University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Anthony F. Starace Publications

Research Papers in Physics and Astronomy

2-13-2015

Comment on "Universality of Returning Electron Wave Packet in High-Order Harmonic Generation with Midinfrared Laser Pulses"

M. V. Frolov Voronezh State University, Russia, frolov@phys.vsu.ru

N. L. Manakov Voronezh State University, manakov@phys.vsu.ru

Wei-Hao Xiong *Peking University*

Liang-You Peng Peking University

J. Burgdörfer Vienna University of Technology

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/physicsstarace Part of the <u>Atomic, Molecular and Optical Physics Commons</u>

Frolov, M. V.; Manakov, N. L.; Xiong, Wei-Hao; Peng, Liang-You; Burgdörfer, J.; and Starace, Anthony F., "Comment on "Universality of Returning Electron Wave Packet in High-Order Harmonic Generation with Midinfrared Laser Pulses" (2015). *Anthony F. Starace Publications*. 209.

http://digitalcommons.unl.edu/physicsstarace/209

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Anthony F. Starace Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors

M. V. Frolov, N. L. Manakov, Wei-Hao Xiong, Liang-You Peng, J. Burgdörfer, and Anthony F. Starace

Comment on "Universality of Returning Electron Wave Packet in High-Order Harmonic Generation with Midinfrared Laser Pulses"

In Ref. [1], Le et al. establish in the long-wavelength limit a universal shape for the returning electron wave packet in high-order harmonic generation (HHG) as a function of the returning electron's energy. Based on this approach, Le et al. suggest a universal wavelength scaling law, $\propto \lambda^{-4.2}$, for the HHG yield for laser wavelengths in the range 3 $\mu m \le \lambda \le 6 \mu m$. This scaling law differs from the faster decrease of the HHG yield with increasing λ , $\propto \lambda^{-(5-6)}$, predicted earlier [2–5]. Le *et al.* attribute this difference to the limited interval of wavelengths ($\lambda \le 2 \mu m$) used to solve the time-dependent Schrödinger equation (TDSE) in Refs. [2,3,5]. Since the HHG yield is a fundamental quantity for practical applications, any new scaling law for $\lambda \gtrsim 3 \ \mu m$ must be clearly justified owing to its importance for planning experiments involving the generation of extreme ultraviolet radiation by means of HHG using long-wavelength lasers.

The apparent disagreement stems from the use in Ref. [1] of a different definition of the harmonic yield $\Delta \mathcal{Y}$ from that used in Refs. [2–5]. As noted in Ref. [5], the λ -scaling law depends on the precise definition of $\Delta \mathcal{Y}$. In Ref. [2], the authors study "the scaling of an average harmonic yield, obtained by integrating the power spectrum over a fixed bandwidth." (They integrate the HHG power spectrum over harmonic energy intervals of 40-80 eV for He and 20-50 eV for Ar.) In Ref. [4], the definition of harmonic yield from Ref. [2] was adopted for a monochromatic field, defining the yield $\Delta \mathcal{Y}$ in terms of the HHG power. For a short-pulse laser field, in Refs. [3,5], a definition of the HHG yield compatible with that in Ref. [2] is used; i.e., $\Delta \mathcal{Y}$ is defined as the energy radiated per unit time by the target atom (subjected to a laser pulse of duration \mathcal{T}) into a fixed harmonic energy range $[\Omega_1, \Omega_2]$:

$$\Delta \mathcal{Y} = \frac{1}{T} \int_{\Omega_1}^{\Omega_2} \rho(\Omega) d\Omega, \qquad (1)$$

where $\rho(\Omega)$ is the spectral density of harmonics with energy Ω . (Although Ref. [3] properly defines the HHG yield in words, the factor 1/T was inadvertently omitted in Eq. (2) of Ref. [3]; this omission was corrected in Eq. (3) of Ref. [5].) Since the laser pulse has a fixed number *N* of optical cycles, T scales linearly with λ . By inserting the recolliding wave packet results of Ref. [1] into Eq. (1), the scaling $\Delta \mathcal{Y} \propto \lambda^{-5.2}$ found in Refs. [2–5] is confirmed.

In conclusion, we have shown that when the same definition for the HHG yield is used [cf. Eq. (1)], the results of Ref. [1] give the same scaling law found earlier in

Refs. [2–5] for wavelengths $\lambda \le 2 \mu m$. We note that this latter scaling law can be obtained analytically by using results of the model developed in Ref. [6] for the description of short-pulse HHG spectra. These analytic results as well as new numerical TDSE results for longer wavelengths, $\lambda \le 4 \mu m$, will be published elsewhere.

This work was supported in part by NSF Grant No. PHY-1125915, RFBR Grant No. 13-02-00420, Ministry of Education & Science of the Russian Federation Project No. 1019, NSF Grant No. PHY-1208059, NNSFC Grants No. 11322437 and No. 11121091, Program 973 No. 2013CB922402, SFB-NEXTLITE (FWF, Austria), and the Dynasty Foundation (M. V. F.).

M. V. Frolov, ^{1,2} N. L. Manakov, ¹ Wei-Hao Xiong, ³
Liang-You Peng, ^{3,4,2} J. Burgdörfer ^{5,2} and
Anthony F. Starace ^{6,2}
¹ Department of Physics, Voronezh State University
Voronezh 394006, Russia
² Kavli Institute for Theoretical Physics
University of California
Santa Barbara, California 93106-4030, USA
³ State Key Laboratory for Mesoscopic Physics and
Department of Physics, Peking University
Beijing 100871, China
⁴ Collaborative Innovation Center of Quantum Matter
Beijing 100871, China
³ Institute for Theoretical Physics
Vienna University of Technology
Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria, EU
^o Department of Physics and Astronomy
The University of Nebraska
Lincoln, Nebraska 68588-0299, USA

Received 18 August 2014; published 9 February 2015 DOI: 10.1103/PhysRevLett.114.069301 PACS numbers: 33.80.Eh, 42.65.Ky

- A.-T. Le, H. Wei, C. Jin, V. Ngoc Tuoc, T. Morishita, and C. D. Lin, Phys. Rev. Lett. **113**, 033001 (2014).
- [2] J. Tate, T. Auguste, H. G. Muller, P. Salières, P. Agostini, and L. F. DiMauro, Phys. Rev. Lett. 98, 013901 (2007).
- [3] K. Schiessl, K. L. Ishikawa, E. Persson, and J. Burgdörfer, Phys. Rev. Lett. 99, 253903 (2007).
- [4] M. V. Frolov, N. L. Manakov, and A. F. Starace, Phys. Rev. Lett. 100, 173001 (2008).
- [5] K. L. Ishikawa, K. Schiessl, E. Persson, and J. Burgdörfer, Phys. Rev. A **79**, 033411 (2009).
- [6] M. V. Frolov, N. L. Manakov, A. M. Popov, O. V. Tikhonova, E. A. Volkova, A. A. Silaev, N. V. Vvedenskii, and A. F. Starace, Phys. Rev. A 85, 033416 (2012).