-
sured one-minute time-resolution data and the hourly base
load. This level is the 32-64-minute range, indicating that all
high frequency content that is below the 64-minute range is
considered variability. To illustrate how the variability load
profile changes with scaled levels, consider the results when
using a DWT level 1 decomposition. In this level, the high
frequency variations below 2-minutes are considered part of
the variability profile and any remaining high frequency con-
tent above the 2-minute range is considered part of the base
load. The result of applying a DWT level 1 decomposition
on the building load profile is shown in Figure 9 for one day.
In this Figure, the original measured building load profile is
shown as the blue line, the base load is shown in red, and
the extracted variability profile in yellow. This variability
profile is the difference between the red line and the blue line
(the difference between the original measured data at the

127806

DWT Level 1 Decomposition

100
Measured Load
80} Base Load
Variability Profile

-40 .
00:00 18:00 00:00

Jan 04, 2019

06:00 12:00

FIGURE 9. Result of applying a DWT level 1 decomposition on a sample
daily load profile.

one-minute time-resolution and the base load at the
2-minute). As can be seen in the Figure, the base load still
contains high frequency variations.

Now consider the results if a DWT level 4 decomposition
takes place. As can be seen in Figure 10, as the level of
decomposition increases, the base load profile (approxima-
tion signal) is a much smoother version of the original signal,
i.e. more variability is extracted in the process (the yel-
low line). Specifically, the high frequency variations below
16-minutes are considered part of the variability profile, and
any remaining content above the 16- minute range is consid-
ered part of the base load. Note that the level 4 variability con-
sists of the cumulative level 1 to level 4 decomposition details,
as discussed above (see equation 5). Again, sub-hourly vari-
ation is still present in the base load.

DWT Level 4 Decomposition

100
Measured Load
80F Base Load
Variability Profile

20

-40 .
00:00 18:00 00:00

Jan 04, 2019

06:00 12:00

FIGURE 10. Result of applying a DWT level 4 decomposition on a sample
daily load profile.

Finally, consider the results when applying a DWT level 6
decomposition. The results are shown in Figure 11 for the
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FIGURE 11. Result of applying a DWT level 6 decomposition on a sample
daily load profile.

same day. Again, with a level 6 decomposition, the high
frequency variations below 64-minutes is considered part
of the variability profile and any remaining high frequency
content above the 64- minute range is considered part of the
base load.

The same process is applied to each of the end-use load
categories. The lighting load is presented in Figure 12 for a
sample day in blue. The base load and variability profile using
a level 6 DWT decomposition are shown in red and yellow.
As the figure shows, the lighting end-use load category con-
tains a low level of variability on this day, when compared
with the Cooking2 and Mechanical end-use load categories
shown in Figure 13a and 13b.

DWT Level 6 Decomposition - Lighting

2t Measured Load
Base Load
Variability Profile
4 . .
00:00 06:00 12:00 18:00 00:00
Jun 05, 2019

FIGURE 12. Sample daily Lighting category profile, with extracted base
load and variability.

Ill. QUANTIFYING BUILDING LOAD PROFILE
VARIABILITY

The previous section explored tools to extract load vari-
ability profiles and define variability based on well-defined
frequency bounds. This section will present a metric to
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a) Result of applying a DWT level 6 decomposition on a sample
daily Cooking2 load profile.
DWT Level 6 Decomposition - Mechanical
15+ Measured Load
Base Load
Variability Profile
107}
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b)  Result of applying a DWT level 6 decomposition on a sample
daily Mechanical load profile.

FIGURE 13. Sample Daily end-use load category profiles, with extracted
base loads and variability.

quantify the extracted variability profile and provide analysis
on the variability results. Figure 14 shows the extracted time
series variability profile signal for the total building for a
full year using a DWT level 6 decomposition. In addition,
Figure 15 shows the same results, but for the total building
and for each end-use load category for a three-day period,
to focus on daily behavior. With a DWT level 6 decompo-
sition, it is implied that all the high frequency content below
64 minutes (i.e. the cumulative high frequency signal between
1 minute and 64 minutes) is considered variability.

In addition to visualizing the variability as a time series
signal, it is useful to examine the statistical distribution of
variability over a given time frame. For this purpose, the sign
of the variability is ignored, focusing only on the magnitude
of variability above or below the base load. Figure 16 shows
the cumulative distribution of the absolute variability for the
full building and each end-use category. Similar to a load
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FIGURE 14. Full year Variability profile for the total building load profile.
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FIGURE 15. Variability profiles for the building’s end-use load categories
over 3 days.

duration curve, this represents the probability (or percentage
of time) that the absolute variability falls below a given
kW value. Table 4 provides several summary statistics for the
distribution of variability over the full year.

It is evident from Figure 16 that the variability in the
building and all end-use categories is highly skewed - a small
percentage of times exhibit variability significantly higher
than the average. This is also reflected in the high ratio
of mean to median variability, as well as the ratio of root-
mean-square to mean.

In order to quantitatively compare variability over different
time frames, end use categories, and buildings, it is useful to
summarize the distribution of variability with one or more of
the metrics above. For the remaining analysis in this paper, the
Root-Mean-Square Variability (RMSV) is chosen, formally
defined in Equation 7, where, d; is the variability profile at
timestamp i, and N is the number of timestamps.

RMSV =

1 N
v 2 (@)’ (7)
i=1
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TABLE 4. Summary statistics of absolute variability for a full year.

Statistics of Absolute Variability (in kW)

Peak Mean Median RMS
fggregate 716 | 430 170 8
oad
iﬁlgmg 73 02 0.1 0.5
End-Use Eg;’gmgl 355 14 0.8 2.8
Load .
Category E(());)é(ng 50.7 32 0.5 72
Mechanical
Load 9 1.2 0.7 1.7
Mels Load 3.6 0.10 0 0.3

Q
g E 80
- =
u— Ly Total
[=] 8 60 —— Lighting
@ Cooking1
o
g’ 8 Cooking2
-t 5 40 Mechanical | T
5 o —— Mels
[
o o
o | 20
o |
20
| 0
0 1 2 3 4 5 6
.4 Absolute Variability, kW
0 L L L
0 20 40 60 80

Absolute Variability, kW

FIGURE 16. Cumulative distribution of absolute variability for the full
building and all end-use load categories, over a full year. The inlaid plot
zooms in on the leftmost portion of the distribution.

The RMSV can be loosely interpreted as the average sign-
independent deviation of the actual load profile from the
base load, over a given period of time. It differs from the
actual absolute mean variability in that it is more sensitive to
outliers, and thus somewhat more representative of skewed
distributions such as those in Figure 16.

While Table 4 presents statistics for the full year of data,
the RMSV can be calculated over any time frame to compare
variability at various scales. Figure 17 shows a 4-day sam-
ple aggregate building load profile along with the extracted
variability and the associated daily RMSV levels. In this
example the RMSV provides a useful summary of the higher
variability of the weekdays compared to that of the weekend.

IV. ANALYZING BUILDING LOAD PROFILE VARIABILITY
A. ANALYSIS OF YEARLY VARIABILITY

Figure 18 shows the yearly RMSV for the total building load
profile and for each of the end-use load categories. As can
be seen from the Figure, each end-use load category has dif-
ferent level of variability. The RMSV for the entire building
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FIGURE 17. Full building load profile and variability for 4 days, with RMSV.
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FIGURE 18. Yearly RMSV for the total building and its end-use load
categories.

load profile is 8 kW whereas for Cooking2 it is 7.2 kW.
Cooking? has a higher variability than Cookingl and higher
than all other end-use load categories. Also, the variability is
not additive, meaning that the summation of each variability
in the end-use categories does not equal to the variability in
the aggregate building load variability profile.

B. ANALYSIS OF VARIABILITY PROFILE CHANGES
THROUGHOUT THE YEAR?

In addition to the RMSYV for the full year, daily RMSV for
the building total and for each end-use load category load
profiles are analyzed. Figure 19 shows the full year, daily
RMSYV for the total load and for each end use for a DWT
level 6 decomposition. Figure 20 shows a zoomed-in view of
Figure 19 for one month. In this Figure, daily patterns of low
and high variability profiles emerge.

Figure 21 shows a plot of the cumulative distribution for the
daily RMSYV for the total building load profile and for each
of the end-use load categories. The flat portions of the dis-
tribution indicate gaps in observed daily variability. Approx-
imately 30% of the days in this year are weekends or other
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FIGURE 19. Daily RMSV for the full building and each end-use category
throughout the year.
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FIGURE 20. A zoomed-in view of Daily RMSV in Figure 10 for one month.
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FIGURE 21. Cumulative Distribution of Daily RMSV over a full year, for
each end-use category.

low-operation days, with RMSVs ranging from 0 to 2.5 kW
for the full building. The remaining 70% of days exhibit
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much higher RMSVs, between 8 and 12 kW. Almost no days
have an RMSYV between 2.5 and 8 kW. The variability of the
Cooking? end-use category closely follows that of the full
building, and all end-use categories except the mechanical
systems exhibit the same discontinuity in weekend-weekday
behavior. The discontinuity in the mechanical system vari-
ability is instead at approximately 8% of days, indicating that
the variability in this category falls within a narrow, continu-
ous range independent of whether the building is occupied,
except for a smaller fraction of days where the equipment
exhibits a steep drop in variability. Table 5 provides several
summary statistics of daily RMSV over the full year.

TABLE 5. Summary statistics of daily RMSV over a full year.

Statistics of Daily RMSV (in kW)

Peak Average ~ Minimum
Aggregate Load 12 7.1 1.1
Lighting Load 0.9 0.4 0
Eﬂ'ﬁf" Cooking] Load 5 25 0.7
Cat Cooking2 Load 11.3 6.2 0.5
48O | Mechanical Load 26 1.6 02
Mels Load 0.4 0.2 0

C. RELATIONSHIP BETWEEN VARIABILITY AND ENERGY
CONSUMPTION

The RMSV is an absolute measure of variability, in the same
units as the load profile itself (in this case kW), as opposed to
arelative measure of variability (such as a percentage increase
or decrease). Knowing that Cooking? has variability with an
average yearly RMSV of 6.2 kW for instance, does not on
its own convey whether that variability is ‘large’ or ‘small’.
To fully compare variability across different time frames,
end-use categories or buildings, it is important to establish
an appropriate normalized metric as well.

While variability can be compared to, or normalized by,
several different metrics, one intuitive and informative possi-
bility is the consumption of the underlying load. Specifically,
the average consumption over the same period of time that
the RMSV is calculated over. Formally, this Normalized Root
Mean Square Variability (NRMSV) can be defined as

1Y 1 Y
ﬁ;(di)z / ﬁ;si 8)

where d; and s; represent the raw variability and the orig-
inal time series signal respectively, at timestep i. Note that
equation 8 applies to the aggregate load profile as well as to
each of the end-use load categories.

Figures 22 and 23 show the average annual consumption
of the Cafe building and each of its end-use categories, both
in absolute terms (kW) and as a percentage of the total load.
The percentage results show that the mechanical end-use
load category has the highest percentage of consumption at

NRMSV =
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FIGURE 22. The full year average daily consumption for the total building
and each end-use category (Cafe).
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FIGURE 23. The full year consumption percentage for each end-use
category (Cafe).

almost 30%, followed by Cookingl, Cooking2, lighting and
lastly Mels end-use load category with 8% consumption. The
average consumption results show that the aggregate load has
an average of 18.8 kW, whereas the mechanical end-use load
category has an average of about 5.6 kW.

Once the average for each load is determined, the normal-
ized RMSV (NRMSYV) is calculating according to equation 8§,
and the results are shown in Figure 24. Comparing the con-
sumption percentage and associated level of variability, in this
building, a few important observations can be made. First,
the mechanical end-use category has the largest consumption
percentage, but the third highest variability (from Figure 18),
indicating that the largest consuming end-use load category is
not necessarily the main contributor to variability in the build-
ing. The Cooking2 end-use category has the third largest con-
sumption percentage, but has the highest variability. These
results are of course specific to this particular building and
set of end-use categories, but indicate that when comparing
disparate systems, the variability of a system may not be
simply proportional to the consumption of that system.
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FIGURE 24. Normalized RMSV for total building and each end-use
category (Cafe).

£ =] =]

RMSYV of Variability

N

FIGURE 25. Yearly RMSV for the total building and its end-use load
categories (Office).

This is also evident in analyzing another building,
an office building in the same location with same type of
time-resolution and data samples. Figure 25 shows the raw
RMSY for the end use categories. In this Figure, the mechan-
ical system has the highest absolute variability.

Similar to the process applied earlier, the yearly average
and percentage of consumption for each end-use category is
plotted in Figures 26 and 27.

The Mels end-use category has the highest consump-
tion, and the Elevator end-use category the lowest by
far, accounting for less than 2 percent of the building’s
yearly consumption. The normalized RMSV is shown
in Figure 28. Here it is clear that when considering vari-
ability relative to consumption, the elevators have by far the
largest NRMSV. This is somewhat intuitive, as while the
elevators may not consume much power on average com-
pared to other systems, their consumption is constantly and
rapidly changing in an unpredictable manner. Thus the eleva-
tors’ contribution to the building’s variability (in Figure 25)
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FIGURE 26. The full year average daily consumption for total building and
each end-use category.
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FIGURE 27. The full year consumption percentage for each end-use
category (Office).
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FIGURE 28. Normalized RMSV for total building and each end-use
category.

is far higher than might be expected from consumption
alone.
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V. SUMMARY AND CONCLUSION

This is part of ongoing work to discover typical variability in
aggregate building load profiles and in end-use load category
profiles for a large set of building types. The presented work
herein examines high resolution building energy consump-
tion load profiles and presents a methodology to analyze it
and extract useful information that can be used in a host
of applications. Specifically, the paper presented an investi-
gation of variability in load profiles and presented detailed
study to define, extract, quantify and analyze variability in
aggregate building and in end-use load category AMI data.
The discussion of variability and its analysis is based on a
case study of an actual one-minute time resolution for two
buildings in a Midwest state in the USA for a full year of data
collected in 2019.

A framework is presented to isolate the variability in a
measured signal from the base load. This variability can be
quantified and compared across various time frames, end-use
categories, or buildings, in both absolute and relative terms.
The case study results illustrate that both absolute and relative
metrics are important, as the variability in a system is not
necessarily proportional to its consumption.

This framework lays the groundwork for future research
into building load variability. When the variability is iso-
lated and quantified, it can be both analyzed and modeled
with respect to any number of potential inputs, in order
to both understand and predict variability in complex
systems.
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