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A half century of yield growth along the forty-first parallel of the Great Plains: 
factor intensification, irrigation, weather, and technical change 

 
Abstract 
 
In this study, we explain a half-century of crop yield growth along an 800-mile transect 
of the forty-first parallel North in the U.S. Great Plains. Using 101 county-level 
observations from 1960-2008 we jointly estimate a biomass production function with cost 
shares for fertilizer and chemicals while controlling for environmental factors. The main 
contributors to yield increases in this region were non-specific technical change +62%, 
irrigation +17%, fertilizer +13% and chemicals +11%. Environmental changes had a 
minor impact on regional yield changes. The wide range of agroclimatic conditions 
present along this transect produced significant sub-regional deviations from the 
aggregate estimates. While technical change was the main source of growth in every 
region, the contribution of the remaining factors of production varies substantially. 
Irrigation was almost as important as technical change in the more arid and warmer areas 
of the west, while fertilizer and chemicals were the second and third most important 
sources of yield growth in the more humid areas of the east. Temporal variation in 
contribution shows that climatic sensitivity has increased in the rainfed regions of the 
west while it has decreased in irrigated regions of the west.    
 

Q100 - Agriculture: General 

Q150 - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and 
Environment  (main JEL?) 

Q160 - Agricultural R&D; Agricultural Technology; Biofuels; Agricultural Extension 
Services   

 

Keywords: Yield, irrigation, production function, growth, technical change 
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A half century of yield growth along the forty-first parallel of the Great Plains: 
factor intensification, irrigation, weather, and technical change 

 
 
Introduction 

The potential for crop production to support the burgeoning world population, in the face 

of climate change, has motivated dozens of studies reported during the new millennium. 

Many of these, including this one, have been statistical studies examining the sources of 

the dramatic increase in aggregate crop yields since the 1950s. They have examined the 

impacts on yields of such factors as weather, management intensification, irrigation, and 

non-specific technical change. 

What can be said of these efforts? Most of them have measured the response to 

factors mentioned, but few have gone the step further to estimate the contribution of these 

factors to observed yield increases. Temperate zone studies have generally found 

substantial negative yield responses to high temperature, but only modest response to 

precipitation. Because climate changes are predicted to increase temperatures in most 

areas of the globe, the general conclusions have been that climate change will decrease 

crop yields (Zhao et al., 2017). On the other hand, many global studies of yield growth 

suggest that technical change will continue to increase production (Fuglie, K., 2012), 

while experimental plot studies indicate that CO2 fertilization will also increase 

production (Long et al., 2004), so the likely trend of crop yields in the presence of 

climate change remains poorly understood.  Virtually no studies other than this one have 

attempted to identify simultaneously both the marginal impacts and the recent 

contributions of input intensification, irrigation, technological change, and weather in this 

highly productive transect of the U.S. Great Plains at this level of aggregation. 
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Studies of changes in aggregate crop yields face a scale paradox: it is local 

weather, soil, and management conditions that actually determine yield changes, but it is 

yields aggregated to the regional and global scale that will determine food supply. Pixel-

level data are available to examine yield growth at only a tiny sample of any country’s 

crop production surface, but pixel-level crop growth models and experimental plots can 

reveal a fundamental understanding of how plants grow and respond to stimuli. 

Aggregate yield response, on the other hand, represents an amalgam of pixel-level 

responses that may not closely resemble that for individual pixels, or may as in the 

current study mask micro-level response and contribution phenomena. Nonetheless, 

analyses of country-level and global-level yields have provided estimates of the effects of 

temperature and precipitation anomalies when measured at similar scale. Aggregate yield 

analysis is irreplaceable for inferences about aggregate food supplies, but such analyses 

have been and should be tempered by principles of crop growth as revealed by micro-

level studies. 

In this study, we examine a half-century of crop yield growth along an 800-mile 

transect of the forty-first parallel North in the U.S. Great Plains (41st || hereafter). We 

chose to study this transect because, during the last half-century, yields there increased 

dramatically across a wide range of temperate-region growing conditions.  We identify 

the separate contributions and interactions of input intensification, irrigation, soil organic 

matter, weather, and technical change by estimating a general biomass yield response 

function for the 41st|| transect, from which we draw inferences for segments along the 

transect by calibrating the resulting model with appropriate weather and soil conditions.  



 5 

Theoretical framework 

We assume that production decisions are made by profit-maximizing farmers who 

operate under perfect competition in all commodities and factor markets. Farmers choose 

their optimum production and input requirements, subject to the production function Y= f 

(X, e, t), output and input prices, the characteristics of the environment (weather, soil, 

etc.) and of technical change as the solution to the following problem  

max
!

	𝜋 = 		𝑝 ∙ 𝑌 − 𝒘 ∙ 𝑿	 	; 𝑌 = 	𝑓(𝑿, 𝒆, 𝑡); 	𝑝 ≫ 0,𝒘 ≫ 0 ,                 	(1)	

where output per hectare is Y with price p, the variable input vector is X with 

corresponding price vector w, the environmental variables are represented by vector e and 

non-specific technical change is t. The yield function f (X, e, t) is assumed to be finite, 

nonnegative, real valued, and single valued for all nonnegative and finite X, everywhere 

twice-continuously differentiable, non-decreasing in X, and quasi-concave, fulfilling the 

weak essentiality condition.   

The first order interior conditions for profit maximization are 

𝜕𝜋
𝜕𝑋"

= 𝑝 ∙
𝜕𝑌(𝑿, 𝒆, 𝑡)

𝜕𝑋"
−𝑤" = 0, 𝑗 = 1,… , 𝐽																																																																								(1. 𝑎) 

From equations (1) and (1.a) the marginal impact of input variables, expressed in 

logarithms, is:  

𝜕 ln 𝑓(𝑿, 𝒆, 𝑡)
𝜕 ln𝑋"

=
𝜕𝑓(𝑿, 𝒆, 𝑡)

𝜕𝑋"
∙

𝑋"
𝑓(𝑿, 𝒆, 𝑡)

= 𝛾" =
𝑤"
𝑝
∙
𝑋"
𝑌
B
𝑿∗
= 𝑠" 																																													(2)				 

with 𝑗 = 1,… , 𝐽 and where  𝛾! is the production elasticity of input j, which when evaluated 

at optimum input levels (X*) is its share in total revenue, 𝑠!. Thus, under the conditions of 

this model, the production elasticity of input j is equal to the revenue share of that input, 

capturing the essence of the firm’s choice of input levels.  



 6 

The marginal effect on yields of an environmental variable e measured in 

elasticity terms is:  

𝜕 ln 𝑓(𝑿, 𝒆, 𝑡)
𝜕𝑒$

= 𝜇$																																	𝑣 = 	1, … , 𝑉																																																																(3. 𝑎) 

where ev is an environmental variable measured in logarithms. If the environmental 

variable is measured in levels rather than logs, the marginal effect can be expressed as the 

following semi-elasticity: 

𝜕 ln 𝑓(𝑿, 𝒆, 𝑡)
𝜕𝑒%

= 𝜇%																																																																																																																						(3. 𝑏) 

which is the change in logarithm of output (approximately the proportional change) per 

one-unit change in eu, whereas the elasticities in (3a) are standard elasticities 

(approximately the percentage change in yield per one percent change in ev).  

Different from the estimates in previous crop yield studies, our estimates of the 

impact of environmental variables are thus obtained from a model that controls for the 

simultaneous decisions made by the farmer given market prices as well as natural and 

technological conditions.  

The rate of technical change (TC) is: 

𝜕 ln 𝑓(𝑿, 𝒆, 𝑡)
𝜕𝑡

= 𝑇𝐶																																																																																																																					(4) 

According to its effects on relative input productivity, the nature of technical change can 

be further characterized in terms of input biases. The bias measure we use identifies 

change in optimal input share, under constant prices, due to technical change, defined as: 

𝐵" =
𝜕𝑠"
𝜕𝑡
					∀		𝑗																																																																																																																													(5) 

Technical change is said to be unbiased if all biases are zero, i.e, if it does not affect 

revenue shares. Hence, Hicks neutrality implies share neutrality. If 𝐵! > 0 the technical 
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change is said to be biased toward input j, or j-using; if 𝐵! < 0 the technical change is 

said to be biased against input j, or j-saving.  

Equations (2), (3) and (4) indicate marginal effects on yields of inputs, 

environmental variables, and non-specific technical change, respectively.  To study the 

contributions of each of these factors to yield growth over a given period of time, we 

couple these marginal effects with observed changes in the amounts of these factors 

during the period in a growth decomposition analysis as: 

𝑑 ln𝑌 			= 	R𝛾" ∙ 𝑑 ln𝑋"

&

"'(

+R𝜇$ ∙
)

$'(

𝑑 ln 𝑒$ +R𝜇% ∙
*

%'(

𝑑	𝑒% + 𝑇𝐶																																						(6) 

where the first right hand side term is output growth attributed to changes in inputs, the 

second and third are growth attributed to changes in environmental factors and the fourth 

is output growth attributed to non-specific technical change.  (In our application below, 

we evaluate equation (6) for annual changes.) 

 

Empirical Specification 

Single equation estimates of the production function will be affected by identification 

issues due to the simultaneity in firms’ choices of output and inputs. A system of 

equations that estimates jointly the production function and the inverse input demand 

equations implied by equation (2) allows for endogeneity of input choice and makes it 

obvious that output produced and inputs used are manifestations of a single decision-

making process tempered by expectations about natural phenomena. The estimates of the 

environmental impact in (3) control for the farmers’ behavior given expectations about 

these environmental factors (weather for example) and will, in general, be different from 
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(7) 

pure technical environmental responses measured on experimental plots. Models that do 

not explicitly account for this behavior will err in measuring the impact of each factor on 

yields because they do not account for adaptive decision-making.  

We chose the transcendental logarithmic (translog) functional form to represent 

the production function in (1) and the corresponding shares in (2). This specification is 

flexible as it provides a local second order approximation to any production technology, 

minimizing a priori restrictions on its structure. After adding random errors and assuming 

contemporaneous correlation the following system of equations is estimated: 

𝑦+, = 𝛼- +R𝛽"𝑥+",

.

"'(

+
1
2
RR𝛽"/𝑥+",𝑥+/,

.

/'(

.

"'(

+ 𝜃(	𝑝+, +		
1
2
𝜃((	𝑟+,0 + 𝜃(.𝑟+,𝑥+., + R 𝜔1𝑑+1,

.

1'(

+	R 𝜔12𝑑+1,𝑥+.,

.

1'(

+ R 𝜔31.𝑑+1,𝑟+,

.

1'(

+	𝜃0	𝑠𝑜𝑚+, + 𝜃0.𝑠𝑜𝑚+,𝑥+., + 𝜏(	𝑡	

+
1
2
𝜏0	𝑡	

0 +R𝜑"𝑡𝑥+",

.

"'(

+ 𝜌/ 

𝑠(+,	 = 𝛽( + 𝛽((𝑥+(, + 𝛽(0𝑥+0, + 𝛽(.𝑥+., + 𝜑(𝑡  

𝑠0+,	 = 𝛽0 + 𝛽0(𝑥+(, + 𝛽00𝑥+0, + 𝛽0.𝑥+., + 𝜑0𝑡 

 

where yit is logarithm of observed biomass yield Y (tons per hectare) in county i year t; 

𝑠"#$	  is the share of fertilizer; 𝑠&#$	  is the share of chemicals1; xit is a vector of the 

logarithms of quantity indexes of fertilizer (for j=1) and chemicals (for j=2) applied per 

hectare and the fraction of agricultural land irrigated (for j=3); diwt is a vector of the 

number of degree days in three temperature intervals; rit is the logarithm of growing 

 
1 We have included only share equations for fertilizers and chemicals because we lack county level 
information on labor, capital, and cost of irrigation.	
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season precipitation in centimeters; som is the logarithm of the level of soil organic 

matter in megagrams per hectare; 𝑘 is the region where the county is situated, with k = 

1,…,5;  and the variable t is a proxy for non-specific technical change measured as years 

since the beginning of the analysis starting with 1960 = 1. The coefficients α0, β’s, ω’s, 

θs, τ’s, φ’s and ρ’s are the parameters to be estimated. We included all the interactions 

between variables that represent farmer’s choices of inputs (fertilizer, chemicals, and 

irrigation), and technology (time trend). In addition, we account for the environmental 

variables (soil organic matter, degree days, and precipitation) that condition farmers’ 

choice, adding interactions of irrigation with precipitation, which allows us to examine 

how irrigation mitigates water stress and to account for the substitutability between them. 

We also add interactions of irrigation with degree-days, to study how irrigation mitigates 

heat stress; and of irrigation with soil organic matter, to examine the benefits of irrigation 

on different types of soils.  

Equality of coefficients across equations as well as symmetry were imposed 

during estimation while monotonicity was checked at each data point after estimation. 

Equations (7) were jointly estimated using an iterated three-stage least squares approach.  

Since the farmers make decisions about the desired yield and the amount of fertilizer and 

chemicals needed to produce it simultaneously, an instrumental variables approach was 

used to avoid endogeneity issues. For this purpose, indexes of prices of these inputs were 

used as instruments. Given that the interactions of the instrumented inputs, fertilizer and 

chemicals, with themselves and with the other variables are also endogenous, instruments 

for these interactions were also created.2   

 
2	Reg3 command in STATA version 15.0 was used for the econometric estimations.		
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Since the Cobb-Douglas production function is nested in the translog production 

function, we use a Wald test to check if the former is as good as the latter in capturing 

this technology. 

 As established in equation (2), the first derivative of the translog production 

function with respect to the logarithm of each input corresponds to the production 

elasticities 𝛾#!$	that, given our assumptions of profit maximization and perfect 

competition, are equal to the factor shares	𝑠#!$ for input j in county i in year t. These 

elasticities vary with time (t) and county inputs (i, j) in the following way:  

𝛾+", =	a
56"#
52"$#

b = a 57"#5!"$#
b ∙ c

!"$#
7"#
d = 𝛽" + ∑ 𝛽"/𝑥+/, + 𝜑"𝑡	.

/'(     
            

(8)	

One of these factors is irrigation, which we measure as share of irrigated land.  In this 

case the impact of irrigation is represented by the following semi-elasticity: 

𝛾+,.,, =	g
𝜕𝑦+,
𝜕𝑋+,.,,

h = g
𝜕𝑌+,
𝜕𝑋+,.,,

h ∙ a
1
𝑌+,
b = 𝛽. +R𝛽./𝑥+/, + 𝜑.𝑡	,					𝑗 = 3 = 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛							(9)

.

/'(

 

For the impact of the natural environment, e, on yields, as per equations (3), elasticities or 

semi-elasticities are estimated, depending on how the variable is defined. The following 

semi-elasticities identify the marginal impact of degree days (dd) in county i in year t: 

𝜇'#$ =
𝜕𝑦#$
𝜕𝑑'

=		𝜔' + 𝜔'(𝑥#)$ 	+ 𝜔*'𝑟#$											𝑤 = 𝑑𝑑0030, 𝑑𝑑3035, 𝑑𝑑35												(10) 

while the soil carbon (SOM) and precipitation (r) elasticities are: 

𝜇9:;,+, =
𝜕𝑦+,
𝜕𝑠𝑜𝑚+,

=	𝜃0 	+ 𝜃0.𝑥+.,																																																																																																	(11) 

𝜇3+, =
𝜕𝑦+,
𝜕𝑟+,

= 𝜃( 	+ 𝜃((𝑟+, + 𝜃(.𝑥+.,																																																																																													(12) 
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(15)	

As indicated in equation (4), the first derivative of the production function with respect to 

the time trend t can be interpreted as the rate of technical change in county i in year t: 

𝜕𝑦+,
𝜕𝑡

= 𝑇𝐶 = 𝜏(	 + 𝜏0	𝑡	
	 +R𝜑"𝑥+",

.

"'(

 	(13)	

The biases in technical change (5) are: 

𝐵! =
𝜕𝑠!
𝜕𝑡 = 	𝜑! 	,						∀	𝑗 

		(14)	

If 𝐵!	 > 0 the technical change is biased toward input j; if 𝐵! < 0 the technical change 

biased against input j.  

The contributions of intensification, environment and non-specific technical 

change to year-to-year yield changes (i.e., yield growth decomposition) are obtained 

using equation (6) and equations (8)-(13):  

𝑑𝑦 = 	∑ 𝛾"𝑑m𝑥"n0
"'( + 𝛾+33+<=,+:>𝑑(𝑋+33) + 𝜇--.-𝑑(𝑑𝑑0030) + 𝜇.-.?𝑑(𝑑𝑑3035) +

𝜇.?𝑑(𝑑𝑑35) + 𝜇9:;𝑑(𝑠𝑜𝑚) + 𝜇3𝑑(𝑟) + 	𝑇𝐶  

where for simplicity, we have omitted subscripts for time and county. This decomposition 

allows identification of the variables that have mattered the most in understanding the 

impressive crop yield increases in the U.S. central plains during the half century under 

study. 

 

Data description 

Most of the variables used are unique to this analysis, so in the supplementary material 

we describe how we generated them in some detail. The units of analysis consist of 101 

counties between two and four deep along the 41st || N in the U.S. Midwest (Figure 1), 
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examined over the period 1960-20083. This transect was chosen because it encompasses 

an 800-mile agroclimatic gradient from the Rocky Mountains to the Mississippi River, 

including highly irrigated farms with low precipitation and moderate soil carbon in the 

west to rain-fed crops with high precipitation and high soil carbon in the east. The range 

of conditions allows us the opportunity to identify the contribution of various 

environmental conditions as well as farmer-chosen inputs to yield growth. After 

estimation of equations (7) we calibrate the estimated yield function to annual conditions 

in each county and group them in five relatively homogeneous subregions from west to 

east. Table 1 provides basic statistics for the variables used. Figures 2-4 illustrate how 

yields and input use vary across the subregions, Figures 6-8 illustrate how environmental 

variables vary across subregions. 

 

Figure 1.  Study counties along the 41st parallel N  

 
3 Counties in each region listed in Table A.1 in the Appendix 
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Table 1 - Summary Statistics in Study Counties along the 41st Parallel North in Iowa, Nebraska, Colorado and Wyoming, 1960-2008 
  

Wyoming, 1960-2008   All counties (101 counties)   Region 1 (12 counties) 
Variable Mean Std. Dev. Min Max   Mean Std. Dev. Min Max 
Yield (Mg/ha) 8.39 2.83 1.20 17.91   5.71  2.24  1.20  12.49  
Fertilizer (quantity index) 2.83 1.07 0.03 6.82   1.80  1.17  0.03  6.55  
Chemicals (quantity index) 7.08 3.74 0.13 23.10   3.94  2.99  0.13  14.88  
Irrigation (ratio 0-1) 0.19 0.24 0.00 0.90   0.30  0.21  0.00  0.90  
SOM (Mg/ha) 136.52 49.18 46.53 317.35   93.69  32.10  46.53  162.39  
Time period (1960=1) 25.00 14.14 1.00 49.00   25.00  14.15  1.00  49.00  
Precipitation (cm) 51.20 15.68 11.94 125.21   30.79  7.66  11.94  51.94  
dd0030 (days) 164.44 5.54 147.68 178.83   160.96  4.94  147.69  174.28  
dd3035 (days) 4.05 2.26 0.14 12.78   4.01  1.96  0.26  9.53  
dd35 (days) 0.13 0.22 0.00 1.90   0.17  0.19  0.00  0.96  
Share Fertilizer 0.11 0.04 0.00 0.38   0.10  0.06  0.00  0.38  
Share Chemicals 0.06 0.03 0.00 0.18   0.05  0.03  0.00  0.14  
                    
  Region 2 (9 counties)   Region 3 (24 counties) 
Variable Mean Std. Dev. Min Max   Mean Std. Dev. Min Max 
Yield (Mg/ha) 8.44 3.41 1.86 17.34   9.00 3.10 2.46 17.91 
Fertilizer (quantity index) 3.04 1.33 0.30 6.75   2.84 1.07 0.16 6.82 
Chemicals (quantity index) 5.69 3.72 0.26 17.46   6.24 3.37 0.30 16.95 
Irrigation (ratio 0-1) 0.42 0.20 0.03 0.89   0.46 0.20 0.01 0.88 
SOM (Mg/ha) 96.73 20.25 62.80 139.77   108.83 22.50 68.72 175.91 
Time period (1960=1) 25.00 14.16 1.00 49.00   25.00 14.15 1.00 49.00 
Precipitation (cm) 42.06 10.81 14.59 101.49   48.75 12.00 16.95 92.76 
dd0030 (days) 162.32 5.11 148.83 174.64   164.07 5.20 150.96 177.27 
dd3035 (days) 5.40 2.22 0.33 11.12   4.81 2.12 0.26 12.05 
dd35 (days) 0.31 0.29 0.00 1.90   0.16 0.23 0.00 1.67 
Share Fertilizer 0.13 0.04 0.03 0.28   0.11 0.03 0.01 0.22 
Share Chemicals 0.05 0.03 0.01 0.14   0.05 0.02 0.00 0.12 
                    

  Region 4 (15 counties) Region 5 (41 counties) 
Variable Mean Std. Dev. Min Max   Mean Std. Dev. Min Max 
Yield (Mg/ha) 8.15 2.20 3.45 14.60   8.88 2.40 2.24 15.54 
Fertilizer (quantity index) 2.64 0.81 0.81 6.69   3.15 0.84 0.65 6.23 
Chemicals (quantity index) 7.28 3.23 0.78 14.59   8.72 3.45 1.42 23.10 
Irrigation (ratio 0-1) 0.07 0.09 0.00 0.40   0.00 0.00 0.00 0.00 
SOM (Mg/ha) 113.91 26.90 68.03 169.02   182.28 37.30 101.49 317.35 
Time period (1960=1) 25.00 14.15 1.00 49.00   25.00 14.15 1.00 49.00 
Precipitation (cm) 55.28 13.53 25.53 112.17   59.12 14.11 23.10 125.21 
dd0030 (days) 164.69 5.13 152.28 176.88   166.05 5.49 147.68 178.83 
dd3035 (days) 4.78 2.14 0.34 11.26   3.04 2.04 0.14 12.78 
dd35 (days) 0.14 0.22 0.00 1.27   0.06 0.17 0.00 1.56 
Share Fertilizer 0.10 0.03 0.05 0.20   0.11 0.03 0.02 0.29 
Share Chemicals 0.06 0.02 0.02 0.13   0.07 0.02 0.02 0.18 
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 The variables used in the estimation of the system of equations (7) are biomass 

yields, fertilizers, chemicals, share of land irrigated, soil organic matter, a time trend, 

temperatures, and precipitation.  To calculate average county biomass yield we sum the 

biomass produced by all crops in a county, measured in bone-dry megagrams (Mg), then 

divide that by total hectares planted. The biomass produced includes both the harvested 

crop and the residual above-ground biomass left in the field. Hence, we are examining a 

more general measure of production than any individual crop, a measure that corresponds 

closely to the notion of net primary agricultural production (Prince et al., 2001). Figure 2 

shows average biomass yield by county, while Figure 3 shows the 41st || transect average 

yield through time.  

 

Figure 2. Average dry matter biomass yield by county (Mg ha-1), 1960-2008 

Across the region, average yields increased about 124% from 1960 to 2008, for an 

average compound rate of 1.66%. This aggregate yield increase masks substantial 
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variation by subregion: in subregions 2 and 3 with their increases in irrigation, yields 

increased by 190%, compared to 96% in the more humid eastern subregion.  

 

Figure 3. Average 41st || transect dry matter yield (Mg ha-1) by region, 1960-2008 

Factor intensification is measured by the amount of fertilizers and chemicals used. 

Those variables, as well as irrigation, are under farmers’ control. Environmental 

variables, not under farmers’ control, are soil organic matter, precipitation, and 

temperatures. Non-specific technical change, which we represent with the passage of 

time, is not under the control of farmers, but is certainly under human control.   

Fertilizer and chemical inputs are expressed as indexes of quantity applied per 

hectare. These are obtained using expenditures from the Census of Agriculture and state 

level price indexes from USDA-ERS productivity accounts. They are expressed as 
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indexes relative to the quantity used in Adams County, Nebraska, in 1960. Average levels 

by county are shown in Figure 4. 

 

Figure 4. Average fertilizer and chemical application rates (indexes), 1960-2008  
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Irrigation we express as the share of irrigated land in each county. This variable 

we obtain as the ratio of irrigated planted land to total planted land in the county. While it 

would have been desirable to use quantity of water actually applied, this information is 

not available. The simple measure that we use, though, has a useful interpretation: it is an 

approximation of the increase in biomass yield for irrigated relative to non-irrigated 

production. As illustrated by figure 5, the percentage of irrigated land varies considerably 

across the transect, with higher values in the center of Nebraska and zero values in Iowa4. 

 

Figure 5. Average share of land irrigated, 1960-2008 

 

To account for the differences in soil quality across space and time, we include 

average megagrams (Mg) of soil organic matter (SOM) per hectare for each county. We 

observe increasing quantities of SOM as we move from west to east (Figure 6), and 

 
4 Given the minimal levels of irrigation present in Iowa, USDA does not report the amount of planted land 
that was irrigated. 



 18 

decreasing levels through time. The average value of SOM for region 1 (west) was 94 Mg 

ha-1, while for region 5 (east) it was 183 Mg ha-1.  

 

Figure 6 Average soil organic matter (Mg ha-1) 

County-level weather variables (temperatures in degree-days and precipitation in 

centimeters) were estimated from individual weather station data collected from the 

United States Historical Climatology Network. From these data, county average daily 

precipitation (in centimeters) and county average daily maximum and minimum 

temperatures were obtained for each day during the growing season (March to August). 

County-level values for precipitation and temperatures were constructed as the weighted 

average of observations from the five closest weather stations to the center of each 

county. These observations were weighted using a Shephard inverse distance approach as 

follows: 

𝑞/ = ∑ @"%	A"
∑ @$%

	'
$()
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where qk denotes the weighted value for county k, qi is the measurement at weather 

station i, and dik is the distance from weather station i to the center of county k. Daily 

averages at county level were then used to construct the growing season precipitation and 

degree days variables for each county, explained further in the next paragraph.  

To measure the impact of temperatures on yield we use an adaptation of the 

agronomic measure “growing degree days”. We measure the amount of time, expressed 

in 24-hour days, the crop is exposed to temperatures in one of three ranges: 0ºC to less 

than 30ºC; 30ºC to less than 35ºC; and 35ºC or higher. Appendix B describes in more 

detail how these variables were constructed from weather reporting stations in each 

county. The average amount of time crops were exposed to temperatures above 35ºC by 

county is shown in Figure 7. This measure of high temperatures mostly increases from 

east to west. 

 

Figure 7. Average number of degree days above 35ºC during the growing season in 
study counties, 1960-2008 
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Precipitation we measure as the total amount of precipitation during the growing 

season measured in centimeters. As shown in Figure 8 there is a substantial decrease in 

average precipitation as we move from east to west. Region 1, in the west, received an 

average of 30.8 cm, while in region 5, in eastern Iowa, the average precipitation was 

almost twice that much, 59.1 cm.  

 

Figure 8. Average growing season precipitation (cm) in study counties, 1960-2008 

Finally, we represent non-specific technical change as a quadratic time trend with 

1960=1. 

 

Results and discussion 

We estimated the parameters in the system of equations (7) using Iterated 3-Stage Least 

Squares (I3SLS). Twenty-three of the thirty-four parameters estimated are significantly 

different from zero at the 99% confidence level, while one is different from zero at the 
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95% confidence level. The pseudo R squared is 0.774, although this standard goodness of 

fit cannot be interpreted as the proportion of the variance explained when estimating a 

three-stage least squares system of equations, it still provides a useful indication of the 

overall predictive power of the estimators (Toft and Bjørndal, 1997). A Wald test rejects 

the nested Cobb-Douglas form as a better specification. The Wald test on the 𝛽!+ 

coefficients equal to zero (∀	𝑗, 𝑘 ) rejects the hypothesis that all the inputs are additively 

separable, and strongly separable (∀	𝑗 ≠ 𝑘), indicating that the translog specification is 

preferred to a Cobb-Douglas specification. A Wald test on the 𝜑! coefficients equal to 

zero rejects the hypothesis of Hicks neutrality. 

We employ a “pairs bootstrap” methodology (Freedman, 1981) for the estimation 

of the standard errors. Following MacKinnon (2002) and Flachaire (2005), pairs 

bootstrapping gives robust estimates under heteroskedasticity. Additionally, we estimated 

the system using standard 3SLS to check for robustness of results and found minimal 

qualitative changes in the significance of the estimated parameters. The Wu-Hausman 

endogeneity test on fertilizer and chemicals rejected the null hypothesis that these 

variables are exogenous, thus we instrumented these variables and their interactions using 

price indexes. Parameter estimates are in Appendix A,  first-stage regressions and 

statistics are available upon request.     

We used the parameter estimates to identify the marginal contributions to biomass 

yield from factor intensification, irrigation, weather, and technical change using 

equations (8)-(13). Elasticities and semi-elasticities were evaluated at each data point, 

then averaged across observations for the five regions of interest. The marginal 
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contributions of the variables, averaged across all observations by region, are reported in 

Table 2.  

Table 2. Estimated average transect-wide marginal effects of variables on biomass yield, 
by region* 

Variable Type of 
response 

Region 

41st || 1 2 3 4 5 

Fertilizer, quantity index elasticity 0.112 0.106 0.123 0.119 0.108 0.109 
Chemicals, quantity index elasticity 0.058 0.050 0.047 0.052 0.062 0.065 
Irrigation ratio, 0-1 semi-elasticity 0.679 0.782 0.979 0.847 0.738 0.462 
Time trend, years semi-elasticity 0.010 0.009 0.009 0.009 0.010 0.011 
Soil organic matter, Mg/ha elasticity 0.131 0.103 0.072 0.062 0.162 0.182 
DD0030, days semi-elasticity 0.003 0.005 0.004 0.004 0.003 0.002 
DD3035, days semi-elasticity -0.015 -0.008 -0.003 -0.001 -0.021 -0.025 
DD35plus, days semi-elasticity -0.309 -0.113 -0.121 -0.137 -0.408 -0.472 
Precipitation, cm elasticity -0.046 0.323 0.057 -0.015 -0.131 -0.163 
*P-values for the 41st || region are in Table A.3 in the Appendix 

 

The estimated average production elasticity of fertilizer (0.111) for the region is 

consistent with previous estimates by Griliches (1964), Hayami and Ruttan (1970), Antle 

(1983) and Saha, Shumway and Havenner (1997).  The estimated production elasticity of 

chemicals (0.058) is virtually identical to the 0.057 estimated by Ball (1985). These 

elasticities indicate that, on average and at the margin, a 1% increase in fertilizer 

increased biomass yield by 0.11% and a 1% increase in chemicals resulted in a yield 

increase of approximately 0.06%.   

The transect-wide estimate of the irrigation semi-elasticity (0.679) implies that on 

average, conversion from rainfed to irrigated land can be expected to double biomass 

yield5, but more in the central subregions where most conversion to irrigation took place. 

 
5 The relative change in yield is calculated as exp(0.679) = 1.97. 
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García-Suárez, Fulginiti and Perrin (2018) irrigation semi-elasticity for the High Plains 

aquifer region is 0.511, slightly lower than ours. Part of the benefit of irrigation is 

achieved by reducing the impact of high temperatures, as indicated by the impact of 

irrigation on the DD35plus semi-elasticity6.  

Soil organic matter (SOM) has been declining since cultivation began on these 

prairie soils. Its average marginal elasticity is 0.13, significantly different from zero at the 

5% level for 88% of the observations. Calculated regional SOM elasticities ranged from 

0.10 in the west to 0.18 in the east.  

On average, an extra 24 hours (one day) of temperatures above 35°C decreased 

yields by 26.6%, while the marginal effect of a day between 30°C and 35°C would 

decrease yields by only 1.5%, an important nonlinear effect that supports similar 

estimates in the literature. In the east, the comparable negative impacts rise to 37.6% and 

2.5%, while in region 3 where irrigation is most prevalent they fall to 12.8% and 0.1% 

respectively. On average across the region, between 1960 and 2008, sensitivity to 

temperatures above 35°C decreased from 32.3% to 28.0%. If we disaggregate 1960-2008 

trends in heat sensitivity estimates by region (see Figure A.1 in the Appendix), results are 

not homogeneous. Regions in the west saw a considerable decrease in sensitivity with 

marginal damage decreasing from 23.0% to 8.2%, mainly due to increased irrigation. 

Region 4, which has low irrigation, saw a much smaller decrease from 38.8% to 35.5%. 

On the other hand, region 5, which has no irrigation, saw an increase in the marginal 

damage from 39.0% to 42.7%. Ortiz-Bobea, Knippenberg and Chambers (2018)  also 

 
6 The parameter of the interaction term between irrigation and DD35plus is statistically significant and 
equal to 0.6205.	
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find increased climatic sensitivity in rainfed agricultural areas in the U.S.  Our estimates 

additionally indicate that irrigation is a successful means to reduce heat stress, consistent 

with findings in Kukal and Irmak (2018).  

A marginal increase of 2.5 cm (1 inch) of precipitation along this transect would 

on average decrease yields slightly7 by 0.46%. This average response again masks 

geographical and temporal variations. In the drier far west (region 1), an additional 

centimeter of precipitation would increase yields on average by 1.05%, while in the more 

humid far east (region 5), an additional centimeter would decrease yields by -0.28%.  

During the wettest decade (the 90s) the region-wide response to an additional centimeter 

was -0.15%, while during the driest decade (the 70s) the response was -0.05%. Clearly, 

the concavity of these responses with respect to precipitation is mild – marginal 

contributions of precipitation evaluated across the data set are relatively minor.  

 The estimated time trend, our proxy for unidentified, nonspecific technical 

change, increased yield by an average of 0.99% per year8. We interpret this variable to 

capture the marginal effects of such changes as new varieties, higher quality and quantity 

of machinery and labor, improvements in management, and similar variables for which 

we have no data available at the level of county agriculture. The negligible coefficient 

estimate for the variable time squared indicates that, ceteris paribus, this rate of 

improvement remained stable over the time period. In terms of technical change biases, 

we find them to be irrigation-saving,  and fertilizer- and chemical-using. This is 

 
7	This somewhat surprising result is completely consistent with Tannura, et al (2008), whose estimates for 
corn in Iowa, Illinois and Indiana indicated optimum monthly precipitation levels were close to the average 
levels.	
8	Njuki, Bravo-Ureta & O’Donnell (2018) using state level data estimate a 1.2% growth rate for the U.S. 
agricultural sector during 1960-2004.	
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consistent with an increased efficiency of irrigation and with an increased reliance on 

commercial inputs. 

 

Contributions of human controlled factors to yield growth during 1960-2008 

 We use our estimates of regional and transect-level elasticities and semi-

elasticities to decompose the observed yield growth, 1960-2008, into contributions from 

intensification, irrigation, soil organic matter, weather, and nonspecific technical change 

(using equation 15) 9.   

Estimated human-controlled contributions to yield growth for 1960-2008 are 

shown by region in Figure 9. Estimated contributions across the transect by decade 

shown in Figure 10. Figure 9 shows that human-controlled factors explain most of the 

change in observed yields during this half-century. Increases in irrigation over this period 

contributed to yield increases of 22%, 52% and 44% in regions 1, 2 and 3, but 

contributed very little to yield growth in regions 4 and 5 because irrigated areas were 

stationary or virtually non-existent. Across the 41st || transect, irrigation contributed an 

average yield increase of about 17%. Most of these increases in irrigation occurred during 

the first two decades, as indicated in Fig. 10. 

 
9 To calculate year-to-year contributions of each input we multiply the change in the log of the input times 
the average production elasticity of that input between two consecutive years, a discrete approximation to 
equation (15). The percent change in y attributable to a change in one input xi between period t1 and tn is 
estimated as: [(1 + mean contribution(xi1, …, xin))n] - 1. Log changes are converted to percentage changes 
using the equation: Percent change in y = exp(dlny)-1. 
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Intensification in the form of higher fertilizer and chemical use per hectare 

contributed to yield increases of about 13% and 11%, respectively, across the 41st || 

transect (Fig 9), with most of this occurring during the 1960s and 1970s (Fig 10). The 

fertilizer contributions occurred almost exclusively during the 60s, while chemical 

contributions continued throughout the 1960-2008 period. Regions 1, 2 and 3 show 

higher contributions of fertilizer than do regions 4 and 5, consistent with the increases in 

irrigation, as they are complementary inputs. 

0%

50%

100%

150%

200%

250%

41st ll Reg 1 Reg 2 Reg 3 Reg 4 Reg 5

Fig. 9 . Human-controlled contributions to biomass yield increases 
and observed biomass yield changes across regions along the 41st 

parallel, 1960-2008
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Non-specific technological change contributed more to yield change across the 

transect (62%) than any other factor we measured (Figure 10). We employed a quadratic 

specification of time to represent this technological change, which revealed an 

approximately constant rate of non-specific technical change contributions to yield 

through time. Technological change contributed more to the yield gains in the two eastern 

subregions (Figure 9), where there was no prospect for increases from irrigation, and 

little incentive to increase rates of application of fertilizer and chemicals. What does this 

unspecified technological change consist of?  In a widely-cited summary of growth in 

maize yields, Duvick (2005) notes that yield per plant has been nearly constant, but 

technological progress has allowed more plants to be grown per hectare, due to genetic 

changes along with complementary advances in chemicals and machinery. While Duvick 

expresses confidence that similar gains will continue for at least a few decades, 

Andersen, et al. (2018) document declining rates of overall farm productivity that they 

surmise may be related to declines in R&D spending. The future path of this non-specific 

technical change remains a crucial issue that we do not explore further in this study. 
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Fig. 10. Human-controlled contributions to biomass yield 
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Contributions of environmental factors to yield growth during 1960-2008. 

 At the aggregate level across the 41st || transect, environmental factors have 

contributed about 0.7% to 1960-2008 yield change (Figure 11)10. This includes a negative 

impact of 2.2% due to a depletion of soil organic matter (SOM) and a small positive 

impact of 1.5% of weather as we have measured it. However the weather outcome masks 

significant geographical and temporal variation.  

Geographically, a positive contribution of precipitation change in region 1 (18%) was 

partially offset by very small or negative contributions of precipitation change in regions 

2, 3, 4, and 5 where it was a little too wet during the last decade. The aggregate outcome 

also masks some significant variations in temperature contributions through time. For 

example, very hot weather (temperatures over 35°C) abated across the entire period of 

analysis in regions 1 and 2, contributing a positive 6-8% yield increase, while hot weather 

increased in regions 3-5, reducing yields 6-7% there (Figure 12). An increase in 35°C+ 

days across the transect during the 1980s contributed a 6% decrease in transect average 

yield, only to have half of that offset by yield increases due to a reduction in such days in 

the 1990s and 2000s. Note from Figure 11 that the net weather contributions were more 

dramatic in region 1 (the west) than elsewhere, due to net weather improvements in that 

region over the period.  An important insight here for examining the impacts of weather 

is that aggregate data (i.e. for the 41st ||) do not reveal the very real impacts of changes in 

weather at the subregion level, because these impacts tend to be canceled out across 

 
10	Njuki,	Broavo-Ureta	and	O’Donnell	(2018),	using	state	level	data,	estimate	an	annual	growth	rate	of	
an	environmental	index	(weather	effects)	for	U.S.	agriculture	of	-0.012%	for	1960-2004.		This	is	a	
rate	of	-0.41%	for	the	whole	period.		
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areas. But analysis of aggregate relationships using local data, as we have done here, can 

reveal the marginal responses to local weather and the muted aggregate responses as well.  
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Figure 11. Environmental contributions to yield increases across 
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The final environmental variable we considered was soil organic matter (SOM).  

The data revealed a steady reduction of SOM through time and a steady reduction across 

space from east to west. For the full 41st || transect across the entire period, changes in 

yield due to changes in SOM were small – a biomass yield reduction of about 2.2%.  In 

the east SOM reductions decreased yields by about 2.4% in region 4 and 4% in region 5, 

whereas contributions in the western three regions were well under 1%. While these 

effects of soil organic matter loss through time were small, differences in SOM levels of 

182 Mg/ha in the east vs 94 Mg/ha in the west account for a yield difference of as much 

as 17%.  

 

Conclusions 

This research examined crop yield growth during 1960-2008 on an 800-mile transect of 

the Great Plains along the 41st || between the Rocky Mountains and the Mississippi River, 

to determine the relative contributions of natural factors and human factors to this 

growth. The range of agroecological conditions along this transect is large, with potential 

implications for crop yield growth in other temperate zone producing regions. 

 In order of importance, our estimates of contributors to the transect-wide half-

century yield increases are these: non-specific technical change +62%, irrigation +17%, 

fertilizer +13%, chemicals +11%.  Weather changes contributed to an increase in yields 

of just  1.5%, while reductions in soil organic matter contributed to a decrease in yields of 

2.2%.   

 While unspecified technical change was the main source of yield growth in every 

region, the contribution of the remaining factors of production varies substantially across 
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subregions. Irrigation was almost as important as technical change for high plains regions 

2 and 3, where it produced increases in yields of 52% and 44% respectively. In the east, 

where irrigation is virtually nonexistent, greater use of fertilizer and chemicals were the 

second most important reasons for yield growth, each of which contributed yield 

increases of about 10%.  

  Losses of soil organic matter through time, our proxy for soil fertility, were small, 

contributing to yield reductions of about -2% across the entire transect, but ranged from 

essentially zero in the western regions to -4% in the easternmost region. Furthermore, 

regional differences in average SOM levels of 182 Mg/ha in the east versus 94 Mg/ha in 

the west account for a yield difference of about 17%.  

We also found that the pattern of yield contributions varied considerably by 

decade, with fertilizer contributions occurring almost entirely during the 1960s and 

irrigation contributions mostly during the 1960s and 1970s. Increases in the time crops 

were exposed to high temperatures reduced yield growth during the 1980s but those 

results were halved by increased yield growth due to fewer high-temperature days in the 

1990s and 2000s.   

 The dramatic biomass yield increases along this transect of the 41st || were almost 

entirely attributable to human-controlled interventions rather than environmental 

changes. The fraction of crop area irrigated in the western half of this transect increased 

dramatically between the 1960s and 2000s, from about a quarter of all cropland to about 

half. This increased yields by about 48% in the central subregions but increased the 

average yield for the transect by only about 17% because of the absence of irrigation in 

the east. Intensification, in terms of additional quantities of fertilizers and chemicals, 
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contributed to yield increases of about 25%, but in the last decade the contribution 

declined to less than 2%, except in region 2 where application rates continued to increase.  

The lack of environmental contributions to yield growth along this 41st|| transect 

does not imply that temperature and precipitation had no marginal impacts: precipitation 

responses at the county level were small, but temperature responses were quite large. The 

lack of weather contributions to yield growth over the half-century is due to the fact that 

there was little change in weather between the beginning and end of the period, even 

though the marginal effects of temperature are quite significant. It is notable, however, 

that the sensitivity of biomass yield to the amount of time exposed to temperatures over 

35°C increases from the west, where the response semielasticity is -.11, to the east where 

it is -.37, and that the transect-wide semielasticity decreased from -.32 in the 1960s to -

.28 in the 2000s. Both of these trends are due to irrigation.  

 What do our results portend for yield growth during the coming decades?  

Projections of climate change in this region, due to increased atmospheric CO2, suggest 

that periods of hot weather might increase by 10% in this area, which would decrease 

average yields by 4%. It is instructive to note that this decrease may be too pessimistic, 

both because it could be partially or totally offset by the increase in yields predicted from 

the CO2 fertilization effect suggested by experimental data and because it does not 

account for some aspects of farmer adaptation (like changes in planting and harvesting 

dates). Projections of precipitation change along this 41st || transect are roughly neutral, 

but a decrease of 10% would decrease yields by only about 3% in the west, while actually 

increasing yields in the east by 1-2%. The potential for additional irrigation to increase 

average yield is minimal, given concerns about the sustainability of groundwater 
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supplies. For both environmental and economic reasons, there is little prospect that 

fertilizer and chemical applications will increase. Our results also indicate that along this 

transect the yield growth rate from non-specific technical change has stabilized at around 

1% per year. This and other considerations in this paragraph indicate reasonably good 

prospects for continued yield growth along this important food-producing transect, even 

in the presence of climate change.  
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Appendix A - Estimation and additional tables. 
 

Table A.1 - List of counties 
Region 1 

Banner, NE Cheyenne, NE Deuel, NE Goshen, WY Kimball, NE 
Laramie, WY Logan, CO Phillips, CO Platte, WY Scotts Bluff, NE 
Sedgwick, CO Weld, CO    

Region 2 
Chase, NE Custer, NE Dawson, NE Frontier, NE Gosper, NE 
Hayes, NE Keith, NE Lincoln, NE Phelps, NE  

Region 3 
Adams, NE Boone, NE Buffalo, NE Butler, NE Clay, NE 
Colfax, NE Fillmore, NE Greeley, NE Hall, NE Hamilton, NE 
Howard, NE Kearney, NE Madison, NE Merrick, NE Nance, NE 
Perkins, NE Platte, NE Polk, NE Saline, NE Seward, NE 
Sherman, NE Stanton, NE Valley, NE York, NE  

Region 4 
Burt, NE Cass, NE Crawford, IA Cuming, NE Dodge, NE 
Douglas, NE Harrison, IA Lancaster, NE Mills, IA Monona, IA 
Pottawattamie, IA Sarpy, NE Saunders, NE Shelby, IA Washington, NE 

Region 5 
Adair, IA Adams, IA Audubon, IA Benton, IA Boone, IA 
Carroll, IA Cass, IA Cedar, IA Clarke, IA Clinton, IA 
Dallas, IA Des Moines, IA Greene, IA Guthrie, IA Henry, IA 
Iowa, IA Jackson, IA Jasper, IA Jefferson, IA Johnson, IA 
Jones, IA Keokuk, IA Linn, IA Louisa, IA Lucas, IA 
Madison, IA Mahaska, IA Marion, IA Marshall, IA Monroe, IA 
Montgomery, IA Muscatine, IA Polk, IA Poweshiek, IA Scott, IA 
Story, IA Tama, IA Union, IA Wapello, IA Warren, IA 
Washington, IA         
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Table A.2 - Parameters Estimated (I3SLS) for Counties along the 41st Parallel 
North in Iowa, Nebraska, Colorado and Wyoming, 1960-2008 
Three-stage least-squares regression, iterated         

Equation Observations Parameters RMSE R-sq P 
lny 4949 32 0.1810456 0.7742 0.0000 
sharefert 4949 4 0.0304064 0.3136 0.0000 
sharechem 4949 4 0.0163848 0.5787 0.0000 
Constraints            
 ( 1) - [sharefert]ln(Chemicals) - [sharechem]ln(Fertilizer) = 0 
 ( 2)  - [lny]ln(Fertilizer)_sq + [sharefert]ln(Fertilizer) = 0 
 ( 3)  - [lny]ln(Fertilizer)_ln(Chemicals) + [sharefert]ln(Chemicals) = 0 
 ( 4)  - [lny]Irrigation_ln(Fertilizer) + [sharefert]Irrigation = 0 
 ( 5)  - [lny]ln(Fertilizer)_Time + [sharefert]Time = 0 
 ( 6)  - [lny]ln(Chemicals)_sq + [sharechem]ln(Chemicals) = 0 
 ( 7)  - [lny]Irrigation_ln(Chemicals) + [sharechem]Irrigation = 0 
 ( 8)  - [lny]ln(Chemicals)_Time + [sharechem]Time = 0 
 ( 9)  - [lny]ln(Fertilizer) + [sharechem]Constant = 0 
 (10) - [lny]ln(Chemicals) + [sharechem]Constant = 0 
  Observed Bootstrap   

Variable Coefficient Std. Err. z P>|z| 
Irrigation 1.1788 0.4674 2.5200 0.0120 
ln(Fertilizer) 0.0878 0.0011 81.3900 0.0000 
ln(Chemicals) 0.0199 0.0006 35.3400 0.0000 
ln(Precipitation) 3.4205 0.5309 6.4400 0.0000 
ln(SOM) 0.1815 0.0178 10.2000 0.0000 
0.5*Irrigation_sq 0.2352 0.1484 1.5800 0.1130 
0.5*ln(Fertilizer)_sq 0.0309 0.0015 20.5200 0.0000 
0.5*ln(Chemicals)_sq 0.0238 0.0010 23.8700 0.0000 
0.5*ln(Precipitation)_sq -0.7291 0.0514 -14.1900 0.0000 
Irrigation_ln(Fertilizer) 0.0163 0.0024 6.8700 0.0000 
Irrigation_ln(Chemicals) -0.0095 0.0013 -7.4000 0.0000 
Irrigation_ln(Precipitation) -0.2597 0.0425 -6.1000 0.0000 
Irrigation_ln(SOM) 0.0703 0.0490 1.4400 0.1510 
ln(Fertilizer)_ln(Chemicals) -0.0158 0.0012 -13.5400 0.0000 
dd0029 0.0170 0.0140 1.2100 0.2250 
dd3035 -0.0119 0.0281 -0.4200 0.6710 
dd3640 0.5769 0.3070 1.8800 0.0600 
dd0029_Irrigation 0.0015 0.0022 0.6700 0.5050 
dd3035_Irrigation 0.0506 0.0072 7.0600 0.0000 
dd3640_Irrigation 0.6205 0.0831 7.4700 0.0000 
dd0029_Precipitation -0.0036 0.0035 -1.0300 0.3010 
dd3035_Precipitation -0.0033 0.0072 -0.4500 0.6500 
dd3640_Precipitation -0.2589 0.0837 -3.0900 0.0020 
Time 0.0092 0.0008 11.0900 0.0000 
Time_sq 0.0000 0.0000 -0.4700 0.6390 
Irrigation_Time -0.0033 0.0007 -4.6100 0.0000 
ln(fertilizer)_Time  0.0008 0.0001 15.5700 0.0000 
ln(Chemical)_Time  0.0005 0.0000 15.9100 0.0000 
Region 2 dummy  0.1331 0.0134 9.9400 0.0000 
Region 3 dummy  0.1370 0.0126 10.9000 0.0000 
Region 4 dummy  0.3605 0.0167 21.5400 0.0000 
Region 5 dummy  0.3096 0.0205 15.1400 0.0000 
Constant  -7.6853 2.1840 -3.5200 0.0000 
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Table A.3 Estimated transect-wide marginal effects of variables on 
biomass yield for counties along the 41 Parallel North in Iowa, Nebraska, 

Colorado and Wyoming, 1960-2008  

Variable Type of 
response Value Percentage of 

obs. signif.* 
Fertilizer, quantity index elasticity 0.112 99.9% 
Chemicals, quantity index elasticity 0.058 100.0% 
Irrigation ratio, 0-1 semi-elasticity 0.679 99.8% 
Time trend, years semi-elasticity 0.010 100.0% 
Soil organic matter, Mg/ha elasticity 0.131 88.3% 
DD0030, days semi-elasticity 0.003 79.9% 
DD3035, days semi-elasticity -0.015 84.0% 
DD35, days semi-elasticity -0.309 87.7% 
Precipitation, cm elasticity -0.046 82.0% 
*P-values calculated using the delta method. Significance levels at 95%. 

 
 

 
 

Figure A.1 – Average marginal impact of an extra 24 hours (a day) of temperatures 
above 35ºC for counties along the 41 Parallel North in Iowas, Nebraska, Colorado 

and Wyoming, 1960-2008 
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Appendix B 
 
Calculation of biomass yields 
 
Coefficients used to convert from bushels to megagrams were 0.0254 for corn, sorghum 
and rye and 0.0272 for wheat and soybeans. The unharvested biomass for each crop was 
estimated by multiplying the reported harvested production times one minus the harvest 
index for the crop as reported in the agronomic literature: 0.50 for corn and sorghum for 
grain; 1.00 for corn and sorghum for silage and hay; 0.40 for soybeans, and 0.35-0.85 for 
rye and barley and other minor crops (Hay, 1995; Unkovich et al., 2010). The estimated 
dry matter produced by each crop was converted to dry matter (DM) by multiplying 
production by one minus the estimated average moisture content of that crop: 0.145 for 
corn and sorghum for grain, 0.145 for barley and rye; 0.55 for corn and sorghum for 
silage; 0.135 for wheat; 0.13 for soybeans and beans and 0.10-0.78 for other minor crops 
(Loomis and Connor, 1992). The county-level yields were obtained by dividing the 
biomass produced by the total planted area for all crops for each county. Annual 
harvested production and planted land data were obtained from the U.S. Department of 
Agriculture’s National Agricultural Statistical Service (USDA-NASS). 
 
 
Construction of fertilizer and chemicals indexes 
 
Fertilizer and chemical inputs are measured as implicit indexes of quantity per hectare 
planted, calculated as follows. County expenditures on these inputs were taken from the 
Census of Agriculture as reported by USDA-NASS. Implicit total quantity indexes were 
constructed for each census year by dividing the reported total expenditure by country-
wide price indexes obtained from USDA-ERS for fertilizers and USDA-NASS for 
chemicals (base 1990-1992=100). These implicit total quantities were then divided by 
total planted area to obtain indexes of quantities applied per hectare by county and census 
year. Since the census is taken generally every five years, the missing years were 
estimated by linear interpolation of these per-hectare quantity indexes between census 
years.  Finally, these indexes were divided by the index in Adams County, Nebraska, for 
the year 1960, converting them to a multilateral index with the base level being the per 
hectare application in Adams County, 1960.  
 
 
Irrigation  
 
 We do not have data on the actual amount of water applied from irrigation or from the 
irrigation technology used (center pivot, canal, etc.). Thus, irrigation is measured as the 
ratio of irrigated planted area to total planted area. When reported irrigated harvested land 
was higher than planted land we used the former.  
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Soil organic matter  
 
This variable was obtained from Lakoh (2012), whose calculations are described in the 
Supplementary Materials. Using 2010 data on Soil Organic Carbon (SOC) from the Soil 
Survey Geographic Database (SSURGO), Lakoh estimated average SOC levels per 
county for 2010, then estimated levels for the period 1960-2008 retroactively from 2010 
initial values using modified versions of the DK model as described by Liska et al. 
(2014). An approximate SOC to soil organic matter (SOM) conversion factor of 2.0 was 
then applied to convert the series to SOM (Liska et al., 2014). 
 
 
Weather  
 
Data on degree days and precipitation were estimated from weather station data collected 
from the United States Historical Climatology Network. From these data, a county 
average daily precipitation value (in centimeters) and county average daily maximum and 
minimum temperatures were constructed from temperature and precipitation results for 
each day during the growing season (March to August). To obtain county-level values for 
these daily observations, we used a weighted average of data from the 5 closest stations 
to the center of each county. For weighting, we used a Shephard inverse distance 
approach: 
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where qk denotes the weighted value for county k, qi is the measurement at weather 
station i, and dik is the distance from weather station i to the center of county k. These 
daily data at the county level were then used to construct the yearly precipitation and 
degree days data for each county.  
 
 
Temperature 
 
To measure the impact of temperatures on yield we use an adaptation of the agronomic 
measure “growing degree days.” Following this literature, a growing degree day is 
defined as the amount of time (in days) during which the temperature is above a certain 
threshold; one degree-day is accumulated when the temperature is one degree above the 
threshold for 24 hours (Ritchie and Nesmith, 1991). Our measure of a degree day is the 
amount of time the temperature was within a given interval. To estimate degree days we 
adapt Snyder’s (1985) method, which uses a bell-shaped curve to estimate from 
maximum and minimum daily temperatures the number of hours during the day that the 
temperature was within a specific interval. We convert these values into fractions of a 
day, then sum the fractions over the growing season to provide the variables for this 
analysis.11 

 
11 This is necessary because of the area under the approximation curve. 
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We constructed growing season degree-day variables for three intervals that cover all the 
temperatures higher than 0ºC. The lower temperature interval, dd0030, covers the degree 
days from 0ºC to less than 30ºC, the next interval, dd3035, covers the range 30ºC to less 
than 35ºC and the higher temperatures interval, dd35, covers temperatures equal to or 
higher than 35ºC.   
 
 
Precipitation  
 
The precipitation variable used is the logarithm of the total amount of precipitation 
during the growing season, in centimeters, accumulated during the growing season 
(March to August). To construct these values, the estimated daily values for each county 
(weighted averages constructed using equation 13) were added for March through 
August. As shown in figure 3, there is a substantial decrease in average precipitation 
towards the West. For region 5, located in eastern Iowa the average growing season 
precipitation was 57.47 cm, while for region 1, located in the west, the average yearly 
precipitation was 29.78 cm.   
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