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 Availability of dicamba-tolerant (DT) crops from 2017 provided farmers with 

additional herbicides for weed control management in row crops. However, the 

technology alike this one has concerns regarding dicamba off-target movement (OTM) 

causing undesirable effects on sensitive vegetation. Even though dicamba has high 

water solubility OTM that has often been overlooked when it comes to unintended crop 

exposure is dicamba tank contamination. Considering the complexity of spraying 

equipment soybean response may be expected even when small amounts of residues 

are left in the spray equipment. Typically, the same field spray equipment is used to 

perform herbicide application through growing season there is a limited knowledge how 

various postemergence (POST) programs impacts soybean response when found in 

scenario with dicamba tank contamination and requires additional research. 

Furthermore, as one way to mitigate OTM potential release of DT crops was 

followed with registration of various agents also known as drift-reducing agents (DRAs). 

Increased awareness of both growers and commercial applicators to reduce unintended 

adjacent crops injury use of labeled DRAs in combination with drift-reduction nozzles 

represent common practice. Exposure of sensitive crops to sublethal doses of dicamba 

has been well documented over several years; however, there is limited information 



 

 

available how combination with commonly used DRA’s may impact application process 

and weed control. Considering limitations on available literature the main objective of 

this research were: 1) evaluate response of non-DT soybean variety when exposed to 

commonly applied POST herbicide program in combination without or with dicamba as 

tank-contaminant and 2) evaluate impact of DRAs on weed control in response to 

dicamba applications. The results of this research expanded knowledge and will help in 

education in the future management decisions about potential implications associated 

with common mitigation techniques used with dicamba application as well as helped 

with understanding how various POST herbicide program affect soybean response. 

 

Key words: RR-soybean, EPSPS, PPO, ACCase, Sprayer cleanout, Synthetic auxins, 

DRAs, Off-target movement, Drift, Efficacy 
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CHAPTER 1 

Literature Review 

Soybean (Glycine max (L.) Merr) represents one of most important 

agricultural crops in terms of global value. Originally from China, soybean was 

first reported in America during early 1900s (Dies 1942). The majority production 

of soybean has historically been greatest in the United States, Brazil, and 

Argentina. According to the United States Department of Agriculture (USDA) 

those countries account for nearly 80 percent of world soybean production 

(USDA ERS 2016). Increased planting flexibility and steadily rising yield favored 

expansion of soybean acreage in the United States. However one of the most 

limiting factors for soybean production are considered weeds. Oerke (2006) 

estimated that about 37% of achievable soybean production is reduced by weed 

competition, compared to 11, 11, and 1% by pathogens, animal pests, and 

viruses, respectively. Direct competition for light, water, nutrients, and space in 

row crops can drastically reduce soybean quality and quantity. Development of a 

well-organized and conducted weed control programs is a key for successful 

weed management and sustainable production. 

As the second-most-planted crop in the United States, about 94% of the 

total area planted with soybean are herbicide-tolerant cultivars (USDA ERS 

2019). Commercialization of glyphosate-tolerant soybeans in 1996 completely 

changed previous weed management practices and signaled the beginning of a 

new era of weed management in row crops (Dill 2005). The adoption of soybean 

herbicide-tolerant varieties (Roundup Ready®) has resulted in a shift of practices 
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toward greater reliance on postemergence (POST) herbicide program, and more 

specifically, glyphosate use. Changing management practices in this way 

significantly influenced the composition of weed species communities followed 

with higher selection pressure and evolution of resistance weed (Heap 2014, 

Vencill et al. 2012). 

Unfortunately, overreliance on glyphosate for POST weed control has led 

to the development of glyphosate-resistant (GR) weed biotypes (Owen 2008). 

Currently, in the United States 165 resistant weeds have been reported of which 

17 are reported as GR (Heap 2019). Without effective POST herbicide options, 

there is a high potential for yield loss due to interplant competition (Terra et al. 

2007). Therefore, alternative herbicide management options that will decrease 

selection pressure and slow down the evolution of weed resistance are 

necessary. 

Approval for use of dicamba over the top of dicamba-tolerant (DT) crops 

represents a tremendous change in the field of agriculture. Plant growth 

regulators such as dicamba belongs to the group 4 site of action group which 

refers to synthetic auxin herbicides (WSSA 2014). Prior to 2016, application of 

herbicide products containing dicamba was limited in use as either a burndown 

or POST treatment in corn, sorghum, small grains, pasture, rangeland, and turf 

grass. After 2016, dicamba and other similar herbicides from this group can now 

also be applied over the top in soybean and cotton. Having possibility to be 

applied in broadleaf crops it was expected to have increased of dicamba use 

over the past several years (USGS 2020).  
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The introduction of crops tolerant to synthetic auxins was primarily initiated 

due to excellent plasticity since their development. After over five decades of 

use, 17 dicamba-resistant weeds have been documented (Heap 2020). 

Commercialization of DT crops enabled growers to apply this chemical POST 

with more flexible application timings and potential to control weed species that 

germinate later in the season (Werle et al. 2014). Having the possibility to be 

applied later with the possibility for residual weed control associated with some 

products available on the market, this herbicide provides growers with a site-of-

action that is highly effective for some of the troublesome herbicide-resistant 

broadleaf weeds.  

Examples of troublesome broadleaf controlled by dicamba includes giant 

ragweed (Ambrosia trifida L.), common ragweed (Ambrosia artemisiifolia L.), 

common lambsquarters (Chenopodium album L.), pigweed species (Amaranthus 

spp.), velvetleaf (Abutilon theophrasti Medik.), common cocklebur (Xanthium 

strumarium L.), and horseweed (Conyza canadensis (L.) Cronq.). Each has been 

reported as resistant to one or more herbicide site-of-actions (Heap 2014, Jhala 

et al. 2014, Kniss 2018a, Mithila et al. 2011, Vieira et al. 2018). In order to 

mitigate present problem with herbicide-resistant biotypes, chemical companies 

recently developed and released genetically modified crops tolerant to dicamba 

(Taylor et al. 2017). Currently, four herbicide products are labeled for use in 

dicamba-tolerant crops: Xtendimax® with VaporGrip Technology® (Bayer Crop 

Science), Engenia® (BASF), FeXapan® plus VaporGrip Technology® (Corteva 

Agroscience), and Tavium® plus VaporGrip Technology® (Syngenta). 

http://www.xtendimaxapplicationrequirements.com/Pages/default.aspx
https://agro.basf.us/campaigns/engenia/?gclid=Cj0KCQiAnL7yBRD3ARIsAJp_oLaHTWPs_aroaEgwsSzHASuciFLfDXDjKPMGHF1Z6AR-yFVNnrzb5gwaAlbtEALw_wcB&gclsrc=aw.ds
https://www.corteva.us/products-and-solutions/crop-protection/fexapan.html
http://www.syngenta-us.com/herbicides/tavium?gclid=Cj0KCQiAnL7yBRD3ARIsAJp_oLYZmDCje7BZb7ljYoiQZvHharpdcebr2PvjCnnuk_pGlUP5WWb0PM8aAoxKEALw_wcB&gclid=Cj0KCQiAnL7yBRD3ARIsAJp_oLYZmDCje7BZb7ljYoiQZvHharpdcebr2PvjCnnuk_pGlUP5WWb0PM8aAoxKEALw_wcB


4 

  
 

According to the USDA-NASS (2018), an estimated 2.3 million hectares of 

soybeans were planted in Nebraska in 2017. Werle et al. (2018) reported about 

19% of those acres were planted with DT soybean varieties. Respondents to 

Werle’s survey anticipated acres of DT soybean would increase up to 52% of 

total acres planted in 2018. This was later confirmed by the USDA (2018) having 

DT varieties planted on about 1.2 and 1.6 million ha-1 during 2018 and 2019, 

respectively. A potential reason for the rapid adoption of DT soybean may be due 

to the significant reduction of possible crop injury and potential yield loss from 

adjacent fields planted with sensitive varieties (Hurley and Frisvold 2016).  

Considering that this system is getting widely adopted, it is likely that risk 

for unintended crop exposure will increase. Sensitive broadleaf plants include 

non-dicamba-tolerant (non-DT) soybean (Glycine max (L.) Merr.) (Weidenhamer 

et al. 1989), and cotton (Gossypium hirsutum L.) (Marple et al. 2008), sunflower 

(Helianthus annuus L.) (Derksen 1989), peanut (Arachis hypogaea L.) (Johnson 

et al. 2012), wine grape (Vitis vinifera L.) (Al-Khatib et al. 1993), tomato 

(Lycopersicon esculentum L.) (Kruger et al. 2012) and many other crops, 

orchards and ornamental plants. Primary ways how unintended injury may occur 

are through physical particle drift (Alves et al. 2017) , secondary off-target 

movement through either droplet suspended in the air or volatility (Bish et al. 

2019) and tank contamination (Soltani et al. 2016). 

Particle drift represents the part of a pesticide application that moves away 

from the target area by site specific wind velocity and direction (Ebert et al. 1999, 

Matthews et al. 2014). Generally, soybean is among the most susceptible crops 
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to growth regulators. Soybean response to doses which are multiple thousand 

times less than recommended label dose has a potential to affect all sensitive 

parts causing malformations such as changes on leaf parenchyma, leaf cupping 

or steam twisting (Auch and Arnold 1979; WSSA 2014). Furthermore, increasing 

synthetic auxin concentration in the plant tissue combined with inability of non-DT 

varieties to metabolize those synthetic auxins causes abnormal plant growth and 

ultimately plant death (Hansen and Grossmann 2000). The primary disadvantage 

of sensitive crop exposure to dicamba is it may lead to significant economic 

losses (Andersen et al. 2004, Kelley et al. 2005). Damage caused by dicamba is 

can be attributed due to abnormal growth and cell division typical of synthetic 

auxins. Having uncontrolled growth eventually triggers the collapse of the 

vascular tissue followed by the plant death (Kelley and Riechers 2007). The level 

of crop response as mentioned is likely to be dependent on the amount of 

dicamba that reached the soybean and the growth stage of plant when exposure 

occurred (Solomon and Bradley 2014).  

Another potential source of dicamba secondary off-target movement is 

volatility. Currently available dicamba products include formulations capable to 

volatilize having for some of them more than for others (Bish et al. 2019). When 

applied under high temperature followed by low relative humidity, secondary 

movement or vapors released from this chemistry can easily move from treated 

areas onto susceptible advancement fields and cause crop injury (Behrens and 

Lueschen 1979, Egan and Mortensen 2012). Mitigation of problem with crop 

injury chemical companies developed two formulations with a goal to minimize 
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volatility potential. New formulations includes N,N-bis-(3-aminopropyl)methyl-

amine salt which is also known as BAPMA salt and diglycolamine (DGA) salt with 

a VaporGrip technology that contains acetic acid buffer and helps with 

formulation stability when exposed to various environmental conditions (Abraham 

2018). Even though, introduction of new formulations significantly decreased 

potential for volatilization, this phenomenon has not been eliminated and may 

cause response to soybean and other prone to injury plants (Bish et al. 2019).  

 One method of off-target movement that has often been overlooked when 

it comes to unintended crop injury is dicamba tank contamination. Similarly, with 

all other previously mentioned ways for soybean exposure, dicamba tank 

contamination can also result in symptomology with doses thousands of times 

lower than the standard utilized dose. The main issue for this may be due to the 

possibility that applicators typically use the same field spray equipment to 

perform application of different pesticides for pest management. Following this, 

injury can occur when even small amounts of residues are left in the spray 

equipment. This can happen when an incomplete tank cleanout after treated 

either resistant or tolerant crops.  

Additionally, consider the complexity of spraying equipment which uses 

various materials and connections among sprayer tank and boom for solution 

discharge. Having diversity among all hoses and plumbing connections built into 

the spray system may result in different porosity of materials where just using 

water alone for spray cleanout may not be efficient (Johnson et al. 1997). 

Available research shows that significant difference in cleanout procedures may 
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be observed among various hose types due to different porosity of material used 

for manufacturing (Cundiff et al. 2017). Even though, according to Kamrin (2010), 

dicamba has high water solubility (6.5 g L-1), these products may settle and dry to 

different hard to reach areas of sprayer system leaving salt residues, which 

ultimately makes cleaning procedures more difficult. Following a standard 

procedure for sprayer clean out having triple rinse with water after applying this 

chemistry may represent scenario with high risk for off-target movement leaving 

high enough concentration of dicamba residues in the system to cause response 

on susceptible plants like soybeans (Osborne et al. 2015) . 

Soybean exposure timing may be considered as an important factor when 

it comes to susceptibility to dicamba. With a flexibility in application, late POST 

applications of dicamba are more predisposed to result in unintentional sensitive 

crop injury if compared to burndown and early POST applications. A meta-

analysis conducted by (Egan et al. 2014) showed that visual symptoms on 

soybean caused with dicamba drift during vegetative stage were not considered 

as indicator of final yield loss. Additional findings show that susceptibility of 

soybean to dicamba increases at the flowering stage or later in the season (Wax 

et al. 1969; Auch and Arnold 1978; Egan et al. 2014; Kniss 2018, Soltani et al. 

2016). 

Finally certain tank-mixtures as well may result in changes of solution pH 

and shifting ratio towards droplets that are more prone to drift can occur (Meyer 

et al. 2016, Mueller and Steckel 2019). One method to mitigate off-target 

movement of dicamba was the development and registration of various drift 
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reducing agents (DRA) for use with dicamba applications, drift reducing nozzle 

types, and limitations on application parameters (operated pressure and boom 

height) suggested by product labels. Increased awareness of both growers and 

commercial applicators to reduce environmental contamination and non-DT 

sensitive crop exposure typically requires employment use of labeled DRA’s in 

combination with drift reduction nozzles. Even though, these agents are used 

primarily for drift mitigation, their function when found in tank-mix has been often 

includes other functions like water conditioning, surfactants, defoamers, 

humectants, pH modifiers, etc. The addition of any material into tank-mixture may 

modify significantly spray characteristics (Oliveira et al. 2015, Prokop and 

KEJKLÍČEK 2002, Spanoghe et al. 2007). Dorr et al. (2013) reported changes in 

properties of spray mixture in combination with nozzle type and various operating 

parameters have significant impact on any pesticide application. Relationship of 

how changes in physicochemical properties may influence application process 

with the addition of commonly applied DRA requires additional attention to 

understand better the impact on biological efficacy of some of the troublesome 

weed species found in row crops. 
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Purpose of Research 

Although dicamba tank contamination was initially believed to not be a 

primary cause for unintended injury to dicamba-sensitive soybean, with the 

continuous increase in cropping area planted with dicamba-tolerant soybean over 

the last several years and the consequent increase in dicamba use, it seems 

clear that tank contamination plays a major role the issues related to dicamba off-

target movement. Having limitations on knowledge how various POST programs 

impacts soybean response when found in scenario like dicamba tank 

contamination requires additional research. 

Further, the release of DT crops and new dicamba formulations of 

dicamba were followed by registration of various adjuvants targeting the 

mitigation of some of the issues associated with off-target movement. The 

addition of DRAs with certain tank-mixtures that include dicamba has been 

required by law. However, the impact of these chemistries on the application 

process when using drift reducing nozzles is not well understood.  

The objectives of this research was to evaluate through field and  

greenhouse experiments: (1) Effects of dicamba simulated tank contamination 

with various commonly used POST herbicide programs applied over the top of 

non-dicamba-tolerant soybean; and (2) the biological response of velvetleaf 

(Abutilon theophrasti Medicus) and common lambsquarters (Chenopodium 

album L.) with approved nozzle types for dicamba application with commonly 

applied DRA’s to identify the potential interaction on spray pattern associated 

with different operating parameters. 
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CHAPTER 2 

Dicamba Simulated Tank-contamination in Common Postemergence 

Herbicide Applications on Non-dicamba-tolerant Soybean 

Abstract 

Development of dicamba-tolerant (DT) crops was driven by a need for 

viable herbicide options for postemergence (POST) weed control in soybean. 

Even DT crops provided farmers with a feasible approach to control troublesome 

weeds there are several concerns related with off-target movement. Growers 

have believed that dicamba tank contamination was not a primary cause for to 

non-dicamba-tolerant soybean exposure. However, with the continuous increase 

in planted area with DT soybean it seems clear that tank contamination may play 

a major role related to dicamba off-target movement (OTM). The main objective 

of the field experiments conducted during 2018 and 2019 was to determine the 

impact of commonly applied POST herbicides with simulated multiple levels of 

dicamba as tank contaminant (0, 0.056 and 0.560 g ae ha-1) during vegetative 

and reproductive stage on soybeans. Result from this study show most POST 

herbicides applied were detrimental for visible symptomology. Intensification of 

symptoms was observed exponentially as dicamba dose was increased. 

Comparing all site of action herbicides tested PPO-inhibiting herbicides had 

greater impact on soybean visual response, plant height reduction and final yield. 

Determining the impact of dicamba contamination when using various herbicide 

programs for weed management highlights the importance of proper sprayer 

cleanout following dicamba applications. 
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Introduction 

Difficulties to create new active ingredients with unique modes of actions 

has resulted in development of genetically engineered crops tolerant to 

herbicides. Continuous use of herbicides with the same mechanisms of action 

over the time has led development of herbicide-resistant weeds. Currently in 

worldwide has been reported 573 resistant weed species (Heap 2019). With the 

limitations on currently available options for POST weed control additional tools 

were needed to decrease selective pressure and evolution of weed resistance.  

As a one way to integrate more diverse chemical options for management 

of troublesome weeds companies released herbicide-tolerant crops to dicamba 

(Taylor et al. 2017). Historically by 2016 application of products that contained 

dicamba was allowed just in pastures, corn, small grain crops, sorghum, 

landscape, and rangeland maintenance (WSSA 2014). However, after 

development and release of soybean and cotton with trait to tolerate dicamba 

allowed application over the top in row crops. According to the Federal laws 

dicamba application in soybean has been currently allowed to be applied either 

45 days after planting or at the beginning of bloom (R1) whatever comes first with 

some states being more restrictive with cut-off application dates than others 

(Anonymous 2018).  

Having flexibility in application followed by excellent weed control potential 

for the adoption of soybean technology was expected to be significantly adopted 

by soybean growers nationally. Just in Nebraska planted area under DT varieties 

represented about 39% and 52% of the entire area planted with soybeans or 



16 

  
 

about 1.2 and 1.6 million ha-1, for 2018 and 2019 growing season, respectively 

(USDA NASS 2018, USDA - ERS 2019). As a potential reason for broad 

adoption might be due to wide presence of species that has been reported as 

resistant to EPSP Synthase Inhibitors (Vieira et al. 2018), PPO inhibitors (Vieira 

et al. 2017), ALS inhibitors (Heap 2020), HPPD inhibitors (Jhala et al. 2014), and 

others.  

However, from the 39% planted with DT soybean in Nebraska during 2018 

growing season just 27% of it have been sprayed over the top (USDA - ERS 

2019). Release of row crop like soybean tolerant to dicamba provided growers 

with an alternative herbicide management options for weed control. However, 

there are several OTM concerns associated with use of this chemistry. Tank 

contamination, physical particle drift, and volatility are among several factors that 

may contribute to OTM and cause potential unwanted effects on sensitive 

vegetation (Alves et al. 2017, Behrens and Lueschen 1979, Bish et al. 2019, 

Soltani et al. 2016, Strachan et al. 2013). Potential reasons for not performing 

application over the top for the entire planted area with tolerant crop may be due 

to reduction of probability for soybean or other sensitive crop exposure planted in 

adjacent fields (Hurley and Frisvold 2016). 

In order to sustain high level of production various pesticides has been 

applied using an existing equipment (Werle et al. 2018). Regardless scenario 

who performs pesticide application typically the same spray equipment has been 

used to perform various pest management treatments (i.e. herbicides, 

insecticides, fungicides. etc.). Without proper sprayer clean out after dicamba 
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application residues left in hard to reach parts of the sprayer (tank, hoses, 

screens, boom, nozzles with carousels, etc.) or external tanks and shuttles used 

for mixing and delivering tank-mixtures represents doses that are about thousand 

times less than standard utilized doses.  

Available survey conducted during 2018 Nebraska’s soybean growers 

consider dicamba tank contamination as one of the least important whereas OTM 

such as volatilization and physical particle drift were considered as the main 

cause non-DT soybean and other sensitive plant exposure (Werle et al. 2018). 

Although, tank contamination has not been considered as primary way for 

unintended soybean exposure with continuous increase of soybean area planted 

with DT varieties over the last several years and increased dicamba use it is 

inevitable that tank contamination will become an issue.  

Dicamba is a highly water soluble (6.5 g L-1) active ingredient; however, 

with various materials that are commonly used to build complexed 

mixing/spraying systems use of just water for clean out may not be adequate if 

followed usual recommendation that involves triple rinsing if considered used 

materials typically are  with highly divergent porosities (Johnson et al.1997, 

Karmin 2010). Cleanout procedures using just water with the addition of 

ammonia to clean out sprayer system the amount of dicamba that has been 

recovered from spray boom represented 0.63% of initial spray mix (Boeroom 

2004). Studies conducted by Cundiff et al. (2017) shows that dicamba 

persistence using various hose types may play significant role in visual response 

when using a soybean as indicator plant. Having various porosity among 
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materials after dicamba use and having residues that may not be cleaned 

thoroughly in some of the sprayer hard to reach areas making cleaning 

procedures considerably more difficult. According to Golus (personal 

communication) dose of 1/250.000 of the standard utilized dose of 560 g ae ha-1 

under controlled conditions resulted in a visible soybeans symptoms. 

Symptomology of soybean plants when exposed to synthetic auxin 

herbicides has been reported rather as dose dependent (Auch and Aronold 1978, 

Kelley et al. 2005). Some of the symptoms when exposed thousand times less of 

the recommended labeled dose of 560 g ae ha-1 includes leaf cupping of terminal 

leaves and changes on leaf parenchyma with possibility that growth may be 

affected (Andersen et al. 2004, Behrens and Lueschen 1979). Even though, that 

soybean symptoms may be severe if apical meristem was not affected 

symptomology cannot be considered as prediction for final yield especially if 

symptoms were observed early in the growing season (Egan et al. 2014, Kniss 

2018, Robinson et al. 2013). Estimations have been made that dicamba dose 

that cause about 30% visible injury to soybean early in the growing season 

appear implausible that yield will be affected (Kniss 2018).  

For example, available studies show that when dicamba was applied at 

5.8 g ae ha-1 at V2 growth stage resulted in response greater than 40% was 

followed with soybean yield loss of 5% (Soltani et al. 2016). With more flexible 

application timing and soybean capability to withstand exposure to dicamba early 

in the season in comparison with the beginning of flowering stage (R) sensitivity 

increases for about two to six-fold (Egan et al. 2014, Griffin et al. 2013, Kelley et 
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al. 2005, Kniss 2018). When exposed to dicamba dose of about 0.9 g ae ha-1 

there is a potential to result in significant visual response. Visual estimation of 

symptoms at R growth stage reported as greater than 12% was estimated to 

result at least in 5% of the yield loss (Kniss 2018). Studies which included 

exposure of glyphosate-tolerant soybean during reproductive stage with dicamba 

at 1 g ae ha-1 resulted in 23 – 28% in visual response with 5% of soybean yield 

loss (Soltani et al. 2016). With increased sensitivity later in the growing season 

dicamba doses significant changes on the plants or complete death of the 

growing points were reported as significantly lower than ones when soybean 

plants were exposed during early vegetative stages (Kniss 2018, Robinson et al. 

2013, Soltani et al. 2016). Additionally, dicamba exposure at R stage plant height 

estimations may be considered as quick estimate for the yield loss 

(Weidenhamer et al. 1989). Having significant reduction of plant height greater 

yield loss may be expected due to significantly reduced formation of reproductive 

structures like number of nodes, flowers, pods and seeds per plant has been 

often reported as highly correlated with soybean yield (Robinson et al. 2013).  

Currently, there are few available studies that investigated the impact of 

dicamba presence as tank contaminant; however, there are even less studies 

that reported impact of dicamba in non-DT crops when found in different tank-

mixtures which growers often use to control pests. Determining the impact of 

simulated contamination on non-DT cultivar with various POST herbicide 

program that farmers might use in soybean will help in education about the 
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importance of proper sprayer cleanout and its impacts on future management 

decisions. 

Hypothesis of this study were: (1) soybean response to simulated dicamba 

tank contamination exposure will be influenced by growth stage; (2) soybean 

response will be influenced by various sublethal dicamba doses used for tank 

contamination; and (3) commonly applied herbicides will have different response 

when applied in a combination with sublethal dicamba doses.  

 

Material and Methods 

Two field studies were conducted during summer 2018 and 2019 growing 

season at the West Central Research and Extension Center in North Platte, 

Nebraska (41° 05’17.2” N - 100° 46’40.7” W). Soil type at this site was Sandy 

Loam with a sand, silt, and clay percentage of 57, 32, and 11 %, respectively, 

and a pH of 7.5. 

 Soybeans were grown in no-till system in crop rotation after corn. 

Hoegemeyer variety of soybean (2511NRR) was planted on May 24, 2018 and 

May 15, 2019 with a planting rate of 345.000 seeds ha-1. All plots including non-

treated control kept weed free throughout the season using a combination of 

herbicides and cultivation. All maintenance herbicides were applied using a four-

wheeler equipped with flat-fan nozzles spaced 50 cm apart calibrated to 

delivered 187 L ha-1 at 276 kPa. After soybean rows closed hand weeding was 

performed as required. 
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In order to prevent cross contamination between plots entire area with 

soybeans planted (about 1.3 ha-1) was divided into two subsections to evaluate 

soybean exposure during vegetative and reproductive growth stage. 

Experimental units (plots) were consisted of six 76 cm wide planted soybean 

rows (Figure 1) and 7.6 m (2018) and 10 m (2019) long. Field trials were 

established in a randomized complete block design that consisted of four 

replications (following the pH gradient in the field) with factorial arrangement of 

treatments (Table 1). Two treatment factors included 13 POST herbicides and 

three simulated level of dicamba as tank contaminant. Evaluated treatments 

included non-treated control, two 5-enolpyruvylshikimate-3-phosphate synthase 

(EPSP) inhibitors, five Acetyl CoA Carboxylase (ACCase) inhibitors, three 

protoporphyrinogen oxidase (PPO) inhibitors, and crop oil concentrate (COC). 

Each treatment had three simulated doses of dicamba as tank contaminants (0, 

0.056, and 0.560 of the label dose 560 g ae ha-1).  Treatments were applied 

separately in the assigned fields when soybean developed third trifoliate (V3), 

and second when soybeans were at the beginning stage of flowering (R1). 

Application was performed using a CO2 backpack sprayer equipped with a six-

nozzle boom equipped with Air Induction Extended Range (AIXR) 110015 

nozzles calibrated to deliver 140 L ha-1 of a solution at 345 kPa. More details 

about application conditions through duration of application may be found in 

Table 2 and environmental conditions throughout the 2018 and 2019 growing 

seasons in Table 3.  
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After application response variable that were recorder included soybean 

symptomology 21 days after application (DAA), plant height 21 DAA and 

soybean height at the harvest time. Even though, Behrens and Lueschen (1979) 

established a scale for visual evaluation after soybean were exposed to dicamba 

the lack of use the same scale for this study may be attributed to presence of 

various POST herbicides had an impact on final soybean response. Further, 

soybean symptomology was estimated based on whole plot response using a 

scale 0 – 100%, where 0% represented no visual response and 100% was 

complete crop death. For soybean plant height of four completely random plants 

(rows two and five) were measured from the soil surface to the top of the main 

stem of the plant. When soybean plants developed all pods and plant 

senescence started a sample of six completely random plants were taken to 

record number of pods per plant using plot rows two and five. Soybean plot rows 

three and four were harvested using a two-row research plot combine and yields 

were adjusted to 13% of moisture. Additionally, individual samples from harvester 

were collected in order to determine if there is an impact of applied treatments on 

100-seed weight which further in text referred as grain weight. 

Data Analysis. Within each soybean growth stage, data across growing seasons 

was subjected to joint analysis using Sisvar Statistical Software, version 5.6 

(Ferreira, 2011). For each variable, a comparison was made between the Root 

Square Mean Error (RSME) from the two seasons (data not shown). As the ratio 

between the highest and lowest RSME was smaller than 3 (Box, 1954) for all 

variables, the data points were combined across growing seasons.  
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Normality of residuals and homogeneity of variance of data (Table S1) 

were analyzed using the Kolmogorov-Smirnov and Levene’s tests, respectively, 

using SPSS Statistical Software, version 20 (SPSS Inc., Chicago, IL, USA). 

Based on this assumption analysis, transformation of data was not necessary. 

Data was subjected to analysis of variance (ANOVA) using Sisvar Statistical 

Software (version 5.6). Postemergence herbicides and simulated levels of 

dicamba doses were compared to each other using the Scott Knott and Tukey’s 

multiple comparison tests, respectively. A Scheffé’s contrast test was performed 

on yield data using the Sisvar Statistical Software, version 5.6. Additionally, 

response variables were correlated to each other by Pearson’s correlation test 

using the SPSS Statistical Software, version 20. All comparison tests were 

performed at α = 0.05 significance.  

 

Results and Discussion 

Soybean exposure at vegetative (V3) growth stage. Analysis of variance 

(Table 4) for all evaluated parameters for soybean exposed to various POST 

herbicide tank-mixtures with simulated sublethal dicamba doses had a significant 

interaction between herbicide and dicamba dose (P<0.0001) for soybean 

symptomology, plant height at 21 DAA, harvest plant height, and yield. Further, 

yield components such as number of pods and grain weight (100 seed weight) 

were not affected by either herbicide applied or simulated dicamba dose used. 

Observed two-way (herbicide*dicamba dose) interaction will be discussed in both 
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ways regardless either of herbicide applied within each dicamba dose and across 

all dicamba doses for herbicides applied over the top of soybean. 

Soybean symptomology at 21DAA. Symptomology observed for soybean 

plants exposed to dicamba during V3 growth stage included leaf crinkling and 

cupping of terminal leaves as a result of exposure to low doses of dicamba 

(Foster and Griffin 2019) followed with foliar necrosis for used contact herbicides. 

Based on visual estimation of soybean symptomology at 21 DAA for POST 

herbicides mixed with sublethal doses of dicamba shows presence of dicamba in 

tank-mixture may intensify plant response. 

Results presented in Table 5 indicates visible symptomology exponentially 

increases as dicamba dose increased. After treatment application over the top of 

the soybean response was no different when there was no dicamba present in 

tank-mixture and when found at 0.056 g ae ha-1 for EPSP synthase, ACCase 

inhibitor herbicide tested, and COC. Similar findings from available literature 

associated with treatment that dicamba alone at 0.06 g ae ha-1 resulted in less 

than 5% in visible response  (Robinson et al. 2013). According to (Kniss 2018) 

estimated dicamba dose that cause about 5% of visual symptoms was 

determined to be about 0.038 g ae ha-1. Considering broad diversity among 

soybean response reported in literature associated with the same or slightly 

different dicamba levels due uncertainty associated with visual appearance of 

symptoms and having some of them invisible for human eyes other most reliable 

methods like use of hyperspectral cameras were suggested (Zhang et al. 2019). 

Having diversity in soybean response among studies previously mentioned it 
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may be concluded that soybean response to dicamba may be extremely 

challenging to evaluate. Regarding the data obtained in present study one of the 

main conflicting results that can be found in literature regarding  to soybean 

visual response for soybean exposure to dicamba at V3 growth stage for both 

dicamba alone (0.056 g ae ha-1) and with the addition of 1% v v-1 C.O.C where  

authors reported about 90% of visual symptoms (Andersen et al. 2004). With 

limited information how treatments were applied these findings partially may be 

explained with dicamba formulation used for treatment application as well as 

variety planted and evaluated for each individual study.  

Additional findings from this study shows difference in plant response was 

found when dicamba was present at 0.560 g ae ha-1. Dicamba alone at this dose 

in resulted in 9% of visible soybean response. Literature finding associated with 

doses of dicamba slightly higher if compared with one that have been used in this 

study 0.750 g ae ha-1 resulted in soybean visual response approximately about 

20% at 28 days after application (Soltani et al. 2016). The addition of various 

herbicides in mixture significantly increased plant response with differentiation in 

plants response when various POST products for weed control were added in 

tank-mixture. Active like clethodim formulations where applied at of 280 g ai ha-1 

resulted in soybean symptoms greater than 30% which if compared with other 

applied treatments was the lowest.  

As expected, herbicides from site of action group 14 resulted in 

considerably higher soybean response even with base treatment that did not 

contained dicamba. When exposing soybean to product like acifluorfen observed 
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symptoms were significantly different across dicamba doses and resulted in 

visible response about 11, 16, and 37% for dicamba doses 0, 0.056, and 0.560 g 

ae ha-1, respectively. Similar findings associated with intensification of soybean 

response were reported by Kelley et al. (2005) when using 330 g ai ha-1 with an 

addition of 5.6 g ae ha -1 of dicamba where soybeans visual estimation of injury 

was significantly different than both non-treated control and POST herbicide 

treatment that included just application of fomesafen alone over the top of the 

soybeans. Nevertheless, these findings has been contradictory from available 

literature reports where the level of soybean response was lower for fomesafen 

than for both acifluorfen and lactofen (Aulakh et al. 2016, Hager et al. 2003). 

Overall, findings from this study suggests that the addition of various POST 

herbicides may increase soybean response to dicamba tank contamination in 

terms of soybean visual response as evaluated variable. 

Soybean plant height at 21DAA. Dicamba dose and herbicide used had 

significant effects on plant height at 21DAA (P<0.0001) which can be seen in 

Table 6. Based on findings evaluated POST herbicides with both 0 and 0.560 g 

ae ha-1 dicamba doses does not appear to affect soybean plant height at 21 DAA 

if compared with non-treated control. Plant height reduction was observed just for 

treatment combination which included fomesafen with 0.056 g ae ha-1 dicamba in 

tank-mixture.  

Based on Pearson correlation (Table 12) findings for response variables 

like visual symptomology and plant height at 21 DAA were observed as 

negatively associated. As percent of evaluated soybean response increases 
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plant height decreased having Pearson’s coefficient of -0.49 (P<0.0001). 

Available studies show that estimations of plant height may be used as a quick 

way to estimate potential impact on seed yield (Weidenhamer et al. 1989). 

However, if soybean exposure occurs earlier in the growing seasons final 

predictions on the yield may be influenced by environmental conditions or other 

confounding variable which may affect soybean growth and development 

throughout the growing season. Having enough rainfall during growing season 

may cause visual symptoms gradually to disappear with an ability for soybean to 

additionally compensate for exposure instance with an stimulation of lateral 

branching (Andersen et al. 2004, Conley et al. 2009).  

Soybean harvest height. Analysis of response variable like height of soybean 

plants at harvest time after exposure to POST herbicide tank-mixed with 

sublethal dicamba doses resulted in two-way significant herbicide by dicamba 

dose interaction (P<0.0001). Due to complexity of the soybean response followed 

by various confounding variables that may affect soybean plant height throughout 

the growing season, the results are discussed generally as overall observed 

trends (Table 7). When there was no dicamba in tank-mixture most of the 

treatment had a slight height decrease if compared with non-treated control. The 

only treatment that had a positive impact on plant height was observed for crop 

oil concentrate and clethodim (280 g ai ha-1) when applied alone. Most of the 

applied treatments that contained dicamba at dose of 0.056 g ae ha-1 resulted in 

slight plant height increase with impact dependent on POST herbicide used. The 

only herbicide for 0.056 g ae ha-1 dicamba dose tested and resulted in plant 
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height decrease was associate with treatment which included fomesafen having 

a similar pattern across all tested dicamba doses. Using Pearson’s correlation 

(Table 12) similar finding like ones described for plant height 21 DAA may be 

observed even for harvest height of soybean while percent of symptomology 

observed increases soybean plant harvest height decreases suggesting there 

might be a negative association among these two response variables. Additional 

observed association indicates positive association among measured soybean 

plant height at 21DAA with harvest plant height (Table 6). Having the higher plant 

height at 21 DAA it may appear that positive impact on harvest soybean height. 

Furthermore, as previously mentioned potentially there might be a lot of variables 

which may impact final soybean height and throughout this study has not been 

encountered for. Analysis of final plant height as response variable did not reveal 

any clear patterns when diverse herbicides were applied without or with dicamba 

in tank-mixture.  

Number of pods per soybean plant and grain weight. Dataset with primary 

and secondary traits that might affect soybean yield for early season exposure 

after development of third trifoliate did not result in significant herbicide*dicamba 

dose interaction for number of pods developed per plant and grain weight (100 

seed weight) (P=0.177 and P=0.347). Furthermore, neither for herbicide nor 

dicamba dose significant interaction was not observed for both response 

variables based on significance level of α=0.05 level. Combining data across 

either dicamba doses or herbicides applied showed that there was no difference 

for both evaluated variables (Table 8.1, Table 8.2, Table 9.1, and Table 9.2). 
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Similar findings were reported in literature where number of soybean pods 

formed by plant and grain weight did not differ from non-treated control (Soltani 

et al. 2016). In order to be at least 5% of affected both number of pods per plant 

and grain weight the amount of dicamba in tank-mixture was estimated to be 

about 6.8 and 3.2 g ae ha-1, respectively (Soltani et al. 2016). Even though, 

significant interaction was not determined based on correlation among response 

variables it appears that there might be positive association (Table 12) among 

number of plants formed per soybean plant with grain weight having coefficient of 

0.243 (P<0.0001). 

Soybean yield. Contrasts for yield of soybean exposed to POST herbicides in 

tank-mixtures with sublethal doses of dicamba during V3 growth stage of 

soybeans (Table 10) suggests that there may be a difference in terms of impact 

on soybean yield in comparison among untreated and treated plots for dicamba 

dose of 0.560 g ae ha-1 (P<0.0001). These findings support current literature 

findings where as dicamba dose increase in tank-mix soybean susceptibility 

increases. Firstly, contrasting different site of action herbicide groups results 

shows that difference could be determined among ACCase (group 1) and PPO 

(group 14) inhibiting herbicides just for base treatments that did not contained 

dicamba (P=0.016). Further, significant impact on soybean yield may be 

expected if compared EPSP and ACCase inhibiting herbicides just for 0.560 g ae 

ha-1 dicamba dose (P=0.004). Finally, when comparing EPSP and PPO inhibiting 

herbicides this dataset did not provide strong enough evidence to detect 

difference for any of the dicamba doses evaluated. 
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 Considering all the tested herbicides according to manufacturers can be 

applied over the top in row crop like soybean. Findings within each dicamba dose 

reveals treatments which did not have dicamba as expected do not differ in terms 

of impact on soybean yield (Table 11.1 and Table 11.2). Even though, that 

numerically there is about 4% in yield decrease as dicamba dose increased in 

tank-mixture from 0 to 0.056 g ae ha-1 this data set does not provide strong 

enough evidence to prove difference comparing with non-treated control. In 

addition, after mean comparisons when dicamba was present at 0.056 g ae ha-1 

there was a slight difference among treatments that have been applied. 

Confounding results related with soybean yield may be found in one of the 

papers available and have been associated with similar treatment combination 

evaluated for this study. Authors of this paper for both location used for this study 

there was significant yield reduction on average of 77% and 87% for dicamba 

treatment applied alone at 0.056 g ae ha-1 and an addition of COC (1% v v-1), 

respectively (Andersen et al. 2004). Their findings suggested that visual 

response followed with yield if compared with non-treated control was reduced 

just with and addition of COC. These authors suggested as well the addition of 

COC potentially increased herbicide uptake from leaf surface and caused greater 

soybean response. Dicamba alone treatment used in this study at 0.560 g ae ha-

1 resulted in about 13% of yield decrease with response different than both 0 g 

and 0.0560 g ae ha-1 evaluated dicamba doses. 

Furthermore, noteworthy finding may be found for fluazifop-P-butyl when 

mixing with various dicamba doses. There was no difference observed among 
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two simulated dicamba doses; however, significant increase of soybean yield 

was observed when mixed with 0.560 g ae ha-1 if compared with either non-

treated control or when product was applied alone without the addition of 

dicamba. Treatments like glyphosate, setoxidim, clethodim (Intensity and Section 

Three), fomesafen, and COC tend to have positive impact on soybean yield if 

compared with treatment where dicamba was applied alone.  

Consequently, as dicamba dose increased with various POST program 

applied over the top of soybeans difference can be observed. In contrast, 

treatments that outperformed treatment that contained dicamba alone was 

observed for fluazifop-P-butyl, clethodim (Intensity) and COC. Potential reason 

for soybean yield increase may be found looking at the Pearson’s correlation 

(Table 12) for evaluated response variables when grain weight (100 seed weight) 

have a positive association with soybean yield. Similar findings were reported 

from study that included evaluation of plant growth regulators in combination with 

various POST herbicides (Kelley et al. 2005). Their findings indicated that POST 

herbicide program can significantly intensify soybean yield response caused by 

tank contamination. Additional meta-analyses suggested that doses of dicamba 

may differ even within vegetative growth stage of soybean (Egan et al. 2014, 

Kniss 2018). According to Kniss (2018) dicamba dose that may cause 5% of 

yield drag was estimated to be about 1.9 and 5.7 g ae ha-1 for soybean exposure 

during V1 – V3 and V4 – V7 growth stage of soybean, respectively. Further, 

Foster and Griffin (2019) reported that yield loss of 1 and 9% was observed with 

dicamba doses of 0.6 and 4.4 g ae ha-1, respectively. However, this data set may 
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be used to estimate general trends what may happen to soybeans when exposed 

to dicamba alone through either primary or secondary off-target movement of 

dicamba. Considering that soybean response may be significantly affected by the 

addition of various herbicides in tank-mixture additional studies are needed to 

better understand soybean response and determine impact on future 

management decisions regarding with sprayer tank cleanout procedures. 

Soybean exposure at reproductive (R1) growth stage. Analysis of variance 

(Table 4) for evaluated parameters for soybean exposed to various POST 

herbicide tank-mixtures with simulated sublethal dicamba doses had significant 

interaction between herbicide and dicamba dose (P<0.0001) for soybean 

symptomology and plant height at 21 DAA, harvest plant height, number of pods 

developed per soybean plant and soybean yield. Yield component such as grain 

weight (100 seed weight) had at the same time significant interaction for 

herbicide used (P=0.001) and simulated dicamba dose (P<0.0001). All presented 

two-way significant interactions will be discussed generally as observed trends 

having mean separation explanations in both ways regardless of either herbicide 

applied or dicamba dose used. Further, if either of simple effects were observed 

as significant, the mean separation will be discussed specifically how either 

herbicide or simulated dicamba dose impacted response variables. 

Soybean symptomology at 21DAA. As presented in Table 5 general trend 

which can be observed as dicamba dose increase in tank-mixture soybean 

symptomology increases. When dicamba doses were mixed with various 

herbicide program there was a similarity across most of the assessed scenarios 
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for 0 and 0.056 g ae ha-1; however, 0.560 g ae ha-1 was a dicamba dose which 

intensified soybean visible response. Treatment that included dicamba alone at 

0.560 g ae ha-1 dose resulted in 12% of visual response. Literature findings 

suggests that soybean exposure at R1 stage to dicamba dose at 0.75 g ae ha-1 

resulted in 23% of visual estimation of injury (Soltani et al. 2016). Based on their 

findings tank contamination low as 0.75 g ae ha-1 considerable consequences 

may be expected for soybean exposed late in the season. Available meta-

analysis suggests dicamba doses that was enough to cause at least 5% or crop 

visual response were estimated to be about 0.038 g ae ha-1 of the field use dose 

of dicamba (Kniss 2018).  

The main difference in terms of visual response has been observed in 

present study for group 14 herbicides (PPO inhibiting herbicides). Increase of 

soybean response was associated when those herbicides were with dicamba 

dose of 0.560 g ae ha-1. Treatment combinations that resulted in the greatest 

soybean symptomology for this study was reported 48% and it was associated 

with products like lactofen and fomesafen. Apart from those, application of full 

recommended dose of product like acifluorfen resulted in considerably lower 

soybean response, which may help in determination how various formulation 

within the same herbicide group may impact plant recovery properties.  

Additionally, noteworthy relationship has been observed among various 

applied ACC-ase inhibiting herbicides. Application of group 1 herbicides resulted 

in inverse relationship for clethodim products whereas as the amount of 

clethodim in formulation increases visual estimation of symptoms decreases. 
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This phenomenon has been well described in literature as antagonistic 

interaction between those two chemistries but in terms of reduced efficacy 

associated with weed control for both grass and broadleaf troublesome weed 

species (Aguero-Alvarado et al. 1991, Doretto et al. 2019, Rilakovic et al. 2016, 

Underwood et al. 2016). Partial explanation for decreased visual appearance of 

symptoms may be due to deactivation of sublethal dicamba doses with a higher 

concentration of clethodim in the tank-mixture. To confirm this response of 

herbicide interaction additional analyses needs to be implemented (Colby 1967).   

As reported sensitivity of soybean exposure later in growing season 

increases especially when soybean start with blooming (Egan et al. 2014, Kniss 

2018). Considering limited number of scientific papers available for data 

comparison related with soybean exposure to combination of various dicamba 

doses with POST herbicide program at R1 growth stage was limited. The only 

treatment performance comparison was based on soybean exposure during V7 

growth stage for herbicide interaction study that was conducted and for R2 

growth stage study that they conducted to evaluate effects when plant growth 

regulators were applied at fraction of label dose (Kelley et al. 2005). Results 

presented by these authors suggested the addition of herbicide program to 

dicamba at both tested doses of 0.56 and 5.6 g ae ha-1 altered response of 

soybean. When applied alone for V7 and R2 growth stage soybean response 

was 31 and 25% for lower dicamba dose used, followed with 41 and 41% for 

0.56 and 5.6 g ae ha-1, respectively. Further, their findings suggested that there 

was an evident difference observed among products like glyphosate and 
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fomesafen when applied alone observed soybean response was 0 and 6 % while 

in dicamba tank-mixed 35 and 45%, respectively. Data set provided in present 

study support findings that soybean symptoms may intensify with the addition of 

dicamba in tank-mixed with various POST management program as well as 

increased soybean sensitivity during reproductive stage. 

Soybean plant height at 21DAA. Having complexity regarding plant response 

results were discussed as generally observed trends (Table 6). Results for 

various dicamba doses tested shows that majority of the treatments resulted in 

similar response. Previously published studies pointed out impact on the plant 

height reduction during R1 growth stage exposure has been determined rather 

as dicamba dose dependent. According to Griffin et al. (2013) height reduction 

ranged from 1 to 44% for dicamba doses from 1.1 to 70 g ae ha-1, respectively. 

Additional literature findings shows when exposed at 16 g ae ha-1 impact on 

soybean height reduction has been reported as high as 25% if compared with 

non-treated control (Weidenhamer et al. 1989). 

In present study the addition of various POST herbicides programs 

impacted response variable like plant height. Even though, most of the herbicides 

from group 1 (ACCase inhibitors) and 9 (EPSPS inhibitor) did not impacted 

soybean plant height at 21 DAA treatment, findings associated with group 14 

(PPO inhibitors) were considerably distinct. Application of acifluorfen over the top 

of soybean did not differ from non-treated control. However, application of 

fomesafen and lactofen resulted in about 10% of plant height in comparison with 

non-treated control. The addition of 0.560 g ae ha-1 dicamba into tank-mix 



36 

  
 

resulted with more diversified response for plant height. The highest dicamba 

dose used for this study reveals completely different pattern where treatment that 

included fomesafen resulted in significantly greater reduction if compared with all 

other treatments used for this study. On contrary for setoxidim at 315 g ai ha-1, 

clethodim at 280 g ai ha-1, and COC positive impact on plant height at 21 day 

after treatment application.   

Comparisons across three tested dicamba doses shows that for Roundup 

Powermax there was a no difference observed; however, with Roundup 

Weathermax plant height was significantly affected for dicamba doses of 0 and 

0.560 g ae ha-1. Application of dicamba doses with ACCase inhibiting herbicides 

shows diversity of soybean response across tested herbicides as well as 

dicamba doses used. For example, for fluazifop-P-butyl there was no difference 

detected between doses two lower doses of dicamba, while the highest tested 

dose affected plant growth. Products that contained clethodim as active 

ingredient were no different for treatments applied at 280 g ai ha-1 across all 

tested doses of dicamba, whereas the one formulated as 272 g ai ha-1 had a 

significant impact on plant height reduction for 0.056 and 0.560 ga ae ha-1. 

Considering unavailability of scientific papers that included POST herbicide 

treatments in tank-mixture with dicamba comparison with work conducted in the 

past was not possible. 

Soybean plant height at maturity. General trend which are observed for most 

of the applied treatments was as dicamba dose increased in tank-mixture plant 

height decreased (Table 7). Overall results indicate the addition of dicamba in 
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tank-mixture may have a significant impact on final plant height. Treatments 

without dicamba inside the mixture resulted in the highest plant height reduction 

just for PPO inhibiting herbicides having fomesafen and lactofen more 

responsive on soybean than acifluorfen. Further, two glyphosate products were 

evaluated showed significant difference among them where Roundup 

Weathermax did not differ from non-treated control whereas Roundup Powermax 

caused significant plant height reduction.  

Treatments which contained dicamba at dose of 0.056 g ae ha-1 had a 

similar impact on the plant height. From all applied treatments at this dicamba 

dose plant height reduction was determined for fomesafen and lactofen. Similar 

findings have been reported for fomesafen when found with dicamba in the tank-

mix having a 37% of plant height reduction (Kelley et al. 2005). In general, the 

highest dose of dicamba associated with various POST herbicides resulted in the 

highest reduction of final plant height. Treatments that had an the most 

significant impact on height was fomesafen applied at the full recommended 

dose, followed by lactofen and both glyphosate formulations used in this study. 

All other treatments tested for the dose of dicamba at 0.056 g ae ha-1 performed 

similarly or plant height was increased if compared with non-treated control. 

Number of pods per soybean plant and seed weight. Considering complexity 

in soybean response after exposure to those two factors observed results will be 

discussed as generally observed trends (Table 8.3). In general, sublethal 

dicamba doses were with no difference among treatments which did not include 

dicamba in tank-mixture. However, simultaneously across every individual 
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dicamba doses it appears for treatment like Roundup Powermax number of pods 

per plant was greater for dicamba dose at 0.056 g ae ha-1 in comparison with 0 g 

ae ha-1  dicamba in tank-mixture followed with no difference among 0.056 and 

0.560 g ae ha-1. On contrary, for application of POST herbicide like acifluorfen 

and fomesafen difference was confirmed. When there was no dicamba in tank-

mixture number of pods created per plant if compared with non-treated control 

was greater for both products. The addition of both 0.056 and 0.560 g ae ha-1 of 

dicamba resulted in considerably lowered the number of pods developed per 

soybean plant. 

 Weight of 100 seed grains as can be seen from Table 9.1 and Table 9.2 

combining data across dicamba doses resulted in no difference among non-

treated control and Roundup Weathermax followed with all ACCase inhibiting 

herbicides tested. Furthermore, for all other evaluated products that were not 

aforementioned resulted in a significant impact on reduction of the seed weight. 

Combining data across herbicides reveals that there might not be difference 

between treatments that did not include dicamba in tank-mix versus the lowest 

dicamba dose that has been tested (0 and 0.056 g ae ha-1). Moreover, significant 

difference on this response variable may be expected for treatments which 

included dicamba dose at 0.560 g ae ha-1.  

Soybean yield. Contrasts for yield of soybean exposed to POST herbicides in 

tank-mixtures with sublethal doses of dicamba during R1 growth stage of 

soybeans (Table 10) shows that there was a significant response on soybean 

yield in comparison among untreated and treated plots for dicamba dose of 0 and 
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0.056 g ae ha-1 (P=0.010 and P=0.011). Supplementary, contrasting different 

herbicide site of action groups difference was not determined among either 

ACCase and PPO or EPSP and PPO inhibiting herbicides just when there was 

no dicamba as tank contaminant while for both dicamba doses used 0.056 and 

0.560 g ae ha-1 included difference was determined. At the same time, when 

comparing EPSPS and ACCase inhibiting herbicides there was no difference 

observed across any of the dicamba dose used. 

Considering complexity of variables that may impact soybean yield 

general trends observed for combination of POST program with simulated 

dicamba doses will be discussed (Table 11.1 and Table 11.2). For treatments 

with 0 g ae ha-1 of dicamba results shows that just glyphosate (Roundup 

Weathermax), setoxidim , and fluazifop-P-butyl resulted in similar response as 

non-treated control, whereas all other evaluated treatments had a slight soybean 

yield decrease. For treatments which contained dicamba at 0.056 g ae ha-1 

majority of treatments had a positive impact on soybean yield. Decrease of 

soybean yield for R growth stage of soybean was determined within 0.056 g ae 

ha-1 dicamba dose were associated when dicamba was applied alone and 

combined with products like lactofen and clethodim applied at 360 g ai ha-1.  

As dicamba increased in tank-mix to 0.560 g ae ha-1 impact of various 

POST herbicide program added in tank-mixture is more noted. Previously 

conducted studies reported with applications of 0.6, 2.2, and 4.4 g ae ha-1 

resulted in a 2, 5, and 17% of yield reduction (Foster and Griffin 2019, Griffin et 

al. 2013). Available meta-analyses provided report for soybean exposure during 
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reproductive stage suggesting yield loss of 5% may be expected with application 

of dicamba at of 0.9 g ae ha-1 (Kniss 2018). In present study the addition of 

POST herbicides impacted soybean yield and was associated with applied 

treatments like fluazifop-P-butyl, fomesafen, lactofen, and COC. Treatment 

combinations that resulted differently that either base treatment or non-treated 

control were related with products like glyphosate, setoxidim, clethodim (Section 

Three), and fomesafen. Setoxidim and fomesafen had a similar relationship with 

no difference in yield when compared across dicamba doses with non-treated 

control. On contrary, comparing three dicamba doses across treatment which 

included clethodim at 280 g ai ha-1 (Section Three) the highest dicamba dose 

tested as tank contaminant resulted in greater yield if compared non-treated 

control. Similar observation may be applied for glyphosate applied at 1120 g ae 

ha-1 (Roundup Powermax). 

 Treatment comparison within each of the tested dicamba doses reveals 

how various herbicide program influenced soybean yield. Interestingly, even 

though all the tested herbicide programs were labeled for use for POST weed 

control in soybeans for most of the applied treatments applied alone during R1 

growth stage had an impact on final soybean yield. The soybean response for 

the yield as aforementioned may be significantly impacted by various 

environmental conditions that have been observed during 2018 and 2019 

growing season.  

The addition of dicamba at 0.056 g ae ha-1 resulted in slight yield increase 

for treatments that included dicamba applied alone followed by clethodim 
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(Section Three) and lactofen. Increasing dicamba dose in tank-mix appears that 

soybean yield was more affected. The level of crop response was dependent on 

POST herbicide applied as well on the dose of dicamba found in tank-mixture. It 

seems that both glyphosate products tested followed by most of the ACCase 

inhibiting herbicides does not have an impact on soybean yield. Further, among 

PPO inhibiting herbicides there are slight differences among products used 

where it appears after application of acifluorfen. This finding partially may be 

explained due to faster soybean recovery when acifluorfen was applied if 

compared with lactofen and fomesafen. 

 Results emphasize need for a more thoroughly cleanout of sprayer or if 

possible to have a specially designated sprayer just for dicamba applications. 

Identification of criteria when various POST herbicide programs were involved 

with a variety of dicamba doses applied over the top of sensitive soybeans may 

be detrimental to evaluate effects on plant response. Knowing that the sensitivity 

of soybeans significantly changed with an addition of herbicides, data set like this 

needs to be performed under multiple environments and across various varieties 

of soybean in order to get as much as possible diversified data set that could be 

used in future to build a prediction model that will help in better understanding of 

soybean response when exposed to diversified POST herbicide program across 

multiple dicamba doses through either simulated doses or sampling sprayers 

after dicamba application occurred to try to have as much as possible real case 

scenario.
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List of Tables 
 
 

Table 1. List of herbicides used for evaluation of non-dicamba-tolerant soybean exposure to application of postemergence 
herbicides in tank-mixtures with sublethal doses of dicamba at V3 and R1 growth stages.  

Formulation Rate Manufacturer 

Active ingredient Site of Actiona Trade name g L-1 g ai ha-1 or v v-1    

Glyphosate EPSPS Roundup Powermax 660 1260b Bayer Crop Science 

Glyphosate EPSPS Roundup Weathermax 660 1260b Bayer Crop Science 

Setoxidim ACCase Poast Plus 120 315c BASF 

Fluazifop-P-butyl ACCase Fusilade DX 240 210c Syngenta 

Clethodim ACCase SelectMax 116 272c Valent 

Clethodim ACCase Intensity 240 280c Loveland 

Clethodim ACCase Section Three 360 280c Winfield 
Aciflurofen PPO Ultra Blazer 240 420d UPL 

Fomesafen PPO Flexstar 225 530d Syngenta 

Lactofen PPO Cobra 240 220d Valent 

Crop oil 
concentrated 

 R.O.C.  1% Wilbur-Ellis 

aAbbreviations used for herbicide site of action: EPSPS, enolpyruvylshikimate-3-phosphate synthase (group 9); ACCase, Acetyl 
CoA Carboxylase (group 1); PPO, protoporphyrinogen oxidase (group 14). 
bAmmonium sulfate 20 g L-1 (Bronc, Wilbur-Ellis). 
cNon-ionic surfactant 0.25% v v-1 (R-11 Spreader Activator, Wilbur-Ellis). 
dCrop oil concentrate 1% v v-1 (R.O.C., Wilbur-Ellis). 
Dicamba (XtendiMax, Bayer Crop Science) all treatments included three different dicamba doses as tank contaminants 0, 0.056, 
0.560 g ae ha-1 which represents 0, 0.01%, and 0.1% of standard recommended labeled dose of 560 g ae ha-1. 
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Table 2. Environmental conditions for application of treatments over the top of soybean for 2018 and 2019 growing season. 
 

V3 R1 

 2018 2019 2018 2019 

Date 06/23/2018 06/24/2019 07/09/2018 07/09/19 

Wind speed W 2.45 m s-1 W 1.6 m s-1 E 2.32 m s-1 W 2.62 m s-1 

Air temperature 26 ˚C 22 ˚C 28 ˚C 24 ˚C 

Humidity 45% 66% 43% 70% 
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Table 3. Monthly rain precipitation and temperature at North Platte, NE, in 
2018 and 2019a. 

 Rainfall Temperature 

Month 2018 2019 2018 2019 

 mm °C 

April 28.64 39.27 5.45 9.18 
Mayb 173.30 163.63 16.83 11.53 
June 109.06 81.83 21.50 19.41 
July 129.62 175.41 22.76 23.68 
August 7.78 93.81 21.26 21.71 
September 6.86 26.01 18.49 20.12 
Octoberc 45.01 14.99 8.35 5.98 

Totald 500.27 594.95 114.64 111.61 
aData obtained from National Weather Service (https://www.weather.gov/). 
bPlanting month. 
cThe harvest month. 
dTotal precipitation from planting until harvest. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.weather.gov/


 

 

4
5

 

Table 4. Analysis of variance for evaluated parameters on soybean exposed to postemergence herbicides in tank-mixtures with 
sublethal doses of dicamba at V3 and R1 growth stages. 

Factor 

V3 growth stage 

Symptoms 21 DAAa Height 21 DAA Harvest height Pods 
100 Seed 

weight Yield 
Fc ρ-value Fcb ρ-value Fc ρ-value Fc ρ-value Fc ρ-value Fc ρ-value 

Herbicide (H) 94.3 <0.0001 4.3 <0.0001 8.6 <0.0001 1.1 0.345 1.0 0.442 2.4 0.007 
Dicamba dose (D) 2819.1 <0.0001 6.4 <0.0001 43.2 <0.0001 0.4 0.664 2.5 0.083 1.0 0.375 
H x D 20.5 <0.0001 2.9 <0.0001 4.0 <0.0001 1.3 0.177 1.1 0.347 2.4 <0.0001 
CVc (%) 22.42   6.32   2.94   16.29   2.98   7.04   

Factor 

R1 growth stage 

Symptoms 21 DAA Height 21 DAA Harvest height Pods 
100 Seed 

weight Yield 

Fc ρ-value Fc ρ-value Fc ρ-value Fc ρ-value Fc ρ-value Fc ρ-value 
Herbicide (H) 95.6 <0.0001 11.6 <0.0001 14.3 <0.0001 2.7 0.003 3.0 0.001 2.6 0.004 
Dicamba dose (D) 1333.4 <0.0001 6.3 <0.0001 77.7 <0.0001 0.6 0.527 20.5 <0.0001 2.8 0.062 
H x D 8.4 <0.0001 2.6 <0.0001 2.7 <0.0001 2.5 <0.0001 0.9 0.466 2.7 <0.0001 
CV (%) 29.99   4.89   2.72   17.90   3.24   6.86   
aDays After Application. 
bFc: Calculated F-value. 
cCV: Coefficient of Variance.             
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Table 5. Visual estimation on soybean symptomology at 21 days after application of postemergence herbicides in tank-mixtures 
with sublethal doses of dicamba at V3 and R1 growth stages. 

Herbicide 

Dicamba dosea (g ae ha-1) 

V3 growth stage  R1 growth stage 

0 0.056 0.560   0 0.056 0.560 
 ________________________________________________ %  _______________________________________________ 

Non-treated     0.0 aA 1.1 aA 9.4 bA  0.0 aA 2.5 aA 11.8 bA 

Roundup Powermax    0.0 aA 1.9 aA 41.0 bD  0.6 aA 1.0 aA 29.1 bD 

Roundup Weathermax   0.0 aA 1.9 aA 40.6 bD  0.0 aA 1.6 aA 29.1 bD 

Poast Plus    0.0 aA 0.4 aA 38.8 bD  0.0 aA 3.2 aA 35.3 bE 

Fusilade DX   0.0 aA 2.3 aA 40.4 bD  0.0 aA 1.2 aA 27.0 bC 

SelectMax    0.0 aA 1.8 aA 40.8 bD  0.0 aA 2.5 aA 30.8 bD 

Intensity    0.0 aA 0.6 aA 30.6 bB  0.0 aA 1.2 aA 26.0 bC 

Section Three 0.6 aA 1.8 aA 31.6 bB  0.0 aA 0.0 aA 22.0 bB 

Ultra Blazer  11.3 aB 16.3 bB 36.9 cC  9.3 aB 9.3 aB 25.7 bC 

Flexstar     15.0 aC 18.9 aB 49.9 bE  16.0 aC 11.8 aB 48.0 bF 

Cobra        18.1 aC 16.6 aB 43.8 bE  25.3 aD 24.2 aC 47.5 bF 

COCb      0.0 aA 0.0 aA 34.1 bC  0.0 aA 1.8 aA 29.1 bD 
aMeans followed by the same letter, lower case in the row within growth stage and upper case in the column, do not differ using 
Tukey and Scott Knott's tests, respectively, at α = 0.05. 
bCrop Oil Concentrate. 
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Table 6. Height of soybean plants at 21 days after application of postemergence herbicides in tank-mixtures with sublethal 
doses of dicamba at V3 and R1 growth stages.  

Herbicide 

Dicamba dosea (g ae ha-1) 

V3 growth stage  R1 growth stage 

0 0.056 0.560   0 0.056 0.560 
                    ______________________________________________________ cm  ____________________________________________________ 

Non-treated     25.0 ab 26.3 bC 24.4 a  58.7 B 59.0 C 57.9 C 

Roundup Powermax    25.2 ab 26.9 bC 23.6 a  58.4 B 57.7 C 56.7 C 

Roundup Weathermax   25.3  25.8 C 24.3  
 58.5 bB 58.2 abC 55.1 aB 

Poast Plus    24.5  23.9 B 24.2  
 56.7 aB 60.9 bC 58.9 abD 

Fusilade DX   25.0  25.5 C 25.2  
 60.1 bB 60.0 bC 56.3 aC 

SelectMax    25.0  24.7 C 23.3  
 59.2 bB 55.5 aB 56.9 abC 

Intensity    26.2 b 24.7 abC 24.1 a  59.7 B 60.4 C 57.4 C 

Section Three 26.5  25.5 C 24.8  
 59.6 B 59.4 C 60.7 D 

Ultra Blazer  24.3  23.8 B 25.2   56.4 abB 59.4 bC 55.6 aB 

Flexstar     24.1 b 21.4 aA 24.3 b  52.6 aA 57.4 bC 51.9 aA 

Cobra        23.9  24.1 B 24.1  
 53.2 A 52.9 A 54.4 B 

COCb      25.3 ab 25.8 bC 23.6 a  58.3 B 56.8 B 58.6 D 
aMeans followed by the same letter, lower case in the row within growth stage and upper case in the column, do not differ using 
Tukey and Scott Knott's tests, respectively, at α = 0.05. 
bCrop Oil Concentrate. 
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Table 7. Height of soybean plants at harvest after exposure to postemergence herbicides in tank-mixtures with sublethal doses of 
dicamba at V3 and R1 growth stages. 

Herbicide 

Dicamba dosea (g ae ha-1) 

V3 growth stage  R1 growth stage 

0 0.056 0.560   0 0.056 0.560 
 _____________________________________________ cm  _______________________________________________ 

Non-treated     82.6 bB 82.7 bC 79.8 aB  80.6 bC 77.6 aB 76.5 aC 

Roundup Powermax    80.8 aA 83.9 bC 78.8 aB  78.9 bB 79.0 bB 73.7 aB 

Roundup Weathermax   79.4 aA 83.4 bC 77.2 aA  81.1 cC 77.8 bB 73.4 aB 

Poast Plus    78.5 A 80.6 B 80.0 B  80.3 bC 78.7 bB 75.7 aC 

Fusilade DX   82.5 bB 83.1 bC 79.0 aB  79.5 bC 79.5 bB 75.6 aC 

SelectMax    83.8 bB 81.2 bB 76.9 aA  78.0 B 79.6 B 77.8 C 

Intensity    85.4 cC 81.9 bC 78.8 aB  79.5 bC 80.7 bB 76.5 aC 

Section Three 80.1 A 81.5 B 79.7 B  77.8 B 79.9 B 77.4 C 

Ultra Blazer  79.5 abA 80.4 bB 77.4 aA  78.1 abB 79.0 bB 76.5 aC 

Flexstar     78.0 A 77.8 A 78.6 B  75.1 bA 75.7 bA 70.9 aA 

Cobra        79.2 A 80.1 B 80.0 B  75.5 bA 75.1 abA 72.6 aB 

COCb      84.8 bC 85.2 bC 80.0 aB  79.2 abB 79.9 bB 76.8 aC 
aMeans followed by the same letter, lower case in the row within growth stage and upper case in the column, do not differ using 
Tukey and Scott Knott's tests, respectively, at α = 0.05. 
bCrop Oil Concentrate. 
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Table 8.1. Number of pods per soybean plant exposed to postemergence 
herbicides at V3 growth stage a.  
Herbicide Pods plant-1  
Non-treated     62  

69  
72  
67  
66  
67  
66  
69  
65  
67  
66  
69  

Roundup Powermax    
Roundup Weathermax   
Poast Plus    
Fusilade DX   
SelectMax    
Intensity    
Section Three 
Ultra Blazer  
Flexstar     
Cobra        
COCb      

aThere were no differences using Scott Knott's test at α = 0.05. Data combined 
across dicamba doses. 
bCrop Oil Concentrate.  
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Table 8.2. Number of pods per soybean plant 
exposed to sublethal doses of dicamba at V3 
growth stage. 
Dicamba dose Pods plant-1  
g ae ha-1    
0 66.9  

66.5  
67.9  

0.056 
0.560 

There were no differences using Tukey's test at 
α = 0.05. Data combined across herbicides. 
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Table 8.3. Number of pods per soybean plant exposed to postemergence 
herbicides in tank-mixtures with sublethal doses of dicamba at R1 growth stage.  

Herbicide 
Dicamba dosea (g ae ha-1) 

0 0.056 0.560 
 ____________pods plant-1____________ 

Non-treated     58 A 60 A 57 A 

Roundup Powermax    56 aA 71 bB 63 abA 

Roundup Weathermax   63 B 57 A 60 A 

Poast Plus    63 aB 65 abB 76 bB 

Fusilade DX   63 B 63 B 62 A 

SelectMax    50 A 61 A 54 A 

Intensity    55 A 55 A 62 A 

Section Three 60 A 59 A 67 B 

Ultra Blazer  65 B 55 A 61 A 

Flexstar     75 bB 53 aA 51 aA 

Cobra        58 A 64 B 68 B 

COCb      55 A 55 A 57 A 
aMeans followed by the same letter, lower case in the row within growth stage 
and upper case in the column, do not differ using Tukey and Scott Knott's tests, 
respectively, at α = 0.05. 
bCrop Oil Concentrate. 
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Table 9.1. Weight of 100 soybean seeds exposed to 
postemergence herbicides at V3 and R1 growth stages. 

Herbicide 
Soybean growth stage 

V3 R1 
 g 100 grains-1 

Non-treated     16.48  16.32 B 

Roundup Powermax    16.57  15.88 A 

Roundup Weathermax   16.35  16.12 B 

Poast Plus    16.23  16.02 B 

Fusilade DX   16.54  16.20 B 

SelectMax    16.34  16.20 B 

Intensity    16.53  16.06 B 

Section Three 16.52  15.94 A 

Ultra Blazer  16.42  15.90 A 

Flexstar     16.46  15.77 A 

Cobra        16.48  15.70 A 

COCb      16.50  15.99 A 
aMeans followed by the same letter do not differ using Scott 
Knott's tests, at α = 0.05. Data combined across dicamba 
doses. 
bCrop Oil Concentrate.  
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Table 9.2. Weight of 100 soybean seeds exposed to 
sublethal doses of dicamba at V3 and R1 growth stages. 

Dicamba dose 
Soybean growth stage 

V3 R1 

g ae ha-1 g 100 seeds-1 

0 16.51  16.15 B 

0.056 16.49  16.15 B 
0.560 16.37  15.76 A 

Means followed by the same letter in the column do not differ 
using Tukey's test at α = 0.05. Data combined across 
herbicides. 
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Table 10. Contrasts for yield of soybean exposed to postemergence herbicides in 
tank-mixtures with sublethal doses of dicamba at V3 and R1 growth stages. 

Contrast 

Dicamba dose (g ae ha-1) 

V3 growth stage  R1 growth stage 

0 0.056 0.560   0 0.056 0.560 

  ρ-value  ρ-value 

Untreated vs Treated 0.364 0.182 <0.0001  0.010 0.011 0.796 

ACCase vs PPO 0.016 0.090 0.087  0.378 0.011 0.039 

EPSPs vs PPO 0.076 0.326 0.191  0.296 0.051 0.006 

EPSPs vs ACCase 0.860 0.680 0.004  0.710 0.926 0.221 
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Table 11.1. Yield of soybean exposed to postemergence herbicides in tank-mixtures with sublethal doses of dicamba at V3 
and R1 growth stages.  

Herbicide 

Dicamba dosea (g ae ha-1) 

V3 growth stage  R1 growth stage 

0 0.056 0.560   0 0.056 0.560 
   ___________________________________________________ kg ha-1_____________________________________________________ 

Non-treated     5537 b 5289 bA 4835 aA  5536 bB 5000 aA 5161 abA 

Roundup Powermax    5386 ab 5667 bB 5141 aA  4919 aA 5344 bB 5437 bB 

Roundup Weathermax   5535  5282 A 5250 A  5587 B 5440 B 5314 B 

Poast Plus    5319  5661 B 5601 B  5393 abB 5470 bB 4999 aA 

Fusilade DX   5210 a 5354 abA 5753 bB  5403 B 5443 B 5057 A 

SelectMax    5666  5430 A 5230 A  5080 A 5335 B 5253 B 

Intensity    5592  5497 B 5701 B  5180 A 5566 B 5423 B 

Section Three 5616  5664 B 5347 A  5008 aA 5195 abA 5493 bB 

Ultra Blazer  5311  5226 A 5380 A  5118 A 5246 B 5408 B 

Flexstar     5135  5558 B 5267 A  5164 abA 5290 bB 4854 aA 

Cobra        5277  5276 A 5424 A  5111 A 4957 A 4895 A 

COCb      5447  5633 B 5680 B  5129 A 5464 B 5063 A 
aMeans followed by the same letter, lower case in the row within growth stage and upper case in the column, do not differ using 
Tukey and Scott Knott's tests, respectively, at α = 0.05. 
bCrop Oil Concentrate. 
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Table 11.2. Soybean yield as percentage of non-treated control for soybean exposure to postemergence in tank-mixtures 
with sublethal doses of dicamba at V3 and R1 growth stages.  

Herbicide 

Dicamba dosea (g ae ha-1) 

V3 growth stage  R1 growth stage 

0 0.056 0.560   0 0.056 0.560 
         __________________________________________________ %______________________________________________________ 

Non-treated     100 b 96 bA 87 aA  100 bB 90 aA 93 abA 

Roundup Powermax    97 ab 102 bB 93 aA  89 aA 97 bB 98 bB 

Roundup Weathermax   100  95 A 95 A  101 B 98 B 96 B 

Poast Plus    96  102 B 101 B  97 abB 99 bB 90 aA 

Fusilade DX   94 a 97 abA 104 bB  98 B 98 B 91 A 

SelectMax    102  98 A 94 A  92 A 96 B 95 B 

Intensity    101  99 B 103 B  94 A 101 B 98 B 

Section Three 101  102 B 97 A  90 aA 94 abA 99 bB 

Ultra Blazer  96  94 A 97 A  92 A 95 B 98 B 

Flexstar     93  100 B 95 A  93 abA 96 bB 88 aA 

Cobra        95  95 A 98 A  92 A 90 A 88 A 

COCb      98  102 B 103 B  93 A 99 B 91 A 
aMeans followed by the same letter, lower case in the row within growth stage and upper case in the column, do not differ using 
Tukey and Scott Knott's tests, respectively, at α = 0.05. 
bCrop Oil Concentrate. 
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Table 12. Pearson correlation for evaluated parameters on soybean exposed to postemergence herbicides tank-
mixed with sublethal doses of dicamba at V3 and R1 growth stages. 

Parameter 1 Parameter 2 
V3 growth stage R1 growth stage 

Pearson's coefficient ρ-value Pearson's coefficient ρ-value 

Injury 

Height 21DAA -0.490 <0.0001 -0.095 0.106 

Harvest height -0.490 <0.0001 -0.316 <0.0001 
Pods plant-1 0.041 0.493 0.047 0.424 

100-grain weight -0.112 0.057 -0.418 <0.0001 
Yield -0.082 0.167 -0.189 0.001 

Height 21DAA 

Harvest height 0.360 <0.0001 0.893 <0.0001 

Pods plant-1 0.074 0.210 -0.497 <0.0001 
100-grain weight -0.049 0.406 -0.201 0.001 

Yield 0.107 0.070 0.014 0.815 

Harvest height 

Pods plant-1 -0.041 0.490 -0.432 <0.0001 

100-grain weight -0.031 0.601 -0.084 0.155 
Yield 0.110 0.063 0.073 0.217 

Pods plant-1 
100-grain weight 0.243 <0.0001 0.170 0.004 

Yield 0.057 0.337 0.039 0.515 

100-grain weight Yield 0.244 <0.0001 0.052 0.379 
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Supplemental List of Tables 
 

Table S1. Normality of residuals and homogeneity of variance of data. 

Stage Parameter Test 

Original data Transformed data  

F/KS values Significance 
Type of 

transfomation 
F/KS values Significance Analysis 

V3 

Visual 21 DAA 
Levene 4.634 0.000 

asin(√x/100) 
8.276 <0.0001 

NT 
KS 0.115 0.000 0.132 <0.0001 

Height 21DAA 
Levene 2.387 0.000 

rootsquare(x) 
2.204 <0.0001 

NT 
KS 0.026 0.200 0.031 0.200 

Harvest Height 
Levene 2.364 0.000 

rootsquare(x) 
2.612 <0.0001 

NT 
KS 0.040 0.200 0.048 0.200 

Number of pods 
per plant 

Levene 1.230 0.185 
- 

    
NT 

KS 0.054 0.043   

Grain weight 
Levene 1.093 0.339 

- 
    

NT 
KS 0.035 0.200   

Yield 
Levene 0.961 0.537 

- 
    

NT 
KS 0.054 0.044     

R1 

Visual 21 DAA 
Levene 7.257 0.000 

asin(√x/100) 
8.585 <0.0001 

NT 
KS 0.143 0.000 0.140 <0.0001 

Height 21DAA 
Levene 1.342 0.104 

- 
  

NT 
KS 0.038 0.200   

Harvest Height 
Levene 1.771 0.007 

rootsquare(x) 
1.741 0.009 

NT 
KS 0.032 0.200 0.032 0.200 

Number of pods 
per plant 

Levene 2.204 0.000 
rootsquare(x) 

2.129 <0.0001 
NT 

KS 0.054 0.039 0.036 0.200 

Grain weight 
Levene 0.716 0.883 

- 
    

NT 
KS 0.042 0.200   

Yield 
Levene 1.490 0.044 

- 
    

NT 
KS 0.041 0.200     

NT: non-transformed        
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CHAPTER 3 

 Effects of Drift-Reducing Nozzles and Agents on Dicamba Efficacy 

Abstract 

The increase in cropping area with dicamba-tolerant crops in the USA was 

followed with increased number reported cases of off-target movement (OTM). 

The addition of drift-reducing agents (DRAs) with certain tank-mixtures is 

required along with drift-reducing nozzle types. Impact of these techniques on 

application process and weed control is not well understood. The objectives of 

this study were to evaluate the impact of DRAs added to dicamba tank-mixtures 

on droplet size and weed control. Droplet size distribution (DSD) was impacted 

by nozzle type, solution, and operating pressure. Across all tested pressures 

DSD values followed pattern with TTI>TDXL-D>ULD (largest to smallest) with 

significant decrease in OTM potential observed when DRAs are added. 

Applications of dicamba with guar gum (DRA 1) at 138 kPa resulted in pattern 

collapse for TDXL-D and ULD nozzle types. Increasing the operational pressure 

to 207 and 276 kPa overcame pattern collapse issues observed for TDXL-D and 

ULD nozzles. Velvetleaf biomass reduction was 94% of greater. However, for 

weeds with hard to wet surface, like one on common lambsquarters, biomass 

reduction ranging from 74 to 87%, with plant position relative to nozzle and 

treatment used being significant factors in the biomass reduction measured. 

Minimization of OTM is a priority, there is a critical need to determine which label 

approved mitigation practices are most effective and which ones may be 

detrimental to extend lifetime of chemistry use and optimize weed control. 
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Introduction 

Management of undesirable plants in row crops represents a critical 

component for sustainable food production. Various herbicides have been used 

as an important tool to reduce or completely remove weed competition in row 

crops. Low cost of chemicals and labor requirements, quick response, and 

satisfactory control has led to the overreliance on herbicides applied on crops. As 

a negative impact, continuous use of herbicides with the same or similar mode of 

action has led to the evolution of weed resistance substantial ly shifting the weed 

communities found in row crops (Heap 2014, Vencill et al. 2012). Resistant 

populations of weeds have been confirmed to various herbicides (Tranel and 

Wright 2002, Vieira et al. 2017, Vieira et al. 2018, Jhala et al. 2014). Considering 

limitations on currently available herbicides for postemergence (POST) weed 

control, additional tools in row crop weed control are needed to decrease the 

evolution of weed resistance. A major advance in agricultural production was the 

development and commercialization of herbicide-tolerant crops have originated a 

tremendous change in agriculture by providing alternatives and highly effective 

methods for weed management to growers (Dodson 2019, Green 2009, Kniss 

2018). 

Dicamba-tolerant (DT) crops were introduced during 2016 growing season 

as an alternative to integrate more diverse herbicide options in row crop weed 

control (Taylor et al. 2017). As a result of flexible application timing for late 

control of emerging weeds, the DT cropping system is being widely accepted. In 

Nebraska alone, 19%, 39%, and 52% of the entire planted area with soybeans 
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were cultivated with DT cultivars in 2017, 2018, and 2019 growing seasons, 

respectively (USDA 2018, USDA NASS 2019, USDA NASS 2020, Werle et al. 

2018). With the continuous adoption of DT crops over the last several years an 

increase in dicamba products use for broadleaf weed control through the USA is 

expected (USGS 2020). 

Even though, the introduction of DT crops provided growers an effective 

site of action for weed control, there are several concerns associated with off -

target movement (OTM) of this chemistry. Unintended movement of dicamba 

typically has been reported due to spray particle drift, volatility, and tan k 

contamination (Alves et al. 2017b, Riter et al. 2020, Sall et al. 2020, Soltani et al. 

2016). With numerous dicamba-sensitive vegetation and crops surrounding 

agricultural landscapes, drift-reduction techniques are fundamental when 

spraying dicamba to reduce OTM. Environmental conditions, proper selection of 

product formulation, nozzle type and orifice size, operational pressure and 

speed, boom height, and tank-mix additives are some of many factors which can 

decrease OTM potential. The development and release of DT crops came along 

with new dicamba formulations and application restrictions, especially related to 

coarser droplet size, and use of drift-reducing agents (DRAs) (Anonymous 2018, 

Anonymous 2018, Anonymous 2018, Anonymous 2019). 

In general, a considerable reduction in pesticide downwind deposition is 

expected when droplet size is increased (Alves et al. 2017b). Previous research 

has shown with droplet size increase lower pesticide on-target deposition and 

efficacy is expected (Butts et al. 2018, Creech et al. 2016, Smith et al. 2000, Wolf 
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2002). It has been reported that dicamba efficacy can be affected by the 

interactions of droplet size, carrier volume, and weed species (Sanyal et al. 2006, 

Butts et al. 2018, and Creech et al. 2016). The addition of tank-mix additives 

(DRAs) may provide enhance performance where these combinations result in 

decreased efficacy. The development and release of DT crops was followed with 

introduction of diversified DRAs for use with dicamba application. Even though, 

the use of DRAs are typically associated with drift mitigation, they may offer 

additional improvements in overall performance of a given application having 

their purpose often cross listed with other functions.  

With the inclusion of multiple additives to a tank-mixture it is expected to 

result in the change of spray characteristics (Oliveira et al. 2015, Prokop and 

Kejklicek 2002). This typically includes changes in physical properties of given 

solution including density, viscosity, surface tension, evaporation time, which turn 

results in changes of the droplet size distribution (DSD) produced (Moraes et al. 

2019). It is noted that the exiting spray fan angle may be impacted for certain 

nozzle types by operating pressure, nozzle design, and physical chemical 

properties of the spray solution (Dorr et al. 2013, Spanoghe et al. 2007).  

Increased awareness of pesticides impact on environment has been 

reported in literature even at low doses (Relyea 2005). As a preventive measure 

to decrease negative impact on environmental regulatory agencies trends toward 

more strict guidelines for both manufactures and pesticide applicators which 

must adhere tend to be more restrictive than what may be required. Typically, 

mitigation practices meeting regulatory agencies demands are required for 



68 

 

pesticide application especially for chemistries with high risk for OTM. Following 

all requirements decrease OTM and adverse environmental impact. However, 

the interaction of  these factors within any given pesticide application is a highly 

complex process which includes a lot of variables that may impact both 

application process and treatment performance (Ebert et al. 1999, Grisso et al. 

1989) where information and guidance on these interactions often lack. When 

performance of given application is affected by various decisions, significant 

impact on weed selection pressure and decrease of the lifetime use of available 

chemistries may occur (Bish and Bradley 2017, Vieira et al. 2020). Therefore, 

additional research is needed considering that there is a lack of information on 

how DRAs affect weed control and pesticide application effectiveness. The 

objectives of this study were to investigate how by label approved tank-mixed 

DRAs with dicamba applied using three different nozzle types and three 

operating pressures on droplet size and weed control. 

 

Materials and Methods 

Greenhouse and laboratory studies were conducted at the Pesticide 

Application Technology Laboratory of the University of Nebraska-Lincoln in North 

Platte, Nebraska, USA in 2019 and 2020. 

Droplet size. The experiment was conducted twice in a randomized complete 

block with factorial arrangement of treatments (4x3x3) with three replications. 

Treatment factors included four solution, three nozzle types, and three operating 

pressures. Solution was consisted of water, dicamba - diglycolamine salt (XTM - 
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XtendiMax® with VaporGrip® Technology, Monsanto, St. Louis, MO, USA) 

applied at 560 g ae ha-1 either alone or in tank-mixture with two DRAs at 0.5% v 

v-1. DRAs used were polyethylene glycol, choline chloride, guar gum (DRA 1 - 

Intact™, Precision Laboratories, LLC, Waukegan, IL, USA) and 2-

hydroxypropane-1,2,3 carboxylate, complex trihydric alcohols, oligomeric sugar 

alcohol condensates ( DRA 2 - Trapline™-Pro II, CHS Inc. Inver Grove Heights, 

MN, USA). Further, application was performed to deliver 140 L ha -1 using TTI 

11004 (TTI - Turbo TeeJet Induction, Spraying Systems Co., Wheaton, IL, USA), 

TDXL 11004-D (TDXL-D - TurboDrop XL Medium Pressure D Version, Greenleaf 

Technologies, Covington, LA, USA), and ULD 12004 (ULD - Ultra Lo-Drift, 

Pentair, Minneapolis, MN, USA) nozzles with operated pressure of 138, 207, and 

276 kPa. The analysis of DSD for each treatment evaluated for this study was 

measured using laser diffraction instrument in a low speed wind tunnel with a 

constant wind speed of 6.7 m s-1. An individual replication for each treatment was 

consisted of a full traverse of the spray plume through the measurement area. 

More information about procedures and low speed wind tunnel set up and 

operation are described by Creech et al. (2016), Alves et al. (2017a), and Vieira 

et al. (2018). Recorded values included Dv0.1, Dv0.5, and Dv0.9 the droplet 

diameters (µm) such that 10, 50, and 90% of the total spray volume is in droplets 

of lesser diameter, respectively. Additionally, Driftable Fines (DF - the percentage 

of the total spray volume consisting of droplet diameters 200 µm or less) and 

relative span (RS) were recorded. Relative span represents a dimensionless 
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parameter that shows uniformity of spray distribution, calculated using an 

equation 1: 

𝑅𝑆 =
𝐷𝑉0 .9 − 𝐷𝑉0 .1

𝐷𝑉0 .5

 

            [1] 

The dataset was subjected to analysis of variance using a generalized linear 

mixed model (PROC GLIMMIX) in SAS (Statistical Analysis Software, version 

9.4, Cary, NC, USA). All comparisons were performed at α = 0.05 significance 

using a Fisher’s Protected LSD test. The spray classifications were based on 

curves from reference nozzles spraying water alone in accordance with ASABE 

S572.1 standard (ASABE, 2017). 

Plant material. Velvetleaf (Abutilon theophrasti Medik.) and common 

lambsquarters (Chenopodium album L.) were planted into cone pots filled with 

Pro-Mix BX5 (Premier Tech Horticulture Ltd, Rivière-du-Loup, Canada) general 

purpose growing medium. Plants were grown under controlled greenhouse 

conditions with a daytime temperature 26 – 28°C and a night temperature 18 – 

22°C. Supplemental LED light of 520 µmol s-1 (Philips Lighting, Somerset, NJ, 

USA) was used to extend daylight period to 16 hours. Plants were watered daily 

using a commercial liquid fertilizer (UNL 5-1-4; Wilbur-Ellis Agribusiness, Aurora, 

CO, USA) at 0.2% v v-1 blended with water. Plants were treated when they were 

10 to 15 cm in height. 

Spray pattern study. Greenhouse trials were conducted in a 3 x 3 x 3 split-split-

plot arrangement in a randomized complete block design with four replications 

and three experimental runs. Previously described factors solution, pressure, and 
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nozzle type were considered as main plot, sub-plot, and sub-sub-plot, 

respectively. Applications were made using a three-nozzle track spray chamber 

(DeVries, Hollandale, MN, USA) with nozzles spaced 50 cm apart and 50 cm 

above target calibrated to deliver 140 L ha-1 at 138, 207, and 276 kPa at 2.5 m s-

1, 3.0 m s-1, and 3.5 m s-1, respectively. Prior to applications, twelve plants of 

each weed species per replication were arranged in a continuous line across 

width of the spray boom (Figure 1). Plants were divided into two groups 

(variables) corresponding to plant position in relation to the nozzles: between and 

underneath the nozzles. After applications, plants were transferred to the 

greenhouse where they were kept until harvest date. Plants aboveground 

biomass were harvested 28 days after application (DAA) and dried at 65 °C to a 

constant weight. Dry biomass weights were recorded and converted into 

percentage of biomass reduction compared to non-treated control using an 

equation 2 (in which NT represents the mean biomass of non-treated plants and 

T represents the biomass of the treated plants): 

 

% 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  [
(𝑁𝑇 − 𝑇)

𝑁𝑇
] ∗ 100 

[2] 

Data was subjected to joint analysis using Sisvar Statistical Software, version 5.6 

(Ferreira, 2011) and combined across runs as the ratio between the highest and 

lowest Root Square Mean Error (RSME) was smaller than 3 (data now shown) 

(Box, 1954). Normality of residuals and homogeneity of variance of data were 

analyzed by the Kolmogorov-Smirnov and Levene’s tests (Table S1), 
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respectively, using SPSS Statistical Software, version 20 (SPSS Inc., Chicago, 

IL, USA). Transformation of data was not necessary at α = 0.01 significance. 

Data was subjected to analysis of variance (ANOVA) using Sisvar Statistical 

Software, version 5.6, and comparisons were made using Tukey’s mean 

separation test at α = 0.05 significance. 

Dose response study. Common lambsquarters plants were sprayed with 

dicamba (XTM - XtendiMax® with VaporGrip® Technology, Monsanto, St. Louis, 

MO, USA) doses of 1.1, 2.2, 4.4, 8.8, 17.5, 35, 70, 140, 280, 560, 1120 g ae ha-1 

alone and in tank-mixture with DRA 1 or DRA 2 at 0.5% v v-1. The experiment 

was conducted twice in a randomized complete block design with 10 replications 

(experimental units) per treatment. Applications were made using a single nozzle 

research sprayer (DeVries, Hollandale, MN, USA) calibrated to deliver 140 L ha-1 

at 276 kPa using AI9502EVS nozzle (Air Induction, Spraying Systems Co., 

Wheaton, IL, USA). After applications, plants were transferred to the greenhouse 

where they were kept until harvest date. Aboveground plant biomass was 

harvested at 28 DAA and dried at 65 °C to a constant weight. Dry biomass 

weights were recorded and converted into percentage of biomass reduction 

compared to non-treated control using an equation 2. A non-linear regression, 

log logistic model was fitted to the data using the DRC package (Streibig 1980) in 

R software (R Foundation for Statistical Computing, Vienna, Austria) using an 

equation 3: 

y = c + {d – c/1 + exp [ b (log x – log e)]} 

[3] 
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in which y corresponds to the biomass reduction (%), b is the slope at the 

inflection point, c is the lower limit of model, d is the upper limit, x is dicamba 

dose used (g ae ha-1), and e is the inflection point (ED50 – the effective dose to 

reduce 50% of plant biomass). 

 

Results 

Droplet size study. Significant interaction for solution by pressure by nozzle 

were observed influencing the Dv0.1, Dv0.5, Dv0.9, RS, and driftable fines (Table 

1). As can be seen in Tables 2.1 through 2.3 Dv0.1, Dv0.5, Dv0.9, RS, and DF 

presented confirms that there were significant differences in droplet size between 

each nozzle, pressure and solution type, which was expected based on many 

other previous studies.  Given this, it was also expected, and supported by the 

data, that all exploited interactions were significant. All treatments 

(solutions*nozzle types*operating pressures combinations) tested resulted in 

ultra-course (UC) spray classification in accordance with ASABE S572.1 

standard. Even with this spray classification, there are unique trends observed 

for each nozzle type. 

Overall, the largest droplet size spray was observed with the TDXL-D 

nozzle operating at the lowest pressure (138 kPa) for the dicamba plus DRA 1 

solution with  observed Dv0.1, Dv0.5, and Dv0.9 values of 674, 1215, and 1718 µm, 

respectively, though Dv0.1 was not significantly different from the TTI nozzle using 

the same solution. While DRA 1 resulted in the largest overall droplet size across 

the four solutions for both the TTI and TDXL-D, the largest droplet size spray 
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resulted from DRA 2 among the four solutions tested with the ULD nozzle. 

Generally, across all nozzle, pressure and solution combinations tested, the ULD 

nozzle resulted in the lowest Dv0.1, Dv0.5, Dv0.9 values and the greatest 

percentage of driftable fines, likely as result of the different design structure of 

this nozzle. 

In comparison with dicamba alone treatment, the addition of DRAs 

decreased OTM movement potential with the DRA 1 being more effective than 

the DRA 2 for the TDXL-D and ULD nozzles with no difference observed among 

DRAs for the TTI nozzle. Across all nozzle, pressure, solution combinations 

tested, the TDXL-D at the lowest pressure and spraying dicamba plus DRA 1 

created the smallest fraction of driftable fines (0.05%). Visual observations of the 

spray fan revealed that with both the TDXL-D and ULD nozzles the spray fan 

lacked proper development when spraying the high viscous, DRAs containing 

solutions at low pressures. Surprisingly, water-alone resulted in the lowest 

droplet size data across all treatments combinations, with the exception of the 

TDXL-D nozzle at all three pressures, for which the dicamba solution resulted in 

the smallest droplet size between the four solutions tested (Table 2.1 - 2.3). 

As the pressure increased from 138 to 207 kPa, the Dv0.1, Dv0.5, and Dv0.9 

in general values decreased (Table 2.2). As observed previously the addition of 

DRA 1 had the greatest impact on droplet size parameters increase for majority 

of the nozzles (Table 2.2). Impact of tank-mixtures on DV0.1 value followed the 

similar trend from highest to lowest: dicamba + DRA 1> dicamba + DRA 2> 

dicamba across nozzle types. For applications with the TTI nozzle at 207 kPa 
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nozzle TTI for solution with DRA 1 in tank-mixture resulted in the greatest Dv0.1, 

Dv0.5, and Dv0.9 values of 620 µm, 1113 µm, and 1552 µm, respectively. Dicamba 

treatment applied at 207 kPa followed the same scenario as one described for 

138 kPa for TTI and ULD nozzle where droplet size increased. Further, 

application of dicamba alone treatment using a TTI nozzle at 207 kPa resulted in 

0.42 per cent of fines generated compared to applications with water where 

observed percentage of driftable fines were 0.60%. On contrary, for TDXL-D 

nozzle inverse response was determined where the addition of dicamba 

increased per cent of DF values. The addition of DRAs in dicamba tank-mixture, 

particularly for TDXL-D, was effective in reducing the percent of driftable f ines for 

both DRA 1 and DRA 2, respectively. Findings regarding ULD nozzle follow the 

similar trend as observed for the lowest pressure used in this study. Across all 

solutions droplets generated using the ULD nozzle type were in general smaller 

and the percentage of fines was considerably higher if compared with the other 

two nozzle types.  

Droplet size distribution for applications made at 276 kPa resulted in 

greatest decrease of the Dv0.1, Dv0.5, and Dv0.9 (Table 2.3). Across solutions Dv0.5 

values were affected with the addition of DRAs in dicamba tank-mixture for all 

nozzles. From the highest to the lowest Dv0.5 values followed pattern: dicamba + 

DRA 1> dicamba + DRA 2> dicamba. Similar observation as one defined for 138 

and 207 kPa can be identified for TTI and ULD nozzle where the application of 

dicamba without DRAs resulted in slight droplet size value increase if compared 

with water-alone treatment. In general, it seems across evaluated treatments 
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OTM potential decrease of driftable fines and increase in Dv0.5 values is 

constantly determined for dicamba with the addition of DRA 1. Further, at 276 

kPa operating pressure the addition of DRA 2 into tank-mixture with TDXL-D 

nozzle type appears slightly to increase percentage of driftable fines compared 

with dicamba treatment having reduced efficacy based on their common use. On 

contrary, for TTI and ULD impact of the addition of DRAs can be observed. More 

particularly for TTI there was no difference identified among two DRAs tested, 

whereas for ULD nozzle type gradual decrease in percentage of driftable fines 

was observed. 

Spray pattern study. Analysis of response variables across evaluated species 

revealed patterns distinctive per species evaluated as can be seen in Table 3. A 

significant solution*pressure interaction was observed influencing velvetleaf 

control between (P<0.0001) and underneath nozzles (P=0.0039). Whereas for 

common lambsquarters a solution*nozzle interaction was observed influencing 

control of the plants underneath the nozzles (P<0.0441) as well as operating 

pressure (P<0.0125). Common lambsquarters plants positioned between nozzles 

were influenced by solution, pressure, and nozzle factors significant on α=0.05 

level. 

Velvetleaf. No differences in control were observed for velvetleaf plants 

positioned between nozzles for dicamba alone applications with 136, 207, and 

276 kPa (Table 4). Across solution tested for 138 kPa the addition of DRA 1 in 

tank-mixture resulted in greater biomass reduction comparing with solution which 

contained DRA 2. However, with a pressure increase it appears dicamba tank-
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mixed with DRA 2 outperforms DRA 1 suggesting an inverse relationship among 

two DRAs tested as pressure increase. Further, combination of dicamba and 

DRA 2 greater biomass reduction for plants positioned between nozzles was 

detected with no difference among 207 and 276 kPa. Mean comparisons within 

each evaluated pressure shows similar pattern with DRA 2 as not as effective 

when using lower operated pressures while as pressure increased DRA 2 

outperformed other two solution tested. 

Across solution and operating pressures tested for velvetleaf plants 

positioned underneath the nozzles for both dicamba tank-mixed with DRA 1 or 

DRA 2 there is no difference was observed across 138, 207, and 276 kPa (Table 

5). A mean comparison within each operating pressure shows dicamba plus DRA 

2 outperformed other two tank-mixtures for 138 and 207 kPa. At the same time, 

mixture of dicamba plus DRA 1 for 138 kPa resulted in the lowest biomass 

reduction for plants positioned underneath nozzle. For 207 kPa the greatest 

biomass reduction was observed for dicamba treatment with DRA 2, with no 

difference among dicamba alone and dicamba with the addition of DRA 1. As 

pressure increased to 276 kPa treatment which contained DRA 1 was 

determined with a slightly lower dry biomass reduction compared with dicamba 

and dicamba with DRA 2. 

Common Lambsquarters. Based on two-way significant (solution*nozzle) 

interaction following findings for biomass reduction are discussed combining data 

across pressures for plants positioned underneath nozzles (Table 6.) Application 

of treatments which included dicamba alone and dicamba with DRA 2 resulted in 
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decrease of biomass reduction for TTI while no difference was observed among 

TDXL-D and ULD nozzle. However, it seems for dicamba with the addition of 

DRA 1 there is no difference in biomass reduction across nozzle type used. 

Treatment mean comparison within each nozzle type shows for TTI nozzle there 

is no difference observed among DRAs while at the same time the addition of 

DRAs in tank-mixture outperformed dicamba alone treatment. Findings 

associated with TDXL-D and ULD nozzle for dicamba tank-mixture which 

included DRA 2 always resulted in greatest biomass reduction. When dicamba 

alone treatment was applied over the top of common lambsquarters using a 

TDXL-D nozzle biomass reduction was 80%, whereas with the addition of DRA 1 

and DRA 2 biomass reduction increased to 83 and 87%, respectively. Similar 

findings can be found with ULD nozzle type where the addition of DRA 2 with 

dicamba in tank-mix outperformed other tested combinations. Combining data 

across solution and pressures for plants positioned between nozzles (Table 7) as 

can be seen there is no difference in biomass reduction for applications with the 

TDXL-D and ULD nozzles whereas lower is expected when using TTI nozzle for 

application.  

Impact of various pressures used difference for common lambsquarters 

plants positioned between and underneath nozzles can be seen in Table 8. For 

plants positioned between nozzles there was no difference among 207 and 276 

kPa but lower biomass reduction in common lambsquarters plants is observed 

when applications are performed with low operated pressure as 138 kPa. Across 

pressures biomass reduction for plants underneath nozzles was determined to 
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be different just among 138 and 207 kPa, having 82 and 83% of biomass 

reduction, respectively. 

Solution affected biomass reduction for plants positioned between nozzles 

(Table 9). As can be seen result was dependent on DRA used in tank-mixture 

with dicamba. When dicamba alone was applied reduction of biomass was 80%; 

however, with the addition of either DRA 1 or DRA 2 plant biomass reductions 

increased to 84 and 87%, respectively. 

Dose response study. As can be seen from Figure 2 common lambsquarters 

plant response was affected by tank-mixture used. Overall trend was as dicamba 

dose exponentially increased percentage of common lambsquarters biomass 

reduction increased. The parameters estimate for the log logistic biomass 

reduction are presented in Table 10. The lowest observed biomass reduction 

was associated when dicamba alone treatment was applied. The addition of 

DRAs increased biomass reduction having response distinctive among DRAs 

tank-mixed with dicamba. Results from this study suggests that DRA 2 is more 

effective for common lambsquarters biomass reduction. It is a noteworthy to 

mention that the addition of DRAs increased biomass reduction on common 

lambsquarters even when sublethal doses used. Based on parameter estimate 

ED50 (e) the effective dose to reduce 50% of plant biomass was 565.5, 114.3 and 

81.2 g ae ha-1 for dicamba alone, dicamba plus DRA 1, and dicamba plus DRA 2, 

respectively. 
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Discussion 

 Primary OTM mitigation practices include modifications of DSD through 

the employment of different tactics which as a result have an increase in droplet 

size. Overall findings from this study suggests nozzle type, operated pressure, 

and DRAs used in tank-mixture with dicamba can considerably impact DSD and 

OTM potential. As reported in literature the greatest impact on generated 

droplets can be expected from nozzle types and operated pressure used rather 

than spray mixture (Dorr et al. 2013). As seen across 138, 207, and 276 kPa 

pressures, Dv0.5 values for evaluated drift-reducing nozzles followed the pattern: 

TTI>TDXL-D>ULD from highest to lowest, respectively. Further, as operated 

pressure increased DSD parameters (Dv0.1, Dv0.5, Dv0.9) decreased with greater 

quantity of driftable fines (<200 µm). Both inverse and positive association 

among pressure with droplet diameter and driftable fines have been reported in 

literature, respectively (Nuyttens et al. 2007).   

It is reported changes in DSD or spray classification can occur even with 

the addition of either herbicide or various agents in tank-mixture (Creech et al. 

2015, Oliveira et al. 2015). Even though, findings in present study shows UC 

spray classification for all evaluated treatments the addition of DRAs in tank-

mixture with dicamba increased Dv0.5 and decreased of driftable fines 

considerably with final response dependent on nozzle used. Majority of evaluated 

treatment combinations resulted as effective for OTM mitigation when DRAs was 

added into tank-mixture with dicamba. However, slight increase in driftable fines 

was observed with dicamba application at 276 kPa when DRA 2 was in tank-
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mixture with dicamba for TDXL-D nozzle likely as result of the different design 

structure of this nozzle. Johnson et al. (2006) found drift-reducing nozzles 

sometimes can be more effective approach than including DRAs in tank-mixture 

under certain scenarios. Based on findings in present study the use of drift-

reducing nozzles is necessary to prevent OTM of dicamba; however, as shown 

the most effective approach for OTM mitigation was observed when DRAs were 

present with dicamba in tank-mixture for majority of evaluated treatments. 

Different nozzle types and their impacts on pesticide application and 

formation of spray liquid sheet can be attributed partially with their design. The 

modification of the solution physical properties can affect the atomization 

process, spray formation, and treatment performance (Dorr et al. 2013, Hewitt 

2008). Application of solution with altered physical characteristics when DRA 1 

and DRA 2 were added with dicamba for TDXL-D and ULD nozzle types 

especially with application at 138 kPa may not result in proper fan formation and 

cause nozzle collapses (Figure S1.1 – Figure S1.3). It seems more likely that the 

TDXL and ULD nozzle should not be used at lower pressure with thickening type 

DRAs as they do not perform as they should. Similar findings have been reported 

where lower operational pressures resulted in spray pattern variability or 

decrease in nozzle exiting fan-angle (Dorr et al. 2013, Etheridge et al. 1999). 

Decreased fan-angles may directly influence proper overlapping and deliver 

lower dose of herbicide than anticipated on targeted weed species. Considering 

that fan-angle was not developed fully it fill be necessary for future studies to 

evaluate additional metrics that will help with identification if the lack of the spray 
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development occurs just at 138 kPa or it can affect as well operating pressures 

207 and 276 kPa. 

Previous research demonstrated greater efficacy of some products can be 

explained with an inverse association among droplet size, efficacy, and 

deposition as droplet size decreases deposition and herbicide efficacy increase 

(Knoche 1994, Derksen et al. 1999). However, with dicamba this is not feasible 

due to OTM concerns. Although increase in droplet size decreases OTM 

potential a reduction in terms of weed control may be expected (Knoche 1994, 

Wolf 2002). Even though increase in droplet size may be a primary factor that 

reduce drift potential various herbicides may have different performance. For 

example, glyphosate - other systemic products with a high-potential for various 

OTM droplet size was not observed to have an impact on weed control across 

several evaluated species when droplet size was increased (Feng et al. 2003, 

Ferguson et al. 2018). This research does emphasize that glyphosate absorption, 

translocation, and efficacy was observed even with coarse or ultra-coarse spray 

droplet sizes. 

In general, the performance of any applied pesticide has a direct relation 

with the quantity of products deposited on the leaves of targeted plant. The 

addition of DRAs in tank-mixture resulted in droplet size increase. For TTI nozzle 

type at 138 kPa Dv0.5 value increased from 1078 to 1193 µm comparing dicamba 

and dicamba + DRA 1, respectively. Increase in droplet size like this can be 

critical component for biological activity of herbicides where for every 100 µm 

droplet size increase it can be expected decrease in herbicide deposition (Smith 
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et al. 2000). Further, the presence of various natural leaf obstacles can impact 

spray deposition and performance of applied herbicides (Sanyal et al. 2006). 

Reduced droplet retention on the leaf surface can be directly associated with a 

fate of the droplets during and after herbicide application process occur. After 

droplets reach surface, they will either retain, bounce or roll off the leaf surface if 

there is any sort of incompatibility of sprayed solution with targeted surface 

(Aytouna et al. 2010, Hess et al. 1974).  

The distinct leaf surface characteristics between velvetleaf (i.e. trichomes) 

and common lambsquarters (i.e. epicuticular wax) can affect pesticide retention 

and further uptake. Adjuvants including surface-active agent, wetting agent, foliar 

retention, and/or deposition aid agents are often used with herbicides to 

overcome those leaf barriers and therefore increase the application performance 

on-target plants (Aytouna et al. 2010, Riechers et al. 1994, Sanyal et al. 2006). 

Even though, the DRAs tested in this study are primarily used for drift mitigation, 

their purpose is often cross listed with other functions indirectly facilitating 

biological activity of pesticides (Anonymous 2017, Anonymous 2018)  

Velvetleaf plants positioned either below or underneath the nozzle was 

very sensitive to dicamba application of 560 g ae ha-1 based on biomass 

reduction findings. Biomass reduction observed for velvetleaf was reported not 

lower than 94%. All changes in DSD caused with the addition of DRAs in tank-

mixture had a minor impact on overall treatment performance. Similar findings 

were reported in literature where applications of dicamba on velvetleaf were not 

influenced by spray classification changes from fine to extremely coarse (Creech 



84 

 

et al. 2016). One of the concerns with POST herbicide activity with species like 

velvetleaf is droplet contact angle with leaf surface due to presence of trichomes 

as natural obstacle (Hess et al. 1974). According to (Sanyal et al. 2006) issues 

with spread area were overcome with the addition of non-ionic surfactant at rate 

of 0.25% v v-1 which in present study was accomplished by adding multipurpose 

DRAs in tank-mixture. 

Based on this study findings the presence of leaf natural barrier on 

common lambsquarters resulted in decrease of biomass reduction. It is well 

known the presence of hard to wet surface can impact retention of majority of 

POST herbicides used in row crops. Several studies showed an inverse 

relationship among amount of epicuticular wax on leaf surface with contact angle 

of droplets and herbicide efficacy (Ramsdale and Messersmith 2001, Sanyal et 

al. 2006). For herbicides like dicamba efficacy can be influenced by droplet size 

(Butts et al. 2018). Also, Creech et al. (2016) findings shows dicamba efficacy on 

common lambsquarters can be reduced efficacy when droplet size increased 

from fine (F) to extremely course (XC) spray classification. Additionally, based on 

dose response study findings the addition of DRAs in dicamba tank-mixture was 

necessary to improved common lambsquarters control with distinct response 

among adjuvants used. As seen for common lambsquarters control with respect 

to solution used followed the pattern: dicamba + DRA 2 > dicamba + DRA 1> 

dicamba from highest to lowest biomass reduction, respectively. 

Interaction among herbicide used and targeted weed species needs to be 

considered as a complex process which is often site-specific. In order to 
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maximize performance when dicamba or other systemic products needs to be 

evaluated across multiple weed species (Butts et al. 2019, Creech et al. 2016, 

Feng et al. 2003). Considering complexity of common lambsquarters response 

associated with dicamba performance when various formulation of DRAs were 

used requires additional research. 

 

Conclusions 

The results observed in this research shows nozzle selection, solution, 

and operating pressure needs to be considered as critical component for both 

DSD and herbicide efficacy. Consistent performance of TTI nozzle type in terms 

of DSD was determined regardless scenario tested with the largest droplet size 

values with lowest driftable fines generated. Even though, OTM using a TTI 

nozzle type was reduced a negative impact on biological efficacy was observed. 

In general, the greatest biomass reduction was observed for nozzles which DSD 

included smaller Dv0.5 and Dv0.9 followed with greater DV0.1 and driftable fines 

values. Applications with low operating pressures for nozzle types TDXL-D and 

ULD are not recommended since with thickening type DRAs as they do not 

perform as they should resulting in lack of proper fan formation having a 

possibility for plant biomass reduction positioned between and underneath 

nozzles to be affected. Despite the spray pattern issues the addition of DRAs in 

tank-mixture with dicamba improved weed control. The lack of proper fan 

development at low operational pressures was overcome with pressure increase. 

Velvetleaf plants regardless position had a biomass reduction over 94%. On 
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contrary, hard to wet surface like one on common lambsquarters had biomass 

reduction ranging from 74 to 87%. Variation among species tested in this study 

could be explained by their morphological characteristics, although further 

research on this topic is needed. Mitigation of OTM issues with dicamba to 

decrease environmental contamination is required, however a better 

understanding about advantages and disadvantages when multiple mitigation 

practices are used represents a critical step to identify combination that will 

extend lifetime of chemistry use and maximize weed control. 
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Table 1. Analysis of variance for effects of dicamba solution, pressure, nozzle, and their interactions with each other on 
droplet size parameters. 

 Droplet size parametera 

Factor DV0.1 DV0.5 DV0.9 RS Driftable fines  

 
----------------------------------------------- p-valueb------------------------------------------------------ 

 

Solution <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Pressure <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Nozzle <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Solution x Pressure <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Solution x Nozzle <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Pressure x Nozzle <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Solution x Pressure x Nozzle <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
aDefinitions: DV0.1, DV0.5, and DV0.9, parameters that represent the droplet size such that 10, 50, and 90% of the spray 
volume is contained in droplets equal or lesser values, respectively; driftable fines, percent of spray volume that contains 
driftable fines <200 μm; RS, relative span, a dimensionless parameter that estimates the spread of a distribution. 
bSignificant at α = 0.05 
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Table 2.1. Droplet size distribution of four solutions sprayed through three nozzle types at 138 kPa pressure. 

   Droplet size parametera 

Nozzle Solution DV0.1 DV0.5 DV0.9 RS Driftable fines 

  ---------------------------- µm -------------------------  % 

TTI 11004 Water 539 G 983 J 1353 F 0.83 D 0.24 CB 

 Dicamba 588 D 1078 F 1515 D 0.86 B 0.19 CDE 

 Dicamba + DRA 1 681 A 1193 B 1625 C 0.79 FE 0.11 F 

 Dicamba + DRA 2 656 B 1178 C 1630 C 0.83 D 0.14 FE 

TDXL 11004-D Water 582 D 1028 H 1384 E 0.78 F 0.18 DE 

 Dicamba 564 F 998 I 1359 F 0.80 E 0.20 CD 

 Dicamba + DRA 1 674 A 1215 A 1718 A 0.86 B 0.05 G 

 Dicamba + DRA 2 604 C 1102 E 1531 D 0.84 C 0.15 FDE 

ULD 12004 Water 486 I 880 L 1216 H 0.83 D 0.40 A 

 Dicamba 509 H 905 K 1267 G 0.84 DC 0.38 A 

 Dicamba + DRA 1 574 E 1043 G 1403 E 0.79 E 0.20 CD 

 Dicamba + DRA 2 603 C 1155 D 1661 B 0.92 A 0.26 B 

Means within a column followed by the same letter are not significantly different (P ≤ 0.05). 
a Definitions:DV0.1, DV0.5, and DV0.9, parameters that represent the droplet size such that 10, 50, and 90% of the spray 

volume is contained of droplets of lesser diameter, respectively; driftable fines, percent of spray volume that contains 
driftable fines <200 μm; RS, relative span, a dimensionless parameter that estimates the spread of a distribution.  
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Table 2.2. Droplet size distribution of four solutions sprayed through three nozzle types at 207 kPa pressure. 

   Droplet size characteristicsa 

Nozzle Solution DV0.1 DV0.5 DV0.9 RS Driftable fines 

  ----------------------------- µm --------------------------      % 

TTI 11004 Water 466 G 891 F 1305 FE 0.94 A 0.60 B 

 Dicamba 504 E 954 D 1345 D 0.88 C 0.42 D 

 Dicamba + DRA 1 620 A 1113 A 1552 A 0.84 E 0.20 F 

 Dicamba + DRA 2 593 B 1076 B 1468 B 0.81 F 0.23 F 

TDXL 11004-D Water 507 ED 911 E 1286 F 0.86 D 0.37 ED 

 Dicamba 470 G 861 G 1201 G 0.85 ED 0.64 B 

 Dicamba + DRA 1 538 C 990 C 1365 C 0.84 E 0.35 E 

 Dicamba + DRA 2 511 D 965 D 1355 DC 0.88 C 0.40 ED 

ULD 12004 Water 411 I 752 I 1091 H 0.91 B 0.94 A 

 Dicamba 424 H 774 H 1103 H 0.88 C 0.97 A 

 Dicamba + DRA 1 493 F 914 E 1296 F 0.88 C 0.48 C 

 Dicamba + DRA 2 470 G 908 E 1316 E 0.93 A 0.52 C 

Means within a column and nozzle followed by the same letter are not significantly different (P ≤ 0.05). 
aDefinitions:DV0.1, DV0.5, and DV0.9, parameters that represent the droplet size such that 10, 50, and 90% of the spray 
volume is contained of droplets of lesser diameter, respectively; driftable fines, percent of spray volume that contains 

driftable fines <200 μm; RS, relative span, a dimensionless parameter that estimates the spread of a distribution. 
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Table 2.3. Droplet size distribution of four solutions sprayed through three nozzle types at 276 kPa pressure. 

   Droplet size characteristicsa 

Nozzle Solution DV0.1 DV0.5 DV0.9 RS Driftable fines  

  ----------------------------- µm --------------------------     % 

TTI 11004 Water 399 G 797 G 1184 E 0.98 A 1.14 C 

 Dicamba 441 D 869 D 1285 C 0.97 A 0.80 G 

 Dicamba + DRA 1 547 A 1010 A 1403 A 0.85 F 0.37 H 

 Dicamba + DRA 2 537 B 994 B 1379 B 0.85 F 0.39 H 

TDXL 11004-D Water 439 D 814 F 1151 F 0.88 E 0.81 G 

 Dicamba 421 F 784 H 1115 G 0.89 D 0.98 E 

 Dicamba + DRA 1 457 C 890 C 1292 C 0.94 B 0.91 F 

 Dicamba + DRA 2 424 F 832 E 1208 D 0.94 B 1.05 D 

ULD 12004 Water 367 I 686 J 1008 I 0.94 B 1.46 A 

 Dicamba 387 H 729 I 1072 H 0.94 B 1.28 B 

 Dicamba + DRA 1 432 E 839 E 1184 E 0.90 D 1.12 C 

 Dicamba + DRA 2 425 F 836 E 1198 ED 0.92 C 1.02 ED 

Means within a column and nozzle followed by the same letter are not significantly different (P ≤ 0.05). 
aDefinitions:DV0.1, DV0.5, and DV0.9, parameters that represent the droplet size such that 10, 50, and 90% of the spray volume 
is contained of droplets of lesser diameter, respectively; driftable fines, percent of spray volume that contains driftable fines 

<200 μm; RS, relative span, a dimensionless parameter that estimates the spread of a distribution. 
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Table 3. Analysis of variance for effects of dicamba solution, pressure, nozzle, and their interactions with each other on 
percentage of biomass reduction of two weed species. 

Factor 
Velvetleaf Common lambsquarters 

Between nozzles Underneath nozzles Between nozzles Underneath nozzles 
 

-------------------------------------------------- p-valuea--------------------------------------------------- 

Solution 0.4083 0.0010 <0.0001 <0.0001 

Pressure 0.6490 0.1001 <0.0001 0.0125 

Nozzle 0.7912 0.6121 <0.0001 <0.0001 

Solution x pressure <0.0001 0.0039 0.9378 0.8897 

Solution x nozzle 0.7895 0.8375 0.1886 0.0441 

Pressure x nozzle 0.6806 0.9908 0.7106 0.9491 

Solution x pressure x nozzle 0.8886 0.9970 0.9420 0.9967 

Coefficient of variation (%) 4.25  4.29  6.59  7.36  
aSignificant at α = 0.05 
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Table 4. Biomass reduction of velvetleaf positioned between nozzles after being exposed to different 
dicamba solutions sprayed at three pressures. Data combined across nozzles. 

Solution 
Pressure (kPa) 

138 207 276 

  ----------------------------------------%-------------------------------------- 

Dicamba 95.4 aA 94.8 aB 95.3 aA 

Dicamba + DRA 1 95.5 aA 95.1 abB 94.6 bB 

Dicamba + DRA 2 94.6 bB 96.1 aA 95.7 aA 

Means followed by the same letter, lower case in the row and upper case in the column, do not differ 
using Tukey's test at α = 0.05. 
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Table 5. Biomass reduction of velvetleaf positioned underneath nozzles after being exposed to different 
dicamba solutions sprayed at three pressures. Data combined across nozzles. 

Solution 
Pressure (kPa) 

138 207 276 

 ----------------------------------------%-------------------------------------- 

Dicamba 95.1 aB 94.3 bB 95.0 aA 

Dicamba + DRA 1 94.5 aC 94.6 aB 93.9 aB 

Dicamba + DRA 2 95.7 aA 96.0 aA 95.4 aA 

Means followed by the same letters, lower case in the row and upper case in the column, do not differ 
using Tukey's test at α = 0.05. 
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Table 6. Biomass reduction of c. lambsquarters positioned underneath nozzles after being exposed to 

different dicamba solutions sprayed through three nozzle types. Data combined across pressures. 

Solution 
Nozzle 

TTI TDXL-D ULD 

 ------------------------------------------%------------------------------------------ 

Dicamba 73.6 bB 80.4 aC 80.6 aC 

Dicamba + DRA 1 81.8 aA 83.2 aB 83.3 aB 

Dicamba + DRA 2 83.9 bA 87.7 aA 88.7 aA 

Means followed by the same letter, lower case in the row and upper case in the column, do not differ using 
Tukey's test at α = 0.05. 
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Table 7. Biomass reduction of common lambsquarters positioned between nozzles treated with 
dicamba sprayed through three nozzle types. Data combined across solutions and pressures. 

Nozzle Biomass reduction 

 ----------------------------------%---------------------------------- 

TTI 81.3 B 
TDXL 84.4 A 

ULD 85.1 A 

Means followed by the same letter in the column do not differ using Tukey's test at α = 0.05. 
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Table 8. Biomass reduction of c. lambsquarters positioned between and underneath nozzles treated with 

dicamba sprayed at three pressures. Data combined across solutions and nozzles. 

Pressure Between Nozzle Underneath Nozzle 

kPa ----------------------------------------------%------------------------------------------ 

138 82.0 B 81.7 B 

207 84.6 A 83.4 A 

276 84.2 A 82.8 AB 

Means followed by the same letter in the column do not differ using Tukey's test at α = 0.05. 
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Table 9. Biomass reduction of c. lambsquarters positioned 
between nozzles treated with dicamba solutions. Data combined 
across pressures and nozzles. 

Solution Biomass reduction 

 --------------%--------------- 

Dicamba 79.7 C 

Dicamba + DRA 1 83.7 B 

Dicamba + DRA 2 87.3 A 

Means followed by the same letter in the column do not differ using 

Tukey's test at α = 0.05. 
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Table 10. Log-logistic model parameter estimates and SEs for common lambsquarters biomass reduction (%) regressed over 
dicamba doses (g ae ha-1) for dicamba applications without and with drift-reducing agent (DRA).a 
 
Solution b (SE) c (SE) d (SE) e (SE) 

Dicamba -2.39 (0.64) 16.55 (1.14) 78.06 (10.42) 565.49 (112.56) 
Dicamba + DRA 1 -2.21 (0.60) 21.14 (1.41) 75.61 (3.32) 114.34 (16.05) 
Dicamba + DRA 2 -1.24 (0.21) 19.32 (2.14) 86.73 (3.51) 81.19 (11.32) 
aThe b is the slope at the inflection point, c is the lower limit of model, d is the upper limit, and e is the inflection point (GR50 – 

the effective dose to reduce 50% of plant biomass). 
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Table S1. Normality of residuals and homogeneity of variance of biomass reduction data based on plant position in 

relation to the nozzle. 

Species 

 

Test 

Original data Transformed data 

Analysisb Plant position F/KS 
valuesa 

Significance 
Type of 

transformation 
F/KS 

values 
Significance 

Velvetleaf  

Between 
Levene 3.073 <0.0001 

asin(√x/100) 
2.963 <0.0001 

NT 
KS 0.091 <0.0001 0.083 <0.0001 

Underneath 
Levene 3.226 <0.0001 

asin(√x/100) 
3.311 <0.0001 

NT 
KS 0.083 <0.0001 0.050 0.046 

Common 
lambsquarters  

Between 
Levene 1.682 0.022 

- 
    

NT 
KS 0.038 0.200   

Underneath 
Levene 1.312 0.146 

- 
    

NT 
KS 0.027 0.200     

a F and K-S values of the F statistic for the Levene's test and K-S for the Kolmogorov-Smirnov's test, respectively. 
b NT: non-transformed 
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Figure 1. Three-nozzle spray chamber layout showing the position of plants, underneath (U) and between (B) nozzles, 
during dicamba applications. 
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Figure 2. Common lambsquarters biomass reduction (%) as influenced by dicamba solutions without or with the addition 
of drift reducing agents (DRAs). 
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Figure S1.1. Spray pattern evaluation for TTI (A), TDXL-D (B), ULD (C) with dicamba alone (1), dicamba and DRA 1 (2), 

dicamba and DRA 2 (3) at 138 kPa.  
 
 

 
 

 
 
 



 

 

1
0

3
 

 
Figure S1.2. Spray pattern evaluation for TTI (A), TDXL-D (B), ULD (C) with dicamba alone (1), dicamba and DRA 1 (2), 
dicamba and DRA 2 (3) at 207 kPa. 
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Figure S1.3. Spray pattern evaluation for TTI (A), TDXL-D (B), ULD (C) with dicamba alone (1), dicamba and DRA 1 (2), 
dicamba and DRA 2 (3) at 276 kPa. 
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