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SUMMARY

Xanthomonas axonopodis pv. manihotis (Xam) causes cassava

bacterial blight, the most important bacterial disease of cassava.

Xam, like other Xanthomonas species, requires type III effectors

(T3Es) for maximal virulence. Xam strain CIO151 possesses 17

predicted T3Es belonging to the Xanthomonas outer protein

(Xop) class. This work aimed to characterize nine Xop effectors

present in Xam CIO151 for their role in virulence and modulation

of plant immunity. Our findings demonstrate the importance of

XopZ, XopX, XopAO1 and AvrBs2 for full virulence, as well as a

redundant function in virulence between XopN and XopQ in sus-

ceptible cassava plants. We tested their role in pathogen-

associated molecular pattern (PAMP)-triggered immunity (PTI)

and effector-triggered immunity (ETI) using heterologous sys-

tems. AvrBs2, XopR and XopAO1 are capable of suppressing PTI.

ETI suppression activity was only detected for XopE4 and

XopAO1. These results demonstrate the overall importance and

diversity in functions of major virulence effectors AvrBs2 and

XopAO1 in Xam during cassava infection.

Keywords: ETI, PTI, type III effectors, virulence, Xanthomonas

axonopodis pv. manihotis.

INTRODUCTION

Cassava (Manihot esculenta) is the third most important source of

calories in the tropics (FAO, 2008; Ospina and Ceballos, 2012).

Cassava production is limited by a variety of plant pathogens that

compromise the food safety of millions of people around the

world (Howeler et al., 2013; Legg et al., 2015; Lopez and Bernal,

2012; Patil et al., 2015). Xanthomonas axonopodis pv. manihotis

(Xam), the causal agent of cassava bacterial blight (CBB), gener-

ates losses of up to 100% under appropriate climatic conditions

(Lozano and Sequeira, 1974). This disease threatens food security

in the tropics, where cassava constitutes a major staple food

(CABI, 2015; FAO, 2008). Rapid dispersal of CBB in some cassava

production regions (Joseph and Elango, 1991) and new disease

reports in regions in which cassava is a staple crop (Kone et al.,

2015; Wonni et al., 2014) underscore the importance of finding

new ways to manage this plant disease (Lopez and Bernal, 2012).

The management of this, as well as other, plant diseases would

greatly benefit from a comprehensive knowledge of pathogen

population dynamics and of the genetic bases for virulence in the

pathogen and for resistance/susceptibility in the plant (Dangl

et al., 2013; Li Y et al., 2013). Recent studies reporting the

genomic sequence and identification of pathogenicity genes in

Xam (Arrieta-Ortiz et al., 2013; Bart et al., 2012), as well as those

on the genetic mapping and physical localization of immune-

related gene products, have great potential for the development

of resistant varieties in cassava (Lopez et al., 2007; Soto et al.,

2015). However, a more detailed characterization of pathogenicity

determinants in Xam and resistance genes against CBB in cassava

is needed.

Plants have developed an immune system based on their co-

evolution with microbes (Dodds and Rathjen, 2010). The plant

immune system is composed of two layers: the first involves the

recognition of microbe/pathogen-associated molecular patterns

(MAMPs/PAMPs) by plant pattern recognition receptors (PRRs),

which triggers a moderate defense response, named PAMP-

triggered immunity (PTI) (Zhang and Zhou, 2010; Zipfel, 2014).

PTI is characterized by the production of reactive oxygen species

(ROS), calcium-dependent signalling pathways (Stael et al., 2015),

activation of mitogen-activated protein kinases (MAPKs) (Meng

and Zhang, 2013) and callose deposition at the cell wall (Adam

and Somerville, 1996). However, successful pathogens have
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developed strategies to evade PTI and cause disease. Their mech-

anisms include the secretion and translocation of effector proteins,

resulting in effector-triggered susceptibility (ETS) (Jones and

Dangl, 2006). In turn, plants have evolved a second layer of

immunity, expressing NOD-like receptors (NLRs), classically known

as resistance proteins. NLRs are mostly intracellular receptors that

directly or indirectly recognize effectors, leading to a robust

defence response, named effector-triggered immunity (ETI) (Cui

et al., 2015). ETI is characterized by ROS production (Torres et al.,

2006), activation of the MAPK cascade (Meng and Zhang, 2013;

Teper et al., 2015) and a form of programmed cell death called

the hypersensitive response (HR) (Coll et al., 2011). Bacteria can,

in turn, use additional strategies to overcome ETI (Swords et al.,

1996). Hence, PTI, ETS and ETI, the result of co-evolution between

plants and microbes, are the main determinants of the output of a

given infection.

In plant pathogenic bacteria, type III effectors (T3Es) play a

crucial role in pathogenicity (Buttner and He, 2009). T3Es are

translocated into the plant cytosol by the type III secretion system

(T3SS); once inside the cell, they manipulate the plant cell to

favour bacterial growth (Chen et al., 2010; Grant et al., 2006).

T3Es can be grouped into different families based on their bio-

chemical function. A family of T3Es in Xanthomonas species,

called transcription-activator like effectors (TALEs), are DNA-

binding proteins that act as transcriptional activators of plant

genes (Boch and Bonas, 2010). These plant genes include sugar

transporters, which are hypothesized to provide increased levels

of sucrose for pathogen growth (Chen et al., 2010; Zhou et al.,

2015), as well as transcription factors that globally regulate physi-

ological processes in the plant cell (Hu et al., 2016; Kay et al.,

2007). Another diverse group of effectors comprises the Xantho-

monas outer proteins (Xops). Xop effectors play a major role in

the modulation of PTI and ETI (Schulze et al., 2012; Stork et al.,

2015; Taylor et al., 2012). Xops may carry out these functions by

acting as enzymes, including E3 ubiquitin ligases (Singer et al.,

2013), small ubiquitin-like modifier (SUMO) proteases (Hotson

et al., 2003; Roden et al., 2004) and uridyl transferases (Feng

et al., 2012). In addition, they may carry out their functions in a

non-enzymatic manner.

In Xam, previous work has focused on the population dynam-

ics (Restrepo et al., 2004; Trujillo et al., 2014a,b), strain character-

ization in cassava cultivars (Restrepo et al., 2000; Wydra et al.,

2004) and the mapping of expressed sequence tags (ESTs) associ-

ated with resistance (Lopez et al., 2004, 2007). However, the

identification of Xam pathogenicity factors is an important step

towards the development of new strategies against CBB. Studies

characterizing pathogenicity factors in Xam have revealed TALE1-

Xam as a crucial virulence factor (Castiblanco et al., 2013), which

induces transcriptional changes in cassava (Munoz-Bodnar et al.,

2014). In addition, TALE20Xam668 acts as a gene activator for the

sugar transporter MeSWEET10 (Cohn et al., 2014) and TALE14-

Xam668 promotes virulence in Xam668 (Cohn et al., 2015). These

studies have revealed the functional relevance of TALEs in the vir-

ulence of Xam. However, very little is known about the role of

Xop effectors in Xam, especially when compared with homologues

in other pathosystems.

The repertoire of Xop effectors from Xam has been reported in

the reference strain CIO151 (Arrieta-Ortiz et al., 2013). In addition,

sequencing of 65 Xam genomes has allowed the identification of

core T3Es among Xam strains from diverse geographical and tem-

poral origins (Bart et al., 2012). In this work, we studied the impor-

tance of nine of the 17 Xam T3Es to assess their role in virulence

and plant immunity. The T3Es studied here cover two core (xopN

and xopV) and seven non-core (avrBs2, xopX, xopQ, xopZ, xopAO1,

xopR and xopE4) T3Es. Our findings reveal that four T3Es (XopZ,

XopX, XopAO1 and AvrBs2) are important for full virulence when

single mutants are evaluated. A redundant effect in virulence was

seen between xopN and xopQ. Three T3Es (XopR, AvrBs2 and

XopAO1) were able to suppress PTI and two (XopE4 and XopAO1)

were able to suppress ETI. Altogether, these results are useful for

our understanding of the molecular mechanisms of disease and to

help guide the development of cassava varieties resistant to CBB.

RESULTS

Four different effectors are important for full

virulence in Xam strain CIO151

To determine the role of Xam T3Es in virulence, T3E knockout

(KO) mutants were generated and their ability to cause disease in

cassava was evaluated. We were able to mutate two core (xopN

and xopV) and seven non-core (avrBs2, xopX, xopQ, xopZ,

xopAO1, xopR and xopE4) T3Es in Xam CIO151 (Arrieta-Ortiz

et al., 2013). We used pK18mobsacB to produce unmarked dele-

tions of T3Es in this strain. Subsequently, the ability of these KO

mutant strains to produce symptoms in leaves of cassava (cultivar

MCOL2215) was evaluated. Leaves were inoculated by the perfo-

ration and drop method (Restrepo et al., 2000). Characteristic

Xam lesions, evidenced by chlorosis and necrosis surrounding the

inoculation area, were detected in all strains. We measured the

lesion area caused by each strain at 15 days post-infiltration (dpi)

(Fig. 1A,B). The wild-type strain caused chlorosis, water-soaking

and necrotic symptoms typical of CBB. The disease symptoms

caused by strains with KOs in genes xopR, xopQ, xopE4, xopN

and xopV were similar to those caused by the wild-type strain

(Fig. 1A,B), suggesting that these genes are either dispensable for

maximal virulence of this strain or that there is functional redun-

dancy with other T3Es. However, KO strains for the T3Es xopAO1,

xopX, xopZ and avrBs2 in Xam CIO151 showed a reduction in vir-

ulence compared with the wild-type strain, suggesting that these

T3Es are important for maximal symptom development.
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To determine whether these changes in symptom development

were reflected in the ability of the pathogen to grow in planta,

the KO strains were inoculated by leaf infiltration of a bacterial

suspension and bacterial growth was measured at 0 and 5 dpi in

cassava MCOL2215 by dilution plating. Strains with KOs in xopX

and avrBs2 reached more than one log unit lower populations

Fig. 1 Role of type III effectors (T3Es) from Xanthomonas axonopodis pv. manihotis (Xam) strain CIO151 in virulence on susceptible cassava plants. (A) Lesions

caused by different knockout (KO) mutants of T3Es in cassava leaves. (B) Quantification of the lesions caused by different KO mutants of Xam CIO151. Values

represent the lesion area in per cent with respect to the wild-type CIO151. DhrpX is a type III secretion mutant (used as negative control). (C) Bacterial growth

in planta in colony-forming units (CFU)/0.5 cm2 of plant tissue at 5 days post-infiltration (dpi) (log10 CFU at 5 dpi). (D) Lesions caused by KO mutants in individual

T3Es which showed a role in virulence and were transformed with the corresponding T3E gene. Leaf fragments of all strains that showed a difference in (A) and the

corresponding complementation strains using vector pBBR1-MCS5. Error bars for (B) and (C) correspond to 61 standard deviation (SD). Different letters in (B) and

(C) show significant differences when analysed with Tukey’s honestly significant difference (HSD) test (a 5 0.05).

Role of type III effectors from Xam 595
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than those observed for the wild-type strain (Fig. 1C). A smaller

but statistically significant difference was observed for strains

with KO in xopAO1 and xopZ when compared with the wild-type

strain CIO151 [Tukey’s honestly significant difference (HSD) test

(a 5 0.05)]. These data suggest that these four T3Es are required

for full growth of Xam in a susceptible cassava cultivar.

To confirm that the changes in the virulence of the KO strains

were caused by the deletion in the targeted T3E gene, we trans-

formed each KO strain with the broad-host-range vector

pBBR1MCS5 (Kovach et al., 1995) containing the corresponding

wild-type T3E gene under the lac promoter. A statistically signifi-

cant growth increase was observed in the transformed xopX and

xopAO1 strains with respect to the KO strains (Fig. 1C). The xopZ

KO strain was complemented in its ability to cause symptoms

(Fig. S1A, D, see Supporting Information), and a small but not

statistically significant difference was observed in the growth of

the pathogen in planta (Fig. 1C). However, the avrBs2 KO strain

was only partially complemented in its ability to cause symptoms

and to grow in planta (Figs 1C, D and S1B). This could be a result

of the use of a strong promoter or high copy number, which, in

other systems, has been reported to affect the functionality of

effectors (Guttman and Greenberg, 2001). We therefore

attempted complementation with the pCU18-mini-Tn7T-Gm sys-

tem (Choi et al., 2005), which inserts the gene in a neutral chro-

mosomal location, under its native promoter and with one copy

per genome. The introduction of avrBs2 and xopX using this sys-

tem fully rescued the lesser ability of the mutants to grow

in planta (Fig. S2, see Supporting Information).

In other bacteria, T3Es can have redundant functions, where one

could mask the phenotype of a T3E KO strain (Kvitko et al., 2007,

2009). To determine redundancy among T3Es in Xam, we generated

double mutants in T3E genes whose single mutants exhibited no

detectable virulence phenotype, and therefore no apparent role in

virulence. These double KO mutants were inoculated onto cassava

and the lesion areas were measured (Fig. S3, see Supporting Infor-

mation). Strains with double KO in DxopX DxopZ or DxopQ DxopZ

did not show significant differences when compared with the corre-

sponding single KO mutants, suggesting that these gene pairs do

not show redundancy in the virulence of Xam strain CIO151,

although we cannot exclude the possibility that they show redun-

dancy with other untested effectors. The double KO mutant DxopN

DxopQ was less aggressive than its single counterparts (Fig. S3). In

addition, in planta bacterial growth was reduced at 5 dpi in the dou-

ble KO mutant DxopN DxopQ (Fig. 2B) with respect to Xam

CIO151 and individual KO strains DxopN or DxopQ. Finally, we

observed complementation of double KO mutant DxopN DxopQ

when transforming a plasmid copy of XopQ (Fig. 2A,B), which con-

firms that these two T3Es are functionally redundant. Tukey’s HSD

test (a 5 0.05) was carried out to determine significant differences,

and the experiment was performed twice with similar results.

Three Xam effectors are involved in the

suppression of PTI

Many T3Es have been shown to suppress PTI. We therefore tested

whether different Xam T3Es had the ability to suppress PTI by

Fig. 2 Redundant function between type III effectors (T3Es) from Xanthomonas axonopodis pv. manihotis (Xam) strain CIO151. (A) Lesions caused by single and

double knockout (KO) mutants for T3E in Xam. (B) Bacterial growth of double KO DxopN DxopQ vs. single KO in Xam strain CIO151 represented as log10 of bacterial

growth in planta at 5 days post-infiltration (dpi). Error bars are 61 standard deviation (SD) in an experiment with three replicates. Strains with a different letter were

statistically significantly different based on Tukey’s honestly significant difference (HSD) test (a 5 0.05).
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measuring their ability to suppress PAMP-induced callose depo-

sition. To this end, we used Pseudomonas fluorescens 55

(Pf55), a non-pathogenic bacterium capable of eliciting PTI in

Arabidopsis Col-0 plants (Guo et al., 2009). Pf55 harbours a

functional Pseudomonas syringae pv. syringae T3SS in the cos-

mid pLN1965 (Guo et al., 2009). T3Es from Xam CIO151 were

cloned into the plasmid pLN615 and expressed using

Pf55(pLN1965) (Guo et al., 2009). The ability of each Xam T3E

to suppress callose deposition was tested by comparing the

amount of callose deposits induced by Pf55(pLN1965) with

Pf55(pLN1965) strains also expressing individual Xam T3Es

(Fig. 3A). Pf55(pLN1965) induced an average of 300 callose

deposits/mm2 (Fig. 3A, B). Pf55(pLN1965) expressing XopZ,

XopX, XopQ, XopE4 or XopV elicited the formation of similar

amounts of callose deposits in Col-0, suggesting that these

T3Es are not able to suppress PTI under the assayed conditions.

Interestingly, Pf55(pLN1965) also expressing XopR, AvrBs2 or

XopAO1 showed a statistically significant reduction in callose

deposits compared with Pf55(pLN1965) (Fig. 3A, B). These

results suggest that three of the nine Xam CIO151 effectors

tested in this study have the ability to suppress PTI in this heter-

ologous system. XopN was a variable suppressor of callose dep-

osition in that it showed reduction in certain replicates, but not

in others. There was no statistically significant difference

between Pf55 expressing XopN and the strain harbouring the

empty vector, and therefore XopN was not considered as a sup-

pressor of PTI.

Only XopE4 and XopAO1 from Xam CIO151 have the

ability to suppress ETI

We tested whether these Xam T3Es were able to suppress ETI.

Again, the heterologous Pf55 system was used to measure the

ability of T3Es from Xam CIO151 to suppress an HR in Nicotiana

tabacum cv. Xanthi. We used the methodology described by Guo

et al. (2009) with modifications (see Experimental procedures).

Pf55(pHIR11) expressing a functional P. syringae type III system

and the HopA1 T3E elicited a strong HR at 48 h post-inoculation

at two cell densities [1 3 108 and 2 3 107 colony-forming units

(CFU)/mL]. Xam T3Es AvrBs2, XopN, XopQ, XopV, XopR, XopX

and XopZ were unable to suppress the HopA1-induced HR when

these T3Es were individually expressed in Pf55(pHIR11) (Fig. 4),

suggesting that these effectors do not act as ETI suppressors

under the conditions tested in this study. Co-inoculations with

XopE4 showed a variable HR at lower bacterial cell densities

(2 3 107 CFU/mL), suggesting that it is a weak suppressor of ETI.

Leaf tissue inoculated with Pf55(pLN1965) expressing XopAO1

showed no HR even at the highest cell density used. This suggests

that XopAO1 is a strong suppressor of HopA1-induced HR in

tobacco (Fig. 4). These results suggest that XopE4 and XopAO1

are able, at different strengths, to suppress HopA1-induced ETI in

N. tabacum cv. Xanthi.

Guo et al. (2009) suggested a classification for T3Es that are

capable of suppressing HopA1-dependent HR in tobacco at differ-

ent cell densities. In this classification, T3Es that suppress HR at

Fig. 3 Ability of type III effectors (T3Es) from Xanthomonas axonopodis pv. manihotis (Xam) strain CIO151 to suppress pathogen-associated molecular

pattern (PAMP)-triggered immunity (PTI). (A) Representative images of callose deposition in Arabidopsis thaliana ecotype Col-0 leaves infiltrated with

Pseudomonas fluorescens 55 (Pf55)(pLN1965) carrying an empty vector (pML123) or constructs that expressed different T3Es. (B) Average number of callose

deposits per square millimetre. Error bars correspond to 61 standard deviation (SD) in an experiment with 10 replicates. A non-parametric Kruskal–Wallis

test (P < 0.05) was performed to determine significant differences. Different letters correspond to statistically significantly different treatments based on

Dunnett’s test (a 5 0.05).
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high cell densities (1 3 108 cells/mL) are classified as class I; class

II T3Es suppress HR at 2 3 107 cells/mL, and class III suppressors

are variable in their ability to suppress HopA1-dependent HR at

2 3 107 cells/mL. Class IV T3Es are unable to suppress HR at

2 3 107 cells/mL. In our results, XopE4 would be considered as a

class III suppressor, whereas XopAO1 would be classified as a

class I suppressor. Because AvrBs2, XopN, XopQ, XopV, XopR,

XopX and XopZ T3Es were unable to suppress HopA1-induced HR,

they belong to class IV (Fig. 4).

DISCUSSION

Cassava bacterial blight, caused by Xam, is a disease occurring

worldwide in cassava-growing regions. Different mechanisms

have been proposed to control CBB, including cultural practices,

sanitary methods and biological control (Lozano, 1986, Fanou and

Wydra, 2014). However, the use of resistant varieties seems to be

the most efficient method to control CBB (Verdier et al., 2004). In

order to deploy durable resistance, it is important to understand

the population genetics of the pathogen (Restrepo et al., 2004;

Trujillo et al., 2014a,b) and the virulence factors that are crucial

for the pathogen to cause disease (Lopez and Bernal, 2012).

Ideally, for plant breeding approaches, resistance should be tar-

geted against T3Es that are broadly conserved in the pathogen

and that are crucial for bacterial fitness (Boyd et al., 2013). Here,

we have determined the importance of nine different Xam T3Es in

virulence and suppression of plant defence (Table 1). We found

four T3Es individually important for full virulence (XopZ, XopX,

XopAO1 and AvrBs2) and a redundant role in virulence for XopN

and XopQ. We identified three T3Es that suppressed PTI (XopR,

AvrBs2 and XopAO1) and two T3Es (XopE4 and XopAO1) that

suppressed ETI. XopV did not show any role in virulence or sup-

pression of PTI or ETI. However, a redundant function of this T3E

might be uncovered by generating double mutants with other

effectors and by testing other possible roles in the interaction with

plants. These findings will not only help in our understanding of

Xam biology, but will also be the basis for a more effective

deployment of cassava resistant varieties targeting T3Es important

for disease development.

In this study, single, markerless KO strains were generated for

nine T3Es. Our findings demonstrate the importance of four genes

in full virulence: XopZ, XopX, AvrBs2 and XopAO1 (Fig. 1A, B).

The importance of XopX and AvrBs2 in virulence in Xam is sup-

ported by the recent report from Mutka et al. (2016), which was

published during the revision of our manuscript. Our results are

also in agreement with previous reports for other pathosystems.

For example, XopZ is important in virulence for Xanthomonas

Fig. 4 Hypersensitive response (HR) suppression ability of different type III effectors (T3Es) from Xanthomonas axonopodis pv. manihotis (Xam) strain CIO151.

Nicotiana tabacum cv. Xanthi plants were infiltrated on the left side of the leaves with Pseudomonas fluorescens 55 (Pf55) pHIR11 strains carrying an empty vector

(pML123) and, on the right side, with Pf55 pHIR11 mixed with Pf55 strains expressing different T3Es. All infiltrations were performed at cell densities of 1 3 108,

2 3 107, 4 3 106 and 8 3 105 cells/mL (from the top). Leaves were evaluated at 48 h post-inoculation. The experiment was repeated three times with five

biological replicates, each time with similar results.
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oryzae pv. oryzae (Xoo) PXO99, as a KO in both copies of this

gene showed a reduction in virulence and lesion length in rice

(Song and Yang, 2010). The xopX KO in Xanthomonas euvesicato-

ria (Xeu) showed reduced growth and symptom development in

Capsicum annuum (Metz et al., 2005) and Solanum lycopersicum

(Stork et al., 2015), compared with the wild-type. In addition,

AvrBs2 has been reported to be important for virulence in pepper

and rice (Kearney and Staskawicz, 1990; Li et al., 2015). AvrBs2 is

considered to be a core T3E in Xanthomonas spp. and has been

widely proposed as a key target for the development of resistant

varieties in tomato (Horvath et al., 2012), mainly because Bs2

resistance has been maintained over many years of field trials

(Dangl et al., 2013). Finally, Xam T3E XopAO1 has a high identity

(61%) to AvrRpm1. AvrRpm1 is important for virulence in Pseudo-

monas syringae pv. maculicola M2 on susceptible Arabidopsis

accessions (Ritter and Dangl, 1995). The effector XopAO1 is rela-

tively new in the genus Xanthomonas, as it has only been

described in Xam (Arrieta-Ortiz et al., 2013), Xanthomonas gard-

neri (Potnis et al., 2011) and Xanthomonas arboricola pv. pruni

MAFF 301420 (GI:573458294). Deletion of this gene results in a

reduction in the ability to cause symptoms and to grow in planta

in Xam CIO151.

Previous work has described a functional redundancy between

T3Es, and this redundancy has been demonstrated only by poly-

T3E deletions (Cunnac et al., 2009; Kvitko et al., 2007, 2009). In

Pseudomonas syringae pv. phaseolicola, only one of 15 single

effector mutants showed a reduction in virulence (Macho et al.,

2012). Although single KOs of some T3Es in Pseudomonas syrin-

gae pv. tomato result in a reduction in virulence, stronger pheno-

types were observed when poly-mutants were generated (Cunnac

et al., 2011; Kvitko et al., 2009). In Xam, four of nine effectors

showed an important role in virulence, which suggests a lower

redundancy among T3Es. To test for redundant functions among

T3Es in Xam, we produced strains with double deletions in differ-

ent combinations of these genes (Fig. S3). Interestingly, we found

a redundant function in virulence in the double DxopN DxopQ

mutant. XopN has been reported to be an important virulence fac-

tor in other Xanthomonas spp. (Cheong et al., 2013; Jiang et al.,

2008). It interacts with a 14-3-3 (TFT1) protein and with

the Tomato Atypical Receptor-Like Kinase 1 (TARK1) in

S. lycopersicum (Kim et al., 2009). It is interesting that XopN from

Xam CIO151 and from Xeu strain 85-10 are closest in distance by

hierarchical grouping when compared with homologues from

other Xanthomonas spp. (Fig. S4, see Supporting Information).

Moreover, the protein residues (L64, L65 and S688) required for

binding to TFT1 and TARK1 in Xeu XopN (Taylor et al., 2012) are

conserved in XopN from Xam. In a similar manner, XopQ interacts

with the 14-3-3 isoform SlTFT4 from S. lycopersicum (Teper et al.,

2014) and HopQ, a protein homologous to XopQ present

in P. syringae, interacts with 14-3-3 proteins TFT1 and TFT5

Table 1 Summary of type III effectors tested in this study.

Name
Alternative
name* Homologue* iANT code Domains

Role in
virulence‡‡

PTI
suppression‡‡

ETI
suppression‡‡

AvrBs2 XCV0052‡, XAC0076† xanmn_chr02_0062 Glycerophosphoryl diester
phosphodiesterase
(Zhao et al., 2011)

Yes Yes No

XopR XCV0285‡, XAC0277† xanmn_chr02_0199 CC-like motif
(Akimoto-Tomiyama
et al., 2012)

No Yes No

XopX XCV0572‡ xanmn_chr03_0215 No Yes No No
XopV XCV0657‡, XAC0601† xanmn_chr03_0302 No No No No
XopZ HopAS1 XCV2059‡, XAC2009† xanmn_chr06_0393 SMC domain** Yes No No
XopAO1§ Xg and Xap¶ xanmn_chr06_5019 Poly(ADP-ribosyl)

polymerase**
Yes Yes Yes

XopN HopAU XCV2944‡, XAC2786† xanmn_chr09_5006 No Yes§§ No No
XopQ HopQ XCV4438‡, XAC4333† xanmn_chr15_5505 No Yes§§ No No
XopE4 HopX

(AvrPphE)
xanmn_pla04_0019 Myristoylation††

(Thieme et al., 2007)
No No Yes

*Data taken from Xanthomonas.org.

†Homologue in Xanthomonas axonopodis pv. citri Xac.

‡Homologue in Xanthomonas euvesicatoria (Xeu).

§There is another copy of XopAO, named XopAO2, in Xanthomonas axonopodis pv. manihotis (Xam) strain CIO151.

¶Present in Xanthomonas gardneri (Xp) and Xanthomonas arboricola pv. pruni (Xap) MAFF 301420.

**Not evaluated experimentally.

††Myristoylation signal predicted by http://mendel.imp.ac.at/myristate/SUPLpredictor.htm.

‡‡Data obtained in this work.

§§Role in virulence with redundant effect.
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(Li W et al., 2013). 14-3-3s constitute a protein family with phos-

phobinding domains (Chevalier et al., 2009), involved in diverse

metabolic processes (Cotelle and Leonhardt, 2015; Denison et al.,

2011), including plant defence (Lozano-Duran and Robatzek,

2015). A BLAST search for tomato 14-3-3 proteins in the cassava

genome (https://phytozome.jgi.doe.gov) retrieved 21 results. The

best reciprocal hit with TFT1 was Manes.18G060900.1, with

86.7% identity and 97.6% similarity. It is possible that TFT1 is the

target of both XopN and XopQ from Xam, explaining the redun-

dancy in virulence observed in our experiments. Interestingly,

xopN is a core effector gene in Xam, conserved in 65 genomes

sequenced with different geographical and temporal origins (Bart

et al., 2012). xopQ, however, although present in most genomes,

is a pseudogene in 8% of the genomes examined. This might

have occurred because of the presence of xopN, which could fulfil

the same function in a more efficient manner. Alternatively, but

not exclusively, XopQ might be recognized by NLRs present in cas-

sava populations, therefore exerting a negative selection pressure

on strains expressing it.

The main virulence role demonstrated for T3Es in plant-

pathogenic bacteria is the suppression of plant immunity (White

et al., 2009). We have identified XopAO1, XopR and AvrBs2 from

Xam as suppressors of PTI, measured by the suppression of cal-

lose deposition. We have also identified XopE4 and XopAO1 as

suppressors of ETI, measured by the suppression of HopA1-

elicited HR. These results are in agreement with previous reports

in other pathosystems. For example, XopR from Xoo has previ-

ously been shown to be important in the suppression of PTI in

Arabidopsis (Akimoto-Tomiyama et al., 2012), and AvrBs2 from

Xanthomonas oryzae pv. oryzicola suppresses the expression of

genes related to PTI in rice (Li et al., 2015). However, this is the

first report of XopAO1 in Xanthomonas as a PTI suppressor, and it

would be interesting to determine whether this is the case in

X. gardneri or X. arboricola pv. pruni. We hypothesize that the

major virulence role of XopAO1 and AvrBs2 from Xam is a result

of their ability to suppress ETI and/or PTI. However, their targets

and activities in cassava cells are unknown. T3Es suppressing

both PTI and ETI have been reported previously (Guo et al., 2009;

Schulze et al., 2012). This could be a result of T3Es targeting

shared components in both layers of plant immunity (Thomma

et al., 2011). Finally, the plant immune system is considered to be

a co-evolutionary process in which PTI appears as a first defence

layer and ETI as a second defence layer (Jones and Dangl, 2006).

Therefore, it is most common to find T3Es that suppress PTI, e.g.

XopAO1, XopR and AvrBs2. However, there are only a few cases

of T3Es suppressing ETI without affecting PTI. One is HopD1

(Block et al., 2014), which has been proposed as ‘new’ or more

recently acquired in the co-evolutionary process because of its

ability to exclusively suppress ETI. XopE4 from Xam falls in the

same category, and it is therefore possible that it is a more

recently acquired effector in the co-evolution between Xanthomo-

nas and plants. XopE4 has an N-terminal myristoylation motif

(Thieme et al., 2007). It would be interesting to determine

whether this motif is required for its ability to suppress HR.

Our results show that several Xam T3Es do not have a detecta-

ble role in PTI or ETI suppression, at least under the conditions

tested in this report. These are XopZ, XopN, XopQ, XopV and

XopX. Previous reports have shown that XopN from Xeu reduces

callose deposition in Arabidopsis (Kim et al., 2009); however, a

different system to test callose suppression was used (P. syringae

pv. tomato DC3000 DCEL). This strain still expresses a few T3Es

that might help to suppress PTI. It is possible that, with these sup-

pressors, a weak suppressor like Xam XopN (Fig. 3) could become

detectable. Conversely, some effectors of Xam may be poorly

translocated by the T3SS of P. syringae pv. syringae 61 used here.

A previous report has confirmed the secretion of TALEs from Xan-

thomonas by the P. syringae T3SS inserted in Pf55 (Fujikawa

et al., 2006), suggesting that divergence in the two systems does

not preclude the secretion of Xanthomonas effectors. In addition,

a few effectors had a measurable outcome on plant tissues both

in the present study and that of Fujikawa et al. (2006), which is

indicative of a functional translocation of Xanthomonas effectors

by this heterologous system. However, further confirmation of the

secretion of effectors that were negative for both PTI and ETI sup-

pression should be performed in order to rule out this possibility.

Another apparent discrepancy with previous studies was

observed with XopZ. XopZ of Xoo PXO99 causes a reduction in

callose deposition in Nicotiana benthamiana (Song and Yang,

2010); however, this difference could be caused by the use of dif-

ferent host plants or the divergence between these two XopZ

homologues (81.4% identity). It has been proposed that effectors

co-evolve with their targets (Win et al., 2007). Hence, it is possible

that the inability of several Xam T3Es to suppress HR in tobacco is

because these proteins cannot effectively act on their targets in

this plant as a result of sequence and, possibly, structural diver-

gence from those present in cassava. Sequences of Xam effectors

show some divergence from those reported in other Xanthomonas

species, although it would be difficult to quantify the effects that

this divergence might have in their functionality in a heterologous

system.

XopAO1 is an important T3E for Xam virulence in cassava and

for the suppression of PTI and ETI. This effector has only been

found in X. gardneri, X. arboricola pv. pruni and Xam so far, and it

has a high identity with AvrRpm1 (Potnis et al., 2011). AvrRpm1

possesses a catalytic triad (H63, Y122, N185) at the poly(ADP-

ribosyl) polymerase (PARP) domain, which is important for its role

in virulence and activation of the resistance protein RPM1 (Cherkis

et al., 2012). A multiple sequence alignment using diverse

AvrRpm1 and XopAO1 amino acid sequences shows that they

share a catalytic triad in the PARP domain, suggesting a functional
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homology (data not shown). In plants, PARPs are involved in dif-

ferent responses in biotic and abiotic stress, and the maintenance

of homeostasis (Briggs and Bent, 2011). The PARP catalytic

domain binds NAD1 and shares homology with mono-ADP ribosy-

lating toxins, such as exotoxinA and diphtheria toxin (Cherkis

et al., 2012; Gibson and Kraus, 2012). XopAO1 was able to sup-

press a HopA1-dependent HR at 1 3 108 CFU/mL in a consistent

manner. Accordingly, we classified this T3E as a class I suppressor.

Similarly, P. syringae AvrRpm1 was classified in previous reports

as a class I suppressor (Guo et al., 2009). Both XopAO1 and

AvrRpm1 are able to suppress HR elicited by HopA1. HR suppres-

sion by AvrRpm1 is non-specific (Reuber and Ausubel, 1996);

therefore, it is probable that AvrRpm1 and XopAO1 act as general

suppressors of HR, probably targeting conserved components of

NLR signalling.

AvrBs2 has been shown to be important in bacterial viru-

lence and PTI suppression in Xam. However, avrBs2 is not con-

sidered to be a core T3E gene in Xam (Bart et al., 2012)

because of a premature stop codon in one strain out of 65.

Nonetheless, in all 65 Xam strains sequenced, avrBs2 shares a

high nucleotide identity (>99%). Therefore, among the effec-

tors studied in this report, AvrBs2 may represent a good target

for the generation of resistant cassava varieties, because it is

conserved and is important for bacterial virulence. Moreover,

AvrBs2 is a conserved effector in Xanthomonas spp. (Hajri

et al., 2009) (i.e. it is present in almost all pathovars; Roux

et al., 2015). Therefore, transforming Bs2 from solanaceous

plants into cassava may lead to durable resistance, if other

components required for this resistance are present in cassava.

Hierarchical clustering shows that AvrBs2 of Xam strain CIO151

is more closely related to AvrBs2 proteins of Xanthomonas

translucens and Xanthomonas axonopodis pv. glycines than to

phylogenetically closer strains, such as Xeu strain 85-10

(Fig. S5, see Supporting Information). Moreover, the catalytic

sites E304, D306 and H319 for the glycerophosphoryl diester

phosphodiesterase domain (GDE) (Zhao et al., 2011) is fully

conserved among different AvrBs2 homologues in Xanthomo-

nas spp., including Xam strains (CIO151, Xam668, CFBP 1851

and IBSBF 2539). However, two residues involved in the activa-

tion of Bs2 (Gassmann et al., 2000) are not fully conserved in

AvrBs2 from Xam strains: all sequenced Xam strains show

mutations R403Q and A410T, which have been reported in Xeu

to disrupt AvrBs2 recognition by Bs2. This, and the premature

stop codon present in one of the surveyed strains (Bart et al.,

2012), could suggest a mechanism to avoid recognition by

potential R genes in cassava. Therefore, it would be desirable

to evaluate the efficiency of Bs2 resistance in cassava. How-

ever, because it is well known that AvrBs2 variants arise in

nature which render the Bs2–AvrBs2 reaction compatible, it

would be important to pyramid this with other sources of resist-

ance to ensure durability in the field.

Among the nine evaluated T3Es, XopV did not appear to have

an important role in virulence, PTI or ETI suppression. Interest-

ingly, XopV is a core Xam T3E present in all 65 sequenced strains

(Bart et al., 2012), which suggests that this T3E is important for

bacterial fitness. This observation underscores the importance of

experimental testing of bacterial fitness to determine which effec-

tors are desirable as targets for the generation of resistant cassava

varieties. It is possible that XopV has a redundant function in viru-

lence with other T3Es from Xam CIO151, as observed for XopN

and XopQ. It would therefore be important to test redundancy in

virulence with other T3Es or other virulence factors. In addition, it

would be desirable to test for ETI suppression using other elicitors

(Teper et al., 2015). However, it is also possible that T3Es function

in roles other than the suppression of plant immunity, which were

not explored in our study. These may include the modulation of

nutrient metabolism, hormone signalling or pathogen dissemina-

tion between plants (Macho, 2016).

Our work highlights the importance of eight T3Es in cassava

virulence and suppression of plant immunity. This new knowledge

in T3E biology will shed light on efforts to develop new durable

resistance to CBB directed towards T3Es with roles in plant immu-

nity. Efforts should be focused on the identification and use of

NLRs activated by T3Es that are important for bacterial fitness

(Boyd et al., 2013; Dangl et al., 2013). A recent study has identi-

fied 1061 proteins as the repertoire of immune-related proteins

(IRPs) in the cassava genome, including TIR-NB-ARC-LRR (Toll/

interleukin-1 receptor, nucleotide-binding domain, Apaf-1, R pro-

tein and CED-4), NB-ARC-LRR or NB-ARC (Soto et al., 2015). It

would be interesting to define whether some of these proteins

recognize, directly or indirectly, AvrBs2, XopZ, XopAO1 or XopX,

and whether this might be the basis for quantitative resistance

observed for some cultivars. Although it would be desirable to

test the importance of other effectors in fitness under other condi-

tions (field cultivation, for example), the knowledge generated on

T3Es in Xam could be used to assess the cassava genetic diversity

to search for cassava cultivars or wild species with the ability to

recognize these T3Es. These corresponding genes could be subse-

quently introgressed into commercial varieties in order to develop

durable resistance to CBB in cassava.

EXPERIMENTAL PROCEDURES

Bacterial strains and plant growth conditions

The bacterial strains and plasmids used in this study are listed in Table S1

(see Supporting Information). Escherichia coli was grown in Luria–Bertani

(LB) medium; Xam was grown in LPGA solid medium (yeast extract, 5 g/L;

bacto peptone, 5 g/L; glucose, 5 g/L; agar-agar, 15 g/L) and Phi (A) broth

(yeast extract, 1 g/L; bacto peptone, 10 g/L; casamino acids, 1 g/L). Pseu-

domonas fluorescens 55 (Pf 55) was grown in King’s B (KB) medium. Anti-

biotics were added to the media, when pertinent, in the following

concentrations: rifampicin, 100 mg/mL; kanamycin, 50 mg/mL; gentamicin,
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15 mg/mL; tetracycline, 15 mg/mL; nalidixic acid, 100 mg/mL. Sucrose at

5% was used for selection of double recombinants. Virulence assays were

performed on 2-month-old cassava plants, cultivar MCOL2215, grown in a

glasshouse at 20–30 �C under a 12-h photoperiod. Callose suppression

assays were performed on 8-week-old Arabidopsis thaliana Col-0 ecotype

grown at 20–22 8C under a 9-h photoperiod. Assays for the suppression

of HR were performed on 10-week-old N. tabacum cv. Xanthi plants

grown at 24 8C under a 16-h photoperiod.

Cloning procedures

Deletions in T3E genes in Xam strain CIO151 were made using double

crossing over in the suicide plasmid pK18mobsacB (Dodds and Rathjen,

2010; Kvitko et al., 2009). Briefly, a 1-kb flanking region on both sides of

each T3E gene was cloned in the suicide vector pK18mobsacB (Table S2,

see Supporting Information). Xam was conjugated using triparental mat-

ing and the exconjugants were selected by crossing over events, as

described previously (Kvitko et al., 2009). Xam transformants were con-

firmed using polymerase chain reaction (PCR) screening with primers

flanking the deletion site and then sequencing to validate the T3E gene

deletion.

Sequences of the T3E genes were extracted from the iANT database

(http://iant.toulouse.inra.fr/bacteria/annotation/cgi/xanmn/xanmn.cgi). T3E

gene sequences were amplified under standard PCR conditions using Pfx

polymerase and were cloned directionally in pENTR/SD/D-TOPO, following

the manufacturer’s instructions. Clones were confirmed by PCR, restriction

digestions and sequencing. T3Es were subcloned into the destination vec-

tor pLN615 for callose deposition and HR assays (Table S1) using a Gate-

way LR reaction. Sequences of destination vector inserts were confirmed

and then transformed in Pf 55(pLN1965). T3E genes were cloned into the

broad-host-range vector pBBR1MCS5 under the control of the lac pro-

moter for complementation assays. The resulting constructs were trans-

formed by electroporation into Xam mutant strains. In cases in which

complementation was partial, T3E genes were amplified with their native

promoter using primers 150 bp upstream of the start codon and 100 bp

downstream of the stop codon. The T3Es were then cloned into the plas-

mid pUC18-mini-Tn7T-Gm (Choi and Schweizer, 2006) and transformed

into bacterial mutants.

Virulence assays

As a first measure of virulence, Xam T3E mutants were inoculated to

record the ability to cause symptoms in cassava cultivar MCOL2215 under

glasshouse conditions, as described previously (Restrepo et al., 2000).

Cassava leaves of five plants were inoculated by placing a 10-mL drop of

a bacterial suspension of 1 3 108 CFU/mL [optical density at 600 nm

(OD600) 5 0.1] in a 2-mm-diameter hole. Leaf photographs were taken in

a Carl Zeiss (Oberkochen, Germany) StemiTM DV4 Series Stereomicroscope

with transmitted light. To quantify the lesion area, typical Xam symptoms,

such as necrosis and chlorosis around the inoculation point, were consid-

ered. Lesions from eight leaves per treatment were measured at 15 dpi

using the software Fiji (Schindelin et al., 2012) and the data were plotted.

Tukey’s HSD tests (a 5 0.05) were performed. Experiments were per-

formed three times showing similar results.

A second measure of virulence was the bacterial growth in cassava

cultivar MCOL2215. For this, bacterial suspensions were infiltrated with

1 3 107 CFU/mL in 10 mM MgCl2 (OD600 5 0.01), as described previously

(Bart et al., 2012). The leaves of three different plants were infiltrated and

bacterial growth was tested at 0 and 5 dpi. A 0.5-cm2 leaf fragment was

ground in 10 mM MgCl2 and serial dilutions were plated on LPGA to esti-

mate the bacterial count. The bacterial titre at day 0 did not differ among

treatments. Tukey’s HSD test (a 5 0.05) was performed. All reported

experiments were performed three times showing similar results.

Assay for the suppression of callose deposition

Callose deposition was assessed using previously described methods (Guo

et al., 2009; Jamir et al., 2004). Briefly, each T3E gene from Xam CIO151

was cloned into the broad-host-range vector pLN615, a derivative from

pML123 (Labes et al., 1990). The resulting clone was transformed by elec-

troporation into Pf55(pLN1965). Arabidopsis leaves were inoculated with

Pf55(pLN1965) expressing Xam T3Es at OD600 5 0.01 (1 3 106 CFU),

and the leaves were collected at 16 h post-infiltration (hpi). We used

Pf55(pLN1965) transformed with pML123 empty vector as a positive con-

trol for the induction of callose deposition. Leaves were cleared with a lac-

tophenol alcoholic solution (1 vol of distilled water, lactic acid, phenol and

glycerol and 2 vol of ethanol) (Adam and Somerville, 1996). Samples were

subsequently boiled at 95 8C for 10 min and rinsed in a 50% ethanol and

water solution (McDowell et al., 2011). Cleared leaves were stained with

0.01% (w/v) aniline blue in a 150 mM K2HPO4 solution, pH 9.5, for

30 min. Leaf sections were captured in 103 fluorescence microscopy

(Nikon Ti, Minato, Tokyo, Japan), and callose deposits were measured

using the software Fiji (Schindelin et al., 2012). Graphic-derived data were

manually curated. Ten fields were observed per infiltrated leaf and three

leaves were observed per treatment. Experiments were repeated three

times. Because data did not show a normal distribution, Kruskal–Wallis

and Dunnett tests (P < 0.05) were performed to determine significant

differences.

Assay for the suppression of HR

We used a modified HR assay from Guo et al. (2009). Briefly, we used

Pf55 expressing the pHIR11 cosmid (Huang et al., 1988) harbouring T3SS

from P. syringae and the effector HopA1 from P. syringae pv. syringae 61,

which elicits an HR in N. tabacum cv. Xanthi. Pf55(pHIR11) and

Pf55(pLN1965) expressing individual T3Es were resuspended at

2 3 108 CFU/mL in 5 mM MES (morpholineethanesulfonic acid), pH 5.6.

Equal amounts of both strains were mixed and three five-fold serial dilu-

tions were performed (1 3 108, 2 3 107, 4 3 106 and 8 3 105 CFU/mL).

Each dilution was infiltrated into N. tabacum cv. Xanthi leaves including

the control vector: Pf55(pHIR11, pML123) co-inoculated with

Pf55(pLN1965, pML123). Each T3E was inoculated in five biological repli-

cates, with three experiments at different times to assess the ability to

suppress HopA1-induced HR. The HR was recorded 48 h after infiltration.
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Fig. S1 (A) Lesion area (mm2) of xopZ knockout (KO) and com-

plemented strains. (B) Lesion area (mm2) of mutant and com-

plemented strains of xopX, xopAO1 and avrBs2. Error bars

correspond to 61 standard error (SE) in an experiment with

five replicates. Strains with a different letter are statistically

significantly different based on Tukey’s honestly significant dif-

ference (HSD) test (a 5 0.05).

Fig. S2 Bacterial growth at 5 days post-infiltration (dpi) of

knockout (KO) strains in avrBs2 and xopX and corresponding

strains complemented with the Tn7 system. Values represent

log10 of colony-forming units (CFU) and error bars are 61

standard deviation (SD) in an experiment with three replicates.

Strains with different letters were statistically significantly dif-

ferent based on Tukey’s honestly significant difference (HSD)

test (a 5 0.05).

Fig. S3 Lesion area (mm2) of different single, double and triple

knockouts (KOs).

Fig. S4 Alignment and hierarchical clustering of XopN proteins.

Amino acid sequences were obtained from the National Center

for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.

gov/protein/) and iANT (http://iant.toulouse.inra.fr/bacteria/anno-

tation/cgi/xanmn/xanmn.cgi), and were aligned using MUSCLE

with default parameters. Numbers at the top right indicate

amino acid positions. Hierarchical clustering of full-length amino

acid sequences of type III effectors (T3Es) was conducted with

MEGA 7.1 (Kumar et al., 2016) using the neighbour-joining
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method (Saitou and Nei, 1987), assuming a Poisson substitution

model and uniform rates among sites. Pairwise deletion was

used to handle sequence gaps, and 1000 bootstrap replicates

were performed. Sequences analysed for XopN are:

gi|549145689, gi|374351730, gi|78036930, xanmn_chr09_5006,

gi|409033098, gi|353460308 and gi|345294984.

Fig. S5 Hierarchical clustering of AvrBs2 proteins and consensus

positions between amino acid sequences. Amino acid sequences

were obtained from the National Center for Biotechnology Infor-

mation (NCBI) (http://www.ncbi.nlm.nih.gov/protein/) and iANT

(http://iant.toulouse.inra.fr/bacteria/annotation/cgi/xanmn/xanmn.

cgi), and were aligned using MUSCLE with default parameters.

Amino acid positions are numbered at the top based on Xan-

thomonas euvesicatoria strain 85-10. Hierarchical clustering of

full-length amino acid sequences of type III effectors (T3Es) was

conducted with MEGA 7.1 (Kumar et al., 2016) using the

neighbour-joining method (Saitou and Nei, 1987), assuming a

Poisson substitution model and uniform rates among sites. Pair-

wise deletion was used to handle sequence gaps, and 1000

bootstrap replicates were performed. Different colours represent

different groups of AvrBs2. Sequences analysed for AvrBs2 are:

gi|565804782, gi|564594007, gi|325546470, gi|325535564,

gi|573459684, gi|410719447, gi|21110996, gi|917793134,

gi|582989392, xanmn_chr02_0062, gi|422794743,

gi|440370775, gi|917801111, gi|917796707, gi|353460121,

gi|188518881, gi|549144016, gi|325542792, gi|346647736,

gi|4206159, gi|78034038, gi|292603865, gi|644957664,

gi|372554024 and gi|780547033.

Table S1 Bacterial strains and plasmids used in this study.

Table S2 Primers used in this study.
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