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Abstract: Intelligent utilization of resources and improved mission performance in an autonomous
agent require consideration of cyber and physical resources. The allocation of these resources becomes
more complex when the system expands from one agent to multiple agents, and the control shifts from
centralized to decentralized. Consensus is a distributed algorithm that lets multiple agents agree on
a shared value, but typically does not leverage mobility. We propose a coupled consensus control strategy
that co-regulates computation, communication frequency, and connectivity of the agents to achieve faster
convergence times at lower communication rates and computational costs. In this strategy, agents move
towards a common location to increase connectivity. Simultaneously, the communication frequency is
increased when the shared state error between an agent and its connected neighbors is high. When the
shared state converges (i.e., consensus is reached), the agents withdraw to the initial positions and the
communication frequency is decreased. Convergence properties of our algorithm are demonstrated
under the proposed co-regulated control algorithm. We evaluated the proposed approach through a new
set of cyber-physical, multi-agent metrics and demonstrated our approach in a simulation of unmanned
aircraft systems measuring temperatures at multiple sites. The results demonstrate that, compared with
fixed-rate and event-triggered consensus algorithms, our co-regulation scheme can achieve improved
performance with fewer resources, while maintaining high reactivity to changes in the environment
and system.

Keywords: consensus; co-regulation; cyber-physical system; distributed control; unmanned aircraft system

1. Introduction

The success of an autonomous, robotic mission can be measured by the effectiveness and efficiency in
completing the mission [1]. While physical resources (e.g., time, energy, power, and space) have historically
dominated the metrics of success, more capable, complex cyber-physical agents require the judicious
allocation of cyber resources (e.g., communication and computation) as well. Without a strongly coupled
co-design strategy, cyber and physical resources are typically optimized either independent of one another,
or perhaps in an iterative design loop until requirements are satisfied [2]. For example, controllers are
typically designed to handle worst-case conditions or maneuvers while providing good margins of stability
and robustness [3,4]. Selection of sampling rate, or period of execution of the control law often becomes
a software or real-time system implementation issue [5]. However, even if co-designed, cyber and physical
resources should be co-regulated at run-time, in conjunction with holistic (i.e., both physical and cyber)
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system performance. The situation is further complicated in the case of multi-agent, or distributed systems.
Concisely, current design methods do not allow for dynamic adjustment of physical, communication,
and cyber resources in response to changing conditions, objectives, or system faults.

Motivating Example

During a prescribed burn, building a temperature profile of the area enables detection of areas that are
too hot (e.g., fires that may damage the crown of the trees) and helps monitor which areas need a different
ignition profile. Sometimes, thermocouple loggers equipped with probes are buried underground in the
area of the burn to log the fire temperatures [6]. Alternatively, small wearable temperature sensors can
be used by firefighters to build a shallow, but serviceable temperature profile. However, this offline data
gathering method does not help in monitoring the live fire and requires physical access to the area selected
for the burn.

We are interested in utilizing a team of Unmanned Aircraft Systems (UAS) to build a temperature
profile of a fire. Teams of UASs are already being tasked with igniting controlled burns in areas where
access is challenging or unsafe [7–9]. A natural additional capability is to leverage the distributed,
multi-agent system to simultaneously build the temperature profile by moving and sensing multiple
locations. Information consensus [10] provides an excellent strategy for estimating the temperature profile
with multiple, moving agents in a decentralized fashion. In this strategy, improved measurements can
be obtained by being closer to the point of interest, which also may restrict communication with other
agents given the topography. As a result, there are times when it is prudent for each agent to fly close
to the area in question, change its frequency of communication, or fly higher to communicate its value
with others. In this scenario, an online co-regulated and co-designed information consensus algorithm
can dynamically adjust cyber, physical, and communication resources in response to holistic, multi-agent
system performance.

Summary of Approach

To solve this challenge, we propose co-regulated consensus controllers which allocate cyber, physical,
and communication resources with the goal of obtaining fast convergence and high accuracy, but that
require fewer resources than traditional approaches. The resources are adjusted in accordance with the
difference between the agents’ shared, sensed values. In consensus algorithms, convergence time depends
upon the rate of communication between agents as well as the connectivity of the entire group of agents.
We co-regulate both the communication frequency and the positions of the agents to change connectivity.

Connectivity and communication rate of the agents are traded off to improve both time to convergence
and convergence value against the need to be at a particular altitude for sensing. Specifically, when
connectivity becomes sparse, the shared value may only be propagated through a small number of
neighboring agents—thereby converging more slowly. Connectivity of the network can be improved either
by using long range communicating devices or by changing the physical location of the agent. In the
case of UASs, increasing the altitude can improve connectivity; however, this can reduce the accuracy or
reliability of the sensing.

The communication rate can be increased to improve convergence time as well, but will impact
convergence value if the shared value does not change at a similar frequency. This has given way to the
idea of event-triggered consensus wherein the shared value is only communicated between agents when
current and sensed value differ more than some threshold [11]. While potentially minimally allocating
communication resources, event-triggered and self-triggered consensus algorithms may not react quickly
enough to changes in the shared state and typically are more difficult to analyze.
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In this paper, we propose an information consensus control scheme in which position of the agents
(i.e., connectivity), communication frequency, and the shared information state are simultaneously
co-regulated in a single framework. Motion of the agents, and hence connectivity, is co-regulated based on
shared state error. When shared state error is high agents are moved to positions that increase network
connectivity, and as error diminishes the agents are moved back to a more effective position that increases
their ability to closely sense the shared state. Simultaneously, for each agent, propagation of the shared
value occurs at a time-varying communication rate. This rate is increased when shared state error is high,
and lowered as error diminishes, thus preserving computation and communication when not needed.
The result is a dynamic algorithm that provides a densely connected network with high communication
rates during transient periods of the shared state, and a more loosely connected, slower communicating
network during quiescent periods of the shared state.

Previously, we introduced an initial co-regulated consensus controller strictly for communication
frequency [12]. This paper uses the same controller to co-regulate the communication frequency when
the information state changes. While the controller achieved improved convergence times and lower
communication costs, it does not dynamically adjust connectivity. The work presented here builds on this
result in a significant way by adding a co-regulated position controller to maneuver agents in their physical
position to achieve higher connectivity. This is then combined with the co-regulated communication
frequency controller to improve both convergence rate and accuracy of convergence value. Our algorithm
provides a new capability to design controllers that can optimize new performance criteria—an issue we
explore in depth in this paper. This paper makes the following contributions:

• Introduction of a position controller to move agents in physical space to adjust connectivity
• Proofs for the convergence of the proposed algorithm
• Introduction of new cost metrics to assess distributed, cyber-physical co-regulation performance
• Comparison of the effectiveness of the proposed co-regulation algorithm against non co-regulated

and event-triggered consensus strategies

2. Related Work

Consensus algorithms rely on exchanging state information among the agents. Exchanged states
are used to update the state of each agent. The update model used in the paper is similar to the
models proposed in [13,14]. Both are predecessors of the distributed coordination algorithms presented
in [15,16]. Vicsek’s model in [16] studies a leader follower problem where every agent is initialized with
a similar speed and a different heading. The state update model adjusts the headings of the agents
to the heading of the leader agent. Both Jadbabaie et al. [15] and Ren and Beard [13] improved this
model to accommodate leader-less coordination. The consensus model in [13] introduced the information
consensus that considered the shared state value as an observation made by the agents of a random variable.
The convergence properties of the model are proved for both continuous and discrete time domains.

Most of the theoretical work in consensus assumes continuous communication between the
agents is possible. Continuous communication assumes the agents broadcast and receive the state
values and update their individual states continuously. Guaranteeing convergence properties of such
systems requires continuous mathematics and is well established [11]. In recent work, systems with
higher-order, or nonlinear dynamics are studied for their convergence properties [17]. If communication
and computation rates are sufficiently fast the assumption of continuous communication holds and
the aforementioned theoretical analysis is sound. However, in real systems, communication and
computation are not continuous but digital, and are inherently discrete (e.g., WiFi and Xbee) [18].
Particularly at slow communication rates, this reality may invalidate convergence guarantees based
on continuous mathematics.
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Consensus algorithms with discrete-time communication traditionally use a fixed communication
period to simplify the analysis of the system [19]. Agents communicate, receive, and update states at these
periodic intervals. This period can either be synchronous between agents [20] or asynchronous [21].
Discrete time algorithms are also simple to schedule as periodic tasks in a real-time computing
system [22], and convergence properties are easily analyzed using conditions of the Laplacian matrix [23].
Asynchronous communication among the agents is more realistic in real world implementations with the
presence of packet losses, communication delays, and clock synchronization errors. When analyzing the
convergence of asynchronous systems, the collectively connected topologies are used. In this case “frequent
enough” communication by all agents is sufficient to make the network collectively connected [13,24].

Achieving fast convergence times are essential once a multi-agent system is deployed in the real world.
There have been extensive studies carried out both on the rate of convergence and the time to converge.
The definitions for both the convergence rate and convergence time are stated in [25]. The authors of [26]
quantified the convergence rate of an averaging consensus algorithm to be the second eigenvalue (sorted
in descending order) of the Laplacian matrix drawn from the connectivity graph. This second eigenvalue,
also known as the Fiedler eigenvalue, increases with the connectivity of the graph. The more densely
the agents are connected, the bigger the second eigenvalue will be. Hence, increasing the number of
connections within the multi-agent system yields faster convergence. Increasing the connectivity of
agents has been popular in power-grid-related research. For example, consensus algorithms with added
innovative methods are used in power management of a micro-grid in [27]. The connectivity of the
network is increased by creating additional links between nodes which are at the opposite end of the
communication network. This effort has led to faster convergence rates in these types of systems.

Research into improving connectivity through repositioning can be done in the mobile
network/robotics domain. In [28], mobile ad-hoc networks move autonomous and mobile agents to
positions where the network will maintain maximum connectivity using a flocking-based heuristic
algorithm. Underwater multi-agent communication is challenging, and, as a result, in [29], a mobile
surface vehicle provides a linkage between underwater agents to improve connectivity of the network.
Optimal waypoints are generated and followed by the surface vehicle to ensure high connectivity [29].
Algorithmically, a semi-definite programming approach to move agents’ location to improve the algebraic
connectivity of the network has been proposed [30]. The pairwise distances between the agents decide the
movement. In similar work, potential fields have been used to position agents to gain higher connectivity
in a consensus example [31]. The method is resilient even when the network is dynamic. These works are
related to our proposed methodology by dynamically adjusting position to modify connectivity. However,
our strategy offers a low-level reactive coupled feedback mechanism that adjusts position based on
consensus error. This does not require computationally complex optimization or trajectory generation
algorithms since low-level feedback is used.

In the work presented here, we build on ideas in [27] and our previous work [12] to produce
a novel, holistic model for co-design and analysis of co-regulated shared information consensus
controllers. The motivating example for our work is a team of UASs monitoring temperatures of a fire at
multiple locations.

3. Background

Here, we summarize the key concepts for consensus control, namely: graph theory and matrix theory
for consensus, discrete information consensus, and linear quadratic regulators (LQR).
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3.1. Graph Theory in Consensus

Graph theory has been used to abstract the communication network among the group of agents by
representing agents as nodes and communication as edges of a graph. Analyzing the matrix representation
of the same graph helps prove certain consensus properties such as convergence.

Let N-node graph G = (V , E) represent a N-agent communication system where the set of nodes
represents the set of agents V = {v1, v2, . . . , vN}. Each edge in G represents a communication link
between two agents and is denoted by eij ∈ E = (vi, vj). The edge is directed to represent one-way
communication [32]. The adjacency matrix A = [aij] of the graph G is defined as

aij =

{
1, eij ∈ E
0, otherwise.

Define Ḡ = {G1,G2, . . . ,GW} as the finite set of all possible communication subgraphs between N
agents. Let Ĝi =

{
Gi1 ,Gi2 , . . . ,Giw

}
⊂ Ḡ be the union of simple graphs for vi ∈ V . We define a simple

graph to be a single communication instance between two agents. The edge set of Ĝi is given by the union
of the edge set of

{
Gi1 ,Gi2 , . . . ,Giw

}
where j = 1, . . . , w.

In a strongly connected graph, there exist bi-directional paths between any pair of nodes in the graph.
A graph wherein all nodes except one have at least one parent is known as a tree and the orphan node is
named the root. In a spanning tree, there exists at least one path through all the nodes in the graph.

3.2. Matrix Theory for Consensus

A nonnegative matrix, denoted denoted as L ≥ 0, only contains entries greater than or equal to zero.
A stochastic matrix is a nonnegative matrix with all its row sums equal to one [33]. Let matrix L ≥ 0 be
a n× n stochastic matrix. L is said to be stochastic indecomposable aperiodic (SIA) if lim

m→∞
Lm = 1yT for some

column vector y where 1 is a n× 1 column vector with all the entries equal to one [34].

3.3. Discrete Information Consensus

The graph G is assigned with N agents, each node representing an agent. LetMi denote the set of
neighbors of agent i. An agent j is considered a neighbor of agent i if and only if eij ∈ E . We assume each
agent is connected to itself and hence every agent i is a member ofMi. Let xI = (xI

1, xI
2, · · · , xI

N)
T denote

the information state of the agents. xI will be shared among the agents and eventually be agreed upon via
consensus. Assuming the communication to be either synchronous or asynchronous, we use the discrete
time consensus algorithm presented in [13],

xI
i [k + 1] =

1
∑j∈Mi

∑
j∈Mi

xI
j [k] i = 1, · · · , N. (1)

k ∈ {1, 2, 3, . . .} is the discrete time step. Given a set of initial conditions xI [0], the system is said to
achieve consensus asymptotically [10] if,

lim
k→∞

∥∥∥xI
i [k]− xI

j [k]
∥∥∥→ 0, i, j = 1, · · · , N. (2)
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Further, if the convergence value is equal to the average of the initial state values, it is known as the
average consensus problem and formally denoted as

Average
(

xI [0]
)
=

1
n

N

∑
i=1

xI
i [0] . (3)

3.4. Linear Quadratic Regulator Problem

A Linear Quadratic Regulator (LQR) solves an optimal control problem for a linear, time-invariant
system. We use LQR to construct the controller which co-regulates the agents’ physical positions. For a
linear time invariant system, the infinite-horizon LQR control input, u, is given by,

u(t) = −Kx(t)

where x(t) is the state to be regulated and K is the constant feedback gain matrix [35]. The control input
u(t) minimizes the cost function

J =
∫ ∞

0

(
x(t)′Qx(t) + u(t)′Ru(t)

)
dt. (4)

Q and R are two weighting matrixes and chosen to represent the desired performance—a tradeoff
between control effort and state error. The feedback gain matrix is calculated as

K = R−1B′P (5)

where A is the system matrix, B is the input matrix, and the P is a solution to the Algebraic Riccati
equation (ARE),

A′P + PA− PBR−1B′P + Q = 0. (6)

4. Co-Regulation for Information Consensus

This section develops the control strategies to vary the agents’ position and communication frequency
to achieve faster convergence on the information state. We layout the control strategy on regulating the
communication frequency followed by the strategy on regulating the position. Then, the convergence
guarantees of the proposed control strategies are analyzed.

4.1. Co-Regulated Communication Consensus

A digital communication task requires computational resources to form a message, encode it,
and transmit it via a channel. This means the scheduled communication tasks onboard the computer
are what dictate the allocation of communication resources. This creates a powerful mechanism for
dynamically allocating communication resources by adjusting the scheduling of the communication task.
We leverage this capability to design our co-regulated communication strategy. We assume that the
task schedule onboard the computer can be dynamically adjusted to increase or decrease how often an
agent communicates.

Quicker convergence times are realized through higher communication rates as it facilitates rapid
exchange of information. However, upon reaching consensus, exchanging the same information adds no
value and will simply occupy computational cycles and bandwidth that might be otherwise allocated to
other tasks. On the other hand, higher rates of communication are required once a change in state variable
is detected. This suggests a strategy that varies communication rate in accordance with consensus value
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could improve resource allocation. Hence, we make use of the following controller on the communication
rate to satisfy the co-regulated communication objective [12].

Let Ti[k] be the time period between two successive communications of agent i, which evolves as
a discrete time system

Ti[k + 1] = Ti[k] + xF
i [k]u

F
i [k], (7)

where the frequency of communication is denoted by xF
i [k] = 1/Ti [k], and a control input, which modifies

the rate for each agent is denoted by uF
i . The control input is calculated by the following controller,

uF
i [k] =

Pushes comm rate toward xF
i,max︷ ︸︸ ︷

−αF
1

∣∣∣Σj∈Mi

(
xI

i [k]− xI
j [k]
)∣∣∣+

Pushes comm rate

toward xF
i,min︷ ︸︸ ︷

αF
2

∣∣∣xF
i [k]− xF

i,min

∣∣∣ .
(8)

The convergence guarantees for the above controller are proved in [12].

4.2. Co-Regulated Position Consensus

Connectivity of the multi-agent system can be modified either by changing the existing
communication mechanisms (e.g., more powerful antenna), or by moving toward or away from
neighboring agents. Given our agents have fixed communication resources onboard during a mission,
in this strategy we leverage the mobility of each agent to change proximity to neighboring agents and
subsequently adjust the connectivity of the communication network.

In co-regulated position consensus, we manipulate the agents’ connectivity by changing their physical
position, based on the local value of the shared state. In this scenario, sparsely distributed agents are moved
to a prior known location with good connectivity so that each agent would have a larger set of neighbors
to connect to. For a particular mission, it is possible the agents are required to maintain a formation with
certain distances, be tied to a fixed geographical position, or perhaps need to improve proximity to sensed
phenomena. Such external reasons may prohibit the agents from having full connectivity. As a result, once
the states converge, the agents are moved back to their initial positions.

Let xP
1i and xP

2i denote the position and the velocity of agent i. Let uP
i denotes the physical control

input for agent i. We model each agent’s dynamics as a double integrator:

ẋP
1i = xP

2i

ẋP
2i = uP

i .
(9)

We now introduce a controller to regulate each agent’s position depending on the difference in the
shared state of each agent. This state difference is caused either when a neighbor updates its state upon
communicating with another agent or sensing a new state value as a result of an external event. The need to
increase connectivity is governed by error in the shared state. Once the state error is reduced, the increased
connectivity has no real benefits. As a result, the connectivity can be decreased without affecting the
shared state value.

We introduce the following controller for each agent’s physical position,

uP
i = −K

(
xP

1i − xP
1i,re f

)
i ∈ 1, 2, . . . , N (10)

where K is the state feedback gain produced from an LQR control design strategy (see Section 3.4). We
define xP

1i,re f to be a reference to the position where an agent should move to. xP
1i,re f is bounded above

by the maximum position an agent can move to, xP
max, and bounded below by xP

1i[0], which is the initial
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position of an agent i. We define xP
common to be the common position for increased connectivity. We select

xP
1i[0] and xP

max such that xP
1i[0] ≤ xP

common ≤ xP
max.

xP
1i,re f is changed according to:

ẋP
1i,re f =

Pushes xP
1i,re f toward xP

max︷ ︸︸ ︷
−βP

1

(
xP

1i,re f − xP
max

)
Σj∈Mi

∣∣∣xI
i − xI

j

∣∣∣−
Pushes xP

1i,re f toward xP
1i [0]︷ ︸︸ ︷

βP
2

(
xP

1i,re f − xP
1i[0]

)
.

(11)

Upon choosing proper grains for βP
1 and βP

2 , the first term of Equation (11) increases the reference
when a state difference is present. The increase is capped by the upper bound xP

max. Hence, the agents are
moved towards the maximum position by Equation (10) and the agents move beyond xP

common. This results
the agents to increase the connectivity. Once the agents’ states converge, the error term Σj∈Mi

∣∣∣xI
i − xI

j

∣∣∣→ 0,

and the second term in Equation (11) pushes xP
1i,re f back to its lower bound xP

1i[0], moving the agent back

to its initial position. Once the agents retrieve from xP
common, connectivity falls back to the initial level

of connectivity.

4.3. Convergence Guarantees

Lemma 1. If the union of a set of simple graphs {G1,G2, . . . ,Gw} ⊂ Ḡ has a spanning tree, then the matrix product
Dw · · ·D2D1 is SIA, where Dj is a matrix corresponding to each simple graph Gj, j = 1, . . . , w. This proof is
provided in [13].

Lemma 2. Let S1, S2, · · · , Sk be a finite set of SIA matrices with the property that for each sequence Si1, Si2, · · · , Sij
of positive length, the matrix product SijSij−1 · · ·Si1 is SIA. Then, for each infinite sequence Si1, Si2, . . . there exists
a column vector y such that

lim
j→∞

SijSij−1 · · ·Si1 = 1yT .

The proof can be read in full in [34]. Lemmas 1, and 2 are, respectively, stated as lemmas 3.5, and 3.2 in [13].

Theorem 1. Let G be the communication graph of N agents. Assume each agent is connected to at least one other
agent, making G a spanning tree. Assume each agent i’s communication radius is r and the straight line distance
between two agents i, j is dij (dij ≤ r). Let each agent’s communication frequency, xF

i [k] =
1

Ti [k]
, evolve as in

Equation (7). Let each agent change position according to Equations (10) and (11). Define the maximum straight

line distance an agent can travel,
∣∣xP

1i[0]− xP
max
∣∣, to be within a circle of radius

r−dij
2 centered around agent i. The

discrete consensus algorithm in Equation (1) achieves global asymptotic consensus if there exists a non-overlapping
infinite sequence of hyperperiods, denoted as TH [k], where TH [k] = max{Ti[k]}, and the union of communication
subgraphs in Ḡ has a spanning tree within each TH [k].

Proof. Three cases are produced to analyze the convergence of Equation (1) under the variable
communication frequency, which is regulated by Equation (7) [12]:

1. Synchronized and fixed TH ;
2. Synchronous and time-varying TH [k]; and
3. Asynchronous and time-varying TH [k].

The controller for agent position in Equation (11) is not directly coupled with Equation (7), however,
both are indirectly coupled through the state error

∣∣∣Σj∈Mi

(
xI

i [k]− xI
j [k]
)∣∣∣. Under Equations (10) and (11),

varying agent positions would add or remove connections from the connectivity matrix. Hence, added or
removed connections would make TH [k] time-varying. Let Sw be the matrix representation of a subgraph
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in Ḡ where w = 1, . . . , W. Define Hl to be the product of any permutations of subgraph matrices at
a hyperperiod l,

Hl = S1S2S3 · · ·Sw.

From Lemma 1, Hl is a SIA matrix. As all agents have communicated once at each hyperperiod
TH [k], the subgraph represented by the matrix product H at each hyperperiod TH [k] will have
a minimum spanning tree. Let the information consensus protocol be applied for k steps in Equation (1).
As 0 < TH [k] < ∞, when k → ∞, l → ∞. The propagation of the initial information throughout the
network for k steps can be written,

xI [k] = SkSk−1 · · ·S1xI [0].

By substituting the matrix product at each hyperperiod with H,

lim
k→∞

xI [k] = lim
l→∞

HlHl−1 · · ·H1xI [0].

From Lemma 2, the product of H matrixes can be substituted with,

lim
l→∞

HlHl−1 · · ·H1 = 1yT

where y is some constant column vector of positive entries. Therefore,

lim
k→∞

xI [k] = 1yTxI [0].

The convergence is guaranteed as long as the necessary condition is not violated by Equations (10)
and (11). The necessary condition to achieve consensus is to maintain a spanning tree in the agent
connectivity graph [36]. Once the distance between any two agents becomes greater than r, the agent
is unreachable and the agent connectivity graph no longer maintains the spanning tree property.
Equations (10) and (11) vary the agent positions between xP

max and xP
1i[0]. By defining an upper bound

at xP
max and a lower bound at xP

1i[0] for xP
1i,re f to be within a circle of radius

r − dij
2 , xP

1i,re f is restricted to
move agents to unreachable locations. This preserves the spanning tree property of the connectivity graph
of the agents. Therefore, by Equation (7) together with Equations (10) and (11), the system defined in
Equation (1) achieves consensus.

5. Performance Metrics

Because co-regulation actively trades off resources and performance traditional metrics may not
capture the dynamical nature of the holistic system. Here, we propose the set of performance metrics
that was used to evaluate the proposed co-regulated consensus. The change in connectivity and the
communication frequency among the agents change the time required for convergence and impact the
converged value. In digital communication, a computational task must execute and send packets through
the communication device. As a result, communication frequency is directly linked with computation
and, hence, increased communication causes increased computational load. To capture holistic system
performance, we present the following three cost metrics in our performance evaluation: (1) convergence
time; (2) average cost of communication; and (3) error in convergence.

5.1. Convergence Time

Time to convergence depends on the rate of convergence. The fastest rate is achieved once all the
agents are connected and the slowest when the agents are sparsely connected. We provide the following
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definition for the convergence time, denoted as tc, which slightly differs from the one given in [25]. tc is
defined as the first time instance after which the disagreement between the information states between
agents become smaller than some ε

tc =
∣∣∣xI

i − xI
j

∣∣∣ ≤ ε, i, j = 1, · · · , N.

Further, let Tsim be the length of a global clock tick used in simulation. This represents a global,
synchronized time between the agents. We then define kc to be the discrete time index at which
convergence occurs:

kc =

⌊
tc

Tsim

⌋
5.2. Average Cost of Communications

The number of times each agent exchanges information has a direct impact on the energy expenditure
of the agent. Let Cij be the impact on energy and computation from single communication between agent
i and j. We calculate the cost for communications between an agent and its neighboring agents until
convergence time, tc as

Ωi =
kc

∑
k=1

∑
j∈Mi

f
(
Cij, k

)
, (12)

f
(
Cij, k

)
=

{
Cij, if k = nTsim, n = 1, . . . , kc

0, otherwise
(13)

We then calculate the average cost of communication, Ω̄, by averaging the total cost of communication
in the network over N total agents.

Ω̄ =
1
N

N

∑
i=1

Ωi. (14)

5.3. Average Error in Converged Value

Let xI
i [0] be the initial information state and xI

i [kc] be the information state value of agent i at
convergence time tc. The error in converged value of agent i is calculated as

Zi =
∣∣∣xI

i [0]− xI
i [kc]

∣∣∣ .

The average error in converged value is the simple average of the errors of all N agents,

Z̄ =
1
N

N

∑
i=1

Zi. (15)

6. Simulation Setup and Experimental Design

We now describe our simulation setup, design of the LQR controllers, experimental design,
and provide a motivating scenario for our experiments.
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6.1. Simulation Setup

MATLAB was used as the simulation environment to carry out the experiments. Agents were defined
as independent objects, each with their own set of properties. Each agent had fields for position and
velocity in x, y, and z coordinates, information state value, communication frequency, and initial values.
We mapped the real world in a three-coordinate system in the simulation where x and y coordinates
mapped the horizontal plane and z mapped the vertical plane. Forward and right movements of an agent
resulted in a positive increase in x and y coordinates, respectively. Likewise, agent’s upwards movement
was an increase in z coordinate. The agents’ motion was modeled as a second-order dynamical systems,
defined in Equation (9). MATLAB’s non-stiff differential equation solver, ode45(), was used to solve
Equation (9) for xP

1 and xP
2 . Section 6.2 describes the design of the gain matrix for the LQR controller.

Each agent was assumed to be able to communicate at a variable rate bounded between xF
i,min

and xF
i,max. Zeno behavior is a phenomenon in switched system wherein a finite number of switches

may occur in finite time. We imposed the bounds on communication rate, in part, to avoid this
destructive behavior [37]. Table 1 lists the parameters used in the experiment and their initialized values.
The discrete-time consensus algorithm in Equation (1) was independently implemented in each agent
and the frequency of communication and physical position were co-regulated with the shared state by
applying Equations (7) and (10). Each simulation allowed sufficient time for the shared information state
to converge and the return of each agent to the initial states of frequency and position.

Table 1. Definitions and initialized value of parameters.

Parameter Value Description

Tsim 0.01 s Length of a global clock tick
ε 0.001 ◦C Threshold of state error for convergence

xF
i,min 1 Hz Minimum communication frequency

xF
i,max 10 Hz Maximum communication frequency

xF
i [0] 1 Hz Initial communication frequency

xP
i [0] 15 m Initial altitude of an agent

xP
max 30 m Max altitude allowed

xP
common 25 m Common altitude for increased connectivity

6.2. LQR Design

MATLAB’s lqr() command was used to calculate the gain matrix K for the controller in Equation (10)
for each agent. lqr() tooks the system matrix, A, input matrix, B, and two weighting matrices, Q and R,
as the input parameters. For the experiments, the Q and R matrices were chosen such that agent position
xP

i1 was prioritized an order of magnitude over velocity xP
i2. We used the following system matrix A, input

matrix B, and two weighting matrices Q and R for the experiment:

A =

[
0 1
0 0

]
, B =

[
0
1

]
, Q =

[
10 0
0 1

]
, R =

[
1
]

.

lqr() solved the Algebraic Riccati equation in Equation (6) with respect to the performance in
Equation (4), and returned the gain matrix K as in Equation (5).

6.3. Experiment Design

Figure 1 provides an overview of the experiment design. Agents sensed the temperature at predefined
areas of interest (green locations in Figure 1) while in the lower orbit. The objective was to estimate,
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as accurately as possible, the temperature at each location. This was accomplished via information
consensus as the agents orbited around the areas of interest. Agents’ positions were co-regulated to the
upper orbit (xP

common) to improve connectivity, thereby sharing more information, and occurred in response
to shared state error, as described in Section 4.2.

Figure 1. Overview of the experimental design.

The homogeneous agents were assumed to be capable of translational motion in three directions:
x, y, and z. They were equipped with thermal imaging cameras to measure temperature on the ground
at prescribed locations. Agents orbited between the D number of areas of interests and measured the
temperature at each area. The environment was simulated as a coordinate system with x, y, and z
dimensions and each dimension was measured in meters. Table 2 contains the x and y coordinates for
D = 9 number of areas of interest. The temperature reading of all agents was synchronized, which
required all agents to be at their respective areas of interest to take the readings at the same time instance.

The agents were initially at a low altitude, which was needed for good sensing of each area of interest.
While at this low altitude, we assumed that communication was limited due to environmental obstructions
and that the communication had a ring-like topology. The obstructions were avoided and connectivity
could only be improved once the agents increased their altitude beyond a height xP

common. Once the altitude
of xP

common or above was reached, the communication graph was assumed to be fully connected since
an agent could communicate with all other agents. Agents initial, maximum and common altitudes
for increased connectivity are listed in Table 1. Upon completing each orbit, the recorded temperature
measurements of each agent were averaged with the neighboring agents per Equation (1). Each agent
separately applied a Gaussian process on the shared variable to estimate the temperature field around
D points.

We assumed that each of the temperature measurements through the thermal imaging cameras was
subject to an error. The error was selected to be normally distributed with zero mean and a standard
deviation of 5 ◦C. The errors created a difference in the observed temperature state from agent to agent,
which we addressed using our consensus algorithm.
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Table 2. Predefined points of interest.

1 2 3 4 5 6 7 8 9

xP
x −187.3 m −216.8 m −144.7 m −5.4 m 136.9 m 214.7 m 192.6 m 80.2 m −70.2 m

xP
y −114.5 m 32.8 m 164.6 m 219.5 m 171.6 m 43.6 m −104.9 m −204.5 m −208.2 m

6.4. Co-Regulation of Multiple Shared States

The co-regulating communication and the position algorithms in Equations (8) and (10) regulate the
respective states based on a scaler value, xI

i . However, in our experiment, we conducted consensus on
temperature values from multiple locations. This means we must modify the co-regulation controllers in
Equations (8) and (10) to work with multiple sensed values. We define xI

i to be the vector of all shared
states representing temperature readings from each location. Then, Equation (8) becomes:

uF
i [k] =− αF

1

∣∣∣Σj∈Mi

(
xI

i [k]− xI
j [k]
)∣∣∣+ αF

2

∣∣∣xF
i [k]− xF

i,min

∣∣∣
↓

uF
i [k] =− αF

1

∥∥∥Σj∈Mi

(
xI

i [k]− xI
j [k]
)∥∥∥

∞
+ αF

2

∣∣∣xF
i [k]− xF

i,min

∣∣∣
The infinity norm selects the maximum state difference in xI

i for an agent i. The control input applied
to Equation (7) and the increase in frequency are the highest when the maximum state difference is selected
over any other state difference. This guarantees that an agent communicates frequently enough and
transmits all the states in xI

i to its neighbors before deciding to decrease the frequency of communication.

7. Results

We now present the experiments and results depicting the effectiveness of the proposed method. We
applied the proposed co-regulated consensus methods in a simulated prescribed fire. We discuss the cost
savings of the proposed methods against event-triggered and traditional fixed-rate consensus strategies.

The overall behavior of the co-regulated consensus algorithm is plotted in Figure 2 for two orbits.
The temperature states are plotted only for Area 5 in Table 2 (136.9 m, 171.6 m). The agents took 43 s to
orbit the areas of interest once and to start communicating the individual temperature states. Agents
repeated the process for each orbit. Throughout the orbit phase, the communication frequency and the
vertical position were kept at the initial values. The initial values for the temperature states were the agents’
individual temperature measurements at each area. The co-regulation of communication frequency, agent
connectivity, and the application of the consensus algorithm started after completing one round of orbit.

We selected αF
1 = 0.1 s2 ◦C−1 and αF

2 = 0.1 s3 parameters for Equation (8) and βP
1 = 1500 s−1 ◦C−1

and βP
2 = 1 s−1 parameters for Equation (11) to simulate the system shown in the Figure 2. The difference

between the individual temperature measurements and the shared temperature caused the frequency
controller in Equation (8) to apply a negative control input to Equation (7). As a result, the time period
to communicate, Ti[k + 1], decreased, which in turns increased the frequency of the communication, as
shown in the “Frequency (Hz)” plot in Figure 2. At the same time, the state error caused Equation (11)
to shift the reference position towards the maximum altitude causing the controller in Equation (10) to
move the agents, as shown in the “Height (m)” plot in Figure 2. Once the agents moved towards the
maximum altitude, they moved past the threshold altitude for increased connectivity xP

common and could
communicate with a larger subset of agents. The improved connectivity allowed rapid convergence of the
shared temperature state values.
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As the states converged, term
∥∥∥Σj∈Mi

(
xI

i [k]− xI
j [k]
)∥∥∥

∞
→ 0 and the second term in Equation (7)

dominated. It applied a positive control input to lengthen the time interval of successive communications
and the communication frequency was lowered to its minimum. Similarly, Equation (11) pushed the
reference position back to the initial altitudes. The agents lowered their altitude below xP

common and reduced
the connectivity to the initial ring-like topology.

Figure 2. Behavior of the co-regulated algorithm.

Estimation Using Gaussian Process

We assumed the area of the prescribed burn was in different stages of the burn process. We assigned
nine UASs to orbit around nine areas of interest, which were positioned according to Table 2. The true
temperature of the fire at each area was approximated from the temperature readings provided in [6].
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The approximated values of the true temperature and erroneous temperature recording through thermal
imagery by each UAS are recorded in Table 3. We assumed the mean temperature of the fire over the
interested area did not vary significantly during the time the UASs were in motion [6]. Upon completing
the orbit, UASs calculated the average temperature across all areas of interest using consensus algorithm
and applied Gaussian process regression on converged temperature values. MATLAB’s fitrgp() and
resubPredict() commands were used to fit a Gaussian regression model and predict the values from the
trained model. The converged and estimated temperatures readings are recorded in Table 3.

Table 3. Temperature measurements and estimations by agents across all areas of interest.

UAS ID 1 2 3 4 5 6 7 8 9

True Temperature ◦C 28.00 192.00 242.00 191.00 146.00 99.00 78.00 70.00 55.00
Area 1 ◦C 30.67 201.17 230.71 195.31 147.59 92.46 75.83 71.71 72.89
Area 2 ◦C 41.85 185.25 257.17 194.63 145.68 102.57 76.98 69.38 62.45
Area 3 ◦C 35.05 199.09 245.36 184.96 149.59 107.15 80.44 75.17 58.63
Area 4 ◦C 26.48 193.47 238.06 195.44 140.26 93.66 73.95 55.28 62.19
Area 5 ◦C 29.63 188.23 248.85 182.44 145.49 97.79 79.60 71.56 50.68
Area 6 ◦C 27.85 191.18 245.14 196.47 151.55 94.68 78.39 63.93 49.43
Area 7 ◦C 27.97 199.66 238.15 192.86 144.87 104.59 72.55 70.16 57.76
Area 8 ◦C 33.50 199.72 242.43 183.54 142.29 93.69 89.75 66.92 58.74
Area 9 ◦C 27.04 196.44 238.18 183.99 138.89 101.44 77.11 69.02 62.10

Converged Value ◦C 31.12 194.91 242.67 189.96 145.13 98.67 78.29 68.13 59.43
Gaussian Estimation ◦C 31.17 194.87 242.67 189.96 145.13 98.68 78.28 68.15 59.40

Comparison to Related Methods

It is important to find what choices for the parameters αF
1 and αF

2 yield the least cost. The cost metrics
to be reduced are time to converge, average communication cost, and error in converged value (see
Section 5). After multiple simulations over a range of choices for αF

1 and αF
2 parameters, αF

1 = 1 s2 ◦C−1

and αF
2 = 10 s3 resulted in the lowest cost.

These optimal choices were used to compare the proposed co-regulated method against four other
methods. Table 4 shows the results of the comparisons. Our full co-regulation consensus is in the
bottom row, and compared against fixed-rate consensus, two variants of our co-regulation algorithm, and
event-triggered consensus. In the first row, we show event-triggered control representing the most relevant
comparison due to recent advances in that area [38]. The event-triggered algorithm communicates when
the error in shared state between an agent and its neighboring agents becomes greater than a threshold
5.0× 10−5 ◦C.

In the second row in Table 4, we compare against a traditional fixed-position and fixed-rate consensus
algorithm. Rows 3 and 4 in Table 4 are variations of our co-regulation algorithm where we hold either
position or communication rate fixed while varying the other. This provides some intuition for the tradeoffs
between changing connectivity and communication rate, and the subsequent impact on our metrics.

It is clear from the results in Table 4 that the fastest convergence time was achieved through full
co-regulation of both the communication frequency and the position (connectivity). The increased
communication frequencies were aided by the increased connectivity to achieve faster convergence
times where the time could have been 10× worse had the connectivity not been increased (see Row 4 in
Table 4). However, this benefit was realized at the cost of moving agents further. In the event-triggered
approach, the smaller convergence time was achieved through very frequent communications (41.90
average number of communications in Row 1). In fact, event-triggered consensus communicated the
most out of all methods we tried (There are many tuning parameters in event-triggered control and our
implementation represents a basic event-triggered consensus strategy.). This disadvantage was avoided in
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the proposed co-regulation strategies as the co-regulation allowed the communication frequency to be
lowered once the state errors diminished. Interestingly, fixed-rate and fixed-position consensus scored the
worst in all metrics, wasting communication resources, and taking >10× longer to converge. Row 3 of
Table 4 shows a strategy with co-regulated position (connectivity) and fixed-rate communication. This
strategy was only mildly worse than full co-regulation, demonstrating the power of improving connectivity
to achieve fast convergence. In that case, the algorithm compensated for the fixed-rate communication by
moving the agents further to improve the connectivity, and still did not manage to converge more quickly
than full co-regulation. This suggests that it is likely better to increase connectivity and less aggressively
increase communication frequency.

Table 4. Comparison of co-regulation against other strategies.

Convergence Time Avg # of Comms Distance Travelled

Event-triggered consensus 4.33 s 41.90 0 m

Traditional fixed position (uP = 0) and
fixed-rate communication (uF = 0) consensus 40.31 s 41.23 0 m

Co-regulated position and fixed-rate
communication (uF = 0) 3.02 s 4.00 311.34 m

Fixed position (uP = 0) and
co-regulated communication 27.44 s 33.17 0 m

Full co-regulation of xP and xF 2.23 s 5.00 290.10 m

Comparison against Position-Only Co-Regulation

The results in Table 4 suggest that co-regulating agent position only to improve the connectivity
provides most of the benefit of co-regulation without having to co-regulate communication rate. However,
often the agents may be unable to achieve full connectivity even though they travel towards the common
location. This could be due to radio interference, topographical interference, or other issues. Table 5 shows
the cost of convergence and average cost of communication for agents connected with varying connectivity
levels. When the agents are able to connect to only a small subset of agents at their common reference,
co-regulating both the communication and position can achieve significantly shorter convergence times
with smaller cost in communication compared with a fully connected network.

Table 5. Comparison of position-only co-regulation compared against full co-regulation of both communication
and position with varying connectivity. CR, full co-regulation; PO, position-only co-regulation.

2 Neighbors 3 Neighbors 4 Neighbors 5 Neighbors Full Connectivity

PO CR PO CR PO CR PO CR PO CR
Convergence Time 39.97 s 27.12 s 29.31 s 19.54 s 22.18 s 14.27 s 13.03 s 9.72 s 3.02 s 2.23 s

Communication Cost 40.94 32.59 30.28 24.15 23.15 18.43 14.01 13.15 4.00 5.00

In short, if full connectivity cannot be achieved, improved convergence performance can be realized
by additionally co-regulating the communication rate.

Error in Converged Value

The error between the converged value and the true mean of the initial temperature values were near
zero in each of the methods, suggesting that consensus is indeed a good estimator in this multi-agent
system. Our previous work using co-regulated communication rate [12] showed that asynchronous
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communication can lead to converging to the wrong value. This occurs when an agent communicates
more often than another—effectively over weighting its measurement in the consensus calculation. Here,
we explore the impact of this phenomenon and how it is mitigated in our results above.

Figure 3 plots the co-regulated communication frequency using optimal alpha parameters (αF
1 and

αF
2 ). Synchronous and switching-like behavior of the communication frequency could be observed in

all agents using this algorithm. This means once an error in shared state was observed, the frequency
controller in Equation (8) pushed the communication rate to its maximum. Once the error started to
decrease, it subsequently pushed it to its minimum resulting in the switching-like behavior. This occurred
multiple times before convergence was obtained. This synchronous behavior resulted in convergence with
minimal error.

Figure 3. Communication frequency with optimal alpha parameters, αF
1 = 1 and αF

2 = 10.

High αF
1 and αF

2 values may not be ideal for different applications, particularly if resources are scarce,
cannot be allocated as quickly, or there are communication limitations. Under lower gain values, a
switching behavior may not occur, and the asynchronous behavior would lead to a mismatch between the
converged value and true mean of the initial values. We show an example co-regulated communication
rate response in Figure 4, which plots the communication frequency of nine agents under smaller (αF

1 =

0.05 s2 ◦C−1 and αF
2 = 0.05 s3) gains.

To provide insight into how this impacts the converged shared state, in Table 6, we show the error in
converged value (calculated using Equation (15)) with varying αF

1 and αF
2 gains. As shown in the table, the

error increased with decreasing αF
1 and αF

2 up to a certain point, after which the error was again reduced.
This was because the system behaved more synchronously at the extreme values for the gains. This
demonstrated the importance of finding optimal gain values in co-regulated multi-agent systems.

The power of our co-regulation framework is that this behavior can be adjusted using the gains αF
1

and αF
2 . These gains can be tuned to dampen, or sharpen, the response to achieve different objectives.
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Table 6. Error between the converged value and the true mean of the initial conditions with varying α1

and α2.

αF
1 (s2 ◦C−1) 1 0.5 0.1 0.05 0.01 0.005 0.001

αF
2 (s3) 1 0.5 0.1 0.05 0.01 0.005 0.001

Fixed position (uP = 0) and
co-regulated communication (uF) 0 ◦C 0.0027 ◦C 0.0095 ◦C 0.0218 ◦C 0.0448 ◦C 0.0373 ◦C 0.0280 ◦C

Full co-regulation
of uP and uF 0 ◦C 0.0124 ◦C 0.0686 ◦C 0.1194 ◦C 0.0861 ◦C 0.1124 ◦C 0.0831 ◦C

Figure 4. Communication frequency at small alpha parameters, α1 = 0.05 and α2 = 0.05.

8. Conclusions

We have developed a novel consensus scheme in which communication rate and connectivity are
co-regulated alongside error in shared information state. This allows for the dynamic reallocation of
computation, communication, and agent position to improve estimation of a shared state value. To do this,
we introduced a new controller to move the agents to a common location to achieve higher connectivity
and combined this with our previous co-regulated communication rate consensus in [12] to build a holistic
consensus algorithm. New cost metrics were introduced to assess performance and comparisons against
traditional fixed-rate and event-triggered consensus were shown. Our co-regulation consensus strategy
is shown to have shorter convergence time with fewer numbers of communication while improving
communication connectivity. Applicability of the proposed algorithm was demonstrated in a simulated
environment where the agents implemented averaging co-regulated consensus to calculate the mean
temperature of a prescribed fire.

Future directions of this work include analyzing the performance of a larger number of co-regulated
agents, exploring optimization strategies to better tune the controller gains and meet new performance
objectives, and implementing the co-regulated algorithms in real prescribed fire UAS-Rx [8].
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