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ABSTRACT

Tomato fruit ripening is controlled by the hormone ethylene and by a group of transcription 

factors, acting upstream of ethylene. During ripening, the linear carotene lycopene 

accumulates at the expense of cyclic carotenoids. Fruit-specific overexpression of 

LYCOPENE β-CYCLASE (LCYb) resulted in increased β-carotene (provitamin A) content. 

Unexpectedly, LCYb-overexpressing fruits also exhibited a diverse array of ripening 

phenotypes, including delayed softening and extended shelf life. These phenotypes were 

accompanied, at the biochemical level, by an increase of abscisic acid (ABA) content, 

decreased ethylene production, increased density of cell wall material containing linear 

pectins with a low degree of methylation, and a thicker cuticle with a higher content of cutin 

monomers and triterpenoids. The levels of several primary metabolites and phenylpropanoid 

compounds were also altered in the transgenic fruits, which could be attributed to delayed 

fruit ripening and/or to ABA. Network correlation analysis and pharmacological 

experiments with the ABA biosynthesis inhibitor, abamine, indicated that altered ABA 

levels were a direct effect of the increased β-carotene content and were in turn responsible 

for the extended shelf life phenotype. Thus, manipulation of -carotene levels results not 

only in an improvement of the nutritional value of tomato fruits, but also of their shelf life.
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INTRODUCTION

Plants have evolved several mechanisms for seed dispersal, one of which is the 

development of fleshy fruits with attractive organoleptic characteristics, such as fleshiness, 

colors and flavors able to attract frugivore animals for seed dispersal. Tomato (Solanum 

lycopersicum L.) is a model system for the study of fruit ripening, mainly due to many 

genetic and post-genomics resources available for this species (reviewed in (Klee and 

Giovannoni, 2011) (Seymour et al., 2013) (Gascuel et al., 2017) (Giovannoni et al., 2017)). 

Tomato fruit development comprises an initial phase of post-anthesis cell division, 

followed by one of cell expansion, during which concentrations of the hormones ethylene 

and abscisic acid (ABA) are both low (Zhang et al., 2009). Immediately, after the mature 

green (MG) stage of ripening, a transient peak in ABA content occurs, followed by a switch 

of ethylene production from System 1 (autoinhibitory) to System 2 (autocatalytic), and a 

peak in ethylene production (Klee and Giovannoni, 2011) (Seymour et al., 2013). Several 

other events follow, such as fruit softening, the accumulation of sugars and organic acids, 

and a change of color from green to red, due to the accumulation of the linear carotene, 

lycopene (Giuliano et al., 1993) (Klee and Giovannoni, 2011). These changes are 

accompanied, at the molecular level, by extensive changes in gene expression (Alba et al., 

2005) (Carbone et al., 2005), with lycopene accumulation being highly associated with the 

up-regulation of genes encoding PHYTOENE SYNTHASE 1 (PSY1) and PHYTOENE 

DESATURASE (PDS) (Giuliano et al., 1993), and the down-regulation of genes encoding 

LYCOPENE β- and ε-CYCLASE (LCYb and LCYe) (Pecker et al., 1996; Ronen et al., 2000; 

Ronen et al., 1999). Many of these events have been demonstrated to depend on the 

presence of a functional ethylene receptor (Alba et al., 2005). 

Besides ethylene, tomato fruit ripening is controlled by a cascade of transcription factors, 

some of which mediate input by other hormones, such as auxin and ABA (Klee and 

Giovannoni, 2011) (Seymour et al., 2013) (Giovannoni et al., 2017). Exogenous application 

of ABA at the mature green (MG) stage increases the amplitude of the ethylene peak and A
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accelerates ripening, while the application of fluridone (a carotenoid biosynthesis inhibitor) 

or nordihydroguaiaretic acid (an inhibitor of ABA biosynthesis) has the opposite effect 

(Zhang et al., 2009). Knock-out mutations of ZEAXANTHIN EPOXIDASE (ZEP) or 

silencing of 9-cis-EPOXYCAROTENOID DIOXYGENASE (NCED) result in decreased 

endogenous ABA and increased ethylene (Galpaz et al., 2008) (Ji et al., 2014), respectively. 

In contrast, silencing of three CYP707A2 isoforms, encoding ABA 8′-hydroxylases acting in 

ABA catabolism, or of ABA uridine diphosphate glucosyltransferase (SlUGT75C1), which 

produces esterified ABA-glucose, generated over-ripe fruits with increased ABA levels (Ji 

et al., 2014) (Sun et al., 2017). A similar phenotype was observed in RNAi lines for 

SlPP2C1, a group A type 2C protein phosphatase involved in ABA signaling (Zhang Y, 

2018). These observations suggest that ABA influences fruit ripening in different ways, 

depending on the mode (external or endogenous) and timing of the application. Since ABA 

is synthesized from β-xanthophylls (Figure 1A), an interesting corollary of the above 

hypothesis is that carotenoid composition may itself play a role in controlling tomato fruit 

ripening. At the MG stage, levels of β-xanthophylls are high, and during ripening they 

decline, due to the down-regulation of LCYb genes (Pecker et al., 1996; Ronen et al., 2000), 

possibly affecting ABA levels.

Several reports have described the metabolic engineering of plant carotenoid contents 

(Giuliano, 2014) (Giuliano, 2017). Overexpression of a LCYb gene from Arabidopsis under 

the control of the ripening-associated PDS promoter leads to ripe tomato fruits that 

accumulate high levels of β-carotene (Rosati et al., 2000). Apart from the transgene, these 

engineered lines are perfectly isogenic with their lycopene-accumulating parental genotype, 

making them a good system to study the possible influence of carotenoid composition on 

fruit ripening. Using two independent transgenic lines, we conducted a system-wide study 

of the effect of increased β-carotene levels on tomato fruit ripening and shelf life. Our data 

suggest that the increase of the β-carotene content results in higher ABA content, which in 

turn has an effect on fruit ripening and shelf life.
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RESULTS

LCYb-overexpressing fruits exhibit higher β-carotene levels and increased shelf life, 

which does not correlate with antioxidant activity

Transgenic tomato lines overexpressing Arabidopsis LCYb under the control of the 

chromoplast-associated PDS promoter accumulate β-carotene in ripe fruits (Rosati et al., 

2000) (Figure 1B-C). Homozygous T4 lines derived from two independent transformation 

events were grown in the greenhouse, and fruits were harvested at five stages of ripening: 

Mature Green (MG); Breaker (B); Breaker+4 or pink (B+4), Breaker+10 or ripe (B+10), 

Breaker+10 or overripe (B+15 and B+40). Expression of AtLCYb peaked at B and B+4 

(Supplemental Figure 1). A four- to 10-fold increase in β-carotene and other cyclic 

carotenes and a two- to 3-fold decrease in linear carotenes was observed in B+10 fruits 

compared to WT. Xanthophylls were undetectable in WT fruits, but became detectable in 

LCYb-overexpressing fruits (Figure 1C, Supplemental Table 1). 

LCYb-overexpressing fruits stored at room temperature for several months exhibited, 

relative to WT, a significant increment in shelf life, increased firmness and reduced water 

loss (Figure 1D). No significant alteration in the time elapsing between anthesis and fruit 

breaker stage was observed (Supplemental Figure 2), indicating that the alteration was 

confined to the late stages of fruit development.  Since the observed changes in carotenoid 

levels in LCYb-overexpressing fruits are likely to affect fruit antioxidant activity, which is 

known to impact fruit shelf life (Zhang et al., 2013), we measured the antioxidant activity 

in both polar and non-polar extracts of WT and LCYb-overexpressing fruits at five ripening 

stages (MG, B, B+4, B+10, B+15) (Figure 1D). No significant differences compared to the 

WT were observed at early stages (MG and B). At later stages (B+4 through B+15), LCYb-

overexpressing fruits displayed a reduction in the antioxidant activity of the non-polar 

fraction, while that of the polar fraction varied in opposite directions in the two transgenic 
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lines, with the LCYb3 line showing an increase, and the LCYb1 line a decrease with respect 

to the WT.

Increased firmness and decreased water loss of LCYb-overexpressing fruits correlate 

with altered cell wall and cuticle composition

The firmness of WT and LCYb-overexpressing fruits was measured with a hand-held 

penetrometer at 5 different ripening stages. At MG and B, the firmness of the two types of 

fruits was similar, then starting at B+4 and until the end of ripening LCYb-overexpressing 

fruits exhibited significantly increased firmness (Figure 2A). One of the components of 

fruit firmness, evapotranspiration, was found to be significantly lower in LCYb-

overexpressing fruits (Figure 2B).  Total cell wall extracts from the pericarp of B+10 fruits 

were fractionated by sequential extraction with water, chelating agent, dilute alkali and 

concentrated alkali (Huisman et al., 1998). Significant increases were observed in the 

abundance of total cell wall material, water-soluble solids and dilute alkali-soluble solids 

fractions of LCYb-overexpressing fruits. Additionally, the WSS fraction of LCYb-

overexpressing fruits showed a significant increase in the abundance of galacturonic acid, 

which is present in the backbone of HG and RG-I polysaccharides (Figure 2C). The 

occurrence of methyl-esterified pectins in the WSS fraction was analyzed by immunodot 

analysis using the LM20 monoclonal antibody, which recognizes highly methylesterified 

HG epitopes. A lower abundance of methyl-esterified pectins was observed in the WSS 

fraction from LCYb-overexpressing fruits, compared to WT, while the ChASS fraction did 

not show significant differences (Figure 2D).

Cuticle thickness was also significantly increased in LCYb-overexpressing B+10 fruits 

(Figure 2E-F). We further investigated the chemical composition of the cutin polymer and 

the associated cuticular waxes using gas chromatography-mass spectrometry (GC-MS). The 

amounts of all cutin monomers were significantly higher in the LCYb-overexpressing fruits, 

than in WT. Among the cuticular waxes, the major very-long-chain acyl derivatives were A
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relatively unchanged in LCYb-overexpressing fruits, while the triterpenoid components α-

amyrin, taraxasterol, ψ-taraxasterol and δ-amyrin were all > 2-fold greater than WT levels 

(Supplemental Table 2). 

Metabolic remodeling in LCYb-overexpressing fruits

A total of 72 phenylpropanoids were measured in both the flesh and the cuticle of B+10 

fruits, using liquid chromatography coupled with high-resolution mass spectrometry (LC-

HRMS) (Supplemental Table 3). Most compounds showed an over-accumulation in LCYb 

vs WT fruit cuticles. A notable exception was found in the group of phenolic compounds, 

such as 1-caffeoyl-1-beta-D-glucose, 4-p-coumaroylquinic acid, chlorogenic, coumaric, 

dicaffeoylquinic acid and ferulic acids, which showed a slight decrease in the flesh of 

LCYb-overexpressing fruits relative to WT; on the contrary, stronger positive variations 

were observed for flavonoids and flavonoid glycosides: 26 out of 48 metabolites showed 

significantly higher levels in LCYb-overexpressing fruits, with catechin/epicatechin, 

eriodictyol, kaempferol and quercetin conjugates showing the largest increases 

(Supplemental Table 3). 

Additionally, the levels of 58 metabolites (20 amino acids, 19 sugars/polyols, eight organic 

acids and 11 others) were quantified by GC-MS in ripe fruits of two LCYb-overexpressing 

lines (Schauer et al., 2005) (Supplemental Table 4). Thirteen compounds (five amino 

acids, seven sugars/polyols, and putrescine) showed significant changes in both transgenic 

lines. The amino acids alanine, aspartate, phenylalanine and proline, the sugars mannitol 

and sucrose, the organic acid 2-oxo-butyric acid and the polyamine putrescine were lower 

in LCYb-overexpressing fruits. In contrast, the sugars erythritol, galactinol, glucose, 

glucoheptose, melibiose, and the sugar phosphate fructose 6-P were higher. When averaged 

between the two LCYb lines, all changes were less than 2-fold in magnitude (Supplemental 

Table 4), suggesting that changes in primary metabolism were minor.
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LCYb-overexpressing fruits exhibit increased ABA and decreased ethylene production 

and altered expression of the RIN and NOR ripening regulators

ABA is synthesized from violaxanthin and neoxanthin, which are increased in LCYb-

overexpressing fruits (Figure 1A-B). ABA accumulation during ripening was measured 

using LC-HRMS (Figure 3A, Supplemental Table 5) and showed very distinct kinetics in 

WT and LCYb-overexpressing fruits: in WT fruits, ABA levels peaked at the B stage, and 

then progressively declined until B+15, while in LCYb-overexpressing fruits they showed a 

much larger peak at the B stage, followed by a further increase to 17-fold WT levels at 

B+15. ABA catabolites (phaseic acid, dihydrophaseic acid, ABA-Glc and 7-hydroxy-ABA) 

also showed increased levels in LCYb-overexpressing fruits (Supplemental Table 5). 

These data indicate that LCYb overexpression during ripening causes accumulation of β-

carotene and β-xanthophylls, and that the increased flux through the β-branch of carotene 

biosynthesis results in increased levels of ABA and its downstream catabolites.

We also measured ethylene emission by intact fruits, and the enzymatic activity of ACC 

oxidase, the last enzyme in the ethylene biosynthetic pathway. Ethylene production and 

ACC oxidase activity both peaked at B+4 in WT fruits, and the peak showed an 

approximately 50% reduction in LCYb-overexpressing fruits relative to WT (Figure 3B-C). 

The kinetics of expression of two key regulators of fruit ripening, RIN (Vrebalov et al., 2002) 

and NAC-NOR (Giovannoni, 2004) (Osorio et al., 2011), were analyzed by quantitative real 

time RT-PCR (qRT-PCR) in WT and LCYb-overexpressing fruits (Figure 3D-E). The RIN 

transcript was strongly repressed starting at the B stage and throughout the whole ripening 

process, while, on the contrary, NAC-NOR displayed a large increase in expression at the B 

stage.

Systems analysis of WT and LCYb-overexpressing fruits
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Transcript profiling was performed on fruits at three ripening stages (MG, B and B+10) in 

the WT and two LCYb-overexpressing lines using the EU-TOM3 Affymetrix microarray 

(Supplemental Tables 6-8-10A/B). Genes up- or down-regulated >1.5-fold in both 

transgenic lines with respect to WT, with a P-value ≤0.05 were considered differentially 

regulated and are shown as Mapman representations in Supplemental Figure 3. A total of 

123 transcripts were found to be differentially regulated in both the MG and B stages, 137 

in both B and B+10, and 148 in both MG and B+10 (Supplemental Figure 4, 

Supplemental Table 12). GO enrichment analysis (Supplemental Tables 7-9-11A/B) 

showed a series of enriched GO terms in up-regulated genes (tetrapyrrole/chlorophyll and 

protein binding and amine metabolism at the MG and B+10 stages, respectively), and in 

down-regulated ones (carbohydrate and nucleotide metabolism). We also performed a 

manual annotation of differentially regulated transcripts involved in well-known aspects of 

fruit ripening, including ethylene metabolism and regulation, cell wall remodeling, cuticle 

biogenesis, primary metabolism, phenylpropanoid, carotenoid and apocarotenoid pathways 

(including ABA). All of the aforementioned classes were represented in differentially 

regulated genes, with ethylene- and cell wall-related genes showing the highest number of 

differentially expressed (particularly down-regulated) representatives (Supplemental 

Tables 6-8-10A/B). Interestingly, a series of key genes in the phenylpropanoid pathway 

(PHENYLALANINE AMMONIA-LYASE (PAL) and CHALCONE SYNTHASE (CHS) at the 

MG stage; PAL and 4-COUMARATE:COA LIGASE 2 (4CL2) at the B stage; CHS and 

DIHYDROFLAVONOL 4-REDUCTASE (DFR) at the B+10 stage) were also overexpressed 

in LCYb-overexpressing fruits compared to the WT.

The levels of 28 additional transcripts involved in fruit ripening control were measured in 

B+10 fruits using through qRT-PCR (Supplemental Table 13). The majority of 

transcription factors, including RIN, TAGL1 (Vrebalov et al., 2009) (Itkin et al., 2009), 

CNR (Manning et al., 2006), HB-1 (Lin et al., 2008), AP2a (Chung et al., 2010) (Karlova et 

al., 2011) and TDR4/FUL1 (Bemer et al., 2012) were down-regulated in LCYb-

overexpressing fruits. Down-regulated transcripts also included the NEVER-RIPE ethylene A
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receptor, GR, CTR1 and EIN2, participating in ethylene signaling (Barry et al., 1996) (Fu et 

al., 2005), and ACS2, ACS4 and ACO1 genes (Bidonde et al., 1998) (Barry et al., 2000), 

involved in ethylene biosynthesis. Notable exceptions to this pattern were the NAC-NOR 

transcription factor (Giovannoni, 2004) (Osorio et al., 2011), and the E4 and E8 ethylene-

inducible genes (Cordes et al., 1989), which were up-regulated in LCYb-overexpressing 

fruits. Several genes involved in cell wall degradation/remodeling were also down-

regulated, such as POLYGALACTURONASE 1 (PG1), PECTATE LYASE (PL), α-L-

ARABINOFURANOSIDASE 1 (ARF1), EXPANSIN 1 (EXP1), β-D-XYLOSIDASE 1 and 2 

(XYL1, XYL2), and XYLOGLUCAN ENDO-TRANSGLUCOSYLASE/HYDROLASE 4 and 8 

(SIXTH4, SIXTH8) genes. Exceptions included the PECTIN METHYLESTERASE 1 and 2 

(PMEU1, PMEU2) genes, which were up-regulated, consistent with the decreased levels of 

pectin methyl-esterification noted above. 

The metabolic and transcriptional alterations observed in LCYb-overexpressing fruits at 

B+10, associated with ABA, ethylene, cuticle and cell wall metabolism are summarized as 

ad hoc Mapman charts (Thimm et al., 2004) in Figure 4. LCYb overexpression in fruits 

resulted in extensive perturbations of ABA and ethylene metabolism and signal 

transduction, and also of cuticle and cell wall biogenesis.

In order to identify co-regulated traits (e.g. metabolites, hormones, transcripts, phenotypic 

traits), we chose 1,612 variables that are differentially regulated in LCYb-overexpressing 

with respect to WT fruits. The Pearson correlation coefficient values () for the resulting 

trait pairs (Supplemental Table 14) were used to build a correlation network (Diretto et al., 

2010a), including correlations  >0.90 (Figure 5, Supplemental Table 15). The overall 

“network strength” (i.e., the average of all  values (Diretto et al., 2010a) was very high 

(0.97), indicating that the variables are tightly co-regulated. Several metabolites, hormones 

and phenotypic traits associated with fruit ripening grouped as a tight cluster, in a region 

populated by known ripening regulators. Notably, ABA had a central position in this 

network and was strongly co-regulated with NAC-NOR (=0.99), RIN (=-0.99), and AP2a A
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(=-0.99), and less so with ethylene, NR, HB-1, CNR and TAGL1. NAC-NOR, RIN and AP2a 

were also strongly co-regulated with ethylene (=0.96, 0.98 and 0.97, respectively). 

Interestingly, the CNR ripening regulator (Manning et al., 2006) was more strongly co-

regulated with ABA (-0.90) than with ethylene (0.73).  We also constructed sub-networks 

centered around ABA and ethylene. The ABA network (Supplemental Figure 5A, 

Supplemental Table 16A) included the vast majority of transcription factor genes known to 

control fruit ripening: NAC-NOR, TDR4, AP2A, HB-1, RIN, TAGL1 and CNR. Of these, 

NAC-NOR showed positive co-regulation with ABA, while all other genes showed negative 

co-regulation (Supplemental Tables 15-16A). Additional genes strongly co-regulated with 

ABA included genes involved in ABA signal transduction, genes for ethylene biosynthesis, 

sensing and signal transduction, and genes for carotenoid, chlorophyll and cell wall 

metabolism (Supplemental Table 16A). In the second network, centered around ethylene 

(Supplemental Figure 5B; Supplemental Table 16B), strongly co-regulated genes were 

involved in ethylene biosynthesis, sensing and signal transduction, but also key ripening 

regulators and genes involved in ABA signal transduction (Supplemental Tables 15-16B). 

This is consistent with recent suggestions of substantial cross-talk between the networks 

controlling these hormones during ripening (Galpaz et al., 2008) (Ji et al., 2014) (Sun et al., 

2017).

Abamine treatment of LCYb-overexpressing fruits reduces ABA accumulation, 

increases ethylene production, and reverses the long shelf life phenotype

Abamine is a well-known inhibitor of NCED enzymatic action and of ABA biosynthesis 

(Han et al., 2004). To better investigate the ABA role in the extended shelf-life phenotype, 

we treated LCYb-overexpressing fruits with abamine at the MG stage. The treatment 

resulted in a reduction of ABA in LCYb-overexpressing fruits to levels similar to WT ones 

(Figure 6A). As a result, ethylene production was increased to levels slightly higher than 

those of WT fruits (probably as a result of the injection), while flesh firmness and water loss 

reverted to WT levels (Figure 6B-D). A
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DISCUSSION

LCYb overexpression in tomato fruits resulted in increased β-carotene content and fruit 

firmness and in extended shelf life. At the biochemical level, this phenotype was 

accompanied by a modification of cell wall composition and polymerization, of cuticle 

thickness and chemical composition, of primary metabolite and phenylpropanoid profiles in 

the fruit pericarp. This is, to our knowledge, the first time that metabolic engineering of 

carotenoid biosynthesis has been reported to have such profound and pleiotropic effects on 

fruit ripening. Until now, carotenoid composition has merely been considered as an output 

of the regulatory circuit controlling fruit ripening. 

Metabolic alterations in LCYb-overexpressing fruits

Some of the metabolic perturbations observed in LCYb-overexpressing fruits can be 

attributed to their delayed ripening: compounds like alanine, aspartate, proline, mannitol, 

and putrescine increase during normal fruit ripening (Carrari et al., 2006) and show a 

decrease in ripe LCYb-overexpressing fruits compared to WT ones. Other metabolic 

perturbations can be attributed to the observed changes in gene expression: for instance, the 

decrease in sucrose and increase in glucose levels correspond to an induction, at the B 

stage, of ACID INVERTASE, which hydrolyzes sucrose into glucose and fructose. The 

functional role of acid invertase is very well characterized in tomato fruits, with 

quantitative trait loci, genome wide association studies and reverse genetic approaches, all 

indicating its importance for determining soluble solids content (Fridman et al., 2004) 

(Tieman, 2017) and aspects of fruit development and seed yield (Zanor et al., 2009). Also, 

overexpression of ACID INVERTASE has been observed in tomato fruits overexpressing an 

ABA-response element binding factor (SlAREB1) which leaves ethylene levels unaltered 

(Bastias et al., 2011), indicating that this trait may be under direct ABA control. 

Interestingly, LCYb-overexpressing fruits share considerable commonalities with those of A
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the well characterized ripening mutants rin, nor, NR and ap2 (Osorio et al., 2011) (Karlova 

et al., 2011) with decreases in alanine, aspartic acid, glutamic acid, glutamine, 

phenylalanine and proline all being observed in rin, nor and NR and the changes in aspartic 

acid, glutamine, phenylalanine and proline also being observed in ap2. Glucose also 

showed consistent trends between ripening mutants and LCYb-overexpressing fruits, being 

over-accumulated in all the genotypes; while sucrose, present at higher contents in nor, rin, 

NR, displayed an opposite trend, i.e. reduction, in LCYb-overexpressing fruits.  

Additional metabolic fluctuations that can be attributed to ABA accumulation are the 

increase in flavonoids. The extent of changes (>10 fold for some flavonoid glycosides) 

suggests they represent direct effects of the genetic manipulation, and thus of the increase 

in ABA in LCYb-overexpressing fruits, compared to the less pronounced alterations 

observed in primary metabolites, which are likely to represent secondary effects. This 

hypothesis finds support in a series of previous studies linking ABA and flavonoid levels in 

apple (Lu et al., 2017), soybean (Gupta et al., 2018) and tomato (Mou et al., 2015). In 

agreement with biochemical data, a series of key structural phenylpropanoid genes were up-

regulated in LCYb-overexpressing fruits: for instance, PHENYLALANINE AMMONIA-

LYASE (PAL) at the MG and B stages, and CHALCONE SYNTHASE (CHS) at the MG and 

B+10 stages. ABA has been shown previously to promote PAL and CHS expression (Zhang 

et al., 2017); (Yu et al., 2015), and PAL activity (Jiang and Joyce, 2003).

Purple tomatoes, overexpressing Del and Ros transcription factors from snapdragon and 

accumulating large amounts of anthocyanins display extended shelf life, a phenotype 

attributed to the increased total antioxidant activity caused by anthocyanin accumulation 

(Zhang et al., 2013). While we cannot exclude that the increase of flavonoid levels in the 

peel of LCYb-overexpressing fruits influences its permeability and hence, water loss, total 

antioxidant activity does not seem to have a causal relationship with the extended shelf-life 

of these fruits: the fluctuations of total antioxidant activity in the polar fraction did not 

correlate with fruit shelf life, while those in the non-polar fraction showed a negative A
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correlation. This finding is not surprising, since β-carotene has been reported to have a 

lower antioxidant activity compared to lycopene (Bohm and Schwartz, 2002)). Thus, the 

conversion of large part of lycopene into β-carotene in LCYb-overexpressing fruits is 

consistent with the observed decrease of anti-oxidant activity in the non-polar fraction.

Alterations in cell wall and cuticle composition

The extraction and subsequent fractionation of the cell walls of LCYb-overexpressing fruits 

yielded higher amounts of total cell walls, water-soluble and diluted alkali-soluble solids 

per unit weight compared to WT, indicating alterations both in the content and in the 

solubility of cell wall polymers. The higher content of the pectic backbone sugar GalA in 

the WSS fraction suggested a higher content of pectins, which were less methyl-esterified 

than those from WT fruits. The regulated swelling and disassembly of primary cell walls 

and the modification of the middle lamellae between adherent primary cell walls are 

thought to be important factors contributing to tissue softening during tomato fruit ripening. 

The increased abundance in LCYb-overexpressing fruits of linear, low-esterified 

homogalacturonan is likely to influence both cell adhesion and fruit texture. Pectins 

secreted to the cell wall possess methyl-ester side chains, which are removed by pectin 

methylesterase (PME) as a prerequisite for polygalacturonase (PG) action (Wakabayashi et 

al., 2003). PME can play dual and contrasting roles within the plant cell wall: on one hand, 

it generates blocks of de-esterified galacturonic acid residues within the pectin polymer that 

can be cross-linked by calcium, thus strengthening the cell-to-cell adhesion; on the other 

hand, the same de-methyl-esterified blocks may be more susceptible to degradation by PG. 

While PG-mediated polyuronide depolymerization during ripening does not appear to be 

the primary determinant of tomato fruit softening (Giovannoni, 1989) (Brummell, 2001) 

(Uluisik et al., 2016), experimental data suggest a role for PMEs in determining fruit 

firmness: silencing of PMEU1 resulted in faster softening during fruit ripening (Phan et al., 

2007), while silencing PMEU2 results in loss of tissue integrity during fruit senescence A
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(Tieman and Handa, 1994). Additional genes contribute to tomato fruit softening during 

ripening: EXP1 and PL silencing resulted in a moderate increase in fruit firmness 

throughout ripening (Brummell et al., 1999) (Uluisik et al., 2016) (Wang et al., 2019). The 

expression of genes involved in cell wall remodeling in LCYb-overexpressing fruits is 

consistent with their phenotypes: PL, PG and EXP1 are down-regulated while PMEU1/2 

are up-regulated compared to WT. Taken together, these results indicate that LCYb 

overexpression affects the ripening-associated pathway leading to pectin solubilization and 

cell wall disassembly. 

LCYb-overexpressing fruits also had significantly higher amounts of cutin monomers and 

alicyclic wax components relative to WT, but unchanged levels of linear, very-long-chain 

wax compounds. Our results suggest a regulatory effect of ABA on cuticle deposition in 

fruits, consistent with previously published data in tomato (Curvers et al., 2010) (Martin et 

al., 2017) and Arabidopsis (Seo et al., 2011) (Zhang et al., 2005) leaves. 

Cross-talk between carotenoids, ABA, and ethylene in the control of fruit ripening

Carotenoids, and more specifically 9-cis-epoxyxanthophylls, synthesized from β-carotene, 

are metabolic precursors of ABA (Figure 1A) (Qin and Zeevaart, 1999) (Giuliano et al., 

2003). The increase in ABA levels observed in LCYb-overexpressing fruits is an indirect 

consequence of the increase in the β-carotene pool. This is, to some extent, unexpected: the 

rate-limiting step for ABA biosynthesis in leaves is believed to be the cleavage of 9-cis-

epoxyxanthophylls by the NCED dioxygenase (Qin and Zeevaart, 1999); (Thompson et al., 

2000); (Giuliano et al., 2003). However, the level of β-carotene in WT tomato fruits is only 

1.37-fold higher than that of ABA and β-carotene and ABA levels are strictly co-regulated 

in LCYb-overexpressing fruits (Supplemental Tables 16-17), suggesting that in tomato 

fruits β-cyclization is rate-limiting for ABA biosynthesis. Since the β-cyclization step is 

itself regulated during ripening (Pecker et al., 1996), this has important implications for the 

regulatory circuits controlling tomato fruit ripening (see below).A
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Cross-talk between the ABA and ethylene signaling pathways has been described in 

Arabidopsis, where a screen for extragenic enhancers or suppressors of ABA-insensitive 

abi1 mutant resulted in alleles of the constitutive ethylene response mutant ctr1 and 

ethylene-insensitive mutant ein2 (Beaudoin et al., 2000). Blocking of ethylene biosynthesis 

before véraison in grape, a non-climacteric fruit, results in inhibition of ABA biosynthesis 

and of fruit ripening (Sun et al., 2010). This indicates that the cross-talk between ABA and 

ethylene is probably present in different species and in both climacteric and non-climacteric 

fruits. Both positive and negative cross-talk have been reported in tomato fruits between 

ABA and ethylene, depending on the time and mode of application of the former hormone: 

exogenous application of ABA during early fruit development induces fruit ethylene 

biosynthesis and accelerates ripening in a fashion dependent on the RIN ripening regulator 

(Mizrahi et al., 1975) (Zhang et al., 2009); exogenous application of ABA or 

nordihydroguaiaretic acid, an inhibitor of ABA synthesis, respectively, accelerated or 

delayed fruit ripening, with a simultaneous higher and lower emission in ethylene (Zhang et 

al., 2009). Furthermore, reduced endogenous ABA levels in fruits of the tomato hp3 mutant 

resulted in increased ethylene production (Galpaz et al., 2008). Cross-talk of ABA and 

ethylene during in tomato fruit ripening has also been observed in fruits with altered 

expression of transcription factors like NAC1 (Meng et al., 2016) and ZFP2 (Weng et al., 

2015).

In LCYb-overexpressing fruits, the increase in ABA levels results in a corresponding 

decrease of the ethylene peak, a phenotype exactly symmetric to that of the hp3 mutant 

(Galpaz et al., 2008). These data supporting a negative cross-talk between the two 

hormones. How does this negative cross-talk occur in LCYb-overexpressing fruits? Our 

data indicate that ABA levels are strongly co-regulated with transcript levels of several 

ripening regulators, including NAC-NOR and RIN (Supplemental Table 15-16A). RIN 

(Vrebalov et al., 2002) encodes a MADS box transcription factor (Ito et al., 2017) (Li et al., 

2017), and NAC-NOR (Giovannoni, 2004) belongs to the NAC domain family of A
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transcription factors, many of which are involved in responses to ABA (Nakashima et al., 

2012). Both NAC-NOR and RIN are necessary for ethylene synthesis and fruit ripening. 

NAC-NOR acts upstream of RIN (Tigchelaar, 1973), and RIN binds promoter elements of 

ripening-associated genes in a CNR-dependent fashion (Fujisawa et al., 2013) (Martel et 

al., 2011). Increased PG gene expression and increased susceptibility of ripe fruits to 

Botrytis cinerea requires NOR, but not RIN (Dellapenna et al., 1987) (Cantu et al., 2009), 

while induction during ripening of transcripts involved in ethylene biosynthesis is 

completely abolished in nor, but only partially in rin fruits (Osorio et al., 2011). ABA 

accumulation in rin fruits is similar to WT fruits, while in nor fruits it is decreased 

(McGlasson and Adato, 1976). Two recent studies suggested strong regulatory relationships 

between NOR and ABA: SlAREB1, a transcription factor involved in ABA signaling, 

directly regulates NOR expression (Mou et al., 2018) and tomato de penjar-type cultivars, 

characterized by extended shelf-life, displayed a nor mutation, increased ABA levels and 

reduced water loss (Kumar et al., 2018). An interesting hypothesis is that ABA could 

regulate directly the expression of NAC-NOR and/or RIN. A series of ABA-response 

elements such as ABRE, DRE, LTRE, MYB and MYC are localized in the promoter 

regions of NOR and RIN (Supplemental Table 18). 

Additional mutants are known to affect -carotene biosynthesis in tomato fruits, such as old 

gold and Beta, which result respectively in an impairment or an enhancement, of the fruit-

specific CYC-b cyclase (Ronen et al., 2000). An old gold allele shows increased fruit 

firmness, although its fruit ABA content has not been studied (Silletti et al., 2013). Beta 

alleles carry a poorly characterized chromosomal introgression from green-fruited tomato 

species, which results in complex vegetative and fruit phenotypes (unpublished data). 

Additional ABA biosynthesis mutants, like flacca and sitiens, exhibit a wilty phenotype and 

reduced plant and fruit size (Nitsch et al., 2012). These characteristics of the mutants, the 

fact that the mutations are expressed throughout vegetative growth and fruit ripening, and 

the hypothesized dual role of ABA in regulating ripening (see below), complicate the 

interpretation of the mutant phenotypes.A
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A model to explain the phenotypic alterations of LCYb-overexpressing fruits

Based on the data gathered, we propose a model to explain the phenotypes observed in 

LCYb-fruits. First, β-carotene levels appear to be the main driver of ABA levels during late 

ripening, as suggested by the parallel increase of the two metabolites in LCYb-

overexpressing fruits. Second, while at the MG stage ABA acts as a trigger for ripening 

(Zhang et al., 2009), during late ripening it turns into a negative regulator of both ethylene 

production and fruit ripening (this paper). This dual role of ABA in regulating tomato fruit 

ripening is supported by the results obtained with RNAi lines where NCED silencing is 

driven by the fruit-specific E8 promoter: these lines show decreased ABA and increased 

ethylene levels during late ripening (Sun et al., 2012). A dual role of ABA in regulating 

fruit ripening has been also described in peach, where its application at the S3 stage 

represses ripening, while application at the S4 instead accelerates it (Soto et al., 2013). 

In our model (Figure 7), primary effects include those known to be under direct ABA 

control, such as phenylpropanoid content, cuticle thickness, cutin and triterpenoid 

composition; secondary effects include instead those not directly associated to ABA, such 

as cell wall and primary metabolite composition. Since β-carotene in fruits is mainly 

synthesized as a result of CYC-B activity (Ronen et al., 2000), and CYC-B expression is 

negatively affected by ethylene (Alba et al., 2005), we hypothesize that a negative feedback 

loop, involving CYC-B, β-carotene, ABA and ethylene, is active during late fruit ripening, 

in which ethylene represses CYC-B, lowering the levels of ABA and thus enhancing its own 

levels and accelerating ripening. In LCYb-overexpressing fruits, lycopene -cyclase activity 

and β-carotene levels are no more under negative ethylene control, and thus ABA levels 

remain high during late ripening, repressing ethylene production and extending shelf life. 

Our model is strongly supported by the pharmacological experiment shown in Figure 6: 

abamine, a known inhibitor of NCED activity, decreases ABA levels in ripe LCYb-A
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overexpressing fruits, and simultaneously decreases fruit firmness and water loss and 

increases ethylene production. This is a strong suggestion that β-carotene exerts its effects 

on fruit ripening through its cleavage product, ABA, and not through the alteration of the 

fruit antioxidant potential, as in the case of the Del/Ros tomatoes. Additional studies with 

inhibitors of ABA synthesis and sensing will shed more light on the role of this hormone in 

the control of tomato fruit ripening.
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METHODS

Plant material and fruit sampling 

The LCYb transgenic tomato plants have been previously described (Rosati et al., 2000). 

Growth of plants was as previously described (Giliberto et al., 2005). Time to Breaker was 

measured by tagging flowers at anthesis. Fruits were harvested at five ripening stages 

(mature green, MG; breaker, B; 4, 10 and 15 days after the breaker stage, B+4, B+10 and 

B+15); at least six fruits from three different plants (three biological replicates) were 

harvested, cut in small pieces, and frozen in liquid nitrogen. Pooled fruits for each biological 

replicate were stored at -80°C for a maximum of 6 months before biochemical and 

transcriptomic analyses.  

Analysis of ABA content

Frozen pericarp tissues at 5 ripening stages were lyophilized and ground to a fine powder. At 

least three different pericarp pools (biological replicates) were analyzed for each genotype. 

200 mg were extracted for each replicate as previously described (Welsch et al., 2008). LC-

HRMS was carried out using a Finnigan Surveyor Plus HPLC system (Thermo Electron), 

equipped with a 3m Hypersil Gold C18 reverse-phase column (150 X 4.6 mm; Thermo 

Electron) as reported before (Ross et al., 2004). Internal standard-based quantification was 

carried out using the MS data and the quantification software available in the Xcalibur 2.0 

software package. Retention times and MS2 fragmentation patterns were used for 

identification by using authentic reference standards (trans-ABA from OlChemIm and (±)-

ABA from Sigma).

Biochemical and phenotypic assays

Ethylene production was measured on freshly harvested fruits as described (Thompson et al., 

1999). At least 10 fruits, with uniform size and pigmentation were analyzed for each line 

and developmental stage using a Carlo Erba Fractovap 4200 gas chromatograph (Carlo Erba 

Spa, Milan, Italy) equipped with a flame ionization detector (FID) and 1-m-long alumina A
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column (80-100 mesh) at 80°C. A calibration curve was performed using known 

concentrations of ethylene. ACO enzymatic activity was assayed according to the protocol 

from (Barry et al., 1996). Water loss was measured, for each genotype, on at least 10 fruits 

from 3 different plants, kept at constant temperature and relative humidity (222°C, 

605%). Fruit firmness was evaluated using two different mechanical tests and at least 10 

fruits for each line. Pulp firmness was checked on peeled fruits with a 1 kg hand-held fruit 

pressure tester (Turoni, Cesena, Italy) equipped with an 8-mm probe. Pericarp thickness was 

measured using a caliper. Cuticle isolation was performed on fruits at B+10 as previously 

described (Saladie et al., 2006). At least four strips/fruit were included in paraffin and fixed 

in formaldehyde:acetic acid 1:1 (v/v) in 18 volumes of 70% alcohol for 48 h, followed by 

dehydration in an alcohol series (50-10%) and a water wash. At least 4 sections of 10 μm per 

fruit were cut with a microtome and stained with 0.05% of Toluidine Blue. Cuticle thickness 

was determined using light microscope images (40x magnification) and the ImageJ image 

analysis software (http://rsb.info.nih.gov/ij).

Cell wall fractionation and composition analysis

Preparation and extraction of total cell wall (TCW) was carried out essentially as described 

in (Orfila et al., 2002). Four fractions were extracted sequentially from TCW as reported 

(Huisman et al., 1998). Monosaccharide composition was determined by high performance 

anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD, Ion 

Chromatography System, ICS 3000, Dionex, CA, USA) as described (Lionetti et al., 2010). 

The column was a CarboPac PA20 column 3 x 150 mm (Dionex, CA, USA), equipped with 

a CarboPac PA20 guard column 3 x 30 mm.  Peaks were identified and quantified by 

comparison to a standard mixture of fucose, rhamnose, arabinose, galactose, glucose, xylose, 

mannose, galacturonic acid and glucuronic acid (Sigma, St. Louis, MO, USA). All data are 

expressed as mean ± S.D. Specific pectic epitopes were detected by immunodot assay with 

LM20 antibody obtained from PlantProbes (UK). Polysaccharide solutions (5 mg/ml) in 

0.5% (w/v) ammonium oxalate buffer were spotted as 1 µl drops onto nitrocellulose 

membrane (Biorad) in a 3-fold dilution series. Membranes were allowed to air dry at room A
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temperature for 1 h, then blocked with 3% blocking reagent (GE Healthcare) in phosphate-

buffered saline (PBS; Bio-Rad) for 1 h prior to incubation for 1.5 h with LM20. After 

extensive washes in PBS, membranes were incubated with anti-rat secondary antibody 

conjugated to horseradish peroxidase (GE Healthcare) and washed in PBS prior to detection 

with ECL detection reagent (GE Healthcare). For each analysis, at least three biological 

replicates were performed.

Cuticle composition analysis

Cuticular waxes and cutin were analyzed as previously described (Yeats et al., 2012). 

Samples were separated by gas chromatography (5890 II, Hewlett Packard, Avondale, PA, 

USA; 30 m DB-1, 0.32 mm i.d., df=1 m, J&W Scientific, Folsom, CA, USA) with He 

carrier gas (1.4 ml/min) and mass spectrometric detection (MS; 5971N, Agilent, EI, 70 eV, 

m/z 50–800, 1 scan per sec.). For analyte quantification, an identical GC system was used, 

except that a flame ionization detector (FID) was used, which burned H2 (30 ml/min) in air 

(200 ml/min), and used N2 to shape the flame (20 ml/min). Analytes were quantified against 

the internal standard by manual integration of peak areas. For each analysis, at least three 

biological replicates were performed.

qRT-PCR and microarray analyses 

RNA isolation and Real Time qRT-PCR conditions were as previously reported (Diretto et 

al., 2010b). List of primers for each gene is reported in Supplemental Table 10. 

Normalization to a housekeeping gene (actin) and to WT values were applied to raw data to 

obtain relative expression levels. For each genotype, at least three biological replicates were 

performed.

Microarray experiments were carried out using GeneChip® EU-TOM3 platform 

(Affymetrix) and an external service provided by IFOM (Fondazione Istituto FIRC di 

Oncologia Molecolare - COGENTECH, Milan, Italy) as previously described (Mori et al., 

2012). CEL files were subsequently analyzed with RobiNA software (Lohse et al., 2012). 

Briefly, subsequent steps of quality assessment, data normalization and identification of A
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genes differentially regulated between WT and LCYb-overexpressing lines (LCYb1 and 

LCYb3) fruits for each ripening stage were carried out. The raw data were then normalized 

using the RMA method. Statistical analysis of pair-wise differential gene expression were 

performed using a linear model-based approach, applying a 0.05 cut-off for P-values after 

a False Discovery Rate (FDR) correction. Microarray experiments have been deposited to 

the GEO public repository (https://www.ncbi.nlm.nih.gov/geo) under the accession number 

GSE108415. For each genotype, at least three biological replicates were performed.

Primary metabolite analyses

Metabolite analysis of ripe (B+10) tomato peeled pericarp samples (300 mg) by GC-MS was 

carried out essentially as described in (Lisec et al., 2006), with specific modifications for 

tomato tissues as described in (Schauer et al., 2006). The GC-MS system used comprised an 

AS 2000 autosampler, a GC 8000 gas chromatograph and a Voyager quadrupole mass 

spectrometer (ThermoFinnigan, Manchester, UK). The mass spectrometer was tuned 

according to the manufacturer’s recommendations using tris-(perfluorobutyl)-amine (CF43). 

Both chromatograms and mass spectra were evaluated using the MASSLAB program 

(ThermoQuest, Manchester, UK) with reference to libraries of the Golm Metabolite 

Database (Kopka et al., 2005) (Schauer et al., 2005). For each genotype, at least 3 biological 

replicates were performed.

Non polar and semi-polar metabolite analyses

Non polar (carotenoids) and semi-polar (phenylpropanoid) analyses were carried out by 

liquid chromatography coupled to diode-array detector and Atmospheric pressure chemical 

ionization- high resolution mass spectrometry (LC-DAD-APCI-HRMS) or Electrospray 

ionization (LC-DAD-ESI-HRMS), respectively, operating in positive and negative ion 

modes, as previously described (Su et al., 2015); (Fasano et al., 2016); (D'Esposito et al., 

2017)). Identification of carotenoids was performed as reported previously (Liu et al., 2014). 

Phenylpropanoid analysis was performed by comparing chromatographic and spectral 

properties with standards and reference DAD-HRMS spectra as previously reported (Moco A
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et al., 2006); (Iijima et al., 2008); (Fernandez-Moreno et al., 2016). For each analysis, at 

least three biological replicates were performed.

Total antioxidant capacity

Fruit total antioxidant capacity was determined as previously described (Enfissi et al., 2010), 

by estimating the capacity of non polar extract to quench the ABTS+ radical via measuring 

Abs at 734 nm compared to the one of Trolox. Results were expressed as a TEAC in mM of 

Trolox per gram of DW. For each line, at least three biological replicates were performed.

Abamine-pharmacological treatment

Abamine-treatment of LCYb-overexpressing fruits was carried out as previously described 

(Mou et al., 2016); (Su et al., 2015); (Brandi et al., 2011) using, for each fruit, 1 ml of 1 mM 

abamine, dissolved in dimethylsulfoxide (DMSO). At least 5 MG fruits for each genotype 

were collected and subjected to treatment with abamine or DMSO (mock). ABA, fruit 

firmness, ethylene emission and water loss were evaluated as previously described. 

Statistical and bioinformatic analyses

The significance of differences between WT and LCYb-overexpressing fruits was evaluated 

using Student’s t-test (*P < 0.05, **P < 0.01). For an easier homogenization and 

interpretation of the results, all data were normalized on the WT values. When the levels of a 

metabolite or gene expression were “not detectable”, an arbitrary value was set, 

corresponding to 1/10 of the lowest value in the dataset. Normalized data were log2 

transformed and visualized on public and ad hoc metabolic maps using the MapMan 

software (Urbanczyk-Wochniak et al., 2006). For enrichment analysis, Solyc of genes up- or 

down-regulated were subjected to Gene Ontology Enrichment Analysis (GOEA) using the 

Plant MetGenMap tool (http://bioinfo.bti.cornell.edu/tool/GO/GO_enrich.html; (Joung et al., 

2009)). Overrepresented GO terms in each category (biological process, molecular function, 

cellular component) were determined using the False Discovery Rate (FDR) statistical 

method and a p value ≤ 0.05 (Benjamini, 2001). Correlation networks were generated by A
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Cytoscape version 2.6.3 (www.cytoscape.org; (Cline, 2007)), as previously described 

((Rambla et al., 2016); (Aversano et al., 2017)), and visualized as force-directed layouts 

weighted with log2 (1-||) values.
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FIGURE LEGENDS

Figure 1: Carotenoid composition, shelf life and antioxidant activity of LCYb-

overexpressing fruits.

A. Schematic representation of β-carotene/ABA biosynthesis.

B. Carotenoid content of WT and LCYb-overexpressing fruits at B+10. Minimum levels of 

detection were 0.01 mg/g DW. Data are the average ± stdev of 3 biological replicates.

C. Elongated shelf-life of LCYb-overexpressing fruits. Fruits were harvested at the B stage 

and kept at 202°C, 605% relative humidity for the indicated periods of time.

D. Antioxidant activity, measured at different ripening stages as Trolox equivalent 

antioxidant capacity (TEAC) in non-polar (left) and polar (right) extracts. MG: Mature 

Green; B: Breaker; B+4, +10, +15: days after Breaker stage. Data are the average ± stdev of 

3 biological replicates. 

Asterisks indicate significant differences from WT according to a Student's t-test (*P < 0.05, 

**P < 0.01). 

Figure 2: Altered firmness, water loss, cuticle thickness, cell wall and cuticle 

composition of LCYb-overexpressing fruits. 

A. Flesh firmness at 5 ripening stages, measured with a hand-held penetrometer.Data are the 

average ± stdev of 10 biological replicates. B. Water loss between the MG and B+15 

ripening stages. Data are the average ± stdev of 10 biological replicates. C. Amounts of the 

different cell wall fractions in WT and LCYb-overexpressing fruits at B+10. TCW: Total cell 

walls; WSS: Water soluble solids; CHASS: Chelating agent soluble solids; DASS: Dilute 

alkali soluble solids; CASS: concentrated alkali soluble solids. Data are the average ± stdev 

of at least 3 biological replicates. D. Methyl-esterified pectin content of cell walls at B+10. 

Identical amounts of carbohydrate were applied to nitrocellulose membranes and probed 

with the LM20 monoclonal antibody.  E. Light microscopy of cuticles from WT and LCYb-

overexpressing fruits at B+10. F. Cuticle thickness of WT and LCYb-overexpressing fruits at 

B+10. Data are the average ± stdev of 10 biological replicates. Significant differences from 

WT were evaluated using a Student's t-test (*P < 0.05, **P < 0.01). 

Figure 3: ABA/ethylene metabolism and RIN/NOR expression during fruit ripening.A
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A. ABA content of WT and LCYb-overexpressing fruits at different stages of ripening.

B. Ethylene production in WT and LCYb-overexpressing fruits at different stages of ripening.

C. ACO activity in extracts from WT and LCYb-overexpressing fruits at different stages of 

ripening. 

D, E. RIN and NAC-NOR expression in WT and LCYb-overexpressing fruits, measured by 

qRT-PCR. Data are normalized on the expression level of the actin housekeeping gene.

Data are the average ± stdev of 3 (A, C, D, E) or 10 (B) biological replicates. Asterisks 

indicate statistical significance (*, 0.05 < P; **, 0.01 < P) in a Student’s t test. 

Figure 4: Mapman representation of transcriptional-metabolic perturbations in LCYb-

overexpressing fruits at B+10. 

Genes are represented by squares, metabolites by circles. Red indicates induction and blue 

indicates repression in the LCYb1 and LCYb3 lines with respect to the WT. A: ABA 

metabolism/signal transduction (54 Genes, 10 metabolites);  B: Ethylene metabolism/signal 

transduction (119 Genes, 1 metabolite). C. Cuticle biogenesis (11 Genes, 13 metabolites); D. 

Cell wall biogenesis (49 Genes, 1 metabolite). 

Figure 5: Network analysis of co-regulated traits in LCYb-overexpressing fruits at 

B+10.

Correlation network of 1,566 traits differentially regulated in LCYb-overexpressing fruits at 

B+10 with respect to the corresponding WT stage. Specific nodes of interest, associated to 

fruit ripening, are highlighted, together with their node strengths (ns, Diretto et al, 2010). 

N=number of nodes. NS=Network strength (Diretto et al, 2010). Each node represents a 

transcript (circle), a metabolite (diamond) or a phenotypic trait (square). For more details, 

see “Materials and Methods”.

Figure 6: Abamine treatment reverses the phenotype of LCYb-overexpressing fruits. 

A. ABA content in WT and LCYb-overexpressing fruits at B+10, mock-treated or treated 

with 1 mM abamine; B. Flesh firmness of WT and LCYb-overexpressing fruits at B+10, 

mock-treated or treated with 1 mM abamine; C. Ethylene emission of WT and LCYb-

overexpressing fruits at B+10, mock-treated or treated with 1 mM abamine; D. Water loss of A
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WT and LCYb-overexpressing fruits, mock-treated or treated with 1 mM abamine, between 

MG and B+10.

Data are the average ± stdev of 5 biological replicates. Asterisks indicate significant 

differences from WT according to Student's t-test (*P < 0.05, **P < 0.01).

 

Figure 7: Proposed model for the enhanced shelf-life phenotype in LCYb-

overexpressing fruits. 

Variables showing an increase in LCYb-overexpressing fruits are shown in red, those 

showing a decrease are shown in green.

SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure 1. AtLCYb expression in transgenic fruits.

Transgene expression was measured in fruits at 5 stages of ripening via Real Time qRT-

PCR. For details see “Materials and Methods”.

MG: Mature Green; B: Breaker; B+4, +10, +15, +40: days after Breaker stage. Data are the 

average ± stdev of 3 biological replicates.

Supplemental Figure 2. Time elapsing between anthesis and the breaker stage of fruit 

maturation in WT and LCYb-overexpressors. 

Data are the average ± stdev of at least 10 biological replicates.

Supplemental Figure 3: Mapman representations of transcriptional perturbations 

observed in LCYb-overexpressing fruits at the MG, B and B+10 stages. 

Genes and metabolites are represented by squares and circles, respectively. Red indicates 

induction and green indicates repression in the LCYb1 and LCYb3 lines with respect to the 

WT. Data are represented as log2 of fold change.

Supplemental Figure 4. Venn diagram of up- and down- regulated genes in LCYb-

overexpressing fruits at three stages of ripening.

MG: mature green; B: breaker; B+10: ten days post the breaker stage. Sub-lists of common 

genes within 2 or 3 stages of ripening are reported in Supplemental Table 12.
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Supplemental Figure 5. Correlation network of 1,008 and 790 differentially regulated 

features using, respectively, ABA (A) and ethylene (B) as central hubs. 

Circles mark  value boundaries. Nodes co-regulated with ABA and ethylene are shown. 

The list of all the nodes and their strengths is reported in Supplemental Tables 15-16 (A-

B). Each node represents a transcript (circle), a metabolite (diamond) or a phenotypic trait 

(square); up- and dw-regulated nodes in transgenic vs WT fruits are shown in red and green, 

respectively; direct correlations are shown as red lines, while inverse correlations as blue 

lines. Lines joining nodes represent correlations >|0.90| and lengths are inversely 

proportional to the  absolute values. Number of nodes (N) and network strength (NS) 

(Diretto at al, 2010) are shown. For more details, see “Materials and Methods”.

SUPPLEMENTAL TABLE LEGENDS

Supplemental Table 1: carotenoid composition in WT and LCYb-overexpressing fruits 

at B+10 by LC-DAD-MS. 

The amount of carotenoid compounds are expressed in μg g-1 dry weight. LCYb1-2-3 are 

three independent OX lines. Data are the average ± std. dev. of 3 biological replicates. 

Asterisks indicate statistical significance (*, 0.05 < P; **, 0.01 < P) in a Student’s t test. nd: 

not detectable.

Supplemental Table 2. Cutin and wax composition (μg/cm2) of cuticles from WT and 

LCYb-overexpressing fruits at B+10. 

Data are the average ± SD of at least three biological replicates (fruits). Asterisks mark 

values that differ significantly from WT in a Student's t-test (*P < 0.05, **P<0.01).

Supplemental Table 3. Relative amounts of phenylpropanoids measured in the cuticle 

and flesh of WT and LCYb-overexpressing fruits at B+10. 

Data are the average ± SD of at least three biological replicates (fruits). Asterisks mark 

values that differ significantly from WT according a Student's t-test (*P < 0.05, **P<0.01).

Supplemental Table 4. Relative amounts of primary metabolites in WT and LCYb-

overexpressing fruits at B+10. 
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Data are the average ± SD of at least three biological replicates (fruits). Asterisks mark 

values that differ significantly from WT according a Student's t-test (*P < 0.05, **P<0.01).

Supplemental Table 5: levels of ABA and ABA catabolites in WT and LCYb- 

overexpressing fruits at 5 ripening stages (MG, B, B+4, B+10 and B+15). 

Values are expressed as fold internal standard and normalized on the WT level. Data are the 

average ± std. dev. of 3 biological replicates. Asterisks indicate statistical significance (*, 

0.05 < P; **, 0.01 < P) in a Student’s t test. nd: not detectable.

Supplemental Table 6A: Up-regulated genes in LCYb-overexpressing MG fruits.

Supplemental Table 6B: Dw-regulated genes in LCYb-overexpressing MG fruits.

Supplemental Table 7A: Overrepresented GO terms in all three categories (P: 

biological process; F: molecular function; C: cellular component) of up-regulated genes 

in LCYb-overexpressing fruits at MG.

Supplemental Table 7B: Overrepresented GO terms in all three categories (P: 

biological process; F: molecular function; C: cellular component) of dw-regulated 

genes in LCYb-overexpressing fruits at MG.

Supplemental Table 8A: Up-regulated genes in LCYb-overexpressing B fruits.

Supplemental Table 8B: Dw-regulated genes in LCYb-overexpressing B fruits.

Supplemental Table 9A: Overrepresented GO terms in all three categories (P: 

biological process; F: molecular function; C: cellular component) of up-regulated genes 

in LCYb-overexpressing fruits at B.

Supplemental Table 9B: Overrepresented GO terms in all three categories (P: 

biological process; F: molecular function; C: cellular component) of dw-regulated 

genes in LCYb-overexpressing fruits at B.

Supplemental Table 10A: Up-regulated genes in LCYb-overexpressing B+10 fruits.

Supplemental Table 10B: DW-regulated genes in LCYb-overexpressing B+10 fruits.

Supplemental Table 11A: Overrepresented GO terms in all three categories (P: 

biological process; F: molecular function; C: cellular component) of up-regulated genes 

in LCYb-overexpressing fruits at B+10.
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Supplemental Table 11B: Overrepresented GO terms in all three categories (P: 

biological process; F: molecular function; C: cellular component) of dw-regulated 

genes in LCYb-overexpressing fruits at B+10.

Supplemental Table 12: Common UP- and DW-regulated genes in LCYb-

overexpressing fruits in MG/B, B/B+10, MG/B+10 or MG/B/B+10 stages of ripening.

Supplemental Table 13: Genes tested by quantitative Real Time PCR, and expression 

levels in WT and LCYb-overexpressing fruits at B+10 stage of ripening. 

Data are the average ± std. dev. of 3 biological replicates. Asterisks indicate statistical 

significance (*, 0.05 < P; **, 0.01 < P) in a Student’s t test.

Supplemental Table 14. Correlation matrix of differentially represented 

genes/metabolites/phenotypes in LCYb-overexpressing B+10 fruits.

Supplemental Table 15. Co-regulation of ripening-associated genes with ABA and 

ethylene in LCYb-overexpressing fruits.

Supplemental Table 16. Pearson correlation coefficients ( ρ ≥|0.90|) between 

differentially regulated genes/metabolites/phenotypes and ABA (A), or Ethylene (B) in 

LCYb-overexpressing B+10 fruits.

Supplemental Table 17: lycopene, -carotene and ABA- molar concentrations in WT 

and LCYb-overexpressing B+10 tomato fruits. 

Data are the average ± std. dev. of 3 biological replicates. Asterisks indicate statistical 

significance (*, 0.05 < P; **, 0.01 < P) in a Student’s t test. nd: not detectable.

Supplemental Table 18: ABA- and stress- response elements sites found in the 

promoters of ethylene-regulators.
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Figure 1: Carotenoid composition, shelf life and antioxidant activity of LCYb-overexpressing fruits. 

A. Schematic representation of β-carotene/ABA biosynthesis. 

B. Carotenoid content of WT and LCYb-overexpressing fruits at B+10. Minimum levels of detection were 0.01 

µg/g DW. Data are the average ± stdev of 3 biological replicates. 

C. Elongated shelf-life of LCYb-overexpressing fruits. Fruits were harvested at the B stage and kept at 

20±2°C, 60±5% relative humidity for the indicated periods of time. 

D. Antioxidant activity, measured at different ripening stages as Trolox equivalent antioxidant capacity (TEAC) 

in non-polar (left) and polar (right) extracts. MG: Mature Green; B: Breaker; B+4, +10, +15: days after Breaker 

stage. Data are the average ± stdev of 3 biological replicates.  

Asterisks indicate significant differences from WT according to a Student's t-test (*P < 0.05, **P < 0.01).  
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Figure 2: Altered firmness, water loss, cuticle thickness, cell wall and cuticle composition of LCYb-

overexpressing fruits.  

A. Flesh firmness at 5 ripening stages, measured with a hand-held penetrometer.Data are the average ± stdev 

of 10 biological replicates. B. Water loss between the MG and B+15 ripening stages. Data are the average ± 

stdev of 10 biological replicates. C. Amounts of the different cell wall fractions in WT and LCYb-overexpressing 

fruits at B+10. TCW: Total cell walls; WSS: Water soluble solids; CHASS: Chelating agent soluble solids; DASS: 

Dilute alkali soluble solids; CASS: concentrated alkali soluble solids; GalA: galacturonic acid. Data are the 

average ± stdev of at least 3 biological replicates. D. Methyl-esterified pectin content of cell walls at B+10. 

Identical amounts of carbohydrate were applied to nitrocellulose membranes and probed with the LM20 

monoclonal antibody.  E. Light microscopy of cuticles from WT and LCYb-overexpressing fruits at B+10. F. 

Cuticle thickness of WT and LCYb-overexpressing fruits at B+10. Data are the average ± stdev of 10 biological 

replicates. Significant differences from WT were evaluated using a Student's t-test (*P < 0.05, **P < 0.01).  
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Figure 3: ABA/ethylene metabolism and RIN/NOR expression during fruit ripening. 

A. ABA content of WT and LCYb-overexpressing fruits at different stages of ripening. 

B. Ethylene production in WT and LCYb-overexpressing fruits at different stages of ripening. 

C. ACO activity in extracts from WT and LCYb-overexpressing fruits at different stages of ripening.  

D, E. RIN and NAC-NOR expression in WT and LCYb-overexpressing fruits, measured by 

qRT-PCR. Data are normalized on the expression level of the actin housekeeping gene. 

Data are the average ± stdev of 3 (A, C, D, E) or 10 (B) biological replicates. Asterisks indicate 

statistical significance (*, 0.05 < P; **, 0.01 < P) in a Student’s t test.  
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Figure	 4:	 Mapman	 representation	 of	

transcriptional-metabolic	 perturbations	 in	

LCYb-overexpressing	 fruits	 at	 B+10.	 Genes	

are	represented	by	squares,	metabolites	by	

circles.	 Red	 indicates	 induction	 and	 blue	

indicates	repression	in	the	LCYb1	and	LCYb3	

lines	 with	 respect	 to	 the	 WT.	 A:	 ABA	

metabolism/signal	 transduction	 (54	 Genes,	

10	metabolites);	 	 B:	 Ethylene	metabolism/

signal	 transduction	 (119	 Genes,	 1	

metabolite).	 C.	 Cuticle	 biogenesis	 (11	

Genes,	 13	 metabolites);	 D.	 Cell	 wall	

biogenesis	(49	Genes,	1	metabolite).		
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Figure 5: Network analysis of co-regulated traits in LCYb-overexpressing fruits at B+10. 
Correlation network of 1,566 traits differentially regulated in LCYb-overexpressing fruits at B+10 with respect to the 

corresponding WT stage. Specific nodes of interest, associated to fruit ripening, are highlighted, together with their node 

strengths (ns, Diretto et al, 2010). N=number of nodes. NS=Network strength (Diretto et al, 2010). Each node represents 

a transcript (circle), a metabolite (triangle) or a phenotypic trait (square). For more details, see “Materials and Methods”. 
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Figure 6: Abamine treatment reverses the phenotype of LCYb-overexpressing fruits.  

A. ABA content in WT and LCYb-overexpressing fruits at B+10, mock-treated or treated with 1 

mM abamine; B. Flesh firmness of WT and LCYb-overexpressing fruits at B+10, mock-treated or 

treated with 1 mM abamine; C. Ethylene emission of WT and LCYb-overexpressing fruits at 

B+10, mock-treated or treated with 1 mM abamine; D. Water loss of WT and LCYb-

overexpressing fruits, mock-treated or treated with 1 mM abamine, between MG and B+10. 

Data are the average ± stdev of 5 biological replicates. Asterisks indicate significant differences 

from WT according to Student's t-test (*P < 0.05, **P < 0.01). 
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Figure 7: Proposed model for the enhanced shelf-life phenotype in LCYb-overexpressing fruits. 

Variables showing an increase in LCYb-overexpressing fruits are shown in red, those showing a decrease 

are shown in green. 
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