




tracking failure, object matching confidence) and to incor-
porate domain knowledge. We combine appearance features
of objects as well as the travel-time evidence in a Match-
ing Box for consistent target labeling across disjoint camera
views. 3D color histogram, Histogram of Oriented Gradients
(HOG), object size and aspect ratio are used as the appearance
features. The distribution of the travel time is modeled by a
Gaussian Mixture Model (GMM) and estimated by the EM
algorithm. By incorporating the domain knowledge about the
camera configurations and the information about the received
packets from other cameras, certain transitions are fired in
the pPN. The similarity score output of the Matching Box is
used as the probability of transition in the pPN. The system is
trained to learn different parameters of the Matching Box.

We also use domain knowledge when sending packets
about the objects leaving a camera’s view. For instance, de-
pending on the road, a vehicle’s lane can be used to determine
whether it is going to turn left/right or go straight. A cam-
era needs to communicate only with its immediate neighbors,
which makes our system scalable.

The main contributions of this work are as follows: 1)
the domain knowledge and the uncertainties are accounted for
and incorporated into a pPN; 2) object matching across non-
overlapping views employs multiple appearance features; 3)
appearance features are combined with the GMM model of
travel-time to increase robustness. The proposed approach
can easily be generalized to various surveillance applications
involving disjoint camera views, such as indoor human track-
ing or outdoor human/vehicle tracking. In this paper, wide-
area tracking of vehicles is presented as an example. Sim-
ilar approach together with a different set of domain knowl-
edge can be employed for tracking people in a disjoint camera
setup. For example, for indoor people tracking, the same set
of features presented here can be employed. However, a cam-
era may save the information of leaving people for a while,
since a person may leave its view and come back later instead
of moving towards the next camera. Thus, in addition to the
candidates that are received from the previous camera(s), the
objects that left before should also be considered as candi-
dates. The two different types of candidates should have dif-
ferent sets of weights for appearance features. For instance,
for the objects leaving the view and coming back, the travel
time should have lower weight, since the return time of a per-
son might have high variance.

2. A PETRI NET-BASED APPROACH FOR
TRACKING AND OBJECT MATCHING

A Petri Net (PN) is used for modeling the relations between
the conditions and events in dynamic systems [8, 9]. It is a
particular type of directed bipartite graph composed of places
and transitions. The places and the transitions are connected
by arcs, where input arcs are from a place to a transition and
output arcs are from a transition to a place. The places con-
tain the tokens. Transitions are active components. If there

are enough tokens in the input places, the transitions are en-
abled. Transitions are only allowed to fire if they are enabled.
When a transition in enabled and the condition associated to
this transition is satisfied, it fires. When the transition fires, it
removes tokens from its input places to its output places.

There have been various extensions of the Petri nets such
as Colored PNs, Continuous PNs, Stochastic timed PNs and
Fuzzy PNs. Albanese et al. [10] proposed the probabilistic
Petri net (pPN) for modeling the uncertainty and inaccuracies
in a video surveillance system. Compared to the original PNs,
a probability is attached to every arc pointing from a place to a
transition in the pPN. A token is assigned the probability 1 at
the initial place. When it moves to the next place, the proba-
bility is multiplied by the probability attached to the arc. After
moving through the whole PN from the initial place to the end
place, the final probability is the product of the probabilities
attached to the arcs through which the token has passed.

We adopt a pPN-based approach to perform object track-
ing and consistent labeling on a camera. Figure 1 shows the
graphical model of the steps employed by camera 3 in a three-
camera setup. The camera configuration can be seen on the
upper left-hand corner of the Fig.1. In this model, the uncer-
tainties and inaccuracies could be created by the background
subtraction, the tracking algorithm or the object matching
process, and are modeled by probabilities 𝑝𝑏, 𝑝𝑡, and 𝑝𝑚, re-
spectively. We include a Tracking Box in the model, which
represents the tracking algorithm used by the camera. As
mentioned before, a Matching Box is used to represent the
object matching process using multiple features. In Fig. 1,
an arc with no probability on it means that its probability is
assumed to be 1.

Once a new object is detected, it will be put in the START
place 𝑙0. Then, it immediately moves into t𝑙1, since there is
no condition attached to 𝑡0. From 𝑙1 to 𝑡1, a probability 𝑝𝑏 is
attached to the arc to model the reliability of the background
subtraction. This probability is learned during training. Then,
the object is moved into the Tracking Box, where a tracker for
this object is created and updated every frame until it leaves
the camera’s view. If the object enters the view from side
𝑆 and there are received packets from the neighboring cam-
era(s) on this side, this object will be assigned a temporary
label first, and moved into the Matching Box in an attempt
to find a match from the received candidates which had left
the view of the neighboring camera(s). A probability 𝑝𝑚 will
be attached to the token as the output of the Matching Box.
If no candidate package has been received from other cam-
era(s), a new label will be assigned. The tracking process is
performed every frame and the probability 𝑝𝑡 indicating the
tracking confidence is updated every frame until the object
leaves the camera’s view. Thus, for an object tracked by the
system, the final probability of the tracking is:

𝑝 = 𝑝𝑏 ⋅ 𝑝𝑚 ⋅ 𝑝𝑡 (1)

The details of the Tracking Box and the Matching Box will
be described in Sec.3 and Sec.4, respectively.
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Fig. 1. Probabilistic Petri Net for tracking and object matching.

The camera setup for our system is shown on the upper
left-hand corner of Fig. 1. Example images captured by these
three cameras can be seen in Fig. 4. Camera 3 is watching a
one-way road. When a vehicle enters into the view of Cam-
era 3, it may have come from the view of Camera 1, view of
Camera 2, or from regions that are not watched by any cam-
eras. In the latter case, camera 3 needs to detect this correctly,
and assign a new label to the vehicle.

3. THE TRACKING ALGORITHM

For every incoming frame, foreground detection is performed
by using a robust and lightweight algorithm that is presented
in [11]. Then, foreground pixels are grouped into blobs by
connected component labeling. Each blob corresponds to
a detected object. In our traffic application example, lane
markers provide useful information to remove the noise pixels
and uninteresting foreground objects. When a new foreground
blob is detected inside the lanes, a new tracker is created. The
label of this tracker, the coordinates of the bounding box and
the color histogram are saved in the tracker. Each bin in the
3-D histogram corresponds to an (R,G,B) range.

In [12], a P2P multi-camera system is presented wherein
each camera is attached to a different CPU and cameras have
partially overlapping fields of view. For tracking on a sin-
gle camera view, we use an optimized version of the track-
ing algorithm proposed in [12]. At every frame, trackers
are matched to foreground blobs by using a matching criteria
based on the bounding box intersection and the Bhattacharyya
coefficient [13] that is derived from the sample data by using:

𝜌(𝑦) ≡ 𝜌[p̂(y), q̂] =
𝑚∑

𝑢=1

√
𝑝𝑢(y), 𝑞𝑢 (2)

where q̂ = {𝑞𝑢}𝑢=1...𝑚, and p̂(y) = {𝑝𝑢(y)}𝑢=1...𝑚 are
the probabilities estimated from the m-bin histogram of the
model in the tracker and the candidate blobs, respectively. If
the bounding box of a foreground blob intersects with that of
the current model mask of the tracker, the Bhattacharyya co-
efficient between the model histogram of the tracker and the

histogram of the foreground blob is calculated by using (2).
The tracker is assigned to the blob which results in the high-
est Bhattacharyya coefficient. The Bhattacharyya coefficient
with which the tracker is matched to its object is called the
similarity coefficient.

A tracking score 𝑝𝑡 is calculated and updated for every
tracker to account for the errors that may be caused by seg-
mented objects and unresolved merges/splits. 𝑝𝑡 is the output
of the Tracking Box, and is the product of the average simi-
larity coefficient and a confidence measure. The confidence
measure is based on the length of the trajectory. It is the ra-
tio between the current trajectory length and the length of the
road in the view. When the object leaves the view, the confi-
dence measure of the trajectory length approaches 1.

4. OBJECT MATCHING ACROSS
NON-OVERLAPPING VIEWS

When an object leaves a camera’s view, this camera creates
and sends a message packet containing the appearance fea-
tures, exit time and the label of this object. Appearance fea-
tures, travel-time evidence and the matching procedure are
described in detail below.

4.1. Color Histogram
As mentioned above, we use 3D color histogram of the de-
tected foreground objects as one of the appearance features.
Each bin in the histogram corresponds to an (R,G,B) range.
The similarity score 𝑠𝐶𝐻 between two histograms is calcu-
lated by Eq. (2).

4.2. Texture
Texture is a useful feature for object detection or tracking. In
[14], Histogram of Oriented Gradients (HOG) descriptor is
proposed for human detection. The local object textures are
modeled by calculating the distribution of the local intensity
gradients and the edge directions.

A foreground blob is divided into 𝑛 cells. For each cell,
an 𝑚-bin HOG is built. Each bin in the HOG corresponds to
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Fig. 2. Example of the angle correction for HOG descriptor.

an orientation spanning. The combination of 𝑛 HOG forms
the HOG descriptor, with the size of𝑚 ∗ 𝑛 bins. To calculate
the HOG, the intensity gradients are calculated first in both
the horizontal and vertical directions. Then, the magnitude
and the orientation of the gradient is calculated. According to
the discussion in [14], unsigned orientations spanning from 0
to 180 degree in conjunction with 9 histogram bins perform
best. Each gradient has a vote in its bin, which is its magni-
tude. An important step described in [14] is the local normal-
ization, which helps to reduce the impacts of the illumination
and contrast variations. The cells are grouped into blocks and
block-based normalization is performed. The blocks are par-
tially overlapped with each other, thus each cell contributes
more than once to the final descriptor.

The similarity 𝑠𝑇 between two HOG descriptors 𝐴 and 𝐵
is calculated by Cosine Similarity:

𝑠𝑇 = 𝑐𝑜𝑠(𝜃) =
𝐴×𝐵
∥𝐴∥∥𝐵∥ (3)

One factor that influences the HOG descriptor is the dif-
ferent camera angles in different views. To address this prob-
lem in vehicle tracking, we rotate the foreground pixels by the
angle of the lane before building the HOG descriptor. Figure
2 shows an example of the angle correction. Figures 2(a) and
(b) show the color image of the object and the segmented fore-
ground pixels, respectively. The bounding box is also drawn
along the direction of the lane in Fig. 2(b). If the angle be-
tween the lane and 𝑥-axis is denoted by 𝜃, the foreground
image (Fig. 2(b)) is warped by the rotation matrix[

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

]
.

Figure 2 (c) shows the rotated foreground pixels.

4.3. Aspect Ratio and Size
The aspect ratio is a useful feature that can be used to differ-
entiate the compact cars and large-sized vehicles in a traffic
application. If the aspect ratios of the two objects are 𝑎1 and
𝑎2 respectively, the similarity score is calculated by

𝑠𝐴 = 1−
∣∣∣∣𝑎1 − 𝑎2𝑎1

∣∣∣∣ (4)

The object size is also used as an appearance feature. It
is the number of pixels in the detected foreground blob. The
size of an object varies depending on its distance from the
camera. Figure 3 shows an example, where the cars coming
from Camera 1 travel in different lanes in the view of Camera
3. Let the sizes of the two objects be 𝑠1 and 𝑠2 in the previous
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(d) Camera 3

Fig. 3. Example of the different size factors of the cars in different
lanes.

camera and current camera, respectively. Also, let 𝑓𝑙 denote
the size ratio of the objects, i.e. 𝑓𝑙 = 𝑠1/𝑠2. 𝑓𝑙 will be dif-
ferent depending on the lane the vehicle is traveling in. The
closer the object is to the camera, the bigger 𝑠2 is, and thus
the smaller 𝑓𝑙 is. The 𝑓𝑙 for different lanes are learned during
training. The similarity score is then calculated by

𝑠𝑆 = 1−
∣∣∣∣𝑠1 − 𝑠2 ∗ 𝑓𝑙𝑠1

∣∣∣∣ . (5)

4.4. Travel Times

In traffic flow, travel times of the cars across the blind regions
are dependent on the traffic conditions and traffic lights. We
use a Gaussian Mixture Model (GMM) to model the distribu-
tion of the travel times in the blind region. The travel time of a
car is the difference between the time the car enters the current
camera view and the time the car exits the previous camera
view. The parameters of the GMM are estimated in the train-
ing stage by using a standard Expectation-Maximization(EM)
algorithm. These parameters are the weight 𝜔, and the mean
𝜇 and the variance 𝜎2 for each Gaussian distribution.

For calculating the similarity score of the travel times be-
tween a candidate and detected object, the travel time 𝑡 is ob-
tained by

𝑡 = 𝑡𝑜,𝑎 − 𝑡𝑐,𝑙 (6)

where 𝑡𝑜,𝑎 is the time the object enters the current camera
view, and 𝑡𝑐,𝑙 is the time the candidate leaves the previous
camera view. Similar to the clustering or classification prob-
lems that adopt a GMM, a Gaussian distribution that yields
the highest probability is selected as the distribution that this
time value belongs to. Considering the various factors that
may influence the travel time, a travel time that falls into the
range of mean ± one standard deviation does not get penal-
ized, i.e. it will have a score of 1. Otherwise, the similarity
score of travel time is calculated by

𝑠𝑇𝑇 = 𝑒−
(𝑥−𝜇)2

2𝜎2 /𝑒−
(𝜇+𝜎−𝜇)2

2𝜎2 = 𝑒−
(𝑥−𝜇)2−𝜎2

2𝜎2 (7)

where 𝜇 and 𝜎 are the mean and the standard deviation of the
Gaussian distribution component that this object belongs to.

4.5. Weighted Matching Criteria
When a new object enters into the view of the current cam-
era from side 𝑆, it first checks if there are candidate packages
sent by the neighboring camera(s) on side 𝑆. If there are, the
current camera tries to find a match among the 𝐶 received
candidates. Each candidate, 𝑖 ∈ {1 . . . 𝐶}, has different fea-
tures that are described above, namely color histogram (CH),



texture (T), aspect ratio (A), size (S) and travel time (TT). For
each feature 𝑗 ∈ 𝐹 = {𝐶𝐻, 𝑇,𝐴, 𝑆, 𝑇𝑇}, a similarity score
𝑠𝑖𝑗 is calculated and is given a weight 𝑤𝑗 . To combine multi-
ple features, an overall similarity score is calculated. The best
matching candidate object 𝑂 is found by

𝑂 = arg max
𝑖∈{1...𝐶}

∑

𝑖∈{1...𝐶},𝑗∈𝐹

(𝑤𝑗𝑠
𝑖
𝑗). (8)

If the overall similarity score of the object 𝑂 is greater than a
pre-defined threshold, then the candidate object 𝑂 is matched
to this tracker, and the tracker is assigned the label of 𝑂. The
overall similarity score is shown as 𝑝𝑚 in Fig. 1. Otherwise,
a new label is assigned to this tracker.

5. EXPERIMENTAL RESULTS

We performed the wide-area vehicle tracking experiments
with three disjoint cameras having the configuration shown
in Figure 1. We used 3 hours of video data for training, and
another 15 minutes of video data from three cameras for test-
ing. Figure 4 shows the views of the three cameras. In Cam-
era 1 and Camera 2, the viewed roads are two-way, but only
the direction in which a car can travel towards Camera 3 was
considered. Camera 3, on the other hand, watches a one-way
road. The cars entering into the view of Camera 3 may come
from Camera 1, Camera 2 or other blind regions that are not
watched by any other camera. The distance between Camera
1 and Camera 3 is approximately 150 meters, with two inter-
sections in the blind region. One of the intersections, which is
close to Camera 2, has traffic lights. These intersections influ-
ence the travel time in the blind region vary significantly. The
distance between Camera 2 and Camera 3 is approximately 20
meters. The cars that wait for the green light can still be seen
in Camera 2’s view. Thus, this intersection does not impact
the travel time between Camera 2 and Camera 3 .

(a) Camera 1 (b) Camera 2 (c) Camera 3

Fig. 4. Views of the three cameras.

5.1. Training Stage

5.1.1. Domain Knowledge

The first domain knowledge that should be learned during
training is the camera configuration. In Camera 1’s view, as
shown in Figure 4 (a), there are two lanes, and the view is
close to the intersection. Based on the traffic rules, normally
the cars that will turn left/right will move to the left/right lane.
Thus, by detecting lanes, the cars on the right lane can be re-
moved from the candidate list to be sent out.

Since there are two intersections in the blind region and
one of them has the traffic lights, there are more than one
possible distributions to represent the travel times. Thus,

a GMM is built to model the travel times of the cars trav-
eling from Camera 1’s view to Camera 3’s view. In our
experiments, a GMM with three mixtures is trained. The
means, variations and weights for each Gaussian distri-
bution are (22.83, 24.30, 0.464), (39.37, 53.26, 0.427) and
(60.36, 123.92, 0.109), respectively. The plot of the GMM
is shown in Figure 5.
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Fig. 5. Gaussian Mixture Model of the Travel Time between Cam-
era 1 and Camera 3.

Camera 2 watches only one lane. The cars on the lane may
turn left or right. Since the cars are still in the view when they
wait for the green light, there is no need to build a GMM for
the travel times. Thus, a time window is picked to eliminate
the candidates that fall outside this window.

Also, the angles of the lanes with respect to the x axis are
learned in the training stage. This is used for correcting the
HOG descriptors.

5.1.2. Uncertainty
The reliability of background subtraction, 𝑝𝑏, is 0.997. 𝑝𝑡 and
𝑝𝑚 are be calculated in the tracking box and the matching box
for each object during the testing stage.

5.2. Testing Stage
In the testing stage, the weights for the color, texture, travel
time, size and aspect ratio are set to be 0.35, 0.25, 0.2, 0.05
and 0.15 respectively. The threshold for the overall similarity
score is 0.77. In Camera 1, the cars leaving the view from the
right lane are not sent out as candidates to Camera 3. There
are 34 candidate vehicles detected and sent out by Camera 1.
In Camera 2, 18 candidate vehicles are detected and sent out.
Camera 3 detects 55 cars entering its view from left. Among
these 55 cars, 50 of them are assigned correct labels after the
matching process, and a success rate of 90.91% is achieved.
Our algorithms run on a PC with 2.13-GHz Intel Core Duo
processor and 4GB memory. It takes 31ms to perform back-
ground subtraction; and 16 ∼ 32ms for tracking algorithm,
including feature extraction and object matching.

Figure 6 shows an example where three cars enter the
view of Camera 3 consecutively. Object 112 came from Cam-
era 1, Object 202 came from Camera 2 and Object 303 came
from the blind region (i.e. received a new label). They are all
assigned correct labels. When the red car entered the view
of Camera 3 as seen in Fig. 6(c), there were two candidates
received from Camera 1 and one candidate from Camera 2.
After going through the matching box, the maximum match-
ing score was smaller than the matching threshold 0.77. Thus,



111 112

(a) Camera 1

202

(b) Camera 2

303

(c) Camera 3

112

303

(d) Camera 3

202

(e) Camera 3

Fig. 6. Example of matched cars.

119

(a) Camera 1

120

(b) Camera 1

121

(c) Camera 1

119

(d) Camera 3

120

(e) Camera 3

121

(f) Camera 3

Fig. 7. Example of matched cars with similar features.

this car is assigned a new label 303. In Fig. 6(d), a white car
enters the scene. There were four received candidate pack-
ages in total, three from Camera 1 and one from Camera 2.
After the matching process, the candidate with the label 112
has the maximum matching score of 0.8218, and the white
car is assigned the correct label 112. The third car in Fig. 6(e)
were compared with the same four candidates. The candidate
with the label 202 resulted in the highest matching score of
0.8742, and the car was given the correct label of 202.

Figure 7 shows a more challenging example where three
consecutive cars with the same color and similar texture enter
the view of camera 3. The cars are matched to the correct can-
didates with matching scores of 0.8299, 0.8507 and 0.8144,
respectively. The matching process performs well even if the
objects have similar appearances.

6. CONCLUSION

We have presented a wide-area multi-object tracking system
composed of non-overlapping cameras. A probabilistic Petri
Net-based approach has been used to account for the uncer-
tainties of the vision algorithms and to incorporate the avail-
able domain knowledge. Multiple features are used for object
matching across non-overlapping views, including 3𝐷 color
histograms, HOG descriptors, object sizes, aspect ratios and
travel times. The distribution of the travel time has been mod-
eled by a Gaussian Mixture Model. We have presented wide-
area tracking of vehicles as an example where we used three
non-overlapping cameras. Based on the 55 cars entering the
last camera’s view, a success rate of 90.91% was achieved in
terms of correctly labeling them.
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