
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Department of Mechanical and Materials
Engineering: Dissertations, Theses, and Student
Research

Mechanical & Materials Engineering,
Department of

5-2024

Sliding Markov Decision Processes for Dynamic Task Planning on Sliding Markov Decision Processes for Dynamic Task Planning on

Uncrewed Aerial Vehicles Uncrewed Aerial Vehicles

Trent Wiens
University of Nebraska-Lincoln, trent.wiens@huskers.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/mechengdiss

 Part of the Artificial Intelligence and Robotics Commons, Materials Science and Engineering

Commons, Mechanical Engineering Commons, and the Robotics Commons

Wiens, Trent, "Sliding Markov Decision Processes for Dynamic Task Planning on Uncrewed Aerial
Vehicles" (2024). Department of Mechanical and Materials Engineering: Dissertations, Theses, and
Student Research. 199.
https://digitalcommons.unl.edu/mechengdiss/199

This Article is brought to you for free and open access by the Mechanical & Materials Engineering, Department of
at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Department of
Mechanical and Materials Engineering: Dissertations, Theses, and Student Research by an authorized administrator
of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/mechengdiss
https://digitalcommons.unl.edu/mechengdiss
https://digitalcommons.unl.edu/mechengdiss
https://digitalcommons.unl.edu/mechengineer
https://digitalcommons.unl.edu/mechengineer
https://digitalcommons.unl.edu/mechengdiss?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/285?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/285?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mechengdiss/199?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages

SLIDING MARKOV DECISION PROCESSES FOR DYNAMIC TASK

PLANNING ON UNCREWED AERIAL VEHICLES

by

Trent Wiens

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Mechanical Engineering and Applied Mechanics

Under the Supervision of Professor Justin Bradley

Lincoln, Nebraska

May, 2024

SLIDING MARKOV DECISION PROCESSES FOR DYNAMIC TASK

PLANNING ON UNCREWED AERIAL VEHICLES

Trent Wiens, MS

University of Nebraska, 2024

Adviser: Justin Bradley

Mission and flight planning problems for uncrewed aircraft systems (UASs) are

typically large and complex in space and computational requirements. With enough

time and computing resources, some of these problems may be solvable offline and

then executed during flight. In dynamic or uncertain environments, however, the

mission may require online adaptation and replanning. In this work, we will discuss

methods of creating MDPs for online applications, and a method of using a sliding res-

olution and receding horizon approach to build and solve Markov Decision Processes

(MDPs) in practical planing applications for UASs. In this strategy, called a Sliding

Markov Decision Processes (SMDP), the underlying state space is regularly redis-

cretized according to its informational proximity and utility while a receding horizon

algorithm allows us to consider immediate next steps while keeping the primary goal

state in mind. This approach allows for dynamic decision making and replanning by

a UAS in an uncertain and dynamic environment in which mission objectives or the

environment could change. The SMDP method shows an ability to create recursively

optimal policies, under conditions of limited computing power and time, that perform

similarly to the optimal policy of the associated fully-modeled flat MDP.

iii

Acknowledgements

My special thanks goes to my advisor and committee members, Dr. Justin Bradley,

Dr. Carl Nelson and Dr. Bhuvana Gopal, for their guidance on this thesis. Specif-

ically, I would like to thank Dr. Bradley for his guidance throughout my Master’s

Degree, pushing me to improve as both a student and researcher. In addition, I would

like to thank the NIMBUS Lab, for giving me a great environment to work on research

I enjoy. Finally, I would like to thank my parents and siblings for their continuous

support and motivation throughout my education.

iv

Table of Contents

Acknowledgements iii

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Contributions . 4

2 Related Work 6

3 Background 10

3.1 Automata Theory . 11

3.2 MDP Formulation . 12

3.2.1 State and Action Space . 12

3.2.2 Transition Probability Matrix 13

3.2.3 Reward Function . 14

3.2.4 Value Function and Policy Creation 15

3.3 Discretization of Variables . 17

3.4 Impacts of Increasing Discretization 20

4 Sliding MDPs 24

v

4.1 Receding Resolution Horizon . 25

4.2 Value Difference . 25

4.3 Example Problem . 27

4.4 Algorithmic Implementation . 28

5 Results 32

5.1 Multi-flight Planning Problem . 32

5.2 Implementation . 34

5.3 Metrics . 34

5.4 Spatial Complexity . 35

5.5 Time . 36

5.6 Policy Quality . 37

5.7 Adaptability . 39

6 Generalization 42

6.1 Receding Horizon Limit . 42

6.2 Splitting Parameter . 43

6.3 Partially Observable MDPs (POMDPs) 45

7 Discussion 48

8 Conclusion 50

Bibliography 52

vi

List of Figures

1.1 Sliding MDP rediscretizing a physical state space for a UAV. 2

3.1 State-transition diagram of a coin operated turnstile. 10

3.2 Coarse discretization vs. fine discretization of battery charge and time of

day state classes in the multi-flight, single-agent UAS example. 18

3.3 Battery charge shown continuously, then with different discretizations, n.

The policy maps sets of continuous states onto the action space which

necessarily fall on a state border in a particular discretization, thereby

discarding useful information. 20

3.4 2-D representation of continuous battery charge and time of day, with the

threshold between actions ‘stay and charge’ and ‘move to another location’

creating multiple areas. 21

3.5 Effect of increasing the number of charge and day states on the time

required for a policy to be calculated in the test problem. 22

3.6 Total expected reward for the deterministic policy as the number of charge

and day states increases. 23

4.1 Visualization of a test problem using an SMDP to discretize physical space.

(Z = 1.1) . 29

4.2 Full Discretization of the test problem, as would be used in a flat MDP. . 30

vii

5.1 Number of elements in the transition probability matrix for a SMDP,

CMDP and flat MDP of different resolutions. 35

5.2 Time taken to solve a flat MDP or get the deterministic policy for a SMDP

and CMDP. 37

5.3 Expected total reward across the deterministic policy as the resolution

increases for the SMDP, CMDP and flat MDP. 38

5.4 UAV operating in a state space that will be expanded as the agent moves.

The solid border is the original state space, and the dotted border shows

a previously unknown state space for the agent to operate in. 41

6.1 Value function of the crying baby problem modeled as a POMDP. 46

viii

List of Tables

3.1 The state-transition table of a coin operated turnstile. 11

5.1 Deterministic policies using all three methods, across all resolutions. Num-

bers refer to moving to the spaces as labeled in Figure 5.4 and ‘Charge’

allows the UAS to charge to a full battery during the day time. 40

ix

List of Algorithms

1 Sliding

Markov Decision Process31

1

Chapter 1

Introduction

Uncrewed Aircraft Systems (UASs) have become invaluable tools in a variety of mis-

sion types. Militaries have been utilizing such systems for years [10], scientists have

begun widely exploring their use in research and data collection [24, 44], and mul-

ticopters have become a mainstay in film and photography. As the proliferation of

UASs increases new techniques to increase automation in all facets including mission

planning have become important. In most of these cases the decisions made are in

the face of uncertainty as conditions and mission objectives can be dynamic. Decision

making in stochastic environments is well explored and frameworks such as Markov

Decision Processes (MDPs) have received wide attention [28, 37]. MDPs though, are

not without limitation. State space explosion hampers their usefulness, particularly

on Size, Weight, and Power (SWaP) constrained applications as the state space can

grow exponentially with each variable upon which it is dependent. In these cases,

researchers have developed tools to reduce the state space and therefore computing

resources necessary to solve for the optimal policy [30, 36]. For example, factoring

the MDP [12] allows independent variables to be considered separately, while reward

gradients allow policies to be estimated [1].

MDPs first appeared in the 1960s [23] and have been applied to decision making

and planning algorithms successfully [2]. MDPs are powerful because they produce

2

Figure 1.1: Sliding MDP rediscretizing a physical state space for a UAV.

optimal and easily executable policies in stochastic environments. An MDP, Σ =

{S,A, P,R}, is described as a set of states (S), actions (A), transitions (P), and

rewards (R). For each s ∈ S and a ∈ A there is a transition probability from one

state to another represented by P (s′|s, a) where s′ is the resulting state of taking

action a in s. In the most general case, for each state and transition, a reward

function, R(s, a, s′), defines the reward given when the system transitions from s to

s′ when taking action a. Rewards can be negative or positive representing costs or

benefits to the system for taking an action. In traditional MDP design, solvers, such

as policy or value iteration, iterate over the Bellman equation [3, 23] producing an

optimal value function describing how advantageous each possible state is to visit [38].

From the value function and transition probabilities the model’s optimal policy can

be derived which is then implemented as a simple lookup table for runtime decision

making. The optimal policy, π∗, maps states to actions, and is easily executed as long

as the vehicle can observe its current state.

This is notably different than reinforcement learning, where the policy is found

directly by rewarding behaviors that are beneficial and punishing behaviors that are

detrimental. One advantage of MDPs is the development of a model of the system,

3

which a reinforcement learning program does not find. This model can be difficult to

create initially, but can generally be easily adapted to other situations. Reinforcement

learning, however, requires re-learning when the situation is changed.

MDPs that have the level of resolution needed to make high fidelity, optimal poli-

cies in a real-world environment are complex, and obtaining the optimal policy is

computationally demanding. Typically, when MDPs are used to model these envi-

ronments the optimal policy is calculated offline, where there is plenty of computing

power, and then the optimal policy uploaded to the robot to be executed at runtime.

This approach has several distinct disadvantages: 1) because the policy is decoupled

from the model it becomes static making it unable to adapt to changes in the envi-

ronment without updating the model and recomputing the policy; and 2) even if the

model were updated the computation required to compute the optimal policy may be

unrealizable for SWaP-constrained robotic systems. We address these two disadvan-

tages by coupling the model and computation of the policy onboard the UAS, and

developing a solver for use in any computational environment no matter how limited.

To do this we developed a hybrid strategy we call Sliding MDPs (SMDPs) wherein

the classes of states of the MDP model are regularly rediscretized according to in-

formational proximity and utility. SMDPs therefore shrink and expand the model to

maintain higher local fidelity as needed, while a receding horizon keeps the MDP solv-

able with available onboard computing resources. SMDPs accomplish this by using a

moving horizon window that only considers states currently accessible by the agent

and subsequently building a more refined (in discretization) state space within it (see

Figure 1.1). The sliding resolution algorithm determines appropriate discretizations

of the classes of states in the MDP by leveraging the current value function. This al-

lows us to make a series of local decisions from a time-varying MDP instead of solving

a larger, fixed or “flat” MDP. This approach shares some similarities with [20], which

4

breaks MDPs into a series of subgoals and solves them individually. In our SMDP

algorithm, each local computation produces an optimal local policy, which then can

be pieced together to create a piece-wise optimal policy for the system, which we

call “recursively optimal” [20]. By keeping the resolution low outside the horizon we

shrink the total size of the state space making computation of the optimal policy

much easier. Because the SMDP algorithm rediscretizes the classes of state at each

step it can add and remove enumerated states making it possible to easily incorporate

new information about the states on the fly.

Our research is motivated by a multi-flight, single-agent mission requiring a UAS

to land and recharge its battery via a solar cell. We assume possible landing sites

are known a priori and each site has an associated cost/reward. At each landing site

the UAS must consider battery charge and time of day to make the next decision

of when and where to fly. The state space associated with this complexity is much

too large for online solving of the MDP onboard the UAS when a fine discretization

is used to consider battery charge and time of day. If a more coarse discretization

is used, the problem is easily solvable online but is far less useful. In either case,

traditional methods do not allow for dynamic adjustment or adaptivity as the policy

is determined before flight. Because SMDPs grow and shrink the space, adding or

removing states as needed, they can be dynamically adjusted, and also easily solved

at runtime to produce optimal policies on the fly.

1.1 Contributions

This research has vast implications as it improves the ability for a MDP to be used

in contexts that may have not been feasible before. MDPs have the strength of being

able to make decisions in stochastic environments, but it is difficult to find the policy

5

offline and generally intractable on SWaP contrained vehicles for all but the simplest

models. In addition, the MDP is not adaptable as the environment changes, creating

rigid policies that can quickly become not useful. The SMDP algorithm allows for

the policy to be found at runtime, while still creating policies that are recursively

optimal. This means that the model can be changed as an agent moves through the

environment and becomes more adaptable to new information being gained. The best

applications of this method are places where the next decision is most important, but

decisions in the future are less important, or rely on information found from previous

decisions. The SMDP algorithm allows for an agent to gain information from its

environment and feed it back into the model to create policies that are well informed.

Overall, we contribute the following:

• A novel technique to reduce state space size of flat MDPs using a sliding reso-

lution window within a receding horizon. We call this Sliding MDPs.

• The ability to automatically, at runtime, add/remove enumerated states (thus

changing the SMDP) based on information obtained during the mission and in

conjunction with the current value function.

• A solver for SMDPs that finds recursively optimal policies at runtime which

approximate the policy from a high-resolution flat MDP given any available

computation.

• An online, updateable multi-flight planner for solar-supplemented UAS.

6

Chapter 2

Related Work

Decision making and planning for autonomous UAS missions has taken many forms

including Dubins path [9], optimal control [45], search [16], or more typically, a com-

bination of these. For example, in typical UAS missions such as surveillance or data

collection, planners often take the approach of a shortest path problem [15,29] where

paths are planned in the most efficient way to cover an area using one or multiple

agents. Other solutions such as [35] use combinatorics to solve more complex problems

such as multiple goal UAS swarm routing. This technique is effective but is compu-

tationally costly and therefore computed offline. Other strategies have explored the

novel use of Bézier curves in multi-agent simultaneous arrival and continuous mon-

itoring [43]. To deal with uncertainty some researchers [25] have taken a different

approach opting for the power of MDPs in these situations. This approach suffers

from the explosion of the state space as dimensions are added. One solution is to

reduce the action space in the problem by eliminating, or only considering specific

scenarios as the mission progresses [25]. However, this strategy may not be gen-

eralizable to all MDPs and missions if there is a need for a complex action space.

Similar to our strategy, some optimal control formulations have reduced state space

size while retaining accuracy by using a variable resolution for discretization of the

state space [21, 32, 33]. In our work we build on the work of those who use MDPs to

7

solve planning and decision making problems by applying ideas learned from MDP

and optimal control research to mitigate the state space explosion and provide a

strategy generalizable to any MDP which can be rediscretized.

In small UASs, Size, Weight, and Power (SWaP) is highly constrained, resulting

in limited computational resources. The work reported in [15, 25, 29, 35] experience

this problem and either develop tools to reduce the required resources or compute

solutions offline where more resources are available. Our decision maker’s/planner’s

purpose is online solution to problems modeled as MDPs while considering changes

in environmental and mission uncertainty. Reducing computational requirements in

order to produce a solution (as opposed to ideally optimal) is imperative to our

success. Resource reduction typically comes in two ways for MDPs, reduction of the

state space and/or more efficient solvers. To improve efficiency of MDP solvers some

algorithms seek to approximate the optimal policy using dynamic programming, linear

programming, and Monte Carlo simulation [4,39,42]. These solvers are powerful and

can be used effectively in conjunction with shrinking state spaces to further reduce

computational resources necessary. Our SMDPs are meant to reduce state space,

thereby reducing the size of the MDP handed to any available solver. So for the

purposes of this paper we ignore differences in solvers and consider reducing state

space size as the primary way to reduce computational resources.

Research focused on reducing MDP state space often comes in one of two forms:

removing states that aren’t useful for the goal; or using a receding horizon to limit

the problem to smaller more manageable chunks. For example, in [13, 26] the state

space is reduced by finding and removing hidden structures within the problem that

will not lead to a meaningful goal. Implementing a receding horizon is a common

strategy in reducing state space size in a broad range of fields. Under this strategy,

a sliding window is used to focus on a smaller sub-problem which is then solved.

8

The solutions to each sub-problem are typically concatenated to produce a piece-wise

total solution [31]. This technique is used solve problems such as adaptive control for

vision-based navigation of a UAS [18], model-predictive control of a UAS [11], and

for UAS flight trajectory control in mixed integer linear programming [27]. In [7, 8],

receding horizons are used to solve MDPs with large state spaces on small processors.

The receding horizon strategy, though powerful, can sometimes fail to produce an

accurate, or safe policy due to its limited scope or incomplete information [14,40].

More recently, directly applicable to MDPs is a method to abstract them into a

series of smaller “Abstract MDPs” [20]. This solution works well for MDPs with a

clearly hierarchical goal structure lending itself to levels of abstraction. A related

method, hierarchical constrained MDPs, aggregates states of the MDP to produce a

less state-dense MDP that is more easily solved, but is suboptimal [17].

Considering a system as discrete can also be a strategy to reduce computation and

state space size, and naturally lends itself to the discrete nature of computation. In

control theory, multi-resolution discretization approaches for this purpose have been

applied in economic models as well as vehicle control [21, 32, 33]. Both [21] and [33]

use a flexible grid scheme to adjust resolution in dynamic programming applications.

Munos and Moore view each state as a node on a decision tree, splitting each node un-

der certain conditions [32]. For continuous Markov processes they propose a “general

towards specific” approach in which the problem begins as a coarse representation,

and is strategically refined according to splitting criteria based on singularities of

the value function. They propose “corner value difference” and “value non-linearity”

theorems which determine the conditions under which splitting can occur to create a

higher-resolution state space while not overloading the computational resources. Our

SMDP strategy is based on this “corner value difference” theorem – specifically, at

each time step, we determine the discretization of the state space by assuming that

9

large value function differences between neighboring states imply important informa-

tion is missing between them.

10

Chapter 3

Background

Here, to set the stage for our innovations, we introduce key considerations in MDP

solvers and the quality of MDP solutions given problem scope and discretization of

state and action spaces.

Figure 3.1: State-transition diagram of a coin operated turnstile.

11

Current State Input New State

Locked
Coin Unlocked
Push Locked

Unlocked
Coin Unlocked
Push Locked

Table 3.1: The state-transition table of a coin operated turnstile.

3.1 Automata Theory

First, it is imperative to have an understanding of automata theory. An automaton

is a self-operating machine, which consists of a set of states and a transition function.

The set of states are the different configurations the automaton can be in. The

automaton exists in a specific state and can move to another state based on the

transition function. The transition function dictates which state the automaton will

go to given some input. A common example of an automaton is a coin-operated

turnstile. The turnstile can either be locked or unlocked, starting in the locked state.

Inserting a coin will cause the turnstile to unlock and let the patron through. Once

the patron is through the turnstile, it should lock again. This can be represented

in a state diagram in Figure 3.1. The set of states is either locked or unlocked.

The transition function takes two inputs into account, depositing a coin (coin) and

pushing the arm (push). While the turnstile is locked, depositing a coin will change

its state to unlocked, and pushing will not change its state. While the turnstile is

unlocked, depositing a coin will not change its state and pushing will change the state

to a locked state. A state-transition table can be created, see Table 3.1

The coin operated turnstile is an example of a deterministic automaton, but a

non-deterministic option is also possible. A non-deterministic automaton either have

transitions that are not only determined by the current state and inputs (meaning

the state you arrive in after taking an action is unknown) or an input is not required

12

at each state transition (meaning the state of the automaton can change without

an input). Stochastic automaton are a subset of these non-deterministic automaton,

where the transition function is defined by probabilities of getting from one state

to another. This would mean that the transition function shows that there is a

probability of going to a given state from a starting state and action. Adapting the

turnstile example, the turnstile could be faulty, and 10% of the time it will remain

in an unlocked state after being pushed. Moving on to an even more general case,

each action could have an associated probability, even containing some states that

will lead to failure of the system. Then, it becomes a ‘game’ of taking the action that

has the best expected outcome for a given state. This is the foundation of Markov

Decision Processes.

3.2 MDP Formulation

Markov Decision Processes contain a state space (S), an action space (A), transition

probability matrix (P) and reward function (R). In the context of robotic automation,

an MDP is created to mimic the operation of the robot within the environment.

When creating the MDP, design decisions are made at every step and will impact the

accuracy of the policy created. This section will be geared towards those with limited

experience in creating Markov Decision Processes.

3.2.1 State and Action Space

The state space, S, is every state that the agent, the robot operating in the environ-

ment, can exist in. In discrete examples, creating this state space is trivial. Many

applications of MDPs are situations where the environment is continuous and there-

fore, the environment must be discretized into discrete states. This discretization of

13

states is similar to the resolution of the state space, and the impact of changing the

discretization is explored in Sections 3.3 and 3.4. States come in many different forms

and can be abstracted outside of physical locations an agent exists in. Each type of

these states we call classes of states, C. In a MDP created to model a drone deliver-

ing a payload, the location of the drone, ln and the status of the payload, pstatus can

be used as classes of states implying C = {ln, pstatus}. Each state in the state space

would include enumerations of both of these classes, leading to a state space

S = ln × pstatus

= {⟨l1, ptrue⟩, ⟨l1, pfalse⟩, ⟨l2, ptrue⟩, ⟨l2, pfalse⟩, . . . }.

It is advantageous to have few classes of states, as each additional class adds another

dimension of complexity to the MDP, because the total number of states will be the

product of the number of states in each class (in the drone payload example, S = n×2,

where n is the number of location states, and 2 is the number of payload states.)

The action space, A, consists of every action that can be taken from the agent. The

actions are related to the capabilities of the agent and generally cannot be changed on

the fly, unless there is some way to adapt the abilities of the agent during a mission.

Actions are the driving factor that is able to allow the agent from moving from one

state to another in an MDP.

3.2.2 Transition Probability Matrix

The transition probability matrix, P (s′|a, s), is a matrix containing the probability of

getting to every other state in the state space, s′ ∈ S, based on a given starting state,

s, and action, a. Many times, this matrix will initially be created with deterministic

probabilities and randomness will be introduced later. For example, if the robot is in

14

an environment where it can go up, down, left, or right, initially each action would

have a 100% chance of happening as intended. Then, to encourage a more robust

solution, the transition probabilities may change to 80% chance to go in the intended

direction and a 20% chance of going in a different direction. Additionally, a failure

state could be used instead of going in a different direction. This state would be

heavily disincentivized, resulting in more conservative policies. This failure state in

the context of drones may mean that the drone crashes on the way to the location,

resulting in a total mission failure.

In some applications of MDPs, the transition probabilities can be found from

the probability or the rate or effectiveness of the actions. [19] explores finding the

transition probabilities when modeling the progression of a disease based on medical

studies that report different metrics of the effectiveness of treatments and [5] uses

historical data to find the transition probabilities of land changing from one use to

another. Both of these cases leverage historical data to create these matrices. This

can be difficult to find for robotic systems, especially new ones, but can be found

through testing as in [34], where the autonomous digging UAS was ran many times

to obtain the success rate in different soil types, and this data was used to train an

MDP to predict digging success.

3.2.3 Reward Function

The reward function, R(s′|a, s), contains the ‘reward’ for getting to another state,

s′, from a starting state, s, and an action a. When an agent is operating in an

environment, it aims to maximize the positive reward obtained. Therefore, the reward

function impacts the actions an agent will take. The specific number chosen to be the

positive or negative reward is arbitrary, but must be compared to the other values

within the problem. A common strategy is to assign a constant negative reward to

15

all states that do not contain the goal, and assign a positive reward to the goal.

This strategy is easy to implement and is the strategy used when creating the MDP

used for the motivating example in Section 5.1. There can be benefits, however, to

creating a reward function that is variable across the state space. In the context of

a ground robot, the reward function may want to become more negative when the

robot approaches a cliff or dangerous area. This would cause the robot to keep away

from that area, if possible, to prevent accumulation of a larger negative reward.

Additionally, when using an on-board solver, the reward function can be updated

as the agent moves through the environment and learns new information. A ground

robot may not be aware of an obstacle but, if it can detect it, the reward function

can be updated to disincentivize travel back to that area in the future. Designing a

robust reward function is important to obtaining an accurate and intelligent policy.

3.2.4 Value Function and Policy Creation

After the MDP is created, the MDP must be solved, meaning a policy must be created

that will map the states in the state space to actions from the action space. For every

state in the state space, there must be a corresponding action. Generally, there are

two main methods of obtaining the policy, value iteration and policy iteration.

Value iteration uses the Bellman equation to calculate a value (sometimes called

utility) for every state in the state space. This is calculated using the reward function,

R(s), transition probability matrix, P (s′|a, s), and a discount or “forgetting” factor,

γ,

Vi+1(s) = R(s) + γ max
a∈A(s)

∑
s′

P (s′|a, s)Vi(s
′). (3.1)

Where the algorithm will stop when Vi+1 = Vi. This is guaranteed to converge, since

16

Equation (3.1) is a contraction mapping. Once converged, the value function and

transition probability matrix can then be used to calculate the policy, π(s),

π(s) = argmax
a∈A(s)

∑
s′

P (s′|a, s)V (s′). (3.2)

Policy iteration, on the other hand, alternates between two steps to obtain the

optimal policy. First, the policy set to be random and the value function is found

using a simplified version of Equation (3.1),

Vi+1(s) = R(s) + γ
∑
s′

P (s′|πi(s), s)Vi(s
′), (3.3)

where the action for each iteration is chosen from the policy, not the maximum

reward of any action. Then, the policy is updated, using Equation (3.2) and the

newly created Vi to obtain a new policy. These are repeated until πi+1 = πi. This is

also guaranteed to converge, as it is also a contraction mapping.

Either of these methods will result in a globally optimal policy, where the ac-

tion that maximizes cumulative expected reward is taken in each state. The largest

difference in these two methods is that the value function may not be accurate for

all states in policy iteration, which means that, for reasons explained in Section 4,

value iteration is better for our application. In traditional applications of MDPs, this

policy is found offline, where more computational resources are available, and then

uploaded to the robot as a lookup table. It is assumed that the robot has knowledge

of its current state, so the optimal action will be chosen from this table and executed

at run time.

17

3.3 Discretization of Variables

Creating a complete, high-fidelity state space in real world problems can be difficult

due to the large number of independent variables that are often represented as contin-

uous functions. The discretization of the variables can be made more coarse or fine,

depending on the requirements of the problem. Consider a possible MDP created to

represent our test problem, a solar-supplemented UAS, which can take off, travel to,

and land in a new location autonomously. The distance from the starting location to

the goal location is too large for the UAS to travel to the goal without charging, so the

UAS must chose when to stay and charge, or move to another location. Additionally,

the UAS can only charge its battery during the day. In this example, three classes of

states exist: landing spots, battery charge, and time of day. Battery charge and time

of day are continuous variables that will need to be discretized in order for the prob-

lem to be solved, whereas landing spots are discrete. The possible discretizations of

the continuous variables are explored in Figure 3.2. The coarse discretization consists

of 3 charge states and 2 time states, while the fine discretization has 10 charge and 6

time states. The total size of the state space increases from 6 to 60, going from the

coarse to fine discretization. In addition, the number of states created in charge and

time would be multiplied by the number of landing locations, further increasing the

state space.

In the continuous domain, the theoretical limiting factor of our discretization

would be related to the sensing capabilities of the UAS. If we assume the UAS can

land with 10m accuracy, can sense battery charge changes within 1%, and useful time

precision is 1 s, the number of states becomes very large. More precisely, if we confine

the UAS to a 10 km× 10 km area, potential landing locations ln = 1,000,000, battery

states b = 100, and time states d = 86,400, yields total states S = ln × b × d =

18

(a) Coarse discretization

(b) Fine discretization

Figure 3.2: Coarse discretization vs. fine discretization of battery charge and time of
day state classes in the multi-flight, single-agent UAS example.

19

8,640,000,000,000. In addition to the large number of states created, the number

of actions that can be taken by the UAS increases the size of the MDP. In this

example, the UAS is able to travel to any of the landing locations, or it can stay and

charge. This means that the number of actions, a, is equal to ln + 1. Therefore, the

transition probability matrix would contain S2 × a elements. Solving this MDP on

a SWaP constrained robot may be impossible, and when using more powerful, offline

computing sources, would be time consuming at best.

One way to look at discretization is the boundaries created in the action space

based on resolution of the states. When an MDP is solved, the policy maps sets of

continuous states to actions. For example, Figure 3.3 shows a 1-D problem mapping

battery charge to two actions: ‘stay and charge’ and ‘move to another location’. The

MDP policy creates two ranges, with the threshold to change the optimal action from

one to another at k% charge. By discretizing the continuous domain, this thresh-

old is necessarily moved to a state boundary, thereby discarding potentially useful

information. While there are some specific discretizations especially close to the con-

tinuously optimal decision threshold, see n = 10, the only way to ensure the threshold

is close to a discrete boundary is to increase the resolution of discretized states, and

thereby recovering the lost information. However, increasing the resolution of the

discretization, as discussed, can lead to large state spaces that become unsolvable.

Additionally, this threshold becomes more complicated as more classes of variables

are added. In Figure 3.4, both battery charge and time of day are included, with

the same actions. Now the threshold creates areas, instead of ranges. In general, the

theoretical continuous threshold has no constraints on the linearity or smoothness

and there is no limit on the number of different areas created, even with only two

actions. The hypervolume created by the theoretical continuous thresholds becomes

more complicated as the number of classes increases, increasing the 2-D area into an

20

Figure 3.3: Battery charge shown continuously, then with different discretizations, n.
The policy maps sets of continuous states onto the action space which necessarily fall
on a state border in a particular discretization, thereby discarding useful information.

N-dimensional volume, where N is the number of distinct classes of variables. In the

strategy we describe in this paper we exploit this phenomenon to recover information

lost by the discretization process, and utilize it to improve the policy.

3.4 Impacts of Increasing Discretization

One way to reduce the state space size is to reduce the discretization of the state

space. However, the impact on the quality of the solution to the MDP must be fully

understood, and is problem dependent. To showcase this, the solar-supplemented

multi-flight UAS MDP mentioned above was solved at different discretizations of

charge and day states (see Section 5.1 for full problem details). In Figure 3.5 we

showcase the time to solve the MDP for each combination of charge and day states

between 2-20 states. As expected, the time to solve increases exponentially as the

number of total states increases.

21

Figure 3.4: 2-D representation of continuous battery charge and time of day, with the
threshold between actions ‘stay and charge’ and ‘move to another location’ creating
multiple areas.

The Sliding MDP method described in this paper is an on-board solver which

assumes every action chosen by the agent is successful. In contrast, a flat MDP is

an offline solver, which will create a policy that contains the optimal action for each

state in the state space, independent of the state of the agent. Therefore, to properly

compare the flat MDP to an on-board solver, we create a ‘deterministic policy’ for

the flat MDP. The deterministic policy contains every action a robot would take,

as if the agent executes the policy in a deterministic manner. The total expected

value for every state visited in the deterministic policy was then found from the value

function. Figure 3.6 shows the relationship between increasing the discretization and

the expected reward across the deterministic policy. There are some combinations

of lower resolutions that give particularly good policies but, generally, increasing the

number of charge states improves the reward of the deterministic policy. Increasing

22

Figure 3.5: Effect of increasing the number of charge and day states on the time
required for a policy to be calculated in the test problem.

the number of day states, however, has very little impact on the reward. This is

because the additional information gained by increasing the resolution of the day

states is less relevant to the drone, it only matters whether it can charge or not

(whether it is daytime or nighttime). If this problem had a more detailed solar

charging model, similar to [16], where the amount of energy gained from charging is

dependent on the time of day, more day states could improve the value of the policy.

23

Figure 3.6: Total expected reward for the deterministic policy as the number of charge
and day states increases.

24

Chapter 4

Sliding MDPs

Here we introduce and combine 3 key innovations to take advantage of the insights just

presented and reduce the time and space complexity required to solve large planning

and decision making problems in robotic systems. First, we use a receding resolution

horizon, with the assumption that detail in the state space is less advantageous the

farther the agent is from that state. We then solve the sub-MDP created within the

receding horizon. Next, we use a value difference, or gradient approach to decide

where increasing the discretization of the state space will reveal more information.

Finally, we change the discretization of the state space, adding states into the MDP

where necessary to create a more accurate policy. These innovations allow the agent

to compute new policies dynamically while it moves through the state space, only

increasing the discretization of the state space when there is more information to be

gained. States outside the horizon are left in a coarse discretization and are considered

unreachable. Each policy found is optimal within the horizon and, when combined

with the policies from the horizons created as the robot moves through the state

space, will result in a policy that we call recursively optimal across the path the

robot takes through the state space.

25

4.1 Receding Resolution Horizon

In stochastic problems, receding horizon approaches have been successful when deal-

ing with infinite horizons or state spaces that are too large to compute. This approach

can also be used to decide where to increase the resolution of the discretization.

Deciding what should be included in the horizon varies case by case and is depen-

dent on the size of the state space and computing power available. To calculate the

horizon from a state, s0, the states included would be such that transition probability

P (s|a, s0) > B for any a ∈ A(s), where B is the lowest “reasonable” transition proba-

bility. The states that fit this criteria are considered reasonable steps. Deciding what

is considered “reasonable” can be difficult due to the many variables that can arise,

and must be handled on a problem by problem basis. For example, one may consider

any action with a transition probability that is greater than 50% “reasonable”. This,

however, can lead to a larger state space than appropriate for the computing power

available and could cause the agent to take aggressive actions that are unlikely to

lead to beneficial outcomes. On the other hand, if one wanted only high probability

actions, choosing B to be 90% or higher, the receding horizon could be too small,

and not take into account enough states for a high fidelity discretization. As B is

increased, the number of states in the horizon will also increase.

4.2 Value Difference

The discretization of the state space within the receding horizon impacts the quality

of the policy, and must be adjusted as part of the SMDP. The higher the discretization

of the state space, the closer the performance will be to a high fidelity, optimal policy

as there is more information available for the MDP to consider. The goal is to decide

where there may be useful information not available at the current discretization and

26

increase the discretization in that area to include new information, without exploding

the number of states in the state space.

To determine where useful information is likely to be we use a gradient based

approach leveraging differences in value, V (s), between neighboring states. Higher

differences in value imply more information may be found with a higher resolution

discretization in this area of the state space. This is similar to the average corner-

value difference approach from [32]. In that work the space is split at the top h%

of differences in value, whereas we split the space at differences that are above a

splitting parameter, Z. This has the benefit of providing an easy-to-tune parameter

that prevents the solver from infinitely refining the resolution, and hence blowing up

the state space. This splitting process performed better in our tests than the uniform

grid in the control problem posed in [32].

As an example, consider two neighboring states, s1 and s2, where s1 = (a1, b1)

and s2 = (a1, b2). In this case, variable b is a coarsely discretized continuous variable.

If the difference between the values of these states is large, |V (s1)−V (s2)| > Z, then

we find that there is information that could be found from increasing the resolution

and rediscretizing the b variable. A new state would be added, snew and would have

a value equal to the average of the surrounding values V (snew) = (V (s1) + V (s2))/2.

This process will converge to a discretization of the state space that results in a

value function with a constant gradient across the state space, meaning the difference

between any two neighboring states will be at most the splitting parameter, Z. This

will always converge, as long as Z > 0. This is because the difference between

V (s1) and V (s2) will always be larger than the difference between V (s1) and V (snew)

or V (s2) and V (snew). This leads to an algorithm that has an upper limit to the

number of iterations that will be conducted, explored in Section 6.2. This is different

than the process in [32], where there is no upper limit on iterations, creating finer

27

discretizations infinitely, possibly without gaining useful information.

After a constant gradient is achieved in the value function, a new transition prob-

ability matrix and reward matrix would then be created at the new discretization and

the MDP would be solved again. The value iteration solver can be “warm started” by

using the value function that is created from filling new states with the neighboring

average values.

4.3 Example Problem

To provide intuition, we demonstrate how a small problem would be solved. The

problem consists of a 1 dimensional physical domain in which the “UAS” can move

either to the right or to the left as visualized in Figure 4.1. The UAS starts on the left

side and must reach a goal state on the right side. The box contains all the states that

are within the receding horizon, meaning the probability of getting to every state s′

from the current state s is larger than the horizon boundary condition, P (s′|a, s) > B.

When the value difference between its current state and the next state is greater than

the splitting criteria |V (s1)−V (s2)| > Z (Z = 1.1 in this example), the value splitting

algorithm will split the continuous physical domain to add a new possible state s′new.

The policy would be recalculated, including the new state and the next action would

be chosen based on this policy. After the UAS completes this action, it will “forget”

the added state and continue on. Then, it would create a new receding horizon at

the next state. This problem allows a very controlled environment for us to test the

effectiveness of SMDPs. The problem splits in predictable places and has an easy to

solve flat MDP for comparison.

The full state space, visualized in Figure 4.2, has a finer discretization across the

entire state space. It contains all of the states seen in the coarse discretization and

28

all states that could be added if the state space was fully rediscretized, or added a

new state between each existing state. We use this high resolution flat MDP as the

best representation of the problem and hence the one with the highest quality policy.

In this example, an MDP would need to be created and solved containing all the

states in the boxes. This means that the largest sub-MDP created in the sliding MDP

would have 5 states, while the flat MDP would contain 7 states. This reduction in

states will reduce the time to solve and spatial complexity exponentially. The fully

expanded problem has a transition probability matrix with 98 elements (72×2), while

the SMDP representation has 50 elements (52×2) in its largest transition probability

matrix.

4.4 Algorithmic Implementation

Algorithm 1 demonstrates the implementation of SMDPs. Before running the algo-

rithm, the coarsely discretized MDP is solved to obtain the value function, V (s). The

coarsely discretized MDP consists of the lowest reasonable resolution version of the

MDP problem being solved given computational limitation. In general, similar to

solving a flat MDP, starting with a higher resolution discretization will lead to higher

quality policies. The state space, S; the transition probability matrix, P ; and the

action space, A, from the coarsely discretized MDP are also included as inputs. The

algorithm will loop until the current state, sc of the robot is the same as the goal

state, sg. First, the receding horizon is applied, constricting the state space to only

reasonable states. Next, the difference between neighboring states is found and an

additional state is added where the difference is large enough. The new state will be

added to the state space and the process will repeat. After the state space is fully

expanded, the goal state will be added to the state space if it is not already included,

29

Figure 4.1: Visualization of a test problem using an SMDP to discretize physical
space. (Z = 1.1)

30

Figure 4.2: Full Discretization of the test problem, as would be used in a flat MDP.

and the transition probability matrix and reward matrices are created. Then, the

MDP is solved using value iteration, with a ‘warm-start’ that will jump start the

iteration process and results in a policy for receding horizon. The optimal action for

the current state is found and executed, changing sc to the state after the action is

completed, sa.

31

Algorithm 1 Sliding Markov Decision Process

Input: V (s), S, P,A
while sc¬sg do

//Begin receding horizon
forall s ∈ S do

if P (s′|s, a ∈ A) > B then
//make sub-state space only containing states in the horizon
S ′ = S ′ + s′

end

end
//Count all the states in S ′

N = count(S ′)
//Begin sliding resolution via value splitting
while addedStates¬0 do

addedStates = 0
forall si, si+1 ∈ S ′ do

if |V (si)− V (si+1)| > Z then
//Value difference is large enough, add new state
N = N + 1
for j = i+ 1 to N do

//Move all the values forward to put new state between the states
V (sj) = V (sj+1)

end
//Change the value of the added state the to average of the surrounding
states
V (si+1) = (V (si) + V (si+2))/2
addedStates = addedStates+ 1
S ′ = S ′ + si+1

end

end

end
if sg ̸∈ S ′ then

//if the goal state is not in S ′, add it
S ′ = S ′ + sg

end
//create reward and transition probability matrices
R = function rewardMatrix(S ′, A)
T = function transitionProbabilityMatrix(S ′, A)
//Solve the MDP with value iteration
π = function valueIterationMDPSolver(T,R, V (s))
//find the action for the current state
a = function findAction(sc, π)
//execute action
sa = function executeAction(sc, a)
//set the current state to the state after executing the action
sc = sa

end

32

Chapter 5

Results

5.1 Multi-flight Planning Problem

The motivating problem is a multi-flight, solar supplemented UAS, with a goal. On

the way, the UAS will need to stop and charge to complete the mission. We built

a simulation of this problem and solved it in totality with three different solving

methods. The first is a flat MDP, which contains the entire state space with no

variability and includes every state within its horizon. The second is a constant

receding horizon MDP (CMDP) that changes the horizon as it moves through the

space, without changing the discretization. The final is the Sliding MDP (SMDP),

which has a receding horizon and changes the discretization according to the value

difference approach. The flat MDP results in a policy for every state in the state space,

while the CMDP and SMDP result in piece-wise policies along the path of travel

for the UAS. The constant resolution MDPs (flat and CMDP) were both solved at

different discretizations based on the assumption that the SMDP will fully rediscretize

state space, or added states between all neighboring states, going from 2 → 3 → 5 →

9 → 17 → 33 . . . states. The lowest resolution state space consists of b = 3 charge

states, (battery charge of 0-33%, 34-66% and 67-100%) and d = 2 day states (’day’

33

and ’night’). The flat and coarsely discretized MDPs are defined as follows:

MDP = {S, P,R,A, γ}

S = ln × b× d

P (s′|a, s) = landingProbability(s, s′, distance(s, s′))

R(s) =

−0.04 if s ̸= sg

+1 if s = sg

A(s) =

s → s′

charge

γ = 0.95

(5.1)

The problem space consists of a 4 × 4 square grid with ln = 16 possible landing

spots, see section with solid border and numbered locations in Figure 5.4. The UAS

starts in the top left corner, and the goal is in the bottom right corner. The probability

of going from one location to another location is chosen using a normal cumulative

distribution function, based on the distance between two locations and the charge of

the battery. If the UAS has full battery charge, the probability is 50% to get to a

neighboring location and 50% to stay in its current location. Moving two spaces has

a probability of 15.8% and a 84.2% of staying in its current location, decreasing as

the destination location is moved farther away. There is a negative reward, or cost,

for every action taken to a non-goal state, and a positive reward for taking an action

to the goal state. The UAS is allowed to go to any location, or stay in place and

charge. The discount factor, γ in Equation (3.1), was set to 0.95. Finally, we assume

that the system is fully observable, that is, the UAS has full knowledge of its current

battery charge, the time of day and location within the grid.

34

5.2 Implementation

The SMDP algorithm was implemented in MATLAB on a 2021 Macbook Pro, with

32GB of RAM and a M1 Max CPU. MATLAB limits the size of arrays to prevent

running out of memory1. Rediscretizing the MDP to very high resolutions creates

transition probability matrices that are too large for MATLAB to store (5 full redis-

cretizations with 65 charge states and 33 day states creates a transition probability

matrix that is 149.2GB) so, a policy cannot be found. This means a flat MDP can-

not be compared against SMDPs for higher resolutions. Notably, the SMDP method

creates much smaller incremental MDPs, which allows us to solve MDPs past this

upper limit of resolution.

5.3 Metrics

The effectiveness of the algorithm was judged on three factors: spatial complexity,

time to obtain policy and quality of the policy. When comparing these factors, there

is not a definitive one-to-one comparison between the on-board solvers (CMDP and

SMDP) and the flat MDP. This is because the on-board solvers do not result in

a policy for every state in the state space, it will only create a policy within each

horizon created on the path to the goal. Solving the flat MDP, however, results in

a policy containing all actions for every state within the state space, independent of

the movement of the robot. This also means the flat MDP has global knowledge of

the entire state space, while the on-board solvers only contain knowledge of the states

within the receding horizon.

1https://www.mathworks.com/help/matlab/matlab prog/resolving-out-of-memory-errors.html

35

Figure 5.1: Number of elements in the transition probability matrix for a SMDP,
CMDP and flat MDP of different resolutions.

5.4 Spatial Complexity

Spatial complexity is an important measure as the size of the MDP is heavily related

to the amount of time and processing power needed to solve for an optimal policy.

The size of the transition probability matrix for a flat MDP has complexity of S2×A.

This size was compared to the average size of the transition probability matrix for

the CMDP and SMDP, as the number of states will change as the agent moves

through the state space. Figure 5.1 shows this complexity measure for our example

36

problem. The graph cuts off all of the discretizations that have too many elements for

MATLAB to store, 4 × 109 elements. The flat MDP is larger than both the CMDP

and SMDP at every resolution and has an exponential increase. The CMDP also

increases exponentially, but at a slower rate as the receding horizon will limit the size

of the state space. The SMDP is equal in size to the CMDP at lower discretizations,

but diverges at higher resolutions. This is what we expect from the SMDP algorithm,

it converged on a discretization where the difference between all neighboring states

in the value function is less than the splitting parameter.

5.5 Time

The total time to solve the flat MDP was compared to the time it would take the

on-board CMDP and SMDP solvers to get to the goal assuming the current action

takes less time to complete than the calculation of the next action.

Figure 5.2 shows the impact of increasing the resolution on the time to solve. The

graph is shown with a logarithmic time axis. The solid lines show the experimental

results and the dashed line shows a line of best fit, extrapolated to the final resolution

possible with the SMDP algorithm. Both the CMDP and flat MDP show exponential

increases, with no limit on the time it will take to get the optimal policy. The SMDP,

however, initially increases exponentially, but flattens out as it converges.

The SMDP algorithm with the chosen splitting criteria will take 1375 s on average,

assuming the algorithm is allowed to converge. It takes 8 actions to get to the goal

in the deterministic policy, meaning each decision takes 171.875 s, assuming it moves

instantly. Therefore, the robot would be able to operate optimally if it takes more

than 171.875 s to complete each action.

37

Figure 5.2: Time taken to solve a flat MDP or get the deterministic policy for a
SMDP and CMDP.

5.6 Policy Quality

While “recursive optimality” might be the best an online solver can attain, it is critical

to ensure that SMDP and CMDP solvers find policies as close to the globally optimal

flat MDP policies as possible. To do this we use the expected reward, from the value

function, to compare the accuracy of the policies. The sum of the expected reward

across the policy, executed deterministically at different resolutions is shown in Figure

5.3. This shows that both on-board solvers have lower expected rewards across the

deterministic policy. This is because the flat MDP has global knowledge of the entire

38

Figure 5.3: Expected total reward across the deterministic policy as the resolution
increases for the SMDP, CMDP and flat MDP.

state space, but the on-board solvers only have knowledge within the horizon. The

expected reward follows a similar pattern in all three MDP solvers however, with an

initial increase, diminishing as the resolution gets more fine.

The actual policies themselves can also be compared across each method. Table

5.1 shows the deterministic policy for the SMDP, CMDP, and Flat methods. Each of

the numbers means the UAS will move from it’s current location to the new location,

as labeled in Figure 5.4 and the robot will fill it’s battery to full when completing

the ‘Charge’ action if it is daytime. Each policy across the methods are identical,

except at the highest resolution, where the flat MDP policy swaps actions 5 and 6.

39

This agreement shows that although the SMDP has a faster time to solve and smaller

size complexity, the policy that is obtained is the same or very similar. Obtaining a

recursively optimal policy is sufficient in most applications, including this problem;

the robot will be able to arrive at the goal from any of the deterministic policies

presented.

5.7 Adaptability

SMDPs and CMDPs additionally allow the MDP to be changed and the state space to

be expanded dynamically. For example, in Figure 5.4, the original problem is shown

in the numbered 4×4 grid with a solid border. The original goal is shown on space 16.

As the UAS is on the way to the goal, there may be some previously unknown area

that is made available to the UAS, shown with a dashed border. Because the MDP is

being solved onboard, the new area can be included within the next horizon, and thus

the new area could be taken into account when creating the next policy. A new goal

could also be created in this new area, allowing more adaptable and resilient mission

planning compared to flat MDPs, where the MDP would need to be re-solved for the

entire state space. This process can be repeated as many times as necessary, allowing

for an original state space of a very limited area to be explored and expanded, with

a recursively optimal policy throughout the process.

40

R
es
ol
u
ti
on

5
C
h
a
rg

e
,
3
D
a
y
S
ta
te
s

9
C
h
a
rg

e
,
5
D
a
y
S
ta
te
s

1
7
C
h
a
rg

e
,
9
D
a
y
S
ta
te
s

3
3
C
h
a
rg

e
,
1
7
D
a
y
S
ta
te
s

M
et
h
o
d

S
M
D
P

C
M
D
P

F
la
t

S
M
D
P

C
M
D
P

F
la
t

S
M
D
P

C
M
D
P

F
la
t

S
M
D
P

C
M
D
P

F
la
t

A
ct
io
n
S
te
p
1

2
2

2
2

2
2

2
2

2
2

2
2

2
3

3
3

3
3

3
3

3
3

3
3

3
3

4
4

4
C
h
ar
ge

C
h
ar
ge

C
h
ar
ge

C
h
ar
ge

C
h
ar
ge

C
h
ar
ge

C
h
ar
ge

C
h
ar
ge

C
h
ar
ge

4
C
h
ar
ge

C
h
ar
ge

C
h
ar
ge

4
4

4
4

4
4

4
4

4
5

8
8

8
8

8
8

8
8

8
8

8
C
h
ar
ge

6
12

12
12

C
h
ar
ge

C
h
ar
ge

C
h
ar
ge

C
h
ar
ge

C
h
ar
ge

C
h
ar
ge

C
h
ar
ge

C
h
ar
ge

8
7

16
16

16
12

12
12

12
12

12
12

12
12

8
16

16
16

16
16

16
16

16
16

T
ab

le
5.
1:

D
et
er
m
in
is
ti
c
p
ol
ic
ie
s
u
si
n
g
al
l
th
re
e
m
et
h
o
d
s,

ac
ro
ss

al
l
re
so
lu
ti
on

s.
N
u
m
b
er
s
re
fe
r
to

m
ov
in
g
to

th
e
sp
ac
es

as
la
b
el
ed

in
F
ig
u
re

5.
4
an

d
‘C
h
ar
ge
’
al
lo
w
s
th
e
U
A
S
to

ch
ar
ge

to
a
fu
ll
b
at
te
ry

d
u
ri
n
g
th
e
d
ay

ti
m
e.

41

Figure 5.4: UAV operating in a state space that will be expanded as the agent moves.
The solid border is the original state space, and the dotted border shows a previously
unknown state space for the agent to operate in.

42

Chapter 6

Generalization

This algorithm can be widely applied, but many of the parameters chosen for this

problem were tuned to our specific problem and application. Here we discuss how our

approach can be generalized, focusing on the two tuned parameters, receding horizon

limit, B, and the splitting parameter, Z.

6.1 Receding Horizon Limit

The receding horizon limit, B, dictates which states are within the current horizon.

Most straightforwardly, this parameter is the probability below which transitions to

a state are not considered, thereby eliminating that action/state from the horizon.

This can be chosen based on insight into the problem space, acceptable risk levels,

and limitations on computation.

The first method to choose this limit is a ‘forward’ method. This involves observ-

ing the state space and associated actions that are reasonable given intuition about

the problem space, then averaging the transition probabilities that align with those

state/action pairs. In the example space shown in Figure 5.4, a ground robot may be

limited to moving one space in any direction making it a potentially good horizon. In

this case the transition probability matrix would be analyzed and the probability as-

43

sociated with moving one location in any direction would be chosen. This is favorable

because the decided limit is well informed by the domain and dynamical limits of the

agent, however, extensive knowledge of the transition probability matrix is needed.

The next method is a ‘backwards’ method. This involves choosing a probability

based on assessing the risk associated with the mission. In the example problem

described in Section 5.1, because of flight, any state/action pair is possible (as opposed

to a ground robot) but limited by the energy requirements to get there. In this case

if the UAS needed to take few risks, a high limit would be chosen, filtering out

low transition probabilities to discourage risky behavior. This may be more widely

applicable, as a risk assessment may be easier to conduct than analyzing the transition

probability matrix. This limited knowledge of the problem could lead to horizons that

are too restricted, causing inaccurate policies, or a horizon that is too open, with a

state space that is too large to solve onboard the UAS. As a result, computational

limitations should be considered in tuning this parameter. In general, the horizon

limit should be as low as possible, allowing as many states as possible, without causing

the state space to become too large for the given computational capabilities.

6.2 Splitting Parameter

The difference in value between neighboring states, or value gradient, is the metric

used split the state space. The goal of the value difference splitting algorithm is to

create a value gradient that is less than the splitting parameter, Z, for the entire value

function. Intuitively, if the gradient of the value function is constant no new informa-

tion can be found by increasing the resolution of the state space and the resolution

should not be increased further. The value function (see Equation (3.1)) determines

the value of each state depending on the reward function, R(s), of the problem. The

44

absolute number assigned to these rewards is arbitrary and only relevant within the

context of the problem. Therefore, the value of the splitting parameter must be nor-

malized within each problem. Some initial options for this parameter include the

upper quartile, median, and lower quartile of the value differences, where the top 3/4,

1/2 and 1/4 of value differences would be rediscretized, respectively. Any of these could

be a good choice, depending on the computational capabilities and specifics of the

problem.

Additionally, a helpful metric when choosing this parameter is Nmax, the upper

limit of states that could be created from the rediscretization process. This helps

ensure the SMDP will remain small enough to accommodate the chosen computing

hardware. Nmax can be calculated from the value gradient of the initial coarse MDP.

To start, we find the largest difference in value between neighboring states, ∆Vmax.

Because we split two states via arithmetic mean, ∆Vmax will decrease by 1/2 each

iteration, meaning no new states will be created when

∆Vmax

2i
< Z. (6.1)

In this case, i is the number of iterations needed to converge to a value function with

a constant gradient, which can be found by solving

i > log2

(
∆Vmax

Z

)
. (6.2)

Finally, this can be used to solve for Nmax,

Nmax = 2iN − (2i − 1), (6.3)

where N is the starting number of states. This can either be used to restrict the

45

maximum size of the state space (assuming a particular Z) or can be used in a

‘backwards’ method, where the maximum discretization is chosen and Z is calculated

accordingly. For example, the number of charge states could be limited to 100, since

the measurement of changes in the battery charge have precision of only 1%. This

would mean solving Equation (6.3) for i, then solving Equation (6.1) for Z to create a

lower limit for the splitting parameter. Increasing the splitting parameter will cause

fewer states to be created.

Additionally, the splitting parameter may be poorly scaled compared to the value

function of the specific application. If a splitting parameter is chosen that is larger

than ∆Vmax, the state space will be split at every opportunity, resulting in a higher

resolution state space. This can be beneficial, if the state space is very small and a

large number of states needs to be added to make an accurate policy but, it can also

cause the state space to become too large to solve.

6.3 Partially Observable MDPs (POMDPs)

POMDPs are similar to a regular MDP, but direct knowledge of the current state

of the agent is not known. Instead, the current state of the agent is informed by

observations of the current state. The strength of a POMDP is that the observations

do not need to be directly related to the states, while a regular MDP has state

observations directly related to the state. Strong use-cases for POMDPs include

medical diagnosis [22], where the subject’s symptoms will play a role, but do not

directly dictate the subject’s diagnosis, or the allocation of resources to manage areas

containing species that may be extinct [6], where one can either get rid of threats to

the species, survey the area looking for members of the species, or surrender control

and allocate resources to other species or areas.

46

Figure 6.1: Value function of the crying baby problem modeled as a POMDP.

A simple example of a POMDP is the crying baby problem. In this example,

the baby has two states, hungry or full, and the agent has two possible actions, feed

or leave alone. The agent cannot directly find the state of the baby, it can only

make observations of whether it is crying or not. This means that the current state

is dependent on the observations made. This creates a ‘belief space’ which, in this

example, would be a 1-D line between the hungry and full states, seen in Figure

6.1, where 0 means the baby is definitely hungry, and 1 means the baby is definitely

full. Our ’belief state’ is somewhere in between 0 and 1, informed by the observation

function, which maps the observations made to a change in the probability that the

baby is either hungry or full. This also means that the value function is different

47

for each action, and varies across the belief state. These lines, or hyperplanes in

higher dimensions, form a piece-wise linear and convex set across the belief space,

seen in Figure 6.1. The optimal action is simple to find once these lines are formed,

simply decide what belief state you are in depending on the observations made and

take the action with the highest associated reward. However, creating the vectors to

represent this hyperplane created is very complicated and necessitates taking future

actions into account, similar to the creation of the value function for regular MDPs

(Equation 3.1).

A simple solution framework for POMDPs includes finding the most likely state,

and solving for the associated regular MDP. The SMDP solving method would be

easily adapted into this solving method. Additionally, there are point-based POMDP

solvers [41], where value function is restricted to a finite subset of the belief state,

only allowing local value updates. This is a similar method to SMDPs, however, using

the resulting value function to decide where to rediscretize the state space may be

difficult as it will be a set of hyperplanes, rather than one value. Finally, it is possible

to learn the policy using reinforcement learning methods but, this does not create a

model for us to use and thus, the SMDP algorithm is not helpful.

48

Chapter 7

Discussion

Our Sliding MDP approach shows many benefits over the traditional approach to

solving flat MDPs. The spatial complexity and time to solve the SMDP do not

grow exponentially, making it more reasonable to solve decision making problems.

This is beneficial for an application on a UAS, which are generally SWaP-constrained

systems with limited processing abilities. The SMDP could also be used to recalculate

the policy at runtime, which could lead to more flexible, adaptable policies, able

to dynamically change along with the environment. These benefits are achieved

while still having a recursively optimal policy that is similar or identical to the flat

MDP. In addition, many of the other techniques attempting to shrink the state space

[13, 17, 20, 25, 26] could be applied in conjunction with SMDPs to get increasingly

solvable MDPs. Factoring MDPs and alternate MDP solvers do not interfere with

the SMDP approach and could further decrease the time to solve and size of the MDP

with similarly accurate policies.

Another use-case for the SMDP approach would be to make large, complex MDPs

solvable onboard constrained hardware by pruning unneeded states. This process

would involve removing states that have a value difference smaller than some splitting

parameter. This process would lead to a smaller number of states analyzed, meaning

that it could be re-solved onboard SWaP-constrained hardware. This process still

49

requires the solving of the initial flat MDP to obtain the value function but this could

be done offline and then uploaded to the SWaP-constrained vehicle so it could be

re-solved onboard when conditions change in the environment.

SMDPs still face limitations when used on a low capability processor. Solving each

sub-MDP may take longer than expected requiring optimizing the horizon, B, split-

ting parameter, Z, and planning lookahead of the agent. In extreme circumstances

if not carefully designed, this can put systems at risk if policies are not computed on

time. SMDPs, however, would still perform better in these situations than recalcu-

lating a flat MDP, where the response time could be much longer. SMDPs make this

planning and re-planning possible at the expense of global optimality. We have found

that high level mission planning problems are good candidates for applying SMDPs

as corresponding flat MDPs can take especially long to solve when modeled well.

There is potential for SMDPs to be used for applications beyond single agent de-

cision making. Heterogeneous swarms of SWaP-constrained vehicles operating in the

same environment could obtain recursively optimal policies tailored for each vehicle,

while still having the capability of re-planning if the environment changes.

Additionally, the ability to reconfigure the MDP on-the-fly allows feedback into

the system. A specific application could be the creation of a soil moisture map over a

large area. Initially, water content could be measured at a constant resolution across

the area, then the reward function can be adapted to favor areas of interest. This

moisture map could contain more information, concentrated on the areas of interest

without requiring extensive measurement of the entire area.

50

Chapter 8

Conclusion

We have described a novel algorithm for solving complex decision-making and plan-

ning problems formulated as an MDP. This is done by reducing the state space to a

local receding horizon and increasing the discretization of the states within the hori-

zon. Then, a new sub-MDP is formed and solved at a higher resolution, resulting in

a recursively optimal policy for an agent as it moves through the environment. The

performance of the SMDP algorithm in our test situations and its ability to solve the

complex problem in our motivating example is very encouraging. This, in addition

with its ability to adapt to changing conditions, makes it ideally suited to increase

autonomy and decision making on UASs.

In the future, SMDP’s ability to incrementally solve MDPs can be leveraged to

be updateable as new information from the environment is learned. If the agent

must complete a task multiple times, information about how well the agent was

able to complete the task the first time can be fed back into the system to adjust

the transition probabilities and rewards in subsequent completions of the task. In

addition, because the MDP can be changed on the fly, it could be possible to add

new classes of states to the problem, for example, we may expect that the mission

will be completed in less than a day, so the time of day class is not needed but, if

suddenly the mission gets expanded to a multi-day mission, the model can be updated

51

to include the time of day class.

The goal of the mission can also be updated online, during execution. For example,

if the target is moving, the agent would be able to adjust its path to head towards

the target every time much like a traditional control reference. This strategy could be

used in higher level non-flight planning problems as well. An example is the tasking

of actions within a heterogeneous group of agents, allowing accurate policies to be

computed for the states surrounding each agent, leveraging their individual strengths

and obtaining an accurate policy for each agent.

Exploration on the limits of this method also should be conducted as well, specif-

ically, application of this method to problem domains without a physical interpreta-

tion of the receding horizon could improve the robustness of this method, discovering

methods to find receding horizon limits without relying on specific qualities of the

classes within the state space. Additionally, there could be problems where there

are some states need to be kept within the receding horizon, even if the agent is far

away from that state. Finally, research into an adaptable receding horizon could be

another path, where the horizon is larger when the discretization is coarse, and the

horizon shrinks as the discretization is increased. This could be beneficial in keeping

the number of states per horizon similar, while increasing the information that is

included in the horizon.

52

Bibliography

[1] Douglas Aberdeen et al. Policy-gradient algorithms for partially observable

markov decision processes. 2003.

[2] Oguzhan Alagoz, Heather Hsu, Andrew J Schaefer, and Mark S Roberts. Markov

decision processes: a tool for sequential decision making under uncertainty.

Medical Decision Making, 30(4):474–483, 2010.

[3] Richard Bellman. A markovian decision process. Journal of Mathematics and

Mechanics, pages 679–684, 1957.

[4] Craig Boutilier, Raymond Reiter, and Bob Price. Symbolic dynamic program-

ming for first-order mdps. In IJCAI, volume 1, pages 690–700, 2001.

[5] Ademola Braimoh and Paul Vlek. Land-cover dynamics in an urban area of

ghana. Earth Interactions - EARTH INTERACT, 8, 01 2004.

[6] Iadine Chadès, Eve McDonald-Madden, Michael A McCarthy, Brendan Wintle,

Matthew Linkie, and Hugh P Possingham. When to stop managing or surveying

cryptic threatened species. Proc Natl Acad Sci U S A, 105(37):13936–13940,

September 2008.

[7] Hyeong S Chang and Steven I Marcus. Approximate receding horizon approach

for markov decision processes: Average award case. Technical report, MARY-

LAND UNIV COLLEGE PARK INST FOR SYSTEMS RESEARCH, 2002.

53

[8] Hyeong Soo Chang and Steven I Marcus. Two-person zero-sum markov

games: receding horizon approach. IEEE Transactions on Automatic Control,

48(11):1951–1961, 2003.

[9] Hamidreza Chitsaz and Steven M LaValle. Time-optimal paths for a dubins

airplane. In 2007 46th IEEE conference on decision and control, pages 2379–

2384. IEEE, 2007.

[10] Judy G Chizek. Military transformation: intelligence, surveillance and recon-

naissance. LIBRARY OF CONGRESSWASHINGTON DC CONGRESSIONAL

RESEARCH SERVICE, 2003.

[11] Stefano Colautti and Henk Haverdings. Small scale rotorcraft uas flight control

using mpc. In ICCAS 2010, pages 2529–2532. IEEE, 2010.

[12] Thomas Dean, Robert Givan, and Sonia Leach. Model reduction techniques for

computing approximately optimal solutions for markov decision processes. In

Proceedings of the Thirteenth conference on Uncertainty in artificial intelligence,

pages 124–131. Morgan Kaufmann Publishers Inc., 1997.

[13] Thomas L Dean, Robert Givan, and Kee-Eung Kim. Solving stochastic planning

problems with large state and action spaces. In AIPS, pages 102–110, 1998.

[14] Tao Ding, Mario Sznaier, and Octavia Camps. Receding horizon rank minimiza-

tion based estimation with applications to visual tracking. In 2008 47th IEEE

Conference on Decision and Control, pages 3446–3451. IEEE, 2008.

[15] Pavichaya Eaungpulswat and Herbert Werner. Area coverage algorithms for

multiagent surveillance tasks. 2012.

54

[16] Ryan D Eubank, Justin M Bradley, and Ella M Atkins. Energy-aware multi-

flight planning for an unattended seaplane: Flying fish. Journal of Aerospace

Information Systems, pages 73–91, 2016.

[17] Seyedshams Feyzabadi and Stefano Carpin. Risk-aware path planning using

hirerachical constrained markov decision processes. In 2014 IEEE International

Conference on Automation Science and Engineering (CASE), pages 297–303.

IEEE, 2014.

[18] Eric W Frew, Jack Langelaan, and Sungmoon Joo. Adaptive receding horizon

control for vision-based navigation of small unmanned aircraft. In 2006 American

Control Conference, pages 6–pp. IEEE, 2006.

[19] Risha Gidwani and Louise B. Russell. Estimating transition probabilities from

published evidence: A tutorial for decision modelers. PharmacoEconomics,

38(11):1153–1164, August 2020.

[20] Nakul Gopalan, Michael L Littman, James MacGlashan, Shawn Squire, Stefanie

Tellex, John Winder, Lawson LS Wong, et al. Planning with abstract markov

decision processes. In Twenty-Seventh International Conference on Automated

Planning and Scheduling, 2017.

[21] Lars Grüne and Willi Semmler. Using dynamic programming with adaptive

grid scheme for optimal control problems in economics. Journal of Economic

Dynamics and Control, 28(12):2427–2456, 2004.

[22] Milos Hauskrecht and Hamish Fraser. Planning treatment of ischemic heart

disease with partially observable markov decision processes. Artificial Intelligence

in Medicine, 18(3):221–244, 2000.

55

[23] Ronald A Howard. Dynamic programming and markov processes. 1960.

[24] Ashraful Islam, Adam L Houston, Ajay Shankar, and Carrick Detweiler. Design

and evaluation of sensor housing for boundary layer profiling using multirotors.

Sensors, 19(11):2481, 2019.

[25] Byeong-Min Jeong, Jung-Su Ha, and Han-Lim Choi. Mdp-based mission plan-

ning for multi-uav persistent surveillance. In 2014 14th International Conference

on Control, Automation and Systems (ICCAS 2014), pages 831–834. IEEE, 2014.

[26] Andrey Kolobov, Daniel S Weld, et al. Discovering hidden structure in factored

mdps. Artificial Intelligence, 189:19–47, 2012.

[27] Yoshiaki Kuwata and Jonathan How. Three dimensional receding horizon control

for uavs. In AIAA Guidance, Navigation, and Control Conference and Exhibit,

page 5144, 2004.

[28] Pierre Laroche, François Charpillet, and Rene Schott. Mobile robotics planning

using abstract markov decision processes. In Proceedings 11th International

Conference on Tools with Artificial Intelligence, pages 299–306. IEEE, 1999.

[29] Alex Lazinica. New developments in robotics automation and control. BoD–

Books on Demand, 2008.

[30] Nicolas Meuleau, Milos Hauskrecht, Kee-Eung Kim, Leonid Peshkin, Leslie Pack

Kaelbling, Thomas L Dean, and Craig Boutilier. Solving very large weakly

coupled markov decision processes. In AAAI/IAAI, pages 165–172, 1998.

[31] Hanna Michalska and David Q Mayne. Robust receding horizon control

of constrained nonlinear systems. IEEE transactions on automatic control,

38(11):1623–1633, 1993.

56

[32] Rémi Munos and Andrew Moore. Variable resolution discretization in optimal

control. Machine learning, 49(2-3):291–323, 2002.

[33] Stephen G Nash. A multigrid approach to discretized optimization problems.

Optimization Methods and Software, 14(1-2):99–116, 2000.

[34] Adam Plowcha, Yue Sun, Carrick Detweiler, and Justin Bradley. Predicting

Digging Success for Unmanned Aircraft System Sensor Emplacement. In Jing

Xiao, Torsten Kröger, and Oussama Khatib, editors, Proceedings of the 2018

International Symposium on Experimental Robotics, pages 153–164, Cham,

2020. Springer International Publishing.

[35] Adam J Pohl and Gary B Lamont. Multi-objective uav mission planning using

evolutionary computation. In 2008 winter simulation conference, pages 1268–

1279. IEEE, 2008.

[36] Pascal Poupart. Exploiting structure to efficiently solve large scale partially

observable Markov decision processes. Citeseer, 2005.

[37] Nicholas Roy, Geoffrey Gordon, and Sebastian Thrun. Planning under uncer-

tainty for reliable health care robotics. In Field and Service Robotics, pages

417–426. Springer, 2003.

[38] Stuart J Russell and Peter Norvig. Artificial intelligence a modern approach.

London, 2010.

[39] Scott Sanner and Craig Boutilier. Approximate linear programming for first-

order mdps. arXiv preprint arXiv:1207.1415, 2012.

57

[40] Tom Schouwenaars, Jonathan How, and Eric Feron. Receding horizon path

planning with implicit safety guarantees. In Proceedings of the 2004 American

control conference, volume 6, pages 5576–5581. IEEE, 2004.

[41] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based POMDP

solvers. Autonomous Agents and Multi-Agent Systems, 27(1):1–51, July 2013.

[42] David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Advances

in neural information processing systems, pages 2164–2172, 2010.

[43] Shawn Stephens, Satyanarayana G Manyam, David W Casbeer, Venanzio Ci-

chella, and Donald L Kunz. Randomized continuous monitoring of a target

by agents with turn radius constraints. In 2019 International Conference on

Unmanned Aircraft Systems (ICUAS), pages 588–595. IEEE, 2019.

[44] Adam CWatts, Vincent G Ambrosia, and Everett A Hinkley. Unmanned aircraft

systems in remote sensing and scientific research: Classification and considera-

tions of use. Remote Sensing, 4(6):1671–1692, 2012.

[45] Michael D Zollars, Richard G Cobb, and David J Grymin. Simplex optimal con-

trol methods for urban environment path planning. In 2018 AIAA Information

Systems-AIAA Infotech@ Aerospace, page 2259. 2018.

	Sliding Markov Decision Processes for Dynamic Task Planning on Uncrewed Aerial Vehicles
	

	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Contributions

	Related Work
	Background
	Automata Theory
	MDP Formulation
	State and Action Space
	Transition Probability Matrix
	Reward Function
	Value Function and Policy Creation

	Discretization of Variables
	Impacts of Increasing Discretization

	Sliding MDPs
	Receding Resolution Horizon
	Value Difference
	Example Problem
	Algorithmic Implementation

	Results
	Multi-flight Planning Problem
	Implementation
	Metrics
	Spatial Complexity
	Time
	Policy Quality
	Adaptability

	Generalization
	Receding Horizon Limit
	Splitting Parameter
	Partially Observable MDPs (POMDPs)

	Discussion
	Conclusion
	Bibliography

