
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Nutrition and Health Sciences -- Faculty 
Publications Nutrition and Health Sciences, Department of 

9-18-2019 

Sex-specific relationships among iron status biomarkers, athletic Sex-specific relationships among iron status biomarkers, athletic 

performance, maturity, and dietary intakes in pre-adolescent and performance, maturity, and dietary intakes in pre-adolescent and 

adolescent athletes adolescent athletes 

Marni E. Shoemaker 
University of Nebraska-Lincoln 

Zachary M. Gillen 
University of Nebraska-Lincoln 

Brianna D. Mckay 
University of Nebraska-Lincoln 

Nicholas A. Bohannon 
University of Nebraska-Lincoln 

Sydney M. Gibson 
University of Nebraska-Lincoln 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unl.edu/nutritionfacpub 

 Part of the Human and Clinical Nutrition Commons, Molecular, Genetic, and Biochemical Nutrition 

Commons, and the Other Nutrition Commons 

Shoemaker, Marni E.; Gillen, Zachary M.; Mckay, Brianna D.; Bohannon, Nicholas A.; Gibson, Sydney M.; 
Koehler, Karsten; and Cramer, Joel T., "Sex-specific relationships among iron status biomarkers, athletic 
performance, maturity, and dietary intakes in pre-adolescent and adolescent athletes" (2019). Nutrition 
and Health Sciences -- Faculty Publications. 210. 
https://digitalcommons.unl.edu/nutritionfacpub/210 

This Article is brought to you for free and open access by the Nutrition and Health Sciences, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nutrition and Health 
Sciences -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/nutritionfacpub
https://digitalcommons.unl.edu/nutritionfacpub
https://digitalcommons.unl.edu/nutrition_healthsci
https://digitalcommons.unl.edu/nutritionfacpub?utm_source=digitalcommons.unl.edu%2Fnutritionfacpub%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/97?utm_source=digitalcommons.unl.edu%2Fnutritionfacpub%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/99?utm_source=digitalcommons.unl.edu%2Fnutritionfacpub%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/99?utm_source=digitalcommons.unl.edu%2Fnutritionfacpub%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/101?utm_source=digitalcommons.unl.edu%2Fnutritionfacpub%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/nutritionfacpub/210?utm_source=digitalcommons.unl.edu%2Fnutritionfacpub%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Marni E. Shoemaker, Zachary M. Gillen, Brianna D. Mckay, Nicholas A. Bohannon, Sydney M. Gibson, 
Karsten Koehler, and Joel T. Cramer 

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/
nutritionfacpub/210 

https://digitalcommons.unl.edu/nutritionfacpub/210
https://digitalcommons.unl.edu/nutritionfacpub/210


RESEARCH ARTICLE Open Access

Sex-specific relationships among iron status
biomarkers, athletic performance, maturity,
and dietary intakes in pre-adolescent and
adolescent athletes
Marni E. Shoemaker, Zachary M. Gillen, Brianna D. Mckay, Nicholas A. Bohannon, Sydney M. Gibson,
Karsten Koehler and Joel T. Cramer*

Abstract

Background: The purpose of this study was to examine relationships among biomarkers of iron status, athletic
performance, growth and development, and dietary intakes in pre-adolescent and adolescent male and female
athletes.

Methods: Two-hundred and forty-nine male (n = 179) (mean ± standard deviation for age = 12.0 ± 2.1 years,
height = 156.3 ± 13.9 cm, and weight = 49.1 ± 16.5 kg) and female (n = 70) (12.0 ± 2.2 years, 152.4 ± 12.3 cm,
45.3 ± 14.5 kg) athletes volunteered for capillary blood sample, anthropometric, athletic performance, and
dietary intake assessments. Outcomes included maturity offset from peak height velocity, percent body fat,
estimated muscle cross-sectional areas, vertical jump height (VJ), broad jump distance (BJ), pro-agility time (PA),
L-cone time, 20-yard dash time (20YD), power push up (PPU) force, dietary intakes, and ferritin, soluble
transferrin receptor (sTfR), and hemoglobin (Hb) concentrations.

Results: Athletic performance was consistently correlated with Hb in males (r = .237–.375, p < 0.001–0.05) and
with sTfR (r = .521–.649, p < 0.001–0.004) and iron intake (r = .397–.568, p = 0.001–0.027) in females. There were
no relationships between dietary intakes and ferritin, sTfR, or Hb (p > 0.05). After partialing out age and height,
VJ, PA, LC, and 20YD remained correlated with Hb in males (|rHb,y.Age| = .208–.322, p = 0.001–0.041;
|rHb,y.Height| = .211–.321, p = 0.001–0.038). After partialing out iron intake, PA and LC remained correlated with
sTfR in females (|rsTfR,y.ironintake| = .516–.569, p = 0.014–0.028).

Conclusions: Iron status biomarkers demonstrated sex-specific relationships with anaerobic exercise
performance in youth athletes, which may be more dependent on maturity status and dietary intake than age.
Moderate relationships between sTfR and athletic performance in adolescent female athletes emphasizes the
importance of iron intake in this demographic.
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Background
Iron plays important roles for athletic performance, includ-
ing red blood cell production, oxygen transport, and elec-
tron transport during oxidative phosphorylation [1–4].
Biomarkers used to measure iron status in athletes have in-
cluded ferritin, soluble transferring receptor (sTfR), and
hemoglobin (Hb) concentrations [5–7]. Previous studies
have demonstrated positive associations between athletic
performance measurements and ferritin and Hb concentra-
tions [8–11], while sTfR concentrations have been inversely
related to exercise [12]. Therefore, exercise and athletic per-
formance is impacted by iron status, which suggests that
maintaining adequate intakes of dietary iron may be im-
portant for athletes.
Dietary iron requirements for children are also import-

ant for healthy growth and development. Children have
increased dietary iron requirements due to high growth
rates of bone and muscle, increased plasma volumes, on-
set of menarche in females, and often inadequate con-
sumption of dietary iron [5, 13, 14]. Given the increased
popularity of competitive youth sports [15], youth ath-
letes may exhibit a particularly high demand for dietary
iron intake when considering both growth and develop-
ment and athletic performance requirements.
An early study by Cullumbine [8] showed that speed

and strength were related to Hb concentrations in
adolescent males, but these relationships did not exist
for females of the same age. The authors also reported
greater performance scores and Hb concentrations in
14–20-year old males compared to females. Nearly 60
years later, Gracia-Marco and colleagues [10] reported
remarkably similar relationships between Hb and both
cardiorespiratory and muscular fitness in 12.5–17.5-
year old males, but not females. Mechanisms exist for
how oxygen transport and utilization can be related to
anaerobic exercise performance, which may also pro-
vide a theoretical construct for relationships between
Hb and anaerobic performance. For example, the use
of aerobic metabolism is suggested to be predominant
during adolescence, as measured levels of oxidative
enzymes were higher in young males and females
compared to adults [16, 17]. Since children rely more
heavily on myoglobin-rich, oxidative fibers [17, 18],
the oxygen carrying capacity of Hb or myoglobin may
be more influential during anaerobic performance in
children. Furthermore, the resynthesis of creatine
phosphate within the mitochondria of skeletal muscle
is oxygen-dependent [19, 20]. Given that 49–57% of
children in the United States participate in team and
individual sports [21] and nearly all those sports are
anaerobic in nature, evaluating relationships among
iron status and anaerobic performance in youth may
appropriately reflect their state of health and physical
activity.

While previous studies have demonstrated relation-
ships between athletic performance and ferritin [9], sTfR
[12], and Hb [11] in adult athletes, there is a lack of re-
search directly relating concentrations reflecting iron
status to athletic performance in young athletes. Overall,
these previous studies [8–11] have raised questions
about the relationships between Hb concentrations and
aerobic versus anaerobic exercise performance as well as
the potential value of relationships among ferritin and
sTfR concentrations and exercise performance in fe-
males. However, results in adults cannot be extrapolated
to pre-adolescent and adolescent athletes due to differ-
ences in energy utilization [22]. Previous studies examin-
ing young athletes reported prevalence of iron deficiency
and anemia [5, 23], yet few studies [8, 24] examined dir-
ect relationships with athletic performance in this youn-
ger population.
Athletic differentiation between males and females is

thought to occur during adolescence [25, 26]; thus,
studying the role of iron in relation to athletic perform-
ance in adolescents by sex may also provide insight re-
garding dietary recommendations for optimizing their
health. Therefore, the purpose of the present study was
to examine the relationships among biomarkers of iron
status, athletic performance, growth and development,
and dietary intakes of young male and female athletes. It
was hypothesized that while there would be a positive
relationship among iron status and athletic performance
based on previous studies, [8, 10, 11] sex differentiations
pertaining to individual biomarkers would emerge based
on differences in growth and development of young
males and females.

Methods
Study design
A cross-sectional design was used to quantify relation-
ships among athletic performance tests, measures of
dietary intake, and hematological biomarkers of iron sta-
tus in male and female adolescent athletes ages 5 to 18
years old.

Subjects
Male (n = 179) and female (n = 70) adolescent athletes
(n = 249 total) volunteered for this study. Subjects were
5–18 years old and actively participating in school- or
club-sponsored sports that held regular practices.
Sports included baseball, basketball, cheerleading, cross
country, dance, equestrian, football, golf, gymnastics,
hockey, lacrosse, martial arts, rugby, soccer, softball,
speed/power/agility training, swimming/diving, tennis,
track and field, trap shooting, volleyball, weightlifting,
and wrestling. Participants completed the Physical Ac-
tivity Readiness Questionnaire for everyone (PAR-Q+
2015), [27] that consists of general health questions to
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determine if the participant is safe to engage in physical
activity. This study was approved by the University of
Nebraska-Lincoln Institutional Review Board for the
protection of human subjects (IRB # 20160616246EP,
Title: Youth Combine Testing, approval date: June 24,
2016). Each participant signed an approved youth
assent form if they were 7–18 years old, and if the par-
ticipant was 5–6 years old, verbal assent was obtained.
One parent or legal guardian of each participant signed
an approved informed consent document.

Anthropometrics and body composition
Height (cm) and weight (kg) were measured using a beam
scale with attached stadiometer (Mechanical Column Scale
& Stadiometer, Seca gmbh & co. kg, Hamburg, Germany).
Seated height was measured to calculate maturity offset to
predict peak height velocity (PHV) [28]. A maturity offset
of less than − 0.5 years from PHV was considered pre-ado-
lescent; − 0.5 to + 0.5 years from PHV was considered ado-
lescent; and greater than + 0.5 years from PHV was
considered post-adolescent [28, 29]. Body composition
measurements included percent body fat (BF%), arm esti-
mated cross-sectional area (eCSA), and thigh eCSA. Skin-
fold measurements were taken with a Lange caliper (Model
68,902, Cambridge Scientific Industries, Inc., Cambridge,
MD, USA) and were used to calculate BF%. Skinfold mea-
surements were taken on the right side of the body at the
triceps (vertical fold in the middle of the upper arm, mid-
way between the acromion and olecranon process) and an-
terior suprailiac (diagonal fold immediately superior to the
anterior superior iliac spine) for males, and the triceps,
suprailiac (diagonal fold 1 cm above the anterior superior
iliac crest), and subscapula (diagonal fold 2 cm below the
inferior angle of the scapula) for females. All skinfolds were
recorded to the nearest 0.5mm [30] and were entered into
equations established by Housh et al. [31] and Brozek et al.
[32] to estimated body density and BF%, respectively.
Arm and thigh circumferences were measured using a

Gulick measurement tape (Baseline® measurement tape
with Gulick attachment, Fabrication Enterprises, White
Plains, NY) and recorded to the nearest 0.1 cm. Arm cir-
cumference and triceps skinfold were used to calculate
arm eCSA, while thigh circumference and thigh skinfold
(vertical pinch at the mid-point of the anterior surface of
the thigh, halfway between the patella and inguinal fold)
were used to calculate thigh eCSA using procedures de-
scribed by Moritani and deVries [33].

Athletic performance testing
Detailed procedures of all athletic performance testing mea-
surements are described by Gillen et al. [34]. Testing was
conducted with similar methodology and equipment as the
basic tests performed at the National Football League
(NFL) scouting combine. Tests included the vertical jump

(VJ), broad jump (BJ), pro-agility (PA), L-cone (LC), 20-yard
dash (20YD) and power push up (PPU). The VJ was an as-
sessment of vertical jumping performance measured with a
Vertec (Sports Imports, Freestanding Vertec Jump Trainer,
Hilliard, OH, USA) and was calculated as the difference be-
tween standing reach and the highest jump recorded (cm).
BJ assessed horizontal jumping performance as the distance
between the starting line and the heel of the subject closest
to the starting line (cm). The two agility drills, PA and LC,
and the 20YD, were measured in seconds (s) using a digital,
laser beam actuated timing gate with motion start (Brower
Timing Systems, Brower TC Motion Start Timer, Knox-
ville, TN, USA). Splits were recorded at 5 and 10 yards dur-
ing the 20YD.

Dietary intake assessments
Among the total sample (n = 249), 39% (n = 97; male, n =
66; female, n = 31) also completed a 24-h dietary recall ad-
ministered online using the Automated Self-Administered
24-h (ASA24®) Dietary Recall System. If the participant was
less than 14 years old, the recall was administered to a par-
ent or legal guardian for completion. Participants were
prompted with detailed questions regarding food intake
with regard to serving sizes and composition of food
choices. Total energy (kcal·d− 1), carbohydrate (g·d− 1), pro-
tein (g·d− 1), fat (g·d− 1), and iron (mg·d− 1) intakes were
quantified and reported from the ASA24®.

Biomarkers of Iron status
Capillary blood samples of 400 μL were collected in
microvettes (Microvette® 200 μL, K3 EDTA, violet US
code; 10.8mm× 46.6mm) to analyze ferritin and sTfR.
Human alpha 1-acid glycoprotein (AGP) was assessed to
determine inflammatory status of the participant to cor-
rect ferritin concentrations if falsely elevated [35]. En-
zyme-linked immunosorbent assay (ELISA) kits were used
to assess concentrations of ferritin (μg·L− 1; n = 118; males,
n = 94; females, n = 24) (ELISA kit Ramco Labs), sTfR
(nmol·L− 1; n = 105; males, n = 76; females, n = 29) (Quan-
tikine IVD ELISA Kit, R&D Systems), and AGP (μmol ·L−
1; n = 40; males, n = 39; females, n = 1) (ELISA kit, R&D
Systems). AGP was quantified in a lower sample, since
after the first 40 assays, none exhibited a high enough in-
flammatory status to warrant a correction of ferritin.
Assay procedures were followed per kit instructions and
absorbance was read at 500 and 650 nm for ferritin and
450 and 540 nm for sTfR and AGP. Hemoglobin (Hb)
concentration (g·L− 1) was assessed on site during the ath-
letic performance testing with a handheld hemoanalyzer
(AimStrip®Hb Hemoglobin meter, Germaine Laboratories,
Inc.) in 51% of the total sample (n = 128; male, n = 100;
female, n = 28).
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Statistical analyses
Means and standard deviations for anthropometrics, per-
formance measurements, dietary intakes, and biomarkers
of iron status were calculated in a spreadsheet software
program (Microsoft Excel 2017, version 16.10) (Table 1).
Exploratory data analysis for outliers was performed using
the Tukey procedure [36]. Independent-samples t-tests
(with unequal variances assumed) were used to compare
the mean values of males versus females (Table 1). A Pear-
son product moment correlation analysis was performed
with and without outliers, among all 7 descriptive and an-
thropometric variables, 6 performance variables, 5 dietary
intake variables, and 3 biomarkers of iron status for all
athletes (Table 2) and separated by males and females.
Correlation coefficients were evaluated qualitatively ac-
cording to Mukaka [37]: 0.00 to 0.30 = negligible; 0.30 to
0.50 = low; 0.50 to 0.70 =moderate; 0.70 to 0.90 = high;
0.90 to 1.00 = very high. For significant collinear relation-
ships among anthropometrics, athletic performance, diet-
ary intakes, and iron status biomarkers, first-order partial
correlations (rxyz) were calculated to partial out collinear

influences. All statistical analyses were performed using
IBM SPSS Statistics for Macintosh, Version 24 (IBM
Corp., Chicago, IL, USA.) An alpha of p ≤ 0.05 was consid-
ered statistically significant for all correlations and
comparisons.

Results
Outliers (n = 16) were identified for weight (n = 1), BF%
(n = 1), arm eCSA (n = 1), PA (n = 1), LC (n = 1), 20YD
(n = 2), PPU (n = 2), iron (n = 4), and sTfR (n = 3), and
the values for each outlier are reported in Table 1. The
independent samples t-tests showed significant differ-
ences between males and females for maturity offset,
height, arm eCSA, thigh eCSA, VJ, BJ, PA, LC, PPU, fer-
ritin, energy intake, protein, carbohydrates, and iron
(p < 0.001–0.048). With outliers removed, the sex differ-
ence in 20YD time became significant (p = 0.041), while
the sex difference in iron intake became non-significant
(p = 0.104) (Table 1).
Table 2 illustrates the significant interrelationships

(p ≤ 0.05) among the anthropometric measurements in

Table 1 Demographics, anthropometrics, athletic performance scores, dietary intakes and biomarkers of iron status

Composite (n = 249) Males (n = 179) Females (n = 70) Outliers
(n = 16)

Age (y) 12.0 ± 2.1 (n = 249) 12.0 ± 2.1 (n = 179) 12.0 ± 2.2 (n = 70)

Maturity Offset (y) −1.3 ± 1.9 (n = 249) −1.7 ± 1.7 (n = 179)* −0.1 ± 1.8 (n = 70)

Height (cm) 155.2 ± 13.6 (n = 249) 156.3 ± 13.9 (n = 179)* 152.4 ± 12.3 (n = 70)

Weight (kg) 48.0 ± 16.0 (n = 249) 49.1 ± 16.5 (n = 179) 45.3 ± 14.5 (n = 70) 120.6 kg

Body Fat (%) 20.2 ± 6.5 (n = 244) 19.7 ± 6.7 (n = 175) 21.5 ± 5.9 (n = 69) 47.9%

Arm eCSA (cm2) 14.3 ± 6.9 (n = 246) 15.6 ± 7.3 (n = 176)* 11.2 ± 4.6 (n = 70) 45.74 cm2

Thigh eCSA (cm2) 80.6 ± 31.5 (n = 245) 83.3 ± 33.0 (n = 175)* 73.7 ± 26.3 (n = 70)

Vertical Jump (cm) 40.2 ± 9.4 (n = 246) 41.7 ± 9.6 (n = 177)* 36.4 ± 7.4 (n = 69)

Broad Jump (cm) 168.6 ± 30.2 (n = 247) 172.9 ± 30.6 (n = 178)* 157.3 ± 26.2 (n = 69)

Pro-Agility (s) 5.8 ± 0.6 (n = 247) 5.7 ± 0.6 (n = 177)* 5.9 ± 0.5 (n = 70) 8.76 s

L Cone (s) 9.4 ± 0.9 (n = 245) 9.3 ± 1.0 (n = 176)* 9.7 ± 0.8 (n = 69) 15.0 s

20 Yard Dash (s) 3.7 ± 0.5 (n = 248) 3.7 ± 0.5 (n = 178)a 3.8 ± 0.4 (n = 70) 5.98, 6.79 s

Power Push Up (N) 170.6 ± 84.1 (n = 246) 185.5 ± 90.0 (n = 177)* 132.6 ± 51.3 (n = 69) 583, 601 N

Energy Intake (kcals·d− 1) 2052 ± 711 (n = 97) 2158 ± 749 (n = 66)* 1827 ± 568 (n = 31)

Carbohydrates (g·d− 1) 244 ± 89 (n = 97) 256 ± 89 (n = 66)* 217 ± 83 (n = 31)

Protein (g·d− 1) 90 ± 38 (n = 97) 98 ± 41 (n = 66)* 74 ± 25 (n = 31)

Fat (g·d−1) 82 ± 37 (n = 97) 84 ± 39 (n = 66) 76 ± 34 (n = 31)

Iron (mg·d− 1) 16.5 ± 9.7 (n = 97) 17.9 ± 10.9 (n = 66)*b 13.5 ± 5.5 (n = 31) 46.0, 44.8,
55.0, 62.0
mg·d− 1

Hemoglobin (g·L− 1) 113 ± 16 (n = 128) 114 ± 16 (n = 100) 112 ± 19 (n = 28)

Ferritin (μg·L− 1) 24.0 ± 15.0 (n = 118) 25.3 ± 16.2 (n = 94)* 18.6 ± 7.3 (n = 24)

sTfR (nmol·L− 1) 22.1 ± 6.4 (n = 105) 21.9 ± 6.8 (n = 76) 22.8 ± 5.5 (n = 29) 38.8, 44.5,
66.7 nmol·L− 1

Values are means ± standard deviations (SD)
*Indicates a significant difference between the mean values of males versus females (p ≤ 0.05) with outliers included
aIndicates a significant difference after removal of outliers. bIndicates difference became non-significant after removal of outliers
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the composite sample and separated by sex. Specifically,
age, maturity offset, height, weight, and thigh eCSA
demonstrated moderate to very high intercorrelations.
Arm eCSA showed low intercorrelations among females
and moderate intercorrelations among males. Therefore,
age, maturity offset, height, weight, and thigh eCSA were
interpreted to collectively reflect growth and develop-
ment in females, while arm eCSA was added to the same
group of variables to reflect growth and development in
males. BF% showed mostly negligible to low intercorrela-
tions and was subsequently excluded from growth and
development (Table 2).
Similarly, the VJ, BJ, PA, LC, and 20YD measurements

were consistently interrelated at a significant level (p ≤ 0.05)
within the composite sample as well as the separate male
and female correlation matrices. The direction of the
correlation reflected the measurement (distance, time, or
power) such that better performance occurred with greater
distance (VJ or BJ) and greater power (PPU), whereas better
performance occurred with lower time-scored variables
(PA, LC, and 20YD). Intercorrelations among VJ, BJ, PA,
LC, and 20YD were all high or very high, except for BJ in
the females, which exhibited moderate intercorrelations.
Therefore, these variables were interpreted to collectively
reflect athletic performance (Table 2). PPU scores exhibited
negligible to low intercorrelations among the other vari-
ables and was subsequently excluded from the grouping.
From the ASA24®, energy, carbohydrate, protein, fat,

and iron intakes demonstrated consistent, but not uni-
form, significant intercorrelations (p ≤ 0.05). Iron exhib-
ited mostly negligible to low relationships among the
other dietary intakes. By virtue of how these variables
were collected and reported, all were collectively inter-
preted as dietary intakes; however, they were also con-
sidered individually for relationships with growth and
development, athletic performance, and biomarkers of
iron status (Table 2).
The biomarkers for iron status (ferritin, sTfR, and Hb)

were not consistently intercorrelated (Table 2). The rela-
tionship between ferritin and Hb was significant (p ≤ 0.05)
and moderate in magnitude in females only, and the rela-
tionship between ferritin and sTfR in the composite
sample and in males became non-significant (p ≥ 0.05)
after the removal of outliers. However, the magni-
tudes of the intercorrelations among ferritin, sTfR,
and Hb were mostly negligible. Therefore, each bio-
marker was examined separately.
Correlations among growth and development, athletic

performance, dietary intake, ferritin, sTfR, and Hb are
also illustrated in Table 2 and Fig. 1. Overall, growth
and development was significantly (p < 0.001–0.048)
correlated with athletic performance with magnitudes
ranging from low to moderate. Age, maturity offset, and
height exhibited nearly uniform, moderate correlations

with athletic performance. Arm and thigh eCSA values
were moderately correlated with VJ and BJ performances
in males, while only thigh eCSA was moderately related
to VJ and BJ performances in females. In males only,
BF% exhibited moderate, inverse relationships with ath-
letic performance, and PPU was moderately related to
growth and development. Other significant (p ≤ 0.05) re-
lationships among growth and development and athletic
performance were low in magnitude.
Growth and development variables were not consistently

related to dietary intakes, ferritin, sTfR, or Hb, with two
exceptions. First, growth and development exhibited negli-
gible, but significant (p = 0.004–0.042), relationships with
protein intake in males. Second, growth and development
displayed low to moderate relationships (p = 0.002–0.045)
with iron intake in females.
Athletic performance was not consistently related to

ferritin, sTfR, or Hb in the composite sample. However,
when separated by sex, athletic performance exhibited
consistent, negligible to low correlations with Hb in
males (p < 0.001–0.05). Athletic performance also dis-
played consistent, low to moderate correlations with
sTfR in females (p < 0.001–0.004). Figure 1 illustrates the
relationships among athletic performance and Hb in the
males (left scatterplots) as well as predominantly moder-
ate correlations among athletic performance and sTfR in
the females (right scatterplots).
Athletic performance exhibited consistent, negli-

gible (p ≤ 0.05) relationships with energy and macro-
nutrient intakes in the composite sample. When
separated by sex, VJ and PA still displayed negligible
relationships with energy and carbohydrate intake in
males (p = 0.024–0.045). In females, athletic perform-
ance exhibited consistent, moderate correlations with
iron intake (p = 0.001–0.027). Dietary intakes were
unrelated to ferritin, sTfR, or Hb with mostly negli-
gible correlations.
When focusing on the relationships among athletic

performance, dietary intakes, and ferritin, sTfR, and Hb,
partial correlations were calculated to remove the influ-
ence of concurrently related (possibly collinear) growth
and development or dietary intake variables. In males,
the partial correlations for Hb and athletic performance,
while partialing out age and height were still significant
for four of the six athletic performance tests: VJ, PA, LC,
and 20YD (|rHb,y.Age| = .208–.322, p = 0.001–0.041 and
|rHb,y.Height| = .211–.321, p = 0.001–0.038), respectively.
After partialing out weight from the correlations between
ferritin and three athletic performance tests (BJ, PA, and
20YD), the relationships were still significant (|rFerritin,y.-
Weight| = .257–.360, p < 0.001–0.013). However, after partial-
ing out BF%, the relationships between ferritin and athletic
performance disappeared (|rFerritin,y.BF%| = .035–.122,
p > 0.05). Partial correlations in males for athletic
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Fig. 1 Scatterplots showing the sex separation of the relationships between athletic performance and biomarkers of iron status. Athletic
performance was correlated with Hb in males (closed circles), while athletic performance was related to sTfR in females (open circles), both in the
direction that was expected
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performance and Hb after partialing out dietary in-
takes were also still significant (|rHb,y.energyintake| =
.369–.383, p = 0.005–0.007 and (|rHb,y.carbohydrate| =
.249–.368, p = 0.007–0.009). For females, the partial
correlations in two athletic performance tests (PA and
LC) with sTfR remained significant after partialing
out iron intake (|rsTfR,y.ironintake| = .516–.569, p =
0.014–0.028), but the relationship between sTfR and
the other performance tests (VJ and 20YD) were no
longer significant (|rsTfR,y.ironintake| = .028–.460, p >
0.05).

Discussion
The primary findings of the present study indicated that
athletic performance was moderately related to sTfR con-
centrations in the female adolescent athletes, while athletic
performance exhibited low correlations with Hb concentra-
tions in the male pre-adolescent athletes (Fig. 1). Athletic
performance was also moderately related to dietary iron in-
take in the females. Yet, conversely, there were no consist-
ent relationships among dietary intakes, ferritin, sTfR, or
Hb concentrations. Thus, dietary intake data was unable to
track the biomarkers of iron status, but athletic perform-
ance, particularly in the female adolescent athletes, was
directly proportional to sTfR and dietary iron intake.
Although these correlations cannot infer causal relation-
ships between sTfR or dietary iron intake and athletic per-
formance, these findings can be hypothesis-generating.
Previous studies have established links between exer-

cise performance and iron status in adult female athletes
[9, 11, 12]. For example, active young adult females
exhibited higher sTfR concentrations than sedentary fe-
males, but no other iron biomarkers were different be-
tween the two groups [12]. In female collegiate athletes,
a positive relationship was reported between ferritin and
VO2peak [9]. The authors reported that a slower 4-km
time trial performance was associated with iron deple-
tion, but again no other relationships were observed with
other iron status biomarkers [9]. Improvements in
skeletal muscle strength were related to changes in Hb
concentration following dietary iron supplementation in
adult female elite volleyball players [11], but no other
iron biomarker was related.
Interestingly, the adolescent female athletes in the

present study demonstrated an inverse relationship be-
tween sTfR concentrations and athletic performance.
That is, measures of athletic performance improved as
sTfR concentrations decreased in the females (Table 2).
Since sTfR is inversely proportional to iron availability
[38, 39], which is thought to reflect erythropoiesis [39],
red blood cell availability and function during athletic
performance testing may be affected. It is possible that
the iron availability in adolescent female athletes during

their PHV may not be capable of supporting the de-
mand for red blood cell production, thereby hindering
skeletal muscle performance. Our findings may also
tentatively suggest that the sTfR biomarker may be
more sensitive than the other iron biomarkers in
adolescent female athletes experiencing rapid growth,
compared to adult athletic females.
Concentrations of Hb have also been associated with

exercise and performance in young males [8, 10]. Cul-
lumbine [8] reported low correlations between Hb and
100-yard sprint time (r = − 0.360) and deadlift strength
(r = 0.440) in 14–20-year-old males. Gracia-Marco et
al. [10] reported negligible, but significant, associa-
tions between Hb and BJ performance in 12.5–17.5-
year-old males before (β = 0.286, p < 0.001) and after
(β = 0.203, p = 0.001) covarying for age, seasonality,
latitude, BMI, and moderate-to-vigorous physical ac-
tivity level. The results of the present study demon-
strated similar negligible to low correlations between
Hb and VJ, BJ, PA, LC, 20YD and PPU in the pre-ado-
lescent males (Fig. 1). The previous studies [8, 10] in-
cluded older males (average age of 15 years) and
reported higher average Hb concentrations (147 ± 12
and 151 ± 2 g·L− 1, respectively) than the present study.
Furthermore, neither previous study measured or
accounted for biological maturity or muscle mass. The
uniqueness of the present study included younger
males (Table 1), lower Hb concentrations (Table 1),
no relationships between Hb and maturity offset or
Hb and muscle mass (Table 2), and the partial correla-
tions that removed the influences of age and height
from the correlations between Hb and athletic per-
formance. Our findings suggested that even after re-
moving the influence of growth and development, the
relationships between Hb and athletic performance
were still significant in these pre-adolescent male
athletes.
The presence of an association between Hb concentration

and strength, speed, or power measurements suggests that
Hb may influence anaerobic exercise performance. Given
the oxygen-carrying capacity of Hb, relationships between
Hb and aerobic fitness are expected and have been demon-
strated in adults [40–42]. Since anaerobic exercise perform-
ance is theoretically independent of oxygen availability,
relationships between Hb and anaerobic performance are
more difficult to explain. Interestingly, all the athletic per-
formance measures in the present study are anaerobic in
nature, and many previous studies have demonstrated asso-
ciations between anaerobic exercise performance and iron
status [8, 10, 11, 43]. For example, the strength of associ-
ation between Hb and BJ reported by Gracia-Marco et al.
[10] was greater than the strength of association between
Hb and cardiorespiratory fitness in the same sample (β=
0.192, p= 0.002). Potential physiological explanations may
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include the predominant, but not exclusive, anaerobic
metabolism utilized, particular in children who rely more on
oxidative mechanisms [16, 17, 44] and/or the oxygen-
dependent resynthesis of creatine phosphate in the mito-
chondria [19, 20]. These relationships in children may also
be impacted by a higher reliance on myoglobin-rich, oxida-
tive fibers [18], allowing the oxygen carrying capacity of Hb
to be more influential during anaerobic power, agility, and
speed. Future studies are needed to test the hypotheses gen-
erated by the present and previous [8, 10] cross-sectional,
correlational studies.
In an early study, Cullumbine [8] stated that “… males are

faster than females and they have a greater strength at all
ages; they also have consistently higher blood hemoglobin
levels” (p. 276). Yet, the results of the present study did not
entirely support the findings of Cullumbine [8]. In contrast
to Cullumbine [8], there were no differences between the
males and females in Hb or sTfR concentrations. When
considering all measured variables, the largest sex differ-
ences were 32 to 40% greater upper-body strength (PPU)
and muscle mass (arm eCSA), protein and iron dietary in-
takes, and ferritin concentrations. Moderate sex differences
(10 to 18%) were evident in lower-body power (BJ and VJ),
lower-body muscle mass (thigh eCSA), and energy and
carbohydrate intakes. All other variables, including sprint
speed (20YD), agility (PA and LC), fat intake, and Hb and
sTfR concentrations were either equivalent or < 5% different
between these young male and female athletes. Differences
in upper-body, and to a lesser extent lower-body, strength
and muscle mass are well-documented between boys and
girls of this age [25, 26, 45]. Less is known about the dietary
intakes and iron status biomarkers in relation to perform-
ance among this demographic. Since dietary intakes are
reasonably modifiable, we would recommend increasing
protein and iron intakes in young female athletes of this age.
Future studies are needed to examine whether following
such dietary recommendations results in improved ferritin
concentrations and possibly athletic performance outcomes.
Despite the similarity in chronological age between the

males and females in the present study, the females were
experiencing a growth spurt (− 0.5 to + 0.5 years of ma-
turity offset) at the time of data collection. In contrast,
the males were 1.7 years away from their growth spurt
(Table 1). This discrepancy between chronological age
and biological maturity highlights the importance of
interpretations involving growth and development. Pre-
vious research has hypothesized differences between
young males and females in the timing of athletic devel-
opment [25, 26], dietary needs and biomarkers of iron
status [46]. The results of the present study extended
existing knowledge by reporting relationships between
growth and development and dietary iron intake in the
adolescent female athletes, which was not observed in
the pre-adolescent males (Table 2). Rossander-Hulthen

and Hallberg [47] reported that starting at age 12, total
estimated iron requirements increase in adolescent fe-
males, coinciding with the onset of menses. Adolescent
females may need as much as 2.1 mg·d− 1 of dietary iron
intake [47]. For comparison in adolescent males during
their PHV, dietary iron requirements for the 50th per-
centile is approximately 1.8 mg·d− 1 [47]. However, the
pre-adolescent males in the present study had not yet
reached their growth spurt, which may explain why their
dietary iron intake was not as related to growth and
development as the females.
In contrast to dietary iron intake, dietary protein intake

was related to growth and development in the males, but
not the females in the present study (Table 2). Our findings
supported those of previous studies [48, 49] related to pro-
tein intake and growth and development in young, growing
males and females. Aerenhouts et al. [48] reported that on
average, fat-free mass increased 2.44 kg·year− 1 and 3.84
kg·year− 1 in females and males, respectively, corresponding
to protein accrual of 1.30 g·d− 1 in females and 2.04 g·d− 1 in
males. These previous findings [48] suggest that the higher
rate of skeletal muscle growth generally experienced in
males may be associated with greater dietary protein needs
for the younger, pre-adolescent males in the present study.
Spear et al. [49] also suggested that protein needs of adoles-
cents relate better to growth patterns than chronological
age, especially in relation to height and tissue growth.
Future studies may be needed to examine the relationships
among growth and development measures and dietary pro-
tein intakes in males and females matched for biological
maturity, rather than chronological age as is the case in the
present study.
To further examine the relationships between ath-

letic performance and Hb in males and sTfR in fe-
males, partial correlations were performed to see
whether the relationships diminished after removing
the influences of growth and development or dietary
intakes. Neither growth and development (age and
height) nor dietary intake (energy and carbohydrates)
impacted the observed relationships between Hb and
athletic performance. These findings suggest that Hb
concentration is related to vertical power (VJ), agility
(PA and LC), and speed (20YD) measures in pre-ado-
lescent males, independent of growth and develop-
ment or dietary intake. These findings, in conjunction
with previous studies demonstrating relationships be-
tween Hb and anaerobic performance [8, 10, 11, 43],
suggested that the oxygen-carrying role of Hb is at
least partially related to anaerobic exercise perform-
ance. Since pre-adolescent children (only the males in
the present study) tend to display type I muscle fiber
characteristics [50], and type I fibers are heavily
dependent on myoglobin [51], the associations be-
tween Hb and anaerobic exercise may be maturity-
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dependent. However, this hypothesis does not explain
similar relationships observed between Hb and anaer-
obic performance in adults [11].
In addition, removing the influence of iron intake

eliminated the relationships between sTfR concentra-
tions and VJ and 20YD performance in the females.
Therefore, iron intake at least partially explained the
relationships between sTfR concentrations and ath-
letic performance. This finding tentatively suggests
that improving dietary iron intake could potentially
improve athletic performance in adolescent females,
particularly with regard to VJ and 20YD performance.
Future studies are needed, however, to experimentally
verify this hypothesis. The overall contrasting differ-
ences between the effects of partialling out collinear
variables between males and females in the present
study may have reflected differences in biological ma-
turity, emphasizing the importance of maturity, rather
than age, when monitoring diet and athletic perform-
ance in young athletes.
One limitation of the study is the initial recruitment

of participants by age instead of maturity status. The
study was designed to be field-test friendly to allow
many young athletes to participate. The participants
were recruited across the age range of 5–18 years old in
order to be able to assess males and females falling into cat-
egories of pre-adolescent, adolescent, and post-adolescent.
While categorizing by maturity status would be ideal
due to the influence maturation has on iron require-
ments, hemoglobin levels, and athletic performance,
this was not feasible for this particular study due to
the recruitment and testing strategies utilized.
A potential limitation to this study was that only

39% of the total sample completed the online dietary
recall. However, the correlations and partial correla-
tions involving dietary intakes were performed with
participants who displayed both values. According to
the commonly-used table of critical values for correl-
ation coefficients [52] using n-2 degrees of freedom
and 5% type I error, the correlation coefficient that is
considered statistically significant for the total sample
in the present study is r = 0.195 (n = 249). The same
critical correlation coefficient for only the participants
who completed the dietary recall in the present study
is still r = 0.195 (n = 97). These critical r-values
indicate that the statistical interpretations of the com-
posite correlation coefficients presented in Table 2, re-
gardless of the smaller sample of dietary recalls, may
be considered the same. Therefore, we believe that the
smaller sample size of n = 97 for completed dietary re-
calls is still acceptable for addressing the research
questions in this study.
Another potential limitation exists regarding sample

size and the interpretations of iron biomarkers and

dietary intakes for females. Since n = 24–31 samples
were collected for iron biomarkers and dietary in-
takes, the critical r-values for these correlations are
r = 0.349–0.423 [52]. However, we believe that the
moderate correlations between sTfR concentrations
and athletic performance, as well as the moderate
correlations between athletic performance and dietary
intakes, in the adolescent female athletes in the present
study should not be ignored. Not only are children and ad-
olescents a protected human subject population making it
difficult to collect these data, but also adolescent
female athletes may be considered an under-studied
population. Together with the exploratory, correlational
premise of the present study, we believe that these
moderate correlations emphasize the need to collect
additional data in adolescent female athletes in future
studies to improve nutritional recommendations for
this at-risk population.

Conclusions
In conclusion, sTfR was moderately related to athletic
performance (VJ, PA, LC, and 20YD) in the adolescent
female athletes, possibly reflecting an increased rate of
erythropoiesis during their growth spurt. However,
after removing the collinear influence of dietary iron
intake, relationships between sTfR and VJ and 20YD
were eliminated, suggesting that improving dietary
iron intake may improve lower-body power and speed
in adolescent female athletes. The pre-adolescent male
athletes showed significant, but negligible to low, rela-
tionships between Hb and athletic performance. After
removing potential collinear influences of both growth
and development (age and height) and dietary intakes
(energy and carbohydrates), the relationships between
Hb and athletic performance remained unaffected.
From a more global perspective, perhaps the negligible
to moderate correlations between iron status bio-
markers (sTfR and Hb) and anaerobic performance in
both male and female youth athletes reflect the subtle
contributions of oxygen to exercise that is not exclu-
sively anaerobic [53]. Interestingly, the fact that the
adolescent females and pre-adolescent males exhibited
different iron biomarker correlations, despite being at
the same chronological age, suggested that iron status
biomarkers may be more maturity- dependent than
age-dependent. The largest differences between sexes
in the present study included 32 to 40% greater upper-
body strength (PPU) and muscle mass (arm eCSA),
dietary protein and iron intakes, and ferritin concen-
trations for the young males. Based on these compari-
sons, we would recommend increasing dietary protein
and iron intakes in young female athletes of this age.
Nevertheless, these hypotheses need to be
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experimentally tested to clarify the underlying physio-
logical relationships involving iron status biomarkers
in pre-adolescent and adolescent athletes. Specifically,
future studies should examine the effects of increasing
dietary iron intake on ferritin, sTfR, and Hb concen-
trations, as well as athletic performance, in adolescent
female athletes.

Abbreviations
20YD: 20-yard Dash; AGP: Alpha 1-acid Glycoprotein; BF%: Percent Body Fat;
BJ: Broad Jump; eCSA: Estimated Cross-sectional Area; ELISA: Enzyme-linked
Immunosorbent Assay; Hb: Hemoglobin; LC: L-cone; PA: Pro-agility;
PARQ+: Physical Activity Readiness Questionnaire for Everyone; PPU: Power
Push Up; sTfR: Soluble Transferrin Receptor; VJ: Vertical Jump

Acknowledgements
The authors would like to acknowledge the following individuals for their
assistance with data acquisition: Dr. Terry J. Housh, Dr. Cory Smith, Dr. Ethan
Hill, Josh Keller, Alegra Mendez, Alex Martin, Chaise Murphy, Jay Peterson,
Pete Danielson, Christina Gregory, and Brian Smith. The authors would also
like to acknowledge the significant, volunteer, non-financial assistance from
the following business collaborators in Lincoln, Nebraska: Mike Selvage of
Lincoln Youth Football League, Inc.; Maj. Paul Erickson, Ann Erickson, Mike
Lemanu, and Samantha Gillen of Fundamental Athletics Academy; Dean
DeBoer and Preston Harris of Don Beebe’s House of Speed; and Dr. Robert
Lane of Speedway Village.

Authors’ contributions
All authors were involved in the study. MES, ZMG, BDM, NAB, SMG, KK, JTC
contributed to the data collection and analysis. MES and JTC prepared and
wrote the manuscript. ZMG, BDM, NAB, and SMG contributed edits and
critiques for the manuscript. All authors read and approved the final
manuscript.

Funding
Efforts for this study were funded, in part, by the Nebraska Beef Council and
the University of Nebraska Agriculture Research Division with funds provided
by the Hatch Act (Agency: U.S. Department of Agriculture, National Institute
of Food and Agriculture; Accession No: 1000080; Project No: NEB-36-078)
and a grant from Abbott Nutrition, Columbus, OH.

Availability of data and materials
The datasets used and analyzed for the current study will be made available
from the corresponding author upon reasonable request.

Ethics approval and consent to participate
This study was approved by the University of Nebraska-Lincoln Institutional
Review Board for the protection of human subjects (IRB # 20160616246EP,
Title: Youth Combine Testing, approval date: June 24, 2016).

Consent for publication
All participants were aware during the informed consent process that the
results of this study may be published.

Competing interests
The authors declare that they have no competing interests.

Received: 22 January 2019 Accepted: 26 August 2019

References
1. Buratti P, Gammella E, Rybinska I, Cairo G, Recalcati S. Recent advances in

iron metabolism: relevance for health, exercise, and performance. Med Sci
Sports Exerc. 2015;47(8):1596–604.

2. Ganz T. Molecular control of iron transport. J Am Soc Nephrol. 2007;18(2):
394–400.

3. Oexle H, Gnaiger E, Weiss G. Iron-dependent changes in cellular energy
metabolism: influence on citric acid cycle and oxidative phosphorylation.
Biochim Biophys Acta. 1999;1413(3):99–107.

4. Xu W, Barrientos T, Andrews NC. Iron and copper in mitochondrial diseases.
Cell Metab. 2013;17(3):319–28.

5. Constantini NW, Eliakim A, Zigel L, Yaaron M, Falk B. Iron status of highly
active adolescents: evidence of depleted iron stores in gymnasts. Int J Sport
Nutr Exerc Metab. 2000;10(1):62–70.

6. Petersen HL, Peterson CT, Reddy MB, Hanson KB, Swain JH, Sharp RL, et
al. Body composition, dietary intake, and iron status of female
collegiate swimmers and divers. Int J Sport Nutr Exerc Metab. 2006;
16(3):281–95.

7. Woolf K, St Thomas MM, Hahn N, Vaughan LA, Carlson AG, Hinton P. Iron
status in highly active and sedentary young women. Int J Sport Nutr Exerc
Metab. 2009;19(5):519–35.

8. Cullumbine H. Hemoglobin concentration and physical fitness. J Appl
Physiol. 1949;2(5):274–7.

9. Dellavalle DM, Haas JD. Iron status is associated with endurance
performance and training in female rowers. Med Sci Sports Exerc. 2012;
44(8):1552–9.

10. Gracia-Marco L, Valtueña J, Ortega FB, Pérez-López FR, Vicente-Rodríguez G,
Breidenassel C, et al. Iron and vitamin status biomarkers and its association
with physical fitness in adolescents: the HELENA study. J Appl Physiol. 2012;
113(4):566–73.

11. Mielgo-Ayuso J, Zourdos MC, Calleja-González J, Urdampilleta A, Ostojic S.
Iron supplementation prevents a decline in iron stores and enhances
strength performance in elite female volleyball players during the
competitive season. Appl Physiol Nutr Metab. 2015;40(6):615–22.

12. Di Santolo M, Stel G, Banfi G, Gonano F, Cauci S. Anemia and iron status in
young fertile non-professional female athletes. Eur J Appl Physiol. 2008;
102(6):703–9.

13. Harvey LJ, Armah CN, Dainty JR, Foxall RJ, John Lewis D, Langford NJ, et al.
Impact of menstrual blood loss and diet on iron deficiency among women
in the UK. Br J Nutr. 2005;94(4):557–64.

14. Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes
for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron,
Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington
(DC): National Academies Press (US); 2001. [cited 2018 Mar 5]

15. Bergeron MF, Mountjoy M, Armstrong N, Chia M, Côté J, Emery CA, et al.
International Olympic Committee consensus statement on youth athletic
development. Br J Sports Med. 2015;49(13):843–51.

16. Eriksson BO, Gollnick PD, Saltin B. Muscle metabolism and enzyme
activities after training in boys 11-13 years old. Acta Physiol Scand.
1973;87(4):485–97.

17. Haralambie G. Enzyme activities in skeletal muscle of 13-15 years old
adolescents. Bull Eur Physiopathol Respir. 1982;18(1):65–74.

18. Ratel S, Blazevich AJ. Are Prepubertal children metabolically comparable to
well-trained adult endurance athletes? Sports Med. 2017;47(8):1477–85.

19. Harris RC, Edwards RH, Hultman E, Nordesjö LO, Nylind B, Sahlin K. The time
course of phosphorylcreatine resynthesis during recovery of the quadriceps
muscle in man. Pflugers Arch. 1976;367(2):137–42.

20. Sahlin K, Harris RC, Hultman E. Resynthesis of creatine phosphate in human
muscle after exercise in relation to intramuscular pH and availability of
oxygen. Scand J Clin Lab Invest. 1979;39(6):551–8.

21. State of Play: 2018 Trends and Developments. The Aspen Institute. 2018.
Available from: https://www.aspeninstitute.org/publications/state-of-play-2
018-trends-and-developments/. [cited 2018 Dec 21]

22. Kerksick CM, Fox E. Sports Nutrition Needs for Child and Adolescent
Athletes. Boca Raton: CRC Press; 2016.

23. Spodaryk K. Iron metabolism in boys involved in intensive physical training.
Physiol Behav. 2002;75(1–2):201–6.

24. Friedmann B, Weller E, Mairbaurl H, Bärtsch P. Effects of iron repletion on
blood volume and performance capacity in young athletes. Med Sci Sports
Exerc. 2001;33(5):741–6.

25. Parker DF, Round JM, Sacco P, Jones DA. A cross-sectional survey of upper
and lower limb strength in boys and girls during childhood and
adolescence. Ann Hum Biol. 1990;17(3):199–211.

26. Round JM, Jones DA, Honour JW, Nevill AM. Hormonal factors in the
development of differences in strength between boys and girls during
adolescence: a longitudinal study. Ann Hum Biol. 1999;26(1):49–62.

27. Warburton DER, Jamnik VK, Bredin SSD, Gledhill N. The physical activity
readiness questionnaire for everyone (PAR-Q+) and electronic physical
activity readiness medical examination (ePARmed-X+): summary of
consensus panel recommendations. Health Fit J Can. 2011;4(2):26–37.

Shoemaker et al. Journal of the International Society of Sports Nutrition           (2019) 16:42 Page 14 of 15

https://www.aspeninstitute.org/publications/state-of-play-2018-trends-and-developments/
https://www.aspeninstitute.org/publications/state-of-play-2018-trends-and-developments/


28. Mirwald RL, Baxter-Jones ADG, Bailey DA, Beunen GP. An assessment of
maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;
34(4):689–94.

29. Willows ND, Grimston SK, Roberts D, Smith DJ, Hanley DA. Iron and
hematologic status in young athletes relative to puberty: a cross-sectional
study. Pediatr Exerc Sci. 1993;5(4):367–76.

30. Jackson AS, Pollock ML. Practical assessment of body composition. Phys
Sportsmed. 1985;13(5):76–90.

31. Housh TJ, Johnson GO, Housh DJ, Stout JR, Eckerson JM. Estimation of body
density in young wrestlers. J Strength Cond Res. 2000;14(4):477.

32. Brozek J, Grande F, Anderson JT, Keys A. Densitometric analysis of body
composition: revision of some quantitative assumptions. Ann N Y Acad Sci.
1963;110:113–40.

33. Moritani T, deVries HA. Neural factors versus hypertrophy in the time course
of muscle strength gain. Am J Phys Med. 1979;58(3):115–30.

34. Gillen ZM, Miramonti AA, McKay BD, Leutzinger TJ, Cramer JT. Test-retest
reliability and concurrent validity of athletic performance combine tests in
6-15-year old male athletes. J Strength Cond Res. 2018;32(10):2783–92.

35. Thurnham DI, McCabe LD, Haldar S, Wieringa FT, Northrop-Clewes CA,
McCabe GP. Adjusting plasma ferritin concentrations to remove the effects
of subclinical inflammation in the assessment of iron deficiency: a meta-
analysis. Am J Clin Nutr. 2010;92(3):546–55.

36. Hoaglin DC, John W. Tukey and data analysis. Stat Sci. 2003;18(3):311–8.
37. Mukaka MM. Statistics corner: a guide to appropriate use of correlation

coefficient in medical research. Malawi Med J. 2012;24(3):69–71.
38. Kohgo Y, Niitsu Y, Kondo H, Kato J, Tsushima N, Sasaki K, et al. Serum

transferrin receptor as a new index of erythropoiesis. Blood. 1987;70(6):1955–8.
39. Skikne S, Flowers CH, Cook JD. Serum transferrin receptor: a quantitative

measure of tissue iron deficiency; 1990.
40. Woodson RD, Wills RE, Lenfant C. Effect of acute and established anemia on

O2 transport at rest, submaximal and maximal work. J Appl Physiol. 1978
Jan;44(1):36–43.

41. Davies CTM, Chukweumeka AC, Haaren JPMV. Iron-deficiency anaemia: its
effect on maximum aerobic power and responses to exercise in African
males aged 17–40 years. Clin Sci. 1973;44(6):555–62.

42. Gardner GW, Edgerton VR, Senewiratne B, Barnard RJ, Ohira Y. Physical work
capacity and metabolic stress in subjects with iron deficiency anemia. Am J
Clin Nutr. 1977;30(6):910–7.

43. Chidnok W, Jiraviriyakul A, Weerapun O, Wasuntarawat C. Diminished
anaerobic and aerobic exercise fitness in the hemoglobin E traits. J Sports
Med Phys Fitness. 2016;56(3):179–84.

44. Spencer MR, Gastin PB. Energy system contribution during 200- to 1500-m
running in highly trained athletes. Med Sci Sports Exerc. 2001;33(1):157–62.

45. Ervin RB, Wang CY, Fryar CD, Miller IM, Ogden CL. Measures of muscular
strength in U.S. children and adolescents, 2012. NCHS Data Brief. 2013;139:
1–8.

46. Bergström E, Hernell O, Lönnerdal B, Persson LA. Sex differences in iron
stores of adolescents: what is normal? J Pediatr Gastroenterol Nutr. 1995;
20(2):215–24.

47. Rossander-Hulthén L, Hallberg L. Prevalence of iron deficiency in
adolescents. In: Iron nutrition in health and disease. London: John Libbey &
Company Ltd.; 1996. p. 149–56.

48. Aerenhouts D, Van Cauwenberg J, Poortmans JR, Hauspie R, Clarys P.
Influence of growth rate on nitrogen balance in adolescent sprint athletes.
Int J Sport Nutr Exerc Metab. 2013;23(4):409–17.

49. Spear BA. Adolescent growth and development. J Am Diet Assoc. 2002;
102(3 Suppl):S23–9.

50. Lexell J, Sjöström M, Nordlund AS, Taylor CC. Growth and development of
human muscle: a quantitative morphological study of whole vastus lateralis
from childhood to adult age. Muscle Nerve. 1992;15(3):404–9.

51. Jansson E, Sylvén C. Myoglobin concentration in single type I and type II
muscle fibres in man. Histochemistry. 1983;78(1):121–4.

52. Pearson E, Hartley H. Biometrika tables for statisticians, vol. 1. 3rd ed.
London: Biometrika Trustees; 1966.

53. Nioka S, Moser D, Lech G, Evengelisti M, Verde T, Chance B, et al.
Muscle deoxygenation in aerobic and anaerobic exercise. Adv Exp Med
Biol. 1998;454:63–70.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Shoemaker et al. Journal of the International Society of Sports Nutrition           (2019) 16:42 Page 15 of 15


	Sex-specific relationships among iron status biomarkers, athletic performance, maturity, and dietary intakes in pre-adolescent and adolescent athletes
	
	Authors

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study design
	Subjects
	Anthropometrics and body composition
	Athletic performance testing
	Dietary intake assessments
	Biomarkers of Iron status
	Statistical analyses

	Results
	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

