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There are several factors that make analyzing Android apps to address dependability and

security concerns challenging. These factors include (i) resource efficiency as analysts need to

be able to analyze large code-bases to look for issues that can exist in the application code

and underlying platform code; (ii) scalability as today’s cybercriminals deploy attacks that

may involve many participating apps; and (iii) in many cases, security analysts often rely on

dynamic or hybrid analysis techniques to detect and identify the sources of issues.

The underlying principle governing the design of existing program analysis engines is the

main cause that prevents them from satisfying these factors. Existing designs operate like

compilers, so they only analyze one app at a time using a "close-world" process that leads

to poor efficiency and scalability. Recently, Tsutana et al. introduced Jitana, a Virtual

Class-Loader (VCL) based approach to construct program analyses based on the "open-world"

concept. This approach is able to continuously load and analyze code. As such, this approach

establishes a new way to make analysis efforts proportional to the code size and provides

an infrastructure to construct complex, efficient, and scalable static, dynamic, and hybrid

analysis procedures to address emerging dependability and security needs.

In this thesis, we attempt to quantify the performance benefit of Jitana through the lens

of memory usage. Memory is a very important system-level resource that if not expended

efficiently, can result in long execution time and premature termination of a program. Existing

program analysis frameworks are notorious for consuming a large amount of memory during an

attempt to analyze a large software project. As such, we design an experiment to compare the



memory usage between Jitana and Soot, a widely used program analysis and optimization

framework for Java. Our evaluation consists of using 18 Android apps, with sizes ranging

from 0.02 MB to 80.4 MB. Our empirical evaluations reveal that Jitana requires up to 81%

less memory than Soot to analyze an app. At the same time, it can also analyze more

components including those belonging to the application and those belonging to the Android

framework.
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Chapter 1

Introduction

Static program analysis has been successfully utilized to enhance software quality, depend-

ability, and security over the last few decades. The main idea of static program analysis is

to analyze software (source code, intermediate representation code, or binary code) without

actually executing programs. The types of analysis that can be performed include identify-

ing and computing software metrics, detecting software defects and security vulnerabilities,

applying formal methods, and verifying safety-critical software systems; e.g., [1, 2, 3, 4, 5, 6, 7].

Because analysis is done directly on a code project without executing it, the first step to

perform program analysis is loading the project. Existing static program analysis techniques

take an approach similar to a compiler; that is, it first loads all code in the project to ensure

completeness. It then analyzes the loaded code. This type of analysis often makes a “closed-

world” assumption; that is, the analysis is done on the complete code; and once the analysis

is done, the results cannot change. (We refer to this type of approach as “compiler-based”.)

Fundamentally, the goal is to analyze all relevant components in the project. However,

achieving this goal is quite challenging in modern computing systems because the analysis

requirements have changed to address emerging security and dependability issues better.

Below, we highlight some of these challenges.

Challenge 1. Modern programming languages and platforms provide rich library support.
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Therefore, loading just the application code alone may not be sufficient to ensure dependability

and security. Recently, we have seen various instances of security vulnerabilities and software

defects that affect a large number of computer systems worldwide [8,9,10]. In these examples,

the root causes exist in the underlying systems or supporting libraries. To detect these issues,

we need to analyze the application code and the supporting libraries together. However, such

analysis techniques have been shown to result in excessive memory consumption, making them

infeasible to scale up to meet this requirement.

Challenge 2. In addition to the high memory overhead, compiler-based analysis approaches

also have issues dealing with the dynamism of modern programming languages. As an

example, Android supports both Java Reflections and Dynamic Code Loading (collectively

referred to in this thesis as RDCL). These mechanisms allow new classes to be dynamically

loaded at runtime, possibly from external sources [11,12,13,14]. Recently, we have seen RDCL

used to deliver malicious payloads in highly elusive malware [15, 16, 17, 18, 19, 20]. When

a static analysis approach is used to analyze apps with RDCL, it cannot provide complete

coverage on its own because additional classes can be added to the existing code-base, making

the initial static analysis results incomplete and creating the need to perform analysis on the

entire code-base even for a small code change.

Challenge 3. Today’s apps can communicate with each other as well as provide services for

one another. For example, Android provides a mechanism called Inter-App Communication

(IAC) to allow apps to communicate and share services among themselves. Through mech-

anisms such as IAC, a new breed of malware in which multiple apps can collude has been

introduced [21,22]. Thus, there is an emerging need to analyze these complex interactions

among apps in a device to identify such threats. Unfortunately, the current compiler-based

static analysis approaches address such issues by analyzing one app at a time and afterward,

combine the results [1, 23, 24,25,26]. Due to the need to perform analysis one app at a time,
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these techniques are too inefficient, making them unsuitable for at-speed per-device security

analysis.

1.1 Motivation

These challenges clearly illustrate the inherent limitations of existing compiler-based program

analysis approaches that make the closed-world assumption. To effectively address these

challenges, Tsutano et al. recently developed Jitana, a different type of static analysis

framework that constructs static program analysis information incrementally. Jitana’s major

underlying insight to is to break the traditional closed-world assumption, and instead, rely on

the “open-world” assumption achieved through the notion of “incrementality”. The underlying

idea is to incrementally load and analyze only the necessary code that is the transitive closure

of all the programs’ code and the underlying Android Development Framework (ADF ) code.

The idea is inspired by advancements in language runtime systems such as Java Virtual

Machine (JVM ) or Android Virtual Machine (AVM ) to support incremental execution via

class-loading and optimization of an application through dynamic compilation.

The first inspiration for Jitana is a class-loader, a runtime system used in both Java and

Android VMs to load only the necessary classes at runtime. A class-loader takes advantage

of application structures that partition code into classes to naturally and incrementally load

each class as it is needed for execution. It also supports various forms of late binding to

quickly resolve the ambiguity of finding which class to load through delegation. At the heart

of Jitana is the Class-Loader Virtual Machine (VCL) that fully adheres to the published

class-loader specification [27], but it operates as a stand-alone component in Jitana; i.e., it

does not operate as part of a language runtime system such as a JVM or AVM. The VCL

uses reachability analysis to uncover classes that must be loaded and delegates to resolve all

possible statically discoverable late binding targets.
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The second inspiration is the Just-In-Time (JIT) compiler commonly used in modern

programming language runtime systems (e.g., those used to support Java, Python, and

JavaScript). A JIT compiler naturally performs program analysis in an incremental fashion;

i.e., it only analyzes a small portion of the code at a time (e.g., a method or a trace [28]) and

then performs optimization to generate the backend code. By utilizing VCL, we can already

load code incrementally. As such, it creates an opportunity to incrementally analyze each

class right after it is loaded. In this approach, the initial analysis would be intraprocedural.

Once the analysis on that class is completed, reachability analysis is used to uncover other

reachable classes and construct and propagate interprocedural information (e.g., method call

graph) among analyzed classes.

1.2 Contributions

In this thesis, we attempt to quantify the underlying difference in memory usage between

Jitana and Soot, a widely used program analysis and optimization framework for Java. As

previously stated, we hypothesize that the incremental nature of Jitana would allow it to

analyze more code than a traditional, compiler-based program analysis framework such as

Soot, given the same amount of memory.

To validate our hypothesis, we design an experiment to evaluate memory usage of each

approach. Our evaluation consists of using 18 apps. Each app is analyzed by both analysis

frameworks. The evaluation methodology includes developing tools to periodically measure

virtual memory usage during an analysis task performed by each framework. We also report

the number of methods analyzed by each approach. Note that the reported number of

methods by each analysis framework is different, because Jitana can analyze the complete

framework code while Soot does not.

In summary, the main contribution of this work is to compare the memory performance
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between the new incremental program analysis approach (represented by Jitana) and the

traditional compiler-based program analysis approach (represented by Soot). Our evaluation

result indicates that the incremental nature of Jitana can result in 81% memory conservation

than the traditional approach. As a result, the memory saving allows Jitana to analyze

more code, including critical components in the Android framework used by the application.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 describes exising program analysis

challenges, which motivate the development of Jitana. Chapter 3 describes the design of

Jitana and illustrate some of the differences in analysis results between Jitana and Soot.

Chapter 4 provides the detailed information related to our experiments. Chapter 5 reports

the experimental results. We conclude the thesis in Chapter 6.
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Chapter 2

Static Analysis Challenges and How They Are Addressed

As mentioned in Chapter 1, static program analysis frameworks are facing more demanding

analysis requirements to address emerging dependability and security issues. In this section,

we highlight three emerging challenges that today’s static program analysis frameworks

cannot address effectively and efficiently.

Challenge 1. The complex interactions between today’s application and the underlying

frameworks and libraries create the needs for static program analysis framework to be able to

analyze the application code in unison with the underlying framework code [9, 10, 29]. As an

example, solving dependability and security issues due to platform updates in a smart-mobile

device such as Android [30, 31] (e.g., determining why an app crashes after a platform

update) would require that the application code and the underlying Android Development

Framework (ADF) be analyzed together [4,8,26,32,33,34,35,36,37,38,39,40,41,42]. However,

analyzing ADF code along with application code has been shown to result in excessive memory

consumption.

Figure 2.1 illustrates a typical memory requirement of a compiler-based approach when

used to analyze an Android application and ADF code. In our illustration, we focus on App

0 with its code size equals to A0. It is currently running on ADF API-Level 25. This ADF

has a code size of B0. To thoroughly analyze all relevant components used by App 0, the
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Figure 2.1: An Illustration of Different Static Analysis Challenges.

amount of code that a compiler-based static analysis approach needs to load is A0 +B0 due

to the closed-world assumption. Currently, the average Android app file size is about 12

MB; the file size of API-Level 25 is 160 MB. Thus, the total code that must be loaded is

approximately 172 MB (12 MB + 160 MB or 14 times the size than analyzing App 0 alone).

This is before performing any analysis. Typically, constructing program analysis information

such as control flow, data flow, and points to graphs would require a significant amount of

additional memory. For example, Soot a widely used program analysis framework for Java

and Android, recommends a minimum heap size of 10 GB [11]. Even with that large heap

size, when we use Soot to analyze large apps, we still see occasional “out of memory” errors.

There have been approaches that attempt to reduce memory consumption while considering

the underlying ADF code. They achieve this goal by using modeling, mining ADF code, or

automating learning of existing code [26, 41, 42] in place of performing analysis of application

and ADF code simultaneously. These approaches perform analysis in multiple steps. For

example, CiD first performs analysis of the application code to identify API calls into ADF.
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It then analyzes the ADF code to construct API Life Cycle Models and Conditional Call

Graph, which performs path-sensitive backward interprocedural data flow analysis toward

the code that performs version checks to reduce false positives [41]. A study by Scalabrino et

al. [42] reported that CiD cannot finish analyzing nearly 20% of apps (1,971/11,863) after

one hour.

ACRyL, on the other hand, only analyzes the application code and uses automated

learning to observe code changes with respect to API compatibility. This approach can

also suggest repairs. However, both approaches do not detect any compatibility issues that

occur through nested API calls within the ADF code. In addition, both approaches rely

on pre-analyzed data so that can produce incomplete results (e.g., in the case that some

necessary features are not part of the modeling efforts) and are not responsive to changes due

to frequent ADF updates or introduction of new issues (e.g., changes or new issues that were

not part of the learning datasets) [26,42]. We conclude that excessive memory requirements

can cause program analysis techniques to be inefficient and even unreliable when there is not

enough memory. Furthermore, approaches to conserve memory can be ineffective in situations

where code is frequently updated.

Challenge 2. As previously mentioned, mechanisms such as RDCL allow new classes to be

dynamically loaded at runtime, possibly from external sources. RDCL is commonly used to

support several features in Android apps, including backward compatibility, dynamic updates,

component plugins, and serving advertisements. Recently, we have also seen RDCL used to

deliver malicious payloads in highly elusive malware [15,16,17,18,19,20]. Our preliminary

inspection of 60 games (e.g., NBA Live and Roblox), social network apps (e.g., Facebook

and Pinterest), and multimedia apps (e.g., Pandora and Spotify) from Google Play revealed

that 57% of these apps use RDCL to load classes dynamically. This prolific use of RDCL is a

significant increase from an earlier reported result, wherein only 16% of the top 50 apps from

2013 were found to use RDCL [12].
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When a static analysis approach is used to analyze apps with RDCL, it cannot provide

complete coverage on its own because additional classes can be added to the existing code-base

from external sources, making the initial static analysis results incomplete. Note that there

are existing static analysis approaches that can analyze apps with RDCL as long as those

dynamically loaded classes are accessible at the analysis time (e.g., these classes are hidden

in the code area of the project) [6, 7, 43, 44]. However, their analyses cannot discover classes

that are downloaded at runtime or hidden in inaccessible areas. To ensure completeness,

dynamically loaded classes must also be included as part of subsequent analysis attempts.

Work by Bodden et al. (TamiFlex) Zhauniarovich et al. (StaDyna) and Rasthofer et al.

(Harvester) perform hybrid analysis to address this challenge [11,12,13,14]. First, their

approaches use dynamic analysis to identify and capture the dynamically loaded classes and

then add these classes to the project. Afterward, they statically reanalyze the project with

the addition of newly discovered classes.

Once again, we focus on App 0 in Figure 2.1. As shown, it uses RDCL to load two

additional classes (Class 0 and Class 1 ) of sizes C0 and C1, respectively. Let us further

assume that these two classes are acquired from external sources, so they are not available

anywhere in the original code-base. If App 0 has already been statically analyzed, as soon as

Class 0 and Class 1 are loaded, App 0 must be analyzed again. In the case that there is

a very long delay between the loading of Class 0 and the loading of Class 1, an analysis is

likely done after the loading of each respective class. In the compiler-based approach, the

effort to reanalyze the project after Class 0 is loaded (i.e., A0 +B0 + C0 in this case) is not

proportional to that amount of code that changes (i.e., just C0 in this case). The inability to

scalably deal with dynamism to today’s programming languages make compiler-based static

analysis approaches ineffective and inefficient in addressing today’s dependability and security

concerns such as these.

Challenge 3. Today’s apps can communicate with each other as well as provide services for
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one another. For example, Android provides a mechanism called Inter-App Communication

(IAC) to allow apps to communicate and share services among themselves. Through mecha-

nisms such as IAC, interactions among apps installed on a device can be quite complex, and

current compiler-based static analysis approaches are not capable of scalably analyze these

apps with timely results that can be used to address current security threats.

One of such emerging threats is colluding malware [21,22]. By leveraging IAC, sophisticated

collusive security threats exploit multiple apps to create longer calling paths to launch

malicious activities. Identifying this type of threat requires that all apps in the calling paths

be analyzed. Thus, the most effective and efficient way to detect colluding malware is to

perform an analysis per device because calling paths of colluding malware can only involve

apps installed on that device. Unfortunately, a recent study shows that, on average, there

are close to 100 apps installed on an Android device. There are currently over 3.3 million

Android apps on Google Play, and Google has made 17 releases of Android Platforms. The

sheer variability among apps and platforms make pre-analyzing all existing apps or even just

the most popular apps infeasible.

As we have shown in the first challenge, current static analysis approaches analyze one

app (optionally with ADF) at a time. Therefore, techniques that have been designed to

detect colluding malware, but built on top of compiler-based static analysis approaches, also

analyze one app at a time and then perform inter-component and inter-app analysis afterward

[45,46,47,48]. As an illustration, we revisit Figure 2.1. We have App 0 to App N installed

on a device running ADF API-Level 25.

There are two general approaches to detect potential collusion. The first approach analyzes

a small set of programs for connections at a time. Li et al. introduce (IccTA), an approach

based on Soot. It consists of several tools [1, 23,24] that perform per app analysis (i.e., it

needs to analyze App 0 to App N, one app at the time). It then performs cross-app analysis

on the results to find possible connections among apps. Once apps with connections are
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identified, they are combined into a non-executable but analyzable app using APKCombiner,

a tool capable of combining only very few apps for analysis [49]. We have experimented with

this approach and found it to be non-scalable.

The second approach aims to achieve better scalability by creating and then analyzing

architectural models. SEALANT [25] combines static analysis with runtime monitoring to

prevent IAC attacks. It statically analyzes (again using Soot) each app to identify channels.

It then extracts the architectural model of each app and performs compositional analysis

of these models to detect vulnerable channels [26]. By analyzing models, this approach is

more scalable than the first approach. By not fully analyzing the source code, the analysis is

more restrictive (i.e., it can only analyze issues that can be found through the models). In

addition, the compositional analysis iteratively builds analysis results from one app on top of

prior results. If more comprehension is needed (e.g., debugging or formulating repairs), per

app analysis is still needed to provide additional information. Due to the need to perform

analysis one app at a time, these techniques are too inefficient to be used for near-real-time

or at-speed security analysis.

In the next chapter, we describe Jitana, a program analysis framework introduced by

Tsutano et al. and highlight how it can address these three challenges.
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Chapter 3

Overview of Jitana

Tsutano et al. introduced Jitana, an incremental program analysis framework, to address

these three challenges [50]. The critical characteristic that enables Jitana to be able to

address these three challenges is the notion of "incrementality". By being able to load and

analyze code incrementally, Jitana requires less memory, allowing it to tackle large projects

while incurring reasonable memory usage. Jitana achieves incrementality by the use of a

Virtual Class-Loader (VCL).

3.1 Design of Jitana

As previously mentioned, existing runtime concepts that include class-loading and dynamic

compilation and optimization inspire the creation of VCL. Naturally, class-loading supports

incrementally loading of only the necessary classes. Each instance of ClassLoader, which is

a Java class inherited from an abstract class Ljava/lang/ClassLoader;, has a reference to

a parent class-loader.

The class-loader specification [27] supports Delegation Hierarchy Principle that is used to

discover and load classes through delegation [51]. When a class-loader cannot find a class, it

delegates the task to its parent class-loader. A class can be located and loaded by one of the

three class-loaders (i.e., Bootstrap, Extension, and Application). There are five supported
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methods: loadClass, defineClass, findClass, findLoadedClass, and Class.forName.

These methods can be used to define a class or find a class, load it, and initialize it. The

loaded classes are also unique.

VCL in Jitana strictly follows the Java classloading specification from Oracle [27]. It

supports all essential methods to support various class-loading and defining activities. It also

supports Delegate Hierarchy Principle, Visibility Principle, and Uniqueness Property. The

Delegate Hierarchy Principle contains several rules to define how to find and load classes and

ensure that the classloader does not load any duplicate classes. The principle also defines

how delegation among the three classloaders should work.

As an example, if VCL needs to load a new class, it first delegates the request to Application

Classloader, the request is further delegated to Extension Classloader, and finally, the last

delegation is made to Bootstrap Classloader. Delegation creates the searching and loading

hierarchy. Bootstrap Classloader first searches in the Bootstrap classpath to find the class. If

it cannot find it in the Bootstrap classpath, Extension Classloader searches in the Extension

classpath. If it cannot find it in the Extension classpath, Application Classloader searches in

the Application classpath to find and load the class. If it is still not found, VCL generates an

error.

During static analysis, VCL uses reachability analysis to identify classes that we need

to load. The main idea is to analyze the methods in each class to identify any additional

method calls within those methods to load classes to which these methods belong. For each

class discovered through reachability analysis, VCL applies the Delegate Hierarchy Principle

to locate and load that class. This capability provides Jitana with the ability to discover

and analyze loaded classes incrementally.

In addition, VCL also preserves the Visibility Principle, which states that a class loaded

by a parent class-loader (e.g., Extension Classloader) is visible to the child class-loader; i.e.,
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the class is visible to Extension and Application Classloaders but not Bootstrap Classloader.

It also ensures that each loaded class is unique (Uniqueness Property).

In dealing with dynamic polymorphism, VCL exploits an insight that at runtime, both

a method or class name and the classloader information define a method or a class. Thus,

it records class-loader information as part of an analysis, so that it can have information

about the defining class-loader for a class. This information is similar to what being kept

inside the JVM or AVM to resolve dynamic method dispatch. However, the information is

not as precise, so all possible targets of a virtual interface are included for analysis. While

this can add additional classes and methods that must be analyzed, it is still much smaller

than loading the entire code-base. It is also a small tradeoff to ensure completeness.

3.2 Program Analysis with Jitana

0 System
core.dex
framework.dex
framework2.dex
ext.dex
conscrypt.dex
okhttp.dex
core-junit.dex
android.test.runner.dex
android.policy.dex

1 SuperDepth
super_depth_classes.dex

parent_loader
2 Facebook

data@app@com.facebook.katana-1.apk@classes.dex
program-eb5202dbb54c0efff1c01c5f...baa6.dex.dex
program-e2ca9fdbaa4e32f97b90b376...baa6.dex.dex
program-7feaf7c75a5305b1083a160f...baa6.dex.dex

parent_loader

3 Instagram
instagram_classes.dex

parent_loader

4 JohnNESLite
johnneslite_classes.dex

parent_loader

Figure 3.1: An illustration of a class-loader graph

Jitana presents the analysis results as hierarchical graphs that are Boost compliant [52].

These graphs consist of class-loader graph, class graph, method-call graph, and instruction

graphs. The class-loader graph contains information about apps under analysis. Figure 3.1
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illustrates a class-loader graph that includes four apps: SuperDepth, Facebook, Instagram,

and JohnNESLite.

0_0_t294 public
Ljava/lang/Object;

0_1_t2782 public abstract
Landroid/os/AsyncTask;

3_0_t4001  
Lcom/instagram/android/support/camera/LoadImageTask;

1_0_t87 public
Ljp/bio100/android/superdepth/GameBase$HttpTask;

Figure 3.2: A snippet of a class-graph related to AsyncTask

A class graph, shown in Figure 3.2, includes the relationship among classes. The figure

only shows a portion of the class graph that is related to AsyncTask. A method-call graph,

shown in Figure 3.3 includes method-call relationship.

0 static synthetic
Landroid/os/AsyncTask;

access$600(Landroid/os/AsyncTask;Ljava/lang/Object;)V

0 private
Landroid/os/AsyncTask;

finish(Ljava/lang/Object;)V

direct
1

0 public final
Landroid/os/AsyncTask;

isCancelled()Z

virtual
1

0 protected
Landroid/os/AsyncTask;

onCancelled(Ljava/lang/Object;)V

virtual

4

0 protected
Landroid/os/AsyncTask;

onPostExecute(Ljava/lang/Object;)V

virtual
8

0 protected
Landroid/os/AsyncTask;

onCancelled()V

virtual
1

3 protected volatile bridge synthetic
Lcom/instagram/android/support/camera/LoadImageTask;

onPostExecute(Ljava/lang/Object;)V

super

1 protected volatile bridge synthetic
Ljp/bio100/android/superdepth/GameBase$HttpTask;

onPostExecute(Ljava/lang/Object;)V

super

3 protected
Lcom/instagram/android/support/camera/LoadImageTask;

onPostExecute(Ljava/lang/Void;)V

virtual
2

1 protected
Ljp/bio100/android/superdepth/GameBase$HttpTask;

onPostExecute(Ljp/bio100/android/superdepth/GameBase$TaskRes;)V

virtual
2

0 protected final transient varargs
Landroid/os/AsyncTask;

publishProgress([Ljava/lang/Object;)V

virtual
1

direct

1

Figure 3.3: An illustration of a method-call graph

For each method, there is an instruction graph (shown in Figure 3.4) containing Dex

instructions. It also contains intraprocedural data-flow (red arrows) and control-flow (blue

arrows) information.
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1_0_m244
Ljp/bio100/android/superdepth/GameBase;

sgn(I)I

0: ENTRY v1-v2

26
1 0 (line=115) if-lez v2 []

v2

20
4 4 (line=116) if-gez v2 []

v2

6
2 2 const/4 v0 [1]

true

3 3 (line=117) return v0 []

v0

9: EXIT vR

vR

20
5 6 const/4 v0 [-1]

0
7 8 (line=117) const/4 v0 [0]

true

v0 6 7 goto [-4] v0 8 9 goto [-6]

Figure 3.4: An illustration of an instruction graph

3.3 Comparing Results Produced by Jitana and Soot

We create a simple HelloWorld program that contains three classes: HelloWorld, HelloWorldTwo,

and HelloWorldThree. HelloWorld invokes helloClass2Method1, which is a method

in HelloWorldTwo. Method helloClass2Method1 simply calls println with is a native

method in java.io library. Note that the program does not invoke any method in class

HelloWorldThree. Figure 3.5 illustrates the method call graph produced by Soot, and

Figure 3.6 illustrates the method call graph produced by Jitana. Also note that we use the

same program for analysis but the one used by Soot was compiled into Java bytecode and

the one used by Jitana was compiled into Android Dex code.

As shown in Figure 3.5, Soot treats any calls to the underlying library (e.g., java/lang/Object
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<HelloWorld: void main(java.lang.String[])>

<HelloWorldTwo: void helloClass2Method1()>

<java.lang.System: void <clinit>()> <java.lang.Object: void <clinit>()> <java.io.PrintStream: void println(java.lang.String)>

Figure 3.5: A Method-call-graph of HelloWorld Produced by Soot

and java/io/PrintStream) as terminals. That is, the analysis ends at these calls. Jitana,

on the other hand, continue to load any of those system classes written in Dex. As such,

its method call graph also includes system-level methods such as finalize, hashCode, and

wait. The call appearing within the red circle in Figure 3.6, represents the actual call from

class HelloWorld to a method in class HelloWorldTwo.

The graph generated by Jitana also shows existing methods in a class even though they

have not been invoked. (Note that each red arrow indicates a method invocation.) For example,

methods such as notifyAll, notify, and finalize belong to class java/lang/objects but

they are not invoked. Similarly, methods helloWorldClass2Method2 and helloWorldClass3Method1

belong to hellowWorldClass2 and hellowWorldClass3, respectively. The are also not in-

voked. However, they are included because Jitana analyzes all the Dex methods in every

loaded class.

Also note that Jitana method call graph does not show java/io/println. Upon further

inspection, because java/io/PrintStream is a native library, VCL cannot load it, and

therefore, it is not analyzed. However, the call to println still appears in the instruction

graph as a method call.



18

0 public constructor
Ljava/lang/Object;

<init>()V

0 private native
Ljava/lang/Object;

internalClone(Ljava/lang/Cloneable;)Ljava/lang/Object;

0 protected
Ljava/lang/Object;

clone()Ljava/lang/Object;

direct
9

0 public
Ljava/lang/Object;

equals(Ljava/lang/Object;)Z

0 protected
Ljava/lang/Object;

finalize()V

0 public final native
Ljava/lang/Object;

getClass()Ljava/lang/Class;

0 public native
Ljava/lang/Object;

hashCode()I

0 public final native
Ljava/lang/Object;

notify()V

0 public final native
Ljava/lang/Object;

notifyAll()V

0 public
Ljava/lang/Object;

toString()Ljava/lang/String;

virtual
3

virtual
12

0 public final
Ljava/lang/Object;

wait()V 0 public final native
Ljava/lang/Object;

wait(JI)V

virtual3

0 public final
Ljava/lang/Object;

wait(J)V

virtual
2

1 public constructor
LHelloWorld;

<init>()V direct1

1 public static
LHelloWorld;

main([Ljava/lang/String;)V

1 public static
LHelloWorldTwo;

helloClass2Method1()V

direct
1

1 public constructor
LHelloWorldThree;

<init>()V

direct
1

1 public static
LHelloWorldThree;

helloClass3Method1()V

1 public constructor
LHelloWorldTwo;

<init>()V

direct

1

1 public static
LHelloWorldTwo;

helloClass2Method2()V

Figure 3.6: A Method-call-graph of HelloWorld Produced by Jitana

3.4 Addressing Existing Challenges

Concerning the previously mentioned first challenge, Jitana [50] addresses it by being able

to simultaneously analyze application code and ADF code efficiently and scalably within

a typical memory availability of a workstation or laptop. Unlike existing approaches to

reduce memory consumption, Jitana achieves this goal by loading just the necessary classes

from the app and ADF. This way, the effectiveness to detect, debug, and repair complex

dependability and security issues is not compromised.

To address the second challenge, Jitana can perform hybrid analysis to uncover RDCL
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classes and analyze them efficiently. Unlike existing approaches to repeatedly analyze the

entire code-base for each code change, Jitana achieves this goal by expending the analysis

effort that is proportional to the amount of code that changes. As shown in Figure 2.1,

Jitana only analyzes C0 and appends the new results to the previously computed results.

To address the third challenge, Jitana can analyze an extensive collection of apps or

apps installed on a device at speed. Unlike existing approaches that combine analysis results

from analyzing a single app at a time, Jitana achieves this goal by being memory-efficient

and better organization of analysis data to allow multiple apps to be analyzed simultaneously.

However, we can still distinguish each app within an analysis attempt.

In the next chapter, we investigate the memory usages of Soot and Jitana and report

the overall performances of both systems.
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Chapter 4

Experimental Evaluation

In this chapter, we report the results of our investigation to compare memory usage and

performance of Soot and Jitana. We also used APKTool [53] for decompilation of the

APK so that we can assess the number of lines of code. In our evaluation, we address the

following two research questions:

Research Question 1: Is Jitana more memory efficient than Soot and if yes, by how

much?

Research Question 2: Is Jitana more efficient, in terms of analysis time than Soot?

4.1 Objects of Analysis

We want to quantify the difference in memory usage between the compiler-based approach,

represented by Soot, and the classloader-based approach, represented by Jitana. By

intuition, the classloader-based approach incrementally loads code and therefore should be

much more memory-efficient and scalable. In this work, we attempt to verify the intuition

and quantify the savings. We used both approaches to analyze 18 Android apps and measured

the memory usage over time. We also recorded the analysis time.
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To ensure a fair and comprehensive evaluation, we selected 18 Android apps with sizes

ranging from less than 1 MB to over 50 MB as subjects for our experiment. We used

open-source repositories, such as F-Droid and APK Pure to obtain these apps [54, 55, 56].

The intention of having a wide range of app sizes is to observe how increasing size impact

memory performance for both analysis platforms.

Next, we establish baselines for the relative size of each Android app. Although the size

of APK is what an end-user would normally see when downloading an Android app, a large

portion of the APK is dedicated to related assets and resources, which do not contribute to

the logic of the app. To gain a more thorough understanding of the relative size of apps,

we first import and analyze the APK files in Android Studio, which gives us an overview

of the basic structure of each APK, such as the number and size of DEX files, number of

classes/methods defined, etc [57]. As a backup measure, we also decompiled each APK using

Apktool and counted the number of smali lines from each decompiled APK. In the end, we

used the total size of DEX files (DEX code is the Android VM binary) and the number of

lines of smali code (human-readable DEX disassembly) as the two main baseline indicators of

the complexity of performing static analysis. Table 4.1 describes the basic characteristics of

each app.

4.2 Variables and Measures

Independent Variables. Our independent variables involve the baseline technique used in

our study. We use FlowDroid as the baseline system. FlowDroid is a program analysis

framework based on Soot that has been modified to support analysis of Android apps. In

its original form, Soot performs analysis by assuming that the main method is the only

entry point into the program. However, Android applications can have multiple entry points.
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App Name APK Size DEX Size Number of Smali Lines Number of defined methods
Snake 18 KB 7.3 KB 2,830 44
Battery Indicator 2 MB 180 KB 116,593 2337
BitClock 566 KB 271 KB 158,884 4743
AdBlockPlus 2.6 MB 404 KB 240,226 5656
Guitar Flash 45.2 MB 730 KB 439,016 10608
Calculator 4.3 MB 674 KB 461776 10623
iFixit 3.3 MB 743 KB 471,658 10323
Slots Pharaohs Fire 45.1 MB 994 KB 673,772 17066
TypoLab 45.2 MB 1.1 MB 841,209 21735
Cute Animals 45.2 MB 1.3 MB 1,114,023 25647
Dolphin EMU 13.8 MB 2 MB 1,258,159 28648
BBC Weather 9.2 MB 2.4 MB 1,659,200 40105
Bike Citizens Bicycle GPS 45.2 MB 2.7 MB 1,827,500 43604
The Child of Slendrina 45.1 MB 2.2 MB 1,839,378 43611
Moto Rider 45.1 MB 2.7 MB 2,120,364 48812
Doodle Army 45.1 MB 3.8 MB 2,820,695 6295
BBC News 15.5 MB 4.3 MB 3,257,594 65677
Adobe Lightroom 80.4 MB 6.2 MB 4,485,608 101022

Table 4.1: Basic characteristics of experimental subjects.

FlowDroid, an Android taint analysis tool built on top of Soot, solves this issue by

creating a custom main method that considers all possible combinations of outgoing methods.

Since we are interested in comparing the static analysis performance of FlowDroid and

Jitana, we set up both tools to generate only the method call graph of a single app at a

time. On the other hand, FlowDroid performs taint analysis, which is an extra step on top

of generating the method call graph. We wrote a Java program to configure a Soot instance

with desired parameters, and then we instantiated FlowDroid to use the existing Soot

instance to generate the method call graph without performing further analyses.

To make sure the same set of Android Framework methods are available, both FlowDroid

and Jitana were configured to reference Android API level 25 framework files. We used the

latest version of both FlowDroid (2.7.1) and Jitana (2018.4).

Dependent Variables. To measure the memory usage of Jitana and FlowDroid, we use

existing performance monitoring tools available in macOS. We start the analysis and top,

the process monitor utility, at the same time, and we take a snapshot of top every second to

monitor the per-process memory usage reported in MB. We are particularly concerned with
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the peak memory usage, as it is the most common limiting factor to perform very complex

analyses.

Next, we calculate memory efficiency (ME) using the following formula:

ME =
Number of Methods in the Callgraph
the Peak Memory Consumption in MB

Note that a higher value of ME reflect how efficient an analysis framework uses memory.

To measure overall efficiency, we measure the record to perform each analysis and report the

result in seconds

4.3 Study Operation

We set up our evaluation environment on an Apple MacBook Pro with 2.7 GHz Quad-Core

Intel Core i7 and 16 GB LPDDR3 RAM running macOS Catalina (10.15.3). We repeat the

experiments three times and measure the amount of memory and time required to perform

the analysis of each app using the analysis techniques, each averaged over three attempts.

4.3.1 Threats to Validity

The primary threat to external validity in this study involves the object programs utilized.

In this work, our objects are based on programs that have been widely used by prior research

work [54,55,56]. We also ensure that they all can run on the same ADF (version 25 in this

case).

The primary threat to internal validity involves potential errors in the implementation of

our measurment process. To limit these, we extensively validated all of our measurement

components and scripts to ensure correctness.

The primary threat to construct validity relates to the fact that we study efficiency

measures relative to applications of Jitana, but do not yet assess whether the approach helps



24

software engineers or analysts addresses dependability and security concerns more quickly

than current approaches. Next, we report the results of our evaluation.
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Chapter 5

Results

Next, we answer the two research questions. We formulate these answers based on our

empirical investigations to observe memory consumption and analysis time.

5.1 RQ1: Memory Savings

We report the overall performance in Table 5.1. We report the number of analyzed methods

in columns II and V for Soot and Jitana, respectively. Note that Jitana also analyzes

methods in the ADF code, and therefore, it processes more methods than those processed by

Soot. In columns III and VI, we report the amounts of memory (in MB) needed to support

the analysis of each app by Soot and Jitana. We report the analysis time of both systems

in columns IV and VII.

Soot completed analysis for all but one Android app, Adobe Lightroom, presumably

due to incompatibility from newer programming practices. FlowDroid terminated with a

runtime exception during the callgraph-construction phase. In all 18 apps, Jitana analyzed

significantly more methods than Soot. In the case of BitClock, the difference in the numbers

of analyzed methods is about 81 times. In the case of Battery Indicator, the difference is

about 3 times. On average, Jitana analyzes 11.84 times more methods than Soot.

While Jitana analyzes more methods than Soot in every application, it also requires less
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Soot Jitana
Analyzed Utilized Analysis Analyzed Utilized Analysis

App Name Methods Memory Time Methods Memory Time
(MB) (Seconds) (MB) (Seconds)

[I] [II] [III] [IV] [V] [VI] [VII]
Snake 84 130 1 727 21 1
Battery Indicator 1,195 330 4 3,548 64 3
BitClock 57 175 1 4,631 57 2
AdBlockPlus 632 293 3 7,048 112 3
Guitar Flash 2,244 481 6 10,856 135 5
Calculator 2,850 737 8 12,898 180 5
iFixit 3,423 797 10 12,365 161 5
Slots Pharaohs Fire 3,148 787 12 18,421 218 6
TypoLab 4,242 834 13 22,782 252 8
Cute Animals 1,221 455 5 23,834 273 9
Dolphin EMU 2,867 786 12 28,290 390 12
BBC Weather 6,307 1,390 23 37,503 374 12
Bike Citizens Bicycle GPS 6,948 1,455 26 40,444 431 16
The Child of Slendrina 3,047 838 20 39,748 436 14
Moto Rider 4,880 1,369 28 44,279 460 14
Doodle Army 10,336 1,742 61 48,903 520 16
BBC News 9,461 1,727 67 49,139 570 16
Adobe Lightroom n/a 1,408 n/a 47,304 503 21

Table 5.1: Comparing Memory Usage and analysis time between Soot and Jitana

memory than Soot to complete the analysis for each application. In the case of Snake, our

smaller app, Soot needs over 5 times more memory to analyze 7.6 times fewer methods. In

the case of Cute Animals, Soot needs 67% more memory to analyze 19 times fewer methods.

On average, Soot needs 2.07 times more memory to analyze an app.

Next, we report memory efficiency (ME) in Table 5.2. As a reminder, ME is the ratio

between the number of methods in a method call graph and peak memory usage.

As the table shows, ME of Jitana is significantly higher than that of Soot. In many

cases, the efficiency gain is as high as 249 times. On average, the ME of Soot is 3.87

methods per one MB, while the ME of Jitana is 79.98 methods per one MB. The average

efficiency gain of Jitana over Soot is 36.35 times.
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Gain
App MESoot MEJitana (MEJitana

MESoot
)

Snake 0.65 34.62 53.57
Battery Indicator 3.62 55.44 15.31
BitClock 0.33 81.25 249.44
AdBlockPlus 2.16 62.93 29.17
Guitar Flash 4.67 80.42 17.24
Calculator 3.87 71.66 18.53
iFixit 4.29 76.80 17.88
Slots Pharaohs Fire 4.00 84.5 21.13
TypoLab 5.09 90.40 17.77
Cute Animals 2.68 87.30 32.53
Dolphin EMU 3.65 72.54 19.89
BBC Weather 4.54 100.28 22.10
Bike Citizens Bicycle GPS 4.78 93.84 19.65
The Child of Slendrina 3.64 91.17 25.07
Moto Rider 3.56 96.26 27.00
Doodle Army 5.93 94.04 15.85
BBC News 5.48 86.21 15.74
Average 3.70 79.98 36.35

Table 5.2: Comparing Memory Efficiency Between Soot and Jitana

5.2 RQ2: Efficiency

In term of analysis time, Table 5.1 shows that for the small size apps (i.e., Snake to Guitar

Flash), the analysis times of Soot and Jitana are comparable. However, as the apps become

large, Soot spends more time to analyze these apps. The two exceptions are Cute Animals

and Dolphin EMU. These are small apps; however, they invoke a huge number of methods

from the underlying framework. Small numbers of methods allow Soot to perform analysis

quickly. However, Jitana ends up analyzing more than 19 times and 9 times more methods

in these apps, respectively. Jitana takes longer than Soot to analyze Cute Animals, and it

takes about the same time as Soot to analyze Dolphin EMU. For very large apps such as

Doodle Army and BBC News, the analysis times of Soot are 2.81 to 3.18 times higher

than those of Jitana.

While the peak memory consumption can provide the highest memory watermark for

an analysis system, it does not provide the amount of memory the analysis system is using

concerning time. For example, a system that occupies a large amount of memory for a
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short time may perform better than another system that uses less memory but for a much

longer time. To observe memory usage over time, we recorded both Jitana’s and Soot’s

memory usage throughout execution. We plot time (in seconds) on the x-axis and the memory

consumption on the y-axis to form the memory-over-time graphs. Here we discuss the results

of three apps that are most representative of the entire range of apps tested.

By the sizes of their DEX files, BBC News (4.3 MB), Dolphin EMU (2.0 MB), and Cute

Animals Names and Sounds (1.3 MB) represent large, medium, and small Android apps.

Again, when mentioning the size of Android apps, we are referencing the relative logical

complexity, reflected by the size of DEX files or the number of lines of code. For example,

Cute Animals has the largest APK size but the smallest DEX size, meaning that most of

the files in its APK are not related to how the application works; instead, they are accessory

files, such as media, used to support the application’s functions.

We intend to analyze how Soot and Jitana perform in analyzing real-world apps of

varying complexities. For a small app, Soot and Jitana achieve the same time of completion;

however, the amount of memory needed by Jitana reaches plateau much quicker. It also

requires less peak memory. For a medium-sized app such as Dolphin EMU, Jitana manages

to use around 300 MB of memory during most of the analysis, while Soot’s memory usage

continued to increase to almost 800 MB.

The performance difference in memory usage becomes even more staggering when both

systems analyze large apps. BBC News, whose APK has multiple DEX files, represents a

reasonably complex Android app that an end-user would encounter in real life. As Figure 5.3

shows, Jitana outperforms Soot by a big margin, both in terms of speed and memory

usage.
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Figure 5.1: Memory Usage Over Time for Analyzing a Simple App.

Figure 5.2: Memory Usage Over Time for Analyzing a Medium-Sized App.
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Figure 5.3: Memory Usage Over Time for Analyzing a Complex App.
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Chapter 6

Conclusions

In this study, we analyzed the advantages of the class-loading approach in static analysis

over the traditional compiler-based approach. We also designed experiments to measure the

memory efficiency and performance of Soot and Jitana for constructing method call graphs

across a wide range of Android apps. Our results show that Jitana conserves up to 5.2 times

memory and achieves an average efficiency gain of 36.35 times over Soot.

As the average size of smartphone apps grows, tools based on the class-loading approach

like Jitana will scale more easily than compiler-based approaches like Soot. Jitana also

made it feasible to analyze methods from both the application itself and the underlying

Android framework, thereby achieving a more complete analysis. In general, the compiler-

based approach is even more inefficient for analyzing the Android framework code, since

it would have to load the entire codebase, only to analyze a relatively small number of

reachable classes within the framework. Though it is theoretically possible to analyze both

the application and the framework code with Soot, the memory overhead would make

it infeasible on most personal computers. Therefore, we conclude that the class-loading

approach, represented by Jitana, is more memory-efficient and scalable for performing static

analysis of today’s complex applications.
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